nir/algebraic: add some half packing optimizations
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fabs', a)), ('fabs', a)),
113 (('fabs', ('fneg', a)), ('fabs', a)),
114 (('fabs', ('u2f', a)), ('u2f', a)),
115 (('iabs', ('iabs', a)), ('iabs', a)),
116 (('iabs', ('ineg', a)), ('iabs', a)),
117 (('f2b', ('fneg', a)), ('f2b', a)),
118 (('i2b', ('ineg', a)), ('i2b', a)),
119 (('~fadd', a, 0.0), a),
120 (('iadd', a, 0), a),
121 (('usadd_4x8', a, 0), a),
122 (('usadd_4x8', a, ~0), ~0),
123 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
124 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
125 (('~fadd', ('fneg', a), a), 0.0),
126 (('iadd', ('ineg', a), a), 0),
127 (('iadd', ('ineg', a), ('iadd', a, b)), b),
128 (('iadd', a, ('iadd', ('ineg', a), b)), b),
129 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
130 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
131 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
132 (('~fmul', a, 0.0), 0.0),
133 (('imul', a, 0), 0),
134 (('umul_unorm_4x8', a, 0), 0),
135 (('umul_unorm_4x8', a, ~0), a),
136 (('~fmul', a, 1.0), a),
137 (('imul', a, 1), a),
138 (('fmul', a, -1.0), ('fneg', a)),
139 (('imul', a, -1), ('ineg', a)),
140 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
141 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
142 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
143 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
144 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
145 (('~ffma', 0.0, a, b), b),
146 (('~ffma', a, b, 0.0), ('fmul', a, b)),
147 (('ffma', 1.0, a, b), ('fadd', a, b)),
148 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
149 (('~flrp', a, b, 0.0), a),
150 (('~flrp', a, b, 1.0), b),
151 (('~flrp', a, a, b), a),
152 (('~flrp', 0.0, a, b), ('fmul', a, b)),
153
154 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
155 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
156 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
157 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
158
159 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
160 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
161
162 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
163 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
164
165 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
166
167 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
168 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
169 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
170 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
171 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
172 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
173 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
174 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
175 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
176 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
177 # These are the same as the previous three rules, but it depends on
178 # 1-fsat(x) <=> fsat(1-x). See below.
179 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
180 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
181
182 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
183 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
184 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
185 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
186 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
187
188 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
189 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
190
191 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
192
193 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
194 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
195 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
196 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
197
198 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
199 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
200
201 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
202 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
203
204 # Lower fdot to fsum when it is available
205 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
209
210 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
211 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
212 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
213 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
214
215 # 1 - ((1 - a) * (1 - b))
216 # 1 - (1 - a - b + a*b)
217 # 1 - 1 + a + b - a*b
218 # a + b - a*b
219 # a + b*(1 - a)
220 # b*(1 - a) + 1*a
221 # flrp(b, 1, a)
222 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
223 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
224
225 # (a * #b + #c) << #d
226 # ((a * #b) << #d) + (#c << #d)
227 # (a * (#b << #d)) + (#c << #d)
228 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
229 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
230
231 # (a * #b) << #c
232 # a * (#b << #c)
233 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
234 ]
235
236 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
237 # bits of the second source. These replacements must correctly handle the
238 # case where (b % bitsize) + (c % bitsize) >= bitsize.
239 for s in [8, 16, 32, 64]:
240 mask = (1 << s) - 1
241
242 ishl = "ishl@{}".format(s)
243 ishr = "ishr@{}".format(s)
244 ushr = "ushr@{}".format(s)
245
246 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
247
248 optimizations.extend([
249 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
250 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
251
252 # To get get -1 for large shifts of negative values, ishr must instead
253 # clamp the shift count to the maximum value.
254 ((ishr, (ishr, a, '#b'), '#c'),
255 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
256 ])
257
258 # Optimize a pattern of address calculation created by DXVK where the offset is
259 # divided by 4 and then multipled by 4. This can be turned into an iand and the
260 # additions before can be reassociated to CSE the iand instruction.
261 for log2 in range(1, 7): # powers of two from 2 to 64
262 v = 1 << log2
263 mask = 0xffffffff & ~(v - 1)
264 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
265
266 optimizations.extend([
267 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
268 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
269
270 # Reassociate for improved CSE
271 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
272 ])
273
274 optimizations.extend([
275 # This is common for address calculations. Reassociating may enable the
276 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
277 # instruction or a constant offset field for in load / store instructions.
278 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
279
280 # Comparison simplifications
281 (('~inot', ('flt', a, b)), ('fge', a, b)),
282 (('~inot', ('fge', a, b)), ('flt', a, b)),
283 (('inot', ('feq', a, b)), ('fne', a, b)),
284 (('inot', ('fne', a, b)), ('feq', a, b)),
285 (('inot', ('ilt', a, b)), ('ige', a, b)),
286 (('inot', ('ult', a, b)), ('uge', a, b)),
287 (('inot', ('ige', a, b)), ('ilt', a, b)),
288 (('inot', ('uge', a, b)), ('ult', a, b)),
289 (('inot', ('ieq', a, b)), ('ine', a, b)),
290 (('inot', ('ine', a, b)), ('ieq', a, b)),
291
292 (('iand', ('feq', a, b), ('fne', a, b)), False),
293 (('iand', ('flt', a, b), ('flt', b, a)), False),
294 (('iand', ('ieq', a, b), ('ine', a, b)), False),
295 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
296 (('iand', ('ult', a, b), ('ult', b, a)), False),
297
298 # This helps some shaders because, after some optimizations, they end up
299 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
300 # matching would be handled by CSE.
301 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
302 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
303 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
304 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
305 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
306 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
307 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
308 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
309 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
310 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
311
312 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
313 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
314 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
315 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
316 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
317 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
318
319 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
320 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
321 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
322 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
323
324 # 0.0 >= b2f(a)
325 # b2f(a) <= 0.0
326 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
327 # inot(a)
328 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
329
330 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
331
332 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
333 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
334 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
335 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
336 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
337 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
338 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
339 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
340 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
341 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
342 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
343 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
344 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
345 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
346 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
347 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
348 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
349 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
350 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
351 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
352
353 # -(b2f(a) + b2f(b)) < 0
354 # 0 < b2f(a) + b2f(b)
355 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
356 # a || b
357 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
358 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
359
360 # -(b2f(a) + b2f(b)) >= 0
361 # 0 >= b2f(a) + b2f(b)
362 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
363 # !(a || b)
364 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
365 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
366
367 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
368 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
369
370 # Some optimizations (below) convert things like (a < b || c < b) into
371 # (min(a, c) < b). However, this interfers with the previous optimizations
372 # that try to remove comparisons with negated sums of b2f. This just
373 # breaks that apart.
374 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
375 ('ior', ('flt', c, 0.0), ('ior', a, b))),
376
377 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
378 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
379 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
380 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
381 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
382 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
383 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
384 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
385 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
386 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
387 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
388 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
389
390 # Cannot remove the addition from ilt or ige due to overflow.
391 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
392 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
393
394 # fmin(-b2f(a), b) >= 0.0
395 # -b2f(a) >= 0.0 && b >= 0.0
396 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
397 # b2f(a) == 0.0 && b >= 0.0
398 # a == False && b >= 0.0
399 # !a && b >= 0.0
400 #
401 # The fge in the second replacement is not a typo. I leave the proof that
402 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
403 # reader.
404 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
405 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
406
407 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
408 (('~fne', ('b2f', 'a@1'), 0.0), a),
409 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
410 (('ine', ('b2i', 'a@1'), 0), a),
411
412 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
413 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
414 (('fge', ('u2f', a), 0.0), True),
415 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
416 (('flt', ('u2f', a), 0.0), False),
417 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
418 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
419 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
420 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
421 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
422 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
423 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
424
425 # 0.0 < fabs(a)
426 # fabs(a) > 0.0
427 # fabs(a) != 0.0 because fabs(a) must be >= 0
428 # a != 0.0
429 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
430
431 # -fabs(a) < 0.0
432 # fabs(a) > 0.0
433 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
434
435 # 0.0 >= fabs(a)
436 # 0.0 == fabs(a) because fabs(a) must be >= 0
437 # 0.0 == a
438 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
439
440 # -fabs(a) >= 0.0
441 # 0.0 >= fabs(a)
442 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
443
444 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
445 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
446
447 # (a < 0.0) || (a > 1.0)
448 # !(!(a < 0.0) && !(a > 1.0))
449 # !((a >= 0.0) && (a <= 1.0))
450 # !(a == fsat(a))
451 # a != fsat(a)
452 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
453
454 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
455 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
456 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
457 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
458
459 # fmin(b2f(a), b)
460 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
461 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
462 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
463 #
464 # Since b is a constant, constant folding will eliminate the fmin and the
465 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
466 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
467
468 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
469
470 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
471 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
472 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
473 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
474 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
475 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
476 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
477 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
478 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
479 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
480 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
481 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
482 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
483 (('bcsel', a, True, b), ('ior', a, b)),
484 (('bcsel', a, a, b), ('ior', a, b)),
485 (('bcsel', a, b, False), ('iand', a, b)),
486 (('bcsel', a, b, a), ('iand', a, b)),
487 (('~fmin', a, a), a),
488 (('~fmax', a, a), a),
489 (('imin', a, a), a),
490 (('imax', a, a), a),
491 (('umin', a, a), a),
492 (('umax', a, a), a),
493 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
494 (('umax', ('umax', a, b), b), ('umax', a, b)),
495 (('imax', ('imax', a, b), b), ('imax', a, b)),
496 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
497 (('umin', ('umin', a, b), b), ('umin', a, b)),
498 (('imin', ('imin', a, b), b), ('imin', a, b)),
499 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
500 (('fmax', a, ('fneg', a)), ('fabs', a)),
501 (('imax', a, ('ineg', a)), ('iabs', a)),
502 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
503 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
504 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
505 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
506 (('~fmin', a, ('fabs', a)), a),
507 (('imin', a, ('iabs', a)), a),
508 (('~fmax', a, ('fneg', ('fabs', a))), a),
509 (('imax', a, ('ineg', ('iabs', a))), a),
510 (('fmax', a, ('fabs', a)), ('fabs', a)),
511 (('imax', a, ('iabs', a)), ('iabs', a)),
512 (('fmax', a, ('fneg', a)), ('fabs', a)),
513 (('imax', a, ('ineg', a)), ('iabs', a)),
514 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
515 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
516 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
517 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
518 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
519 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
520 (('fsat', ('b2f', a)), ('b2f', a)),
521 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
522 (('fsat', ('fsat', a)), ('fsat', a)),
523 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
524 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
525 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
526 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
527 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
528 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
529 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
530 (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
531 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
532 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
533 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
534 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
535 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
536 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
537 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
538 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
539 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
540 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
541 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
542 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
543 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
544 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
545 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
546 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
547 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
548
549 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
550 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
551 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
552 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
553 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
554 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
555 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
556 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
557 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
558 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
559 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
560 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
561 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
562 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
563 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
564 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
565
566 # These derive from the previous patterns with the application of b < 0 <=>
567 # 0 < -b. The transformation should be applied if either comparison is
568 # used once as this ensures that the number of comparisons will not
569 # increase. The sources to the ior and iand are not symmetric, so the
570 # rules have to be duplicated to get this behavior.
571 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
572 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
573 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
574 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
575 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
576 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
577 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
578 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
579
580 # Common pattern like 'if (i == 0 || i == 1 || ...)'
581 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
582 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
583 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
584
585 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
586 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
587 # so emit an open-coded version of that.
588 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
589 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
590
591 (('ior', a, ('ieq', a, False)), True),
592 (('ior', a, ('inot', a)), -1),
593
594 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
595 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
596
597 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', 'a@32', 'b@32'), 0), '!options->lower_bitops'),
598
599 # These patterns can result when (a < b || a < c) => (a < min(b, c))
600 # transformations occur before constant propagation and loop-unrolling.
601 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
602 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
603 (('~fge', a, ('fmin', b, a)), True),
604 (('~fge', ('fmax', a, b), a), True),
605 (('~flt', a, ('fmin', b, a)), False),
606 (('~flt', ('fmax', a, b), a), False),
607 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
608 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
609
610 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
611 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
612 (('ige', a, ('imin', b, a)), True),
613 (('ige', ('imax', a, b), a), True),
614 (('ult', a, ('umax', b, a)), ('ult', a, b)),
615 (('ult', ('umin', a, b), a), ('ult', b, a)),
616 (('uge', a, ('umin', b, a)), True),
617 (('uge', ('umax', a, b), a), True),
618 (('ilt', a, ('imin', b, a)), False),
619 (('ilt', ('imax', a, b), a), False),
620 (('ige', a, ('imax', b, a)), ('ige', a, b)),
621 (('ige', ('imin', a, b), a), ('ige', b, a)),
622 (('ult', a, ('umin', b, a)), False),
623 (('ult', ('umax', a, b), a), False),
624 (('uge', a, ('umax', b, a)), ('uge', a, b)),
625 (('uge', ('umin', a, b), a), ('uge', b, a)),
626 (('ult', a, ('iand', b, a)), False),
627 (('ult', ('ior', a, b), a), False),
628 (('uge', a, ('iand', b, a)), True),
629 (('uge', ('ior', a, b), a), True),
630
631 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
632 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
633 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
634 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
635 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
636 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
637 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
638 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
639 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
640 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
641 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
642 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
643 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
644 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
645 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
646 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
647
648 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
649 # negative.
650 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
651 ('iabs', ('ishr', a, b))),
652 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
653
654 (('fabs', ('slt', a, b)), ('slt', a, b)),
655 (('fabs', ('sge', a, b)), ('sge', a, b)),
656 (('fabs', ('seq', a, b)), ('seq', a, b)),
657 (('fabs', ('sne', a, b)), ('sne', a, b)),
658 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
659 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
660 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
661 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
662 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
663 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
664 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
665 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
666 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
667 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
668 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
669 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
670 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
671 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
672 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
673 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
674 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
675 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
676 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
677 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
678 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
679 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
680 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
681 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
682 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
683 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
684 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
685 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
686 # Emulating booleans
687 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
688 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
689 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
690 (('iand', 'a@bool32', 1.0), ('b2f', a)),
691 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
692 (('ineg', ('b2i32', 'a@32')), a),
693 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
694 # Comparison with the same args. Note that these are not done for
695 # the float versions because NaN always returns false on float
696 # inequalities.
697 (('ilt', a, a), False),
698 (('ige', a, a), True),
699 (('ieq', a, a), True),
700 (('ine', a, a), False),
701 (('ult', a, a), False),
702 (('uge', a, a), True),
703 # Logical and bit operations
704 (('iand', a, a), a),
705 (('iand', a, ~0), a),
706 (('iand', a, 0), 0),
707 (('ior', a, a), a),
708 (('ior', a, 0), a),
709 (('ior', a, True), True),
710 (('ixor', a, a), 0),
711 (('ixor', a, 0), a),
712 (('inot', ('inot', a)), a),
713 (('ior', ('iand', a, b), b), b),
714 (('ior', ('ior', a, b), b), ('ior', a, b)),
715 (('iand', ('ior', a, b), b), b),
716 (('iand', ('iand', a, b), b), ('iand', a, b)),
717 # DeMorgan's Laws
718 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
719 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
720 # Shift optimizations
721 (('ishl', 0, a), 0),
722 (('ishl', a, 0), a),
723 (('ishr', 0, a), 0),
724 (('ishr', a, 0), a),
725 (('ushr', 0, a), 0),
726 (('ushr', a, 0), a),
727 (('iand', 0xff, ('ushr@32', a, 24)), ('ushr', a, 24)),
728 (('iand', 0xffff, ('ushr@32', a, 16)), ('ushr', a, 16)),
729 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
730 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
731 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
732 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
733 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
734 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
735 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
736 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
737 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
738 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
739 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
740 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
741 # Exponential/logarithmic identities
742 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
743 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
744 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
745 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
746 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
747 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
748 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
749 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
750 (('~fpow', a, 1.0), a),
751 (('~fpow', a, 2.0), ('fmul', a, a)),
752 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
753 (('~fpow', 2.0, a), ('fexp2', a)),
754 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
755 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
756 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
757 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
758 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
759 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
760 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
761 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
762 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
763 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
764 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
765 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
766 # Division and reciprocal
767 (('~fdiv', 1.0, a), ('frcp', a)),
768 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
769 (('~frcp', ('frcp', a)), a),
770 (('~frcp', ('fsqrt', a)), ('frsq', a)),
771 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
772 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
773 # Trig
774 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
775 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
776 # Boolean simplifications
777 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
778 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
779 (('ieq', a, True), a),
780 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
781 (('ine', a, False), a),
782 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
783 (('bcsel', a, True, False), a),
784 (('bcsel', a, False, True), ('inot', a)),
785 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
786 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
787 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
788 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
789 (('bcsel', True, b, c), b),
790 (('bcsel', False, b, c), c),
791 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
792
793 (('bcsel', a, b, b), b),
794 (('~fcsel', a, b, b), b),
795
796 # D3D Boolean emulation
797 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
798 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
799 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
800 ('ineg', ('b2i', ('iand', a, b)))),
801 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
802 ('ineg', ('b2i', ('ior', a, b)))),
803 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
804 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
805 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
806 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
807 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
808 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
809
810 # SM5 32-bit shifts are defined to use the 5 least significant bits
811 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
812 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
813 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
814
815 # Conversions
816 (('i2b32', ('b2i', 'a@32')), a),
817 (('f2i', ('ftrunc', a)), ('f2i', a)),
818 (('f2u', ('ftrunc', a)), ('f2u', a)),
819 (('i2b', ('ineg', a)), ('i2b', a)),
820 (('i2b', ('iabs', a)), ('i2b', a)),
821 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
822
823 # The C spec says, "If the value of the integral part cannot be represented
824 # by the integer type, the behavior is undefined." "Undefined" can mean
825 # "the conversion doesn't happen at all."
826 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
827
828 # Ironically, mark these as imprecise because removing the conversions may
829 # preserve more precision than doing the conversions (e.g.,
830 # uint(float(0x81818181u)) == 0x81818200).
831 (('~f2i32', ('i2f', 'a@32')), a),
832 (('~f2i32', ('u2f', 'a@32')), a),
833 (('~f2u32', ('i2f', 'a@32')), a),
834 (('~f2u32', ('u2f', 'a@32')), a),
835
836 (('ffloor', 'a(is_integral)'), a),
837 (('fceil', 'a(is_integral)'), a),
838 (('ftrunc', 'a(is_integral)'), a),
839 # fract(x) = x - floor(x), so fract(NaN) = NaN
840 (('~ffract', 'a(is_integral)'), 0.0),
841 (('fabs', 'a(is_not_negative)'), a),
842 (('iabs', 'a(is_not_negative)'), a),
843 (('fsat', 'a(is_not_positive)'), 0.0),
844
845 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
846 # says:
847 #
848 # It is undefined to convert a negative floating-point value to an
849 # uint.
850 #
851 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
852 # some optimizations in the i965 backend to proceed.
853 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
854 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
855 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
856 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
857
858 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
859
860 # The result of the multiply must be in [-1, 0], so the result of the ffma
861 # must be in [0, 1].
862 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
863 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
864 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
865 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
866
867 (('fne', 'a(is_not_zero)', 0.0), True),
868 (('feq', 'a(is_not_zero)', 0.0), False),
869
870 # In this chart, + means value > 0 and - means value < 0.
871 #
872 # + >= + -> unknown 0 >= + -> false - >= + -> false
873 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
874 # + >= - -> true 0 >= - -> true - >= - -> unknown
875 #
876 # Using grouping conceptually similar to a Karnaugh map...
877 #
878 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
879 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
880 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
881 #
882 # The flt / ilt cases just invert the expected result.
883 #
884 # The results expecting true, must be marked imprecise. The results
885 # expecting false are fine because NaN compared >= or < anything is false.
886
887 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
888 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
889 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
890
891 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
892 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
893 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
894
895 (('ine', 'a(is_not_zero)', 0), True),
896 (('ieq', 'a(is_not_zero)', 0), False),
897
898 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
899 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
900 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
901
902 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
903 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
904 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
905
906 (('ult', 0, 'a(is_gt_zero)'), True),
907
908 # Packing and then unpacking does nothing
909 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
910 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
911 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
912 ('unpack_64_2x32_split_y', a)), a),
913
914 # Comparing two halves of an unpack separately. While this optimization
915 # should be correct for non-constant values, it's less obvious that it's
916 # useful in that case. For constant values, the pack will fold and we're
917 # guaranteed to reduce the whole tree to one instruction.
918 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
919 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
920 ('ieq', a, ('pack_32_2x16_split', b, c))),
921
922 # Byte extraction
923 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
924 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
925 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
926 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
927 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
928 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
929 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
930
931 # Useless masking before unpacking
932 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
933 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
934 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
935 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
936 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
937 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
938
939 # Optimize half packing
940 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
941 (('ishr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
942
943 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
944 ('pack_half_2x16', ('vec2', a, b))),
945 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
946 ('pack_half_2x16', ('vec2', a, b))),
947 ])
948
949 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
950 # patterns like those below.
951 for op in ('ushr', 'ishr'):
952 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
953 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
954 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
955
956 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
957
958 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
959 # patterns like those below.
960 for op in ('extract_u8', 'extract_i8'):
961 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
962 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
963 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
964
965 optimizations.extend([
966 # Word extraction
967 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
968 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
969 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
970 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
971 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
972
973 # Subtracts
974 (('ussub_4x8', a, 0), a),
975 (('ussub_4x8', a, ~0), 0),
976 # Lower all Subtractions first - they can get recombined later
977 (('fsub', a, b), ('fadd', a, ('fneg', b))),
978 (('isub', a, b), ('iadd', a, ('ineg', b))),
979 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
980 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
981 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
982
983 # Propagate negation up multiplication chains
984 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
985 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
986
987 # Propagate constants up multiplication chains
988 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
989 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
990 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
991 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
992
993 # Reassociate constants in add/mul chains so they can be folded together.
994 # For now, we mostly only handle cases where the constants are separated by
995 # a single non-constant. We could do better eventually.
996 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
997 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
998 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
999 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1000 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1001
1002 # Drop mul-div by the same value when there's no wrapping.
1003 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1004
1005 # By definition...
1006 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1007 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1008 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1009
1010 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1011 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1012 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1013
1014 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1015
1016 # Misc. lowering
1017 (('fmod@16', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1018 (('fmod@32', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1019 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1020 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1021 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1022
1023 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1024 ('bcsel', ('ult', 31, 'bits'), 'insert',
1025 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1026 'options->lower_bitfield_insert'),
1027 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1028 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1029 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1030 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1031 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1032 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1033 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1034 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1035
1036 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1037 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1038 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1039 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1040
1041 # int64_t sum = a + b;
1042 #
1043 # if (a < 0 && b < 0 && a < sum)
1044 # sum = INT64_MIN;
1045 # } else if (a >= 0 && b >= 0 && sum < a)
1046 # sum = INT64_MAX;
1047 # }
1048 #
1049 # A couple optimizations are applied.
1050 #
1051 # 1. a < sum => sum >= 0. This replacement works because it is known that
1052 # a < 0 and b < 0, so sum should also be < 0 unless there was
1053 # underflow.
1054 #
1055 # 2. sum < a => sum < 0. This replacement works because it is known that
1056 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1057 # overflow.
1058 #
1059 # 3. Invert the second if-condition and swap the order of parameters for
1060 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1061 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1062 #
1063 # On Intel Gen11, this saves ~11 instructions.
1064 (('iadd_sat@64', a, b), ('bcsel',
1065 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1066 0x8000000000000000,
1067 ('bcsel',
1068 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1069 ('iadd', a, b),
1070 0x7fffffffffffffff)),
1071 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1072
1073 # int64_t sum = a - b;
1074 #
1075 # if (a < 0 && b >= 0 && a < sum)
1076 # sum = INT64_MIN;
1077 # } else if (a >= 0 && b < 0 && a >= sum)
1078 # sum = INT64_MAX;
1079 # }
1080 #
1081 # Optimizations similar to the iadd_sat case are applied here.
1082 (('isub_sat@64', a, b), ('bcsel',
1083 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1084 0x8000000000000000,
1085 ('bcsel',
1086 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1087 ('isub', a, b),
1088 0x7fffffffffffffff)),
1089 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1090
1091 # These are done here instead of in the backend because the int64 lowering
1092 # pass will make a mess of the patterns. The first patterns are
1093 # conditioned on nir_lower_minmax64 because it was not clear that it was
1094 # always an improvement on platforms that have real int64 support. No
1095 # shaders in shader-db hit this, so it was hard to say one way or the
1096 # other.
1097 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1098 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1099 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1100 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1101 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1102 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1103
1104 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1105 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1106 # 0u < uint(a) <=> uint(a) != 0u
1107 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1108
1109 # Alternative lowering that doesn't rely on bfi.
1110 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1111 ('bcsel', ('ult', 31, 'bits'),
1112 'insert',
1113 (('ior',
1114 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1115 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1116 'options->lower_bitfield_insert_to_shifts'),
1117
1118 # Alternative lowering that uses bitfield_select.
1119 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1120 ('bcsel', ('ult', 31, 'bits'), 'insert',
1121 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1122 'options->lower_bitfield_insert_to_bitfield_select'),
1123
1124 (('ibitfield_extract', 'value', 'offset', 'bits'),
1125 ('bcsel', ('ult', 31, 'bits'), 'value',
1126 ('ibfe', 'value', 'offset', 'bits')),
1127 'options->lower_bitfield_extract'),
1128
1129 (('ubitfield_extract', 'value', 'offset', 'bits'),
1130 ('bcsel', ('ult', 31, 'bits'), 'value',
1131 ('ubfe', 'value', 'offset', 'bits')),
1132 'options->lower_bitfield_extract'),
1133
1134 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1135 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1136 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1137 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1138 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1139 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1140 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1141
1142 (('ibitfield_extract', 'value', 'offset', 'bits'),
1143 ('bcsel', ('ieq', 0, 'bits'),
1144 0,
1145 ('ishr',
1146 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1147 ('isub', 32, 'bits'))),
1148 'options->lower_bitfield_extract_to_shifts'),
1149
1150 (('ubitfield_extract', 'value', 'offset', 'bits'),
1151 ('iand',
1152 ('ushr', 'value', 'offset'),
1153 ('bcsel', ('ieq', 'bits', 32),
1154 0xffffffff,
1155 ('isub', ('ishl', 1, 'bits'), 1))),
1156 'options->lower_bitfield_extract_to_shifts'),
1157
1158 (('ifind_msb', 'value'),
1159 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1160 'options->lower_ifind_msb'),
1161
1162 (('find_lsb', 'value'),
1163 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1164 'options->lower_find_lsb'),
1165
1166 (('extract_i8', a, 'b@32'),
1167 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1168 'options->lower_extract_byte'),
1169
1170 (('extract_u8', a, 'b@32'),
1171 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1172 'options->lower_extract_byte'),
1173
1174 (('extract_i16', a, 'b@32'),
1175 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1176 'options->lower_extract_word'),
1177
1178 (('extract_u16', a, 'b@32'),
1179 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1180 'options->lower_extract_word'),
1181
1182 (('pack_unorm_2x16', 'v'),
1183 ('pack_uvec2_to_uint',
1184 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1185 'options->lower_pack_unorm_2x16'),
1186
1187 (('pack_unorm_4x8', 'v'),
1188 ('pack_uvec4_to_uint',
1189 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1190 'options->lower_pack_unorm_4x8'),
1191
1192 (('pack_snorm_2x16', 'v'),
1193 ('pack_uvec2_to_uint',
1194 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1195 'options->lower_pack_snorm_2x16'),
1196
1197 (('pack_snorm_4x8', 'v'),
1198 ('pack_uvec4_to_uint',
1199 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1200 'options->lower_pack_snorm_4x8'),
1201
1202 (('unpack_unorm_2x16', 'v'),
1203 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1204 ('extract_u16', 'v', 1))),
1205 65535.0),
1206 'options->lower_unpack_unorm_2x16'),
1207
1208 (('unpack_unorm_4x8', 'v'),
1209 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1210 ('extract_u8', 'v', 1),
1211 ('extract_u8', 'v', 2),
1212 ('extract_u8', 'v', 3))),
1213 255.0),
1214 'options->lower_unpack_unorm_4x8'),
1215
1216 (('unpack_snorm_2x16', 'v'),
1217 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1218 ('extract_i16', 'v', 1))),
1219 32767.0))),
1220 'options->lower_unpack_snorm_2x16'),
1221
1222 (('unpack_snorm_4x8', 'v'),
1223 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1224 ('extract_i8', 'v', 1),
1225 ('extract_i8', 'v', 2),
1226 ('extract_i8', 'v', 3))),
1227 127.0))),
1228 'options->lower_unpack_snorm_4x8'),
1229
1230 (('pack_half_2x16_split', 'a@32', 'b@32'),
1231 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1232 'options->lower_pack_half_2x16_split'),
1233
1234 (('unpack_half_2x16_split_x', 'a@32'),
1235 ('f2f32', ('u2u16', a)),
1236 'options->lower_unpack_half_2x16_split'),
1237
1238 (('unpack_half_2x16_split_y', 'a@32'),
1239 ('f2f32', ('u2u16', ('ushr', a, 16))),
1240 'options->lower_unpack_half_2x16_split'),
1241
1242 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1243 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1244
1245 # Address/offset calculations:
1246 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1247 # rule converts everyone else to imul:
1248 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1249
1250 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1251 (('imad24_ir3', a, 0, c), (c)),
1252 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1253
1254 # if first two srcs are const, crack apart the imad so constant folding
1255 # can clean up the imul:
1256 # TODO ffma should probably get a similar rule:
1257 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1258
1259 # These will turn 24b address/offset calc back into 32b shifts, but
1260 # it should be safe to get back some of the bits of precision that we
1261 # already decided were no necessary:
1262 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1263 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1264 (('imul24', a, 0), (0)),
1265 ])
1266
1267 # bit_size dependent lowerings
1268 for bit_size in [8, 16, 32, 64]:
1269 # convenience constants
1270 intmax = (1 << (bit_size - 1)) - 1
1271 intmin = 1 << (bit_size - 1)
1272
1273 optimizations += [
1274 (('iadd_sat@' + str(bit_size), a, b),
1275 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1276 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1277 (('isub_sat@' + str(bit_size), a, b),
1278 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1279 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1280 ]
1281
1282 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq'), ('fge', 'flt'), ('flt', 'fge')])
1283
1284 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1285 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1286 ('iand', (invert[left], a, b), (invert[right], c, d))))
1287 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1288 ('ior', (invert[left], a, b), (invert[right], c, d))))
1289
1290 # Optimize x2bN(b2x(x)) -> x
1291 for size in type_sizes('bool'):
1292 aN = 'a@' + str(size)
1293 f2bN = 'f2b' + str(size)
1294 i2bN = 'i2b' + str(size)
1295 optimizations.append(((f2bN, ('b2f', aN)), a))
1296 optimizations.append(((i2bN, ('b2i', aN)), a))
1297
1298 # Optimize x2yN(b2x(x)) -> b2y
1299 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1300 if x != 'f' and y != 'f' and x != y:
1301 continue
1302
1303 b2x = 'b2f' if x == 'f' else 'b2i'
1304 b2y = 'b2f' if y == 'f' else 'b2i'
1305 x2yN = '{}2{}'.format(x, y)
1306 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1307
1308 # Optimize away x2xN(a@N)
1309 for t in ['int', 'uint', 'float']:
1310 for N in type_sizes(t):
1311 x2xN = '{0}2{0}{1}'.format(t[0], N)
1312 aN = 'a@{0}'.format(N)
1313 optimizations.append(((x2xN, aN), a))
1314
1315 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1316 # In particular, we can optimize away everything except upcast of downcast and
1317 # upcasts where the type differs from the other cast
1318 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1319 if N < M:
1320 # The outer cast is a down-cast. It doesn't matter what the size of the
1321 # argument of the inner cast is because we'll never been in the upcast
1322 # of downcast case. Regardless of types, we'll always end up with y2yN
1323 # in the end.
1324 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1325 x2xN = '{0}2{0}{1}'.format(x, N)
1326 y2yM = '{0}2{0}{1}'.format(y, M)
1327 y2yN = '{0}2{0}{1}'.format(y, N)
1328 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1329 elif N > M:
1330 # If the outer cast is an up-cast, we have to be more careful about the
1331 # size of the argument of the inner cast and with types. In this case,
1332 # the type is always the type of type up-cast which is given by the
1333 # outer cast.
1334 for P in type_sizes('uint'):
1335 # We can't optimize away up-cast of down-cast.
1336 if M < P:
1337 continue
1338
1339 # Because we're doing down-cast of down-cast, the types always have
1340 # to match between the two casts
1341 for x in ['i', 'u']:
1342 x2xN = '{0}2{0}{1}'.format(x, N)
1343 x2xM = '{0}2{0}{1}'.format(x, M)
1344 aP = 'a@{0}'.format(P)
1345 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1346 else:
1347 # The N == M case is handled by other optimizations
1348 pass
1349
1350 # Optimize comparisons with up-casts
1351 for t in ['int', 'uint', 'float']:
1352 for N, M in itertools.product(type_sizes(t), repeat=2):
1353 if N == 1 or N >= M:
1354 continue
1355
1356 x2xM = '{0}2{0}{1}'.format(t[0], M)
1357 x2xN = '{0}2{0}{1}'.format(t[0], N)
1358 aN = 'a@' + str(N)
1359 bN = 'b@' + str(N)
1360 xeq = 'feq' if t == 'float' else 'ieq'
1361 xne = 'fne' if t == 'float' else 'ine'
1362 xge = '{0}ge'.format(t[0])
1363 xlt = '{0}lt'.format(t[0])
1364
1365 # Up-casts are lossless so for correctly signed comparisons of
1366 # up-casted values we can do the comparison at the largest of the two
1367 # original sizes and drop one or both of the casts. (We have
1368 # optimizations to drop the no-op casts which this may generate.)
1369 for P in type_sizes(t):
1370 if P == 1 or P > N:
1371 continue
1372
1373 bP = 'b@' + str(P)
1374 optimizations += [
1375 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b))),
1376 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b))),
1377 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b))),
1378 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b))),
1379 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a)),
1380 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a)),
1381 ]
1382
1383 # The next bit doesn't work on floats because the range checks would
1384 # get way too complicated.
1385 if t in ['int', 'uint']:
1386 if t == 'int':
1387 xN_min = -(1 << (N - 1))
1388 xN_max = (1 << (N - 1)) - 1
1389 elif t == 'uint':
1390 xN_min = 0
1391 xN_max = (1 << N) - 1
1392 else:
1393 assert False
1394
1395 # If we're up-casting and comparing to a constant, we can unfold
1396 # the comparison into a comparison with the shrunk down constant
1397 # and a check that the constant fits in the smaller bit size.
1398 optimizations += [
1399 ((xeq, (x2xM, aN), '#b'),
1400 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b))),
1401 ((xne, (x2xM, aN), '#b'),
1402 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b))),
1403 ((xlt, (x2xM, aN), '#b'),
1404 ('iand', (xlt, xN_min, b),
1405 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b))))),
1406 ((xlt, '#a', (x2xM, bN)),
1407 ('iand', (xlt, a, xN_max),
1408 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b)))),
1409 ((xge, (x2xM, aN), '#b'),
1410 ('iand', (xge, xN_max, b),
1411 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b))))),
1412 ((xge, '#a', (x2xM, bN)),
1413 ('iand', (xge, a, xN_min),
1414 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b)))),
1415 ]
1416
1417 def fexp2i(exp, bits):
1418 # We assume that exp is already in the right range.
1419 if bits == 16:
1420 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1421 elif bits == 32:
1422 return ('ishl', ('iadd', exp, 127), 23)
1423 elif bits == 64:
1424 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1425 else:
1426 assert False
1427
1428 def ldexp(f, exp, bits):
1429 # First, we clamp exp to a reasonable range. The maximum possible range
1430 # for a normal exponent is [-126, 127] and, throwing in denormals, you get
1431 # a maximum range of [-149, 127]. This means that we can potentially have
1432 # a swing of +-276. If you start with FLT_MAX, you actually have to do
1433 # ldexp(FLT_MAX, -278) to get it to flush all the way to zero. The GLSL
1434 # spec, on the other hand, only requires that we handle an exponent value
1435 # in the range [-126, 128]. This implementation is *mostly* correct; it
1436 # handles a range on exp of [-252, 254] which allows you to create any
1437 # value (including denorms if the hardware supports it) and to adjust the
1438 # exponent of any normal value to anything you want.
1439 if bits == 16:
1440 exp = ('imin', ('imax', exp, -28), 30)
1441 elif bits == 32:
1442 exp = ('imin', ('imax', exp, -252), 254)
1443 elif bits == 64:
1444 exp = ('imin', ('imax', exp, -2044), 2046)
1445 else:
1446 assert False
1447
1448 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1449 # (We use ishr which isn't the same for -1, but the -1 case still works
1450 # since we use exp-exp/2 as the second exponent.) While the spec
1451 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1452 # work with denormals and doesn't allow for the full swing in exponents
1453 # that you can get with normalized values. Instead, we create two powers
1454 # of two and multiply by them each in turn. That way the effective range
1455 # of our exponent is doubled.
1456 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1457 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1458 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1459
1460 optimizations += [
1461 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1462 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1463 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1464 ]
1465
1466 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1467 def bitfield_reverse(u):
1468 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1469 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1470 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1471 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1472 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1473
1474 return step5
1475
1476 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1477
1478 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1479 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1480 # and, if a is a NaN then the second comparison will fail anyway.
1481 for op in ['flt', 'fge', 'feq']:
1482 optimizations += [
1483 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1484 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1485 ]
1486
1487 # Add optimizations to handle the case where the result of a ternary is
1488 # compared to a constant. This way we can take things like
1489 #
1490 # (a ? 0 : 1) > 0
1491 #
1492 # and turn it into
1493 #
1494 # a ? (0 > 0) : (1 > 0)
1495 #
1496 # which constant folding will eat for lunch. The resulting ternary will
1497 # further get cleaned up by the boolean reductions above and we will be
1498 # left with just the original variable "a".
1499 for op in ['flt', 'fge', 'feq', 'fne',
1500 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1501 optimizations += [
1502 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1503 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1504 ((op, '#d', ('bcsel', a, '#b', '#c')),
1505 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1506 ]
1507
1508
1509 # For example, this converts things like
1510 #
1511 # 1 + mix(0, a - 1, condition)
1512 #
1513 # into
1514 #
1515 # mix(1, (a-1)+1, condition)
1516 #
1517 # Other optimizations will rearrange the constants.
1518 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1519 optimizations += [
1520 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1521 ]
1522
1523 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1524 # states:
1525 #
1526 # If neither layout qualifier is specified, derivatives in compute shaders
1527 # return zero, which is consistent with the handling of built-in texture
1528 # functions like texture() in GLSL 4.50 compute shaders.
1529 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1530 'fddy', 'fddy_fine', 'fddy_coarse']:
1531 optimizations += [
1532 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1533 ]
1534
1535 # Some optimizations for ir3-specific instructions.
1536 optimizations += [
1537 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1538 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1539 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1540 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1541 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1542 ]
1543
1544 # These kinds of sequences can occur after nir_opt_peephole_select.
1545 #
1546 # NOTE: fadd is not handled here because that gets in the way of ffma
1547 # generation in the i965 driver. Instead, fadd and ffma are handled in
1548 # late_optimizations.
1549
1550 for op in ['flrp']:
1551 optimizations += [
1552 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1553 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1554 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1555 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1556 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1557 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1558 ]
1559
1560 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1561 optimizations += [
1562 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1563 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1564 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1565 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1566 ]
1567
1568 for op in ['fpow']:
1569 optimizations += [
1570 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1571 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1572 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1573 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1574 ]
1575
1576 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1577 optimizations += [
1578 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1579 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1580 ]
1581
1582 # This section contains "late" optimizations that should be run before
1583 # creating ffmas and calling regular optimizations for the final time.
1584 # Optimizations should go here if they help code generation and conflict
1585 # with the regular optimizations.
1586 before_ffma_optimizations = [
1587 # Propagate constants down multiplication chains
1588 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1589 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1590 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1591 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1592
1593 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1594 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1595 (('~fadd', ('fneg', a), a), 0.0),
1596 (('iadd', ('ineg', a), a), 0),
1597 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1598 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1599 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1600 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1601
1602 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1603 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1604 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1605 ]
1606
1607 # This section contains "late" optimizations that should be run after the
1608 # regular optimizations have finished. Optimizations should go here if
1609 # they help code generation but do not necessarily produce code that is
1610 # more easily optimizable.
1611 late_optimizations = [
1612 # Most of these optimizations aren't quite safe when you get infinity or
1613 # Nan involved but the first one should be fine.
1614 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1615 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1616 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1617 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1618 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1619 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1620
1621 # nir_lower_to_source_mods will collapse this, but its existence during the
1622 # optimization loop can prevent other optimizations.
1623 (('fneg', ('fneg', a)), a),
1624
1625 # Subtractions get lowered during optimization, so we need to recombine them
1626 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1627 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1628 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1629 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1630
1631 # These are duplicated from the main optimizations table. The late
1632 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1633 # new patterns like these. The patterns that compare with zero are removed
1634 # because they are unlikely to be created in by anything in
1635 # late_optimizations.
1636 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1637 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1638 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1639 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1640 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1641 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1642
1643 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1644 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1645
1646 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1647
1648 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1649 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1650 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1651 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1652 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1653 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1654 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1655 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1656 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1657 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1658
1659 (('ior', a, a), a),
1660 (('iand', a, a), a),
1661
1662 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1663
1664 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1665 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1666 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1667 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1668
1669 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1670 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1671
1672 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1673 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1674
1675 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1676 # particular operation is common for expanding values stored in a texture
1677 # from [0,1] to [-1,1].
1678 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1679 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1680 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1681 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1682 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1683 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1684 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1685 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1686
1687 # flrp(a, b, a)
1688 # a*(1-a) + b*a
1689 # a + -a*a + a*b (1)
1690 # a + a*(b - a)
1691 # Option 1: ffma(a, (b-a), a)
1692 #
1693 # Alternately, after (1):
1694 # a*(1+b) + -a*a
1695 # a*((1+b) + -a)
1696 #
1697 # Let b=1
1698 #
1699 # Option 2: ffma(a, 2, -(a*a))
1700 # Option 3: ffma(a, 2, (-a)*a)
1701 # Option 4: ffma(a, -a, (2*a)
1702 # Option 5: a * (2 - a)
1703 #
1704 # There are a lot of other possible combinations.
1705 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1706 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1707 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1708 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1709 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1710
1711 # we do these late so that we don't get in the way of creating ffmas
1712 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1713 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1714
1715 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1716
1717 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1718 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1719 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1720 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1721
1722 # Things that look like DPH in the source shader may get expanded to
1723 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1724 # to NIR. After FFMA is generated, this can look like:
1725 #
1726 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1727 #
1728 # Reassociate the last addition into the first multiplication.
1729 #
1730 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1731 # shader stages on some outputs that are intended to be invariant. For
1732 # various reasons, this optimization may not be fully applied in all
1733 # shaders used for different rendering passes of the same geometry. This
1734 # can result in Z-fighting artifacts (at best). For now, disable this
1735 # optimization in these stages. See bugzilla #111490. In tessellation
1736 # stages applications seem to use 'precise' when necessary, so allow the
1737 # optimization in those stages.
1738 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1739 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1740 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1741 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1742 ]
1743
1744 for op in ['fadd']:
1745 late_optimizations += [
1746 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1747 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1748 ]
1749
1750 for op in ['ffma']:
1751 late_optimizations += [
1752 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1753 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1754
1755 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1756 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1757 ]
1758
1759 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
1760 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
1761 before_ffma_optimizations).render())
1762 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
1763 late_optimizations).render())