nir: Add nir_const_value_negative_equal
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b[NIR_MAX_VEC_COMPONENTS];
125 float f32[NIR_MAX_VEC_COMPONENTS];
126 double f64[NIR_MAX_VEC_COMPONENTS];
127 int8_t i8[NIR_MAX_VEC_COMPONENTS];
128 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
129 int16_t i16[NIR_MAX_VEC_COMPONENTS];
130 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
131 int32_t i32[NIR_MAX_VEC_COMPONENTS];
132 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
133 int64_t i64[NIR_MAX_VEC_COMPONENTS];
134 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
135 } nir_const_value;
136
137 typedef struct nir_constant {
138 /**
139 * Value of the constant.
140 *
141 * The field used to back the values supplied by the constant is determined
142 * by the type associated with the \c nir_variable. Constants may be
143 * scalars, vectors, or matrices.
144 */
145 nir_const_value values[NIR_MAX_MATRIX_COLUMNS];
146
147 /* we could get this from the var->type but makes clone *much* easier to
148 * not have to care about the type.
149 */
150 unsigned num_elements;
151
152 /* Array elements / Structure Fields */
153 struct nir_constant **elements;
154 } nir_constant;
155
156 /**
157 * \brief Layout qualifiers for gl_FragDepth.
158 *
159 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
160 * with a layout qualifier.
161 */
162 typedef enum {
163 nir_depth_layout_none, /**< No depth layout is specified. */
164 nir_depth_layout_any,
165 nir_depth_layout_greater,
166 nir_depth_layout_less,
167 nir_depth_layout_unchanged
168 } nir_depth_layout;
169
170 /**
171 * Enum keeping track of how a variable was declared.
172 */
173 typedef enum {
174 /**
175 * Normal declaration.
176 */
177 nir_var_declared_normally = 0,
178
179 /**
180 * Variable is implicitly generated by the compiler and should not be
181 * visible via the API.
182 */
183 nir_var_hidden,
184 } nir_var_declaration_type;
185
186 /**
187 * Either a uniform, global variable, shader input, or shader output. Based on
188 * ir_variable - it should be easy to translate between the two.
189 */
190
191 typedef struct nir_variable {
192 struct exec_node node;
193
194 /**
195 * Declared type of the variable
196 */
197 const struct glsl_type *type;
198
199 /**
200 * Declared name of the variable
201 */
202 char *name;
203
204 struct nir_variable_data {
205 /**
206 * Storage class of the variable.
207 *
208 * \sa nir_variable_mode
209 */
210 nir_variable_mode mode;
211
212 /**
213 * Is the variable read-only?
214 *
215 * This is set for variables declared as \c const, shader inputs,
216 * and uniforms.
217 */
218 unsigned read_only:1;
219 unsigned centroid:1;
220 unsigned sample:1;
221 unsigned patch:1;
222 unsigned invariant:1;
223
224 /**
225 * When separate shader programs are enabled, only input/outputs between
226 * the stages of a multi-stage separate program can be safely removed
227 * from the shader interface. Other input/outputs must remains active.
228 *
229 * This is also used to make sure xfb varyings that are unused by the
230 * fragment shader are not removed.
231 */
232 unsigned always_active_io:1;
233
234 /**
235 * Interpolation mode for shader inputs / outputs
236 *
237 * \sa glsl_interp_mode
238 */
239 unsigned interpolation:2;
240
241 /**
242 * If non-zero, then this variable may be packed along with other variables
243 * into a single varying slot, so this offset should be applied when
244 * accessing components. For example, an offset of 1 means that the x
245 * component of this variable is actually stored in component y of the
246 * location specified by \c location.
247 */
248 unsigned location_frac:2;
249
250 /**
251 * If true, this variable represents an array of scalars that should
252 * be tightly packed. In other words, consecutive array elements
253 * should be stored one component apart, rather than one slot apart.
254 */
255 unsigned compact:1;
256
257 /**
258 * Whether this is a fragment shader output implicitly initialized with
259 * the previous contents of the specified render target at the
260 * framebuffer location corresponding to this shader invocation.
261 */
262 unsigned fb_fetch_output:1;
263
264 /**
265 * Non-zero if this variable is considered bindless as defined by
266 * ARB_bindless_texture.
267 */
268 unsigned bindless:1;
269
270 /**
271 * Was an explicit binding set in the shader?
272 */
273 unsigned explicit_binding:1;
274
275 /**
276 * Was a transfer feedback buffer set in the shader?
277 */
278 unsigned explicit_xfb_buffer:1;
279
280 /**
281 * Was a transfer feedback stride set in the shader?
282 */
283 unsigned explicit_xfb_stride:1;
284
285 /**
286 * Was an explicit offset set in the shader?
287 */
288 unsigned explicit_offset:1;
289
290 /**
291 * \brief Layout qualifier for gl_FragDepth.
292 *
293 * This is not equal to \c ir_depth_layout_none if and only if this
294 * variable is \c gl_FragDepth and a layout qualifier is specified.
295 */
296 nir_depth_layout depth_layout;
297
298 /**
299 * Storage location of the base of this variable
300 *
301 * The precise meaning of this field depends on the nature of the variable.
302 *
303 * - Vertex shader input: one of the values from \c gl_vert_attrib.
304 * - Vertex shader output: one of the values from \c gl_varying_slot.
305 * - Geometry shader input: one of the values from \c gl_varying_slot.
306 * - Geometry shader output: one of the values from \c gl_varying_slot.
307 * - Fragment shader input: one of the values from \c gl_varying_slot.
308 * - Fragment shader output: one of the values from \c gl_frag_result.
309 * - Uniforms: Per-stage uniform slot number for default uniform block.
310 * - Uniforms: Index within the uniform block definition for UBO members.
311 * - Non-UBO Uniforms: uniform slot number.
312 * - Other: This field is not currently used.
313 *
314 * If the variable is a uniform, shader input, or shader output, and the
315 * slot has not been assigned, the value will be -1.
316 */
317 int location;
318
319 /**
320 * The actual location of the variable in the IR. Only valid for inputs
321 * and outputs.
322 */
323 unsigned int driver_location;
324
325 /**
326 * Vertex stream output identifier.
327 *
328 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
329 * stream of the i-th component.
330 */
331 unsigned stream;
332
333 /**
334 * output index for dual source blending.
335 */
336 int index;
337
338 /**
339 * Descriptor set binding for sampler or UBO.
340 */
341 int descriptor_set;
342
343 /**
344 * Initial binding point for a sampler or UBO.
345 *
346 * For array types, this represents the binding point for the first element.
347 */
348 int binding;
349
350 /**
351 * Location an atomic counter or transform feedback is stored at.
352 */
353 unsigned offset;
354
355 /**
356 * Transform feedback buffer.
357 */
358 unsigned xfb_buffer;
359
360 /**
361 * Transform feedback stride.
362 */
363 unsigned xfb_stride;
364
365 /**
366 * How the variable was declared. See nir_var_declaration_type.
367 *
368 * This is used to detect variables generated by the compiler, so should
369 * not be visible via the API.
370 */
371 unsigned how_declared:2;
372
373 /**
374 * ARB_shader_image_load_store qualifiers.
375 */
376 struct {
377 enum gl_access_qualifier access;
378
379 /** Image internal format if specified explicitly, otherwise GL_NONE. */
380 GLenum format;
381 } image;
382 } data;
383
384 /**
385 * Built-in state that backs this uniform
386 *
387 * Once set at variable creation, \c state_slots must remain invariant.
388 * This is because, ideally, this array would be shared by all clones of
389 * this variable in the IR tree. In other words, we'd really like for it
390 * to be a fly-weight.
391 *
392 * If the variable is not a uniform, \c num_state_slots will be zero and
393 * \c state_slots will be \c NULL.
394 */
395 /*@{*/
396 unsigned num_state_slots; /**< Number of state slots used */
397 nir_state_slot *state_slots; /**< State descriptors. */
398 /*@}*/
399
400 /**
401 * Constant expression assigned in the initializer of the variable
402 *
403 * This field should only be used temporarily by creators of NIR shaders
404 * and then lower_constant_initializers can be used to get rid of them.
405 * Most of the rest of NIR ignores this field or asserts that it's NULL.
406 */
407 nir_constant *constant_initializer;
408
409 /**
410 * For variables that are in an interface block or are an instance of an
411 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
412 *
413 * \sa ir_variable::location
414 */
415 const struct glsl_type *interface_type;
416
417 /**
418 * Description of per-member data for per-member struct variables
419 *
420 * This is used for variables which are actually an amalgamation of
421 * multiple entities such as a struct of built-in values or a struct of
422 * inputs each with their own layout specifier. This is only allowed on
423 * variables with a struct or array of array of struct type.
424 */
425 unsigned num_members;
426 struct nir_variable_data *members;
427 } nir_variable;
428
429 #define nir_foreach_variable(var, var_list) \
430 foreach_list_typed(nir_variable, var, node, var_list)
431
432 #define nir_foreach_variable_safe(var, var_list) \
433 foreach_list_typed_safe(nir_variable, var, node, var_list)
434
435 static inline bool
436 nir_variable_is_global(const nir_variable *var)
437 {
438 return var->data.mode != nir_var_function_temp;
439 }
440
441 typedef struct nir_register {
442 struct exec_node node;
443
444 unsigned num_components; /** < number of vector components */
445 unsigned num_array_elems; /** < size of array (0 for no array) */
446
447 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
448 uint8_t bit_size;
449
450 /** generic register index. */
451 unsigned index;
452
453 /** only for debug purposes, can be NULL */
454 const char *name;
455
456 /** whether this register is local (per-function) or global (per-shader) */
457 bool is_global;
458
459 /**
460 * If this flag is set to true, then accessing channels >= num_components
461 * is well-defined, and simply spills over to the next array element. This
462 * is useful for backends that can do per-component accessing, in
463 * particular scalar backends. By setting this flag and making
464 * num_components equal to 1, structures can be packed tightly into
465 * registers and then registers can be accessed per-component to get to
466 * each structure member, even if it crosses vec4 boundaries.
467 */
468 bool is_packed;
469
470 /** set of nir_srcs where this register is used (read from) */
471 struct list_head uses;
472
473 /** set of nir_dests where this register is defined (written to) */
474 struct list_head defs;
475
476 /** set of nir_ifs where this register is used as a condition */
477 struct list_head if_uses;
478 } nir_register;
479
480 #define nir_foreach_register(reg, reg_list) \
481 foreach_list_typed(nir_register, reg, node, reg_list)
482 #define nir_foreach_register_safe(reg, reg_list) \
483 foreach_list_typed_safe(nir_register, reg, node, reg_list)
484
485 typedef enum PACKED {
486 nir_instr_type_alu,
487 nir_instr_type_deref,
488 nir_instr_type_call,
489 nir_instr_type_tex,
490 nir_instr_type_intrinsic,
491 nir_instr_type_load_const,
492 nir_instr_type_jump,
493 nir_instr_type_ssa_undef,
494 nir_instr_type_phi,
495 nir_instr_type_parallel_copy,
496 } nir_instr_type;
497
498 typedef struct nir_instr {
499 struct exec_node node;
500 struct nir_block *block;
501 nir_instr_type type;
502
503 /* A temporary for optimization and analysis passes to use for storing
504 * flags. For instance, DCE uses this to store the "dead/live" info.
505 */
506 uint8_t pass_flags;
507
508 /** generic instruction index. */
509 unsigned index;
510 } nir_instr;
511
512 static inline nir_instr *
513 nir_instr_next(nir_instr *instr)
514 {
515 struct exec_node *next = exec_node_get_next(&instr->node);
516 if (exec_node_is_tail_sentinel(next))
517 return NULL;
518 else
519 return exec_node_data(nir_instr, next, node);
520 }
521
522 static inline nir_instr *
523 nir_instr_prev(nir_instr *instr)
524 {
525 struct exec_node *prev = exec_node_get_prev(&instr->node);
526 if (exec_node_is_head_sentinel(prev))
527 return NULL;
528 else
529 return exec_node_data(nir_instr, prev, node);
530 }
531
532 static inline bool
533 nir_instr_is_first(const nir_instr *instr)
534 {
535 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
536 }
537
538 static inline bool
539 nir_instr_is_last(const nir_instr *instr)
540 {
541 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
542 }
543
544 typedef struct nir_ssa_def {
545 /** for debugging only, can be NULL */
546 const char* name;
547
548 /** generic SSA definition index. */
549 unsigned index;
550
551 /** Index into the live_in and live_out bitfields */
552 unsigned live_index;
553
554 /** Instruction which produces this SSA value. */
555 nir_instr *parent_instr;
556
557 /** set of nir_instrs where this register is used (read from) */
558 struct list_head uses;
559
560 /** set of nir_ifs where this register is used as a condition */
561 struct list_head if_uses;
562
563 uint8_t num_components;
564
565 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
566 uint8_t bit_size;
567 } nir_ssa_def;
568
569 struct nir_src;
570
571 typedef struct {
572 nir_register *reg;
573 struct nir_src *indirect; /** < NULL for no indirect offset */
574 unsigned base_offset;
575
576 /* TODO use-def chain goes here */
577 } nir_reg_src;
578
579 typedef struct {
580 nir_instr *parent_instr;
581 struct list_head def_link;
582
583 nir_register *reg;
584 struct nir_src *indirect; /** < NULL for no indirect offset */
585 unsigned base_offset;
586
587 /* TODO def-use chain goes here */
588 } nir_reg_dest;
589
590 struct nir_if;
591
592 typedef struct nir_src {
593 union {
594 /** Instruction that consumes this value as a source. */
595 nir_instr *parent_instr;
596 struct nir_if *parent_if;
597 };
598
599 struct list_head use_link;
600
601 union {
602 nir_reg_src reg;
603 nir_ssa_def *ssa;
604 };
605
606 bool is_ssa;
607 } nir_src;
608
609 static inline nir_src
610 nir_src_init(void)
611 {
612 nir_src src = { { NULL } };
613 return src;
614 }
615
616 #define NIR_SRC_INIT nir_src_init()
617
618 #define nir_foreach_use(src, reg_or_ssa_def) \
619 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
620
621 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
622 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
623
624 #define nir_foreach_if_use(src, reg_or_ssa_def) \
625 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
626
627 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
628 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
629
630 typedef struct {
631 union {
632 nir_reg_dest reg;
633 nir_ssa_def ssa;
634 };
635
636 bool is_ssa;
637 } nir_dest;
638
639 static inline nir_dest
640 nir_dest_init(void)
641 {
642 nir_dest dest = { { { NULL } } };
643 return dest;
644 }
645
646 #define NIR_DEST_INIT nir_dest_init()
647
648 #define nir_foreach_def(dest, reg) \
649 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
650
651 #define nir_foreach_def_safe(dest, reg) \
652 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
653
654 static inline nir_src
655 nir_src_for_ssa(nir_ssa_def *def)
656 {
657 nir_src src = NIR_SRC_INIT;
658
659 src.is_ssa = true;
660 src.ssa = def;
661
662 return src;
663 }
664
665 static inline nir_src
666 nir_src_for_reg(nir_register *reg)
667 {
668 nir_src src = NIR_SRC_INIT;
669
670 src.is_ssa = false;
671 src.reg.reg = reg;
672 src.reg.indirect = NULL;
673 src.reg.base_offset = 0;
674
675 return src;
676 }
677
678 static inline nir_dest
679 nir_dest_for_reg(nir_register *reg)
680 {
681 nir_dest dest = NIR_DEST_INIT;
682
683 dest.reg.reg = reg;
684
685 return dest;
686 }
687
688 static inline unsigned
689 nir_src_bit_size(nir_src src)
690 {
691 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
692 }
693
694 static inline unsigned
695 nir_src_num_components(nir_src src)
696 {
697 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
698 }
699
700 static inline bool
701 nir_src_is_const(nir_src src)
702 {
703 return src.is_ssa &&
704 src.ssa->parent_instr->type == nir_instr_type_load_const;
705 }
706
707 int64_t nir_src_as_int(nir_src src);
708 uint64_t nir_src_as_uint(nir_src src);
709 bool nir_src_as_bool(nir_src src);
710 double nir_src_as_float(nir_src src);
711 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
712 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
713 bool nir_src_comp_as_bool(nir_src src, unsigned component);
714 double nir_src_comp_as_float(nir_src src, unsigned component);
715
716 static inline unsigned
717 nir_dest_bit_size(nir_dest dest)
718 {
719 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
720 }
721
722 static inline unsigned
723 nir_dest_num_components(nir_dest dest)
724 {
725 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
726 }
727
728 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
729 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
730
731 typedef struct {
732 nir_src src;
733
734 /**
735 * \name input modifiers
736 */
737 /*@{*/
738 /**
739 * For inputs interpreted as floating point, flips the sign bit. For
740 * inputs interpreted as integers, performs the two's complement negation.
741 */
742 bool negate;
743
744 /**
745 * Clears the sign bit for floating point values, and computes the integer
746 * absolute value for integers. Note that the negate modifier acts after
747 * the absolute value modifier, therefore if both are set then all inputs
748 * will become negative.
749 */
750 bool abs;
751 /*@}*/
752
753 /**
754 * For each input component, says which component of the register it is
755 * chosen from. Note that which elements of the swizzle are used and which
756 * are ignored are based on the write mask for most opcodes - for example,
757 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
758 * a swizzle of {2, x, 1, 0} where x means "don't care."
759 */
760 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
761 } nir_alu_src;
762
763 typedef struct {
764 nir_dest dest;
765
766 /**
767 * \name saturate output modifier
768 *
769 * Only valid for opcodes that output floating-point numbers. Clamps the
770 * output to between 0.0 and 1.0 inclusive.
771 */
772
773 bool saturate;
774
775 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
776 } nir_alu_dest;
777
778 /** NIR sized and unsized types
779 *
780 * The values in this enum are carefully chosen so that the sized type is
781 * just the unsized type OR the number of bits.
782 */
783 typedef enum {
784 nir_type_invalid = 0, /* Not a valid type */
785 nir_type_int = 2,
786 nir_type_uint = 4,
787 nir_type_bool = 6,
788 nir_type_float = 128,
789 nir_type_bool1 = 1 | nir_type_bool,
790 nir_type_bool32 = 32 | nir_type_bool,
791 nir_type_int1 = 1 | nir_type_int,
792 nir_type_int8 = 8 | nir_type_int,
793 nir_type_int16 = 16 | nir_type_int,
794 nir_type_int32 = 32 | nir_type_int,
795 nir_type_int64 = 64 | nir_type_int,
796 nir_type_uint1 = 1 | nir_type_uint,
797 nir_type_uint8 = 8 | nir_type_uint,
798 nir_type_uint16 = 16 | nir_type_uint,
799 nir_type_uint32 = 32 | nir_type_uint,
800 nir_type_uint64 = 64 | nir_type_uint,
801 nir_type_float16 = 16 | nir_type_float,
802 nir_type_float32 = 32 | nir_type_float,
803 nir_type_float64 = 64 | nir_type_float,
804 } nir_alu_type;
805
806 #define NIR_ALU_TYPE_SIZE_MASK 0x79
807 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
808
809 static inline unsigned
810 nir_alu_type_get_type_size(nir_alu_type type)
811 {
812 return type & NIR_ALU_TYPE_SIZE_MASK;
813 }
814
815 static inline unsigned
816 nir_alu_type_get_base_type(nir_alu_type type)
817 {
818 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
819 }
820
821 static inline nir_alu_type
822 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
823 {
824 switch (base_type) {
825 case GLSL_TYPE_BOOL:
826 return nir_type_bool1;
827 break;
828 case GLSL_TYPE_UINT:
829 return nir_type_uint32;
830 break;
831 case GLSL_TYPE_INT:
832 return nir_type_int32;
833 break;
834 case GLSL_TYPE_UINT16:
835 return nir_type_uint16;
836 break;
837 case GLSL_TYPE_INT16:
838 return nir_type_int16;
839 break;
840 case GLSL_TYPE_UINT8:
841 return nir_type_uint8;
842 case GLSL_TYPE_INT8:
843 return nir_type_int8;
844 case GLSL_TYPE_UINT64:
845 return nir_type_uint64;
846 break;
847 case GLSL_TYPE_INT64:
848 return nir_type_int64;
849 break;
850 case GLSL_TYPE_FLOAT:
851 return nir_type_float32;
852 break;
853 case GLSL_TYPE_FLOAT16:
854 return nir_type_float16;
855 break;
856 case GLSL_TYPE_DOUBLE:
857 return nir_type_float64;
858 break;
859 default:
860 unreachable("unknown type");
861 }
862 }
863
864 static inline nir_alu_type
865 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
866 {
867 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
868 }
869
870 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
871 nir_rounding_mode rnd);
872
873 typedef enum {
874 NIR_OP_IS_COMMUTATIVE = (1 << 0),
875 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
876 } nir_op_algebraic_property;
877
878 typedef struct {
879 const char *name;
880
881 unsigned num_inputs;
882
883 /**
884 * The number of components in the output
885 *
886 * If non-zero, this is the size of the output and input sizes are
887 * explicitly given; swizzle and writemask are still in effect, but if
888 * the output component is masked out, then the input component may
889 * still be in use.
890 *
891 * If zero, the opcode acts in the standard, per-component manner; the
892 * operation is performed on each component (except the ones that are
893 * masked out) with the input being taken from the input swizzle for
894 * that component.
895 *
896 * The size of some of the inputs may be given (i.e. non-zero) even
897 * though output_size is zero; in that case, the inputs with a zero
898 * size act per-component, while the inputs with non-zero size don't.
899 */
900 unsigned output_size;
901
902 /**
903 * The type of vector that the instruction outputs. Note that the
904 * staurate modifier is only allowed on outputs with the float type.
905 */
906
907 nir_alu_type output_type;
908
909 /**
910 * The number of components in each input
911 */
912 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
913
914 /**
915 * The type of vector that each input takes. Note that negate and
916 * absolute value are only allowed on inputs with int or float type and
917 * behave differently on the two.
918 */
919 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
920
921 nir_op_algebraic_property algebraic_properties;
922
923 /* Whether this represents a numeric conversion opcode */
924 bool is_conversion;
925 } nir_op_info;
926
927 extern const nir_op_info nir_op_infos[nir_num_opcodes];
928
929 typedef struct nir_alu_instr {
930 nir_instr instr;
931 nir_op op;
932
933 /** Indicates that this ALU instruction generates an exact value
934 *
935 * This is kind of a mixture of GLSL "precise" and "invariant" and not
936 * really equivalent to either. This indicates that the value generated by
937 * this operation is high-precision and any code transformations that touch
938 * it must ensure that the resulting value is bit-for-bit identical to the
939 * original.
940 */
941 bool exact;
942
943 nir_alu_dest dest;
944 nir_alu_src src[];
945 } nir_alu_instr;
946
947 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
948 nir_alu_instr *instr);
949 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
950 nir_alu_instr *instr);
951
952 /* is this source channel used? */
953 static inline bool
954 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
955 unsigned channel)
956 {
957 if (nir_op_infos[instr->op].input_sizes[src] > 0)
958 return channel < nir_op_infos[instr->op].input_sizes[src];
959
960 return (instr->dest.write_mask >> channel) & 1;
961 }
962
963 static inline nir_component_mask_t
964 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
965 {
966 nir_component_mask_t read_mask = 0;
967 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
968 if (!nir_alu_instr_channel_used(instr, src, c))
969 continue;
970
971 read_mask |= (1 << instr->src[src].swizzle[c]);
972 }
973 return read_mask;
974 }
975
976 /*
977 * For instructions whose destinations are SSA, get the number of channels
978 * used for a source
979 */
980 static inline unsigned
981 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
982 {
983 assert(instr->dest.dest.is_ssa);
984
985 if (nir_op_infos[instr->op].input_sizes[src] > 0)
986 return nir_op_infos[instr->op].input_sizes[src];
987
988 return instr->dest.dest.ssa.num_components;
989 }
990
991 bool nir_const_value_negative_equal(const nir_const_value *c1,
992 const nir_const_value *c2,
993 unsigned components,
994 nir_alu_type base_type,
995 unsigned bits);
996
997 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
998 unsigned src1, unsigned src2);
999
1000 typedef enum {
1001 nir_deref_type_var,
1002 nir_deref_type_array,
1003 nir_deref_type_array_wildcard,
1004 nir_deref_type_ptr_as_array,
1005 nir_deref_type_struct,
1006 nir_deref_type_cast,
1007 } nir_deref_type;
1008
1009 typedef struct {
1010 nir_instr instr;
1011
1012 /** The type of this deref instruction */
1013 nir_deref_type deref_type;
1014
1015 /** The mode of the underlying variable */
1016 nir_variable_mode mode;
1017
1018 /** The dereferenced type of the resulting pointer value */
1019 const struct glsl_type *type;
1020
1021 union {
1022 /** Variable being dereferenced if deref_type is a deref_var */
1023 nir_variable *var;
1024
1025 /** Parent deref if deref_type is not deref_var */
1026 nir_src parent;
1027 };
1028
1029 /** Additional deref parameters */
1030 union {
1031 struct {
1032 nir_src index;
1033 } arr;
1034
1035 struct {
1036 unsigned index;
1037 } strct;
1038
1039 struct {
1040 unsigned ptr_stride;
1041 } cast;
1042 };
1043
1044 /** Destination to store the resulting "pointer" */
1045 nir_dest dest;
1046 } nir_deref_instr;
1047
1048 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1049 type, nir_instr_type_deref)
1050
1051 static inline nir_deref_instr *
1052 nir_src_as_deref(nir_src src)
1053 {
1054 if (!src.is_ssa)
1055 return NULL;
1056
1057 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1058 return NULL;
1059
1060 return nir_instr_as_deref(src.ssa->parent_instr);
1061 }
1062
1063 static inline nir_deref_instr *
1064 nir_deref_instr_parent(const nir_deref_instr *instr)
1065 {
1066 if (instr->deref_type == nir_deref_type_var)
1067 return NULL;
1068 else
1069 return nir_src_as_deref(instr->parent);
1070 }
1071
1072 static inline nir_variable *
1073 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1074 {
1075 while (instr->deref_type != nir_deref_type_var) {
1076 if (instr->deref_type == nir_deref_type_cast)
1077 return NULL;
1078
1079 instr = nir_deref_instr_parent(instr);
1080 }
1081
1082 return instr->var;
1083 }
1084
1085 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1086
1087 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1088
1089 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1090
1091 typedef struct {
1092 nir_instr instr;
1093
1094 struct nir_function *callee;
1095
1096 unsigned num_params;
1097 nir_src params[];
1098 } nir_call_instr;
1099
1100 #include "nir_intrinsics.h"
1101
1102 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1103
1104 /** Represents an intrinsic
1105 *
1106 * An intrinsic is an instruction type for handling things that are
1107 * more-or-less regular operations but don't just consume and produce SSA
1108 * values like ALU operations do. Intrinsics are not for things that have
1109 * special semantic meaning such as phi nodes and parallel copies.
1110 * Examples of intrinsics include variable load/store operations, system
1111 * value loads, and the like. Even though texturing more-or-less falls
1112 * under this category, texturing is its own instruction type because
1113 * trying to represent texturing with intrinsics would lead to a
1114 * combinatorial explosion of intrinsic opcodes.
1115 *
1116 * By having a single instruction type for handling a lot of different
1117 * cases, optimization passes can look for intrinsics and, for the most
1118 * part, completely ignore them. Each intrinsic type also has a few
1119 * possible flags that govern whether or not they can be reordered or
1120 * eliminated. That way passes like dead code elimination can still work
1121 * on intrisics without understanding the meaning of each.
1122 *
1123 * Each intrinsic has some number of constant indices, some number of
1124 * variables, and some number of sources. What these sources, variables,
1125 * and indices mean depends on the intrinsic and is documented with the
1126 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1127 * instructions are the only types of instruction that can operate on
1128 * variables.
1129 */
1130 typedef struct {
1131 nir_instr instr;
1132
1133 nir_intrinsic_op intrinsic;
1134
1135 nir_dest dest;
1136
1137 /** number of components if this is a vectorized intrinsic
1138 *
1139 * Similarly to ALU operations, some intrinsics are vectorized.
1140 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1141 * For vectorized intrinsics, the num_components field specifies the
1142 * number of destination components and the number of source components
1143 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1144 */
1145 uint8_t num_components;
1146
1147 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1148
1149 nir_src src[];
1150 } nir_intrinsic_instr;
1151
1152 static inline nir_variable *
1153 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1154 {
1155 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1156 }
1157
1158 /**
1159 * \name NIR intrinsics semantic flags
1160 *
1161 * information about what the compiler can do with the intrinsics.
1162 *
1163 * \sa nir_intrinsic_info::flags
1164 */
1165 typedef enum {
1166 /**
1167 * whether the intrinsic can be safely eliminated if none of its output
1168 * value is not being used.
1169 */
1170 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1171
1172 /**
1173 * Whether the intrinsic can be reordered with respect to any other
1174 * intrinsic, i.e. whether the only reordering dependencies of the
1175 * intrinsic are due to the register reads/writes.
1176 */
1177 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1178 } nir_intrinsic_semantic_flag;
1179
1180 /**
1181 * \name NIR intrinsics const-index flag
1182 *
1183 * Indicates the usage of a const_index slot.
1184 *
1185 * \sa nir_intrinsic_info::index_map
1186 */
1187 typedef enum {
1188 /**
1189 * Generally instructions that take a offset src argument, can encode
1190 * a constant 'base' value which is added to the offset.
1191 */
1192 NIR_INTRINSIC_BASE = 1,
1193
1194 /**
1195 * For store instructions, a writemask for the store.
1196 */
1197 NIR_INTRINSIC_WRMASK = 2,
1198
1199 /**
1200 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1201 */
1202 NIR_INTRINSIC_STREAM_ID = 3,
1203
1204 /**
1205 * The clip-plane id for load_user_clip_plane intrinsic.
1206 */
1207 NIR_INTRINSIC_UCP_ID = 4,
1208
1209 /**
1210 * The amount of data, starting from BASE, that this instruction may
1211 * access. This is used to provide bounds if the offset is not constant.
1212 */
1213 NIR_INTRINSIC_RANGE = 5,
1214
1215 /**
1216 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1217 */
1218 NIR_INTRINSIC_DESC_SET = 6,
1219
1220 /**
1221 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1222 */
1223 NIR_INTRINSIC_BINDING = 7,
1224
1225 /**
1226 * Component offset.
1227 */
1228 NIR_INTRINSIC_COMPONENT = 8,
1229
1230 /**
1231 * Interpolation mode (only meaningful for FS inputs).
1232 */
1233 NIR_INTRINSIC_INTERP_MODE = 9,
1234
1235 /**
1236 * A binary nir_op to use when performing a reduction or scan operation
1237 */
1238 NIR_INTRINSIC_REDUCTION_OP = 10,
1239
1240 /**
1241 * Cluster size for reduction operations
1242 */
1243 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1244
1245 /**
1246 * Parameter index for a load_param intrinsic
1247 */
1248 NIR_INTRINSIC_PARAM_IDX = 12,
1249
1250 /**
1251 * Image dimensionality for image intrinsics
1252 *
1253 * One of GLSL_SAMPLER_DIM_*
1254 */
1255 NIR_INTRINSIC_IMAGE_DIM = 13,
1256
1257 /**
1258 * Non-zero if we are accessing an array image
1259 */
1260 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1261
1262 /**
1263 * Image format for image intrinsics
1264 */
1265 NIR_INTRINSIC_FORMAT = 15,
1266
1267 /**
1268 * Access qualifiers for image and memory access intrinsics
1269 */
1270 NIR_INTRINSIC_ACCESS = 16,
1271
1272 /**
1273 * Alignment for offsets and addresses
1274 *
1275 * These two parameters, specify an alignment in terms of a multiplier and
1276 * an offset. The offset or address parameter X of the intrinsic is
1277 * guaranteed to satisfy the following:
1278 *
1279 * (X - align_offset) % align_mul == 0
1280 */
1281 NIR_INTRINSIC_ALIGN_MUL = 17,
1282 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1283
1284 /**
1285 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1286 */
1287 NIR_INTRINSIC_DESC_TYPE = 19,
1288
1289 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1290
1291 } nir_intrinsic_index_flag;
1292
1293 #define NIR_INTRINSIC_MAX_INPUTS 5
1294
1295 typedef struct {
1296 const char *name;
1297
1298 unsigned num_srcs; /** < number of register/SSA inputs */
1299
1300 /** number of components of each input register
1301 *
1302 * If this value is 0, the number of components is given by the
1303 * num_components field of nir_intrinsic_instr. If this value is -1, the
1304 * intrinsic consumes however many components are provided and it is not
1305 * validated at all.
1306 */
1307 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1308
1309 bool has_dest;
1310
1311 /** number of components of the output register
1312 *
1313 * If this value is 0, the number of components is given by the
1314 * num_components field of nir_intrinsic_instr.
1315 */
1316 unsigned dest_components;
1317
1318 /** bitfield of legal bit sizes */
1319 unsigned dest_bit_sizes;
1320
1321 /** the number of constant indices used by the intrinsic */
1322 unsigned num_indices;
1323
1324 /** indicates the usage of intr->const_index[n] */
1325 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1326
1327 /** semantic flags for calls to this intrinsic */
1328 nir_intrinsic_semantic_flag flags;
1329 } nir_intrinsic_info;
1330
1331 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1332
1333 static inline unsigned
1334 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1335 {
1336 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1337 assert(srcn < info->num_srcs);
1338 if (info->src_components[srcn] > 0)
1339 return info->src_components[srcn];
1340 else if (info->src_components[srcn] == 0)
1341 return intr->num_components;
1342 else
1343 return nir_src_num_components(intr->src[srcn]);
1344 }
1345
1346 static inline unsigned
1347 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1348 {
1349 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1350 if (!info->has_dest)
1351 return 0;
1352 else if (info->dest_components)
1353 return info->dest_components;
1354 else
1355 return intr->num_components;
1356 }
1357
1358 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1359 static inline type \
1360 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1361 { \
1362 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1363 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1364 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1365 } \
1366 static inline void \
1367 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1368 { \
1369 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1370 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1371 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1372 }
1373
1374 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1375 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1376 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1377 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1378 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1379 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1380 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1381 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1382 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1383 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1384 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1385 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1386 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1387 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1388 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1389 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1390 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1391 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1392 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1393
1394 static inline void
1395 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1396 unsigned align_mul, unsigned align_offset)
1397 {
1398 assert(util_is_power_of_two_nonzero(align_mul));
1399 assert(align_offset < align_mul);
1400 nir_intrinsic_set_align_mul(intrin, align_mul);
1401 nir_intrinsic_set_align_offset(intrin, align_offset);
1402 }
1403
1404 /** Returns a simple alignment for a load/store intrinsic offset
1405 *
1406 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1407 * and ALIGN_OFFSET parameters, this helper takes both into account and
1408 * provides a single simple alignment parameter. The offset X is guaranteed
1409 * to satisfy X % align == 0.
1410 */
1411 static inline unsigned
1412 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1413 {
1414 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1415 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1416 assert(align_offset < align_mul);
1417 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1418 }
1419
1420 /**
1421 * \group texture information
1422 *
1423 * This gives semantic information about textures which is useful to the
1424 * frontend, the backend, and lowering passes, but not the optimizer.
1425 */
1426
1427 typedef enum {
1428 nir_tex_src_coord,
1429 nir_tex_src_projector,
1430 nir_tex_src_comparator, /* shadow comparator */
1431 nir_tex_src_offset,
1432 nir_tex_src_bias,
1433 nir_tex_src_lod,
1434 nir_tex_src_min_lod,
1435 nir_tex_src_ms_index, /* MSAA sample index */
1436 nir_tex_src_ms_mcs, /* MSAA compression value */
1437 nir_tex_src_ddx,
1438 nir_tex_src_ddy,
1439 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1440 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1441 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1442 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1443 nir_tex_src_texture_handle, /* < bindless texture handle */
1444 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1445 nir_tex_src_plane, /* < selects plane for planar textures */
1446 nir_num_tex_src_types
1447 } nir_tex_src_type;
1448
1449 typedef struct {
1450 nir_src src;
1451 nir_tex_src_type src_type;
1452 } nir_tex_src;
1453
1454 typedef enum {
1455 nir_texop_tex, /**< Regular texture look-up */
1456 nir_texop_txb, /**< Texture look-up with LOD bias */
1457 nir_texop_txl, /**< Texture look-up with explicit LOD */
1458 nir_texop_txd, /**< Texture look-up with partial derivatives */
1459 nir_texop_txf, /**< Texel fetch with explicit LOD */
1460 nir_texop_txf_ms, /**< Multisample texture fetch */
1461 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1462 nir_texop_txs, /**< Texture size */
1463 nir_texop_lod, /**< Texture lod query */
1464 nir_texop_tg4, /**< Texture gather */
1465 nir_texop_query_levels, /**< Texture levels query */
1466 nir_texop_texture_samples, /**< Texture samples query */
1467 nir_texop_samples_identical, /**< Query whether all samples are definitely
1468 * identical.
1469 */
1470 } nir_texop;
1471
1472 typedef struct {
1473 nir_instr instr;
1474
1475 enum glsl_sampler_dim sampler_dim;
1476 nir_alu_type dest_type;
1477
1478 nir_texop op;
1479 nir_dest dest;
1480 nir_tex_src *src;
1481 unsigned num_srcs, coord_components;
1482 bool is_array, is_shadow;
1483
1484 /**
1485 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1486 * components or the new-style shadow that outputs 1 component.
1487 */
1488 bool is_new_style_shadow;
1489
1490 /* gather component selector */
1491 unsigned component : 2;
1492
1493 /* gather offsets */
1494 int8_t tg4_offsets[4][2];
1495
1496 /* True if the texture index or handle is not dynamically uniform */
1497 bool texture_non_uniform;
1498
1499 /* True if the sampler index or handle is not dynamically uniform */
1500 bool sampler_non_uniform;
1501
1502 /** The texture index
1503 *
1504 * If this texture instruction has a nir_tex_src_texture_offset source,
1505 * then the texture index is given by texture_index + texture_offset.
1506 */
1507 unsigned texture_index;
1508
1509 /** The size of the texture array or 0 if it's not an array */
1510 unsigned texture_array_size;
1511
1512 /** The sampler index
1513 *
1514 * The following operations do not require a sampler and, as such, this
1515 * field should be ignored:
1516 * - nir_texop_txf
1517 * - nir_texop_txf_ms
1518 * - nir_texop_txs
1519 * - nir_texop_lod
1520 * - nir_texop_query_levels
1521 * - nir_texop_texture_samples
1522 * - nir_texop_samples_identical
1523 *
1524 * If this texture instruction has a nir_tex_src_sampler_offset source,
1525 * then the sampler index is given by sampler_index + sampler_offset.
1526 */
1527 unsigned sampler_index;
1528 } nir_tex_instr;
1529
1530 static inline unsigned
1531 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1532 {
1533 switch (instr->op) {
1534 case nir_texop_txs: {
1535 unsigned ret;
1536 switch (instr->sampler_dim) {
1537 case GLSL_SAMPLER_DIM_1D:
1538 case GLSL_SAMPLER_DIM_BUF:
1539 ret = 1;
1540 break;
1541 case GLSL_SAMPLER_DIM_2D:
1542 case GLSL_SAMPLER_DIM_CUBE:
1543 case GLSL_SAMPLER_DIM_MS:
1544 case GLSL_SAMPLER_DIM_RECT:
1545 case GLSL_SAMPLER_DIM_EXTERNAL:
1546 case GLSL_SAMPLER_DIM_SUBPASS:
1547 ret = 2;
1548 break;
1549 case GLSL_SAMPLER_DIM_3D:
1550 ret = 3;
1551 break;
1552 default:
1553 unreachable("not reached");
1554 }
1555 if (instr->is_array)
1556 ret++;
1557 return ret;
1558 }
1559
1560 case nir_texop_lod:
1561 return 2;
1562
1563 case nir_texop_texture_samples:
1564 case nir_texop_query_levels:
1565 case nir_texop_samples_identical:
1566 return 1;
1567
1568 default:
1569 if (instr->is_shadow && instr->is_new_style_shadow)
1570 return 1;
1571
1572 return 4;
1573 }
1574 }
1575
1576 /* Returns true if this texture operation queries something about the texture
1577 * rather than actually sampling it.
1578 */
1579 static inline bool
1580 nir_tex_instr_is_query(const nir_tex_instr *instr)
1581 {
1582 switch (instr->op) {
1583 case nir_texop_txs:
1584 case nir_texop_lod:
1585 case nir_texop_texture_samples:
1586 case nir_texop_query_levels:
1587 case nir_texop_txf_ms_mcs:
1588 return true;
1589 case nir_texop_tex:
1590 case nir_texop_txb:
1591 case nir_texop_txl:
1592 case nir_texop_txd:
1593 case nir_texop_txf:
1594 case nir_texop_txf_ms:
1595 case nir_texop_tg4:
1596 return false;
1597 default:
1598 unreachable("Invalid texture opcode");
1599 }
1600 }
1601
1602 static inline bool
1603 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1604 {
1605 switch (instr->op) {
1606 case nir_op_flt:
1607 case nir_op_fge:
1608 case nir_op_feq:
1609 case nir_op_fne:
1610 case nir_op_ilt:
1611 case nir_op_ult:
1612 case nir_op_ige:
1613 case nir_op_uge:
1614 case nir_op_ieq:
1615 case nir_op_ine:
1616 case nir_op_i2b1:
1617 case nir_op_f2b1:
1618 case nir_op_inot:
1619 case nir_op_fnot:
1620 return true;
1621 default:
1622 return false;
1623 }
1624 }
1625
1626 static inline nir_alu_type
1627 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1628 {
1629 switch (instr->src[src].src_type) {
1630 case nir_tex_src_coord:
1631 switch (instr->op) {
1632 case nir_texop_txf:
1633 case nir_texop_txf_ms:
1634 case nir_texop_txf_ms_mcs:
1635 case nir_texop_samples_identical:
1636 return nir_type_int;
1637
1638 default:
1639 return nir_type_float;
1640 }
1641
1642 case nir_tex_src_lod:
1643 switch (instr->op) {
1644 case nir_texop_txs:
1645 case nir_texop_txf:
1646 return nir_type_int;
1647
1648 default:
1649 return nir_type_float;
1650 }
1651
1652 case nir_tex_src_projector:
1653 case nir_tex_src_comparator:
1654 case nir_tex_src_bias:
1655 case nir_tex_src_ddx:
1656 case nir_tex_src_ddy:
1657 return nir_type_float;
1658
1659 case nir_tex_src_offset:
1660 case nir_tex_src_ms_index:
1661 case nir_tex_src_texture_offset:
1662 case nir_tex_src_sampler_offset:
1663 return nir_type_int;
1664
1665 default:
1666 unreachable("Invalid texture source type");
1667 }
1668 }
1669
1670 static inline unsigned
1671 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1672 {
1673 if (instr->src[src].src_type == nir_tex_src_coord)
1674 return instr->coord_components;
1675
1676 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1677 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1678 return 4;
1679
1680 if (instr->src[src].src_type == nir_tex_src_ddx ||
1681 instr->src[src].src_type == nir_tex_src_ddy) {
1682 if (instr->is_array)
1683 return instr->coord_components - 1;
1684 else
1685 return instr->coord_components;
1686 }
1687
1688 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1689 * the offset, since a cube maps to a single face.
1690 */
1691 if (instr->src[src].src_type == nir_tex_src_offset) {
1692 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1693 return 2;
1694 else if (instr->is_array)
1695 return instr->coord_components - 1;
1696 else
1697 return instr->coord_components;
1698 }
1699
1700 return 1;
1701 }
1702
1703 static inline int
1704 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1705 {
1706 for (unsigned i = 0; i < instr->num_srcs; i++)
1707 if (instr->src[i].src_type == type)
1708 return (int) i;
1709
1710 return -1;
1711 }
1712
1713 void nir_tex_instr_add_src(nir_tex_instr *tex,
1714 nir_tex_src_type src_type,
1715 nir_src src);
1716
1717 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1718
1719 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1720
1721 typedef struct {
1722 nir_instr instr;
1723
1724 nir_const_value value;
1725
1726 nir_ssa_def def;
1727 } nir_load_const_instr;
1728
1729 typedef enum {
1730 nir_jump_return,
1731 nir_jump_break,
1732 nir_jump_continue,
1733 } nir_jump_type;
1734
1735 typedef struct {
1736 nir_instr instr;
1737 nir_jump_type type;
1738 } nir_jump_instr;
1739
1740 /* creates a new SSA variable in an undefined state */
1741
1742 typedef struct {
1743 nir_instr instr;
1744 nir_ssa_def def;
1745 } nir_ssa_undef_instr;
1746
1747 typedef struct {
1748 struct exec_node node;
1749
1750 /* The predecessor block corresponding to this source */
1751 struct nir_block *pred;
1752
1753 nir_src src;
1754 } nir_phi_src;
1755
1756 #define nir_foreach_phi_src(phi_src, phi) \
1757 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1758 #define nir_foreach_phi_src_safe(phi_src, phi) \
1759 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1760
1761 typedef struct {
1762 nir_instr instr;
1763
1764 struct exec_list srcs; /** < list of nir_phi_src */
1765
1766 nir_dest dest;
1767 } nir_phi_instr;
1768
1769 typedef struct {
1770 struct exec_node node;
1771 nir_src src;
1772 nir_dest dest;
1773 } nir_parallel_copy_entry;
1774
1775 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1776 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1777
1778 typedef struct {
1779 nir_instr instr;
1780
1781 /* A list of nir_parallel_copy_entrys. The sources of all of the
1782 * entries are copied to the corresponding destinations "in parallel".
1783 * In other words, if we have two entries: a -> b and b -> a, the values
1784 * get swapped.
1785 */
1786 struct exec_list entries;
1787 } nir_parallel_copy_instr;
1788
1789 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1790 type, nir_instr_type_alu)
1791 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1792 type, nir_instr_type_call)
1793 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1794 type, nir_instr_type_jump)
1795 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1796 type, nir_instr_type_tex)
1797 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1798 type, nir_instr_type_intrinsic)
1799 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1800 type, nir_instr_type_load_const)
1801 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1802 type, nir_instr_type_ssa_undef)
1803 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1804 type, nir_instr_type_phi)
1805 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1806 nir_parallel_copy_instr, instr,
1807 type, nir_instr_type_parallel_copy)
1808
1809 /*
1810 * Control flow
1811 *
1812 * Control flow consists of a tree of control flow nodes, which include
1813 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1814 * instructions that always run start-to-finish. Each basic block also keeps
1815 * track of its successors (blocks which may run immediately after the current
1816 * block) and predecessors (blocks which could have run immediately before the
1817 * current block). Each function also has a start block and an end block which
1818 * all return statements point to (which is always empty). Together, all the
1819 * blocks with their predecessors and successors make up the control flow
1820 * graph (CFG) of the function. There are helpers that modify the tree of
1821 * control flow nodes while modifying the CFG appropriately; these should be
1822 * used instead of modifying the tree directly.
1823 */
1824
1825 typedef enum {
1826 nir_cf_node_block,
1827 nir_cf_node_if,
1828 nir_cf_node_loop,
1829 nir_cf_node_function
1830 } nir_cf_node_type;
1831
1832 typedef struct nir_cf_node {
1833 struct exec_node node;
1834 nir_cf_node_type type;
1835 struct nir_cf_node *parent;
1836 } nir_cf_node;
1837
1838 typedef struct nir_block {
1839 nir_cf_node cf_node;
1840
1841 struct exec_list instr_list; /** < list of nir_instr */
1842
1843 /** generic block index; generated by nir_index_blocks */
1844 unsigned index;
1845
1846 /*
1847 * Each block can only have up to 2 successors, so we put them in a simple
1848 * array - no need for anything more complicated.
1849 */
1850 struct nir_block *successors[2];
1851
1852 /* Set of nir_block predecessors in the CFG */
1853 struct set *predecessors;
1854
1855 /*
1856 * this node's immediate dominator in the dominance tree - set to NULL for
1857 * the start block.
1858 */
1859 struct nir_block *imm_dom;
1860
1861 /* This node's children in the dominance tree */
1862 unsigned num_dom_children;
1863 struct nir_block **dom_children;
1864
1865 /* Set of nir_blocks on the dominance frontier of this block */
1866 struct set *dom_frontier;
1867
1868 /*
1869 * These two indices have the property that dom_{pre,post}_index for each
1870 * child of this block in the dominance tree will always be between
1871 * dom_pre_index and dom_post_index for this block, which makes testing if
1872 * a given block is dominated by another block an O(1) operation.
1873 */
1874 unsigned dom_pre_index, dom_post_index;
1875
1876 /* live in and out for this block; used for liveness analysis */
1877 BITSET_WORD *live_in;
1878 BITSET_WORD *live_out;
1879 } nir_block;
1880
1881 static inline nir_instr *
1882 nir_block_first_instr(nir_block *block)
1883 {
1884 struct exec_node *head = exec_list_get_head(&block->instr_list);
1885 return exec_node_data(nir_instr, head, node);
1886 }
1887
1888 static inline nir_instr *
1889 nir_block_last_instr(nir_block *block)
1890 {
1891 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1892 return exec_node_data(nir_instr, tail, node);
1893 }
1894
1895 static inline bool
1896 nir_block_ends_in_jump(nir_block *block)
1897 {
1898 return !exec_list_is_empty(&block->instr_list) &&
1899 nir_block_last_instr(block)->type == nir_instr_type_jump;
1900 }
1901
1902 #define nir_foreach_instr(instr, block) \
1903 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1904 #define nir_foreach_instr_reverse(instr, block) \
1905 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1906 #define nir_foreach_instr_safe(instr, block) \
1907 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1908 #define nir_foreach_instr_reverse_safe(instr, block) \
1909 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1910
1911 typedef enum {
1912 nir_selection_control_none = 0x0,
1913 nir_selection_control_flatten = 0x1,
1914 nir_selection_control_dont_flatten = 0x2,
1915 } nir_selection_control;
1916
1917 typedef struct nir_if {
1918 nir_cf_node cf_node;
1919 nir_src condition;
1920 nir_selection_control control;
1921
1922 struct exec_list then_list; /** < list of nir_cf_node */
1923 struct exec_list else_list; /** < list of nir_cf_node */
1924 } nir_if;
1925
1926 typedef struct {
1927 nir_if *nif;
1928
1929 /** Instruction that generates nif::condition. */
1930 nir_instr *conditional_instr;
1931
1932 /** Block within ::nif that has the break instruction. */
1933 nir_block *break_block;
1934
1935 /** Last block for the then- or else-path that does not contain the break. */
1936 nir_block *continue_from_block;
1937
1938 /** True when ::break_block is in the else-path of ::nif. */
1939 bool continue_from_then;
1940 bool induction_rhs;
1941
1942 /* This is true if the terminators exact trip count is unknown. For
1943 * example:
1944 *
1945 * for (int i = 0; i < imin(x, 4); i++)
1946 * ...
1947 *
1948 * Here loop analysis would have set a max_trip_count of 4 however we dont
1949 * know for sure that this is the exact trip count.
1950 */
1951 bool exact_trip_count_unknown;
1952
1953 struct list_head loop_terminator_link;
1954 } nir_loop_terminator;
1955
1956 typedef struct {
1957 /* Estimated cost (in number of instructions) of the loop */
1958 unsigned instr_cost;
1959
1960 /* Guessed trip count based on array indexing */
1961 unsigned guessed_trip_count;
1962
1963 /* Maximum number of times the loop is run (if known) */
1964 unsigned max_trip_count;
1965
1966 /* Do we know the exact number of times the loop will be run */
1967 bool exact_trip_count_known;
1968
1969 /* Unroll the loop regardless of its size */
1970 bool force_unroll;
1971
1972 /* Does the loop contain complex loop terminators, continues or other
1973 * complex behaviours? If this is true we can't rely on
1974 * loop_terminator_list to be complete or accurate.
1975 */
1976 bool complex_loop;
1977
1978 nir_loop_terminator *limiting_terminator;
1979
1980 /* A list of loop_terminators terminating this loop. */
1981 struct list_head loop_terminator_list;
1982 } nir_loop_info;
1983
1984 typedef enum {
1985 nir_loop_control_none = 0x0,
1986 nir_loop_control_unroll = 0x1,
1987 nir_loop_control_dont_unroll = 0x2,
1988 } nir_loop_control;
1989
1990 typedef struct {
1991 nir_cf_node cf_node;
1992
1993 struct exec_list body; /** < list of nir_cf_node */
1994
1995 nir_loop_info *info;
1996 nir_loop_control control;
1997 bool partially_unrolled;
1998 } nir_loop;
1999
2000 /**
2001 * Various bits of metadata that can may be created or required by
2002 * optimization and analysis passes
2003 */
2004 typedef enum {
2005 nir_metadata_none = 0x0,
2006 nir_metadata_block_index = 0x1,
2007 nir_metadata_dominance = 0x2,
2008 nir_metadata_live_ssa_defs = 0x4,
2009 nir_metadata_not_properly_reset = 0x8,
2010 nir_metadata_loop_analysis = 0x10,
2011 } nir_metadata;
2012
2013 typedef struct {
2014 nir_cf_node cf_node;
2015
2016 /** pointer to the function of which this is an implementation */
2017 struct nir_function *function;
2018
2019 struct exec_list body; /** < list of nir_cf_node */
2020
2021 nir_block *end_block;
2022
2023 /** list for all local variables in the function */
2024 struct exec_list locals;
2025
2026 /** list of local registers in the function */
2027 struct exec_list registers;
2028
2029 /** next available local register index */
2030 unsigned reg_alloc;
2031
2032 /** next available SSA value index */
2033 unsigned ssa_alloc;
2034
2035 /* total number of basic blocks, only valid when block_index_dirty = false */
2036 unsigned num_blocks;
2037
2038 nir_metadata valid_metadata;
2039 } nir_function_impl;
2040
2041 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2042 nir_start_block(nir_function_impl *impl)
2043 {
2044 return (nir_block *) impl->body.head_sentinel.next;
2045 }
2046
2047 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2048 nir_impl_last_block(nir_function_impl *impl)
2049 {
2050 return (nir_block *) impl->body.tail_sentinel.prev;
2051 }
2052
2053 static inline nir_cf_node *
2054 nir_cf_node_next(nir_cf_node *node)
2055 {
2056 struct exec_node *next = exec_node_get_next(&node->node);
2057 if (exec_node_is_tail_sentinel(next))
2058 return NULL;
2059 else
2060 return exec_node_data(nir_cf_node, next, node);
2061 }
2062
2063 static inline nir_cf_node *
2064 nir_cf_node_prev(nir_cf_node *node)
2065 {
2066 struct exec_node *prev = exec_node_get_prev(&node->node);
2067 if (exec_node_is_head_sentinel(prev))
2068 return NULL;
2069 else
2070 return exec_node_data(nir_cf_node, prev, node);
2071 }
2072
2073 static inline bool
2074 nir_cf_node_is_first(const nir_cf_node *node)
2075 {
2076 return exec_node_is_head_sentinel(node->node.prev);
2077 }
2078
2079 static inline bool
2080 nir_cf_node_is_last(const nir_cf_node *node)
2081 {
2082 return exec_node_is_tail_sentinel(node->node.next);
2083 }
2084
2085 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2086 type, nir_cf_node_block)
2087 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2088 type, nir_cf_node_if)
2089 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2090 type, nir_cf_node_loop)
2091 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2092 nir_function_impl, cf_node, type, nir_cf_node_function)
2093
2094 static inline nir_block *
2095 nir_if_first_then_block(nir_if *if_stmt)
2096 {
2097 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2098 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2099 }
2100
2101 static inline nir_block *
2102 nir_if_last_then_block(nir_if *if_stmt)
2103 {
2104 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2105 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2106 }
2107
2108 static inline nir_block *
2109 nir_if_first_else_block(nir_if *if_stmt)
2110 {
2111 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2112 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2113 }
2114
2115 static inline nir_block *
2116 nir_if_last_else_block(nir_if *if_stmt)
2117 {
2118 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2119 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2120 }
2121
2122 static inline nir_block *
2123 nir_loop_first_block(nir_loop *loop)
2124 {
2125 struct exec_node *head = exec_list_get_head(&loop->body);
2126 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2127 }
2128
2129 static inline nir_block *
2130 nir_loop_last_block(nir_loop *loop)
2131 {
2132 struct exec_node *tail = exec_list_get_tail(&loop->body);
2133 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2134 }
2135
2136 typedef struct {
2137 uint8_t num_components;
2138 uint8_t bit_size;
2139 } nir_parameter;
2140
2141 typedef struct nir_function {
2142 struct exec_node node;
2143
2144 const char *name;
2145 struct nir_shader *shader;
2146
2147 unsigned num_params;
2148 nir_parameter *params;
2149
2150 /** The implementation of this function.
2151 *
2152 * If the function is only declared and not implemented, this is NULL.
2153 */
2154 nir_function_impl *impl;
2155
2156 bool is_entrypoint;
2157 } nir_function;
2158
2159 typedef enum {
2160 nir_lower_imul64 = (1 << 0),
2161 nir_lower_isign64 = (1 << 1),
2162 /** Lower all int64 modulus and division opcodes */
2163 nir_lower_divmod64 = (1 << 2),
2164 /** Lower all 64-bit umul_high and imul_high opcodes */
2165 nir_lower_imul_high64 = (1 << 3),
2166 nir_lower_mov64 = (1 << 4),
2167 nir_lower_icmp64 = (1 << 5),
2168 nir_lower_iadd64 = (1 << 6),
2169 nir_lower_iabs64 = (1 << 7),
2170 nir_lower_ineg64 = (1 << 8),
2171 nir_lower_logic64 = (1 << 9),
2172 nir_lower_minmax64 = (1 << 10),
2173 nir_lower_shift64 = (1 << 11),
2174 nir_lower_imul_2x32_64 = (1 << 12),
2175 } nir_lower_int64_options;
2176
2177 typedef enum {
2178 nir_lower_drcp = (1 << 0),
2179 nir_lower_dsqrt = (1 << 1),
2180 nir_lower_drsq = (1 << 2),
2181 nir_lower_dtrunc = (1 << 3),
2182 nir_lower_dfloor = (1 << 4),
2183 nir_lower_dceil = (1 << 5),
2184 nir_lower_dfract = (1 << 6),
2185 nir_lower_dround_even = (1 << 7),
2186 nir_lower_dmod = (1 << 8),
2187 nir_lower_fp64_full_software = (1 << 9),
2188 } nir_lower_doubles_options;
2189
2190 typedef struct nir_shader_compiler_options {
2191 bool lower_fdiv;
2192 bool lower_ffma;
2193 bool fuse_ffma;
2194 bool lower_flrp16;
2195 bool lower_flrp32;
2196 /** Lowers flrp when it does not support doubles */
2197 bool lower_flrp64;
2198 bool lower_fpow;
2199 bool lower_fsat;
2200 bool lower_fsqrt;
2201 bool lower_fmod16;
2202 bool lower_fmod32;
2203 bool lower_fmod64;
2204 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2205 bool lower_bitfield_extract;
2206 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2207 bool lower_bitfield_extract_to_shifts;
2208 /** Lowers bitfield_insert to bfi/bfm */
2209 bool lower_bitfield_insert;
2210 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2211 bool lower_bitfield_insert_to_shifts;
2212 /** Lowers bitfield_reverse to shifts. */
2213 bool lower_bitfield_reverse;
2214 /** Lowers bit_count to shifts. */
2215 bool lower_bit_count;
2216 /** Lowers bfm to shifts and subtracts. */
2217 bool lower_bfm;
2218 /** Lowers ifind_msb to compare and ufind_msb */
2219 bool lower_ifind_msb;
2220 /** Lowers find_lsb to ufind_msb and logic ops */
2221 bool lower_find_lsb;
2222 bool lower_uadd_carry;
2223 bool lower_usub_borrow;
2224 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2225 bool lower_mul_high;
2226 /** lowers fneg and ineg to fsub and isub. */
2227 bool lower_negate;
2228 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2229 bool lower_sub;
2230
2231 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2232 bool lower_scmp;
2233
2234 /** enables rules to lower idiv by power-of-two: */
2235 bool lower_idiv;
2236
2237 /** enables rules to lower isign to imin+imax */
2238 bool lower_isign;
2239
2240 /* Does the native fdot instruction replicate its result for four
2241 * components? If so, then opt_algebraic_late will turn all fdotN
2242 * instructions into fdot_replicatedN instructions.
2243 */
2244 bool fdot_replicates;
2245
2246 /** lowers ffloor to fsub+ffract: */
2247 bool lower_ffloor;
2248
2249 /** lowers ffract to fsub+ffloor: */
2250 bool lower_ffract;
2251
2252 /** lowers fceil to fneg+ffloor+fneg: */
2253 bool lower_fceil;
2254
2255 bool lower_ldexp;
2256
2257 bool lower_pack_half_2x16;
2258 bool lower_pack_unorm_2x16;
2259 bool lower_pack_snorm_2x16;
2260 bool lower_pack_unorm_4x8;
2261 bool lower_pack_snorm_4x8;
2262 bool lower_unpack_half_2x16;
2263 bool lower_unpack_unorm_2x16;
2264 bool lower_unpack_snorm_2x16;
2265 bool lower_unpack_unorm_4x8;
2266 bool lower_unpack_snorm_4x8;
2267
2268 bool lower_extract_byte;
2269 bool lower_extract_word;
2270
2271 bool lower_all_io_to_temps;
2272
2273 /**
2274 * Does the driver support real 32-bit integers? (Otherwise, integers
2275 * are simulated by floats.)
2276 */
2277 bool native_integers;
2278
2279 /* Indicates that the driver only has zero-based vertex id */
2280 bool vertex_id_zero_based;
2281
2282 /**
2283 * If enabled, gl_BaseVertex will be lowered as:
2284 * is_indexed_draw (~0/0) & firstvertex
2285 */
2286 bool lower_base_vertex;
2287
2288 /**
2289 * If enabled, gl_HelperInvocation will be lowered as:
2290 *
2291 * !((1 << sample_id) & sample_mask_in))
2292 *
2293 * This depends on some possibly hw implementation details, which may
2294 * not be true for all hw. In particular that the FS is only executed
2295 * for covered samples or for helper invocations. So, do not blindly
2296 * enable this option.
2297 *
2298 * Note: See also issue #22 in ARB_shader_image_load_store
2299 */
2300 bool lower_helper_invocation;
2301
2302 bool lower_cs_local_index_from_id;
2303 bool lower_cs_local_id_from_index;
2304
2305 bool lower_device_index_to_zero;
2306
2307 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2308 bool lower_wpos_pntc;
2309
2310 bool lower_hadd;
2311 bool lower_add_sat;
2312
2313 /**
2314 * Should nir_lower_io() create load_interpolated_input intrinsics?
2315 *
2316 * If not, it generates regular load_input intrinsics and interpolation
2317 * information must be inferred from the list of input nir_variables.
2318 */
2319 bool use_interpolated_input_intrinsics;
2320
2321 /* Lowers when 32x32->64 bit multiplication is not supported */
2322 bool lower_mul_2x32_64;
2323
2324 unsigned max_unroll_iterations;
2325
2326 nir_lower_int64_options lower_int64_options;
2327 nir_lower_doubles_options lower_doubles_options;
2328 } nir_shader_compiler_options;
2329
2330 typedef struct nir_shader {
2331 /** list of uniforms (nir_variable) */
2332 struct exec_list uniforms;
2333
2334 /** list of inputs (nir_variable) */
2335 struct exec_list inputs;
2336
2337 /** list of outputs (nir_variable) */
2338 struct exec_list outputs;
2339
2340 /** list of shared compute variables (nir_variable) */
2341 struct exec_list shared;
2342
2343 /** Set of driver-specific options for the shader.
2344 *
2345 * The memory for the options is expected to be kept in a single static
2346 * copy by the driver.
2347 */
2348 const struct nir_shader_compiler_options *options;
2349
2350 /** Various bits of compile-time information about a given shader */
2351 struct shader_info info;
2352
2353 /** list of global variables in the shader (nir_variable) */
2354 struct exec_list globals;
2355
2356 /** list of system value variables in the shader (nir_variable) */
2357 struct exec_list system_values;
2358
2359 struct exec_list functions; /** < list of nir_function */
2360
2361 /** list of global register in the shader */
2362 struct exec_list registers;
2363
2364 /** next available global register index */
2365 unsigned reg_alloc;
2366
2367 /**
2368 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2369 * access plus one
2370 */
2371 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2372
2373 /** Constant data associated with this shader.
2374 *
2375 * Constant data is loaded through load_constant intrinsics. See also
2376 * nir_opt_large_constants.
2377 */
2378 void *constant_data;
2379 unsigned constant_data_size;
2380 } nir_shader;
2381
2382 #define nir_foreach_function(func, shader) \
2383 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2384
2385 static inline nir_function_impl *
2386 nir_shader_get_entrypoint(nir_shader *shader)
2387 {
2388 nir_function *func = NULL;
2389
2390 nir_foreach_function(function, shader) {
2391 assert(func == NULL);
2392 if (function->is_entrypoint) {
2393 func = function;
2394 #ifndef NDEBUG
2395 break;
2396 #endif
2397 }
2398 }
2399
2400 if (!func)
2401 return NULL;
2402
2403 assert(func->num_params == 0);
2404 assert(func->impl);
2405 return func->impl;
2406 }
2407
2408 nir_shader *nir_shader_create(void *mem_ctx,
2409 gl_shader_stage stage,
2410 const nir_shader_compiler_options *options,
2411 shader_info *si);
2412
2413 /** creates a register, including assigning it an index and adding it to the list */
2414 nir_register *nir_global_reg_create(nir_shader *shader);
2415
2416 nir_register *nir_local_reg_create(nir_function_impl *impl);
2417
2418 void nir_reg_remove(nir_register *reg);
2419
2420 /** Adds a variable to the appropriate list in nir_shader */
2421 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2422
2423 static inline void
2424 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2425 {
2426 assert(var->data.mode == nir_var_function_temp);
2427 exec_list_push_tail(&impl->locals, &var->node);
2428 }
2429
2430 /** creates a variable, sets a few defaults, and adds it to the list */
2431 nir_variable *nir_variable_create(nir_shader *shader,
2432 nir_variable_mode mode,
2433 const struct glsl_type *type,
2434 const char *name);
2435 /** creates a local variable and adds it to the list */
2436 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2437 const struct glsl_type *type,
2438 const char *name);
2439
2440 /** creates a function and adds it to the shader's list of functions */
2441 nir_function *nir_function_create(nir_shader *shader, const char *name);
2442
2443 nir_function_impl *nir_function_impl_create(nir_function *func);
2444 /** creates a function_impl that isn't tied to any particular function */
2445 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2446
2447 nir_block *nir_block_create(nir_shader *shader);
2448 nir_if *nir_if_create(nir_shader *shader);
2449 nir_loop *nir_loop_create(nir_shader *shader);
2450
2451 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2452
2453 /** requests that the given pieces of metadata be generated */
2454 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2455 /** dirties all but the preserved metadata */
2456 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2457
2458 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2459 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2460
2461 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2462 nir_deref_type deref_type);
2463
2464 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2465
2466 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2467 unsigned num_components,
2468 unsigned bit_size);
2469
2470 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2471 nir_intrinsic_op op);
2472
2473 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2474 nir_function *callee);
2475
2476 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2477
2478 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2479
2480 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2481
2482 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2483 unsigned num_components,
2484 unsigned bit_size);
2485
2486 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2487
2488 /**
2489 * NIR Cursors and Instruction Insertion API
2490 * @{
2491 *
2492 * A tiny struct representing a point to insert/extract instructions or
2493 * control flow nodes. Helps reduce the combinatorial explosion of possible
2494 * points to insert/extract.
2495 *
2496 * \sa nir_control_flow.h
2497 */
2498 typedef enum {
2499 nir_cursor_before_block,
2500 nir_cursor_after_block,
2501 nir_cursor_before_instr,
2502 nir_cursor_after_instr,
2503 } nir_cursor_option;
2504
2505 typedef struct {
2506 nir_cursor_option option;
2507 union {
2508 nir_block *block;
2509 nir_instr *instr;
2510 };
2511 } nir_cursor;
2512
2513 static inline nir_block *
2514 nir_cursor_current_block(nir_cursor cursor)
2515 {
2516 if (cursor.option == nir_cursor_before_instr ||
2517 cursor.option == nir_cursor_after_instr) {
2518 return cursor.instr->block;
2519 } else {
2520 return cursor.block;
2521 }
2522 }
2523
2524 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2525
2526 static inline nir_cursor
2527 nir_before_block(nir_block *block)
2528 {
2529 nir_cursor cursor;
2530 cursor.option = nir_cursor_before_block;
2531 cursor.block = block;
2532 return cursor;
2533 }
2534
2535 static inline nir_cursor
2536 nir_after_block(nir_block *block)
2537 {
2538 nir_cursor cursor;
2539 cursor.option = nir_cursor_after_block;
2540 cursor.block = block;
2541 return cursor;
2542 }
2543
2544 static inline nir_cursor
2545 nir_before_instr(nir_instr *instr)
2546 {
2547 nir_cursor cursor;
2548 cursor.option = nir_cursor_before_instr;
2549 cursor.instr = instr;
2550 return cursor;
2551 }
2552
2553 static inline nir_cursor
2554 nir_after_instr(nir_instr *instr)
2555 {
2556 nir_cursor cursor;
2557 cursor.option = nir_cursor_after_instr;
2558 cursor.instr = instr;
2559 return cursor;
2560 }
2561
2562 static inline nir_cursor
2563 nir_after_block_before_jump(nir_block *block)
2564 {
2565 nir_instr *last_instr = nir_block_last_instr(block);
2566 if (last_instr && last_instr->type == nir_instr_type_jump) {
2567 return nir_before_instr(last_instr);
2568 } else {
2569 return nir_after_block(block);
2570 }
2571 }
2572
2573 static inline nir_cursor
2574 nir_before_src(nir_src *src, bool is_if_condition)
2575 {
2576 if (is_if_condition) {
2577 nir_block *prev_block =
2578 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2579 assert(!nir_block_ends_in_jump(prev_block));
2580 return nir_after_block(prev_block);
2581 } else if (src->parent_instr->type == nir_instr_type_phi) {
2582 #ifndef NDEBUG
2583 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2584 bool found = false;
2585 nir_foreach_phi_src(phi_src, cond_phi) {
2586 if (phi_src->src.ssa == src->ssa) {
2587 found = true;
2588 break;
2589 }
2590 }
2591 assert(found);
2592 #endif
2593 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2594 * to have a more specific name.
2595 */
2596 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2597 return nir_after_block_before_jump(phi_src->pred);
2598 } else {
2599 return nir_before_instr(src->parent_instr);
2600 }
2601 }
2602
2603 static inline nir_cursor
2604 nir_before_cf_node(nir_cf_node *node)
2605 {
2606 if (node->type == nir_cf_node_block)
2607 return nir_before_block(nir_cf_node_as_block(node));
2608
2609 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2610 }
2611
2612 static inline nir_cursor
2613 nir_after_cf_node(nir_cf_node *node)
2614 {
2615 if (node->type == nir_cf_node_block)
2616 return nir_after_block(nir_cf_node_as_block(node));
2617
2618 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2619 }
2620
2621 static inline nir_cursor
2622 nir_after_phis(nir_block *block)
2623 {
2624 nir_foreach_instr(instr, block) {
2625 if (instr->type != nir_instr_type_phi)
2626 return nir_before_instr(instr);
2627 }
2628 return nir_after_block(block);
2629 }
2630
2631 static inline nir_cursor
2632 nir_after_cf_node_and_phis(nir_cf_node *node)
2633 {
2634 if (node->type == nir_cf_node_block)
2635 return nir_after_block(nir_cf_node_as_block(node));
2636
2637 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2638
2639 return nir_after_phis(block);
2640 }
2641
2642 static inline nir_cursor
2643 nir_before_cf_list(struct exec_list *cf_list)
2644 {
2645 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2646 exec_list_get_head(cf_list), node);
2647 return nir_before_cf_node(first_node);
2648 }
2649
2650 static inline nir_cursor
2651 nir_after_cf_list(struct exec_list *cf_list)
2652 {
2653 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2654 exec_list_get_tail(cf_list), node);
2655 return nir_after_cf_node(last_node);
2656 }
2657
2658 /**
2659 * Insert a NIR instruction at the given cursor.
2660 *
2661 * Note: This does not update the cursor.
2662 */
2663 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2664
2665 static inline void
2666 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2667 {
2668 nir_instr_insert(nir_before_instr(instr), before);
2669 }
2670
2671 static inline void
2672 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2673 {
2674 nir_instr_insert(nir_after_instr(instr), after);
2675 }
2676
2677 static inline void
2678 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2679 {
2680 nir_instr_insert(nir_before_block(block), before);
2681 }
2682
2683 static inline void
2684 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2685 {
2686 nir_instr_insert(nir_after_block(block), after);
2687 }
2688
2689 static inline void
2690 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2691 {
2692 nir_instr_insert(nir_before_cf_node(node), before);
2693 }
2694
2695 static inline void
2696 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2697 {
2698 nir_instr_insert(nir_after_cf_node(node), after);
2699 }
2700
2701 static inline void
2702 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2703 {
2704 nir_instr_insert(nir_before_cf_list(list), before);
2705 }
2706
2707 static inline void
2708 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2709 {
2710 nir_instr_insert(nir_after_cf_list(list), after);
2711 }
2712
2713 void nir_instr_remove_v(nir_instr *instr);
2714
2715 static inline nir_cursor
2716 nir_instr_remove(nir_instr *instr)
2717 {
2718 nir_cursor cursor;
2719 nir_instr *prev = nir_instr_prev(instr);
2720 if (prev) {
2721 cursor = nir_after_instr(prev);
2722 } else {
2723 cursor = nir_before_block(instr->block);
2724 }
2725 nir_instr_remove_v(instr);
2726 return cursor;
2727 }
2728
2729 /** @} */
2730
2731 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2732 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2733 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2734 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2735 void *state);
2736 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2737 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2738
2739 nir_const_value *nir_src_as_const_value(nir_src src);
2740
2741 static inline struct nir_instr *
2742 nir_src_instr(const struct nir_src *src)
2743 {
2744 return src->is_ssa ? src->ssa->parent_instr : NULL;
2745 }
2746
2747 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2748 static inline c_type * \
2749 nir_src_as_ ## name (struct nir_src *src) \
2750 { \
2751 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2752 ? cast_macro(src->ssa->parent_instr) : NULL; \
2753 } \
2754 static inline const c_type * \
2755 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2756 { \
2757 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2758 ? cast_macro(src->ssa->parent_instr) : NULL; \
2759 }
2760
2761 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2762
2763 bool nir_src_is_dynamically_uniform(nir_src src);
2764 bool nir_srcs_equal(nir_src src1, nir_src src2);
2765 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2766 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2767 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2768 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2769 nir_dest new_dest);
2770
2771 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2772 unsigned num_components, unsigned bit_size,
2773 const char *name);
2774 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2775 unsigned num_components, unsigned bit_size,
2776 const char *name);
2777 static inline void
2778 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2779 const struct glsl_type *type,
2780 const char *name)
2781 {
2782 assert(glsl_type_is_vector_or_scalar(type));
2783 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2784 glsl_get_bit_size(type), name);
2785 }
2786 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2787 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2788 nir_instr *after_me);
2789
2790 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2791
2792 /*
2793 * finds the next basic block in source-code order, returns NULL if there is
2794 * none
2795 */
2796
2797 nir_block *nir_block_cf_tree_next(nir_block *block);
2798
2799 /* Performs the opposite of nir_block_cf_tree_next() */
2800
2801 nir_block *nir_block_cf_tree_prev(nir_block *block);
2802
2803 /* Gets the first block in a CF node in source-code order */
2804
2805 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2806
2807 /* Gets the last block in a CF node in source-code order */
2808
2809 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2810
2811 /* Gets the next block after a CF node in source-code order */
2812
2813 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2814
2815 /* Macros for loops that visit blocks in source-code order */
2816
2817 #define nir_foreach_block(block, impl) \
2818 for (nir_block *block = nir_start_block(impl); block != NULL; \
2819 block = nir_block_cf_tree_next(block))
2820
2821 #define nir_foreach_block_safe(block, impl) \
2822 for (nir_block *block = nir_start_block(impl), \
2823 *next = nir_block_cf_tree_next(block); \
2824 block != NULL; \
2825 block = next, next = nir_block_cf_tree_next(block))
2826
2827 #define nir_foreach_block_reverse(block, impl) \
2828 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2829 block = nir_block_cf_tree_prev(block))
2830
2831 #define nir_foreach_block_reverse_safe(block, impl) \
2832 for (nir_block *block = nir_impl_last_block(impl), \
2833 *prev = nir_block_cf_tree_prev(block); \
2834 block != NULL; \
2835 block = prev, prev = nir_block_cf_tree_prev(block))
2836
2837 #define nir_foreach_block_in_cf_node(block, node) \
2838 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2839 block != nir_cf_node_cf_tree_next(node); \
2840 block = nir_block_cf_tree_next(block))
2841
2842 /* If the following CF node is an if, this function returns that if.
2843 * Otherwise, it returns NULL.
2844 */
2845 nir_if *nir_block_get_following_if(nir_block *block);
2846
2847 nir_loop *nir_block_get_following_loop(nir_block *block);
2848
2849 void nir_index_local_regs(nir_function_impl *impl);
2850 void nir_index_global_regs(nir_shader *shader);
2851 void nir_index_ssa_defs(nir_function_impl *impl);
2852 unsigned nir_index_instrs(nir_function_impl *impl);
2853
2854 void nir_index_blocks(nir_function_impl *impl);
2855
2856 void nir_print_shader(nir_shader *shader, FILE *fp);
2857 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2858 void nir_print_instr(const nir_instr *instr, FILE *fp);
2859 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2860
2861 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2862 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2863 const nir_function_impl *fi);
2864 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2865 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2866
2867 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2868
2869 #ifndef NDEBUG
2870 void nir_validate_shader(nir_shader *shader, const char *when);
2871 void nir_metadata_set_validation_flag(nir_shader *shader);
2872 void nir_metadata_check_validation_flag(nir_shader *shader);
2873
2874 static inline bool
2875 should_skip_nir(const char *name)
2876 {
2877 static const char *list = NULL;
2878 if (!list) {
2879 /* Comma separated list of names to skip. */
2880 list = getenv("NIR_SKIP");
2881 if (!list)
2882 list = "";
2883 }
2884
2885 if (!list[0])
2886 return false;
2887
2888 return comma_separated_list_contains(list, name);
2889 }
2890
2891 static inline bool
2892 should_clone_nir(void)
2893 {
2894 static int should_clone = -1;
2895 if (should_clone < 0)
2896 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2897
2898 return should_clone;
2899 }
2900
2901 static inline bool
2902 should_serialize_deserialize_nir(void)
2903 {
2904 static int test_serialize = -1;
2905 if (test_serialize < 0)
2906 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2907
2908 return test_serialize;
2909 }
2910
2911 static inline bool
2912 should_print_nir(void)
2913 {
2914 static int should_print = -1;
2915 if (should_print < 0)
2916 should_print = env_var_as_boolean("NIR_PRINT", false);
2917
2918 return should_print;
2919 }
2920 #else
2921 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2922 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2923 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2924 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2925 static inline bool should_clone_nir(void) { return false; }
2926 static inline bool should_serialize_deserialize_nir(void) { return false; }
2927 static inline bool should_print_nir(void) { return false; }
2928 #endif /* NDEBUG */
2929
2930 #define _PASS(pass, nir, do_pass) do { \
2931 if (should_skip_nir(#pass)) { \
2932 printf("skipping %s\n", #pass); \
2933 break; \
2934 } \
2935 do_pass \
2936 nir_validate_shader(nir, "after " #pass); \
2937 if (should_clone_nir()) { \
2938 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2939 ralloc_free(nir); \
2940 nir = clone; \
2941 } \
2942 if (should_serialize_deserialize_nir()) { \
2943 void *mem_ctx = ralloc_parent(nir); \
2944 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2945 } \
2946 } while (0)
2947
2948 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2949 nir_metadata_set_validation_flag(nir); \
2950 if (should_print_nir()) \
2951 printf("%s\n", #pass); \
2952 if (pass(nir, ##__VA_ARGS__)) { \
2953 progress = true; \
2954 if (should_print_nir()) \
2955 nir_print_shader(nir, stdout); \
2956 nir_metadata_check_validation_flag(nir); \
2957 } \
2958 )
2959
2960 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2961 if (should_print_nir()) \
2962 printf("%s\n", #pass); \
2963 pass(nir, ##__VA_ARGS__); \
2964 if (should_print_nir()) \
2965 nir_print_shader(nir, stdout); \
2966 )
2967
2968 #define NIR_SKIP(name) should_skip_nir(#name)
2969
2970 void nir_calc_dominance_impl(nir_function_impl *impl);
2971 void nir_calc_dominance(nir_shader *shader);
2972
2973 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2974 bool nir_block_dominates(nir_block *parent, nir_block *child);
2975
2976 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2977 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2978
2979 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2980 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2981
2982 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2983 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2984
2985 int nir_gs_count_vertices(const nir_shader *shader);
2986
2987 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2988 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2989 bool nir_split_var_copies(nir_shader *shader);
2990 bool nir_split_per_member_structs(nir_shader *shader);
2991 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2992
2993 bool nir_lower_returns_impl(nir_function_impl *impl);
2994 bool nir_lower_returns(nir_shader *shader);
2995
2996 void nir_inline_function_impl(struct nir_builder *b,
2997 const nir_function_impl *impl,
2998 nir_ssa_def **params);
2999 bool nir_inline_functions(nir_shader *shader);
3000
3001 bool nir_propagate_invariant(nir_shader *shader);
3002
3003 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3004 void nir_lower_deref_copy_instr(struct nir_builder *b,
3005 nir_intrinsic_instr *copy);
3006 bool nir_lower_var_copies(nir_shader *shader);
3007
3008 void nir_fixup_deref_modes(nir_shader *shader);
3009
3010 bool nir_lower_global_vars_to_local(nir_shader *shader);
3011
3012 typedef enum {
3013 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3014 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3015 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3016 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3017 } nir_lower_array_deref_of_vec_options;
3018
3019 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3020 nir_lower_array_deref_of_vec_options options);
3021
3022 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3023
3024 bool nir_lower_locals_to_regs(nir_shader *shader);
3025
3026 void nir_lower_io_to_temporaries(nir_shader *shader,
3027 nir_function_impl *entrypoint,
3028 bool outputs, bool inputs);
3029
3030 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3031
3032 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3033 int (*type_size)(const struct glsl_type *));
3034
3035 /* Some helpers to do very simple linking */
3036 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3037 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3038 uint64_t *used_by_other_stage,
3039 uint64_t *used_by_other_stage_patches);
3040 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3041 bool default_to_smooth_interp);
3042 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3043 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3044
3045 typedef enum {
3046 /* If set, this forces all non-flat fragment shader inputs to be
3047 * interpolated as if with the "sample" qualifier. This requires
3048 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3049 */
3050 nir_lower_io_force_sample_interpolation = (1 << 1),
3051 } nir_lower_io_options;
3052 bool nir_lower_io(nir_shader *shader,
3053 nir_variable_mode modes,
3054 int (*type_size)(const struct glsl_type *),
3055 nir_lower_io_options);
3056
3057 typedef enum {
3058 /**
3059 * An address format which is a simple 32-bit global GPU address.
3060 */
3061 nir_address_format_32bit_global,
3062
3063 /**
3064 * An address format which is a simple 64-bit global GPU address.
3065 */
3066 nir_address_format_64bit_global,
3067
3068 /**
3069 * An address format which is a bounds-checked 64-bit global GPU address.
3070 *
3071 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3072 * address stored with the low bits in .x and high bits in .y, .z is a
3073 * size, and .w is an offset. When the final I/O operation is lowered, .w
3074 * is checked against .z and the operation is predicated on the result.
3075 */
3076 nir_address_format_64bit_bounded_global,
3077
3078 /**
3079 * An address format which is comprised of a vec2 where the first
3080 * component is a buffer index and the second is an offset.
3081 */
3082 nir_address_format_32bit_index_offset,
3083 } nir_address_format;
3084 bool nir_lower_explicit_io(nir_shader *shader,
3085 nir_variable_mode modes,
3086 nir_address_format);
3087
3088 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3089 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3090
3091 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3092
3093 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3094 bool nir_lower_regs_to_ssa(nir_shader *shader);
3095 bool nir_lower_vars_to_ssa(nir_shader *shader);
3096
3097 bool nir_remove_dead_derefs(nir_shader *shader);
3098 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3099 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3100 bool nir_lower_constant_initializers(nir_shader *shader,
3101 nir_variable_mode modes);
3102
3103 bool nir_move_load_const(nir_shader *shader);
3104 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3105 bool nir_lower_vec_to_movs(nir_shader *shader);
3106 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3107 bool alpha_to_one);
3108 bool nir_lower_alu(nir_shader *shader);
3109 bool nir_lower_alu_to_scalar(nir_shader *shader);
3110 bool nir_lower_bool_to_float(nir_shader *shader);
3111 bool nir_lower_bool_to_int32(nir_shader *shader);
3112 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3113 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3114 bool nir_lower_phis_to_scalar(nir_shader *shader);
3115 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3116 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3117 bool outputs_only);
3118 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3119 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3120 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3121
3122 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3123
3124 typedef struct nir_lower_subgroups_options {
3125 uint8_t subgroup_size;
3126 uint8_t ballot_bit_size;
3127 bool lower_to_scalar:1;
3128 bool lower_vote_trivial:1;
3129 bool lower_vote_eq_to_ballot:1;
3130 bool lower_subgroup_masks:1;
3131 bool lower_shuffle:1;
3132 bool lower_shuffle_to_32bit:1;
3133 bool lower_quad:1;
3134 } nir_lower_subgroups_options;
3135
3136 bool nir_lower_subgroups(nir_shader *shader,
3137 const nir_lower_subgroups_options *options);
3138
3139 bool nir_lower_system_values(nir_shader *shader);
3140
3141 enum PACKED nir_lower_tex_packing {
3142 nir_lower_tex_packing_none = 0,
3143 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3144 * or unsigned ints based on the sampler type
3145 */
3146 nir_lower_tex_packing_16,
3147 /* The sampler returns 1 32-bit word of 4x8 unorm */
3148 nir_lower_tex_packing_8,
3149 };
3150
3151 typedef struct nir_lower_tex_options {
3152 /**
3153 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3154 * sampler types a texture projector is lowered.
3155 */
3156 unsigned lower_txp;
3157
3158 /**
3159 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3160 */
3161 bool lower_txf_offset;
3162
3163 /**
3164 * If true, lower away nir_tex_src_offset for all rect textures.
3165 */
3166 bool lower_rect_offset;
3167
3168 /**
3169 * If true, lower rect textures to 2D, using txs to fetch the
3170 * texture dimensions and dividing the texture coords by the
3171 * texture dims to normalize.
3172 */
3173 bool lower_rect;
3174
3175 /**
3176 * If true, convert yuv to rgb.
3177 */
3178 unsigned lower_y_uv_external;
3179 unsigned lower_y_u_v_external;
3180 unsigned lower_yx_xuxv_external;
3181 unsigned lower_xy_uxvx_external;
3182 unsigned lower_ayuv_external;
3183 unsigned lower_xyuv_external;
3184
3185 /**
3186 * To emulate certain texture wrap modes, this can be used
3187 * to saturate the specified tex coord to [0.0, 1.0]. The
3188 * bits are according to sampler #, ie. if, for example:
3189 *
3190 * (conf->saturate_s & (1 << n))
3191 *
3192 * is true, then the s coord for sampler n is saturated.
3193 *
3194 * Note that clamping must happen *after* projector lowering
3195 * so any projected texture sample instruction with a clamped
3196 * coordinate gets automatically lowered, regardless of the
3197 * 'lower_txp' setting.
3198 */
3199 unsigned saturate_s;
3200 unsigned saturate_t;
3201 unsigned saturate_r;
3202
3203 /* Bitmask of textures that need swizzling.
3204 *
3205 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3206 * swizzles[texture_index] is applied to the result of the texturing
3207 * operation.
3208 */
3209 unsigned swizzle_result;
3210
3211 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3212 * while 4 and 5 represent 0 and 1 respectively.
3213 */
3214 uint8_t swizzles[32][4];
3215
3216 /* Can be used to scale sampled values in range required by the format. */
3217 float scale_factors[32];
3218
3219 /**
3220 * Bitmap of textures that need srgb to linear conversion. If
3221 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3222 * of the texture are lowered to linear.
3223 */
3224 unsigned lower_srgb;
3225
3226 /**
3227 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3228 */
3229 bool lower_txd_cube_map;
3230
3231 /**
3232 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3233 */
3234 bool lower_txd_3d;
3235
3236 /**
3237 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3238 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3239 * with lower_txd_cube_map.
3240 */
3241 bool lower_txd_shadow;
3242
3243 /**
3244 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3245 * Implies lower_txd_cube_map and lower_txd_shadow.
3246 */
3247 bool lower_txd;
3248
3249 /**
3250 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3251 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3252 */
3253 bool lower_txb_shadow_clamp;
3254
3255 /**
3256 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3257 * with nir_texop_txl. This includes cube maps.
3258 */
3259 bool lower_txd_shadow_clamp;
3260
3261 /**
3262 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3263 * with nir_texop_txl. This includes cube maps.
3264 */
3265 bool lower_txd_offset_clamp;
3266
3267 /**
3268 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3269 * sampler index is not statically determinable to be less than 16.
3270 */
3271 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3272
3273 /**
3274 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3275 * mixed-up tg4 locations.
3276 */
3277 bool lower_tg4_broadcom_swizzle;
3278
3279 /**
3280 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3281 */
3282 bool lower_tg4_offsets;
3283
3284 enum nir_lower_tex_packing lower_tex_packing[32];
3285 } nir_lower_tex_options;
3286
3287 bool nir_lower_tex(nir_shader *shader,
3288 const nir_lower_tex_options *options);
3289
3290 enum nir_lower_non_uniform_access_type {
3291 nir_lower_non_uniform_ubo_access = (1 << 0),
3292 nir_lower_non_uniform_ssbo_access = (1 << 1),
3293 nir_lower_non_uniform_texture_access = (1 << 2),
3294 nir_lower_non_uniform_image_access = (1 << 3),
3295 };
3296
3297 bool nir_lower_non_uniform_access(nir_shader *shader,
3298 enum nir_lower_non_uniform_access_type);
3299
3300 bool nir_lower_idiv(nir_shader *shader);
3301
3302 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3303 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3304 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3305
3306 bool nir_lower_frexp(nir_shader *nir);
3307
3308 void nir_lower_two_sided_color(nir_shader *shader);
3309
3310 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3311
3312 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3313 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3314 const gl_state_index16 *uniform_state_tokens);
3315
3316 typedef struct nir_lower_wpos_ytransform_options {
3317 gl_state_index16 state_tokens[STATE_LENGTH];
3318 bool fs_coord_origin_upper_left :1;
3319 bool fs_coord_origin_lower_left :1;
3320 bool fs_coord_pixel_center_integer :1;
3321 bool fs_coord_pixel_center_half_integer :1;
3322 } nir_lower_wpos_ytransform_options;
3323
3324 bool nir_lower_wpos_ytransform(nir_shader *shader,
3325 const nir_lower_wpos_ytransform_options *options);
3326 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3327
3328 typedef struct nir_lower_drawpixels_options {
3329 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3330 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3331 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3332 unsigned drawpix_sampler;
3333 unsigned pixelmap_sampler;
3334 bool pixel_maps :1;
3335 bool scale_and_bias :1;
3336 } nir_lower_drawpixels_options;
3337
3338 void nir_lower_drawpixels(nir_shader *shader,
3339 const nir_lower_drawpixels_options *options);
3340
3341 typedef struct nir_lower_bitmap_options {
3342 unsigned sampler;
3343 bool swizzle_xxxx;
3344 } nir_lower_bitmap_options;
3345
3346 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3347
3348 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3349
3350 typedef enum {
3351 nir_lower_int_source_mods = 1 << 0,
3352 nir_lower_float_source_mods = 1 << 1,
3353 nir_lower_triop_abs = 1 << 2,
3354 nir_lower_all_source_mods = (1 << 3) - 1
3355 } nir_lower_to_source_mods_flags;
3356
3357
3358 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3359
3360 bool nir_lower_gs_intrinsics(nir_shader *shader);
3361
3362 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3363
3364 bool nir_lower_bit_size(nir_shader *shader,
3365 nir_lower_bit_size_callback callback,
3366 void *callback_data);
3367
3368 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3369 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3370
3371 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3372 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3373 nir_lower_doubles_options options);
3374 bool nir_lower_pack(nir_shader *shader);
3375
3376 bool nir_normalize_cubemap_coords(nir_shader *shader);
3377
3378 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3379
3380 void nir_loop_analyze_impl(nir_function_impl *impl,
3381 nir_variable_mode indirect_mask);
3382
3383 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3384
3385 bool nir_repair_ssa_impl(nir_function_impl *impl);
3386 bool nir_repair_ssa(nir_shader *shader);
3387
3388 void nir_convert_loop_to_lcssa(nir_loop *loop);
3389
3390 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3391 * registers. If false, convert all values (even those not involved in a phi
3392 * node) to registers.
3393 */
3394 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3395
3396 bool nir_lower_phis_to_regs_block(nir_block *block);
3397 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3398 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3399
3400 bool nir_opt_algebraic(nir_shader *shader);
3401 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3402 bool nir_opt_algebraic_late(nir_shader *shader);
3403 bool nir_opt_constant_folding(nir_shader *shader);
3404
3405 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3406
3407 bool nir_opt_global_to_local(nir_shader *shader);
3408
3409 bool nir_copy_prop(nir_shader *shader);
3410
3411 bool nir_opt_copy_prop_vars(nir_shader *shader);
3412
3413 bool nir_opt_cse(nir_shader *shader);
3414
3415 bool nir_opt_dce(nir_shader *shader);
3416
3417 bool nir_opt_dead_cf(nir_shader *shader);
3418
3419 bool nir_opt_dead_write_vars(nir_shader *shader);
3420
3421 bool nir_opt_deref_impl(nir_function_impl *impl);
3422 bool nir_opt_deref(nir_shader *shader);
3423
3424 bool nir_opt_find_array_copies(nir_shader *shader);
3425
3426 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3427
3428 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3429
3430 bool nir_opt_if(nir_shader *shader);
3431
3432 bool nir_opt_intrinsics(nir_shader *shader);
3433
3434 bool nir_opt_large_constants(nir_shader *shader,
3435 glsl_type_size_align_func size_align,
3436 unsigned threshold);
3437
3438 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3439
3440 bool nir_opt_move_comparisons(nir_shader *shader);
3441
3442 bool nir_opt_move_load_ubo(nir_shader *shader);
3443
3444 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3445 bool indirect_load_ok, bool expensive_alu_ok);
3446
3447 bool nir_opt_remove_phis(nir_shader *shader);
3448
3449 bool nir_opt_shrink_load(nir_shader *shader);
3450
3451 bool nir_opt_trivial_continues(nir_shader *shader);
3452
3453 bool nir_opt_undef(nir_shader *shader);
3454
3455 bool nir_opt_conditional_discard(nir_shader *shader);
3456
3457 void nir_strip(nir_shader *shader);
3458
3459 void nir_sweep(nir_shader *shader);
3460
3461 void nir_remap_dual_slot_attributes(nir_shader *shader,
3462 uint64_t *dual_slot_inputs);
3463 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3464
3465 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3466 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3467
3468 #ifdef __cplusplus
3469 } /* extern "C" */
3470 #endif
3471
3472 #endif /* NIR_H */