575024c04bf45a19f2795f533d5492bdb70b69d6
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fneg', a)), ('fabs', a)),
113 (('fabs', ('u2f', a)), ('u2f', a)),
114 (('iabs', ('iabs', a)), ('iabs', a)),
115 (('iabs', ('ineg', a)), ('iabs', a)),
116 (('f2b', ('fneg', a)), ('f2b', a)),
117 (('i2b', ('ineg', a)), ('i2b', a)),
118 (('~fadd', a, 0.0), a),
119 (('iadd', a, 0), a),
120 (('usadd_4x8', a, 0), a),
121 (('usadd_4x8', a, ~0), ~0),
122 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
123 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
124 (('~fadd', ('fneg', a), a), 0.0),
125 (('iadd', ('ineg', a), a), 0),
126 (('iadd', ('ineg', a), ('iadd', a, b)), b),
127 (('iadd', a, ('iadd', ('ineg', a), b)), b),
128 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
129 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
130 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
131 (('~fmul', a, 0.0), 0.0),
132 (('imul', a, 0), 0),
133 (('umul_unorm_4x8', a, 0), 0),
134 (('umul_unorm_4x8', a, ~0), a),
135 (('~fmul', a, 1.0), a),
136 (('imul', a, 1), a),
137 (('fmul', a, -1.0), ('fneg', a)),
138 (('imul', a, -1), ('ineg', a)),
139 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
140 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
141 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
142 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
143 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
144 (('~ffma', 0.0, a, b), b),
145 (('~ffma', a, b, 0.0), ('fmul', a, b)),
146 (('ffma', 1.0, a, b), ('fadd', a, b)),
147 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
148 (('~flrp', a, b, 0.0), a),
149 (('~flrp', a, b, 1.0), b),
150 (('~flrp', a, a, b), a),
151 (('~flrp', 0.0, a, b), ('fmul', a, b)),
152
153 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
154 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
155 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
156 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
157
158 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
159 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
160
161 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
162 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
163
164 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
165
166 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
167 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
168 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
169 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
170 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
171 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
172 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
173 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
174 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
175 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
176 # These are the same as the previous three rules, but it depends on
177 # 1-fsat(x) <=> fsat(1-x). See below.
178 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
179 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
180
181 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
182 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
183 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
184 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
185 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
186
187 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
188 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
189
190 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
191
192 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
193 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
194 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
195 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
196
197 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
198 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
199
200 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
201 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
202
203 # Lower fdot to fsum when it is available
204 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
205 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
208
209 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
210 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
211 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
212 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
213
214 # 1 - ((1 - a) * (1 - b))
215 # 1 - (1 - a - b + a*b)
216 # 1 - 1 + a + b - a*b
217 # a + b - a*b
218 # a + b*(1 - a)
219 # b*(1 - a) + 1*a
220 # flrp(b, 1, a)
221 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
222 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
223
224 # (a * #b + #c) << #d
225 # ((a * #b) << #d) + (#c << #d)
226 # (a * (#b << #d)) + (#c << #d)
227 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
228 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
229
230 # (a * #b) << #c
231 # a * (#b << #c)
232 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
233 ]
234
235 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
236 # bits of the second source. These replacements must correctly handle the
237 # case where (b % bitsize) + (c % bitsize) >= bitsize.
238 for s in [8, 16, 32, 64]:
239 mask = (1 << s) - 1
240
241 ishl = "ishl@{}".format(s)
242 ishr = "ishr@{}".format(s)
243 ushr = "ushr@{}".format(s)
244
245 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
246
247 optimizations.extend([
248 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
249 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
250
251 # To get get -1 for large shifts of negative values, ishr must instead
252 # clamp the shift count to the maximum value.
253 ((ishr, (ishr, a, '#b'), '#c'),
254 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
255 ])
256
257 # Optimize a pattern of address calculation created by DXVK where the offset is
258 # divided by 4 and then multipled by 4. This can be turned into an iand and the
259 # additions before can be reassociated to CSE the iand instruction.
260 for log2 in range(1, 7): # powers of two from 2 to 64
261 v = 1 << log2
262 mask = 0xffffffff & ~(v - 1)
263 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
264
265 optimizations.extend([
266 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
267 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
268
269 # Reassociate for improved CSE
270 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
271 ])
272
273 # To save space in the state tables, reduce to the set that is known to help.
274 # Previously, this was range(1, 32). In addition, a couple rules inside the
275 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
276 # resolution.
277 for i in [1, 2, 16, 24]:
278 lo_mask = 0xffffffff >> i
279 hi_mask = (0xffffffff << i) & 0xffffffff
280
281 optimizations.extend([
282 # This pattern seems to only help in the soft-fp64 code.
283 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
284 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
285 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
286
287 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
288 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
289 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
290 ])
291
292 optimizations.extend([
293 # This is common for address calculations. Reassociating may enable the
294 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
295 # instruction or a constant offset field for in load / store instructions.
296 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
297
298 # Comparison simplifications
299 (('~inot', ('flt', a, b)), ('fge', a, b)),
300 (('~inot', ('fge', a, b)), ('flt', a, b)),
301 (('inot', ('feq', a, b)), ('fne', a, b)),
302 (('inot', ('fne', a, b)), ('feq', a, b)),
303 (('inot', ('ilt', a, b)), ('ige', a, b)),
304 (('inot', ('ult', a, b)), ('uge', a, b)),
305 (('inot', ('ige', a, b)), ('ilt', a, b)),
306 (('inot', ('uge', a, b)), ('ult', a, b)),
307 (('inot', ('ieq', a, b)), ('ine', a, b)),
308 (('inot', ('ine', a, b)), ('ieq', a, b)),
309
310 (('iand', ('feq', a, b), ('fne', a, b)), False),
311 (('iand', ('flt', a, b), ('flt', b, a)), False),
312 (('iand', ('ieq', a, b), ('ine', a, b)), False),
313 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
314 (('iand', ('ult', a, b), ('ult', b, a)), False),
315
316 # This helps some shaders because, after some optimizations, they end up
317 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
318 # matching would be handled by CSE.
319 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
320 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
321 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
322 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
323 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
324 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
325 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
326 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
327 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
328 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
329
330 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
331 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
332 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
333 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
334 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
335 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
336
337 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
338 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
339 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
340 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
341
342 # 0.0 >= b2f(a)
343 # b2f(a) <= 0.0
344 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
345 # inot(a)
346 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
347
348 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
349
350 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
351 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
352 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
353 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
354 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
355 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
356 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
357 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
358 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
359 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
360 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
361 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
362 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
364 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
365 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
366 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
368 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
369 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
370
371 # -(b2f(a) + b2f(b)) < 0
372 # 0 < b2f(a) + b2f(b)
373 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
374 # a || b
375 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
376 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
377
378 # -(b2f(a) + b2f(b)) >= 0
379 # 0 >= b2f(a) + b2f(b)
380 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
381 # !(a || b)
382 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
383 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
384
385 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
386 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
387
388 # Some optimizations (below) convert things like (a < b || c < b) into
389 # (min(a, c) < b). However, this interfers with the previous optimizations
390 # that try to remove comparisons with negated sums of b2f. This just
391 # breaks that apart.
392 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
393 ('ior', ('flt', c, 0.0), ('ior', a, b))),
394
395 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
396 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
397 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
398 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
399 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
400 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
401 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
402 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
403 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
404 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
405 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
406 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
407
408 # Cannot remove the addition from ilt or ige due to overflow.
409 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
410 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
411
412 # fmin(-b2f(a), b) >= 0.0
413 # -b2f(a) >= 0.0 && b >= 0.0
414 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
415 # b2f(a) == 0.0 && b >= 0.0
416 # a == False && b >= 0.0
417 # !a && b >= 0.0
418 #
419 # The fge in the second replacement is not a typo. I leave the proof that
420 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
421 # reader.
422 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
423 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
424
425 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
426 (('~fne', ('b2f', 'a@1'), 0.0), a),
427 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
428 (('ine', ('b2i', 'a@1'), 0), a),
429
430 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
431 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
432 (('fge', ('u2f', a), 0.0), True),
433 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
434 (('flt', ('u2f', a), 0.0), False),
435 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
436 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
437 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
438 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
439 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
440 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
441 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
442
443 # 0.0 < fabs(a)
444 # fabs(a) > 0.0
445 # fabs(a) != 0.0 because fabs(a) must be >= 0
446 # a != 0.0
447 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
448
449 # -fabs(a) < 0.0
450 # fabs(a) > 0.0
451 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
452
453 # 0.0 >= fabs(a)
454 # 0.0 == fabs(a) because fabs(a) must be >= 0
455 # 0.0 == a
456 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
457
458 # -fabs(a) >= 0.0
459 # 0.0 >= fabs(a)
460 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
461
462 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
463 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
464
465 # (a < 0.0) || (a > 1.0)
466 # !(!(a < 0.0) && !(a > 1.0))
467 # !((a >= 0.0) && (a <= 1.0))
468 # !(a == fsat(a))
469 # a != fsat(a)
470 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
471
472 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
473 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
474 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
475 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
476
477 # fmin(b2f(a), b)
478 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
479 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
480 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
481 #
482 # Since b is a constant, constant folding will eliminate the fmin and the
483 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
484 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
485
486 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
487
488 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
489 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
490 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
491 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
492 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
493 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
494 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
495 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
496 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
497 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
498 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
499 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
500 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
501 (('bcsel', a, True, b), ('ior', a, b)),
502 (('bcsel', a, a, b), ('ior', a, b)),
503 (('bcsel', a, b, False), ('iand', a, b)),
504 (('bcsel', a, b, a), ('iand', a, b)),
505 (('~fmin', a, a), a),
506 (('~fmax', a, a), a),
507 (('imin', a, a), a),
508 (('imax', a, a), a),
509 (('umin', a, a), a),
510 (('umax', a, a), a),
511 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
512 (('umax', ('umax', a, b), b), ('umax', a, b)),
513 (('imax', ('imax', a, b), b), ('imax', a, b)),
514 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
515 (('umin', ('umin', a, b), b), ('umin', a, b)),
516 (('imin', ('imin', a, b), b), ('imin', a, b)),
517 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
518
519 # Simplify logic to detect sign of an integer.
520 (('ieq', ('iand', 'a@32', 0x80000000), 0x00000000), ('ige', a, 0)),
521 (('ine', ('iand', 'a@32', 0x80000000), 0x80000000), ('ige', a, 0)),
522 (('ine', ('iand', 'a@32', 0x80000000), 0x00000000), ('ilt', a, 0)),
523 (('ieq', ('iand', 'a@32', 0x80000000), 0x80000000), ('ilt', a, 0)),
524 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
525 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
526 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
527 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
528 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
529 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
530 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
531 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
532
533 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
534 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
535 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
536 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
537 (('~fmin', a, ('fabs', a)), a),
538 (('imin', a, ('iabs', a)), a),
539 (('~fmax', a, ('fneg', ('fabs', a))), a),
540 (('imax', a, ('ineg', ('iabs', a))), a),
541 (('fmax', a, ('fabs', a)), ('fabs', a)),
542 (('imax', a, ('iabs', a)), ('iabs', a)),
543 (('fmax', a, ('fneg', a)), ('fabs', a)),
544 (('imax', a, ('ineg', a)), ('iabs', a)),
545 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
546 (('fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
547 # fmax(fmin(a, 1.0), 0.0) is inexact because it returns 1.0 on NaN, while
548 # fsat(a) returns 0.0.
549 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
550 # fmin(fmax(a, -1.0), 0.0) is inexact because it returns -1.0 on NaN, while
551 # fneg(fsat(fneg(a))) returns -0.0 on NaN.
552 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
553 # fmax(fmin(a, 0.0), -1.0) is inexact because it returns 0.0 on NaN, while
554 # fneg(fsat(fneg(a))) returns -0.0 on NaN. This only matters if
555 # SignedZeroInfNanPreserve is set, but we don't currently have any way of
556 # representing this in the optimizations other than the usual ~.
557 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
558 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
559 (('fsat', ('b2f', a)), ('b2f', a)),
560 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
561 (('fsat', ('fsat', a)), ('fsat', a)),
562 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
563 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
564 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
565 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
566 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
567 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
568 # Both the left and right patterns are "b" when isnan(a), so this is exact.
569 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
570 # The left pattern is 0.0 when isnan(a) (because fmin(fsat(NaN), b) ->
571 # fmin(0.0, b)) while the right one is "b", so this optimization is inexact.
572 (('~fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
573
574 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
575 # fsat(b-a).
576 #
577 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
578 #
579 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
580 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b@32(is_zero_to_one)'), 0.0),
581 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
582
583 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
584 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
585 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
586 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
587 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
588 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
589 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
590 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
591 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
592 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
593 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
594 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
595 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
596 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
597 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
598 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
599 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
600
601 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
602 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
603 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
604 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
605 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
606 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
607 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
608 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
609 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
610 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
611 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
612 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
613 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
614 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
615 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
616 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
617
618 # These derive from the previous patterns with the application of b < 0 <=>
619 # 0 < -b. The transformation should be applied if either comparison is
620 # used once as this ensures that the number of comparisons will not
621 # increase. The sources to the ior and iand are not symmetric, so the
622 # rules have to be duplicated to get this behavior.
623 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
624 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
625 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
626 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
627 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
628 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
629 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
630 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
631
632 # Common pattern like 'if (i == 0 || i == 1 || ...)'
633 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
634 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
635 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
636
637 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
638 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
639 # so emit an open-coded version of that.
640 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
641 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
642
643 (('ior', a, ('ieq', a, False)), True),
644 (('ior', a, ('inot', a)), -1),
645
646 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
647 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
648
649 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', a, b), 0), '!options->lower_bitops'),
650 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('ior', a, b), 0), '!options->lower_bitops'),
651
652 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
653 # The first part of the iand comes from the !__feq64_nonnan.
654 #
655 # The second pattern is a reformulation of the first based on the relation
656 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
657 # happens to be y == 0.
658 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
659 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
660 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
661 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
662
663 # These patterns can result when (a < b || a < c) => (a < min(b, c))
664 # transformations occur before constant propagation and loop-unrolling.
665 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
666 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
667 (('~fge', a, ('fmin', b, a)), True),
668 (('~fge', ('fmax', a, b), a), True),
669 (('~flt', a, ('fmin', b, a)), False),
670 (('~flt', ('fmax', a, b), a), False),
671 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
672 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
673
674 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
675 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
676 (('ige', a, ('imin', b, a)), True),
677 (('ige', ('imax', a, b), a), True),
678 (('ult', a, ('umax', b, a)), ('ult', a, b)),
679 (('ult', ('umin', a, b), a), ('ult', b, a)),
680 (('uge', a, ('umin', b, a)), True),
681 (('uge', ('umax', a, b), a), True),
682 (('ilt', a, ('imin', b, a)), False),
683 (('ilt', ('imax', a, b), a), False),
684 (('ige', a, ('imax', b, a)), ('ige', a, b)),
685 (('ige', ('imin', a, b), a), ('ige', b, a)),
686 (('ult', a, ('umin', b, a)), False),
687 (('ult', ('umax', a, b), a), False),
688 (('uge', a, ('umax', b, a)), ('uge', a, b)),
689 (('uge', ('umin', a, b), a), ('uge', b, a)),
690 (('ult', a, ('iand', b, a)), False),
691 (('ult', ('ior', a, b), a), False),
692 (('uge', a, ('iand', b, a)), True),
693 (('uge', ('ior', a, b), a), True),
694
695 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
696 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
697 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
698 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
699 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
700 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
701 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
702 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
703 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
704 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
705 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
706 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
707 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
708 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
709 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
710 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
711
712 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
713 # negative.
714 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
715 ('iabs', ('ishr', a, b))),
716 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
717
718 (('fabs', ('slt', a, b)), ('slt', a, b)),
719 (('fabs', ('sge', a, b)), ('sge', a, b)),
720 (('fabs', ('seq', a, b)), ('seq', a, b)),
721 (('fabs', ('sne', a, b)), ('sne', a, b)),
722 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
723 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
724 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
725 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
726 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
727 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
728 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
729 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
730 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
731 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
732 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
733 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
734 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
735 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
736 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
737 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
738 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
739 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
740 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
741 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
742 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
743 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
744 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
745 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
746 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
747 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
748 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
749 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
750 # Emulating booleans
751 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
752 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
753 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
754 (('iand', 'a@bool32', 1.0), ('b2f', a)),
755 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
756 (('ineg', ('b2i32', 'a@32')), a),
757 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
758 # Comparison with the same args. Note that these are not done for
759 # the float versions because NaN always returns false on float
760 # inequalities.
761 (('ilt', a, a), False),
762 (('ige', a, a), True),
763 (('ieq', a, a), True),
764 (('ine', a, a), False),
765 (('ult', a, a), False),
766 (('uge', a, a), True),
767 # Logical and bit operations
768 (('iand', a, a), a),
769 (('iand', a, ~0), a),
770 (('iand', a, 0), 0),
771 (('ior', a, a), a),
772 (('ior', a, 0), a),
773 (('ior', a, True), True),
774 (('ixor', a, a), 0),
775 (('ixor', a, 0), a),
776 (('inot', ('inot', a)), a),
777 (('ior', ('iand', a, b), b), b),
778 (('ior', ('ior', a, b), b), ('ior', a, b)),
779 (('iand', ('ior', a, b), b), b),
780 (('iand', ('iand', a, b), b), ('iand', a, b)),
781 # DeMorgan's Laws
782 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
783 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
784 # Shift optimizations
785 (('ishl', 0, a), 0),
786 (('ishl', a, 0), a),
787 (('ishr', 0, a), 0),
788 (('ishr', a, 0), a),
789 (('ushr', 0, a), 0),
790 (('ushr', a, 0), a),
791 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
792 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
793 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
794 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
795 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
796 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
797 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
798 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
799 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
800 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
801 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
802 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
803 # Exponential/logarithmic identities
804 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
805 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
806 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
807 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
808 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
809 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
810 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
811 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
812 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
813 (('~fpow', a, 1.0), a),
814 (('~fpow', a, 2.0), ('fmul', a, a)),
815 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
816 (('~fpow', 2.0, a), ('fexp2', a)),
817 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
818 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
819 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
820 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
821 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
822 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
823 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
824 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
825 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
826 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
827 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
828 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
829 # Division and reciprocal
830 (('~fdiv', 1.0, a), ('frcp', a)),
831 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
832 (('~frcp', ('frcp', a)), a),
833 (('~frcp', ('fsqrt', a)), ('frsq', a)),
834 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
835 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
836 # Trig
837 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
838 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
839 # Boolean simplifications
840 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
841 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
842 (('ieq', a, True), a),
843 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
844 (('ine', a, False), a),
845 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
846 (('bcsel', a, True, False), a),
847 (('bcsel', a, False, True), ('inot', a)),
848 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
849 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
850 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
851 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
852 (('bcsel', True, b, c), b),
853 (('bcsel', False, b, c), c),
854 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
855
856 (('bcsel', a, b, b), b),
857 (('~fcsel', a, b, b), b),
858
859 # D3D Boolean emulation
860 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
861 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
862 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
863 ('ineg', ('b2i', ('iand', a, b)))),
864 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
865 ('ineg', ('b2i', ('ior', a, b)))),
866 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
867 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
868 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
869 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
870 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
871 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
872
873 # SM5 32-bit shifts are defined to use the 5 least significant bits
874 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
875 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
876 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
877
878 # Conversions
879 (('i2b32', ('b2i', 'a@32')), a),
880 (('f2i', ('ftrunc', a)), ('f2i', a)),
881 (('f2u', ('ftrunc', a)), ('f2u', a)),
882 (('i2b', ('ineg', a)), ('i2b', a)),
883 (('i2b', ('iabs', a)), ('i2b', a)),
884 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
885
886 # The C spec says, "If the value of the integral part cannot be represented
887 # by the integer type, the behavior is undefined." "Undefined" can mean
888 # "the conversion doesn't happen at all."
889 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
890
891 # Ironically, mark these as imprecise because removing the conversions may
892 # preserve more precision than doing the conversions (e.g.,
893 # uint(float(0x81818181u)) == 0x81818200).
894 (('~f2i32', ('i2f', 'a@32')), a),
895 (('~f2i32', ('u2f', 'a@32')), a),
896 (('~f2u32', ('i2f', 'a@32')), a),
897 (('~f2u32', ('u2f', 'a@32')), a),
898
899 # Conversions from 16 bits to 32 bits and back can always be removed
900 (('f2f16', ('f2f32', 'a@16')), a),
901 (('f2fmp', ('f2f32', 'a@16')), a),
902 (('i2i16', ('i2i32', 'a@16')), a),
903 (('i2imp', ('i2i32', 'a@16')), a),
904 (('u2u16', ('u2u32', 'a@16')), a),
905 (('u2ump', ('u2u32', 'a@16')), a),
906 (('f2f16', ('b2f32', 'a@1')), ('b2f16', a)),
907 (('f2fmp', ('b2f32', 'a@1')), ('b2f16', a)),
908 (('i2i16', ('b2i32', 'a@1')), ('b2i16', a)),
909 (('i2imp', ('b2i32', 'a@1')), ('b2i16', a)),
910 (('u2u16', ('b2i32', 'a@1')), ('b2i16', a)),
911 (('u2ump', ('b2i32', 'a@1')), ('b2i16', a)),
912 # Conversions to 16 bits would be lossy so they should only be removed if
913 # the instruction was generated by the precision lowering pass.
914 (('f2f32', ('f2fmp', 'a@32')), a),
915 (('i2i32', ('i2imp', 'a@32')), a),
916 (('u2u32', ('u2ump', 'a@32')), a),
917
918 (('ffloor', 'a(is_integral)'), a),
919 (('fceil', 'a(is_integral)'), a),
920 (('ftrunc', 'a(is_integral)'), a),
921 # fract(x) = x - floor(x), so fract(NaN) = NaN
922 (('~ffract', 'a(is_integral)'), 0.0),
923 (('fabs', 'a(is_not_negative)'), a),
924 (('iabs', 'a(is_not_negative)'), a),
925 (('fsat', 'a(is_not_positive)'), 0.0),
926
927 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
928 # says:
929 #
930 # It is undefined to convert a negative floating-point value to an
931 # uint.
932 #
933 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
934 # some optimizations in the i965 backend to proceed.
935 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
936 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
937 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
938 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
939
940 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
941
942 # The result of the multiply must be in [-1, 0], so the result of the ffma
943 # must be in [0, 1].
944 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
945 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
946 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
947 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
948
949 (('fne', 'a(is_not_zero)', 0.0), True),
950 (('feq', 'a(is_not_zero)', 0.0), False),
951
952 # In this chart, + means value > 0 and - means value < 0.
953 #
954 # + >= + -> unknown 0 >= + -> false - >= + -> false
955 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
956 # + >= - -> true 0 >= - -> true - >= - -> unknown
957 #
958 # Using grouping conceptually similar to a Karnaugh map...
959 #
960 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
961 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
962 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
963 #
964 # The flt / ilt cases just invert the expected result.
965 #
966 # The results expecting true, must be marked imprecise. The results
967 # expecting false are fine because NaN compared >= or < anything is false.
968
969 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
970 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
971 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
972
973 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
974 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
975 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
976
977 (('ine', 'a(is_not_zero)', 0), True),
978 (('ieq', 'a(is_not_zero)', 0), False),
979
980 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
981 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
982 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
983
984 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
985 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
986 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
987
988 (('ult', 0, 'a(is_gt_zero)'), True),
989 (('ult', a, 0), False),
990
991 # Packing and then unpacking does nothing
992 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
993 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
994 (('unpack_64_2x32', ('pack_64_2x32_split', a, b)), ('vec2', a, b)),
995 (('unpack_64_2x32', ('pack_64_2x32', a)), a),
996 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
997 ('unpack_64_2x32_split_y', a)), a),
998 (('pack_64_2x32', ('vec2', ('unpack_64_2x32_split_x', a),
999 ('unpack_64_2x32_split_y', a))), a),
1000 (('pack_64_2x32', ('unpack_64_2x32', a)), a),
1001
1002 # Comparing two halves of an unpack separately. While this optimization
1003 # should be correct for non-constant values, it's less obvious that it's
1004 # useful in that case. For constant values, the pack will fold and we're
1005 # guaranteed to reduce the whole tree to one instruction.
1006 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
1007 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
1008 ('ieq', a, ('pack_32_2x16_split', b, c))),
1009
1010 # Byte extraction
1011 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1012 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1013 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
1014 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1015 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1016 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
1017 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1018
1019 (('ubfe', a, 0, 8), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1020 (('ubfe', a, 8, 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1021 (('ubfe', a, 16, 8), ('extract_u8', a, 2), '!options->lower_extract_byte'),
1022 (('ubfe', a, 24, 8), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1023 (('ibfe', a, 0, 8), ('extract_i8', a, 0), '!options->lower_extract_byte'),
1024 (('ibfe', a, 8, 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1025 (('ibfe', a, 16, 8), ('extract_i8', a, 2), '!options->lower_extract_byte'),
1026 (('ibfe', a, 24, 8), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1027
1028 # Word extraction
1029 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1030 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1031 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1032 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1033 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1034
1035 (('ubfe', a, 0, 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1036 (('ubfe', a, 16, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1037 (('ibfe', a, 0, 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1038 (('ibfe', a, 16, 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1039
1040 # Useless masking before unpacking
1041 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
1042 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
1043 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
1044 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
1045 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
1046 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
1047
1048 (('unpack_half_2x16_split_x', ('extract_u16', a, 0)), ('unpack_half_2x16_split_x', a)),
1049 (('unpack_half_2x16_split_x', ('extract_u16', a, 1)), ('unpack_half_2x16_split_y', a)),
1050 (('unpack_32_2x16_split_x', ('extract_u16', a, 0)), ('unpack_32_2x16_split_x', a)),
1051 (('unpack_32_2x16_split_x', ('extract_u16', a, 1)), ('unpack_32_2x16_split_y', a)),
1052
1053 # Optimize half packing
1054 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1055 (('ushr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1056
1057 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1058 ('pack_half_2x16', ('vec2', a, b))),
1059 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1060 ('pack_half_2x16', ('vec2', a, b))),
1061
1062 (('ishl', ('pack_half_2x16_split', a, 0), 16), ('pack_half_2x16_split', 0, a)),
1063 (('ushr', ('pack_half_2x16_split', 0, a), 16), ('pack_half_2x16_split', a, 0)),
1064 (('extract_u16', ('pack_half_2x16_split', 0, a), 1), ('pack_half_2x16_split', a, 0)),
1065
1066 (('iadd', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1067 (('ior', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1068 ])
1069
1070 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1071 # patterns like those below.
1072 for op in ('ushr', 'ishr'):
1073 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1074 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1075 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1076
1077 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1078
1079 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1080 # patterns like those below.
1081 for op in ('extract_u8', 'extract_i8'):
1082 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1083 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1084 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1085
1086 optimizations.extend([
1087 # Subtracts
1088 (('ussub_4x8', a, 0), a),
1089 (('ussub_4x8', a, ~0), 0),
1090 # Lower all Subtractions first - they can get recombined later
1091 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1092 (('isub', a, b), ('iadd', a, ('ineg', b))),
1093 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1094 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1095 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1096
1097 # Propagate negation up multiplication chains
1098 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1099 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1100
1101 # Propagate constants up multiplication chains
1102 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1103 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1104 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1105 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1106
1107 # Reassociate constants in add/mul chains so they can be folded together.
1108 # For now, we mostly only handle cases where the constants are separated by
1109 # a single non-constant. We could do better eventually.
1110 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1111 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1112 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1113 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1114 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1115 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1116 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1117 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1118
1119 # Drop mul-div by the same value when there's no wrapping.
1120 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1121
1122 # By definition...
1123 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1124 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1125 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1126
1127 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1128 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1129 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1130
1131 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1132
1133 (('fmin3@64', a, b, c), ('fmin@64', a, ('fmin@64', b, c))),
1134 (('fmax3@64', a, b, c), ('fmax@64', a, ('fmax@64', b, c))),
1135 (('fmed3@64', a, b, c), ('fmax@64', ('fmin@64', ('fmax@64', a, b), c), ('fmin@64', a, b))),
1136
1137 # Misc. lowering
1138 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1139 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1140 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1141 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1142
1143 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1144 ('bcsel', ('ult', 31, 'bits'), 'insert',
1145 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1146 'options->lower_bitfield_insert'),
1147 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1148 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1149 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1150 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1151 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1152 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1153 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1154 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1155
1156 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1157 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1158 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1159 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1160
1161 # int64_t sum = a + b;
1162 #
1163 # if (a < 0 && b < 0 && a < sum)
1164 # sum = INT64_MIN;
1165 # } else if (a >= 0 && b >= 0 && sum < a)
1166 # sum = INT64_MAX;
1167 # }
1168 #
1169 # A couple optimizations are applied.
1170 #
1171 # 1. a < sum => sum >= 0. This replacement works because it is known that
1172 # a < 0 and b < 0, so sum should also be < 0 unless there was
1173 # underflow.
1174 #
1175 # 2. sum < a => sum < 0. This replacement works because it is known that
1176 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1177 # overflow.
1178 #
1179 # 3. Invert the second if-condition and swap the order of parameters for
1180 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1181 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1182 #
1183 # On Intel Gen11, this saves ~11 instructions.
1184 (('iadd_sat@64', a, b), ('bcsel',
1185 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1186 0x8000000000000000,
1187 ('bcsel',
1188 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1189 ('iadd', a, b),
1190 0x7fffffffffffffff)),
1191 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1192
1193 # int64_t sum = a - b;
1194 #
1195 # if (a < 0 && b >= 0 && a < sum)
1196 # sum = INT64_MIN;
1197 # } else if (a >= 0 && b < 0 && a >= sum)
1198 # sum = INT64_MAX;
1199 # }
1200 #
1201 # Optimizations similar to the iadd_sat case are applied here.
1202 (('isub_sat@64', a, b), ('bcsel',
1203 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1204 0x8000000000000000,
1205 ('bcsel',
1206 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1207 ('isub', a, b),
1208 0x7fffffffffffffff)),
1209 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1210
1211 # These are done here instead of in the backend because the int64 lowering
1212 # pass will make a mess of the patterns. The first patterns are
1213 # conditioned on nir_lower_minmax64 because it was not clear that it was
1214 # always an improvement on platforms that have real int64 support. No
1215 # shaders in shader-db hit this, so it was hard to say one way or the
1216 # other.
1217 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1218 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1219 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1220 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1221 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1222 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1223
1224 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1225 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1226 # 0u < uint(a) <=> uint(a) != 0u
1227 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1228
1229 # Alternative lowering that doesn't rely on bfi.
1230 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1231 ('bcsel', ('ult', 31, 'bits'),
1232 'insert',
1233 (('ior',
1234 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1235 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1236 'options->lower_bitfield_insert_to_shifts'),
1237
1238 # Alternative lowering that uses bitfield_select.
1239 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1240 ('bcsel', ('ult', 31, 'bits'), 'insert',
1241 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1242 'options->lower_bitfield_insert_to_bitfield_select'),
1243
1244 (('ibitfield_extract', 'value', 'offset', 'bits'),
1245 ('bcsel', ('ult', 31, 'bits'), 'value',
1246 ('ibfe', 'value', 'offset', 'bits')),
1247 'options->lower_bitfield_extract'),
1248
1249 (('ubitfield_extract', 'value', 'offset', 'bits'),
1250 ('bcsel', ('ult', 31, 'bits'), 'value',
1251 ('ubfe', 'value', 'offset', 'bits')),
1252 'options->lower_bitfield_extract'),
1253
1254 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1255 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1256 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1257 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1258 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1259 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1260 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1261
1262 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1263 #
1264 # If bits is zero, the result will be zero.
1265 #
1266 # These patterns prevent other patterns from generating invalid results
1267 # when count is zero.
1268 (('ubfe', a, b, 0), 0),
1269 (('ibfe', a, b, 0), 0),
1270
1271 (('ubfe', a, 0, '#b'), ('iand', a, ('ushr', 0xffffffff, ('ineg', b)))),
1272
1273 (('b2i32', ('i2b', ('ubfe', a, b, 1))), ('ubfe', a, b, 1)),
1274 (('b2i32', ('i2b', ('ibfe', a, b, 1))), ('ubfe', a, b, 1)), # ubfe in the replacement is correct
1275 (('ine', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1276 (('ieq', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1277 (('ine', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1278 (('ieq', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1279
1280 (('ibitfield_extract', 'value', 'offset', 'bits'),
1281 ('bcsel', ('ieq', 0, 'bits'),
1282 0,
1283 ('ishr',
1284 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1285 ('isub', 32, 'bits'))),
1286 'options->lower_bitfield_extract_to_shifts'),
1287
1288 (('ubitfield_extract', 'value', 'offset', 'bits'),
1289 ('iand',
1290 ('ushr', 'value', 'offset'),
1291 ('bcsel', ('ieq', 'bits', 32),
1292 0xffffffff,
1293 ('isub', ('ishl', 1, 'bits'), 1))),
1294 'options->lower_bitfield_extract_to_shifts'),
1295
1296 (('ifind_msb', 'value'),
1297 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1298 'options->lower_ifind_msb'),
1299
1300 (('find_lsb', 'value'),
1301 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1302 'options->lower_find_lsb'),
1303
1304 (('extract_i8', a, 'b@32'),
1305 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1306 'options->lower_extract_byte'),
1307
1308 (('extract_u8', a, 'b@32'),
1309 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1310 'options->lower_extract_byte'),
1311
1312 (('extract_i16', a, 'b@32'),
1313 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1314 'options->lower_extract_word'),
1315
1316 (('extract_u16', a, 'b@32'),
1317 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1318 'options->lower_extract_word'),
1319
1320 (('pack_unorm_2x16', 'v'),
1321 ('pack_uvec2_to_uint',
1322 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1323 'options->lower_pack_unorm_2x16'),
1324
1325 (('pack_unorm_4x8', 'v'),
1326 ('pack_uvec4_to_uint',
1327 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1328 'options->lower_pack_unorm_4x8'),
1329
1330 (('pack_snorm_2x16', 'v'),
1331 ('pack_uvec2_to_uint',
1332 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1333 'options->lower_pack_snorm_2x16'),
1334
1335 (('pack_snorm_4x8', 'v'),
1336 ('pack_uvec4_to_uint',
1337 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1338 'options->lower_pack_snorm_4x8'),
1339
1340 (('unpack_unorm_2x16', 'v'),
1341 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1342 ('extract_u16', 'v', 1))),
1343 65535.0),
1344 'options->lower_unpack_unorm_2x16'),
1345
1346 (('unpack_unorm_4x8', 'v'),
1347 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1348 ('extract_u8', 'v', 1),
1349 ('extract_u8', 'v', 2),
1350 ('extract_u8', 'v', 3))),
1351 255.0),
1352 'options->lower_unpack_unorm_4x8'),
1353
1354 (('unpack_snorm_2x16', 'v'),
1355 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1356 ('extract_i16', 'v', 1))),
1357 32767.0))),
1358 'options->lower_unpack_snorm_2x16'),
1359
1360 (('unpack_snorm_4x8', 'v'),
1361 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1362 ('extract_i8', 'v', 1),
1363 ('extract_i8', 'v', 2),
1364 ('extract_i8', 'v', 3))),
1365 127.0))),
1366 'options->lower_unpack_snorm_4x8'),
1367
1368 (('pack_half_2x16_split', 'a@32', 'b@32'),
1369 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1370 'options->lower_pack_split'),
1371
1372 (('unpack_half_2x16_split_x', 'a@32'),
1373 ('f2f32', ('u2u16', a)),
1374 'options->lower_pack_split'),
1375
1376 (('unpack_half_2x16_split_y', 'a@32'),
1377 ('f2f32', ('u2u16', ('ushr', a, 16))),
1378 'options->lower_pack_split'),
1379
1380 (('pack_32_2x16_split', 'a@16', 'b@16'),
1381 ('ior', ('ishl', ('u2u32', b), 16), ('u2u32', a)),
1382 'options->lower_pack_split'),
1383
1384 (('unpack_32_2x16_split_x', 'a@32'),
1385 ('u2u16', a),
1386 'options->lower_pack_split'),
1387
1388 (('unpack_32_2x16_split_y', 'a@32'),
1389 ('u2u16', ('ushr', 'a', 16)),
1390 'options->lower_pack_split'),
1391
1392 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1393 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1394
1395 # Address/offset calculations:
1396 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1397 # rule converts everyone else to imul:
1398 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1399
1400 (('umul24', a, b),
1401 ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)),
1402 '!options->has_umul24'),
1403 (('umad24', a, b, c),
1404 ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c),
1405 '!options->has_umad24'),
1406
1407 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1408 (('imad24_ir3', a, 0, c), (c)),
1409 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1410
1411 # if first two srcs are const, crack apart the imad so constant folding
1412 # can clean up the imul:
1413 # TODO ffma should probably get a similar rule:
1414 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1415
1416 # These will turn 24b address/offset calc back into 32b shifts, but
1417 # it should be safe to get back some of the bits of precision that we
1418 # already decided were no necessary:
1419 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1420 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1421 (('imul24', a, 0), (0)),
1422 ])
1423
1424 # bit_size dependent lowerings
1425 for bit_size in [8, 16, 32, 64]:
1426 # convenience constants
1427 intmax = (1 << (bit_size - 1)) - 1
1428 intmin = 1 << (bit_size - 1)
1429
1430 optimizations += [
1431 (('iadd_sat@' + str(bit_size), a, b),
1432 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1433 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1434 (('isub_sat@' + str(bit_size), a, b),
1435 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1436 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1437 ]
1438
1439 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1440
1441 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1442 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1443 ('iand', (invert[left], a, b), (invert[right], c, d))))
1444 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1445 ('ior', (invert[left], a, b), (invert[right], c, d))))
1446
1447 # Optimize x2bN(b2x(x)) -> x
1448 for size in type_sizes('bool'):
1449 aN = 'a@' + str(size)
1450 f2bN = 'f2b' + str(size)
1451 i2bN = 'i2b' + str(size)
1452 optimizations.append(((f2bN, ('b2f', aN)), a))
1453 optimizations.append(((i2bN, ('b2i', aN)), a))
1454
1455 # Optimize x2yN(b2x(x)) -> b2y
1456 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1457 if x != 'f' and y != 'f' and x != y:
1458 continue
1459
1460 b2x = 'b2f' if x == 'f' else 'b2i'
1461 b2y = 'b2f' if y == 'f' else 'b2i'
1462 x2yN = '{}2{}'.format(x, y)
1463 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1464
1465 # Optimize away x2xN(a@N)
1466 for t in ['int', 'uint', 'float', 'bool']:
1467 for N in type_sizes(t):
1468 x2xN = '{0}2{0}{1}'.format(t[0], N)
1469 aN = 'a@{0}'.format(N)
1470 optimizations.append(((x2xN, aN), a))
1471
1472 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1473 # In particular, we can optimize away everything except upcast of downcast and
1474 # upcasts where the type differs from the other cast
1475 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1476 if N < M:
1477 # The outer cast is a down-cast. It doesn't matter what the size of the
1478 # argument of the inner cast is because we'll never been in the upcast
1479 # of downcast case. Regardless of types, we'll always end up with y2yN
1480 # in the end.
1481 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1482 x2xN = '{0}2{0}{1}'.format(x, N)
1483 y2yM = '{0}2{0}{1}'.format(y, M)
1484 y2yN = '{0}2{0}{1}'.format(y, N)
1485 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1486 elif N > M:
1487 # If the outer cast is an up-cast, we have to be more careful about the
1488 # size of the argument of the inner cast and with types. In this case,
1489 # the type is always the type of type up-cast which is given by the
1490 # outer cast.
1491 for P in type_sizes('uint'):
1492 # We can't optimize away up-cast of down-cast.
1493 if M < P:
1494 continue
1495
1496 # Because we're doing down-cast of down-cast, the types always have
1497 # to match between the two casts
1498 for x in ['i', 'u']:
1499 x2xN = '{0}2{0}{1}'.format(x, N)
1500 x2xM = '{0}2{0}{1}'.format(x, M)
1501 aP = 'a@{0}'.format(P)
1502 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1503 else:
1504 # The N == M case is handled by other optimizations
1505 pass
1506
1507 # Downcast operations should be able to see through pack
1508 for t in ['i', 'u']:
1509 for N in [8, 16, 32]:
1510 x2xN = '{0}2{0}{1}'.format(t, N)
1511 optimizations += [
1512 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1513 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1514 ]
1515
1516 # Optimize comparisons with up-casts
1517 for t in ['int', 'uint', 'float']:
1518 for N, M in itertools.product(type_sizes(t), repeat=2):
1519 if N == 1 or N >= M:
1520 continue
1521
1522 cond = 'true'
1523 if N == 8:
1524 cond = 'options->support_8bit_alu'
1525 elif N == 16:
1526 cond = 'options->support_16bit_alu'
1527 x2xM = '{0}2{0}{1}'.format(t[0], M)
1528 x2xN = '{0}2{0}{1}'.format(t[0], N)
1529 aN = 'a@' + str(N)
1530 bN = 'b@' + str(N)
1531 xeq = 'feq' if t == 'float' else 'ieq'
1532 xne = 'fne' if t == 'float' else 'ine'
1533 xge = '{0}ge'.format(t[0])
1534 xlt = '{0}lt'.format(t[0])
1535
1536 # Up-casts are lossless so for correctly signed comparisons of
1537 # up-casted values we can do the comparison at the largest of the two
1538 # original sizes and drop one or both of the casts. (We have
1539 # optimizations to drop the no-op casts which this may generate.)
1540 for P in type_sizes(t):
1541 if P == 1 or P > N:
1542 continue
1543
1544 bP = 'b@' + str(P)
1545 optimizations += [
1546 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond),
1547 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond),
1548 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond),
1549 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond),
1550 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond),
1551 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond),
1552 ]
1553
1554 # The next bit doesn't work on floats because the range checks would
1555 # get way too complicated.
1556 if t in ['int', 'uint']:
1557 if t == 'int':
1558 xN_min = -(1 << (N - 1))
1559 xN_max = (1 << (N - 1)) - 1
1560 elif t == 'uint':
1561 xN_min = 0
1562 xN_max = (1 << N) - 1
1563 else:
1564 assert False
1565
1566 # If we're up-casting and comparing to a constant, we can unfold
1567 # the comparison into a comparison with the shrunk down constant
1568 # and a check that the constant fits in the smaller bit size.
1569 optimizations += [
1570 ((xeq, (x2xM, aN), '#b'),
1571 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond),
1572 ((xne, (x2xM, aN), '#b'),
1573 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond),
1574 ((xlt, (x2xM, aN), '#b'),
1575 ('iand', (xlt, xN_min, b),
1576 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond),
1577 ((xlt, '#a', (x2xM, bN)),
1578 ('iand', (xlt, a, xN_max),
1579 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond),
1580 ((xge, (x2xM, aN), '#b'),
1581 ('iand', (xge, xN_max, b),
1582 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond),
1583 ((xge, '#a', (x2xM, bN)),
1584 ('iand', (xge, a, xN_min),
1585 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond),
1586 ]
1587
1588 def fexp2i(exp, bits):
1589 # Generate an expression which constructs value 2.0^exp or 0.0.
1590 #
1591 # We assume that exp is already in a valid range:
1592 #
1593 # * [-15, 15] for 16-bit float
1594 # * [-127, 127] for 32-bit float
1595 # * [-1023, 1023] for 16-bit float
1596 #
1597 # If exp is the lowest value in the valid range, a value of 0.0 is
1598 # constructed. Otherwise, the value 2.0^exp is constructed.
1599 if bits == 16:
1600 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1601 elif bits == 32:
1602 return ('ishl', ('iadd', exp, 127), 23)
1603 elif bits == 64:
1604 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1605 else:
1606 assert False
1607
1608 def ldexp(f, exp, bits):
1609 # The maximum possible range for a normal exponent is [-126, 127] and,
1610 # throwing in denormals, you get a maximum range of [-149, 127]. This
1611 # means that we can potentially have a swing of +-276. If you start with
1612 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1613 # all the way to zero. The GLSL spec only requires that we handle a subset
1614 # of this range. From version 4.60 of the spec:
1615 #
1616 # "If exp is greater than +128 (single-precision) or +1024
1617 # (double-precision), the value returned is undefined. If exp is less
1618 # than -126 (single-precision) or -1022 (double-precision), the value
1619 # returned may be flushed to zero. Additionally, splitting the value
1620 # into a significand and exponent using frexp() and then reconstructing
1621 # a floating-point value using ldexp() should yield the original input
1622 # for zero and all finite non-denormalized values."
1623 #
1624 # The SPIR-V spec has similar language.
1625 #
1626 # In order to handle the maximum value +128 using the fexp2i() helper
1627 # above, we have to split the exponent in half and do two multiply
1628 # operations.
1629 #
1630 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1631 # twice the full range that is valid for the fexp2i() function above. If
1632 # exp/2 is the bottom value of that range, the fexp2i() expression will
1633 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1634 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1635 # value is clamped from above, then it must have been above the supported
1636 # range of the GLSL built-in and therefore any return value is acceptable.
1637 if bits == 16:
1638 exp = ('imin', ('imax', exp, -30), 30)
1639 elif bits == 32:
1640 exp = ('imin', ('imax', exp, -254), 254)
1641 elif bits == 64:
1642 exp = ('imin', ('imax', exp, -2046), 2046)
1643 else:
1644 assert False
1645
1646 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1647 # (We use ishr which isn't the same for -1, but the -1 case still works
1648 # since we use exp-exp/2 as the second exponent.) While the spec
1649 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1650 # work with denormals and doesn't allow for the full swing in exponents
1651 # that you can get with normalized values. Instead, we create two powers
1652 # of two and multiply by them each in turn. That way the effective range
1653 # of our exponent is doubled.
1654 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1655 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1656 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1657
1658 optimizations += [
1659 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1660 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1661 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1662 ]
1663
1664 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1665 def bitfield_reverse(u):
1666 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1667 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1668 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1669 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1670 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1671
1672 return step5
1673
1674 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1675
1676 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1677 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1678 # and, if a is a NaN then the second comparison will fail anyway.
1679 for op in ['flt', 'fge', 'feq']:
1680 optimizations += [
1681 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1682 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1683 ]
1684
1685 # Add optimizations to handle the case where the result of a ternary is
1686 # compared to a constant. This way we can take things like
1687 #
1688 # (a ? 0 : 1) > 0
1689 #
1690 # and turn it into
1691 #
1692 # a ? (0 > 0) : (1 > 0)
1693 #
1694 # which constant folding will eat for lunch. The resulting ternary will
1695 # further get cleaned up by the boolean reductions above and we will be
1696 # left with just the original variable "a".
1697 for op in ['flt', 'fge', 'feq', 'fne',
1698 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1699 optimizations += [
1700 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1701 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1702 ((op, '#d', ('bcsel', a, '#b', '#c')),
1703 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1704 ]
1705
1706
1707 # For example, this converts things like
1708 #
1709 # 1 + mix(0, a - 1, condition)
1710 #
1711 # into
1712 #
1713 # mix(1, (a-1)+1, condition)
1714 #
1715 # Other optimizations will rearrange the constants.
1716 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1717 optimizations += [
1718 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1719 ]
1720
1721 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1722 # states:
1723 #
1724 # If neither layout qualifier is specified, derivatives in compute shaders
1725 # return zero, which is consistent with the handling of built-in texture
1726 # functions like texture() in GLSL 4.50 compute shaders.
1727 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1728 'fddy', 'fddy_fine', 'fddy_coarse']:
1729 optimizations += [
1730 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1731 ]
1732
1733 # Some optimizations for ir3-specific instructions.
1734 optimizations += [
1735 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1736 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1737 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1738 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1739 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1740 ]
1741
1742 # These kinds of sequences can occur after nir_opt_peephole_select.
1743 #
1744 # NOTE: fadd is not handled here because that gets in the way of ffma
1745 # generation in the i965 driver. Instead, fadd and ffma are handled in
1746 # late_optimizations.
1747
1748 for op in ['flrp']:
1749 optimizations += [
1750 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1751 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1752 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1753 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1754 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1755 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1756 ]
1757
1758 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1759 optimizations += [
1760 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1761 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1762 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1763 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1764 ]
1765
1766 for op in ['fpow']:
1767 optimizations += [
1768 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1769 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1770 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1771 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1772 ]
1773
1774 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1775 optimizations += [
1776 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1777 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1778 ]
1779
1780 # This section contains optimizations to propagate downsizing conversions of
1781 # constructed vectors into vectors of downsized components. Whether this is
1782 # useful depends on the SIMD semantics of the backend. On a true SIMD machine,
1783 # this reduces the register pressure of the vector itself and often enables the
1784 # conversions to be eliminated via other algebraic rules or constant folding.
1785 # In the worst case on a SIMD architecture, the propagated conversions may be
1786 # revectorized via nir_opt_vectorize so instruction count is minimally
1787 # impacted.
1788 #
1789 # On a machine with SIMD-within-a-register only, this actually
1790 # counterintuitively hurts instruction count. These machines are the same that
1791 # require vectorize_vec2_16bit, so we predicate the optimizations on that flag
1792 # not being set.
1793 #
1794 # Finally for scalar architectures, there should be no difference in generated
1795 # code since it all ends up scalarized at the end, but it might minimally help
1796 # compile-times.
1797
1798 for i in range(2, 4 + 1):
1799 for T in ('f', 'u', 'i'):
1800 vec_inst = ('vec' + str(i),)
1801
1802 indices = ['a', 'b', 'c', 'd']
1803 suffix_in = tuple((indices[j] + '@32') for j in range(i))
1804
1805 to_16 = '{}2{}16'.format(T, T)
1806 to_mp = '{}2{}mp'.format(T, T)
1807
1808 out_16 = tuple((to_16, indices[j]) for j in range(i))
1809 out_mp = tuple((to_mp, indices[j]) for j in range(i))
1810
1811 optimizations += [
1812 ((to_16, vec_inst + suffix_in), vec_inst + out_16, '!options->vectorize_vec2_16bit'),
1813 ((to_mp, vec_inst + suffix_in), vec_inst + out_mp, '!options->vectorize_vec2_16bit')
1814 ]
1815
1816 # This section contains "late" optimizations that should be run before
1817 # creating ffmas and calling regular optimizations for the final time.
1818 # Optimizations should go here if they help code generation and conflict
1819 # with the regular optimizations.
1820 before_ffma_optimizations = [
1821 # Propagate constants down multiplication chains
1822 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1823 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1824 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1825 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1826
1827 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1828 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1829 (('~fadd', ('fneg', a), a), 0.0),
1830 (('iadd', ('ineg', a), a), 0),
1831 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1832 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1833 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1834 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1835
1836 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1837 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1838 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1839 ]
1840
1841 # This section contains "late" optimizations that should be run after the
1842 # regular optimizations have finished. Optimizations should go here if
1843 # they help code generation but do not necessarily produce code that is
1844 # more easily optimizable.
1845 late_optimizations = [
1846 # Most of these optimizations aren't quite safe when you get infinity or
1847 # Nan involved but the first one should be fine.
1848 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1849 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1850 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1851 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1852 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1853 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1854
1855 # nir_lower_to_source_mods will collapse this, but its existence during the
1856 # optimization loop can prevent other optimizations.
1857 (('fneg', ('fneg', a)), a),
1858
1859 # Subtractions get lowered during optimization, so we need to recombine them
1860 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1861 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1862 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1863 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1864
1865 # These are duplicated from the main optimizations table. The late
1866 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1867 # new patterns like these. The patterns that compare with zero are removed
1868 # because they are unlikely to be created in by anything in
1869 # late_optimizations.
1870 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1871 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1872 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1873 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1874 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1875 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1876
1877 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1878 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1879
1880 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1881
1882 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1883 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1884 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1885 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1886 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1887 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1888 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1889 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1890 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1891 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1892
1893 (('ior', a, a), a),
1894 (('iand', a, a), a),
1895
1896 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1897 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1898
1899 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1900
1901 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1902 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1903 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1904 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1905
1906 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1907 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1908
1909 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1910 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1911
1912 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1913 # particular operation is common for expanding values stored in a texture
1914 # from [0,1] to [-1,1].
1915 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1916 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1917 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1918 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1919 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1920 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1921 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1922 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1923
1924 # flrp(a, b, a)
1925 # a*(1-a) + b*a
1926 # a + -a*a + a*b (1)
1927 # a + a*(b - a)
1928 # Option 1: ffma(a, (b-a), a)
1929 #
1930 # Alternately, after (1):
1931 # a*(1+b) + -a*a
1932 # a*((1+b) + -a)
1933 #
1934 # Let b=1
1935 #
1936 # Option 2: ffma(a, 2, -(a*a))
1937 # Option 3: ffma(a, 2, (-a)*a)
1938 # Option 4: ffma(a, -a, (2*a)
1939 # Option 5: a * (2 - a)
1940 #
1941 # There are a lot of other possible combinations.
1942 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1943 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1944 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1945 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1946 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1947
1948 # we do these late so that we don't get in the way of creating ffmas
1949 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1950 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1951
1952 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1953
1954 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1955 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1956 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1957 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1958
1959 # Things that look like DPH in the source shader may get expanded to
1960 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1961 # to NIR. After FFMA is generated, this can look like:
1962 #
1963 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1964 #
1965 # Reassociate the last addition into the first multiplication.
1966 #
1967 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1968 # shader stages on some outputs that are intended to be invariant. For
1969 # various reasons, this optimization may not be fully applied in all
1970 # shaders used for different rendering passes of the same geometry. This
1971 # can result in Z-fighting artifacts (at best). For now, disable this
1972 # optimization in these stages. See bugzilla #111490. In tessellation
1973 # stages applications seem to use 'precise' when necessary, so allow the
1974 # optimization in those stages.
1975 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1976 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1977 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1978 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1979
1980 # Convert *2*mp instructions to concrete *2*16 instructions. At this point
1981 # any conversions that could have been removed will have been removed in
1982 # nir_opt_algebraic so any remaining ones are required.
1983 (('f2fmp', a), ('f2f16', a)),
1984 (('i2imp', a), ('i2i16', a)),
1985 (('u2ump', a), ('u2u16', a)),
1986
1987 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1988 #
1989 # If bits is zero, the result will be zero.
1990 #
1991 # These prevent the next two lowerings generating incorrect results when
1992 # count is zero.
1993 (('ubfe', a, b, 0), 0),
1994 (('ibfe', a, b, 0), 0),
1995
1996 # On Intel GPUs, BFE is a 3-source instruction. Like all 3-source
1997 # instructions on Intel GPUs, it cannot have an immediate values as
1998 # sources. There are also limitations on source register strides. As a
1999 # result, it is very easy for 3-source instruction combined with either
2000 # loads of immediate values or copies from weird register strides to be
2001 # more expensive than the primitive instructions it represents.
2002 (('ubfe', a, '#b', '#c'), ('iand', ('ushr', 0xffffffff, ('ineg', c)), ('ushr', a, b)), 'options->lower_bfe_with_two_constants'),
2003
2004 # b is the lowest order bit to be extracted and c is the number of bits to
2005 # extract. The inner shift removes the bits above b + c by shifting left
2006 # 32 - (b + c). ishl only sees the low 5 bits of the shift count, which is
2007 # -(b + c). The outer shift moves the bit that was at b to bit zero.
2008 # After the first shift, that bit is now at b + (32 - (b + c)) or 32 - c.
2009 # This means that it must be shifted right by 32 - c or -c bits.
2010 (('ibfe', a, '#b', '#c'), ('ishr', ('ishl', a, ('ineg', ('iadd', b, c))), ('ineg', c)), 'options->lower_bfe_with_two_constants'),
2011
2012 # Clean up no-op shifts that may result from the bfe lowerings.
2013 (('ishl', a, 0), a),
2014 (('ishl', a, -32), a),
2015 (('ishr', a, 0), a),
2016 (('ishr', a, -32), a),
2017 (('ushr', a, 0), a),
2018 ]
2019
2020 for op in ['fadd']:
2021 late_optimizations += [
2022 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
2023 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
2024 ]
2025
2026 for op in ['ffma']:
2027 late_optimizations += [
2028 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2029 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2030
2031 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2032 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2033 ]
2034
2035 distribute_src_mods = [
2036 # Try to remove some spurious negations rather than pushing them down.
2037 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
2038 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
2039 (('fdot_replicated2', ('fneg', a), ('fneg', b)), ('fdot_replicated2', a, b)),
2040 (('fdot_replicated3', ('fneg', a), ('fneg', b)), ('fdot_replicated3', a, b)),
2041 (('fdot_replicated4', ('fneg', a), ('fneg', b)), ('fdot_replicated4', a, b)),
2042 (('fneg', ('fneg', a)), a),
2043
2044 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
2045 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
2046 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
2047
2048 # Note that fmin <-> fmax. I don't think there is a way to distribute
2049 # fabs() into fmin or fmax.
2050 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
2051 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
2052
2053 # fdph works mostly like fdot, but to get the correct result, the negation
2054 # must be applied to the second source.
2055 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
2056 (('fabs', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', ('fabs', a), ('fabs', b))),
2057
2058 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
2059 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
2060 ]
2061
2062 for op in ['fmul', 'fdot_replicated2', 'fdot_replicated3', 'fdot_replicated4']:
2063 distribute_src_mods.extend([
2064 (('fneg', (op + '(is_used_once)', a, b)), (op, ('fneg', a), b)),
2065 (('fabs', (op + '(is_used_once)', a, b)), (op, ('fabs', a), ('fabs', b))),
2066 ])
2067
2068 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
2069 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
2070 before_ffma_optimizations).render())
2071 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
2072 late_optimizations).render())
2073 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
2074 distribute_src_mods).render())