nir: calculate trip count for more loops
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 typedef uint8_t nir_component_mask_t;
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84 struct nir_builder;
85
86
87 /**
88 * Description of built-in state associated with a uniform
89 *
90 * \sa nir_variable::state_slots
91 */
92 typedef struct {
93 gl_state_index16 tokens[STATE_LENGTH];
94 int swizzle;
95 } nir_state_slot;
96
97 typedef enum {
98 nir_var_shader_in = (1 << 0),
99 nir_var_shader_out = (1 << 1),
100 nir_var_shader_temp = (1 << 2),
101 nir_var_function_temp = (1 << 3),
102 nir_var_uniform = (1 << 4),
103 nir_var_mem_ubo = (1 << 5),
104 nir_var_system_value = (1 << 6),
105 nir_var_mem_ssbo = (1 << 7),
106 nir_var_mem_shared = (1 << 8),
107 nir_var_mem_global = (1 << 9),
108 nir_var_all = ~0,
109 } nir_variable_mode;
110
111 /**
112 * Rounding modes.
113 */
114 typedef enum {
115 nir_rounding_mode_undef = 0,
116 nir_rounding_mode_rtne = 1, /* round to nearest even */
117 nir_rounding_mode_ru = 2, /* round up */
118 nir_rounding_mode_rd = 3, /* round down */
119 nir_rounding_mode_rtz = 4, /* round towards zero */
120 } nir_rounding_mode;
121
122 typedef union {
123 bool b[NIR_MAX_VEC_COMPONENTS];
124 float f32[NIR_MAX_VEC_COMPONENTS];
125 double f64[NIR_MAX_VEC_COMPONENTS];
126 int8_t i8[NIR_MAX_VEC_COMPONENTS];
127 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
128 int16_t i16[NIR_MAX_VEC_COMPONENTS];
129 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
130 int32_t i32[NIR_MAX_VEC_COMPONENTS];
131 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
132 int64_t i64[NIR_MAX_VEC_COMPONENTS];
133 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
134 } nir_const_value;
135
136 typedef struct nir_constant {
137 /**
138 * Value of the constant.
139 *
140 * The field used to back the values supplied by the constant is determined
141 * by the type associated with the \c nir_variable. Constants may be
142 * scalars, vectors, or matrices.
143 */
144 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
145
146 /* we could get this from the var->type but makes clone *much* easier to
147 * not have to care about the type.
148 */
149 unsigned num_elements;
150
151 /* Array elements / Structure Fields */
152 struct nir_constant **elements;
153 } nir_constant;
154
155 /**
156 * \brief Layout qualifiers for gl_FragDepth.
157 *
158 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
159 * with a layout qualifier.
160 */
161 typedef enum {
162 nir_depth_layout_none, /**< No depth layout is specified. */
163 nir_depth_layout_any,
164 nir_depth_layout_greater,
165 nir_depth_layout_less,
166 nir_depth_layout_unchanged
167 } nir_depth_layout;
168
169 /**
170 * Enum keeping track of how a variable was declared.
171 */
172 typedef enum {
173 /**
174 * Normal declaration.
175 */
176 nir_var_declared_normally = 0,
177
178 /**
179 * Variable is implicitly generated by the compiler and should not be
180 * visible via the API.
181 */
182 nir_var_hidden,
183 } nir_var_declaration_type;
184
185 /**
186 * Either a uniform, global variable, shader input, or shader output. Based on
187 * ir_variable - it should be easy to translate between the two.
188 */
189
190 typedef struct nir_variable {
191 struct exec_node node;
192
193 /**
194 * Declared type of the variable
195 */
196 const struct glsl_type *type;
197
198 /**
199 * Declared name of the variable
200 */
201 char *name;
202
203 struct nir_variable_data {
204 /**
205 * Storage class of the variable.
206 *
207 * \sa nir_variable_mode
208 */
209 nir_variable_mode mode;
210
211 /**
212 * Is the variable read-only?
213 *
214 * This is set for variables declared as \c const, shader inputs,
215 * and uniforms.
216 */
217 unsigned read_only:1;
218 unsigned centroid:1;
219 unsigned sample:1;
220 unsigned patch:1;
221 unsigned invariant:1;
222
223 /**
224 * When separate shader programs are enabled, only input/outputs between
225 * the stages of a multi-stage separate program can be safely removed
226 * from the shader interface. Other input/outputs must remains active.
227 *
228 * This is also used to make sure xfb varyings that are unused by the
229 * fragment shader are not removed.
230 */
231 unsigned always_active_io:1;
232
233 /**
234 * Interpolation mode for shader inputs / outputs
235 *
236 * \sa glsl_interp_mode
237 */
238 unsigned interpolation:2;
239
240 /**
241 * If non-zero, then this variable may be packed along with other variables
242 * into a single varying slot, so this offset should be applied when
243 * accessing components. For example, an offset of 1 means that the x
244 * component of this variable is actually stored in component y of the
245 * location specified by \c location.
246 */
247 unsigned location_frac:2;
248
249 /**
250 * If true, this variable represents an array of scalars that should
251 * be tightly packed. In other words, consecutive array elements
252 * should be stored one component apart, rather than one slot apart.
253 */
254 unsigned compact:1;
255
256 /**
257 * Whether this is a fragment shader output implicitly initialized with
258 * the previous contents of the specified render target at the
259 * framebuffer location corresponding to this shader invocation.
260 */
261 unsigned fb_fetch_output:1;
262
263 /**
264 * Non-zero if this variable is considered bindless as defined by
265 * ARB_bindless_texture.
266 */
267 unsigned bindless:1;
268
269 /**
270 * Was an explicit binding set in the shader?
271 */
272 unsigned explicit_binding:1;
273
274 /**
275 * Was a transfer feedback buffer set in the shader?
276 */
277 unsigned explicit_xfb_buffer:1;
278
279 /**
280 * Was a transfer feedback stride set in the shader?
281 */
282 unsigned explicit_xfb_stride:1;
283
284 /**
285 * Was an explicit offset set in the shader?
286 */
287 unsigned explicit_offset:1;
288
289 /**
290 * \brief Layout qualifier for gl_FragDepth.
291 *
292 * This is not equal to \c ir_depth_layout_none if and only if this
293 * variable is \c gl_FragDepth and a layout qualifier is specified.
294 */
295 nir_depth_layout depth_layout;
296
297 /**
298 * Storage location of the base of this variable
299 *
300 * The precise meaning of this field depends on the nature of the variable.
301 *
302 * - Vertex shader input: one of the values from \c gl_vert_attrib.
303 * - Vertex shader output: one of the values from \c gl_varying_slot.
304 * - Geometry shader input: one of the values from \c gl_varying_slot.
305 * - Geometry shader output: one of the values from \c gl_varying_slot.
306 * - Fragment shader input: one of the values from \c gl_varying_slot.
307 * - Fragment shader output: one of the values from \c gl_frag_result.
308 * - Uniforms: Per-stage uniform slot number for default uniform block.
309 * - Uniforms: Index within the uniform block definition for UBO members.
310 * - Non-UBO Uniforms: uniform slot number.
311 * - Other: This field is not currently used.
312 *
313 * If the variable is a uniform, shader input, or shader output, and the
314 * slot has not been assigned, the value will be -1.
315 */
316 int location;
317
318 /**
319 * The actual location of the variable in the IR. Only valid for inputs
320 * and outputs.
321 */
322 unsigned int driver_location;
323
324 /**
325 * Vertex stream output identifier.
326 *
327 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
328 * stream of the i-th component.
329 */
330 unsigned stream;
331
332 /**
333 * output index for dual source blending.
334 */
335 int index;
336
337 /**
338 * Descriptor set binding for sampler or UBO.
339 */
340 int descriptor_set;
341
342 /**
343 * Initial binding point for a sampler or UBO.
344 *
345 * For array types, this represents the binding point for the first element.
346 */
347 int binding;
348
349 /**
350 * Location an atomic counter or transform feedback is stored at.
351 */
352 unsigned offset;
353
354 /**
355 * Transform feedback buffer.
356 */
357 unsigned xfb_buffer;
358
359 /**
360 * Transform feedback stride.
361 */
362 unsigned xfb_stride;
363
364 /**
365 * How the variable was declared. See nir_var_declaration_type.
366 *
367 * This is used to detect variables generated by the compiler, so should
368 * not be visible via the API.
369 */
370 unsigned how_declared:2;
371
372 /**
373 * ARB_shader_image_load_store qualifiers.
374 */
375 struct {
376 enum gl_access_qualifier access;
377
378 /** Image internal format if specified explicitly, otherwise GL_NONE. */
379 GLenum format;
380 } image;
381 } data;
382
383 /**
384 * Built-in state that backs this uniform
385 *
386 * Once set at variable creation, \c state_slots must remain invariant.
387 * This is because, ideally, this array would be shared by all clones of
388 * this variable in the IR tree. In other words, we'd really like for it
389 * to be a fly-weight.
390 *
391 * If the variable is not a uniform, \c num_state_slots will be zero and
392 * \c state_slots will be \c NULL.
393 */
394 /*@{*/
395 unsigned num_state_slots; /**< Number of state slots used */
396 nir_state_slot *state_slots; /**< State descriptors. */
397 /*@}*/
398
399 /**
400 * Constant expression assigned in the initializer of the variable
401 *
402 * This field should only be used temporarily by creators of NIR shaders
403 * and then lower_constant_initializers can be used to get rid of them.
404 * Most of the rest of NIR ignores this field or asserts that it's NULL.
405 */
406 nir_constant *constant_initializer;
407
408 /**
409 * For variables that are in an interface block or are an instance of an
410 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
411 *
412 * \sa ir_variable::location
413 */
414 const struct glsl_type *interface_type;
415
416 /**
417 * Description of per-member data for per-member struct variables
418 *
419 * This is used for variables which are actually an amalgamation of
420 * multiple entities such as a struct of built-in values or a struct of
421 * inputs each with their own layout specifier. This is only allowed on
422 * variables with a struct or array of array of struct type.
423 */
424 unsigned num_members;
425 struct nir_variable_data *members;
426 } nir_variable;
427
428 #define nir_foreach_variable(var, var_list) \
429 foreach_list_typed(nir_variable, var, node, var_list)
430
431 #define nir_foreach_variable_safe(var, var_list) \
432 foreach_list_typed_safe(nir_variable, var, node, var_list)
433
434 static inline bool
435 nir_variable_is_global(const nir_variable *var)
436 {
437 return var->data.mode != nir_var_function_temp;
438 }
439
440 typedef struct nir_register {
441 struct exec_node node;
442
443 unsigned num_components; /** < number of vector components */
444 unsigned num_array_elems; /** < size of array (0 for no array) */
445
446 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
447 uint8_t bit_size;
448
449 /** generic register index. */
450 unsigned index;
451
452 /** only for debug purposes, can be NULL */
453 const char *name;
454
455 /** whether this register is local (per-function) or global (per-shader) */
456 bool is_global;
457
458 /**
459 * If this flag is set to true, then accessing channels >= num_components
460 * is well-defined, and simply spills over to the next array element. This
461 * is useful for backends that can do per-component accessing, in
462 * particular scalar backends. By setting this flag and making
463 * num_components equal to 1, structures can be packed tightly into
464 * registers and then registers can be accessed per-component to get to
465 * each structure member, even if it crosses vec4 boundaries.
466 */
467 bool is_packed;
468
469 /** set of nir_srcs where this register is used (read from) */
470 struct list_head uses;
471
472 /** set of nir_dests where this register is defined (written to) */
473 struct list_head defs;
474
475 /** set of nir_ifs where this register is used as a condition */
476 struct list_head if_uses;
477 } nir_register;
478
479 #define nir_foreach_register(reg, reg_list) \
480 foreach_list_typed(nir_register, reg, node, reg_list)
481 #define nir_foreach_register_safe(reg, reg_list) \
482 foreach_list_typed_safe(nir_register, reg, node, reg_list)
483
484 typedef enum PACKED {
485 nir_instr_type_alu,
486 nir_instr_type_deref,
487 nir_instr_type_call,
488 nir_instr_type_tex,
489 nir_instr_type_intrinsic,
490 nir_instr_type_load_const,
491 nir_instr_type_jump,
492 nir_instr_type_ssa_undef,
493 nir_instr_type_phi,
494 nir_instr_type_parallel_copy,
495 } nir_instr_type;
496
497 typedef struct nir_instr {
498 struct exec_node node;
499 struct nir_block *block;
500 nir_instr_type type;
501
502 /* A temporary for optimization and analysis passes to use for storing
503 * flags. For instance, DCE uses this to store the "dead/live" info.
504 */
505 uint8_t pass_flags;
506
507 /** generic instruction index. */
508 unsigned index;
509 } nir_instr;
510
511 static inline nir_instr *
512 nir_instr_next(nir_instr *instr)
513 {
514 struct exec_node *next = exec_node_get_next(&instr->node);
515 if (exec_node_is_tail_sentinel(next))
516 return NULL;
517 else
518 return exec_node_data(nir_instr, next, node);
519 }
520
521 static inline nir_instr *
522 nir_instr_prev(nir_instr *instr)
523 {
524 struct exec_node *prev = exec_node_get_prev(&instr->node);
525 if (exec_node_is_head_sentinel(prev))
526 return NULL;
527 else
528 return exec_node_data(nir_instr, prev, node);
529 }
530
531 static inline bool
532 nir_instr_is_first(const nir_instr *instr)
533 {
534 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
535 }
536
537 static inline bool
538 nir_instr_is_last(const nir_instr *instr)
539 {
540 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
541 }
542
543 typedef struct nir_ssa_def {
544 /** for debugging only, can be NULL */
545 const char* name;
546
547 /** generic SSA definition index. */
548 unsigned index;
549
550 /** Index into the live_in and live_out bitfields */
551 unsigned live_index;
552
553 /** Instruction which produces this SSA value. */
554 nir_instr *parent_instr;
555
556 /** set of nir_instrs where this register is used (read from) */
557 struct list_head uses;
558
559 /** set of nir_ifs where this register is used as a condition */
560 struct list_head if_uses;
561
562 uint8_t num_components;
563
564 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
565 uint8_t bit_size;
566 } nir_ssa_def;
567
568 struct nir_src;
569
570 typedef struct {
571 nir_register *reg;
572 struct nir_src *indirect; /** < NULL for no indirect offset */
573 unsigned base_offset;
574
575 /* TODO use-def chain goes here */
576 } nir_reg_src;
577
578 typedef struct {
579 nir_instr *parent_instr;
580 struct list_head def_link;
581
582 nir_register *reg;
583 struct nir_src *indirect; /** < NULL for no indirect offset */
584 unsigned base_offset;
585
586 /* TODO def-use chain goes here */
587 } nir_reg_dest;
588
589 struct nir_if;
590
591 typedef struct nir_src {
592 union {
593 /** Instruction that consumes this value as a source. */
594 nir_instr *parent_instr;
595 struct nir_if *parent_if;
596 };
597
598 struct list_head use_link;
599
600 union {
601 nir_reg_src reg;
602 nir_ssa_def *ssa;
603 };
604
605 bool is_ssa;
606 } nir_src;
607
608 static inline nir_src
609 nir_src_init(void)
610 {
611 nir_src src = { { NULL } };
612 return src;
613 }
614
615 #define NIR_SRC_INIT nir_src_init()
616
617 #define nir_foreach_use(src, reg_or_ssa_def) \
618 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
619
620 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
621 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
622
623 #define nir_foreach_if_use(src, reg_or_ssa_def) \
624 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
625
626 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
627 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
628
629 typedef struct {
630 union {
631 nir_reg_dest reg;
632 nir_ssa_def ssa;
633 };
634
635 bool is_ssa;
636 } nir_dest;
637
638 static inline nir_dest
639 nir_dest_init(void)
640 {
641 nir_dest dest = { { { NULL } } };
642 return dest;
643 }
644
645 #define NIR_DEST_INIT nir_dest_init()
646
647 #define nir_foreach_def(dest, reg) \
648 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
649
650 #define nir_foreach_def_safe(dest, reg) \
651 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
652
653 static inline nir_src
654 nir_src_for_ssa(nir_ssa_def *def)
655 {
656 nir_src src = NIR_SRC_INIT;
657
658 src.is_ssa = true;
659 src.ssa = def;
660
661 return src;
662 }
663
664 static inline nir_src
665 nir_src_for_reg(nir_register *reg)
666 {
667 nir_src src = NIR_SRC_INIT;
668
669 src.is_ssa = false;
670 src.reg.reg = reg;
671 src.reg.indirect = NULL;
672 src.reg.base_offset = 0;
673
674 return src;
675 }
676
677 static inline nir_dest
678 nir_dest_for_reg(nir_register *reg)
679 {
680 nir_dest dest = NIR_DEST_INIT;
681
682 dest.reg.reg = reg;
683
684 return dest;
685 }
686
687 static inline unsigned
688 nir_src_bit_size(nir_src src)
689 {
690 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
691 }
692
693 static inline unsigned
694 nir_src_num_components(nir_src src)
695 {
696 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
697 }
698
699 static inline bool
700 nir_src_is_const(nir_src src)
701 {
702 return src.is_ssa &&
703 src.ssa->parent_instr->type == nir_instr_type_load_const;
704 }
705
706 int64_t nir_src_as_int(nir_src src);
707 uint64_t nir_src_as_uint(nir_src src);
708 bool nir_src_as_bool(nir_src src);
709 double nir_src_as_float(nir_src src);
710 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
711 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
712 bool nir_src_comp_as_bool(nir_src src, unsigned component);
713 double nir_src_comp_as_float(nir_src src, unsigned component);
714
715 static inline unsigned
716 nir_dest_bit_size(nir_dest dest)
717 {
718 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
719 }
720
721 static inline unsigned
722 nir_dest_num_components(nir_dest dest)
723 {
724 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
725 }
726
727 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
728 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
729
730 typedef struct {
731 nir_src src;
732
733 /**
734 * \name input modifiers
735 */
736 /*@{*/
737 /**
738 * For inputs interpreted as floating point, flips the sign bit. For
739 * inputs interpreted as integers, performs the two's complement negation.
740 */
741 bool negate;
742
743 /**
744 * Clears the sign bit for floating point values, and computes the integer
745 * absolute value for integers. Note that the negate modifier acts after
746 * the absolute value modifier, therefore if both are set then all inputs
747 * will become negative.
748 */
749 bool abs;
750 /*@}*/
751
752 /**
753 * For each input component, says which component of the register it is
754 * chosen from. Note that which elements of the swizzle are used and which
755 * are ignored are based on the write mask for most opcodes - for example,
756 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
757 * a swizzle of {2, x, 1, 0} where x means "don't care."
758 */
759 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
760 } nir_alu_src;
761
762 typedef struct {
763 nir_dest dest;
764
765 /**
766 * \name saturate output modifier
767 *
768 * Only valid for opcodes that output floating-point numbers. Clamps the
769 * output to between 0.0 and 1.0 inclusive.
770 */
771
772 bool saturate;
773
774 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
775 } nir_alu_dest;
776
777 /** NIR sized and unsized types
778 *
779 * The values in this enum are carefully chosen so that the sized type is
780 * just the unsized type OR the number of bits.
781 */
782 typedef enum {
783 nir_type_invalid = 0, /* Not a valid type */
784 nir_type_int = 2,
785 nir_type_uint = 4,
786 nir_type_bool = 6,
787 nir_type_float = 128,
788 nir_type_bool1 = 1 | nir_type_bool,
789 nir_type_bool32 = 32 | nir_type_bool,
790 nir_type_int1 = 1 | nir_type_int,
791 nir_type_int8 = 8 | nir_type_int,
792 nir_type_int16 = 16 | nir_type_int,
793 nir_type_int32 = 32 | nir_type_int,
794 nir_type_int64 = 64 | nir_type_int,
795 nir_type_uint1 = 1 | nir_type_uint,
796 nir_type_uint8 = 8 | nir_type_uint,
797 nir_type_uint16 = 16 | nir_type_uint,
798 nir_type_uint32 = 32 | nir_type_uint,
799 nir_type_uint64 = 64 | nir_type_uint,
800 nir_type_float16 = 16 | nir_type_float,
801 nir_type_float32 = 32 | nir_type_float,
802 nir_type_float64 = 64 | nir_type_float,
803 } nir_alu_type;
804
805 #define NIR_ALU_TYPE_SIZE_MASK 0x79
806 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
807
808 static inline unsigned
809 nir_alu_type_get_type_size(nir_alu_type type)
810 {
811 return type & NIR_ALU_TYPE_SIZE_MASK;
812 }
813
814 static inline unsigned
815 nir_alu_type_get_base_type(nir_alu_type type)
816 {
817 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
818 }
819
820 static inline nir_alu_type
821 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
822 {
823 switch (base_type) {
824 case GLSL_TYPE_BOOL:
825 return nir_type_bool1;
826 break;
827 case GLSL_TYPE_UINT:
828 return nir_type_uint32;
829 break;
830 case GLSL_TYPE_INT:
831 return nir_type_int32;
832 break;
833 case GLSL_TYPE_UINT16:
834 return nir_type_uint16;
835 break;
836 case GLSL_TYPE_INT16:
837 return nir_type_int16;
838 break;
839 case GLSL_TYPE_UINT8:
840 return nir_type_uint8;
841 case GLSL_TYPE_INT8:
842 return nir_type_int8;
843 case GLSL_TYPE_UINT64:
844 return nir_type_uint64;
845 break;
846 case GLSL_TYPE_INT64:
847 return nir_type_int64;
848 break;
849 case GLSL_TYPE_FLOAT:
850 return nir_type_float32;
851 break;
852 case GLSL_TYPE_FLOAT16:
853 return nir_type_float16;
854 break;
855 case GLSL_TYPE_DOUBLE:
856 return nir_type_float64;
857 break;
858 default:
859 unreachable("unknown type");
860 }
861 }
862
863 static inline nir_alu_type
864 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
865 {
866 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
867 }
868
869 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
870 nir_rounding_mode rnd);
871
872 typedef enum {
873 NIR_OP_IS_COMMUTATIVE = (1 << 0),
874 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
875 } nir_op_algebraic_property;
876
877 typedef struct {
878 const char *name;
879
880 unsigned num_inputs;
881
882 /**
883 * The number of components in the output
884 *
885 * If non-zero, this is the size of the output and input sizes are
886 * explicitly given; swizzle and writemask are still in effect, but if
887 * the output component is masked out, then the input component may
888 * still be in use.
889 *
890 * If zero, the opcode acts in the standard, per-component manner; the
891 * operation is performed on each component (except the ones that are
892 * masked out) with the input being taken from the input swizzle for
893 * that component.
894 *
895 * The size of some of the inputs may be given (i.e. non-zero) even
896 * though output_size is zero; in that case, the inputs with a zero
897 * size act per-component, while the inputs with non-zero size don't.
898 */
899 unsigned output_size;
900
901 /**
902 * The type of vector that the instruction outputs. Note that the
903 * staurate modifier is only allowed on outputs with the float type.
904 */
905
906 nir_alu_type output_type;
907
908 /**
909 * The number of components in each input
910 */
911 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
912
913 /**
914 * The type of vector that each input takes. Note that negate and
915 * absolute value are only allowed on inputs with int or float type and
916 * behave differently on the two.
917 */
918 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
919
920 nir_op_algebraic_property algebraic_properties;
921
922 /* Whether this represents a numeric conversion opcode */
923 bool is_conversion;
924 } nir_op_info;
925
926 extern const nir_op_info nir_op_infos[nir_num_opcodes];
927
928 typedef struct nir_alu_instr {
929 nir_instr instr;
930 nir_op op;
931
932 /** Indicates that this ALU instruction generates an exact value
933 *
934 * This is kind of a mixture of GLSL "precise" and "invariant" and not
935 * really equivalent to either. This indicates that the value generated by
936 * this operation is high-precision and any code transformations that touch
937 * it must ensure that the resulting value is bit-for-bit identical to the
938 * original.
939 */
940 bool exact;
941
942 nir_alu_dest dest;
943 nir_alu_src src[];
944 } nir_alu_instr;
945
946 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
947 nir_alu_instr *instr);
948 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
949 nir_alu_instr *instr);
950
951 /* is this source channel used? */
952 static inline bool
953 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
954 unsigned channel)
955 {
956 if (nir_op_infos[instr->op].input_sizes[src] > 0)
957 return channel < nir_op_infos[instr->op].input_sizes[src];
958
959 return (instr->dest.write_mask >> channel) & 1;
960 }
961
962 static inline nir_component_mask_t
963 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
964 {
965 nir_component_mask_t read_mask = 0;
966 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
967 if (!nir_alu_instr_channel_used(instr, src, c))
968 continue;
969
970 read_mask |= (1 << instr->src[src].swizzle[c]);
971 }
972 return read_mask;
973 }
974
975 /*
976 * For instructions whose destinations are SSA, get the number of channels
977 * used for a source
978 */
979 static inline unsigned
980 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
981 {
982 assert(instr->dest.dest.is_ssa);
983
984 if (nir_op_infos[instr->op].input_sizes[src] > 0)
985 return nir_op_infos[instr->op].input_sizes[src];
986
987 return instr->dest.dest.ssa.num_components;
988 }
989
990 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
991 unsigned src1, unsigned src2);
992
993 typedef enum {
994 nir_deref_type_var,
995 nir_deref_type_array,
996 nir_deref_type_array_wildcard,
997 nir_deref_type_ptr_as_array,
998 nir_deref_type_struct,
999 nir_deref_type_cast,
1000 } nir_deref_type;
1001
1002 typedef struct {
1003 nir_instr instr;
1004
1005 /** The type of this deref instruction */
1006 nir_deref_type deref_type;
1007
1008 /** The mode of the underlying variable */
1009 nir_variable_mode mode;
1010
1011 /** The dereferenced type of the resulting pointer value */
1012 const struct glsl_type *type;
1013
1014 union {
1015 /** Variable being dereferenced if deref_type is a deref_var */
1016 nir_variable *var;
1017
1018 /** Parent deref if deref_type is not deref_var */
1019 nir_src parent;
1020 };
1021
1022 /** Additional deref parameters */
1023 union {
1024 struct {
1025 nir_src index;
1026 } arr;
1027
1028 struct {
1029 unsigned index;
1030 } strct;
1031
1032 struct {
1033 unsigned ptr_stride;
1034 } cast;
1035 };
1036
1037 /** Destination to store the resulting "pointer" */
1038 nir_dest dest;
1039 } nir_deref_instr;
1040
1041 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1042 type, nir_instr_type_deref)
1043
1044 static inline nir_deref_instr *
1045 nir_src_as_deref(nir_src src)
1046 {
1047 if (!src.is_ssa)
1048 return NULL;
1049
1050 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1051 return NULL;
1052
1053 return nir_instr_as_deref(src.ssa->parent_instr);
1054 }
1055
1056 static inline nir_deref_instr *
1057 nir_deref_instr_parent(const nir_deref_instr *instr)
1058 {
1059 if (instr->deref_type == nir_deref_type_var)
1060 return NULL;
1061 else
1062 return nir_src_as_deref(instr->parent);
1063 }
1064
1065 static inline nir_variable *
1066 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1067 {
1068 while (instr->deref_type != nir_deref_type_var) {
1069 if (instr->deref_type == nir_deref_type_cast)
1070 return NULL;
1071
1072 instr = nir_deref_instr_parent(instr);
1073 }
1074
1075 return instr->var;
1076 }
1077
1078 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1079
1080 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1081
1082 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1083
1084 typedef struct {
1085 nir_instr instr;
1086
1087 struct nir_function *callee;
1088
1089 unsigned num_params;
1090 nir_src params[];
1091 } nir_call_instr;
1092
1093 #include "nir_intrinsics.h"
1094
1095 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1096
1097 /** Represents an intrinsic
1098 *
1099 * An intrinsic is an instruction type for handling things that are
1100 * more-or-less regular operations but don't just consume and produce SSA
1101 * values like ALU operations do. Intrinsics are not for things that have
1102 * special semantic meaning such as phi nodes and parallel copies.
1103 * Examples of intrinsics include variable load/store operations, system
1104 * value loads, and the like. Even though texturing more-or-less falls
1105 * under this category, texturing is its own instruction type because
1106 * trying to represent texturing with intrinsics would lead to a
1107 * combinatorial explosion of intrinsic opcodes.
1108 *
1109 * By having a single instruction type for handling a lot of different
1110 * cases, optimization passes can look for intrinsics and, for the most
1111 * part, completely ignore them. Each intrinsic type also has a few
1112 * possible flags that govern whether or not they can be reordered or
1113 * eliminated. That way passes like dead code elimination can still work
1114 * on intrisics without understanding the meaning of each.
1115 *
1116 * Each intrinsic has some number of constant indices, some number of
1117 * variables, and some number of sources. What these sources, variables,
1118 * and indices mean depends on the intrinsic and is documented with the
1119 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1120 * instructions are the only types of instruction that can operate on
1121 * variables.
1122 */
1123 typedef struct {
1124 nir_instr instr;
1125
1126 nir_intrinsic_op intrinsic;
1127
1128 nir_dest dest;
1129
1130 /** number of components if this is a vectorized intrinsic
1131 *
1132 * Similarly to ALU operations, some intrinsics are vectorized.
1133 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1134 * For vectorized intrinsics, the num_components field specifies the
1135 * number of destination components and the number of source components
1136 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1137 */
1138 uint8_t num_components;
1139
1140 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1141
1142 nir_src src[];
1143 } nir_intrinsic_instr;
1144
1145 static inline nir_variable *
1146 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1147 {
1148 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1149 }
1150
1151 /**
1152 * \name NIR intrinsics semantic flags
1153 *
1154 * information about what the compiler can do with the intrinsics.
1155 *
1156 * \sa nir_intrinsic_info::flags
1157 */
1158 typedef enum {
1159 /**
1160 * whether the intrinsic can be safely eliminated if none of its output
1161 * value is not being used.
1162 */
1163 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1164
1165 /**
1166 * Whether the intrinsic can be reordered with respect to any other
1167 * intrinsic, i.e. whether the only reordering dependencies of the
1168 * intrinsic are due to the register reads/writes.
1169 */
1170 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1171 } nir_intrinsic_semantic_flag;
1172
1173 /**
1174 * \name NIR intrinsics const-index flag
1175 *
1176 * Indicates the usage of a const_index slot.
1177 *
1178 * \sa nir_intrinsic_info::index_map
1179 */
1180 typedef enum {
1181 /**
1182 * Generally instructions that take a offset src argument, can encode
1183 * a constant 'base' value which is added to the offset.
1184 */
1185 NIR_INTRINSIC_BASE = 1,
1186
1187 /**
1188 * For store instructions, a writemask for the store.
1189 */
1190 NIR_INTRINSIC_WRMASK = 2,
1191
1192 /**
1193 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1194 */
1195 NIR_INTRINSIC_STREAM_ID = 3,
1196
1197 /**
1198 * The clip-plane id for load_user_clip_plane intrinsic.
1199 */
1200 NIR_INTRINSIC_UCP_ID = 4,
1201
1202 /**
1203 * The amount of data, starting from BASE, that this instruction may
1204 * access. This is used to provide bounds if the offset is not constant.
1205 */
1206 NIR_INTRINSIC_RANGE = 5,
1207
1208 /**
1209 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1210 */
1211 NIR_INTRINSIC_DESC_SET = 6,
1212
1213 /**
1214 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1215 */
1216 NIR_INTRINSIC_BINDING = 7,
1217
1218 /**
1219 * Component offset.
1220 */
1221 NIR_INTRINSIC_COMPONENT = 8,
1222
1223 /**
1224 * Interpolation mode (only meaningful for FS inputs).
1225 */
1226 NIR_INTRINSIC_INTERP_MODE = 9,
1227
1228 /**
1229 * A binary nir_op to use when performing a reduction or scan operation
1230 */
1231 NIR_INTRINSIC_REDUCTION_OP = 10,
1232
1233 /**
1234 * Cluster size for reduction operations
1235 */
1236 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1237
1238 /**
1239 * Parameter index for a load_param intrinsic
1240 */
1241 NIR_INTRINSIC_PARAM_IDX = 12,
1242
1243 /**
1244 * Image dimensionality for image intrinsics
1245 *
1246 * One of GLSL_SAMPLER_DIM_*
1247 */
1248 NIR_INTRINSIC_IMAGE_DIM = 13,
1249
1250 /**
1251 * Non-zero if we are accessing an array image
1252 */
1253 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1254
1255 /**
1256 * Image format for image intrinsics
1257 */
1258 NIR_INTRINSIC_FORMAT = 15,
1259
1260 /**
1261 * Access qualifiers for image and memory access intrinsics
1262 */
1263 NIR_INTRINSIC_ACCESS = 16,
1264
1265 /**
1266 * Alignment for offsets and addresses
1267 *
1268 * These two parameters, specify an alignment in terms of a multiplier and
1269 * an offset. The offset or address parameter X of the intrinsic is
1270 * guaranteed to satisfy the following:
1271 *
1272 * (X - align_offset) % align_mul == 0
1273 */
1274 NIR_INTRINSIC_ALIGN_MUL = 17,
1275 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1276
1277 /**
1278 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1279 */
1280 NIR_INTRINSIC_DESC_TYPE = 19,
1281
1282 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1283
1284 } nir_intrinsic_index_flag;
1285
1286 #define NIR_INTRINSIC_MAX_INPUTS 5
1287
1288 typedef struct {
1289 const char *name;
1290
1291 unsigned num_srcs; /** < number of register/SSA inputs */
1292
1293 /** number of components of each input register
1294 *
1295 * If this value is 0, the number of components is given by the
1296 * num_components field of nir_intrinsic_instr. If this value is -1, the
1297 * intrinsic consumes however many components are provided and it is not
1298 * validated at all.
1299 */
1300 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1301
1302 bool has_dest;
1303
1304 /** number of components of the output register
1305 *
1306 * If this value is 0, the number of components is given by the
1307 * num_components field of nir_intrinsic_instr.
1308 */
1309 unsigned dest_components;
1310
1311 /** bitfield of legal bit sizes */
1312 unsigned dest_bit_sizes;
1313
1314 /** the number of constant indices used by the intrinsic */
1315 unsigned num_indices;
1316
1317 /** indicates the usage of intr->const_index[n] */
1318 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1319
1320 /** semantic flags for calls to this intrinsic */
1321 nir_intrinsic_semantic_flag flags;
1322 } nir_intrinsic_info;
1323
1324 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1325
1326 static inline unsigned
1327 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1328 {
1329 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1330 assert(srcn < info->num_srcs);
1331 if (info->src_components[srcn] > 0)
1332 return info->src_components[srcn];
1333 else if (info->src_components[srcn] == 0)
1334 return intr->num_components;
1335 else
1336 return nir_src_num_components(intr->src[srcn]);
1337 }
1338
1339 static inline unsigned
1340 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1341 {
1342 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1343 if (!info->has_dest)
1344 return 0;
1345 else if (info->dest_components)
1346 return info->dest_components;
1347 else
1348 return intr->num_components;
1349 }
1350
1351 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1352 static inline type \
1353 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1354 { \
1355 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1356 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1357 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1358 } \
1359 static inline void \
1360 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1361 { \
1362 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1363 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1364 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1365 }
1366
1367 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1368 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1369 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1370 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1371 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1372 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1373 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1374 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1375 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1376 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1377 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1378 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1379 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1380 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1381 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1382 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1383 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1384 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1385 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1386
1387 static inline void
1388 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1389 unsigned align_mul, unsigned align_offset)
1390 {
1391 assert(util_is_power_of_two_nonzero(align_mul));
1392 assert(align_offset < align_mul);
1393 nir_intrinsic_set_align_mul(intrin, align_mul);
1394 nir_intrinsic_set_align_offset(intrin, align_offset);
1395 }
1396
1397 /** Returns a simple alignment for a load/store intrinsic offset
1398 *
1399 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1400 * and ALIGN_OFFSET parameters, this helper takes both into account and
1401 * provides a single simple alignment parameter. The offset X is guaranteed
1402 * to satisfy X % align == 0.
1403 */
1404 static inline unsigned
1405 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1406 {
1407 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1408 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1409 assert(align_offset < align_mul);
1410 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1411 }
1412
1413 /**
1414 * \group texture information
1415 *
1416 * This gives semantic information about textures which is useful to the
1417 * frontend, the backend, and lowering passes, but not the optimizer.
1418 */
1419
1420 typedef enum {
1421 nir_tex_src_coord,
1422 nir_tex_src_projector,
1423 nir_tex_src_comparator, /* shadow comparator */
1424 nir_tex_src_offset,
1425 nir_tex_src_bias,
1426 nir_tex_src_lod,
1427 nir_tex_src_min_lod,
1428 nir_tex_src_ms_index, /* MSAA sample index */
1429 nir_tex_src_ms_mcs, /* MSAA compression value */
1430 nir_tex_src_ddx,
1431 nir_tex_src_ddy,
1432 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1433 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1434 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1435 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1436 nir_tex_src_plane, /* < selects plane for planar textures */
1437 nir_num_tex_src_types
1438 } nir_tex_src_type;
1439
1440 typedef struct {
1441 nir_src src;
1442 nir_tex_src_type src_type;
1443 } nir_tex_src;
1444
1445 typedef enum {
1446 nir_texop_tex, /**< Regular texture look-up */
1447 nir_texop_txb, /**< Texture look-up with LOD bias */
1448 nir_texop_txl, /**< Texture look-up with explicit LOD */
1449 nir_texop_txd, /**< Texture look-up with partial derivatives */
1450 nir_texop_txf, /**< Texel fetch with explicit LOD */
1451 nir_texop_txf_ms, /**< Multisample texture fetch */
1452 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1453 nir_texop_txs, /**< Texture size */
1454 nir_texop_lod, /**< Texture lod query */
1455 nir_texop_tg4, /**< Texture gather */
1456 nir_texop_query_levels, /**< Texture levels query */
1457 nir_texop_texture_samples, /**< Texture samples query */
1458 nir_texop_samples_identical, /**< Query whether all samples are definitely
1459 * identical.
1460 */
1461 } nir_texop;
1462
1463 typedef struct {
1464 nir_instr instr;
1465
1466 enum glsl_sampler_dim sampler_dim;
1467 nir_alu_type dest_type;
1468
1469 nir_texop op;
1470 nir_dest dest;
1471 nir_tex_src *src;
1472 unsigned num_srcs, coord_components;
1473 bool is_array, is_shadow;
1474
1475 /**
1476 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1477 * components or the new-style shadow that outputs 1 component.
1478 */
1479 bool is_new_style_shadow;
1480
1481 /* gather component selector */
1482 unsigned component : 2;
1483
1484 /** The texture index
1485 *
1486 * If this texture instruction has a nir_tex_src_texture_offset source,
1487 * then the texture index is given by texture_index + texture_offset.
1488 */
1489 unsigned texture_index;
1490
1491 /** The size of the texture array or 0 if it's not an array */
1492 unsigned texture_array_size;
1493
1494 /** The sampler index
1495 *
1496 * The following operations do not require a sampler and, as such, this
1497 * field should be ignored:
1498 * - nir_texop_txf
1499 * - nir_texop_txf_ms
1500 * - nir_texop_txs
1501 * - nir_texop_lod
1502 * - nir_texop_query_levels
1503 * - nir_texop_texture_samples
1504 * - nir_texop_samples_identical
1505 *
1506 * If this texture instruction has a nir_tex_src_sampler_offset source,
1507 * then the sampler index is given by sampler_index + sampler_offset.
1508 */
1509 unsigned sampler_index;
1510 } nir_tex_instr;
1511
1512 static inline unsigned
1513 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1514 {
1515 switch (instr->op) {
1516 case nir_texop_txs: {
1517 unsigned ret;
1518 switch (instr->sampler_dim) {
1519 case GLSL_SAMPLER_DIM_1D:
1520 case GLSL_SAMPLER_DIM_BUF:
1521 ret = 1;
1522 break;
1523 case GLSL_SAMPLER_DIM_2D:
1524 case GLSL_SAMPLER_DIM_CUBE:
1525 case GLSL_SAMPLER_DIM_MS:
1526 case GLSL_SAMPLER_DIM_RECT:
1527 case GLSL_SAMPLER_DIM_EXTERNAL:
1528 case GLSL_SAMPLER_DIM_SUBPASS:
1529 ret = 2;
1530 break;
1531 case GLSL_SAMPLER_DIM_3D:
1532 ret = 3;
1533 break;
1534 default:
1535 unreachable("not reached");
1536 }
1537 if (instr->is_array)
1538 ret++;
1539 return ret;
1540 }
1541
1542 case nir_texop_lod:
1543 return 2;
1544
1545 case nir_texop_texture_samples:
1546 case nir_texop_query_levels:
1547 case nir_texop_samples_identical:
1548 return 1;
1549
1550 default:
1551 if (instr->is_shadow && instr->is_new_style_shadow)
1552 return 1;
1553
1554 return 4;
1555 }
1556 }
1557
1558 /* Returns true if this texture operation queries something about the texture
1559 * rather than actually sampling it.
1560 */
1561 static inline bool
1562 nir_tex_instr_is_query(const nir_tex_instr *instr)
1563 {
1564 switch (instr->op) {
1565 case nir_texop_txs:
1566 case nir_texop_lod:
1567 case nir_texop_texture_samples:
1568 case nir_texop_query_levels:
1569 case nir_texop_txf_ms_mcs:
1570 return true;
1571 case nir_texop_tex:
1572 case nir_texop_txb:
1573 case nir_texop_txl:
1574 case nir_texop_txd:
1575 case nir_texop_txf:
1576 case nir_texop_txf_ms:
1577 case nir_texop_tg4:
1578 return false;
1579 default:
1580 unreachable("Invalid texture opcode");
1581 }
1582 }
1583
1584 static inline bool
1585 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1586 {
1587 switch (instr->op) {
1588 case nir_op_flt:
1589 case nir_op_fge:
1590 case nir_op_feq:
1591 case nir_op_fne:
1592 case nir_op_ilt:
1593 case nir_op_ult:
1594 case nir_op_ige:
1595 case nir_op_uge:
1596 case nir_op_ieq:
1597 case nir_op_ine:
1598 case nir_op_i2b1:
1599 case nir_op_f2b1:
1600 case nir_op_inot:
1601 case nir_op_fnot:
1602 return true;
1603 default:
1604 return false;
1605 }
1606 }
1607
1608 static inline nir_alu_type
1609 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1610 {
1611 switch (instr->src[src].src_type) {
1612 case nir_tex_src_coord:
1613 switch (instr->op) {
1614 case nir_texop_txf:
1615 case nir_texop_txf_ms:
1616 case nir_texop_txf_ms_mcs:
1617 case nir_texop_samples_identical:
1618 return nir_type_int;
1619
1620 default:
1621 return nir_type_float;
1622 }
1623
1624 case nir_tex_src_lod:
1625 switch (instr->op) {
1626 case nir_texop_txs:
1627 case nir_texop_txf:
1628 return nir_type_int;
1629
1630 default:
1631 return nir_type_float;
1632 }
1633
1634 case nir_tex_src_projector:
1635 case nir_tex_src_comparator:
1636 case nir_tex_src_bias:
1637 case nir_tex_src_ddx:
1638 case nir_tex_src_ddy:
1639 return nir_type_float;
1640
1641 case nir_tex_src_offset:
1642 case nir_tex_src_ms_index:
1643 case nir_tex_src_texture_offset:
1644 case nir_tex_src_sampler_offset:
1645 return nir_type_int;
1646
1647 default:
1648 unreachable("Invalid texture source type");
1649 }
1650 }
1651
1652 static inline unsigned
1653 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1654 {
1655 if (instr->src[src].src_type == nir_tex_src_coord)
1656 return instr->coord_components;
1657
1658 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1659 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1660 return 4;
1661
1662 if (instr->src[src].src_type == nir_tex_src_ddx ||
1663 instr->src[src].src_type == nir_tex_src_ddy) {
1664 if (instr->is_array)
1665 return instr->coord_components - 1;
1666 else
1667 return instr->coord_components;
1668 }
1669
1670 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1671 * the offset, since a cube maps to a single face.
1672 */
1673 if (instr->src[src].src_type == nir_tex_src_offset) {
1674 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1675 return 2;
1676 else if (instr->is_array)
1677 return instr->coord_components - 1;
1678 else
1679 return instr->coord_components;
1680 }
1681
1682 return 1;
1683 }
1684
1685 static inline int
1686 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1687 {
1688 for (unsigned i = 0; i < instr->num_srcs; i++)
1689 if (instr->src[i].src_type == type)
1690 return (int) i;
1691
1692 return -1;
1693 }
1694
1695 void nir_tex_instr_add_src(nir_tex_instr *tex,
1696 nir_tex_src_type src_type,
1697 nir_src src);
1698
1699 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1700
1701 typedef struct {
1702 nir_instr instr;
1703
1704 nir_const_value value;
1705
1706 nir_ssa_def def;
1707 } nir_load_const_instr;
1708
1709 typedef enum {
1710 nir_jump_return,
1711 nir_jump_break,
1712 nir_jump_continue,
1713 } nir_jump_type;
1714
1715 typedef struct {
1716 nir_instr instr;
1717 nir_jump_type type;
1718 } nir_jump_instr;
1719
1720 /* creates a new SSA variable in an undefined state */
1721
1722 typedef struct {
1723 nir_instr instr;
1724 nir_ssa_def def;
1725 } nir_ssa_undef_instr;
1726
1727 typedef struct {
1728 struct exec_node node;
1729
1730 /* The predecessor block corresponding to this source */
1731 struct nir_block *pred;
1732
1733 nir_src src;
1734 } nir_phi_src;
1735
1736 #define nir_foreach_phi_src(phi_src, phi) \
1737 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1738 #define nir_foreach_phi_src_safe(phi_src, phi) \
1739 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1740
1741 typedef struct {
1742 nir_instr instr;
1743
1744 struct exec_list srcs; /** < list of nir_phi_src */
1745
1746 nir_dest dest;
1747 } nir_phi_instr;
1748
1749 typedef struct {
1750 struct exec_node node;
1751 nir_src src;
1752 nir_dest dest;
1753 } nir_parallel_copy_entry;
1754
1755 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1756 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1757
1758 typedef struct {
1759 nir_instr instr;
1760
1761 /* A list of nir_parallel_copy_entrys. The sources of all of the
1762 * entries are copied to the corresponding destinations "in parallel".
1763 * In other words, if we have two entries: a -> b and b -> a, the values
1764 * get swapped.
1765 */
1766 struct exec_list entries;
1767 } nir_parallel_copy_instr;
1768
1769 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1770 type, nir_instr_type_alu)
1771 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1772 type, nir_instr_type_call)
1773 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1774 type, nir_instr_type_jump)
1775 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1776 type, nir_instr_type_tex)
1777 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1778 type, nir_instr_type_intrinsic)
1779 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1780 type, nir_instr_type_load_const)
1781 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1782 type, nir_instr_type_ssa_undef)
1783 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1784 type, nir_instr_type_phi)
1785 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1786 nir_parallel_copy_instr, instr,
1787 type, nir_instr_type_parallel_copy)
1788
1789 /*
1790 * Control flow
1791 *
1792 * Control flow consists of a tree of control flow nodes, which include
1793 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1794 * instructions that always run start-to-finish. Each basic block also keeps
1795 * track of its successors (blocks which may run immediately after the current
1796 * block) and predecessors (blocks which could have run immediately before the
1797 * current block). Each function also has a start block and an end block which
1798 * all return statements point to (which is always empty). Together, all the
1799 * blocks with their predecessors and successors make up the control flow
1800 * graph (CFG) of the function. There are helpers that modify the tree of
1801 * control flow nodes while modifying the CFG appropriately; these should be
1802 * used instead of modifying the tree directly.
1803 */
1804
1805 typedef enum {
1806 nir_cf_node_block,
1807 nir_cf_node_if,
1808 nir_cf_node_loop,
1809 nir_cf_node_function
1810 } nir_cf_node_type;
1811
1812 typedef struct nir_cf_node {
1813 struct exec_node node;
1814 nir_cf_node_type type;
1815 struct nir_cf_node *parent;
1816 } nir_cf_node;
1817
1818 typedef struct nir_block {
1819 nir_cf_node cf_node;
1820
1821 struct exec_list instr_list; /** < list of nir_instr */
1822
1823 /** generic block index; generated by nir_index_blocks */
1824 unsigned index;
1825
1826 /*
1827 * Each block can only have up to 2 successors, so we put them in a simple
1828 * array - no need for anything more complicated.
1829 */
1830 struct nir_block *successors[2];
1831
1832 /* Set of nir_block predecessors in the CFG */
1833 struct set *predecessors;
1834
1835 /*
1836 * this node's immediate dominator in the dominance tree - set to NULL for
1837 * the start block.
1838 */
1839 struct nir_block *imm_dom;
1840
1841 /* This node's children in the dominance tree */
1842 unsigned num_dom_children;
1843 struct nir_block **dom_children;
1844
1845 /* Set of nir_blocks on the dominance frontier of this block */
1846 struct set *dom_frontier;
1847
1848 /*
1849 * These two indices have the property that dom_{pre,post}_index for each
1850 * child of this block in the dominance tree will always be between
1851 * dom_pre_index and dom_post_index for this block, which makes testing if
1852 * a given block is dominated by another block an O(1) operation.
1853 */
1854 unsigned dom_pre_index, dom_post_index;
1855
1856 /* live in and out for this block; used for liveness analysis */
1857 BITSET_WORD *live_in;
1858 BITSET_WORD *live_out;
1859 } nir_block;
1860
1861 static inline nir_instr *
1862 nir_block_first_instr(nir_block *block)
1863 {
1864 struct exec_node *head = exec_list_get_head(&block->instr_list);
1865 return exec_node_data(nir_instr, head, node);
1866 }
1867
1868 static inline nir_instr *
1869 nir_block_last_instr(nir_block *block)
1870 {
1871 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1872 return exec_node_data(nir_instr, tail, node);
1873 }
1874
1875 static inline bool
1876 nir_block_ends_in_jump(nir_block *block)
1877 {
1878 return !exec_list_is_empty(&block->instr_list) &&
1879 nir_block_last_instr(block)->type == nir_instr_type_jump;
1880 }
1881
1882 #define nir_foreach_instr(instr, block) \
1883 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1884 #define nir_foreach_instr_reverse(instr, block) \
1885 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1886 #define nir_foreach_instr_safe(instr, block) \
1887 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1888 #define nir_foreach_instr_reverse_safe(instr, block) \
1889 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1890
1891 typedef struct nir_if {
1892 nir_cf_node cf_node;
1893 nir_src condition;
1894
1895 struct exec_list then_list; /** < list of nir_cf_node */
1896 struct exec_list else_list; /** < list of nir_cf_node */
1897 } nir_if;
1898
1899 typedef struct {
1900 nir_if *nif;
1901
1902 /** Instruction that generates nif::condition. */
1903 nir_instr *conditional_instr;
1904
1905 /** Block within ::nif that has the break instruction. */
1906 nir_block *break_block;
1907
1908 /** Last block for the then- or else-path that does not contain the break. */
1909 nir_block *continue_from_block;
1910
1911 /** True when ::break_block is in the else-path of ::nif. */
1912 bool continue_from_then;
1913 bool induction_rhs;
1914
1915 /* This is true if the terminators exact trip count is unknown. For
1916 * example:
1917 *
1918 * for (int i = 0; i < imin(x, 4); i++)
1919 * ...
1920 *
1921 * Here loop analysis would have set a max_trip_count of 4 however we dont
1922 * know for sure that this is the exact trip count.
1923 */
1924 bool exact_trip_count_unknown;
1925
1926 struct list_head loop_terminator_link;
1927 } nir_loop_terminator;
1928
1929 typedef struct {
1930 /* Estimated cost (in number of instructions) of the loop */
1931 unsigned instr_cost;
1932
1933 /* Guessed trip count based on array indexing */
1934 unsigned guessed_trip_count;
1935
1936 /* Maximum number of times the loop is run (if known) */
1937 unsigned max_trip_count;
1938
1939 /* Do we know the exact number of times the loop will be run */
1940 bool exact_trip_count_known;
1941
1942 /* Unroll the loop regardless of its size */
1943 bool force_unroll;
1944
1945 /* Does the loop contain complex loop terminators, continues or other
1946 * complex behaviours? If this is true we can't rely on
1947 * loop_terminator_list to be complete or accurate.
1948 */
1949 bool complex_loop;
1950
1951 nir_loop_terminator *limiting_terminator;
1952
1953 /* A list of loop_terminators terminating this loop. */
1954 struct list_head loop_terminator_list;
1955 } nir_loop_info;
1956
1957 typedef struct {
1958 nir_cf_node cf_node;
1959
1960 struct exec_list body; /** < list of nir_cf_node */
1961
1962 nir_loop_info *info;
1963 bool partially_unrolled;
1964 } nir_loop;
1965
1966 /**
1967 * Various bits of metadata that can may be created or required by
1968 * optimization and analysis passes
1969 */
1970 typedef enum {
1971 nir_metadata_none = 0x0,
1972 nir_metadata_block_index = 0x1,
1973 nir_metadata_dominance = 0x2,
1974 nir_metadata_live_ssa_defs = 0x4,
1975 nir_metadata_not_properly_reset = 0x8,
1976 nir_metadata_loop_analysis = 0x10,
1977 } nir_metadata;
1978
1979 typedef struct {
1980 nir_cf_node cf_node;
1981
1982 /** pointer to the function of which this is an implementation */
1983 struct nir_function *function;
1984
1985 struct exec_list body; /** < list of nir_cf_node */
1986
1987 nir_block *end_block;
1988
1989 /** list for all local variables in the function */
1990 struct exec_list locals;
1991
1992 /** list of local registers in the function */
1993 struct exec_list registers;
1994
1995 /** next available local register index */
1996 unsigned reg_alloc;
1997
1998 /** next available SSA value index */
1999 unsigned ssa_alloc;
2000
2001 /* total number of basic blocks, only valid when block_index_dirty = false */
2002 unsigned num_blocks;
2003
2004 nir_metadata valid_metadata;
2005 } nir_function_impl;
2006
2007 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2008 nir_start_block(nir_function_impl *impl)
2009 {
2010 return (nir_block *) impl->body.head_sentinel.next;
2011 }
2012
2013 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2014 nir_impl_last_block(nir_function_impl *impl)
2015 {
2016 return (nir_block *) impl->body.tail_sentinel.prev;
2017 }
2018
2019 static inline nir_cf_node *
2020 nir_cf_node_next(nir_cf_node *node)
2021 {
2022 struct exec_node *next = exec_node_get_next(&node->node);
2023 if (exec_node_is_tail_sentinel(next))
2024 return NULL;
2025 else
2026 return exec_node_data(nir_cf_node, next, node);
2027 }
2028
2029 static inline nir_cf_node *
2030 nir_cf_node_prev(nir_cf_node *node)
2031 {
2032 struct exec_node *prev = exec_node_get_prev(&node->node);
2033 if (exec_node_is_head_sentinel(prev))
2034 return NULL;
2035 else
2036 return exec_node_data(nir_cf_node, prev, node);
2037 }
2038
2039 static inline bool
2040 nir_cf_node_is_first(const nir_cf_node *node)
2041 {
2042 return exec_node_is_head_sentinel(node->node.prev);
2043 }
2044
2045 static inline bool
2046 nir_cf_node_is_last(const nir_cf_node *node)
2047 {
2048 return exec_node_is_tail_sentinel(node->node.next);
2049 }
2050
2051 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2052 type, nir_cf_node_block)
2053 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2054 type, nir_cf_node_if)
2055 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2056 type, nir_cf_node_loop)
2057 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2058 nir_function_impl, cf_node, type, nir_cf_node_function)
2059
2060 static inline nir_block *
2061 nir_if_first_then_block(nir_if *if_stmt)
2062 {
2063 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2064 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2065 }
2066
2067 static inline nir_block *
2068 nir_if_last_then_block(nir_if *if_stmt)
2069 {
2070 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2071 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2072 }
2073
2074 static inline nir_block *
2075 nir_if_first_else_block(nir_if *if_stmt)
2076 {
2077 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2078 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2079 }
2080
2081 static inline nir_block *
2082 nir_if_last_else_block(nir_if *if_stmt)
2083 {
2084 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2085 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2086 }
2087
2088 static inline nir_block *
2089 nir_loop_first_block(nir_loop *loop)
2090 {
2091 struct exec_node *head = exec_list_get_head(&loop->body);
2092 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2093 }
2094
2095 static inline nir_block *
2096 nir_loop_last_block(nir_loop *loop)
2097 {
2098 struct exec_node *tail = exec_list_get_tail(&loop->body);
2099 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2100 }
2101
2102 typedef struct {
2103 uint8_t num_components;
2104 uint8_t bit_size;
2105 } nir_parameter;
2106
2107 typedef struct nir_function {
2108 struct exec_node node;
2109
2110 const char *name;
2111 struct nir_shader *shader;
2112
2113 unsigned num_params;
2114 nir_parameter *params;
2115
2116 /** The implementation of this function.
2117 *
2118 * If the function is only declared and not implemented, this is NULL.
2119 */
2120 nir_function_impl *impl;
2121
2122 bool is_entrypoint;
2123 } nir_function;
2124
2125 typedef enum {
2126 nir_lower_imul64 = (1 << 0),
2127 nir_lower_isign64 = (1 << 1),
2128 /** Lower all int64 modulus and division opcodes */
2129 nir_lower_divmod64 = (1 << 2),
2130 /** Lower all 64-bit umul_high and imul_high opcodes */
2131 nir_lower_imul_high64 = (1 << 3),
2132 nir_lower_mov64 = (1 << 4),
2133 nir_lower_icmp64 = (1 << 5),
2134 nir_lower_iadd64 = (1 << 6),
2135 nir_lower_iabs64 = (1 << 7),
2136 nir_lower_ineg64 = (1 << 8),
2137 nir_lower_logic64 = (1 << 9),
2138 nir_lower_minmax64 = (1 << 10),
2139 nir_lower_shift64 = (1 << 11),
2140 nir_lower_imul_2x32_64 = (1 << 12),
2141 } nir_lower_int64_options;
2142
2143 typedef enum {
2144 nir_lower_drcp = (1 << 0),
2145 nir_lower_dsqrt = (1 << 1),
2146 nir_lower_drsq = (1 << 2),
2147 nir_lower_dtrunc = (1 << 3),
2148 nir_lower_dfloor = (1 << 4),
2149 nir_lower_dceil = (1 << 5),
2150 nir_lower_dfract = (1 << 6),
2151 nir_lower_dround_even = (1 << 7),
2152 nir_lower_dmod = (1 << 8),
2153 nir_lower_fp64_full_software = (1 << 9),
2154 } nir_lower_doubles_options;
2155
2156 typedef struct nir_shader_compiler_options {
2157 bool lower_fdiv;
2158 bool lower_ffma;
2159 bool fuse_ffma;
2160 bool lower_flrp32;
2161 /** Lowers flrp when it does not support doubles */
2162 bool lower_flrp64;
2163 bool lower_fpow;
2164 bool lower_fsat;
2165 bool lower_fsqrt;
2166 bool lower_fmod32;
2167 bool lower_fmod64;
2168 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2169 bool lower_bitfield_extract;
2170 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2171 bool lower_bitfield_extract_to_shifts;
2172 /** Lowers bitfield_insert to bfi/bfm */
2173 bool lower_bitfield_insert;
2174 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2175 bool lower_bitfield_insert_to_shifts;
2176 /** Lowers bitfield_reverse to shifts. */
2177 bool lower_bitfield_reverse;
2178 /** Lowers bit_count to shifts. */
2179 bool lower_bit_count;
2180 /** Lowers bfm to shifts and subtracts. */
2181 bool lower_bfm;
2182 /** Lowers ifind_msb to compare and ufind_msb */
2183 bool lower_ifind_msb;
2184 /** Lowers find_lsb to ufind_msb and logic ops */
2185 bool lower_find_lsb;
2186 bool lower_uadd_carry;
2187 bool lower_usub_borrow;
2188 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2189 bool lower_mul_high;
2190 /** lowers fneg and ineg to fsub and isub. */
2191 bool lower_negate;
2192 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2193 bool lower_sub;
2194
2195 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2196 bool lower_scmp;
2197
2198 /** enables rules to lower idiv by power-of-two: */
2199 bool lower_idiv;
2200
2201 /** enables rules to lower isign to imin+imax */
2202 bool lower_isign;
2203
2204 /* Does the native fdot instruction replicate its result for four
2205 * components? If so, then opt_algebraic_late will turn all fdotN
2206 * instructions into fdot_replicatedN instructions.
2207 */
2208 bool fdot_replicates;
2209
2210 /** lowers ffloor to fsub+ffract: */
2211 bool lower_ffloor;
2212
2213 /** lowers ffract to fsub+ffloor: */
2214 bool lower_ffract;
2215
2216 /** lowers fceil to fneg+ffloor+fneg: */
2217 bool lower_fceil;
2218
2219 bool lower_ldexp;
2220
2221 bool lower_pack_half_2x16;
2222 bool lower_pack_unorm_2x16;
2223 bool lower_pack_snorm_2x16;
2224 bool lower_pack_unorm_4x8;
2225 bool lower_pack_snorm_4x8;
2226 bool lower_unpack_half_2x16;
2227 bool lower_unpack_unorm_2x16;
2228 bool lower_unpack_snorm_2x16;
2229 bool lower_unpack_unorm_4x8;
2230 bool lower_unpack_snorm_4x8;
2231
2232 bool lower_extract_byte;
2233 bool lower_extract_word;
2234
2235 bool lower_all_io_to_temps;
2236
2237 /**
2238 * Does the driver support real 32-bit integers? (Otherwise, integers
2239 * are simulated by floats.)
2240 */
2241 bool native_integers;
2242
2243 /* Indicates that the driver only has zero-based vertex id */
2244 bool vertex_id_zero_based;
2245
2246 /**
2247 * If enabled, gl_BaseVertex will be lowered as:
2248 * is_indexed_draw (~0/0) & firstvertex
2249 */
2250 bool lower_base_vertex;
2251
2252 /**
2253 * If enabled, gl_HelperInvocation will be lowered as:
2254 *
2255 * !((1 << sample_id) & sample_mask_in))
2256 *
2257 * This depends on some possibly hw implementation details, which may
2258 * not be true for all hw. In particular that the FS is only executed
2259 * for covered samples or for helper invocations. So, do not blindly
2260 * enable this option.
2261 *
2262 * Note: See also issue #22 in ARB_shader_image_load_store
2263 */
2264 bool lower_helper_invocation;
2265
2266 bool lower_cs_local_index_from_id;
2267 bool lower_cs_local_id_from_index;
2268
2269 bool lower_device_index_to_zero;
2270
2271 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2272 bool lower_wpos_pntc;
2273
2274 bool lower_hadd;
2275 bool lower_add_sat;
2276
2277 /**
2278 * Should nir_lower_io() create load_interpolated_input intrinsics?
2279 *
2280 * If not, it generates regular load_input intrinsics and interpolation
2281 * information must be inferred from the list of input nir_variables.
2282 */
2283 bool use_interpolated_input_intrinsics;
2284
2285 /* Lowers when 32x32->64 bit multiplication is not supported */
2286 bool lower_mul_2x32_64;
2287
2288 unsigned max_unroll_iterations;
2289
2290 nir_lower_int64_options lower_int64_options;
2291 nir_lower_doubles_options lower_doubles_options;
2292 } nir_shader_compiler_options;
2293
2294 typedef struct nir_shader {
2295 /** list of uniforms (nir_variable) */
2296 struct exec_list uniforms;
2297
2298 /** list of inputs (nir_variable) */
2299 struct exec_list inputs;
2300
2301 /** list of outputs (nir_variable) */
2302 struct exec_list outputs;
2303
2304 /** list of shared compute variables (nir_variable) */
2305 struct exec_list shared;
2306
2307 /** Set of driver-specific options for the shader.
2308 *
2309 * The memory for the options is expected to be kept in a single static
2310 * copy by the driver.
2311 */
2312 const struct nir_shader_compiler_options *options;
2313
2314 /** Various bits of compile-time information about a given shader */
2315 struct shader_info info;
2316
2317 /** list of global variables in the shader (nir_variable) */
2318 struct exec_list globals;
2319
2320 /** list of system value variables in the shader (nir_variable) */
2321 struct exec_list system_values;
2322
2323 struct exec_list functions; /** < list of nir_function */
2324
2325 /** list of global register in the shader */
2326 struct exec_list registers;
2327
2328 /** next available global register index */
2329 unsigned reg_alloc;
2330
2331 /**
2332 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2333 * access plus one
2334 */
2335 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2336
2337 /** Constant data associated with this shader.
2338 *
2339 * Constant data is loaded through load_constant intrinsics. See also
2340 * nir_opt_large_constants.
2341 */
2342 void *constant_data;
2343 unsigned constant_data_size;
2344 } nir_shader;
2345
2346 #define nir_foreach_function(func, shader) \
2347 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2348
2349 static inline nir_function_impl *
2350 nir_shader_get_entrypoint(nir_shader *shader)
2351 {
2352 nir_function *func = NULL;
2353
2354 nir_foreach_function(function, shader) {
2355 assert(func == NULL);
2356 if (function->is_entrypoint) {
2357 func = function;
2358 #ifndef NDEBUG
2359 break;
2360 #endif
2361 }
2362 }
2363
2364 if (!func)
2365 return NULL;
2366
2367 assert(func->num_params == 0);
2368 assert(func->impl);
2369 return func->impl;
2370 }
2371
2372 nir_shader *nir_shader_create(void *mem_ctx,
2373 gl_shader_stage stage,
2374 const nir_shader_compiler_options *options,
2375 shader_info *si);
2376
2377 /** creates a register, including assigning it an index and adding it to the list */
2378 nir_register *nir_global_reg_create(nir_shader *shader);
2379
2380 nir_register *nir_local_reg_create(nir_function_impl *impl);
2381
2382 void nir_reg_remove(nir_register *reg);
2383
2384 /** Adds a variable to the appropriate list in nir_shader */
2385 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2386
2387 static inline void
2388 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2389 {
2390 assert(var->data.mode == nir_var_function_temp);
2391 exec_list_push_tail(&impl->locals, &var->node);
2392 }
2393
2394 /** creates a variable, sets a few defaults, and adds it to the list */
2395 nir_variable *nir_variable_create(nir_shader *shader,
2396 nir_variable_mode mode,
2397 const struct glsl_type *type,
2398 const char *name);
2399 /** creates a local variable and adds it to the list */
2400 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2401 const struct glsl_type *type,
2402 const char *name);
2403
2404 /** creates a function and adds it to the shader's list of functions */
2405 nir_function *nir_function_create(nir_shader *shader, const char *name);
2406
2407 nir_function_impl *nir_function_impl_create(nir_function *func);
2408 /** creates a function_impl that isn't tied to any particular function */
2409 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2410
2411 nir_block *nir_block_create(nir_shader *shader);
2412 nir_if *nir_if_create(nir_shader *shader);
2413 nir_loop *nir_loop_create(nir_shader *shader);
2414
2415 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2416
2417 /** requests that the given pieces of metadata be generated */
2418 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2419 /** dirties all but the preserved metadata */
2420 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2421
2422 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2423 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2424
2425 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2426 nir_deref_type deref_type);
2427
2428 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2429
2430 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2431 unsigned num_components,
2432 unsigned bit_size);
2433
2434 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2435 nir_intrinsic_op op);
2436
2437 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2438 nir_function *callee);
2439
2440 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2441
2442 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2443
2444 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2445
2446 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2447 unsigned num_components,
2448 unsigned bit_size);
2449
2450 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2451
2452 /**
2453 * NIR Cursors and Instruction Insertion API
2454 * @{
2455 *
2456 * A tiny struct representing a point to insert/extract instructions or
2457 * control flow nodes. Helps reduce the combinatorial explosion of possible
2458 * points to insert/extract.
2459 *
2460 * \sa nir_control_flow.h
2461 */
2462 typedef enum {
2463 nir_cursor_before_block,
2464 nir_cursor_after_block,
2465 nir_cursor_before_instr,
2466 nir_cursor_after_instr,
2467 } nir_cursor_option;
2468
2469 typedef struct {
2470 nir_cursor_option option;
2471 union {
2472 nir_block *block;
2473 nir_instr *instr;
2474 };
2475 } nir_cursor;
2476
2477 static inline nir_block *
2478 nir_cursor_current_block(nir_cursor cursor)
2479 {
2480 if (cursor.option == nir_cursor_before_instr ||
2481 cursor.option == nir_cursor_after_instr) {
2482 return cursor.instr->block;
2483 } else {
2484 return cursor.block;
2485 }
2486 }
2487
2488 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2489
2490 static inline nir_cursor
2491 nir_before_block(nir_block *block)
2492 {
2493 nir_cursor cursor;
2494 cursor.option = nir_cursor_before_block;
2495 cursor.block = block;
2496 return cursor;
2497 }
2498
2499 static inline nir_cursor
2500 nir_after_block(nir_block *block)
2501 {
2502 nir_cursor cursor;
2503 cursor.option = nir_cursor_after_block;
2504 cursor.block = block;
2505 return cursor;
2506 }
2507
2508 static inline nir_cursor
2509 nir_before_instr(nir_instr *instr)
2510 {
2511 nir_cursor cursor;
2512 cursor.option = nir_cursor_before_instr;
2513 cursor.instr = instr;
2514 return cursor;
2515 }
2516
2517 static inline nir_cursor
2518 nir_after_instr(nir_instr *instr)
2519 {
2520 nir_cursor cursor;
2521 cursor.option = nir_cursor_after_instr;
2522 cursor.instr = instr;
2523 return cursor;
2524 }
2525
2526 static inline nir_cursor
2527 nir_after_block_before_jump(nir_block *block)
2528 {
2529 nir_instr *last_instr = nir_block_last_instr(block);
2530 if (last_instr && last_instr->type == nir_instr_type_jump) {
2531 return nir_before_instr(last_instr);
2532 } else {
2533 return nir_after_block(block);
2534 }
2535 }
2536
2537 static inline nir_cursor
2538 nir_before_src(nir_src *src, bool is_if_condition)
2539 {
2540 if (is_if_condition) {
2541 nir_block *prev_block =
2542 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2543 assert(!nir_block_ends_in_jump(prev_block));
2544 return nir_after_block(prev_block);
2545 } else if (src->parent_instr->type == nir_instr_type_phi) {
2546 #ifndef NDEBUG
2547 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2548 bool found = false;
2549 nir_foreach_phi_src(phi_src, cond_phi) {
2550 if (phi_src->src.ssa == src->ssa) {
2551 found = true;
2552 break;
2553 }
2554 }
2555 assert(found);
2556 #endif
2557 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2558 * to have a more specific name.
2559 */
2560 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2561 return nir_after_block_before_jump(phi_src->pred);
2562 } else {
2563 return nir_before_instr(src->parent_instr);
2564 }
2565 }
2566
2567 static inline nir_cursor
2568 nir_before_cf_node(nir_cf_node *node)
2569 {
2570 if (node->type == nir_cf_node_block)
2571 return nir_before_block(nir_cf_node_as_block(node));
2572
2573 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2574 }
2575
2576 static inline nir_cursor
2577 nir_after_cf_node(nir_cf_node *node)
2578 {
2579 if (node->type == nir_cf_node_block)
2580 return nir_after_block(nir_cf_node_as_block(node));
2581
2582 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2583 }
2584
2585 static inline nir_cursor
2586 nir_after_phis(nir_block *block)
2587 {
2588 nir_foreach_instr(instr, block) {
2589 if (instr->type != nir_instr_type_phi)
2590 return nir_before_instr(instr);
2591 }
2592 return nir_after_block(block);
2593 }
2594
2595 static inline nir_cursor
2596 nir_after_cf_node_and_phis(nir_cf_node *node)
2597 {
2598 if (node->type == nir_cf_node_block)
2599 return nir_after_block(nir_cf_node_as_block(node));
2600
2601 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2602
2603 return nir_after_phis(block);
2604 }
2605
2606 static inline nir_cursor
2607 nir_before_cf_list(struct exec_list *cf_list)
2608 {
2609 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2610 exec_list_get_head(cf_list), node);
2611 return nir_before_cf_node(first_node);
2612 }
2613
2614 static inline nir_cursor
2615 nir_after_cf_list(struct exec_list *cf_list)
2616 {
2617 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2618 exec_list_get_tail(cf_list), node);
2619 return nir_after_cf_node(last_node);
2620 }
2621
2622 /**
2623 * Insert a NIR instruction at the given cursor.
2624 *
2625 * Note: This does not update the cursor.
2626 */
2627 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2628
2629 static inline void
2630 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2631 {
2632 nir_instr_insert(nir_before_instr(instr), before);
2633 }
2634
2635 static inline void
2636 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2637 {
2638 nir_instr_insert(nir_after_instr(instr), after);
2639 }
2640
2641 static inline void
2642 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2643 {
2644 nir_instr_insert(nir_before_block(block), before);
2645 }
2646
2647 static inline void
2648 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2649 {
2650 nir_instr_insert(nir_after_block(block), after);
2651 }
2652
2653 static inline void
2654 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2655 {
2656 nir_instr_insert(nir_before_cf_node(node), before);
2657 }
2658
2659 static inline void
2660 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2661 {
2662 nir_instr_insert(nir_after_cf_node(node), after);
2663 }
2664
2665 static inline void
2666 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2667 {
2668 nir_instr_insert(nir_before_cf_list(list), before);
2669 }
2670
2671 static inline void
2672 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2673 {
2674 nir_instr_insert(nir_after_cf_list(list), after);
2675 }
2676
2677 void nir_instr_remove_v(nir_instr *instr);
2678
2679 static inline nir_cursor
2680 nir_instr_remove(nir_instr *instr)
2681 {
2682 nir_cursor cursor;
2683 nir_instr *prev = nir_instr_prev(instr);
2684 if (prev) {
2685 cursor = nir_after_instr(prev);
2686 } else {
2687 cursor = nir_before_block(instr->block);
2688 }
2689 nir_instr_remove_v(instr);
2690 return cursor;
2691 }
2692
2693 /** @} */
2694
2695 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2696 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2697 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2698 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2699 void *state);
2700 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2701 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2702
2703 nir_const_value *nir_src_as_const_value(nir_src src);
2704
2705 static inline struct nir_instr *
2706 nir_src_instr(const struct nir_src *src)
2707 {
2708 return src->is_ssa ? src->ssa->parent_instr : NULL;
2709 }
2710
2711 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2712 static inline c_type * \
2713 nir_src_as_ ## name (struct nir_src *src) \
2714 { \
2715 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2716 ? cast_macro(src->ssa->parent_instr) : NULL; \
2717 } \
2718 static inline const c_type * \
2719 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2720 { \
2721 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2722 ? cast_macro(src->ssa->parent_instr) : NULL; \
2723 }
2724
2725 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2726
2727 bool nir_src_is_dynamically_uniform(nir_src src);
2728 bool nir_srcs_equal(nir_src src1, nir_src src2);
2729 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2730 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2731 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2732 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2733 nir_dest new_dest);
2734
2735 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2736 unsigned num_components, unsigned bit_size,
2737 const char *name);
2738 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2739 unsigned num_components, unsigned bit_size,
2740 const char *name);
2741 static inline void
2742 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2743 const struct glsl_type *type,
2744 const char *name)
2745 {
2746 assert(glsl_type_is_vector_or_scalar(type));
2747 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2748 glsl_get_bit_size(type), name);
2749 }
2750 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2751 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2752 nir_instr *after_me);
2753
2754 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2755
2756 /*
2757 * finds the next basic block in source-code order, returns NULL if there is
2758 * none
2759 */
2760
2761 nir_block *nir_block_cf_tree_next(nir_block *block);
2762
2763 /* Performs the opposite of nir_block_cf_tree_next() */
2764
2765 nir_block *nir_block_cf_tree_prev(nir_block *block);
2766
2767 /* Gets the first block in a CF node in source-code order */
2768
2769 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2770
2771 /* Gets the last block in a CF node in source-code order */
2772
2773 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2774
2775 /* Gets the next block after a CF node in source-code order */
2776
2777 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2778
2779 /* Macros for loops that visit blocks in source-code order */
2780
2781 #define nir_foreach_block(block, impl) \
2782 for (nir_block *block = nir_start_block(impl); block != NULL; \
2783 block = nir_block_cf_tree_next(block))
2784
2785 #define nir_foreach_block_safe(block, impl) \
2786 for (nir_block *block = nir_start_block(impl), \
2787 *next = nir_block_cf_tree_next(block); \
2788 block != NULL; \
2789 block = next, next = nir_block_cf_tree_next(block))
2790
2791 #define nir_foreach_block_reverse(block, impl) \
2792 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2793 block = nir_block_cf_tree_prev(block))
2794
2795 #define nir_foreach_block_reverse_safe(block, impl) \
2796 for (nir_block *block = nir_impl_last_block(impl), \
2797 *prev = nir_block_cf_tree_prev(block); \
2798 block != NULL; \
2799 block = prev, prev = nir_block_cf_tree_prev(block))
2800
2801 #define nir_foreach_block_in_cf_node(block, node) \
2802 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2803 block != nir_cf_node_cf_tree_next(node); \
2804 block = nir_block_cf_tree_next(block))
2805
2806 /* If the following CF node is an if, this function returns that if.
2807 * Otherwise, it returns NULL.
2808 */
2809 nir_if *nir_block_get_following_if(nir_block *block);
2810
2811 nir_loop *nir_block_get_following_loop(nir_block *block);
2812
2813 void nir_index_local_regs(nir_function_impl *impl);
2814 void nir_index_global_regs(nir_shader *shader);
2815 void nir_index_ssa_defs(nir_function_impl *impl);
2816 unsigned nir_index_instrs(nir_function_impl *impl);
2817
2818 void nir_index_blocks(nir_function_impl *impl);
2819
2820 void nir_print_shader(nir_shader *shader, FILE *fp);
2821 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2822 void nir_print_instr(const nir_instr *instr, FILE *fp);
2823 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2824
2825 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2826 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2827 const nir_function_impl *fi);
2828 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2829 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2830
2831 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2832
2833 #ifndef NDEBUG
2834 void nir_validate_shader(nir_shader *shader, const char *when);
2835 void nir_metadata_set_validation_flag(nir_shader *shader);
2836 void nir_metadata_check_validation_flag(nir_shader *shader);
2837
2838 static inline bool
2839 should_skip_nir(const char *name)
2840 {
2841 static const char *list = NULL;
2842 if (!list) {
2843 /* Comma separated list of names to skip. */
2844 list = getenv("NIR_SKIP");
2845 if (!list)
2846 list = "";
2847 }
2848
2849 if (!list[0])
2850 return false;
2851
2852 return comma_separated_list_contains(list, name);
2853 }
2854
2855 static inline bool
2856 should_clone_nir(void)
2857 {
2858 static int should_clone = -1;
2859 if (should_clone < 0)
2860 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2861
2862 return should_clone;
2863 }
2864
2865 static inline bool
2866 should_serialize_deserialize_nir(void)
2867 {
2868 static int test_serialize = -1;
2869 if (test_serialize < 0)
2870 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2871
2872 return test_serialize;
2873 }
2874
2875 static inline bool
2876 should_print_nir(void)
2877 {
2878 static int should_print = -1;
2879 if (should_print < 0)
2880 should_print = env_var_as_boolean("NIR_PRINT", false);
2881
2882 return should_print;
2883 }
2884 #else
2885 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2886 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2887 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2888 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2889 static inline bool should_clone_nir(void) { return false; }
2890 static inline bool should_serialize_deserialize_nir(void) { return false; }
2891 static inline bool should_print_nir(void) { return false; }
2892 #endif /* NDEBUG */
2893
2894 #define _PASS(pass, nir, do_pass) do { \
2895 if (should_skip_nir(#pass)) { \
2896 printf("skipping %s\n", #pass); \
2897 break; \
2898 } \
2899 do_pass \
2900 nir_validate_shader(nir, "after " #pass); \
2901 if (should_clone_nir()) { \
2902 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2903 ralloc_free(nir); \
2904 nir = clone; \
2905 } \
2906 if (should_serialize_deserialize_nir()) { \
2907 void *mem_ctx = ralloc_parent(nir); \
2908 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2909 } \
2910 } while (0)
2911
2912 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2913 nir_metadata_set_validation_flag(nir); \
2914 if (should_print_nir()) \
2915 printf("%s\n", #pass); \
2916 if (pass(nir, ##__VA_ARGS__)) { \
2917 progress = true; \
2918 if (should_print_nir()) \
2919 nir_print_shader(nir, stdout); \
2920 nir_metadata_check_validation_flag(nir); \
2921 } \
2922 )
2923
2924 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2925 if (should_print_nir()) \
2926 printf("%s\n", #pass); \
2927 pass(nir, ##__VA_ARGS__); \
2928 if (should_print_nir()) \
2929 nir_print_shader(nir, stdout); \
2930 )
2931
2932 #define NIR_SKIP(name) should_skip_nir(#name)
2933
2934 void nir_calc_dominance_impl(nir_function_impl *impl);
2935 void nir_calc_dominance(nir_shader *shader);
2936
2937 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2938 bool nir_block_dominates(nir_block *parent, nir_block *child);
2939
2940 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2941 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2942
2943 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2944 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2945
2946 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2947 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2948
2949 int nir_gs_count_vertices(const nir_shader *shader);
2950
2951 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2952 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2953 bool nir_split_var_copies(nir_shader *shader);
2954 bool nir_split_per_member_structs(nir_shader *shader);
2955 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2956
2957 bool nir_lower_returns_impl(nir_function_impl *impl);
2958 bool nir_lower_returns(nir_shader *shader);
2959
2960 void nir_inline_function_impl(struct nir_builder *b,
2961 const nir_function_impl *impl,
2962 nir_ssa_def **params);
2963 bool nir_inline_functions(nir_shader *shader);
2964
2965 bool nir_propagate_invariant(nir_shader *shader);
2966
2967 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2968 void nir_lower_deref_copy_instr(struct nir_builder *b,
2969 nir_intrinsic_instr *copy);
2970 bool nir_lower_var_copies(nir_shader *shader);
2971
2972 void nir_fixup_deref_modes(nir_shader *shader);
2973
2974 bool nir_lower_global_vars_to_local(nir_shader *shader);
2975
2976 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2977
2978 bool nir_lower_locals_to_regs(nir_shader *shader);
2979
2980 void nir_lower_io_to_temporaries(nir_shader *shader,
2981 nir_function_impl *entrypoint,
2982 bool outputs, bool inputs);
2983
2984 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2985
2986 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2987 int (*type_size)(const struct glsl_type *));
2988
2989 /* Some helpers to do very simple linking */
2990 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2991 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
2992 uint64_t *used_by_other_stage,
2993 uint64_t *used_by_other_stage_patches);
2994 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2995 bool default_to_smooth_interp);
2996 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
2997 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
2998
2999 typedef enum {
3000 /* If set, this forces all non-flat fragment shader inputs to be
3001 * interpolated as if with the "sample" qualifier. This requires
3002 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3003 */
3004 nir_lower_io_force_sample_interpolation = (1 << 1),
3005 } nir_lower_io_options;
3006 bool nir_lower_io(nir_shader *shader,
3007 nir_variable_mode modes,
3008 int (*type_size)(const struct glsl_type *),
3009 nir_lower_io_options);
3010
3011 typedef enum {
3012 /**
3013 * An address format which is a simple 32-bit global GPU address.
3014 */
3015 nir_address_format_32bit_global,
3016
3017 /**
3018 * An address format which is a simple 64-bit global GPU address.
3019 */
3020 nir_address_format_64bit_global,
3021
3022 /**
3023 * An address format which is comprised of a vec2 where the first
3024 * component is a vulkan descriptor index and the second is an offset.
3025 */
3026 nir_address_format_vk_index_offset,
3027 } nir_address_format;
3028 bool nir_lower_explicit_io(nir_shader *shader,
3029 nir_variable_mode modes,
3030 nir_address_format);
3031
3032 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3033 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3034
3035 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3036
3037 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3038 bool nir_lower_regs_to_ssa(nir_shader *shader);
3039 bool nir_lower_vars_to_ssa(nir_shader *shader);
3040
3041 bool nir_remove_dead_derefs(nir_shader *shader);
3042 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3043 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3044 bool nir_lower_constant_initializers(nir_shader *shader,
3045 nir_variable_mode modes);
3046
3047 bool nir_move_load_const(nir_shader *shader);
3048 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3049 bool nir_lower_vec_to_movs(nir_shader *shader);
3050 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3051 bool alpha_to_one);
3052 bool nir_lower_alu(nir_shader *shader);
3053 bool nir_lower_alu_to_scalar(nir_shader *shader);
3054 bool nir_lower_bool_to_float(nir_shader *shader);
3055 bool nir_lower_bool_to_int32(nir_shader *shader);
3056 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3057 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3058 bool nir_lower_phis_to_scalar(nir_shader *shader);
3059 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3060 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3061 bool outputs_only);
3062 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3063 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3064
3065 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3066
3067 typedef struct nir_lower_subgroups_options {
3068 uint8_t subgroup_size;
3069 uint8_t ballot_bit_size;
3070 bool lower_to_scalar:1;
3071 bool lower_vote_trivial:1;
3072 bool lower_vote_eq_to_ballot:1;
3073 bool lower_subgroup_masks:1;
3074 bool lower_shuffle:1;
3075 bool lower_shuffle_to_32bit:1;
3076 bool lower_quad:1;
3077 } nir_lower_subgroups_options;
3078
3079 bool nir_lower_subgroups(nir_shader *shader,
3080 const nir_lower_subgroups_options *options);
3081
3082 bool nir_lower_system_values(nir_shader *shader);
3083
3084 enum PACKED nir_lower_tex_packing {
3085 nir_lower_tex_packing_none = 0,
3086 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3087 * or unsigned ints based on the sampler type
3088 */
3089 nir_lower_tex_packing_16,
3090 /* The sampler returns 1 32-bit word of 4x8 unorm */
3091 nir_lower_tex_packing_8,
3092 };
3093
3094 typedef struct nir_lower_tex_options {
3095 /**
3096 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3097 * sampler types a texture projector is lowered.
3098 */
3099 unsigned lower_txp;
3100
3101 /**
3102 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3103 */
3104 bool lower_txf_offset;
3105
3106 /**
3107 * If true, lower away nir_tex_src_offset for all rect textures.
3108 */
3109 bool lower_rect_offset;
3110
3111 /**
3112 * If true, lower rect textures to 2D, using txs to fetch the
3113 * texture dimensions and dividing the texture coords by the
3114 * texture dims to normalize.
3115 */
3116 bool lower_rect;
3117
3118 /**
3119 * If true, convert yuv to rgb.
3120 */
3121 unsigned lower_y_uv_external;
3122 unsigned lower_y_u_v_external;
3123 unsigned lower_yx_xuxv_external;
3124 unsigned lower_xy_uxvx_external;
3125 unsigned lower_ayuv_external;
3126 unsigned lower_xyuv_external;
3127
3128 /**
3129 * To emulate certain texture wrap modes, this can be used
3130 * to saturate the specified tex coord to [0.0, 1.0]. The
3131 * bits are according to sampler #, ie. if, for example:
3132 *
3133 * (conf->saturate_s & (1 << n))
3134 *
3135 * is true, then the s coord for sampler n is saturated.
3136 *
3137 * Note that clamping must happen *after* projector lowering
3138 * so any projected texture sample instruction with a clamped
3139 * coordinate gets automatically lowered, regardless of the
3140 * 'lower_txp' setting.
3141 */
3142 unsigned saturate_s;
3143 unsigned saturate_t;
3144 unsigned saturate_r;
3145
3146 /* Bitmask of textures that need swizzling.
3147 *
3148 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3149 * swizzles[texture_index] is applied to the result of the texturing
3150 * operation.
3151 */
3152 unsigned swizzle_result;
3153
3154 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3155 * while 4 and 5 represent 0 and 1 respectively.
3156 */
3157 uint8_t swizzles[32][4];
3158
3159 /* Can be used to scale sampled values in range required by the format. */
3160 float scale_factors[32];
3161
3162 /**
3163 * Bitmap of textures that need srgb to linear conversion. If
3164 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3165 * of the texture are lowered to linear.
3166 */
3167 unsigned lower_srgb;
3168
3169 /**
3170 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3171 */
3172 bool lower_txd_cube_map;
3173
3174 /**
3175 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3176 */
3177 bool lower_txd_3d;
3178
3179 /**
3180 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3181 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3182 * with lower_txd_cube_map.
3183 */
3184 bool lower_txd_shadow;
3185
3186 /**
3187 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3188 * Implies lower_txd_cube_map and lower_txd_shadow.
3189 */
3190 bool lower_txd;
3191
3192 /**
3193 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3194 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3195 */
3196 bool lower_txb_shadow_clamp;
3197
3198 /**
3199 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3200 * with nir_texop_txl. This includes cube maps.
3201 */
3202 bool lower_txd_shadow_clamp;
3203
3204 /**
3205 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3206 * with nir_texop_txl. This includes cube maps.
3207 */
3208 bool lower_txd_offset_clamp;
3209
3210 /**
3211 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3212 * sampler index is not statically determinable to be less than 16.
3213 */
3214 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3215
3216 /**
3217 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3218 * mixed-up tg4 locations.
3219 */
3220 bool lower_tg4_broadcom_swizzle;
3221
3222 enum nir_lower_tex_packing lower_tex_packing[32];
3223 } nir_lower_tex_options;
3224
3225 bool nir_lower_tex(nir_shader *shader,
3226 const nir_lower_tex_options *options);
3227
3228 bool nir_lower_idiv(nir_shader *shader);
3229
3230 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3231 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3232 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3233
3234 void nir_lower_two_sided_color(nir_shader *shader);
3235
3236 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3237
3238 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3239 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3240 const gl_state_index16 *uniform_state_tokens);
3241
3242 typedef struct nir_lower_wpos_ytransform_options {
3243 gl_state_index16 state_tokens[STATE_LENGTH];
3244 bool fs_coord_origin_upper_left :1;
3245 bool fs_coord_origin_lower_left :1;
3246 bool fs_coord_pixel_center_integer :1;
3247 bool fs_coord_pixel_center_half_integer :1;
3248 } nir_lower_wpos_ytransform_options;
3249
3250 bool nir_lower_wpos_ytransform(nir_shader *shader,
3251 const nir_lower_wpos_ytransform_options *options);
3252 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3253
3254 typedef struct nir_lower_drawpixels_options {
3255 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3256 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3257 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3258 unsigned drawpix_sampler;
3259 unsigned pixelmap_sampler;
3260 bool pixel_maps :1;
3261 bool scale_and_bias :1;
3262 } nir_lower_drawpixels_options;
3263
3264 void nir_lower_drawpixels(nir_shader *shader,
3265 const nir_lower_drawpixels_options *options);
3266
3267 typedef struct nir_lower_bitmap_options {
3268 unsigned sampler;
3269 bool swizzle_xxxx;
3270 } nir_lower_bitmap_options;
3271
3272 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3273
3274 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3275
3276 typedef enum {
3277 nir_lower_int_source_mods = 1 << 0,
3278 nir_lower_float_source_mods = 1 << 1,
3279 nir_lower_triop_abs = 1 << 2,
3280 nir_lower_all_source_mods = (1 << 3) - 1
3281 } nir_lower_to_source_mods_flags;
3282
3283
3284 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3285
3286 bool nir_lower_gs_intrinsics(nir_shader *shader);
3287
3288 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3289
3290 bool nir_lower_bit_size(nir_shader *shader,
3291 nir_lower_bit_size_callback callback,
3292 void *callback_data);
3293
3294 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3295 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3296
3297 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3298 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3299 nir_lower_doubles_options options);
3300 bool nir_lower_pack(nir_shader *shader);
3301
3302 bool nir_normalize_cubemap_coords(nir_shader *shader);
3303
3304 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3305
3306 void nir_loop_analyze_impl(nir_function_impl *impl,
3307 nir_variable_mode indirect_mask);
3308
3309 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3310
3311 bool nir_repair_ssa_impl(nir_function_impl *impl);
3312 bool nir_repair_ssa(nir_shader *shader);
3313
3314 void nir_convert_loop_to_lcssa(nir_loop *loop);
3315
3316 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3317 * registers. If false, convert all values (even those not involved in a phi
3318 * node) to registers.
3319 */
3320 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3321
3322 bool nir_lower_phis_to_regs_block(nir_block *block);
3323 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3324 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3325
3326 bool nir_opt_algebraic(nir_shader *shader);
3327 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3328 bool nir_opt_algebraic_late(nir_shader *shader);
3329 bool nir_opt_constant_folding(nir_shader *shader);
3330
3331 bool nir_opt_global_to_local(nir_shader *shader);
3332
3333 bool nir_copy_prop(nir_shader *shader);
3334
3335 bool nir_opt_copy_prop_vars(nir_shader *shader);
3336
3337 bool nir_opt_cse(nir_shader *shader);
3338
3339 bool nir_opt_dce(nir_shader *shader);
3340
3341 bool nir_opt_dead_cf(nir_shader *shader);
3342
3343 bool nir_opt_dead_write_vars(nir_shader *shader);
3344
3345 bool nir_opt_deref_impl(nir_function_impl *impl);
3346 bool nir_opt_deref(nir_shader *shader);
3347
3348 bool nir_opt_find_array_copies(nir_shader *shader);
3349
3350 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3351
3352 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3353
3354 bool nir_opt_if(nir_shader *shader);
3355
3356 bool nir_opt_intrinsics(nir_shader *shader);
3357
3358 bool nir_opt_large_constants(nir_shader *shader,
3359 glsl_type_size_align_func size_align,
3360 unsigned threshold);
3361
3362 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3363
3364 bool nir_opt_move_comparisons(nir_shader *shader);
3365
3366 bool nir_opt_move_load_ubo(nir_shader *shader);
3367
3368 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3369 bool indirect_load_ok, bool expensive_alu_ok);
3370
3371 bool nir_opt_remove_phis(nir_shader *shader);
3372
3373 bool nir_opt_shrink_load(nir_shader *shader);
3374
3375 bool nir_opt_trivial_continues(nir_shader *shader);
3376
3377 bool nir_opt_undef(nir_shader *shader);
3378
3379 bool nir_opt_conditional_discard(nir_shader *shader);
3380
3381 void nir_sweep(nir_shader *shader);
3382
3383 void nir_remap_dual_slot_attributes(nir_shader *shader,
3384 uint64_t *dual_slot_inputs);
3385 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3386
3387 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3388 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3389
3390 #ifdef __cplusplus
3391 } /* extern "C" */
3392 #endif
3393
3394 #endif /* NIR_H */