nir: Move nir_lower_mediump_outputs from ir3
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fneg', a)), ('fabs', a)),
113 (('fabs', ('u2f', a)), ('u2f', a)),
114 (('iabs', ('iabs', a)), ('iabs', a)),
115 (('iabs', ('ineg', a)), ('iabs', a)),
116 (('f2b', ('fneg', a)), ('f2b', a)),
117 (('i2b', ('ineg', a)), ('i2b', a)),
118 (('~fadd', a, 0.0), a),
119 (('iadd', a, 0), a),
120 (('usadd_4x8', a, 0), a),
121 (('usadd_4x8', a, ~0), ~0),
122 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
123 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
124 (('~fadd', ('fneg', a), a), 0.0),
125 (('iadd', ('ineg', a), a), 0),
126 (('iadd', ('ineg', a), ('iadd', a, b)), b),
127 (('iadd', a, ('iadd', ('ineg', a), b)), b),
128 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
129 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
130 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
131 (('~fmul', a, 0.0), 0.0),
132 (('imul', a, 0), 0),
133 (('umul_unorm_4x8', a, 0), 0),
134 (('umul_unorm_4x8', a, ~0), a),
135 (('~fmul', a, 1.0), a),
136 (('imul', a, 1), a),
137 (('fmul', a, -1.0), ('fneg', a)),
138 (('imul', a, -1), ('ineg', a)),
139 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
140 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
141 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
142 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
143 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
144 (('~ffma', 0.0, a, b), b),
145 (('~ffma', a, b, 0.0), ('fmul', a, b)),
146 (('ffma', 1.0, a, b), ('fadd', a, b)),
147 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
148 (('~flrp', a, b, 0.0), a),
149 (('~flrp', a, b, 1.0), b),
150 (('~flrp', a, a, b), a),
151 (('~flrp', 0.0, a, b), ('fmul', a, b)),
152
153 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
154 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
155 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
156 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
157
158 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
159 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
160
161 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
162 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
163
164 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
165
166 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
167 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
168 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
169 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
170 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
171 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
172 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
173 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
174 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
175 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
176 # These are the same as the previous three rules, but it depends on
177 # 1-fsat(x) <=> fsat(1-x). See below.
178 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
179 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
180
181 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
182 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
183 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
184 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
185 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
186
187 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
188 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
189
190 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
191
192 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
193 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
194 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
195 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
196
197 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
198 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
199
200 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
201 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
202
203 # Lower fdot to fsum when it is available
204 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
205 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
208
209 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
210 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
211 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
212 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
213
214 # 1 - ((1 - a) * (1 - b))
215 # 1 - (1 - a - b + a*b)
216 # 1 - 1 + a + b - a*b
217 # a + b - a*b
218 # a + b*(1 - a)
219 # b*(1 - a) + 1*a
220 # flrp(b, 1, a)
221 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
222 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
223
224 # (a * #b + #c) << #d
225 # ((a * #b) << #d) + (#c << #d)
226 # (a * (#b << #d)) + (#c << #d)
227 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
228 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
229
230 # (a * #b) << #c
231 # a * (#b << #c)
232 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
233 ]
234
235 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
236 # bits of the second source. These replacements must correctly handle the
237 # case where (b % bitsize) + (c % bitsize) >= bitsize.
238 for s in [8, 16, 32, 64]:
239 mask = (1 << s) - 1
240
241 ishl = "ishl@{}".format(s)
242 ishr = "ishr@{}".format(s)
243 ushr = "ushr@{}".format(s)
244
245 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
246
247 optimizations.extend([
248 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
249 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
250
251 # To get get -1 for large shifts of negative values, ishr must instead
252 # clamp the shift count to the maximum value.
253 ((ishr, (ishr, a, '#b'), '#c'),
254 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
255 ])
256
257 # Optimize a pattern of address calculation created by DXVK where the offset is
258 # divided by 4 and then multipled by 4. This can be turned into an iand and the
259 # additions before can be reassociated to CSE the iand instruction.
260 for log2 in range(1, 7): # powers of two from 2 to 64
261 v = 1 << log2
262 mask = 0xffffffff & ~(v - 1)
263 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
264
265 optimizations.extend([
266 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
267 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
268
269 # Reassociate for improved CSE
270 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
271 ])
272
273 # To save space in the state tables, reduce to the set that is known to help.
274 # Previously, this was range(1, 32). In addition, a couple rules inside the
275 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
276 # resolution.
277 for i in [1, 2, 16, 24]:
278 lo_mask = 0xffffffff >> i
279 hi_mask = (0xffffffff << i) & 0xffffffff
280
281 optimizations.extend([
282 # This pattern seems to only help in the soft-fp64 code.
283 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
284 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
285 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
286
287 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
288 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
289 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
290 ])
291
292 optimizations.extend([
293 # This is common for address calculations. Reassociating may enable the
294 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
295 # instruction or a constant offset field for in load / store instructions.
296 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
297
298 # Comparison simplifications
299 (('~inot', ('flt', a, b)), ('fge', a, b)),
300 (('~inot', ('fge', a, b)), ('flt', a, b)),
301 (('inot', ('feq', a, b)), ('fne', a, b)),
302 (('inot', ('fne', a, b)), ('feq', a, b)),
303 (('inot', ('ilt', a, b)), ('ige', a, b)),
304 (('inot', ('ult', a, b)), ('uge', a, b)),
305 (('inot', ('ige', a, b)), ('ilt', a, b)),
306 (('inot', ('uge', a, b)), ('ult', a, b)),
307 (('inot', ('ieq', a, b)), ('ine', a, b)),
308 (('inot', ('ine', a, b)), ('ieq', a, b)),
309
310 (('iand', ('feq', a, b), ('fne', a, b)), False),
311 (('iand', ('flt', a, b), ('flt', b, a)), False),
312 (('iand', ('ieq', a, b), ('ine', a, b)), False),
313 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
314 (('iand', ('ult', a, b), ('ult', b, a)), False),
315
316 # This helps some shaders because, after some optimizations, they end up
317 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
318 # matching would be handled by CSE.
319 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
320 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
321 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
322 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
323 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
324 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
325 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
326 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
327 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
328 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
329
330 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
331 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
332 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
333 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
334 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
335 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
336
337 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
338 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
339 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
340 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
341
342 # 0.0 >= b2f(a)
343 # b2f(a) <= 0.0
344 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
345 # inot(a)
346 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
347
348 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
349
350 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
351 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
352 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
353 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
354 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
355 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
356 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
357 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
358 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
359 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
360 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
361 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
362 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
364 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
365 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
366 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
368 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
369 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
370
371 # -(b2f(a) + b2f(b)) < 0
372 # 0 < b2f(a) + b2f(b)
373 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
374 # a || b
375 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
376 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
377
378 # -(b2f(a) + b2f(b)) >= 0
379 # 0 >= b2f(a) + b2f(b)
380 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
381 # !(a || b)
382 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
383 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
384
385 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
386 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
387
388 # Some optimizations (below) convert things like (a < b || c < b) into
389 # (min(a, c) < b). However, this interfers with the previous optimizations
390 # that try to remove comparisons with negated sums of b2f. This just
391 # breaks that apart.
392 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
393 ('ior', ('flt', c, 0.0), ('ior', a, b))),
394
395 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
396 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
397 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
398 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
399 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
400 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
401 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
402 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
403 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
404 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
405 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
406 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
407
408 # Cannot remove the addition from ilt or ige due to overflow.
409 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
410 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
411
412 # fmin(-b2f(a), b) >= 0.0
413 # -b2f(a) >= 0.0 && b >= 0.0
414 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
415 # b2f(a) == 0.0 && b >= 0.0
416 # a == False && b >= 0.0
417 # !a && b >= 0.0
418 #
419 # The fge in the second replacement is not a typo. I leave the proof that
420 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
421 # reader.
422 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
423 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
424
425 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
426 (('~fne', ('b2f', 'a@1'), 0.0), a),
427 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
428 (('ine', ('b2i', 'a@1'), 0), a),
429
430 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
431 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
432 (('fge', ('u2f', a), 0.0), True),
433 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
434 (('flt', ('u2f', a), 0.0), False),
435 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
436 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
437 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
438 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
439 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
440 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
441 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
442
443 # 0.0 < fabs(a)
444 # fabs(a) > 0.0
445 # fabs(a) != 0.0 because fabs(a) must be >= 0
446 # a != 0.0
447 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
448
449 # -fabs(a) < 0.0
450 # fabs(a) > 0.0
451 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
452
453 # 0.0 >= fabs(a)
454 # 0.0 == fabs(a) because fabs(a) must be >= 0
455 # 0.0 == a
456 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
457
458 # -fabs(a) >= 0.0
459 # 0.0 >= fabs(a)
460 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
461
462 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
463 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
464
465 # (a < 0.0) || (a > 1.0)
466 # !(!(a < 0.0) && !(a > 1.0))
467 # !((a >= 0.0) && (a <= 1.0))
468 # !(a == fsat(a))
469 # a != fsat(a)
470 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
471
472 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
473 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
474 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
475 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
476
477 # fmin(b2f(a), b)
478 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
479 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
480 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
481 #
482 # Since b is a constant, constant folding will eliminate the fmin and the
483 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
484 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
485
486 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
487
488 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
489 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
490 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
491 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
492 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
493 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
494 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
495 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
496 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
497 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
498 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
499 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
500 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
501 (('bcsel', a, True, b), ('ior', a, b)),
502 (('bcsel', a, a, b), ('ior', a, b)),
503 (('bcsel', a, b, False), ('iand', a, b)),
504 (('bcsel', a, b, a), ('iand', a, b)),
505 (('~fmin', a, a), a),
506 (('~fmax', a, a), a),
507 (('imin', a, a), a),
508 (('imax', a, a), a),
509 (('umin', a, a), a),
510 (('umax', a, a), a),
511 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
512 (('umax', ('umax', a, b), b), ('umax', a, b)),
513 (('imax', ('imax', a, b), b), ('imax', a, b)),
514 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
515 (('umin', ('umin', a, b), b), ('umin', a, b)),
516 (('imin', ('imin', a, b), b), ('imin', a, b)),
517 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
518
519 # Simplify logic to detect sign of an integer.
520 (('ieq', ('iand', a, 0x80000000), 0x00000000), ('ige', a, 0)),
521 (('ine', ('iand', a, 0x80000000), 0x80000000), ('ige', a, 0)),
522 (('ine', ('iand', a, 0x80000000), 0x00000000), ('ilt', a, 0)),
523 (('ieq', ('iand', a, 0x80000000), 0x80000000), ('ilt', a, 0)),
524 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
525 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
526 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
527 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
528 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
529 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
530 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
531 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
532
533 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
534 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
535 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
536 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
537 (('~fmin', a, ('fabs', a)), a),
538 (('imin', a, ('iabs', a)), a),
539 (('~fmax', a, ('fneg', ('fabs', a))), a),
540 (('imax', a, ('ineg', ('iabs', a))), a),
541 (('fmax', a, ('fabs', a)), ('fabs', a)),
542 (('imax', a, ('iabs', a)), ('iabs', a)),
543 (('fmax', a, ('fneg', a)), ('fabs', a)),
544 (('imax', a, ('ineg', a)), ('iabs', a)),
545 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
546 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
547 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
548 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
549 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
550 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
551 (('fsat', ('b2f', a)), ('b2f', a)),
552 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
553 (('fsat', ('fsat', a)), ('fsat', a)),
554 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
555 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
556 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
557 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
558 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
559 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
560 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
561 (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
562
563 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
564 # fsat(b-a).
565 #
566 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
567 #
568 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
569 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b@32(is_zero_to_one)'), 0.0),
570 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
571
572 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
573 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
574 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
575 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
576 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
577 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
578 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
579 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
580 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
581 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
582 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
583 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
584 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
585 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
586 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
587 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
588 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
589
590 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
591 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
592 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
593 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
594 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
595 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
596 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
597 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
598 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
599 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
600 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
601 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
602 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
603 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
604 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
605 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
606
607 # These derive from the previous patterns with the application of b < 0 <=>
608 # 0 < -b. The transformation should be applied if either comparison is
609 # used once as this ensures that the number of comparisons will not
610 # increase. The sources to the ior and iand are not symmetric, so the
611 # rules have to be duplicated to get this behavior.
612 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
613 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
614 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
615 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
616 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
617 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
618 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
619 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
620
621 # Common pattern like 'if (i == 0 || i == 1 || ...)'
622 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
623 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
624 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
625
626 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
627 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
628 # so emit an open-coded version of that.
629 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
630 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
631
632 (('ior', a, ('ieq', a, False)), True),
633 (('ior', a, ('inot', a)), -1),
634
635 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
636 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
637
638 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', a, b), 0), '!options->lower_bitops'),
639 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('ior', a, b), 0), '!options->lower_bitops'),
640
641 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
642 # The first part of the iand comes from the !__feq64_nonnan.
643 #
644 # The second pattern is a reformulation of the first based on the relation
645 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
646 # happens to be y == 0.
647 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
648 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
649 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
650 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
651
652 # These patterns can result when (a < b || a < c) => (a < min(b, c))
653 # transformations occur before constant propagation and loop-unrolling.
654 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
655 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
656 (('~fge', a, ('fmin', b, a)), True),
657 (('~fge', ('fmax', a, b), a), True),
658 (('~flt', a, ('fmin', b, a)), False),
659 (('~flt', ('fmax', a, b), a), False),
660 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
661 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
662
663 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
664 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
665 (('ige', a, ('imin', b, a)), True),
666 (('ige', ('imax', a, b), a), True),
667 (('ult', a, ('umax', b, a)), ('ult', a, b)),
668 (('ult', ('umin', a, b), a), ('ult', b, a)),
669 (('uge', a, ('umin', b, a)), True),
670 (('uge', ('umax', a, b), a), True),
671 (('ilt', a, ('imin', b, a)), False),
672 (('ilt', ('imax', a, b), a), False),
673 (('ige', a, ('imax', b, a)), ('ige', a, b)),
674 (('ige', ('imin', a, b), a), ('ige', b, a)),
675 (('ult', a, ('umin', b, a)), False),
676 (('ult', ('umax', a, b), a), False),
677 (('uge', a, ('umax', b, a)), ('uge', a, b)),
678 (('uge', ('umin', a, b), a), ('uge', b, a)),
679 (('ult', a, ('iand', b, a)), False),
680 (('ult', ('ior', a, b), a), False),
681 (('uge', a, ('iand', b, a)), True),
682 (('uge', ('ior', a, b), a), True),
683
684 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
685 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
686 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
687 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
688 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
689 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
690 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
691 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
692 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
693 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
694 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
695 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
696 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
697 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
698 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
699 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
700
701 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
702 # negative.
703 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
704 ('iabs', ('ishr', a, b))),
705 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
706
707 (('fabs', ('slt', a, b)), ('slt', a, b)),
708 (('fabs', ('sge', a, b)), ('sge', a, b)),
709 (('fabs', ('seq', a, b)), ('seq', a, b)),
710 (('fabs', ('sne', a, b)), ('sne', a, b)),
711 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
712 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
713 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
714 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
715 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
716 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
717 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
718 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
719 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
720 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
721 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
722 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
723 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
724 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
725 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
726 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
727 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
728 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
729 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
730 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
731 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
732 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
733 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
734 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
735 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
736 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
737 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
738 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
739 # Emulating booleans
740 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
741 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
742 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
743 (('iand', 'a@bool32', 1.0), ('b2f', a)),
744 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
745 (('ineg', ('b2i32', 'a@32')), a),
746 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
747 # Comparison with the same args. Note that these are not done for
748 # the float versions because NaN always returns false on float
749 # inequalities.
750 (('ilt', a, a), False),
751 (('ige', a, a), True),
752 (('ieq', a, a), True),
753 (('ine', a, a), False),
754 (('ult', a, a), False),
755 (('uge', a, a), True),
756 # Logical and bit operations
757 (('iand', a, a), a),
758 (('iand', a, ~0), a),
759 (('iand', a, 0), 0),
760 (('ior', a, a), a),
761 (('ior', a, 0), a),
762 (('ior', a, True), True),
763 (('ixor', a, a), 0),
764 (('ixor', a, 0), a),
765 (('inot', ('inot', a)), a),
766 (('ior', ('iand', a, b), b), b),
767 (('ior', ('ior', a, b), b), ('ior', a, b)),
768 (('iand', ('ior', a, b), b), b),
769 (('iand', ('iand', a, b), b), ('iand', a, b)),
770 # DeMorgan's Laws
771 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
772 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
773 # Shift optimizations
774 (('ishl', 0, a), 0),
775 (('ishl', a, 0), a),
776 (('ishr', 0, a), 0),
777 (('ishr', a, 0), a),
778 (('ushr', 0, a), 0),
779 (('ushr', a, 0), a),
780 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
781 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
782 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
783 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
784 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
785 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
786 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
787 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
788 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
789 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
790 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
791 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
792 # Exponential/logarithmic identities
793 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
794 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
795 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
796 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
797 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
798 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
799 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
800 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
801 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
802 (('~fpow', a, 1.0), a),
803 (('~fpow', a, 2.0), ('fmul', a, a)),
804 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
805 (('~fpow', 2.0, a), ('fexp2', a)),
806 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
807 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
808 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
809 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
810 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
811 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
812 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
813 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
814 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
815 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
816 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
817 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
818 # Division and reciprocal
819 (('~fdiv', 1.0, a), ('frcp', a)),
820 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
821 (('~frcp', ('frcp', a)), a),
822 (('~frcp', ('fsqrt', a)), ('frsq', a)),
823 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
824 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
825 # Trig
826 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
827 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
828 # Boolean simplifications
829 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
830 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
831 (('ieq', a, True), a),
832 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
833 (('ine', a, False), a),
834 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
835 (('bcsel', a, True, False), a),
836 (('bcsel', a, False, True), ('inot', a)),
837 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
838 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
839 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
840 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
841 (('bcsel', True, b, c), b),
842 (('bcsel', False, b, c), c),
843 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
844
845 (('bcsel', a, b, b), b),
846 (('~fcsel', a, b, b), b),
847
848 # D3D Boolean emulation
849 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
850 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
851 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
852 ('ineg', ('b2i', ('iand', a, b)))),
853 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
854 ('ineg', ('b2i', ('ior', a, b)))),
855 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
856 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
857 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
858 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
859 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
860 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
861
862 # SM5 32-bit shifts are defined to use the 5 least significant bits
863 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
864 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
865 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
866
867 # Conversions
868 (('i2b32', ('b2i', 'a@32')), a),
869 (('f2i', ('ftrunc', a)), ('f2i', a)),
870 (('f2u', ('ftrunc', a)), ('f2u', a)),
871 (('i2b', ('ineg', a)), ('i2b', a)),
872 (('i2b', ('iabs', a)), ('i2b', a)),
873 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
874
875 # The C spec says, "If the value of the integral part cannot be represented
876 # by the integer type, the behavior is undefined." "Undefined" can mean
877 # "the conversion doesn't happen at all."
878 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
879
880 # Ironically, mark these as imprecise because removing the conversions may
881 # preserve more precision than doing the conversions (e.g.,
882 # uint(float(0x81818181u)) == 0x81818200).
883 (('~f2i32', ('i2f', 'a@32')), a),
884 (('~f2i32', ('u2f', 'a@32')), a),
885 (('~f2u32', ('i2f', 'a@32')), a),
886 (('~f2u32', ('u2f', 'a@32')), a),
887
888 # Conversions from float16 to float32 and back can always be removed
889 (('f2f16', ('f2f32', 'a@16')), a),
890 (('f2fmp', ('f2f32', 'a@16')), a),
891 # Conversions to float16 would be lossy so they should only be removed if
892 # the instruction was generated by the precision lowering pass.
893 (('f2f32', ('f2fmp', 'a@32')), a),
894
895 (('ffloor', 'a(is_integral)'), a),
896 (('fceil', 'a(is_integral)'), a),
897 (('ftrunc', 'a(is_integral)'), a),
898 # fract(x) = x - floor(x), so fract(NaN) = NaN
899 (('~ffract', 'a(is_integral)'), 0.0),
900 (('fabs', 'a(is_not_negative)'), a),
901 (('iabs', 'a(is_not_negative)'), a),
902 (('fsat', 'a(is_not_positive)'), 0.0),
903
904 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
905 # says:
906 #
907 # It is undefined to convert a negative floating-point value to an
908 # uint.
909 #
910 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
911 # some optimizations in the i965 backend to proceed.
912 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
913 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
914 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
915 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
916
917 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
918
919 # The result of the multiply must be in [-1, 0], so the result of the ffma
920 # must be in [0, 1].
921 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
922 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
923 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
924 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
925
926 (('fne', 'a(is_not_zero)', 0.0), True),
927 (('feq', 'a(is_not_zero)', 0.0), False),
928
929 # In this chart, + means value > 0 and - means value < 0.
930 #
931 # + >= + -> unknown 0 >= + -> false - >= + -> false
932 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
933 # + >= - -> true 0 >= - -> true - >= - -> unknown
934 #
935 # Using grouping conceptually similar to a Karnaugh map...
936 #
937 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
938 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
939 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
940 #
941 # The flt / ilt cases just invert the expected result.
942 #
943 # The results expecting true, must be marked imprecise. The results
944 # expecting false are fine because NaN compared >= or < anything is false.
945
946 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
947 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
948 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
949
950 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
951 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
952 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
953
954 (('ine', 'a(is_not_zero)', 0), True),
955 (('ieq', 'a(is_not_zero)', 0), False),
956
957 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
958 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
959 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
960
961 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
962 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
963 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
964
965 (('ult', 0, 'a(is_gt_zero)'), True),
966 (('ult', a, 0), False),
967
968 # Packing and then unpacking does nothing
969 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
970 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
971 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
972 ('unpack_64_2x32_split_y', a)), a),
973
974 # Comparing two halves of an unpack separately. While this optimization
975 # should be correct for non-constant values, it's less obvious that it's
976 # useful in that case. For constant values, the pack will fold and we're
977 # guaranteed to reduce the whole tree to one instruction.
978 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
979 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
980 ('ieq', a, ('pack_32_2x16_split', b, c))),
981
982 # Byte extraction
983 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
984 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
985 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
986 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
987 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
988 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
989 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
990
991 # Useless masking before unpacking
992 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
993 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
994 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
995 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
996 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
997 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
998
999 # Optimize half packing
1000 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1001 (('ishr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1002
1003 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1004 ('pack_half_2x16', ('vec2', a, b))),
1005 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1006 ('pack_half_2x16', ('vec2', a, b))),
1007 ])
1008
1009 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1010 # patterns like those below.
1011 for op in ('ushr', 'ishr'):
1012 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1013 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1014 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1015
1016 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1017
1018 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1019 # patterns like those below.
1020 for op in ('extract_u8', 'extract_i8'):
1021 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1022 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1023 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1024
1025 optimizations.extend([
1026 # Word extraction
1027 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1028 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1029 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1030 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1031 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1032
1033 # Subtracts
1034 (('ussub_4x8', a, 0), a),
1035 (('ussub_4x8', a, ~0), 0),
1036 # Lower all Subtractions first - they can get recombined later
1037 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1038 (('isub', a, b), ('iadd', a, ('ineg', b))),
1039 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1040 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1041 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1042
1043 # Propagate negation up multiplication chains
1044 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1045 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1046
1047 # Propagate constants up multiplication chains
1048 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1049 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1050 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1051 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1052
1053 # Reassociate constants in add/mul chains so they can be folded together.
1054 # For now, we mostly only handle cases where the constants are separated by
1055 # a single non-constant. We could do better eventually.
1056 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1057 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1058 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1059 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1060 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1061 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1062 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1063 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1064
1065 # Drop mul-div by the same value when there's no wrapping.
1066 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1067
1068 # By definition...
1069 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1070 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1071 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1072
1073 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1074 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1075 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1076
1077 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1078
1079 (('fmin3@64', a, b, c), ('fmin@64', a, ('fmin@64', b, c))),
1080 (('fmax3@64', a, b, c), ('fmax@64', a, ('fmax@64', b, c))),
1081 (('fmed3@64', a, b, c), ('fmax@64', ('fmin@64', ('fmax@64', a, b), c), ('fmin@64', a, b))),
1082
1083 # Misc. lowering
1084 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1085 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1086 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1087 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1088
1089 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1090 ('bcsel', ('ult', 31, 'bits'), 'insert',
1091 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1092 'options->lower_bitfield_insert'),
1093 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1094 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1095 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1096 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1097 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1098 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1099 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1100 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1101
1102 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1103 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1104 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1105 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1106
1107 # int64_t sum = a + b;
1108 #
1109 # if (a < 0 && b < 0 && a < sum)
1110 # sum = INT64_MIN;
1111 # } else if (a >= 0 && b >= 0 && sum < a)
1112 # sum = INT64_MAX;
1113 # }
1114 #
1115 # A couple optimizations are applied.
1116 #
1117 # 1. a < sum => sum >= 0. This replacement works because it is known that
1118 # a < 0 and b < 0, so sum should also be < 0 unless there was
1119 # underflow.
1120 #
1121 # 2. sum < a => sum < 0. This replacement works because it is known that
1122 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1123 # overflow.
1124 #
1125 # 3. Invert the second if-condition and swap the order of parameters for
1126 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1127 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1128 #
1129 # On Intel Gen11, this saves ~11 instructions.
1130 (('iadd_sat@64', a, b), ('bcsel',
1131 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1132 0x8000000000000000,
1133 ('bcsel',
1134 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1135 ('iadd', a, b),
1136 0x7fffffffffffffff)),
1137 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1138
1139 # int64_t sum = a - b;
1140 #
1141 # if (a < 0 && b >= 0 && a < sum)
1142 # sum = INT64_MIN;
1143 # } else if (a >= 0 && b < 0 && a >= sum)
1144 # sum = INT64_MAX;
1145 # }
1146 #
1147 # Optimizations similar to the iadd_sat case are applied here.
1148 (('isub_sat@64', a, b), ('bcsel',
1149 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1150 0x8000000000000000,
1151 ('bcsel',
1152 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1153 ('isub', a, b),
1154 0x7fffffffffffffff)),
1155 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1156
1157 # These are done here instead of in the backend because the int64 lowering
1158 # pass will make a mess of the patterns. The first patterns are
1159 # conditioned on nir_lower_minmax64 because it was not clear that it was
1160 # always an improvement on platforms that have real int64 support. No
1161 # shaders in shader-db hit this, so it was hard to say one way or the
1162 # other.
1163 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1164 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1165 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1166 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1167 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1168 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1169
1170 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1171 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1172 # 0u < uint(a) <=> uint(a) != 0u
1173 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1174
1175 # Alternative lowering that doesn't rely on bfi.
1176 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1177 ('bcsel', ('ult', 31, 'bits'),
1178 'insert',
1179 (('ior',
1180 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1181 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1182 'options->lower_bitfield_insert_to_shifts'),
1183
1184 # Alternative lowering that uses bitfield_select.
1185 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1186 ('bcsel', ('ult', 31, 'bits'), 'insert',
1187 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1188 'options->lower_bitfield_insert_to_bitfield_select'),
1189
1190 (('ibitfield_extract', 'value', 'offset', 'bits'),
1191 ('bcsel', ('ult', 31, 'bits'), 'value',
1192 ('ibfe', 'value', 'offset', 'bits')),
1193 'options->lower_bitfield_extract'),
1194
1195 (('ubitfield_extract', 'value', 'offset', 'bits'),
1196 ('bcsel', ('ult', 31, 'bits'), 'value',
1197 ('ubfe', 'value', 'offset', 'bits')),
1198 'options->lower_bitfield_extract'),
1199
1200 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1201 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1202 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1203 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1204 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1205 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1206 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1207
1208 (('ibitfield_extract', 'value', 'offset', 'bits'),
1209 ('bcsel', ('ieq', 0, 'bits'),
1210 0,
1211 ('ishr',
1212 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1213 ('isub', 32, 'bits'))),
1214 'options->lower_bitfield_extract_to_shifts'),
1215
1216 (('ubitfield_extract', 'value', 'offset', 'bits'),
1217 ('iand',
1218 ('ushr', 'value', 'offset'),
1219 ('bcsel', ('ieq', 'bits', 32),
1220 0xffffffff,
1221 ('isub', ('ishl', 1, 'bits'), 1))),
1222 'options->lower_bitfield_extract_to_shifts'),
1223
1224 (('ifind_msb', 'value'),
1225 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1226 'options->lower_ifind_msb'),
1227
1228 (('find_lsb', 'value'),
1229 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1230 'options->lower_find_lsb'),
1231
1232 (('extract_i8', a, 'b@32'),
1233 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1234 'options->lower_extract_byte'),
1235
1236 (('extract_u8', a, 'b@32'),
1237 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1238 'options->lower_extract_byte'),
1239
1240 (('extract_i16', a, 'b@32'),
1241 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1242 'options->lower_extract_word'),
1243
1244 (('extract_u16', a, 'b@32'),
1245 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1246 'options->lower_extract_word'),
1247
1248 (('pack_unorm_2x16', 'v'),
1249 ('pack_uvec2_to_uint',
1250 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1251 'options->lower_pack_unorm_2x16'),
1252
1253 (('pack_unorm_4x8', 'v'),
1254 ('pack_uvec4_to_uint',
1255 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1256 'options->lower_pack_unorm_4x8'),
1257
1258 (('pack_snorm_2x16', 'v'),
1259 ('pack_uvec2_to_uint',
1260 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1261 'options->lower_pack_snorm_2x16'),
1262
1263 (('pack_snorm_4x8', 'v'),
1264 ('pack_uvec4_to_uint',
1265 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1266 'options->lower_pack_snorm_4x8'),
1267
1268 (('unpack_unorm_2x16', 'v'),
1269 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1270 ('extract_u16', 'v', 1))),
1271 65535.0),
1272 'options->lower_unpack_unorm_2x16'),
1273
1274 (('unpack_unorm_4x8', 'v'),
1275 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1276 ('extract_u8', 'v', 1),
1277 ('extract_u8', 'v', 2),
1278 ('extract_u8', 'v', 3))),
1279 255.0),
1280 'options->lower_unpack_unorm_4x8'),
1281
1282 (('unpack_snorm_2x16', 'v'),
1283 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1284 ('extract_i16', 'v', 1))),
1285 32767.0))),
1286 'options->lower_unpack_snorm_2x16'),
1287
1288 (('unpack_snorm_4x8', 'v'),
1289 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1290 ('extract_i8', 'v', 1),
1291 ('extract_i8', 'v', 2),
1292 ('extract_i8', 'v', 3))),
1293 127.0))),
1294 'options->lower_unpack_snorm_4x8'),
1295
1296 (('pack_half_2x16_split', 'a@32', 'b@32'),
1297 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1298 'options->lower_pack_half_2x16_split'),
1299
1300 (('unpack_half_2x16_split_x', 'a@32'),
1301 ('f2f32', ('u2u16', a)),
1302 'options->lower_unpack_half_2x16_split'),
1303
1304 (('unpack_half_2x16_split_y', 'a@32'),
1305 ('f2f32', ('u2u16', ('ushr', a, 16))),
1306 'options->lower_unpack_half_2x16_split'),
1307
1308 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1309 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1310
1311 # Address/offset calculations:
1312 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1313 # rule converts everyone else to imul:
1314 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1315
1316 (('umul24', a, b),
1317 ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)),
1318 '!options->has_umul24'),
1319 (('umad24', a, b, c),
1320 ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c),
1321 '!options->has_umad24'),
1322
1323 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1324 (('imad24_ir3', a, 0, c), (c)),
1325 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1326
1327 # if first two srcs are const, crack apart the imad so constant folding
1328 # can clean up the imul:
1329 # TODO ffma should probably get a similar rule:
1330 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1331
1332 # These will turn 24b address/offset calc back into 32b shifts, but
1333 # it should be safe to get back some of the bits of precision that we
1334 # already decided were no necessary:
1335 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1336 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1337 (('imul24', a, 0), (0)),
1338 ])
1339
1340 # bit_size dependent lowerings
1341 for bit_size in [8, 16, 32, 64]:
1342 # convenience constants
1343 intmax = (1 << (bit_size - 1)) - 1
1344 intmin = 1 << (bit_size - 1)
1345
1346 optimizations += [
1347 (('iadd_sat@' + str(bit_size), a, b),
1348 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1349 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1350 (('isub_sat@' + str(bit_size), a, b),
1351 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1352 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1353 ]
1354
1355 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1356
1357 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1358 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1359 ('iand', (invert[left], a, b), (invert[right], c, d))))
1360 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1361 ('ior', (invert[left], a, b), (invert[right], c, d))))
1362
1363 # Optimize x2bN(b2x(x)) -> x
1364 for size in type_sizes('bool'):
1365 aN = 'a@' + str(size)
1366 f2bN = 'f2b' + str(size)
1367 i2bN = 'i2b' + str(size)
1368 optimizations.append(((f2bN, ('b2f', aN)), a))
1369 optimizations.append(((i2bN, ('b2i', aN)), a))
1370
1371 # Optimize x2yN(b2x(x)) -> b2y
1372 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1373 if x != 'f' and y != 'f' and x != y:
1374 continue
1375
1376 b2x = 'b2f' if x == 'f' else 'b2i'
1377 b2y = 'b2f' if y == 'f' else 'b2i'
1378 x2yN = '{}2{}'.format(x, y)
1379 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1380
1381 # Optimize away x2xN(a@N)
1382 for t in ['int', 'uint', 'float', 'bool']:
1383 for N in type_sizes(t):
1384 x2xN = '{0}2{0}{1}'.format(t[0], N)
1385 aN = 'a@{0}'.format(N)
1386 optimizations.append(((x2xN, aN), a))
1387
1388 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1389 # In particular, we can optimize away everything except upcast of downcast and
1390 # upcasts where the type differs from the other cast
1391 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1392 if N < M:
1393 # The outer cast is a down-cast. It doesn't matter what the size of the
1394 # argument of the inner cast is because we'll never been in the upcast
1395 # of downcast case. Regardless of types, we'll always end up with y2yN
1396 # in the end.
1397 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1398 x2xN = '{0}2{0}{1}'.format(x, N)
1399 y2yM = '{0}2{0}{1}'.format(y, M)
1400 y2yN = '{0}2{0}{1}'.format(y, N)
1401 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1402 elif N > M:
1403 # If the outer cast is an up-cast, we have to be more careful about the
1404 # size of the argument of the inner cast and with types. In this case,
1405 # the type is always the type of type up-cast which is given by the
1406 # outer cast.
1407 for P in type_sizes('uint'):
1408 # We can't optimize away up-cast of down-cast.
1409 if M < P:
1410 continue
1411
1412 # Because we're doing down-cast of down-cast, the types always have
1413 # to match between the two casts
1414 for x in ['i', 'u']:
1415 x2xN = '{0}2{0}{1}'.format(x, N)
1416 x2xM = '{0}2{0}{1}'.format(x, M)
1417 aP = 'a@{0}'.format(P)
1418 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1419 else:
1420 # The N == M case is handled by other optimizations
1421 pass
1422
1423 # Downcast operations should be able to see through pack
1424 for t in ['i', 'u']:
1425 for N in [8, 16, 32]:
1426 x2xN = '{0}2{0}{1}'.format(t, N)
1427 optimizations += [
1428 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1429 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1430 ]
1431
1432 # Optimize comparisons with up-casts
1433 for t in ['int', 'uint', 'float']:
1434 for N, M in itertools.product(type_sizes(t), repeat=2):
1435 if N == 1 or N >= M:
1436 continue
1437
1438 cond = 'true'
1439 if N == 8:
1440 cond = 'options->support_8bit_alu'
1441 elif N == 16:
1442 cond = 'options->support_16bit_alu'
1443 x2xM = '{0}2{0}{1}'.format(t[0], M)
1444 x2xN = '{0}2{0}{1}'.format(t[0], N)
1445 aN = 'a@' + str(N)
1446 bN = 'b@' + str(N)
1447 xeq = 'feq' if t == 'float' else 'ieq'
1448 xne = 'fne' if t == 'float' else 'ine'
1449 xge = '{0}ge'.format(t[0])
1450 xlt = '{0}lt'.format(t[0])
1451
1452 # Up-casts are lossless so for correctly signed comparisons of
1453 # up-casted values we can do the comparison at the largest of the two
1454 # original sizes and drop one or both of the casts. (We have
1455 # optimizations to drop the no-op casts which this may generate.)
1456 for P in type_sizes(t):
1457 if P == 1 or P > N:
1458 continue
1459
1460 bP = 'b@' + str(P)
1461 optimizations += [
1462 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond),
1463 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond),
1464 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond),
1465 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond),
1466 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond),
1467 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond),
1468 ]
1469
1470 # The next bit doesn't work on floats because the range checks would
1471 # get way too complicated.
1472 if t in ['int', 'uint']:
1473 if t == 'int':
1474 xN_min = -(1 << (N - 1))
1475 xN_max = (1 << (N - 1)) - 1
1476 elif t == 'uint':
1477 xN_min = 0
1478 xN_max = (1 << N) - 1
1479 else:
1480 assert False
1481
1482 # If we're up-casting and comparing to a constant, we can unfold
1483 # the comparison into a comparison with the shrunk down constant
1484 # and a check that the constant fits in the smaller bit size.
1485 optimizations += [
1486 ((xeq, (x2xM, aN), '#b'),
1487 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond),
1488 ((xne, (x2xM, aN), '#b'),
1489 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond),
1490 ((xlt, (x2xM, aN), '#b'),
1491 ('iand', (xlt, xN_min, b),
1492 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond),
1493 ((xlt, '#a', (x2xM, bN)),
1494 ('iand', (xlt, a, xN_max),
1495 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond),
1496 ((xge, (x2xM, aN), '#b'),
1497 ('iand', (xge, xN_max, b),
1498 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond),
1499 ((xge, '#a', (x2xM, bN)),
1500 ('iand', (xge, a, xN_min),
1501 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond),
1502 ]
1503
1504 def fexp2i(exp, bits):
1505 # Generate an expression which constructs value 2.0^exp or 0.0.
1506 #
1507 # We assume that exp is already in a valid range:
1508 #
1509 # * [-15, 15] for 16-bit float
1510 # * [-127, 127] for 32-bit float
1511 # * [-1023, 1023] for 16-bit float
1512 #
1513 # If exp is the lowest value in the valid range, a value of 0.0 is
1514 # constructed. Otherwise, the value 2.0^exp is constructed.
1515 if bits == 16:
1516 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1517 elif bits == 32:
1518 return ('ishl', ('iadd', exp, 127), 23)
1519 elif bits == 64:
1520 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1521 else:
1522 assert False
1523
1524 def ldexp(f, exp, bits):
1525 # The maximum possible range for a normal exponent is [-126, 127] and,
1526 # throwing in denormals, you get a maximum range of [-149, 127]. This
1527 # means that we can potentially have a swing of +-276. If you start with
1528 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1529 # all the way to zero. The GLSL spec only requires that we handle a subset
1530 # of this range. From version 4.60 of the spec:
1531 #
1532 # "If exp is greater than +128 (single-precision) or +1024
1533 # (double-precision), the value returned is undefined. If exp is less
1534 # than -126 (single-precision) or -1022 (double-precision), the value
1535 # returned may be flushed to zero. Additionally, splitting the value
1536 # into a significand and exponent using frexp() and then reconstructing
1537 # a floating-point value using ldexp() should yield the original input
1538 # for zero and all finite non-denormalized values."
1539 #
1540 # The SPIR-V spec has similar language.
1541 #
1542 # In order to handle the maximum value +128 using the fexp2i() helper
1543 # above, we have to split the exponent in half and do two multiply
1544 # operations.
1545 #
1546 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1547 # twice the full range that is valid for the fexp2i() function above. If
1548 # exp/2 is the bottom value of that range, the fexp2i() expression will
1549 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1550 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1551 # value is clamped from above, then it must have been above the supported
1552 # range of the GLSL built-in and therefore any return value is acceptable.
1553 if bits == 16:
1554 exp = ('imin', ('imax', exp, -30), 30)
1555 elif bits == 32:
1556 exp = ('imin', ('imax', exp, -254), 254)
1557 elif bits == 64:
1558 exp = ('imin', ('imax', exp, -2046), 2046)
1559 else:
1560 assert False
1561
1562 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1563 # (We use ishr which isn't the same for -1, but the -1 case still works
1564 # since we use exp-exp/2 as the second exponent.) While the spec
1565 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1566 # work with denormals and doesn't allow for the full swing in exponents
1567 # that you can get with normalized values. Instead, we create two powers
1568 # of two and multiply by them each in turn. That way the effective range
1569 # of our exponent is doubled.
1570 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1571 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1572 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1573
1574 optimizations += [
1575 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1576 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1577 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1578 ]
1579
1580 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1581 def bitfield_reverse(u):
1582 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1583 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1584 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1585 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1586 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1587
1588 return step5
1589
1590 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1591
1592 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1593 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1594 # and, if a is a NaN then the second comparison will fail anyway.
1595 for op in ['flt', 'fge', 'feq']:
1596 optimizations += [
1597 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1598 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1599 ]
1600
1601 # Add optimizations to handle the case where the result of a ternary is
1602 # compared to a constant. This way we can take things like
1603 #
1604 # (a ? 0 : 1) > 0
1605 #
1606 # and turn it into
1607 #
1608 # a ? (0 > 0) : (1 > 0)
1609 #
1610 # which constant folding will eat for lunch. The resulting ternary will
1611 # further get cleaned up by the boolean reductions above and we will be
1612 # left with just the original variable "a".
1613 for op in ['flt', 'fge', 'feq', 'fne',
1614 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1615 optimizations += [
1616 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1617 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1618 ((op, '#d', ('bcsel', a, '#b', '#c')),
1619 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1620 ]
1621
1622
1623 # For example, this converts things like
1624 #
1625 # 1 + mix(0, a - 1, condition)
1626 #
1627 # into
1628 #
1629 # mix(1, (a-1)+1, condition)
1630 #
1631 # Other optimizations will rearrange the constants.
1632 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1633 optimizations += [
1634 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1635 ]
1636
1637 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1638 # states:
1639 #
1640 # If neither layout qualifier is specified, derivatives in compute shaders
1641 # return zero, which is consistent with the handling of built-in texture
1642 # functions like texture() in GLSL 4.50 compute shaders.
1643 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1644 'fddy', 'fddy_fine', 'fddy_coarse']:
1645 optimizations += [
1646 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1647 ]
1648
1649 # Some optimizations for ir3-specific instructions.
1650 optimizations += [
1651 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1652 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1653 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1654 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1655 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1656 ]
1657
1658 # These kinds of sequences can occur after nir_opt_peephole_select.
1659 #
1660 # NOTE: fadd is not handled here because that gets in the way of ffma
1661 # generation in the i965 driver. Instead, fadd and ffma are handled in
1662 # late_optimizations.
1663
1664 for op in ['flrp']:
1665 optimizations += [
1666 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1667 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1668 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1669 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1670 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1671 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1672 ]
1673
1674 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1675 optimizations += [
1676 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1677 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1678 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1679 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1680 ]
1681
1682 for op in ['fpow']:
1683 optimizations += [
1684 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1685 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1686 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1687 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1688 ]
1689
1690 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1691 optimizations += [
1692 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1693 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1694 ]
1695
1696 # This section contains "late" optimizations that should be run before
1697 # creating ffmas and calling regular optimizations for the final time.
1698 # Optimizations should go here if they help code generation and conflict
1699 # with the regular optimizations.
1700 before_ffma_optimizations = [
1701 # Propagate constants down multiplication chains
1702 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1703 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1704 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1705 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1706
1707 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1708 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1709 (('~fadd', ('fneg', a), a), 0.0),
1710 (('iadd', ('ineg', a), a), 0),
1711 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1712 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1713 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1714 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1715
1716 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1717 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1718 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1719 ]
1720
1721 # This section contains "late" optimizations that should be run after the
1722 # regular optimizations have finished. Optimizations should go here if
1723 # they help code generation but do not necessarily produce code that is
1724 # more easily optimizable.
1725 late_optimizations = [
1726 # Most of these optimizations aren't quite safe when you get infinity or
1727 # Nan involved but the first one should be fine.
1728 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1729 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1730 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1731 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1732 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1733 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1734
1735 # nir_lower_to_source_mods will collapse this, but its existence during the
1736 # optimization loop can prevent other optimizations.
1737 (('fneg', ('fneg', a)), a),
1738
1739 # Subtractions get lowered during optimization, so we need to recombine them
1740 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1741 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1742 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1743 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1744
1745 # These are duplicated from the main optimizations table. The late
1746 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1747 # new patterns like these. The patterns that compare with zero are removed
1748 # because they are unlikely to be created in by anything in
1749 # late_optimizations.
1750 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1751 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1752 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1753 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1754 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1755 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1756
1757 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1758 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1759
1760 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1761
1762 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1763 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1764 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1765 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1766 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1767 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1768 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1769 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1770 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1771 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1772
1773 (('ior', a, a), a),
1774 (('iand', a, a), a),
1775
1776 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1777 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1778
1779 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1780
1781 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1782 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1783 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1784 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1785
1786 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1787 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1788
1789 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1790 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1791
1792 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1793 # particular operation is common for expanding values stored in a texture
1794 # from [0,1] to [-1,1].
1795 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1796 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1797 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1798 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1799 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1800 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1801 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1802 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1803
1804 # flrp(a, b, a)
1805 # a*(1-a) + b*a
1806 # a + -a*a + a*b (1)
1807 # a + a*(b - a)
1808 # Option 1: ffma(a, (b-a), a)
1809 #
1810 # Alternately, after (1):
1811 # a*(1+b) + -a*a
1812 # a*((1+b) + -a)
1813 #
1814 # Let b=1
1815 #
1816 # Option 2: ffma(a, 2, -(a*a))
1817 # Option 3: ffma(a, 2, (-a)*a)
1818 # Option 4: ffma(a, -a, (2*a)
1819 # Option 5: a * (2 - a)
1820 #
1821 # There are a lot of other possible combinations.
1822 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1823 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1824 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1825 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1826 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1827
1828 # we do these late so that we don't get in the way of creating ffmas
1829 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1830 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1831
1832 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1833
1834 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1835 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1836 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1837 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1838
1839 # Things that look like DPH in the source shader may get expanded to
1840 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1841 # to NIR. After FFMA is generated, this can look like:
1842 #
1843 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1844 #
1845 # Reassociate the last addition into the first multiplication.
1846 #
1847 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1848 # shader stages on some outputs that are intended to be invariant. For
1849 # various reasons, this optimization may not be fully applied in all
1850 # shaders used for different rendering passes of the same geometry. This
1851 # can result in Z-fighting artifacts (at best). For now, disable this
1852 # optimization in these stages. See bugzilla #111490. In tessellation
1853 # stages applications seem to use 'precise' when necessary, so allow the
1854 # optimization in those stages.
1855 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1856 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1857 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1858 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1859
1860 # Convert f2fmp instructions to concrete f2f16 instructions. At this point
1861 # any conversions that could have been removed will have been removed in
1862 # nir_opt_algebraic so any remaining ones are required.
1863 (('f2fmp', a), ('f2f16', a)),
1864 ]
1865
1866 for op in ['fadd']:
1867 late_optimizations += [
1868 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1869 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1870 ]
1871
1872 for op in ['ffma']:
1873 late_optimizations += [
1874 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1875 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1876
1877 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1878 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1879 ]
1880
1881 distribute_src_mods = [
1882 # Try to remove some spurious negations rather than pushing them down.
1883 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
1884 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
1885 (('fdot_replicated2', ('fneg', a), ('fneg', b)), ('fdot_replicated2', a, b)),
1886 (('fdot_replicated3', ('fneg', a), ('fneg', b)), ('fdot_replicated3', a, b)),
1887 (('fdot_replicated4', ('fneg', a), ('fneg', b)), ('fdot_replicated4', a, b)),
1888 (('fneg', ('fneg', a)), a),
1889
1890 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
1891 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
1892 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
1893
1894 # Note that fmin <-> fmax. I don't think there is a way to distribute
1895 # fabs() into fmin or fmax.
1896 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
1897 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
1898
1899 # fdph works mostly like fdot, but to get the correct result, the negation
1900 # must be applied to the second source.
1901 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
1902 (('fabs', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', ('fabs', a), ('fabs', b))),
1903
1904 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
1905 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
1906 ]
1907
1908 for op in ['fmul', 'fdot_replicated2', 'fdot_replicated3', 'fdot_replicated4']:
1909 distribute_src_mods.extend([
1910 (('fneg', (op + '(is_used_once)', a, b)), (op, ('fneg', a), b)),
1911 (('fabs', (op + '(is_used_once)', a, b)), (op, ('fabs', a), ('fabs', b))),
1912 ])
1913
1914 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
1915 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
1916 before_ffma_optimizations).render())
1917 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
1918 late_optimizations).render())
1919 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
1920 distribute_src_mods).render())