nir: always attempt to find loop terminators
[mesa.git] / src / compiler / nir / nir_loop_analyze.c
1 /*
2 * Copyright © 2015 Thomas Helland
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir.h"
25 #include "nir_constant_expressions.h"
26 #include "nir_loop_analyze.h"
27
28 typedef enum {
29 undefined,
30 invariant,
31 not_invariant,
32 basic_induction
33 } nir_loop_variable_type;
34
35 struct nir_basic_induction_var;
36
37 typedef struct {
38 /* A link for the work list */
39 struct list_head process_link;
40
41 bool in_loop;
42
43 /* The ssa_def associated with this info */
44 nir_ssa_def *def;
45
46 /* The type of this ssa_def */
47 nir_loop_variable_type type;
48
49 /* If this is of type basic_induction */
50 struct nir_basic_induction_var *ind;
51
52 /* True if variable is in an if branch or a nested loop */
53 bool in_control_flow;
54
55 } nir_loop_variable;
56
57 typedef struct nir_basic_induction_var {
58 nir_op alu_op; /* The type of alu-operation */
59 nir_loop_variable *alu_def; /* The def of the alu-operation */
60 nir_loop_variable *invariant; /* The invariant alu-operand */
61 nir_loop_variable *def_outside_loop; /* The phi-src outside the loop */
62 } nir_basic_induction_var;
63
64 typedef struct {
65 /* The loop we store information for */
66 nir_loop *loop;
67
68 /* Loop_variable for all ssa_defs in function */
69 nir_loop_variable *loop_vars;
70
71 /* A list of the loop_vars to analyze */
72 struct list_head process_list;
73
74 nir_variable_mode indirect_mask;
75
76 } loop_info_state;
77
78 static nir_loop_variable *
79 get_loop_var(nir_ssa_def *value, loop_info_state *state)
80 {
81 return &(state->loop_vars[value->index]);
82 }
83
84 typedef struct {
85 loop_info_state *state;
86 bool in_control_flow;
87 } init_loop_state;
88
89 static bool
90 init_loop_def(nir_ssa_def *def, void *void_init_loop_state)
91 {
92 init_loop_state *loop_init_state = void_init_loop_state;
93 nir_loop_variable *var = get_loop_var(def, loop_init_state->state);
94
95 if (loop_init_state->in_control_flow) {
96 var->in_control_flow = true;
97 } else {
98 /* Add to the tail of the list. That way we start at the beginning of
99 * the defs in the loop instead of the end when walking the list. This
100 * means less recursive calls. Only add defs that are not in nested
101 * loops or conditional blocks.
102 */
103 list_addtail(&var->process_link, &loop_init_state->state->process_list);
104 }
105
106 var->in_loop = true;
107
108 return true;
109 }
110
111 static bool
112 init_loop_block(nir_block *block, loop_info_state *state,
113 bool in_control_flow)
114 {
115 init_loop_state init_state = {.in_control_flow = in_control_flow,
116 .state = state };
117
118 nir_foreach_instr(instr, block) {
119 if (instr->type == nir_instr_type_intrinsic ||
120 instr->type == nir_instr_type_alu ||
121 instr->type == nir_instr_type_tex) {
122 state->loop->info->num_instructions++;
123 }
124
125 nir_foreach_ssa_def(instr, init_loop_def, &init_state);
126 }
127
128 return true;
129 }
130
131 static inline bool
132 is_var_alu(nir_loop_variable *var)
133 {
134 return var->def->parent_instr->type == nir_instr_type_alu;
135 }
136
137 static inline bool
138 is_var_constant(nir_loop_variable *var)
139 {
140 return var->def->parent_instr->type == nir_instr_type_load_const;
141 }
142
143 static inline bool
144 is_var_phi(nir_loop_variable *var)
145 {
146 return var->def->parent_instr->type == nir_instr_type_phi;
147 }
148
149 static inline bool
150 mark_invariant(nir_ssa_def *def, loop_info_state *state)
151 {
152 nir_loop_variable *var = get_loop_var(def, state);
153
154 if (var->type == invariant)
155 return true;
156
157 if (!var->in_loop) {
158 var->type = invariant;
159 return true;
160 }
161
162 if (var->type == not_invariant)
163 return false;
164
165 if (is_var_alu(var)) {
166 nir_alu_instr *alu = nir_instr_as_alu(def->parent_instr);
167
168 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
169 if (!mark_invariant(alu->src[i].src.ssa, state)) {
170 var->type = not_invariant;
171 return false;
172 }
173 }
174 var->type = invariant;
175 return true;
176 }
177
178 /* Phis shouldn't be invariant except if one operand is invariant, and the
179 * other is the phi itself. These should be removed by opt_remove_phis.
180 * load_consts are already set to invariant and constant during init,
181 * and so should return earlier. Remaining op_codes are set undefined.
182 */
183 var->type = not_invariant;
184 return false;
185 }
186
187 static void
188 compute_invariance_information(loop_info_state *state)
189 {
190 /* An expression is invariant in a loop L if:
191 * (base cases)
192 * – it’s a constant
193 * – it’s a variable use, all of whose single defs are outside of L
194 * (inductive cases)
195 * – it’s a pure computation all of whose args are loop invariant
196 * – it’s a variable use whose single reaching def, and the
197 * rhs of that def is loop-invariant
198 */
199 list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
200 process_link) {
201 assert(!var->in_control_flow);
202
203 if (mark_invariant(var->def, state))
204 list_del(&var->process_link);
205 }
206 }
207
208 static bool
209 compute_induction_information(loop_info_state *state)
210 {
211 bool found_induction_var = false;
212 list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
213 process_link) {
214
215 /* It can't be an induction variable if it is invariant. Invariants and
216 * things in nested loops or conditionals should have been removed from
217 * the list by compute_invariance_information().
218 */
219 assert(!var->in_control_flow && var->type != invariant);
220
221 /* We are only interested in checking phis for the basic induction
222 * variable case as its simple to detect. All basic induction variables
223 * have a phi node
224 */
225 if (!is_var_phi(var))
226 continue;
227
228 nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr);
229 nir_basic_induction_var *biv = rzalloc(state, nir_basic_induction_var);
230
231 nir_foreach_phi_src(src, phi) {
232 nir_loop_variable *src_var = get_loop_var(src->src.ssa, state);
233
234 /* If one of the sources is in a conditional or nested block then
235 * panic.
236 */
237 if (src_var->in_control_flow)
238 break;
239
240 if (!src_var->in_loop) {
241 biv->def_outside_loop = src_var;
242 } else if (is_var_alu(src_var)) {
243 nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr);
244
245 if (nir_op_infos[alu->op].num_inputs == 2) {
246 biv->alu_def = src_var;
247 biv->alu_op = alu->op;
248
249 for (unsigned i = 0; i < 2; i++) {
250 /* Is one of the operands const, and the other the phi */
251 if (alu->src[i].src.ssa->parent_instr->type == nir_instr_type_load_const &&
252 alu->src[1-i].src.ssa == &phi->dest.ssa)
253 biv->invariant = get_loop_var(alu->src[i].src.ssa, state);
254 }
255 }
256 }
257 }
258
259 if (biv->alu_def && biv->def_outside_loop && biv->invariant &&
260 is_var_constant(biv->def_outside_loop)) {
261 assert(is_var_constant(biv->invariant));
262 biv->alu_def->type = basic_induction;
263 biv->alu_def->ind = biv;
264 var->type = basic_induction;
265 var->ind = biv;
266
267 found_induction_var = true;
268 } else {
269 ralloc_free(biv);
270 }
271 }
272 return found_induction_var;
273 }
274
275 static bool
276 initialize_ssa_def(nir_ssa_def *def, void *void_state)
277 {
278 loop_info_state *state = void_state;
279 nir_loop_variable *var = get_loop_var(def, state);
280
281 var->in_loop = false;
282 var->def = def;
283
284 if (def->parent_instr->type == nir_instr_type_load_const) {
285 var->type = invariant;
286 } else {
287 var->type = undefined;
288 }
289
290 return true;
291 }
292
293 static bool
294 find_loop_terminators(loop_info_state *state)
295 {
296 bool success = false;
297 foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
298 if (node->type == nir_cf_node_if) {
299 nir_if *nif = nir_cf_node_as_if(node);
300
301 nir_block *break_blk = NULL;
302 nir_block *continue_from_blk = NULL;
303 bool continue_from_then = true;
304
305 nir_block *last_then = nir_if_last_then_block(nif);
306 nir_block *last_else = nir_if_last_else_block(nif);
307 if (nir_block_ends_in_break(last_then)) {
308 break_blk = last_then;
309 continue_from_blk = last_else;
310 continue_from_then = false;
311 } else if (nir_block_ends_in_break(last_else)) {
312 break_blk = last_else;
313 continue_from_blk = last_then;
314 }
315
316 /* If there is a break then we should find a terminator. If we can
317 * not find a loop terminator, but there is a break-statement then
318 * we should return false so that we do not try to find trip-count
319 */
320 if (!nir_is_trivial_loop_if(nif, break_blk))
321 return false;
322
323 /* Continue if the if contained no jumps at all */
324 if (!break_blk)
325 continue;
326
327 if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi)
328 return false;
329
330 nir_loop_terminator *terminator =
331 rzalloc(state->loop->info, nir_loop_terminator);
332
333 list_addtail(&terminator->loop_terminator_link,
334 &state->loop->info->loop_terminator_list);
335
336 terminator->nif = nif;
337 terminator->break_block = break_blk;
338 terminator->continue_from_block = continue_from_blk;
339 terminator->continue_from_then = continue_from_then;
340 terminator->conditional_instr = nif->condition.ssa->parent_instr;
341
342 success = true;
343 }
344 }
345
346 return success;
347 }
348
349 static int32_t
350 get_iteration(nir_op cond_op, nir_const_value *initial, nir_const_value *step,
351 nir_const_value *limit)
352 {
353 int32_t iter;
354
355 switch (cond_op) {
356 case nir_op_ige:
357 case nir_op_ilt:
358 case nir_op_ieq:
359 case nir_op_ine: {
360 int32_t initial_val = initial->i32[0];
361 int32_t span = limit->i32[0] - initial_val;
362 iter = span / step->i32[0];
363 break;
364 }
365 case nir_op_uge:
366 case nir_op_ult: {
367 uint32_t initial_val = initial->u32[0];
368 uint32_t span = limit->u32[0] - initial_val;
369 iter = span / step->u32[0];
370 break;
371 }
372 case nir_op_fge:
373 case nir_op_flt:
374 case nir_op_feq:
375 case nir_op_fne: {
376 float initial_val = initial->f32[0];
377 float span = limit->f32[0] - initial_val;
378 iter = span / step->f32[0];
379 break;
380 }
381 default:
382 return -1;
383 }
384
385 return iter;
386 }
387
388 static bool
389 test_iterations(int32_t iter_int, nir_const_value *step,
390 nir_const_value *limit, nir_op cond_op, unsigned bit_size,
391 nir_alu_type induction_base_type,
392 nir_const_value *initial, bool limit_rhs, bool invert_cond)
393 {
394 assert(nir_op_infos[cond_op].num_inputs == 2);
395
396 nir_const_value iter_src = { {0, } };
397 nir_op mul_op;
398 nir_op add_op;
399 switch (induction_base_type) {
400 case nir_type_float:
401 iter_src.f32[0] = (float) iter_int;
402 mul_op = nir_op_fmul;
403 add_op = nir_op_fadd;
404 break;
405 case nir_type_int:
406 case nir_type_uint:
407 iter_src.i32[0] = iter_int;
408 mul_op = nir_op_imul;
409 add_op = nir_op_iadd;
410 break;
411 default:
412 unreachable("Unhandled induction variable base type!");
413 }
414
415 /* Multiple the iteration count we are testing by the number of times we
416 * step the induction variable each iteration.
417 */
418 nir_const_value mul_src[2] = { iter_src, *step };
419 nir_const_value mul_result =
420 nir_eval_const_opcode(mul_op, 1, bit_size, mul_src);
421
422 /* Add the initial value to the accumulated induction variable total */
423 nir_const_value add_src[2] = { mul_result, *initial };
424 nir_const_value add_result =
425 nir_eval_const_opcode(add_op, 1, bit_size, add_src);
426
427 nir_const_value src[2] = { { {0, } }, { {0, } } };
428 src[limit_rhs ? 0 : 1] = add_result;
429 src[limit_rhs ? 1 : 0] = *limit;
430
431 /* Evaluate the loop exit condition */
432 nir_const_value result = nir_eval_const_opcode(cond_op, 1, bit_size, src);
433
434 return invert_cond ? (result.u32[0] == 0) : (result.u32[0] != 0);
435 }
436
437 static int
438 calculate_iterations(nir_const_value *initial, nir_const_value *step,
439 nir_const_value *limit, nir_loop_variable *alu_def,
440 nir_alu_instr *cond_alu, bool limit_rhs, bool invert_cond)
441 {
442 assert(initial != NULL && step != NULL && limit != NULL);
443
444 nir_alu_instr *alu = nir_instr_as_alu(alu_def->def->parent_instr);
445
446 /* nir_op_isub should have been lowered away by this point */
447 assert(alu->op != nir_op_isub);
448
449 /* Make sure the alu type for our induction variable is compatible with the
450 * conditional alus input type. If its not something has gone really wrong.
451 */
452 nir_alu_type induction_base_type =
453 nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type);
454 if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) {
455 assert(nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[1]) == nir_type_int ||
456 nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[1]) == nir_type_uint);
457 } else {
458 assert(nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[0]) ==
459 induction_base_type);
460 }
461
462 /* Check for nsupported alu operations */
463 if (alu->op != nir_op_iadd && alu->op != nir_op_fadd)
464 return -1;
465
466 /* do-while loops can increment the starting value before the condition is
467 * checked. e.g.
468 *
469 * do {
470 * ndx++;
471 * } while (ndx < 3);
472 *
473 * Here we check if the induction variable is used directly by the loop
474 * condition and if so we assume we need to step the initial value.
475 */
476 unsigned trip_offset = 0;
477 if (cond_alu->src[0].src.ssa == alu_def->def ||
478 cond_alu->src[1].src.ssa == alu_def->def) {
479 trip_offset = 1;
480 }
481
482 int iter_int = get_iteration(cond_alu->op, initial, step, limit);
483
484 /* If iter_int is negative the loop is ill-formed or is the conditional is
485 * unsigned with a huge iteration count so don't bother going any further.
486 */
487 if (iter_int < 0)
488 return -1;
489
490 /* An explanation from the GLSL unrolling pass:
491 *
492 * Make sure that the calculated number of iterations satisfies the exit
493 * condition. This is needed to catch off-by-one errors and some types of
494 * ill-formed loops. For example, we need to detect that the following
495 * loop does not have a maximum iteration count.
496 *
497 * for (float x = 0.0; x != 0.9; x += 0.2);
498 */
499 assert(nir_src_bit_size(alu->src[0].src) ==
500 nir_src_bit_size(alu->src[1].src));
501 unsigned bit_size = nir_src_bit_size(alu->src[0].src);
502 for (int bias = -1; bias <= 1; bias++) {
503 const int iter_bias = iter_int + bias;
504
505 if (test_iterations(iter_bias, step, limit, cond_alu->op, bit_size,
506 induction_base_type, initial,
507 limit_rhs, invert_cond)) {
508 return iter_bias > 0 ? iter_bias - trip_offset : iter_bias;
509 }
510 }
511
512 return -1;
513 }
514
515 /* Run through each of the terminators of the loop and try to infer a possible
516 * trip-count. We need to check them all, and set the lowest trip-count as the
517 * trip-count of our loop. If one of the terminators has an undecidable
518 * trip-count we can not safely assume anything about the duration of the
519 * loop.
520 */
521 static void
522 find_trip_count(loop_info_state *state)
523 {
524 bool trip_count_known = true;
525 nir_loop_terminator *limiting_terminator = NULL;
526 int min_trip_count = -1;
527
528 list_for_each_entry(nir_loop_terminator, terminator,
529 &state->loop->info->loop_terminator_list,
530 loop_terminator_link) {
531
532 if (terminator->conditional_instr->type != nir_instr_type_alu) {
533 /* If we get here the loop is dead and will get cleaned up by the
534 * nir_opt_dead_cf pass.
535 */
536 trip_count_known = false;
537 continue;
538 }
539
540 nir_alu_instr *alu = nir_instr_as_alu(terminator->conditional_instr);
541 nir_loop_variable *basic_ind = NULL;
542 nir_loop_variable *limit = NULL;
543 bool limit_rhs = true;
544
545 switch (alu->op) {
546 case nir_op_fge: case nir_op_ige: case nir_op_uge:
547 case nir_op_flt: case nir_op_ilt: case nir_op_ult:
548 case nir_op_feq: case nir_op_ieq:
549 case nir_op_fne: case nir_op_ine:
550
551 /* We assume that the limit is the "right" operand */
552 basic_ind = get_loop_var(alu->src[0].src.ssa, state);
553 limit = get_loop_var(alu->src[1].src.ssa, state);
554
555 if (basic_ind->type != basic_induction) {
556 /* We had it the wrong way, flip things around */
557 basic_ind = get_loop_var(alu->src[1].src.ssa, state);
558 limit = get_loop_var(alu->src[0].src.ssa, state);
559 limit_rhs = false;
560 }
561
562 /* The comparison has to have a basic induction variable
563 * and a constant for us to be able to find trip counts
564 */
565 if (basic_ind->type != basic_induction || !is_var_constant(limit)) {
566 trip_count_known = false;
567 continue;
568 }
569
570 /* We have determined that we have the following constants:
571 * (With the typical int i = 0; i < x; i++; as an example)
572 * - Upper limit.
573 * - Starting value
574 * - Step / iteration size
575 * Thats all thats needed to calculate the trip-count
576 */
577
578 nir_const_value initial_val =
579 nir_instr_as_load_const(basic_ind->ind->def_outside_loop->
580 def->parent_instr)->value;
581
582 nir_const_value step_val =
583 nir_instr_as_load_const(basic_ind->ind->invariant->def->
584 parent_instr)->value;
585
586 nir_const_value limit_val =
587 nir_instr_as_load_const(limit->def->parent_instr)->value;
588
589 int iterations = calculate_iterations(&initial_val, &step_val,
590 &limit_val,
591 basic_ind->ind->alu_def, alu,
592 limit_rhs,
593 terminator->continue_from_then);
594
595 /* Where we not able to calculate the iteration count */
596 if (iterations == -1) {
597 trip_count_known = false;
598 continue;
599 }
600
601 /* If this is the first run or we have found a smaller amount of
602 * iterations than previously (we have identified a more limiting
603 * terminator) set the trip count and limiting terminator.
604 */
605 if (min_trip_count == -1 || iterations < min_trip_count) {
606 min_trip_count = iterations;
607 limiting_terminator = terminator;
608 }
609 break;
610
611 default:
612 trip_count_known = false;
613 }
614 }
615
616 state->loop->info->is_trip_count_known = trip_count_known;
617 if (min_trip_count > -1)
618 state->loop->info->trip_count = min_trip_count;
619 state->loop->info->limiting_terminator = limiting_terminator;
620 }
621
622 static bool
623 force_unroll_array_access(loop_info_state *state, nir_shader *ns,
624 nir_deref_instr *deref)
625 {
626 for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
627 if (d->deref_type != nir_deref_type_array)
628 continue;
629
630 assert(d->arr.index.is_ssa);
631 nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state);
632
633 if (array_index->type != basic_induction)
634 continue;
635
636 nir_deref_instr *parent = nir_deref_instr_parent(d);
637 assert(glsl_type_is_array(parent->type) ||
638 glsl_type_is_matrix(parent->type));
639 if (glsl_get_length(parent->type) == state->loop->info->trip_count) {
640 state->loop->info->force_unroll = true;
641 return true;
642 }
643
644 if (deref->mode & state->indirect_mask) {
645 state->loop->info->force_unroll = true;
646 return true;
647 }
648 }
649
650 return false;
651 }
652
653 static bool
654 force_unroll_heuristics(loop_info_state *state, nir_shader *ns,
655 nir_block *block)
656 {
657 nir_foreach_instr(instr, block) {
658 if (instr->type != nir_instr_type_intrinsic)
659 continue;
660
661 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
662
663 /* Check for arrays variably-indexed by a loop induction variable.
664 * Unrolling the loop may convert that access into constant-indexing.
665 */
666 if (intrin->intrinsic == nir_intrinsic_load_deref ||
667 intrin->intrinsic == nir_intrinsic_store_deref ||
668 intrin->intrinsic == nir_intrinsic_copy_deref) {
669 if (force_unroll_array_access(state, ns,
670 nir_src_as_deref(intrin->src[0])))
671 return true;
672
673 if (intrin->intrinsic == nir_intrinsic_copy_deref &&
674 force_unroll_array_access(state, ns,
675 nir_src_as_deref(intrin->src[1])))
676 return true;
677 }
678 }
679
680 return false;
681 }
682
683 static void
684 get_loop_info(loop_info_state *state, nir_function_impl *impl)
685 {
686 /* Initialize all variables to "outside_loop". This also marks defs
687 * invariant and constant if they are nir_instr_type_load_consts
688 */
689 nir_foreach_block(block, impl) {
690 nir_foreach_instr(instr, block)
691 nir_foreach_ssa_def(instr, initialize_ssa_def, state);
692 }
693
694 /* Add all entries in the outermost part of the loop to the processing list
695 * Mark the entries in conditionals or in nested loops accordingly
696 */
697 foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
698 switch (node->type) {
699
700 case nir_cf_node_block:
701 init_loop_block(nir_cf_node_as_block(node), state, false);
702 break;
703
704 case nir_cf_node_if:
705 nir_foreach_block_in_cf_node(block, node)
706 init_loop_block(block, state, true);
707 break;
708
709 case nir_cf_node_loop:
710 nir_foreach_block_in_cf_node(block, node) {
711 init_loop_block(block, state, true);
712 }
713 break;
714
715 case nir_cf_node_function:
716 break;
717 }
718 }
719
720 /* Try to find all simple terminators of the loop. If we can't find any,
721 * or we find possible terminators that have side effects then bail.
722 */
723 if (!find_loop_terminators(state)) {
724 list_for_each_entry_safe(nir_loop_terminator, terminator,
725 &state->loop->info->loop_terminator_list,
726 loop_terminator_link) {
727 list_del(&terminator->loop_terminator_link);
728 ralloc_free(terminator);
729 }
730 return;
731 }
732
733 /* Induction analysis needs invariance information so get that first */
734 compute_invariance_information(state);
735
736 /* We have invariance information so try to find induction variables */
737 if (!compute_induction_information(state))
738 return;
739
740 /* Run through each of the terminators and try to compute a trip-count */
741 find_trip_count(state);
742
743 nir_shader *ns = impl->function->shader;
744 foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
745 if (node->type == nir_cf_node_block) {
746 if (force_unroll_heuristics(state, ns, nir_cf_node_as_block(node)))
747 break;
748 } else {
749 nir_foreach_block_in_cf_node(block, node) {
750 if (force_unroll_heuristics(state, ns, block))
751 break;
752 }
753 }
754 }
755 }
756
757 static loop_info_state *
758 initialize_loop_info_state(nir_loop *loop, void *mem_ctx,
759 nir_function_impl *impl)
760 {
761 loop_info_state *state = rzalloc(mem_ctx, loop_info_state);
762 state->loop_vars = rzalloc_array(mem_ctx, nir_loop_variable,
763 impl->ssa_alloc);
764 state->loop = loop;
765
766 list_inithead(&state->process_list);
767
768 if (loop->info)
769 ralloc_free(loop->info);
770
771 loop->info = rzalloc(loop, nir_loop_info);
772
773 list_inithead(&loop->info->loop_terminator_list);
774
775 return state;
776 }
777
778 static void
779 process_loops(nir_cf_node *cf_node, nir_variable_mode indirect_mask)
780 {
781 switch (cf_node->type) {
782 case nir_cf_node_block:
783 return;
784 case nir_cf_node_if: {
785 nir_if *if_stmt = nir_cf_node_as_if(cf_node);
786 foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list)
787 process_loops(nested_node, indirect_mask);
788 foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list)
789 process_loops(nested_node, indirect_mask);
790 return;
791 }
792 case nir_cf_node_loop: {
793 nir_loop *loop = nir_cf_node_as_loop(cf_node);
794 foreach_list_typed(nir_cf_node, nested_node, node, &loop->body)
795 process_loops(nested_node, indirect_mask);
796 break;
797 }
798 default:
799 unreachable("unknown cf node type");
800 }
801
802 nir_loop *loop = nir_cf_node_as_loop(cf_node);
803 nir_function_impl *impl = nir_cf_node_get_function(cf_node);
804 void *mem_ctx = ralloc_context(NULL);
805
806 loop_info_state *state = initialize_loop_info_state(loop, mem_ctx, impl);
807 state->indirect_mask = indirect_mask;
808
809 get_loop_info(state, impl);
810
811 ralloc_free(mem_ctx);
812 }
813
814 void
815 nir_loop_analyze_impl(nir_function_impl *impl,
816 nir_variable_mode indirect_mask)
817 {
818 nir_index_ssa_defs(impl);
819 foreach_list_typed(nir_cf_node, node, node, &impl->body)
820 process_loops(node, indirect_mask);
821 }