nir: Add support for 1-bit data types
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include <stdio.h>
36
37 void
38 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
39 size_t spirv_offset, const char *message)
40 {
41 if (b->options->debug.func) {
42 b->options->debug.func(b->options->debug.private_data,
43 level, spirv_offset, message);
44 }
45
46 #ifndef NDEBUG
47 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
48 fprintf(stderr, "%s\n", message);
49 #endif
50 }
51
52 void
53 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
54 size_t spirv_offset, const char *fmt, ...)
55 {
56 va_list args;
57 char *msg;
58
59 va_start(args, fmt);
60 msg = ralloc_vasprintf(NULL, fmt, args);
61 va_end(args);
62
63 vtn_log(b, level, spirv_offset, msg);
64
65 ralloc_free(msg);
66 }
67
68 static void
69 vtn_log_err(struct vtn_builder *b,
70 enum nir_spirv_debug_level level, const char *prefix,
71 const char *file, unsigned line,
72 const char *fmt, va_list args)
73 {
74 char *msg;
75
76 msg = ralloc_strdup(NULL, prefix);
77
78 #ifndef NDEBUG
79 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
80 #endif
81
82 ralloc_asprintf_append(&msg, " ");
83
84 ralloc_vasprintf_append(&msg, fmt, args);
85
86 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
87 b->spirv_offset);
88
89 if (b->file) {
90 ralloc_asprintf_append(&msg,
91 "\n in SPIR-V source file %s, line %d, col %d",
92 b->file, b->line, b->col);
93 }
94
95 vtn_log(b, level, b->spirv_offset, msg);
96
97 ralloc_free(msg);
98 }
99
100 static void
101 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
102 {
103 static int idx = 0;
104
105 char filename[1024];
106 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
107 path, prefix, idx++);
108 if (len < 0 || len >= sizeof(filename))
109 return;
110
111 FILE *f = fopen(filename, "w");
112 if (f == NULL)
113 return;
114
115 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
116 fclose(f);
117
118 vtn_info("SPIR-V shader dumped to %s", filename);
119 }
120
121 void
122 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
123 const char *fmt, ...)
124 {
125 va_list args;
126
127 va_start(args, fmt);
128 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
129 file, line, fmt, args);
130 va_end(args);
131 }
132
133 void
134 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
135 const char *fmt, ...)
136 {
137 va_list args;
138
139 va_start(args, fmt);
140 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
141 file, line, fmt, args);
142 va_end(args);
143 }
144
145 void
146 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
147 const char *fmt, ...)
148 {
149 va_list args;
150
151 va_start(args, fmt);
152 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
153 file, line, fmt, args);
154 va_end(args);
155
156 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
157 if (dump_path)
158 vtn_dump_shader(b, dump_path, "fail");
159
160 longjmp(b->fail_jump, 1);
161 }
162
163 struct spec_constant_value {
164 bool is_double;
165 union {
166 uint32_t data32;
167 uint64_t data64;
168 };
169 };
170
171 static struct vtn_ssa_value *
172 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
173 {
174 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
175 val->type = type;
176
177 if (glsl_type_is_vector_or_scalar(type)) {
178 unsigned num_components = glsl_get_vector_elements(val->type);
179 unsigned bit_size = glsl_get_bit_size(val->type);
180 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
181 } else {
182 unsigned elems = glsl_get_length(val->type);
183 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
184 if (glsl_type_is_matrix(type)) {
185 const struct glsl_type *elem_type =
186 glsl_vector_type(glsl_get_base_type(type),
187 glsl_get_vector_elements(type));
188
189 for (unsigned i = 0; i < elems; i++)
190 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
191 } else if (glsl_type_is_array(type)) {
192 const struct glsl_type *elem_type = glsl_get_array_element(type);
193 for (unsigned i = 0; i < elems; i++)
194 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
195 } else {
196 for (unsigned i = 0; i < elems; i++) {
197 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
198 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
199 }
200 }
201 }
202
203 return val;
204 }
205
206 static struct vtn_ssa_value *
207 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
208 const struct glsl_type *type)
209 {
210 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
211
212 if (entry)
213 return entry->data;
214
215 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
216 val->type = type;
217
218 switch (glsl_get_base_type(type)) {
219 case GLSL_TYPE_INT:
220 case GLSL_TYPE_UINT:
221 case GLSL_TYPE_INT16:
222 case GLSL_TYPE_UINT16:
223 case GLSL_TYPE_UINT8:
224 case GLSL_TYPE_INT8:
225 case GLSL_TYPE_INT64:
226 case GLSL_TYPE_UINT64:
227 case GLSL_TYPE_BOOL:
228 case GLSL_TYPE_FLOAT:
229 case GLSL_TYPE_FLOAT16:
230 case GLSL_TYPE_DOUBLE: {
231 int bit_size = glsl_get_bit_size(type);
232 if (glsl_type_is_vector_or_scalar(type)) {
233 unsigned num_components = glsl_get_vector_elements(val->type);
234 nir_load_const_instr *load =
235 nir_load_const_instr_create(b->shader, num_components, bit_size);
236
237 load->value = constant->values[0];
238
239 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
240 val->def = &load->def;
241 } else {
242 assert(glsl_type_is_matrix(type));
243 unsigned rows = glsl_get_vector_elements(val->type);
244 unsigned columns = glsl_get_matrix_columns(val->type);
245 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
246
247 for (unsigned i = 0; i < columns; i++) {
248 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
249 col_val->type = glsl_get_column_type(val->type);
250 nir_load_const_instr *load =
251 nir_load_const_instr_create(b->shader, rows, bit_size);
252
253 load->value = constant->values[i];
254
255 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
256 col_val->def = &load->def;
257
258 val->elems[i] = col_val;
259 }
260 }
261 break;
262 }
263
264 case GLSL_TYPE_ARRAY: {
265 unsigned elems = glsl_get_length(val->type);
266 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
267 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
268 for (unsigned i = 0; i < elems; i++)
269 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
270 elem_type);
271 break;
272 }
273
274 case GLSL_TYPE_STRUCT: {
275 unsigned elems = glsl_get_length(val->type);
276 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
277 for (unsigned i = 0; i < elems; i++) {
278 const struct glsl_type *elem_type =
279 glsl_get_struct_field(val->type, i);
280 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
281 elem_type);
282 }
283 break;
284 }
285
286 default:
287 vtn_fail("bad constant type");
288 }
289
290 return val;
291 }
292
293 struct vtn_ssa_value *
294 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
295 {
296 struct vtn_value *val = vtn_untyped_value(b, value_id);
297 switch (val->value_type) {
298 case vtn_value_type_undef:
299 return vtn_undef_ssa_value(b, val->type->type);
300
301 case vtn_value_type_constant:
302 return vtn_const_ssa_value(b, val->constant, val->type->type);
303
304 case vtn_value_type_ssa:
305 return val->ssa;
306
307 case vtn_value_type_pointer:
308 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
309 struct vtn_ssa_value *ssa =
310 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
311 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
312 return ssa;
313
314 default:
315 vtn_fail("Invalid type for an SSA value");
316 }
317 }
318
319 static char *
320 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
321 unsigned word_count, unsigned *words_used)
322 {
323 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
324 if (words_used) {
325 /* Ammount of space taken by the string (including the null) */
326 unsigned len = strlen(dup) + 1;
327 *words_used = DIV_ROUND_UP(len, sizeof(*words));
328 }
329 return dup;
330 }
331
332 const uint32_t *
333 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
334 const uint32_t *end, vtn_instruction_handler handler)
335 {
336 b->file = NULL;
337 b->line = -1;
338 b->col = -1;
339
340 const uint32_t *w = start;
341 while (w < end) {
342 SpvOp opcode = w[0] & SpvOpCodeMask;
343 unsigned count = w[0] >> SpvWordCountShift;
344 vtn_assert(count >= 1 && w + count <= end);
345
346 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
347
348 switch (opcode) {
349 case SpvOpNop:
350 break; /* Do nothing */
351
352 case SpvOpLine:
353 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
354 b->line = w[2];
355 b->col = w[3];
356 break;
357
358 case SpvOpNoLine:
359 b->file = NULL;
360 b->line = -1;
361 b->col = -1;
362 break;
363
364 default:
365 if (!handler(b, opcode, w, count))
366 return w;
367 break;
368 }
369
370 w += count;
371 }
372
373 b->spirv_offset = 0;
374 b->file = NULL;
375 b->line = -1;
376 b->col = -1;
377
378 assert(w == end);
379 return w;
380 }
381
382 static void
383 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
384 const uint32_t *w, unsigned count)
385 {
386 const char *ext = (const char *)&w[2];
387 switch (opcode) {
388 case SpvOpExtInstImport: {
389 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
390 if (strcmp(ext, "GLSL.std.450") == 0) {
391 val->ext_handler = vtn_handle_glsl450_instruction;
392 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
393 && (b->options && b->options->caps.gcn_shader)) {
394 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
395 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
396 && (b->options && b->options->caps.trinary_minmax)) {
397 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
398 } else {
399 vtn_fail("Unsupported extension: %s", ext);
400 }
401 break;
402 }
403
404 case SpvOpExtInst: {
405 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
406 bool handled = val->ext_handler(b, w[4], w, count);
407 vtn_assert(handled);
408 break;
409 }
410
411 default:
412 vtn_fail("Unhandled opcode");
413 }
414 }
415
416 static void
417 _foreach_decoration_helper(struct vtn_builder *b,
418 struct vtn_value *base_value,
419 int parent_member,
420 struct vtn_value *value,
421 vtn_decoration_foreach_cb cb, void *data)
422 {
423 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
424 int member;
425 if (dec->scope == VTN_DEC_DECORATION) {
426 member = parent_member;
427 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
428 vtn_fail_if(value->value_type != vtn_value_type_type ||
429 value->type->base_type != vtn_base_type_struct,
430 "OpMemberDecorate and OpGroupMemberDecorate are only "
431 "allowed on OpTypeStruct");
432 /* This means we haven't recursed yet */
433 assert(value == base_value);
434
435 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
436
437 vtn_fail_if(member >= base_value->type->length,
438 "OpMemberDecorate specifies member %d but the "
439 "OpTypeStruct has only %u members",
440 member, base_value->type->length);
441 } else {
442 /* Not a decoration */
443 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
444 continue;
445 }
446
447 if (dec->group) {
448 assert(dec->group->value_type == vtn_value_type_decoration_group);
449 _foreach_decoration_helper(b, base_value, member, dec->group,
450 cb, data);
451 } else {
452 cb(b, base_value, member, dec, data);
453 }
454 }
455 }
456
457 /** Iterates (recursively if needed) over all of the decorations on a value
458 *
459 * This function iterates over all of the decorations applied to a given
460 * value. If it encounters a decoration group, it recurses into the group
461 * and iterates over all of those decorations as well.
462 */
463 void
464 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
465 vtn_decoration_foreach_cb cb, void *data)
466 {
467 _foreach_decoration_helper(b, value, -1, value, cb, data);
468 }
469
470 void
471 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
472 vtn_execution_mode_foreach_cb cb, void *data)
473 {
474 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
475 if (dec->scope != VTN_DEC_EXECUTION_MODE)
476 continue;
477
478 assert(dec->group == NULL);
479 cb(b, value, dec, data);
480 }
481 }
482
483 void
484 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
485 const uint32_t *w, unsigned count)
486 {
487 const uint32_t *w_end = w + count;
488 const uint32_t target = w[1];
489 w += 2;
490
491 switch (opcode) {
492 case SpvOpDecorationGroup:
493 vtn_push_value(b, target, vtn_value_type_decoration_group);
494 break;
495
496 case SpvOpDecorate:
497 case SpvOpMemberDecorate:
498 case SpvOpDecorateStringGOOGLE:
499 case SpvOpMemberDecorateStringGOOGLE:
500 case SpvOpExecutionMode: {
501 struct vtn_value *val = vtn_untyped_value(b, target);
502
503 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
504 switch (opcode) {
505 case SpvOpDecorate:
506 case SpvOpDecorateStringGOOGLE:
507 dec->scope = VTN_DEC_DECORATION;
508 break;
509 case SpvOpMemberDecorate:
510 case SpvOpMemberDecorateStringGOOGLE:
511 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
512 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
513 "Member argument of OpMemberDecorate too large");
514 break;
515 case SpvOpExecutionMode:
516 dec->scope = VTN_DEC_EXECUTION_MODE;
517 break;
518 default:
519 unreachable("Invalid decoration opcode");
520 }
521 dec->decoration = *(w++);
522 dec->literals = w;
523
524 /* Link into the list */
525 dec->next = val->decoration;
526 val->decoration = dec;
527 break;
528 }
529
530 case SpvOpGroupMemberDecorate:
531 case SpvOpGroupDecorate: {
532 struct vtn_value *group =
533 vtn_value(b, target, vtn_value_type_decoration_group);
534
535 for (; w < w_end; w++) {
536 struct vtn_value *val = vtn_untyped_value(b, *w);
537 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
538
539 dec->group = group;
540 if (opcode == SpvOpGroupDecorate) {
541 dec->scope = VTN_DEC_DECORATION;
542 } else {
543 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
544 vtn_fail_if(dec->scope < 0, /* Check for overflow */
545 "Member argument of OpGroupMemberDecorate too large");
546 }
547
548 /* Link into the list */
549 dec->next = val->decoration;
550 val->decoration = dec;
551 }
552 break;
553 }
554
555 default:
556 unreachable("Unhandled opcode");
557 }
558 }
559
560 struct member_decoration_ctx {
561 unsigned num_fields;
562 struct glsl_struct_field *fields;
563 struct vtn_type *type;
564 };
565
566 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
567 * OpStore, or OpCopyMemory between them without breaking anything.
568 * Technically, the SPIR-V rules require the exact same type ID but this lets
569 * us internally be a bit looser.
570 */
571 bool
572 vtn_types_compatible(struct vtn_builder *b,
573 struct vtn_type *t1, struct vtn_type *t2)
574 {
575 if (t1->id == t2->id)
576 return true;
577
578 if (t1->base_type != t2->base_type)
579 return false;
580
581 switch (t1->base_type) {
582 case vtn_base_type_void:
583 case vtn_base_type_scalar:
584 case vtn_base_type_vector:
585 case vtn_base_type_matrix:
586 case vtn_base_type_image:
587 case vtn_base_type_sampler:
588 case vtn_base_type_sampled_image:
589 return t1->type == t2->type;
590
591 case vtn_base_type_array:
592 return t1->length == t2->length &&
593 vtn_types_compatible(b, t1->array_element, t2->array_element);
594
595 case vtn_base_type_pointer:
596 return vtn_types_compatible(b, t1->deref, t2->deref);
597
598 case vtn_base_type_struct:
599 if (t1->length != t2->length)
600 return false;
601
602 for (unsigned i = 0; i < t1->length; i++) {
603 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
604 return false;
605 }
606 return true;
607
608 case vtn_base_type_function:
609 /* This case shouldn't get hit since you can't copy around function
610 * types. Just require them to be identical.
611 */
612 return false;
613 }
614
615 vtn_fail("Invalid base type");
616 }
617
618 /* does a shallow copy of a vtn_type */
619
620 static struct vtn_type *
621 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
622 {
623 struct vtn_type *dest = ralloc(b, struct vtn_type);
624 *dest = *src;
625
626 switch (src->base_type) {
627 case vtn_base_type_void:
628 case vtn_base_type_scalar:
629 case vtn_base_type_vector:
630 case vtn_base_type_matrix:
631 case vtn_base_type_array:
632 case vtn_base_type_pointer:
633 case vtn_base_type_image:
634 case vtn_base_type_sampler:
635 case vtn_base_type_sampled_image:
636 /* Nothing more to do */
637 break;
638
639 case vtn_base_type_struct:
640 dest->members = ralloc_array(b, struct vtn_type *, src->length);
641 memcpy(dest->members, src->members,
642 src->length * sizeof(src->members[0]));
643
644 dest->offsets = ralloc_array(b, unsigned, src->length);
645 memcpy(dest->offsets, src->offsets,
646 src->length * sizeof(src->offsets[0]));
647 break;
648
649 case vtn_base_type_function:
650 dest->params = ralloc_array(b, struct vtn_type *, src->length);
651 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
652 break;
653 }
654
655 return dest;
656 }
657
658 static struct vtn_type *
659 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
660 {
661 type->members[member] = vtn_type_copy(b, type->members[member]);
662 type = type->members[member];
663
664 /* We may have an array of matrices.... Oh, joy! */
665 while (glsl_type_is_array(type->type)) {
666 type->array_element = vtn_type_copy(b, type->array_element);
667 type = type->array_element;
668 }
669
670 vtn_assert(glsl_type_is_matrix(type->type));
671
672 return type;
673 }
674
675 static void
676 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
677 int member, enum gl_access_qualifier access)
678 {
679 type->members[member] = vtn_type_copy(b, type->members[member]);
680 type = type->members[member];
681
682 type->access |= access;
683 }
684
685 static void
686 struct_member_decoration_cb(struct vtn_builder *b,
687 struct vtn_value *val, int member,
688 const struct vtn_decoration *dec, void *void_ctx)
689 {
690 struct member_decoration_ctx *ctx = void_ctx;
691
692 if (member < 0)
693 return;
694
695 assert(member < ctx->num_fields);
696
697 switch (dec->decoration) {
698 case SpvDecorationRelaxedPrecision:
699 case SpvDecorationUniform:
700 break; /* FIXME: Do nothing with this for now. */
701 case SpvDecorationNonWritable:
702 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
703 break;
704 case SpvDecorationNonReadable:
705 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
706 break;
707 case SpvDecorationVolatile:
708 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
709 break;
710 case SpvDecorationCoherent:
711 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
712 break;
713 case SpvDecorationNoPerspective:
714 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
715 break;
716 case SpvDecorationFlat:
717 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
718 break;
719 case SpvDecorationCentroid:
720 ctx->fields[member].centroid = true;
721 break;
722 case SpvDecorationSample:
723 ctx->fields[member].sample = true;
724 break;
725 case SpvDecorationStream:
726 /* Vulkan only allows one GS stream */
727 vtn_assert(dec->literals[0] == 0);
728 break;
729 case SpvDecorationLocation:
730 ctx->fields[member].location = dec->literals[0];
731 break;
732 case SpvDecorationComponent:
733 break; /* FIXME: What should we do with these? */
734 case SpvDecorationBuiltIn:
735 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
736 ctx->type->members[member]->is_builtin = true;
737 ctx->type->members[member]->builtin = dec->literals[0];
738 ctx->type->builtin_block = true;
739 break;
740 case SpvDecorationOffset:
741 ctx->type->offsets[member] = dec->literals[0];
742 break;
743 case SpvDecorationMatrixStride:
744 /* Handled as a second pass */
745 break;
746 case SpvDecorationColMajor:
747 break; /* Nothing to do here. Column-major is the default. */
748 case SpvDecorationRowMajor:
749 mutable_matrix_member(b, ctx->type, member)->row_major = true;
750 break;
751
752 case SpvDecorationPatch:
753 break;
754
755 case SpvDecorationSpecId:
756 case SpvDecorationBlock:
757 case SpvDecorationBufferBlock:
758 case SpvDecorationArrayStride:
759 case SpvDecorationGLSLShared:
760 case SpvDecorationGLSLPacked:
761 case SpvDecorationInvariant:
762 case SpvDecorationRestrict:
763 case SpvDecorationAliased:
764 case SpvDecorationConstant:
765 case SpvDecorationIndex:
766 case SpvDecorationBinding:
767 case SpvDecorationDescriptorSet:
768 case SpvDecorationLinkageAttributes:
769 case SpvDecorationNoContraction:
770 case SpvDecorationInputAttachmentIndex:
771 vtn_warn("Decoration not allowed on struct members: %s",
772 spirv_decoration_to_string(dec->decoration));
773 break;
774
775 case SpvDecorationXfbBuffer:
776 case SpvDecorationXfbStride:
777 vtn_warn("Vulkan does not have transform feedback");
778 break;
779
780 case SpvDecorationCPacked:
781 case SpvDecorationSaturatedConversion:
782 case SpvDecorationFuncParamAttr:
783 case SpvDecorationFPRoundingMode:
784 case SpvDecorationFPFastMathMode:
785 case SpvDecorationAlignment:
786 vtn_warn("Decoration only allowed for CL-style kernels: %s",
787 spirv_decoration_to_string(dec->decoration));
788 break;
789
790 case SpvDecorationHlslSemanticGOOGLE:
791 /* HLSL semantic decorations can safely be ignored by the driver. */
792 break;
793
794 default:
795 vtn_fail("Unhandled decoration");
796 }
797 }
798
799 /* Matrix strides are handled as a separate pass because we need to know
800 * whether the matrix is row-major or not first.
801 */
802 static void
803 struct_member_matrix_stride_cb(struct vtn_builder *b,
804 struct vtn_value *val, int member,
805 const struct vtn_decoration *dec,
806 void *void_ctx)
807 {
808 if (dec->decoration != SpvDecorationMatrixStride)
809 return;
810
811 vtn_fail_if(member < 0,
812 "The MatrixStride decoration is only allowed on members "
813 "of OpTypeStruct");
814
815 struct member_decoration_ctx *ctx = void_ctx;
816
817 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
818 if (mat_type->row_major) {
819 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
820 mat_type->stride = mat_type->array_element->stride;
821 mat_type->array_element->stride = dec->literals[0];
822 } else {
823 vtn_assert(mat_type->array_element->stride > 0);
824 mat_type->stride = dec->literals[0];
825 }
826 }
827
828 static void
829 type_decoration_cb(struct vtn_builder *b,
830 struct vtn_value *val, int member,
831 const struct vtn_decoration *dec, void *ctx)
832 {
833 struct vtn_type *type = val->type;
834
835 if (member != -1) {
836 /* This should have been handled by OpTypeStruct */
837 assert(val->type->base_type == vtn_base_type_struct);
838 assert(member >= 0 && member < val->type->length);
839 return;
840 }
841
842 switch (dec->decoration) {
843 case SpvDecorationArrayStride:
844 vtn_assert(type->base_type == vtn_base_type_matrix ||
845 type->base_type == vtn_base_type_array ||
846 type->base_type == vtn_base_type_pointer);
847 type->stride = dec->literals[0];
848 break;
849 case SpvDecorationBlock:
850 vtn_assert(type->base_type == vtn_base_type_struct);
851 type->block = true;
852 break;
853 case SpvDecorationBufferBlock:
854 vtn_assert(type->base_type == vtn_base_type_struct);
855 type->buffer_block = true;
856 break;
857 case SpvDecorationGLSLShared:
858 case SpvDecorationGLSLPacked:
859 /* Ignore these, since we get explicit offsets anyways */
860 break;
861
862 case SpvDecorationRowMajor:
863 case SpvDecorationColMajor:
864 case SpvDecorationMatrixStride:
865 case SpvDecorationBuiltIn:
866 case SpvDecorationNoPerspective:
867 case SpvDecorationFlat:
868 case SpvDecorationPatch:
869 case SpvDecorationCentroid:
870 case SpvDecorationSample:
871 case SpvDecorationVolatile:
872 case SpvDecorationCoherent:
873 case SpvDecorationNonWritable:
874 case SpvDecorationNonReadable:
875 case SpvDecorationUniform:
876 case SpvDecorationLocation:
877 case SpvDecorationComponent:
878 case SpvDecorationOffset:
879 case SpvDecorationXfbBuffer:
880 case SpvDecorationXfbStride:
881 case SpvDecorationHlslSemanticGOOGLE:
882 vtn_warn("Decoration only allowed for struct members: %s",
883 spirv_decoration_to_string(dec->decoration));
884 break;
885
886 case SpvDecorationStream:
887 /* We don't need to do anything here, as stream is filled up when
888 * aplying the decoration to a variable, just check that if it is not a
889 * struct member, it should be a struct.
890 */
891 vtn_assert(type->base_type == vtn_base_type_struct);
892 break;
893
894 case SpvDecorationRelaxedPrecision:
895 case SpvDecorationSpecId:
896 case SpvDecorationInvariant:
897 case SpvDecorationRestrict:
898 case SpvDecorationAliased:
899 case SpvDecorationConstant:
900 case SpvDecorationIndex:
901 case SpvDecorationBinding:
902 case SpvDecorationDescriptorSet:
903 case SpvDecorationLinkageAttributes:
904 case SpvDecorationNoContraction:
905 case SpvDecorationInputAttachmentIndex:
906 vtn_warn("Decoration not allowed on types: %s",
907 spirv_decoration_to_string(dec->decoration));
908 break;
909
910 case SpvDecorationCPacked:
911 case SpvDecorationSaturatedConversion:
912 case SpvDecorationFuncParamAttr:
913 case SpvDecorationFPRoundingMode:
914 case SpvDecorationFPFastMathMode:
915 case SpvDecorationAlignment:
916 vtn_warn("Decoration only allowed for CL-style kernels: %s",
917 spirv_decoration_to_string(dec->decoration));
918 break;
919
920 default:
921 vtn_fail("Unhandled decoration");
922 }
923 }
924
925 static unsigned
926 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
927 {
928 switch (format) {
929 case SpvImageFormatUnknown: return 0; /* GL_NONE */
930 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
931 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
932 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
933 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
934 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
935 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
936 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
937 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
938 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
939 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
940 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
941 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
942 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
943 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
944 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
945 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
946 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
947 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
948 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
949 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
950 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
951 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
952 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
953 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
954 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
955 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
956 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
957 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
958 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
959 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
960 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
961 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
962 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
963 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
964 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
965 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
966 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
967 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
968 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
969 default:
970 vtn_fail("Invalid image format");
971 }
972 }
973
974 static struct vtn_type *
975 vtn_type_layout_std430(struct vtn_builder *b, struct vtn_type *type,
976 uint32_t *size_out, uint32_t *align_out)
977 {
978 switch (type->base_type) {
979 case vtn_base_type_scalar: {
980 uint32_t comp_size = glsl_get_bit_size(type->type) / 8;
981 *size_out = comp_size;
982 *align_out = comp_size;
983 return type;
984 }
985
986 case vtn_base_type_vector: {
987 uint32_t comp_size = glsl_get_bit_size(type->type) / 8;
988 unsigned align_comps = type->length == 3 ? 4 : type->length;
989 *size_out = comp_size * type->length,
990 *align_out = comp_size * align_comps;
991 return type;
992 }
993
994 case vtn_base_type_matrix:
995 case vtn_base_type_array: {
996 /* We're going to add an array stride */
997 type = vtn_type_copy(b, type);
998 uint32_t elem_size, elem_align;
999 type->array_element = vtn_type_layout_std430(b, type->array_element,
1000 &elem_size, &elem_align);
1001 type->stride = vtn_align_u32(elem_size, elem_align);
1002 *size_out = type->stride * type->length;
1003 *align_out = elem_align;
1004 return type;
1005 }
1006
1007 case vtn_base_type_struct: {
1008 /* We're going to add member offsets */
1009 type = vtn_type_copy(b, type);
1010 uint32_t offset = 0;
1011 uint32_t align = 0;
1012 for (unsigned i = 0; i < type->length; i++) {
1013 uint32_t mem_size, mem_align;
1014 type->members[i] = vtn_type_layout_std430(b, type->members[i],
1015 &mem_size, &mem_align);
1016 offset = vtn_align_u32(offset, mem_align);
1017 type->offsets[i] = offset;
1018 offset += mem_size;
1019 align = MAX2(align, mem_align);
1020 }
1021 *size_out = offset;
1022 *align_out = align;
1023 return type;
1024 }
1025
1026 default:
1027 unreachable("Invalid SPIR-V type for std430");
1028 }
1029 }
1030
1031 static void
1032 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1033 const uint32_t *w, unsigned count)
1034 {
1035 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type);
1036
1037 val->type = rzalloc(b, struct vtn_type);
1038 val->type->id = w[1];
1039
1040 switch (opcode) {
1041 case SpvOpTypeVoid:
1042 val->type->base_type = vtn_base_type_void;
1043 val->type->type = glsl_void_type();
1044 break;
1045 case SpvOpTypeBool:
1046 val->type->base_type = vtn_base_type_scalar;
1047 val->type->type = glsl_bool_type();
1048 val->type->length = 1;
1049 break;
1050 case SpvOpTypeInt: {
1051 int bit_size = w[2];
1052 const bool signedness = w[3];
1053 val->type->base_type = vtn_base_type_scalar;
1054 switch (bit_size) {
1055 case 64:
1056 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1057 break;
1058 case 32:
1059 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1060 break;
1061 case 16:
1062 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1063 break;
1064 case 8:
1065 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1066 break;
1067 default:
1068 vtn_fail("Invalid int bit size");
1069 }
1070 val->type->length = 1;
1071 break;
1072 }
1073
1074 case SpvOpTypeFloat: {
1075 int bit_size = w[2];
1076 val->type->base_type = vtn_base_type_scalar;
1077 switch (bit_size) {
1078 case 16:
1079 val->type->type = glsl_float16_t_type();
1080 break;
1081 case 32:
1082 val->type->type = glsl_float_type();
1083 break;
1084 case 64:
1085 val->type->type = glsl_double_type();
1086 break;
1087 default:
1088 vtn_fail("Invalid float bit size");
1089 }
1090 val->type->length = 1;
1091 break;
1092 }
1093
1094 case SpvOpTypeVector: {
1095 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1096 unsigned elems = w[3];
1097
1098 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1099 "Base type for OpTypeVector must be a scalar");
1100 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1101 "Invalid component count for OpTypeVector");
1102
1103 val->type->base_type = vtn_base_type_vector;
1104 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1105 val->type->length = elems;
1106 val->type->stride = glsl_get_bit_size(base->type) / 8;
1107 val->type->array_element = base;
1108 break;
1109 }
1110
1111 case SpvOpTypeMatrix: {
1112 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1113 unsigned columns = w[3];
1114
1115 vtn_fail_if(base->base_type != vtn_base_type_vector,
1116 "Base type for OpTypeMatrix must be a vector");
1117 vtn_fail_if(columns < 2 || columns > 4,
1118 "Invalid column count for OpTypeMatrix");
1119
1120 val->type->base_type = vtn_base_type_matrix;
1121 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1122 glsl_get_vector_elements(base->type),
1123 columns);
1124 vtn_fail_if(glsl_type_is_error(val->type->type),
1125 "Unsupported base type for OpTypeMatrix");
1126 assert(!glsl_type_is_error(val->type->type));
1127 val->type->length = columns;
1128 val->type->array_element = base;
1129 val->type->row_major = false;
1130 val->type->stride = 0;
1131 break;
1132 }
1133
1134 case SpvOpTypeRuntimeArray:
1135 case SpvOpTypeArray: {
1136 struct vtn_type *array_element =
1137 vtn_value(b, w[2], vtn_value_type_type)->type;
1138
1139 if (opcode == SpvOpTypeRuntimeArray) {
1140 /* A length of 0 is used to denote unsized arrays */
1141 val->type->length = 0;
1142 } else {
1143 val->type->length =
1144 vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0].u32[0];
1145 }
1146
1147 val->type->base_type = vtn_base_type_array;
1148 val->type->type = glsl_array_type(array_element->type, val->type->length);
1149 val->type->array_element = array_element;
1150 val->type->stride = 0;
1151 break;
1152 }
1153
1154 case SpvOpTypeStruct: {
1155 unsigned num_fields = count - 2;
1156 val->type->base_type = vtn_base_type_struct;
1157 val->type->length = num_fields;
1158 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1159 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1160
1161 NIR_VLA(struct glsl_struct_field, fields, count);
1162 for (unsigned i = 0; i < num_fields; i++) {
1163 val->type->members[i] =
1164 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1165 fields[i] = (struct glsl_struct_field) {
1166 .type = val->type->members[i]->type,
1167 .name = ralloc_asprintf(b, "field%d", i),
1168 .location = -1,
1169 };
1170 }
1171
1172 struct member_decoration_ctx ctx = {
1173 .num_fields = num_fields,
1174 .fields = fields,
1175 .type = val->type
1176 };
1177
1178 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1179 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1180
1181 const char *name = val->name ? val->name : "struct";
1182
1183 val->type->type = glsl_struct_type(fields, num_fields, name);
1184 break;
1185 }
1186
1187 case SpvOpTypeFunction: {
1188 val->type->base_type = vtn_base_type_function;
1189 val->type->type = NULL;
1190
1191 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1192
1193 const unsigned num_params = count - 3;
1194 val->type->length = num_params;
1195 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1196 for (unsigned i = 0; i < count - 3; i++) {
1197 val->type->params[i] =
1198 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1199 }
1200 break;
1201 }
1202
1203 case SpvOpTypePointer: {
1204 SpvStorageClass storage_class = w[2];
1205 struct vtn_type *deref_type =
1206 vtn_value(b, w[3], vtn_value_type_type)->type;
1207
1208 val->type->base_type = vtn_base_type_pointer;
1209 val->type->storage_class = storage_class;
1210 val->type->deref = deref_type;
1211
1212 if (storage_class == SpvStorageClassUniform ||
1213 storage_class == SpvStorageClassStorageBuffer) {
1214 /* These can actually be stored to nir_variables and used as SSA
1215 * values so they need a real glsl_type.
1216 */
1217 val->type->type = glsl_vector_type(GLSL_TYPE_UINT, 2);
1218 }
1219
1220 if (storage_class == SpvStorageClassPushConstant) {
1221 /* These can actually be stored to nir_variables and used as SSA
1222 * values so they need a real glsl_type.
1223 */
1224 val->type->type = glsl_uint_type();
1225 }
1226
1227 if (storage_class == SpvStorageClassWorkgroup) {
1228 /* These can actually be stored to nir_variables and used as SSA
1229 * values so they need a real glsl_type.
1230 */
1231 val->type->type = glsl_uint_type();
1232 if (b->options->lower_workgroup_access_to_offsets) {
1233 uint32_t size, align;
1234 val->type->deref = vtn_type_layout_std430(b, val->type->deref,
1235 &size, &align);
1236 val->type->length = size;
1237 val->type->align = align;
1238 }
1239 }
1240 break;
1241 }
1242
1243 case SpvOpTypeImage: {
1244 val->type->base_type = vtn_base_type_image;
1245
1246 const struct vtn_type *sampled_type =
1247 vtn_value(b, w[2], vtn_value_type_type)->type;
1248
1249 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1250 glsl_get_bit_size(sampled_type->type) != 32,
1251 "Sampled type of OpTypeImage must be a 32-bit scalar");
1252
1253 enum glsl_sampler_dim dim;
1254 switch ((SpvDim)w[3]) {
1255 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1256 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1257 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1258 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1259 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1260 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1261 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1262 default:
1263 vtn_fail("Invalid SPIR-V image dimensionality");
1264 }
1265
1266 bool is_shadow = w[4];
1267 bool is_array = w[5];
1268 bool multisampled = w[6];
1269 unsigned sampled = w[7];
1270 SpvImageFormat format = w[8];
1271
1272 if (count > 9)
1273 val->type->access_qualifier = w[9];
1274 else
1275 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1276
1277 if (multisampled) {
1278 if (dim == GLSL_SAMPLER_DIM_2D)
1279 dim = GLSL_SAMPLER_DIM_MS;
1280 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1281 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1282 else
1283 vtn_fail("Unsupported multisampled image type");
1284 }
1285
1286 val->type->image_format = translate_image_format(b, format);
1287
1288 enum glsl_base_type sampled_base_type =
1289 glsl_get_base_type(sampled_type->type);
1290 if (sampled == 1) {
1291 val->type->sampled = true;
1292 val->type->type = glsl_sampler_type(dim, is_shadow, is_array,
1293 sampled_base_type);
1294 } else if (sampled == 2) {
1295 vtn_assert(!is_shadow);
1296 val->type->sampled = false;
1297 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1298 } else {
1299 vtn_fail("We need to know if the image will be sampled");
1300 }
1301 break;
1302 }
1303
1304 case SpvOpTypeSampledImage:
1305 val->type->base_type = vtn_base_type_sampled_image;
1306 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1307 val->type->type = val->type->image->type;
1308 break;
1309
1310 case SpvOpTypeSampler:
1311 /* The actual sampler type here doesn't really matter. It gets
1312 * thrown away the moment you combine it with an image. What really
1313 * matters is that it's a sampler type as opposed to an integer type
1314 * so the backend knows what to do.
1315 */
1316 val->type->base_type = vtn_base_type_sampler;
1317 val->type->type = glsl_bare_sampler_type();
1318 break;
1319
1320 case SpvOpTypeOpaque:
1321 case SpvOpTypeEvent:
1322 case SpvOpTypeDeviceEvent:
1323 case SpvOpTypeReserveId:
1324 case SpvOpTypeQueue:
1325 case SpvOpTypePipe:
1326 default:
1327 vtn_fail("Unhandled opcode");
1328 }
1329
1330 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1331 }
1332
1333 static nir_constant *
1334 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
1335 {
1336 nir_constant *c = rzalloc(b, nir_constant);
1337
1338 /* For pointers and other typeless things, we have to return something but
1339 * it doesn't matter what.
1340 */
1341 if (!type)
1342 return c;
1343
1344 switch (glsl_get_base_type(type)) {
1345 case GLSL_TYPE_INT:
1346 case GLSL_TYPE_UINT:
1347 case GLSL_TYPE_INT16:
1348 case GLSL_TYPE_UINT16:
1349 case GLSL_TYPE_UINT8:
1350 case GLSL_TYPE_INT8:
1351 case GLSL_TYPE_INT64:
1352 case GLSL_TYPE_UINT64:
1353 case GLSL_TYPE_BOOL:
1354 case GLSL_TYPE_FLOAT:
1355 case GLSL_TYPE_FLOAT16:
1356 case GLSL_TYPE_DOUBLE:
1357 /* Nothing to do here. It's already initialized to zero */
1358 break;
1359
1360 case GLSL_TYPE_ARRAY:
1361 vtn_assert(glsl_get_length(type) > 0);
1362 c->num_elements = glsl_get_length(type);
1363 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1364
1365 c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
1366 for (unsigned i = 1; i < c->num_elements; i++)
1367 c->elements[i] = c->elements[0];
1368 break;
1369
1370 case GLSL_TYPE_STRUCT:
1371 c->num_elements = glsl_get_length(type);
1372 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1373
1374 for (unsigned i = 0; i < c->num_elements; i++) {
1375 c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
1376 }
1377 break;
1378
1379 default:
1380 vtn_fail("Invalid type for null constant");
1381 }
1382
1383 return c;
1384 }
1385
1386 static void
1387 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1388 int member, const struct vtn_decoration *dec,
1389 void *data)
1390 {
1391 vtn_assert(member == -1);
1392 if (dec->decoration != SpvDecorationSpecId)
1393 return;
1394
1395 struct spec_constant_value *const_value = data;
1396
1397 for (unsigned i = 0; i < b->num_specializations; i++) {
1398 if (b->specializations[i].id == dec->literals[0]) {
1399 if (const_value->is_double)
1400 const_value->data64 = b->specializations[i].data64;
1401 else
1402 const_value->data32 = b->specializations[i].data32;
1403 return;
1404 }
1405 }
1406 }
1407
1408 static uint32_t
1409 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1410 uint32_t const_value)
1411 {
1412 struct spec_constant_value data;
1413 data.is_double = false;
1414 data.data32 = const_value;
1415 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1416 return data.data32;
1417 }
1418
1419 static uint64_t
1420 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1421 uint64_t const_value)
1422 {
1423 struct spec_constant_value data;
1424 data.is_double = true;
1425 data.data64 = const_value;
1426 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1427 return data.data64;
1428 }
1429
1430 static void
1431 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1432 struct vtn_value *val,
1433 int member,
1434 const struct vtn_decoration *dec,
1435 void *data)
1436 {
1437 vtn_assert(member == -1);
1438 if (dec->decoration != SpvDecorationBuiltIn ||
1439 dec->literals[0] != SpvBuiltInWorkgroupSize)
1440 return;
1441
1442 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1443
1444 b->shader->info.cs.local_size[0] = val->constant->values[0].u32[0];
1445 b->shader->info.cs.local_size[1] = val->constant->values[0].u32[1];
1446 b->shader->info.cs.local_size[2] = val->constant->values[0].u32[2];
1447 }
1448
1449 static void
1450 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1451 const uint32_t *w, unsigned count)
1452 {
1453 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1454 val->constant = rzalloc(b, nir_constant);
1455 switch (opcode) {
1456 case SpvOpConstantTrue:
1457 case SpvOpConstantFalse:
1458 case SpvOpSpecConstantTrue:
1459 case SpvOpSpecConstantFalse: {
1460 vtn_fail_if(val->type->type != glsl_bool_type(),
1461 "Result type of %s must be OpTypeBool",
1462 spirv_op_to_string(opcode));
1463
1464 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1465 opcode == SpvOpSpecConstantTrue);
1466
1467 if (opcode == SpvOpSpecConstantTrue ||
1468 opcode == SpvOpSpecConstantFalse)
1469 int_val = get_specialization(b, val, int_val);
1470
1471 val->constant->values[0].u32[0] = int_val ? NIR_TRUE : NIR_FALSE;
1472 break;
1473 }
1474
1475 case SpvOpConstant: {
1476 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1477 "Result type of %s must be a scalar",
1478 spirv_op_to_string(opcode));
1479 int bit_size = glsl_get_bit_size(val->type->type);
1480 switch (bit_size) {
1481 case 64:
1482 val->constant->values->u64[0] = vtn_u64_literal(&w[3]);
1483 break;
1484 case 32:
1485 val->constant->values->u32[0] = w[3];
1486 break;
1487 case 16:
1488 val->constant->values->u16[0] = w[3];
1489 break;
1490 case 8:
1491 val->constant->values->u8[0] = w[3];
1492 break;
1493 default:
1494 vtn_fail("Unsupported SpvOpConstant bit size");
1495 }
1496 break;
1497 }
1498
1499 case SpvOpSpecConstant: {
1500 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1501 "Result type of %s must be a scalar",
1502 spirv_op_to_string(opcode));
1503 int bit_size = glsl_get_bit_size(val->type->type);
1504 switch (bit_size) {
1505 case 64:
1506 val->constant->values[0].u64[0] =
1507 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1508 break;
1509 case 32:
1510 val->constant->values[0].u32[0] = get_specialization(b, val, w[3]);
1511 break;
1512 case 16:
1513 val->constant->values[0].u16[0] = get_specialization(b, val, w[3]);
1514 break;
1515 case 8:
1516 val->constant->values[0].u8[0] = get_specialization(b, val, w[3]);
1517 break;
1518 default:
1519 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1520 }
1521 break;
1522 }
1523
1524 case SpvOpSpecConstantComposite:
1525 case SpvOpConstantComposite: {
1526 unsigned elem_count = count - 3;
1527 vtn_fail_if(elem_count != val->type->length,
1528 "%s has %u constituents, expected %u",
1529 spirv_op_to_string(opcode), elem_count, val->type->length);
1530
1531 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1532 for (unsigned i = 0; i < elem_count; i++) {
1533 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1534
1535 if (val->value_type == vtn_value_type_constant) {
1536 elems[i] = val->constant;
1537 } else {
1538 vtn_fail_if(val->value_type != vtn_value_type_undef,
1539 "only constants or undefs allowed for "
1540 "SpvOpConstantComposite");
1541 /* to make it easier, just insert a NULL constant for now */
1542 elems[i] = vtn_null_constant(b, val->type->type);
1543 }
1544 }
1545
1546 switch (val->type->base_type) {
1547 case vtn_base_type_vector: {
1548 assert(glsl_type_is_vector(val->type->type));
1549 int bit_size = glsl_get_bit_size(val->type->type);
1550 for (unsigned i = 0; i < elem_count; i++) {
1551 switch (bit_size) {
1552 case 64:
1553 val->constant->values[0].u64[i] = elems[i]->values[0].u64[0];
1554 break;
1555 case 32:
1556 val->constant->values[0].u32[i] = elems[i]->values[0].u32[0];
1557 break;
1558 case 16:
1559 val->constant->values[0].u16[i] = elems[i]->values[0].u16[0];
1560 break;
1561 case 8:
1562 val->constant->values[0].u8[i] = elems[i]->values[0].u8[0];
1563 break;
1564 case 1:
1565 val->constant->values[0].b[i] = elems[i]->values[0].b[0];
1566 break;
1567 default:
1568 vtn_fail("Invalid SpvOpConstantComposite bit size");
1569 }
1570 }
1571 break;
1572 }
1573
1574 case vtn_base_type_matrix:
1575 assert(glsl_type_is_matrix(val->type->type));
1576 for (unsigned i = 0; i < elem_count; i++)
1577 val->constant->values[i] = elems[i]->values[0];
1578 break;
1579
1580 case vtn_base_type_struct:
1581 case vtn_base_type_array:
1582 ralloc_steal(val->constant, elems);
1583 val->constant->num_elements = elem_count;
1584 val->constant->elements = elems;
1585 break;
1586
1587 default:
1588 vtn_fail("Result type of %s must be a composite type",
1589 spirv_op_to_string(opcode));
1590 }
1591 break;
1592 }
1593
1594 case SpvOpSpecConstantOp: {
1595 SpvOp opcode = get_specialization(b, val, w[3]);
1596 switch (opcode) {
1597 case SpvOpVectorShuffle: {
1598 struct vtn_value *v0 = &b->values[w[4]];
1599 struct vtn_value *v1 = &b->values[w[5]];
1600
1601 vtn_assert(v0->value_type == vtn_value_type_constant ||
1602 v0->value_type == vtn_value_type_undef);
1603 vtn_assert(v1->value_type == vtn_value_type_constant ||
1604 v1->value_type == vtn_value_type_undef);
1605
1606 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1607 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1608
1609 vtn_assert(len0 + len1 < 16);
1610
1611 unsigned bit_size = glsl_get_bit_size(val->type->type);
1612 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1613 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1614
1615 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1616 (void)bit_size0; (void)bit_size1;
1617
1618 if (bit_size == 64) {
1619 uint64_t u64[8];
1620 if (v0->value_type == vtn_value_type_constant) {
1621 for (unsigned i = 0; i < len0; i++)
1622 u64[i] = v0->constant->values[0].u64[i];
1623 }
1624 if (v1->value_type == vtn_value_type_constant) {
1625 for (unsigned i = 0; i < len1; i++)
1626 u64[len0 + i] = v1->constant->values[0].u64[i];
1627 }
1628
1629 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1630 uint32_t comp = w[i + 6];
1631 /* If component is not used, set the value to a known constant
1632 * to detect if it is wrongly used.
1633 */
1634 if (comp == (uint32_t)-1)
1635 val->constant->values[0].u64[j] = 0xdeadbeefdeadbeef;
1636 else
1637 val->constant->values[0].u64[j] = u64[comp];
1638 }
1639 } else {
1640 /* This is for both 32-bit and 16-bit values */
1641 uint32_t u32[8];
1642 if (v0->value_type == vtn_value_type_constant) {
1643 for (unsigned i = 0; i < len0; i++)
1644 u32[i] = v0->constant->values[0].u32[i];
1645 }
1646 if (v1->value_type == vtn_value_type_constant) {
1647 for (unsigned i = 0; i < len1; i++)
1648 u32[len0 + i] = v1->constant->values[0].u32[i];
1649 }
1650
1651 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1652 uint32_t comp = w[i + 6];
1653 /* If component is not used, set the value to a known constant
1654 * to detect if it is wrongly used.
1655 */
1656 if (comp == (uint32_t)-1)
1657 val->constant->values[0].u32[j] = 0xdeadbeef;
1658 else
1659 val->constant->values[0].u32[j] = u32[comp];
1660 }
1661 }
1662 break;
1663 }
1664
1665 case SpvOpCompositeExtract:
1666 case SpvOpCompositeInsert: {
1667 struct vtn_value *comp;
1668 unsigned deref_start;
1669 struct nir_constant **c;
1670 if (opcode == SpvOpCompositeExtract) {
1671 comp = vtn_value(b, w[4], vtn_value_type_constant);
1672 deref_start = 5;
1673 c = &comp->constant;
1674 } else {
1675 comp = vtn_value(b, w[5], vtn_value_type_constant);
1676 deref_start = 6;
1677 val->constant = nir_constant_clone(comp->constant,
1678 (nir_variable *)b);
1679 c = &val->constant;
1680 }
1681
1682 int elem = -1;
1683 int col = 0;
1684 const struct vtn_type *type = comp->type;
1685 for (unsigned i = deref_start; i < count; i++) {
1686 vtn_fail_if(w[i] > type->length,
1687 "%uth index of %s is %u but the type has only "
1688 "%u elements", i - deref_start,
1689 spirv_op_to_string(opcode), w[i], type->length);
1690
1691 switch (type->base_type) {
1692 case vtn_base_type_vector:
1693 elem = w[i];
1694 type = type->array_element;
1695 break;
1696
1697 case vtn_base_type_matrix:
1698 assert(col == 0 && elem == -1);
1699 col = w[i];
1700 elem = 0;
1701 type = type->array_element;
1702 break;
1703
1704 case vtn_base_type_array:
1705 c = &(*c)->elements[w[i]];
1706 type = type->array_element;
1707 break;
1708
1709 case vtn_base_type_struct:
1710 c = &(*c)->elements[w[i]];
1711 type = type->members[w[i]];
1712 break;
1713
1714 default:
1715 vtn_fail("%s must only index into composite types",
1716 spirv_op_to_string(opcode));
1717 }
1718 }
1719
1720 if (opcode == SpvOpCompositeExtract) {
1721 if (elem == -1) {
1722 val->constant = *c;
1723 } else {
1724 unsigned num_components = type->length;
1725 unsigned bit_size = glsl_get_bit_size(type->type);
1726 for (unsigned i = 0; i < num_components; i++)
1727 switch(bit_size) {
1728 case 64:
1729 val->constant->values[0].u64[i] = (*c)->values[col].u64[elem + i];
1730 break;
1731 case 32:
1732 val->constant->values[0].u32[i] = (*c)->values[col].u32[elem + i];
1733 break;
1734 case 16:
1735 val->constant->values[0].u16[i] = (*c)->values[col].u16[elem + i];
1736 break;
1737 case 8:
1738 val->constant->values[0].u8[i] = (*c)->values[col].u8[elem + i];
1739 break;
1740 case 1:
1741 val->constant->values[0].b[i] = (*c)->values[col].b[elem + i];
1742 break;
1743 default:
1744 vtn_fail("Invalid SpvOpCompositeExtract bit size");
1745 }
1746 }
1747 } else {
1748 struct vtn_value *insert =
1749 vtn_value(b, w[4], vtn_value_type_constant);
1750 vtn_assert(insert->type == type);
1751 if (elem == -1) {
1752 *c = insert->constant;
1753 } else {
1754 unsigned num_components = type->length;
1755 unsigned bit_size = glsl_get_bit_size(type->type);
1756 for (unsigned i = 0; i < num_components; i++)
1757 switch (bit_size) {
1758 case 64:
1759 (*c)->values[col].u64[elem + i] = insert->constant->values[0].u64[i];
1760 break;
1761 case 32:
1762 (*c)->values[col].u32[elem + i] = insert->constant->values[0].u32[i];
1763 break;
1764 case 16:
1765 (*c)->values[col].u16[elem + i] = insert->constant->values[0].u16[i];
1766 break;
1767 case 8:
1768 (*c)->values[col].u8[elem + i] = insert->constant->values[0].u8[i];
1769 break;
1770 case 1:
1771 (*c)->values[col].b[elem + i] = insert->constant->values[0].b[i];
1772 break;
1773 default:
1774 vtn_fail("Invalid SpvOpCompositeInsert bit size");
1775 }
1776 }
1777 }
1778 break;
1779 }
1780
1781 default: {
1782 bool swap;
1783 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1784 nir_alu_type src_alu_type = dst_alu_type;
1785 unsigned num_components = glsl_get_vector_elements(val->type->type);
1786 unsigned bit_size;
1787
1788 vtn_assert(count <= 7);
1789
1790 switch (opcode) {
1791 case SpvOpSConvert:
1792 case SpvOpFConvert:
1793 /* We have a source in a conversion */
1794 src_alu_type =
1795 nir_get_nir_type_for_glsl_type(
1796 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1797 /* We use the bitsize of the conversion source to evaluate the opcode later */
1798 bit_size = glsl_get_bit_size(
1799 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1800 break;
1801 default:
1802 bit_size = glsl_get_bit_size(val->type->type);
1803 };
1804
1805 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1806 nir_alu_type_get_type_size(src_alu_type),
1807 nir_alu_type_get_type_size(dst_alu_type));
1808 nir_const_value src[4];
1809
1810 for (unsigned i = 0; i < count - 4; i++) {
1811 struct vtn_value *src_val =
1812 vtn_value(b, w[4 + i], vtn_value_type_constant);
1813
1814 /* If this is an unsized source, pull the bit size from the
1815 * source; otherwise, we'll use the bit size from the destination.
1816 */
1817 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1818 bit_size = glsl_get_bit_size(src_val->type->type);
1819
1820 unsigned j = swap ? 1 - i : i;
1821 src[j] = src_val->constant->values[0];
1822 }
1823
1824 /* fix up fixed size sources */
1825 switch (op) {
1826 case nir_op_ishl:
1827 case nir_op_ishr:
1828 case nir_op_ushr: {
1829 if (bit_size == 32)
1830 break;
1831 for (unsigned i = 0; i < num_components; ++i) {
1832 switch (bit_size) {
1833 case 64: src[1].u32[i] = src[1].u64[i]; break;
1834 case 16: src[1].u32[i] = src[1].u16[i]; break;
1835 case 8: src[1].u32[i] = src[1].u8[i]; break;
1836 }
1837 }
1838 break;
1839 }
1840 default:
1841 break;
1842 }
1843
1844 val->constant->values[0] =
1845 nir_eval_const_opcode(op, num_components, bit_size, src);
1846 break;
1847 } /* default */
1848 }
1849 break;
1850 }
1851
1852 case SpvOpConstantNull:
1853 val->constant = vtn_null_constant(b, val->type->type);
1854 break;
1855
1856 case SpvOpConstantSampler:
1857 vtn_fail("OpConstantSampler requires Kernel Capability");
1858 break;
1859
1860 default:
1861 vtn_fail("Unhandled opcode");
1862 }
1863
1864 /* Now that we have the value, update the workgroup size if needed */
1865 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1866 }
1867
1868 struct vtn_ssa_value *
1869 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1870 {
1871 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1872 val->type = type;
1873
1874 if (!glsl_type_is_vector_or_scalar(type)) {
1875 unsigned elems = glsl_get_length(type);
1876 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1877 for (unsigned i = 0; i < elems; i++) {
1878 const struct glsl_type *child_type;
1879
1880 switch (glsl_get_base_type(type)) {
1881 case GLSL_TYPE_INT:
1882 case GLSL_TYPE_UINT:
1883 case GLSL_TYPE_INT16:
1884 case GLSL_TYPE_UINT16:
1885 case GLSL_TYPE_UINT8:
1886 case GLSL_TYPE_INT8:
1887 case GLSL_TYPE_INT64:
1888 case GLSL_TYPE_UINT64:
1889 case GLSL_TYPE_BOOL:
1890 case GLSL_TYPE_FLOAT:
1891 case GLSL_TYPE_FLOAT16:
1892 case GLSL_TYPE_DOUBLE:
1893 child_type = glsl_get_column_type(type);
1894 break;
1895 case GLSL_TYPE_ARRAY:
1896 child_type = glsl_get_array_element(type);
1897 break;
1898 case GLSL_TYPE_STRUCT:
1899 child_type = glsl_get_struct_field(type, i);
1900 break;
1901 default:
1902 vtn_fail("unkown base type");
1903 }
1904
1905 val->elems[i] = vtn_create_ssa_value(b, child_type);
1906 }
1907 }
1908
1909 return val;
1910 }
1911
1912 static nir_tex_src
1913 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
1914 {
1915 nir_tex_src src;
1916 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
1917 src.src_type = type;
1918 return src;
1919 }
1920
1921 static void
1922 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
1923 const uint32_t *w, unsigned count)
1924 {
1925 if (opcode == SpvOpSampledImage) {
1926 struct vtn_value *val =
1927 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1928 val->sampled_image = ralloc(b, struct vtn_sampled_image);
1929 val->sampled_image->type =
1930 vtn_value(b, w[1], vtn_value_type_type)->type;
1931 val->sampled_image->image =
1932 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
1933 val->sampled_image->sampler =
1934 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
1935 return;
1936 } else if (opcode == SpvOpImage) {
1937 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
1938 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
1939 if (src_val->value_type == vtn_value_type_sampled_image) {
1940 val->pointer = src_val->sampled_image->image;
1941 } else {
1942 vtn_assert(src_val->value_type == vtn_value_type_pointer);
1943 val->pointer = src_val->pointer;
1944 }
1945 return;
1946 }
1947
1948 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1949 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1950
1951 struct vtn_sampled_image sampled;
1952 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
1953 if (sampled_val->value_type == vtn_value_type_sampled_image) {
1954 sampled = *sampled_val->sampled_image;
1955 } else {
1956 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
1957 sampled.type = sampled_val->pointer->type;
1958 sampled.image = NULL;
1959 sampled.sampler = sampled_val->pointer;
1960 }
1961
1962 const struct glsl_type *image_type = sampled.type->type;
1963 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
1964 const bool is_array = glsl_sampler_type_is_array(image_type);
1965
1966 /* Figure out the base texture operation */
1967 nir_texop texop;
1968 switch (opcode) {
1969 case SpvOpImageSampleImplicitLod:
1970 case SpvOpImageSampleDrefImplicitLod:
1971 case SpvOpImageSampleProjImplicitLod:
1972 case SpvOpImageSampleProjDrefImplicitLod:
1973 texop = nir_texop_tex;
1974 break;
1975
1976 case SpvOpImageSampleExplicitLod:
1977 case SpvOpImageSampleDrefExplicitLod:
1978 case SpvOpImageSampleProjExplicitLod:
1979 case SpvOpImageSampleProjDrefExplicitLod:
1980 texop = nir_texop_txl;
1981 break;
1982
1983 case SpvOpImageFetch:
1984 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
1985 texop = nir_texop_txf_ms;
1986 } else {
1987 texop = nir_texop_txf;
1988 }
1989 break;
1990
1991 case SpvOpImageGather:
1992 case SpvOpImageDrefGather:
1993 texop = nir_texop_tg4;
1994 break;
1995
1996 case SpvOpImageQuerySizeLod:
1997 case SpvOpImageQuerySize:
1998 texop = nir_texop_txs;
1999 break;
2000
2001 case SpvOpImageQueryLod:
2002 texop = nir_texop_lod;
2003 break;
2004
2005 case SpvOpImageQueryLevels:
2006 texop = nir_texop_query_levels;
2007 break;
2008
2009 case SpvOpImageQuerySamples:
2010 texop = nir_texop_texture_samples;
2011 break;
2012
2013 default:
2014 vtn_fail("Unhandled opcode");
2015 }
2016
2017 nir_tex_src srcs[10]; /* 10 should be enough */
2018 nir_tex_src *p = srcs;
2019
2020 nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2021 nir_deref_instr *texture =
2022 sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler;
2023
2024 p->src = nir_src_for_ssa(&texture->dest.ssa);
2025 p->src_type = nir_tex_src_texture_deref;
2026 p++;
2027
2028 switch (texop) {
2029 case nir_texop_tex:
2030 case nir_texop_txb:
2031 case nir_texop_txl:
2032 case nir_texop_txd:
2033 case nir_texop_tg4:
2034 /* These operations require a sampler */
2035 p->src = nir_src_for_ssa(&sampler->dest.ssa);
2036 p->src_type = nir_tex_src_sampler_deref;
2037 p++;
2038 break;
2039 case nir_texop_txf:
2040 case nir_texop_txf_ms:
2041 case nir_texop_txs:
2042 case nir_texop_lod:
2043 case nir_texop_query_levels:
2044 case nir_texop_texture_samples:
2045 case nir_texop_samples_identical:
2046 /* These don't */
2047 break;
2048 case nir_texop_txf_ms_mcs:
2049 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2050 }
2051
2052 unsigned idx = 4;
2053
2054 struct nir_ssa_def *coord;
2055 unsigned coord_components;
2056 switch (opcode) {
2057 case SpvOpImageSampleImplicitLod:
2058 case SpvOpImageSampleExplicitLod:
2059 case SpvOpImageSampleDrefImplicitLod:
2060 case SpvOpImageSampleDrefExplicitLod:
2061 case SpvOpImageSampleProjImplicitLod:
2062 case SpvOpImageSampleProjExplicitLod:
2063 case SpvOpImageSampleProjDrefImplicitLod:
2064 case SpvOpImageSampleProjDrefExplicitLod:
2065 case SpvOpImageFetch:
2066 case SpvOpImageGather:
2067 case SpvOpImageDrefGather:
2068 case SpvOpImageQueryLod: {
2069 /* All these types have the coordinate as their first real argument */
2070 switch (sampler_dim) {
2071 case GLSL_SAMPLER_DIM_1D:
2072 case GLSL_SAMPLER_DIM_BUF:
2073 coord_components = 1;
2074 break;
2075 case GLSL_SAMPLER_DIM_2D:
2076 case GLSL_SAMPLER_DIM_RECT:
2077 case GLSL_SAMPLER_DIM_MS:
2078 coord_components = 2;
2079 break;
2080 case GLSL_SAMPLER_DIM_3D:
2081 case GLSL_SAMPLER_DIM_CUBE:
2082 coord_components = 3;
2083 break;
2084 default:
2085 vtn_fail("Invalid sampler type");
2086 }
2087
2088 if (is_array && texop != nir_texop_lod)
2089 coord_components++;
2090
2091 coord = vtn_ssa_value(b, w[idx++])->def;
2092 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2093 (1 << coord_components) - 1));
2094 p->src_type = nir_tex_src_coord;
2095 p++;
2096 break;
2097 }
2098
2099 default:
2100 coord = NULL;
2101 coord_components = 0;
2102 break;
2103 }
2104
2105 switch (opcode) {
2106 case SpvOpImageSampleProjImplicitLod:
2107 case SpvOpImageSampleProjExplicitLod:
2108 case SpvOpImageSampleProjDrefImplicitLod:
2109 case SpvOpImageSampleProjDrefExplicitLod:
2110 /* These have the projector as the last coordinate component */
2111 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2112 p->src_type = nir_tex_src_projector;
2113 p++;
2114 break;
2115
2116 default:
2117 break;
2118 }
2119
2120 bool is_shadow = false;
2121 unsigned gather_component = 0;
2122 switch (opcode) {
2123 case SpvOpImageSampleDrefImplicitLod:
2124 case SpvOpImageSampleDrefExplicitLod:
2125 case SpvOpImageSampleProjDrefImplicitLod:
2126 case SpvOpImageSampleProjDrefExplicitLod:
2127 case SpvOpImageDrefGather:
2128 /* These all have an explicit depth value as their next source */
2129 is_shadow = true;
2130 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2131 break;
2132
2133 case SpvOpImageGather:
2134 /* This has a component as its next source */
2135 gather_component =
2136 vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0].u32[0];
2137 break;
2138
2139 default:
2140 break;
2141 }
2142
2143 /* For OpImageQuerySizeLod, we always have an LOD */
2144 if (opcode == SpvOpImageQuerySizeLod)
2145 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2146
2147 /* Now we need to handle some number of optional arguments */
2148 const struct vtn_ssa_value *gather_offsets = NULL;
2149 if (idx < count) {
2150 uint32_t operands = w[idx++];
2151
2152 if (operands & SpvImageOperandsBiasMask) {
2153 vtn_assert(texop == nir_texop_tex);
2154 texop = nir_texop_txb;
2155 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2156 }
2157
2158 if (operands & SpvImageOperandsLodMask) {
2159 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2160 texop == nir_texop_txs);
2161 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2162 }
2163
2164 if (operands & SpvImageOperandsGradMask) {
2165 vtn_assert(texop == nir_texop_txl);
2166 texop = nir_texop_txd;
2167 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2168 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2169 }
2170
2171 if (operands & SpvImageOperandsOffsetMask ||
2172 operands & SpvImageOperandsConstOffsetMask)
2173 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2174
2175 if (operands & SpvImageOperandsConstOffsetsMask) {
2176 nir_tex_src none = {0};
2177 gather_offsets = vtn_ssa_value(b, w[idx++]);
2178 (*p++) = none;
2179 }
2180
2181 if (operands & SpvImageOperandsSampleMask) {
2182 vtn_assert(texop == nir_texop_txf_ms);
2183 texop = nir_texop_txf_ms;
2184 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2185 }
2186
2187 if (operands & SpvImageOperandsMinLodMask) {
2188 vtn_assert(texop == nir_texop_tex ||
2189 texop == nir_texop_txb ||
2190 texop == nir_texop_txd);
2191 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod);
2192 }
2193 }
2194 /* We should have now consumed exactly all of the arguments */
2195 vtn_assert(idx == count);
2196
2197 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2198 instr->op = texop;
2199
2200 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2201
2202 instr->coord_components = coord_components;
2203 instr->sampler_dim = sampler_dim;
2204 instr->is_array = is_array;
2205 instr->is_shadow = is_shadow;
2206 instr->is_new_style_shadow =
2207 is_shadow && glsl_get_components(ret_type->type) == 1;
2208 instr->component = gather_component;
2209
2210 switch (glsl_get_sampler_result_type(image_type)) {
2211 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
2212 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
2213 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
2214 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
2215 default:
2216 vtn_fail("Invalid base type for sampler result");
2217 }
2218
2219 nir_ssa_dest_init(&instr->instr, &instr->dest,
2220 nir_tex_instr_dest_size(instr), 32, NULL);
2221
2222 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2223 nir_tex_instr_dest_size(instr));
2224
2225 nir_ssa_def *def;
2226 nir_instr *instruction;
2227 if (gather_offsets) {
2228 vtn_assert(glsl_get_base_type(gather_offsets->type) == GLSL_TYPE_ARRAY);
2229 vtn_assert(glsl_get_length(gather_offsets->type) == 4);
2230 nir_tex_instr *instrs[4] = {instr, NULL, NULL, NULL};
2231
2232 /* Copy the current instruction 4x */
2233 for (uint32_t i = 1; i < 4; i++) {
2234 instrs[i] = nir_tex_instr_create(b->shader, instr->num_srcs);
2235 instrs[i]->op = instr->op;
2236 instrs[i]->coord_components = instr->coord_components;
2237 instrs[i]->sampler_dim = instr->sampler_dim;
2238 instrs[i]->is_array = instr->is_array;
2239 instrs[i]->is_shadow = instr->is_shadow;
2240 instrs[i]->is_new_style_shadow = instr->is_new_style_shadow;
2241 instrs[i]->component = instr->component;
2242 instrs[i]->dest_type = instr->dest_type;
2243
2244 memcpy(instrs[i]->src, srcs, instr->num_srcs * sizeof(*instr->src));
2245
2246 nir_ssa_dest_init(&instrs[i]->instr, &instrs[i]->dest,
2247 nir_tex_instr_dest_size(instr), 32, NULL);
2248 }
2249
2250 /* Fill in the last argument with the offset from the passed in offsets
2251 * and insert the instruction into the stream.
2252 */
2253 for (uint32_t i = 0; i < 4; i++) {
2254 nir_tex_src src;
2255 src.src = nir_src_for_ssa(gather_offsets->elems[i]->def);
2256 src.src_type = nir_tex_src_offset;
2257 instrs[i]->src[instrs[i]->num_srcs - 1] = src;
2258 nir_builder_instr_insert(&b->nb, &instrs[i]->instr);
2259 }
2260
2261 /* Combine the results of the 4 instructions by taking their .w
2262 * components
2263 */
2264 nir_alu_instr *vec4 = nir_alu_instr_create(b->shader, nir_op_vec4);
2265 nir_ssa_dest_init(&vec4->instr, &vec4->dest.dest, 4, 32, NULL);
2266 vec4->dest.write_mask = 0xf;
2267 for (uint32_t i = 0; i < 4; i++) {
2268 vec4->src[i].src = nir_src_for_ssa(&instrs[i]->dest.ssa);
2269 vec4->src[i].swizzle[0] = 3;
2270 }
2271 def = &vec4->dest.dest.ssa;
2272 instruction = &vec4->instr;
2273 } else {
2274 def = &instr->dest.ssa;
2275 instruction = &instr->instr;
2276 }
2277
2278 val->ssa = vtn_create_ssa_value(b, ret_type->type);
2279 val->ssa->def = def;
2280
2281 nir_builder_instr_insert(&b->nb, instruction);
2282 }
2283
2284 static void
2285 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2286 const uint32_t *w, nir_src *src)
2287 {
2288 switch (opcode) {
2289 case SpvOpAtomicIIncrement:
2290 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2291 break;
2292
2293 case SpvOpAtomicIDecrement:
2294 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2295 break;
2296
2297 case SpvOpAtomicISub:
2298 src[0] =
2299 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2300 break;
2301
2302 case SpvOpAtomicCompareExchange:
2303 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2304 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2305 break;
2306
2307 case SpvOpAtomicExchange:
2308 case SpvOpAtomicIAdd:
2309 case SpvOpAtomicSMin:
2310 case SpvOpAtomicUMin:
2311 case SpvOpAtomicSMax:
2312 case SpvOpAtomicUMax:
2313 case SpvOpAtomicAnd:
2314 case SpvOpAtomicOr:
2315 case SpvOpAtomicXor:
2316 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2317 break;
2318
2319 default:
2320 vtn_fail("Invalid SPIR-V atomic");
2321 }
2322 }
2323
2324 static nir_ssa_def *
2325 get_image_coord(struct vtn_builder *b, uint32_t value)
2326 {
2327 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2328
2329 /* The image_load_store intrinsics assume a 4-dim coordinate */
2330 unsigned dim = glsl_get_vector_elements(coord->type);
2331 unsigned swizzle[4];
2332 for (unsigned i = 0; i < 4; i++)
2333 swizzle[i] = MIN2(i, dim - 1);
2334
2335 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
2336 }
2337
2338 static nir_ssa_def *
2339 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2340 {
2341 if (value->num_components == 4)
2342 return value;
2343
2344 unsigned swiz[4];
2345 for (unsigned i = 0; i < 4; i++)
2346 swiz[i] = i < value->num_components ? i : 0;
2347 return nir_swizzle(b, value, swiz, 4, false);
2348 }
2349
2350 static void
2351 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2352 const uint32_t *w, unsigned count)
2353 {
2354 /* Just get this one out of the way */
2355 if (opcode == SpvOpImageTexelPointer) {
2356 struct vtn_value *val =
2357 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2358 val->image = ralloc(b, struct vtn_image_pointer);
2359
2360 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2361 val->image->coord = get_image_coord(b, w[4]);
2362 val->image->sample = vtn_ssa_value(b, w[5])->def;
2363 return;
2364 }
2365
2366 struct vtn_image_pointer image;
2367
2368 switch (opcode) {
2369 case SpvOpAtomicExchange:
2370 case SpvOpAtomicCompareExchange:
2371 case SpvOpAtomicCompareExchangeWeak:
2372 case SpvOpAtomicIIncrement:
2373 case SpvOpAtomicIDecrement:
2374 case SpvOpAtomicIAdd:
2375 case SpvOpAtomicISub:
2376 case SpvOpAtomicLoad:
2377 case SpvOpAtomicSMin:
2378 case SpvOpAtomicUMin:
2379 case SpvOpAtomicSMax:
2380 case SpvOpAtomicUMax:
2381 case SpvOpAtomicAnd:
2382 case SpvOpAtomicOr:
2383 case SpvOpAtomicXor:
2384 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2385 break;
2386
2387 case SpvOpAtomicStore:
2388 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2389 break;
2390
2391 case SpvOpImageQuerySize:
2392 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2393 image.coord = NULL;
2394 image.sample = NULL;
2395 break;
2396
2397 case SpvOpImageRead:
2398 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2399 image.coord = get_image_coord(b, w[4]);
2400
2401 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2402 vtn_assert(w[5] == SpvImageOperandsSampleMask);
2403 image.sample = vtn_ssa_value(b, w[6])->def;
2404 } else {
2405 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2406 }
2407 break;
2408
2409 case SpvOpImageWrite:
2410 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2411 image.coord = get_image_coord(b, w[2]);
2412
2413 /* texel = w[3] */
2414
2415 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2416 vtn_assert(w[4] == SpvImageOperandsSampleMask);
2417 image.sample = vtn_ssa_value(b, w[5])->def;
2418 } else {
2419 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2420 }
2421 break;
2422
2423 default:
2424 vtn_fail("Invalid image opcode");
2425 }
2426
2427 nir_intrinsic_op op;
2428 switch (opcode) {
2429 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2430 OP(ImageQuerySize, size)
2431 OP(ImageRead, load)
2432 OP(ImageWrite, store)
2433 OP(AtomicLoad, load)
2434 OP(AtomicStore, store)
2435 OP(AtomicExchange, atomic_exchange)
2436 OP(AtomicCompareExchange, atomic_comp_swap)
2437 OP(AtomicIIncrement, atomic_add)
2438 OP(AtomicIDecrement, atomic_add)
2439 OP(AtomicIAdd, atomic_add)
2440 OP(AtomicISub, atomic_add)
2441 OP(AtomicSMin, atomic_min)
2442 OP(AtomicUMin, atomic_min)
2443 OP(AtomicSMax, atomic_max)
2444 OP(AtomicUMax, atomic_max)
2445 OP(AtomicAnd, atomic_and)
2446 OP(AtomicOr, atomic_or)
2447 OP(AtomicXor, atomic_xor)
2448 #undef OP
2449 default:
2450 vtn_fail("Invalid image opcode");
2451 }
2452
2453 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2454
2455 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2456 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2457
2458 /* ImageQuerySize doesn't take any extra parameters */
2459 if (opcode != SpvOpImageQuerySize) {
2460 /* The image coordinate is always 4 components but we may not have that
2461 * many. Swizzle to compensate.
2462 */
2463 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2464 intrin->src[2] = nir_src_for_ssa(image.sample);
2465 }
2466
2467 switch (opcode) {
2468 case SpvOpAtomicLoad:
2469 case SpvOpImageQuerySize:
2470 case SpvOpImageRead:
2471 break;
2472 case SpvOpAtomicStore:
2473 case SpvOpImageWrite: {
2474 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2475 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2476 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2477 assert(op == nir_intrinsic_image_deref_store);
2478 intrin->num_components = 4;
2479 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2480 break;
2481 }
2482
2483 case SpvOpAtomicCompareExchange:
2484 case SpvOpAtomicIIncrement:
2485 case SpvOpAtomicIDecrement:
2486 case SpvOpAtomicExchange:
2487 case SpvOpAtomicIAdd:
2488 case SpvOpAtomicISub:
2489 case SpvOpAtomicSMin:
2490 case SpvOpAtomicUMin:
2491 case SpvOpAtomicSMax:
2492 case SpvOpAtomicUMax:
2493 case SpvOpAtomicAnd:
2494 case SpvOpAtomicOr:
2495 case SpvOpAtomicXor:
2496 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2497 break;
2498
2499 default:
2500 vtn_fail("Invalid image opcode");
2501 }
2502
2503 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2504 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2505 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2506
2507 unsigned dest_components = glsl_get_vector_elements(type->type);
2508 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2509 if (intrin->num_components == 0)
2510 intrin->num_components = dest_components;
2511
2512 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2513 intrin->num_components, 32, NULL);
2514
2515 nir_builder_instr_insert(&b->nb, &intrin->instr);
2516
2517 nir_ssa_def *result = &intrin->dest.ssa;
2518 if (intrin->num_components != dest_components)
2519 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2520
2521 val->ssa = vtn_create_ssa_value(b, type->type);
2522 val->ssa->def = result;
2523 } else {
2524 nir_builder_instr_insert(&b->nb, &intrin->instr);
2525 }
2526 }
2527
2528 static nir_intrinsic_op
2529 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2530 {
2531 switch (opcode) {
2532 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2533 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2534 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2535 OP(AtomicExchange, atomic_exchange)
2536 OP(AtomicCompareExchange, atomic_comp_swap)
2537 OP(AtomicIIncrement, atomic_add)
2538 OP(AtomicIDecrement, atomic_add)
2539 OP(AtomicIAdd, atomic_add)
2540 OP(AtomicISub, atomic_add)
2541 OP(AtomicSMin, atomic_imin)
2542 OP(AtomicUMin, atomic_umin)
2543 OP(AtomicSMax, atomic_imax)
2544 OP(AtomicUMax, atomic_umax)
2545 OP(AtomicAnd, atomic_and)
2546 OP(AtomicOr, atomic_or)
2547 OP(AtomicXor, atomic_xor)
2548 #undef OP
2549 default:
2550 vtn_fail("Invalid SSBO atomic");
2551 }
2552 }
2553
2554 static nir_intrinsic_op
2555 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2556 {
2557 switch (opcode) {
2558 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2559 OP(AtomicLoad, read_deref)
2560 OP(AtomicExchange, exchange)
2561 OP(AtomicCompareExchange, comp_swap)
2562 OP(AtomicIIncrement, inc_deref)
2563 OP(AtomicIDecrement, post_dec_deref)
2564 OP(AtomicIAdd, add_deref)
2565 OP(AtomicISub, add_deref)
2566 OP(AtomicUMin, min_deref)
2567 OP(AtomicUMax, max_deref)
2568 OP(AtomicAnd, and_deref)
2569 OP(AtomicOr, or_deref)
2570 OP(AtomicXor, xor_deref)
2571 #undef OP
2572 default:
2573 /* We left the following out: AtomicStore, AtomicSMin and
2574 * AtomicSmax. Right now there are not nir intrinsics for them. At this
2575 * moment Atomic Counter support is needed for ARB_spirv support, so is
2576 * only need to support GLSL Atomic Counters that are uints and don't
2577 * allow direct storage.
2578 */
2579 unreachable("Invalid uniform atomic");
2580 }
2581 }
2582
2583 static nir_intrinsic_op
2584 get_shared_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2585 {
2586 switch (opcode) {
2587 case SpvOpAtomicLoad: return nir_intrinsic_load_shared;
2588 case SpvOpAtomicStore: return nir_intrinsic_store_shared;
2589 #define OP(S, N) case SpvOp##S: return nir_intrinsic_shared_##N;
2590 OP(AtomicExchange, atomic_exchange)
2591 OP(AtomicCompareExchange, atomic_comp_swap)
2592 OP(AtomicIIncrement, atomic_add)
2593 OP(AtomicIDecrement, atomic_add)
2594 OP(AtomicIAdd, atomic_add)
2595 OP(AtomicISub, atomic_add)
2596 OP(AtomicSMin, atomic_imin)
2597 OP(AtomicUMin, atomic_umin)
2598 OP(AtomicSMax, atomic_imax)
2599 OP(AtomicUMax, atomic_umax)
2600 OP(AtomicAnd, atomic_and)
2601 OP(AtomicOr, atomic_or)
2602 OP(AtomicXor, atomic_xor)
2603 #undef OP
2604 default:
2605 vtn_fail("Invalid shared atomic");
2606 }
2607 }
2608
2609 static nir_intrinsic_op
2610 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2611 {
2612 switch (opcode) {
2613 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
2614 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
2615 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
2616 OP(AtomicExchange, atomic_exchange)
2617 OP(AtomicCompareExchange, atomic_comp_swap)
2618 OP(AtomicIIncrement, atomic_add)
2619 OP(AtomicIDecrement, atomic_add)
2620 OP(AtomicIAdd, atomic_add)
2621 OP(AtomicISub, atomic_add)
2622 OP(AtomicSMin, atomic_imin)
2623 OP(AtomicUMin, atomic_umin)
2624 OP(AtomicSMax, atomic_imax)
2625 OP(AtomicUMax, atomic_umax)
2626 OP(AtomicAnd, atomic_and)
2627 OP(AtomicOr, atomic_or)
2628 OP(AtomicXor, atomic_xor)
2629 #undef OP
2630 default:
2631 vtn_fail("Invalid shared atomic");
2632 }
2633 }
2634
2635 /*
2636 * Handles shared atomics, ssbo atomics and atomic counters.
2637 */
2638 static void
2639 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
2640 const uint32_t *w, unsigned count)
2641 {
2642 struct vtn_pointer *ptr;
2643 nir_intrinsic_instr *atomic;
2644
2645 switch (opcode) {
2646 case SpvOpAtomicLoad:
2647 case SpvOpAtomicExchange:
2648 case SpvOpAtomicCompareExchange:
2649 case SpvOpAtomicCompareExchangeWeak:
2650 case SpvOpAtomicIIncrement:
2651 case SpvOpAtomicIDecrement:
2652 case SpvOpAtomicIAdd:
2653 case SpvOpAtomicISub:
2654 case SpvOpAtomicSMin:
2655 case SpvOpAtomicUMin:
2656 case SpvOpAtomicSMax:
2657 case SpvOpAtomicUMax:
2658 case SpvOpAtomicAnd:
2659 case SpvOpAtomicOr:
2660 case SpvOpAtomicXor:
2661 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2662 break;
2663
2664 case SpvOpAtomicStore:
2665 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2666 break;
2667
2668 default:
2669 vtn_fail("Invalid SPIR-V atomic");
2670 }
2671
2672 /*
2673 SpvScope scope = w[4];
2674 SpvMemorySemanticsMask semantics = w[5];
2675 */
2676
2677 /* uniform as "atomic counter uniform" */
2678 if (ptr->mode == vtn_variable_mode_uniform) {
2679 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2680 const struct glsl_type *deref_type = deref->type;
2681 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
2682 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2683 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2684
2685 /* SSBO needs to initialize index/offset. In this case we don't need to,
2686 * as that info is already stored on the ptr->var->var nir_variable (see
2687 * vtn_create_variable)
2688 */
2689
2690 switch (opcode) {
2691 case SpvOpAtomicLoad:
2692 atomic->num_components = glsl_get_vector_elements(deref_type);
2693 break;
2694
2695 case SpvOpAtomicStore:
2696 atomic->num_components = glsl_get_vector_elements(deref_type);
2697 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2698 break;
2699
2700 case SpvOpAtomicExchange:
2701 case SpvOpAtomicCompareExchange:
2702 case SpvOpAtomicCompareExchangeWeak:
2703 case SpvOpAtomicIIncrement:
2704 case SpvOpAtomicIDecrement:
2705 case SpvOpAtomicIAdd:
2706 case SpvOpAtomicISub:
2707 case SpvOpAtomicSMin:
2708 case SpvOpAtomicUMin:
2709 case SpvOpAtomicSMax:
2710 case SpvOpAtomicUMax:
2711 case SpvOpAtomicAnd:
2712 case SpvOpAtomicOr:
2713 case SpvOpAtomicXor:
2714 /* Nothing: we don't need to call fill_common_atomic_sources here, as
2715 * atomic counter uniforms doesn't have sources
2716 */
2717 break;
2718
2719 default:
2720 unreachable("Invalid SPIR-V atomic");
2721
2722 }
2723 } else if (ptr->mode == vtn_variable_mode_workgroup &&
2724 !b->options->lower_workgroup_access_to_offsets) {
2725 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2726 const struct glsl_type *deref_type = deref->type;
2727 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
2728 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2729 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2730
2731 switch (opcode) {
2732 case SpvOpAtomicLoad:
2733 atomic->num_components = glsl_get_vector_elements(deref_type);
2734 break;
2735
2736 case SpvOpAtomicStore:
2737 atomic->num_components = glsl_get_vector_elements(deref_type);
2738 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2739 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2740 break;
2741
2742 case SpvOpAtomicExchange:
2743 case SpvOpAtomicCompareExchange:
2744 case SpvOpAtomicCompareExchangeWeak:
2745 case SpvOpAtomicIIncrement:
2746 case SpvOpAtomicIDecrement:
2747 case SpvOpAtomicIAdd:
2748 case SpvOpAtomicISub:
2749 case SpvOpAtomicSMin:
2750 case SpvOpAtomicUMin:
2751 case SpvOpAtomicSMax:
2752 case SpvOpAtomicUMax:
2753 case SpvOpAtomicAnd:
2754 case SpvOpAtomicOr:
2755 case SpvOpAtomicXor:
2756 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
2757 break;
2758
2759 default:
2760 vtn_fail("Invalid SPIR-V atomic");
2761
2762 }
2763 } else {
2764 nir_ssa_def *offset, *index;
2765 offset = vtn_pointer_to_offset(b, ptr, &index);
2766
2767 nir_intrinsic_op op;
2768 if (ptr->mode == vtn_variable_mode_ssbo) {
2769 op = get_ssbo_nir_atomic_op(b, opcode);
2770 } else {
2771 vtn_assert(ptr->mode == vtn_variable_mode_workgroup &&
2772 b->options->lower_workgroup_access_to_offsets);
2773 op = get_shared_nir_atomic_op(b, opcode);
2774 }
2775
2776 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2777
2778 int src = 0;
2779 switch (opcode) {
2780 case SpvOpAtomicLoad:
2781 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2782 nir_intrinsic_set_align(atomic, 4, 0);
2783 if (ptr->mode == vtn_variable_mode_ssbo)
2784 atomic->src[src++] = nir_src_for_ssa(index);
2785 atomic->src[src++] = nir_src_for_ssa(offset);
2786 break;
2787
2788 case SpvOpAtomicStore:
2789 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2790 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2791 nir_intrinsic_set_align(atomic, 4, 0);
2792 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2793 if (ptr->mode == vtn_variable_mode_ssbo)
2794 atomic->src[src++] = nir_src_for_ssa(index);
2795 atomic->src[src++] = nir_src_for_ssa(offset);
2796 break;
2797
2798 case SpvOpAtomicExchange:
2799 case SpvOpAtomicCompareExchange:
2800 case SpvOpAtomicCompareExchangeWeak:
2801 case SpvOpAtomicIIncrement:
2802 case SpvOpAtomicIDecrement:
2803 case SpvOpAtomicIAdd:
2804 case SpvOpAtomicISub:
2805 case SpvOpAtomicSMin:
2806 case SpvOpAtomicUMin:
2807 case SpvOpAtomicSMax:
2808 case SpvOpAtomicUMax:
2809 case SpvOpAtomicAnd:
2810 case SpvOpAtomicOr:
2811 case SpvOpAtomicXor:
2812 if (ptr->mode == vtn_variable_mode_ssbo)
2813 atomic->src[src++] = nir_src_for_ssa(index);
2814 atomic->src[src++] = nir_src_for_ssa(offset);
2815 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2816 break;
2817
2818 default:
2819 vtn_fail("Invalid SPIR-V atomic");
2820 }
2821 }
2822
2823 if (opcode != SpvOpAtomicStore) {
2824 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2825
2826 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2827 glsl_get_vector_elements(type->type),
2828 glsl_get_bit_size(type->type), NULL);
2829
2830 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2831 val->ssa = rzalloc(b, struct vtn_ssa_value);
2832 val->ssa->def = &atomic->dest.ssa;
2833 val->ssa->type = type->type;
2834 }
2835
2836 nir_builder_instr_insert(&b->nb, &atomic->instr);
2837 }
2838
2839 static nir_alu_instr *
2840 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2841 {
2842 nir_op op;
2843 switch (num_components) {
2844 case 1: op = nir_op_imov; break;
2845 case 2: op = nir_op_vec2; break;
2846 case 3: op = nir_op_vec3; break;
2847 case 4: op = nir_op_vec4; break;
2848 default: vtn_fail("bad vector size");
2849 }
2850
2851 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2852 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2853 bit_size, NULL);
2854 vec->dest.write_mask = (1 << num_components) - 1;
2855
2856 return vec;
2857 }
2858
2859 struct vtn_ssa_value *
2860 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
2861 {
2862 if (src->transposed)
2863 return src->transposed;
2864
2865 struct vtn_ssa_value *dest =
2866 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
2867
2868 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
2869 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
2870 glsl_get_bit_size(src->type));
2871 if (glsl_type_is_vector_or_scalar(src->type)) {
2872 vec->src[0].src = nir_src_for_ssa(src->def);
2873 vec->src[0].swizzle[0] = i;
2874 } else {
2875 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
2876 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
2877 vec->src[j].swizzle[0] = i;
2878 }
2879 }
2880 nir_builder_instr_insert(&b->nb, &vec->instr);
2881 dest->elems[i]->def = &vec->dest.dest.ssa;
2882 }
2883
2884 dest->transposed = src;
2885
2886 return dest;
2887 }
2888
2889 nir_ssa_def *
2890 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
2891 {
2892 return nir_channel(&b->nb, src, index);
2893 }
2894
2895 nir_ssa_def *
2896 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
2897 unsigned index)
2898 {
2899 nir_alu_instr *vec = create_vec(b, src->num_components,
2900 src->bit_size);
2901
2902 for (unsigned i = 0; i < src->num_components; i++) {
2903 if (i == index) {
2904 vec->src[i].src = nir_src_for_ssa(insert);
2905 } else {
2906 vec->src[i].src = nir_src_for_ssa(src);
2907 vec->src[i].swizzle[0] = i;
2908 }
2909 }
2910
2911 nir_builder_instr_insert(&b->nb, &vec->instr);
2912
2913 return &vec->dest.dest.ssa;
2914 }
2915
2916 nir_ssa_def *
2917 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2918 nir_ssa_def *index)
2919 {
2920 nir_ssa_def *dest = vtn_vector_extract(b, src, 0);
2921 for (unsigned i = 1; i < src->num_components; i++)
2922 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2923 vtn_vector_extract(b, src, i), dest);
2924
2925 return dest;
2926 }
2927
2928 nir_ssa_def *
2929 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2930 nir_ssa_def *insert, nir_ssa_def *index)
2931 {
2932 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
2933 for (unsigned i = 1; i < src->num_components; i++)
2934 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2935 vtn_vector_insert(b, src, insert, i), dest);
2936
2937 return dest;
2938 }
2939
2940 static nir_ssa_def *
2941 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
2942 nir_ssa_def *src0, nir_ssa_def *src1,
2943 const uint32_t *indices)
2944 {
2945 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
2946
2947 for (unsigned i = 0; i < num_components; i++) {
2948 uint32_t index = indices[i];
2949 if (index == 0xffffffff) {
2950 vec->src[i].src =
2951 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
2952 } else if (index < src0->num_components) {
2953 vec->src[i].src = nir_src_for_ssa(src0);
2954 vec->src[i].swizzle[0] = index;
2955 } else {
2956 vec->src[i].src = nir_src_for_ssa(src1);
2957 vec->src[i].swizzle[0] = index - src0->num_components;
2958 }
2959 }
2960
2961 nir_builder_instr_insert(&b->nb, &vec->instr);
2962
2963 return &vec->dest.dest.ssa;
2964 }
2965
2966 /*
2967 * Concatentates a number of vectors/scalars together to produce a vector
2968 */
2969 static nir_ssa_def *
2970 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
2971 unsigned num_srcs, nir_ssa_def **srcs)
2972 {
2973 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
2974
2975 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2976 *
2977 * "When constructing a vector, there must be at least two Constituent
2978 * operands."
2979 */
2980 vtn_assert(num_srcs >= 2);
2981
2982 unsigned dest_idx = 0;
2983 for (unsigned i = 0; i < num_srcs; i++) {
2984 nir_ssa_def *src = srcs[i];
2985 vtn_assert(dest_idx + src->num_components <= num_components);
2986 for (unsigned j = 0; j < src->num_components; j++) {
2987 vec->src[dest_idx].src = nir_src_for_ssa(src);
2988 vec->src[dest_idx].swizzle[0] = j;
2989 dest_idx++;
2990 }
2991 }
2992
2993 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2994 *
2995 * "When constructing a vector, the total number of components in all
2996 * the operands must equal the number of components in Result Type."
2997 */
2998 vtn_assert(dest_idx == num_components);
2999
3000 nir_builder_instr_insert(&b->nb, &vec->instr);
3001
3002 return &vec->dest.dest.ssa;
3003 }
3004
3005 static struct vtn_ssa_value *
3006 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3007 {
3008 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3009 dest->type = src->type;
3010
3011 if (glsl_type_is_vector_or_scalar(src->type)) {
3012 dest->def = src->def;
3013 } else {
3014 unsigned elems = glsl_get_length(src->type);
3015
3016 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3017 for (unsigned i = 0; i < elems; i++)
3018 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3019 }
3020
3021 return dest;
3022 }
3023
3024 static struct vtn_ssa_value *
3025 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3026 struct vtn_ssa_value *insert, const uint32_t *indices,
3027 unsigned num_indices)
3028 {
3029 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3030
3031 struct vtn_ssa_value *cur = dest;
3032 unsigned i;
3033 for (i = 0; i < num_indices - 1; i++) {
3034 cur = cur->elems[indices[i]];
3035 }
3036
3037 if (glsl_type_is_vector_or_scalar(cur->type)) {
3038 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3039 * the component granularity. In that case, the last index will be
3040 * the index to insert the scalar into the vector.
3041 */
3042
3043 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
3044 } else {
3045 cur->elems[indices[i]] = insert;
3046 }
3047
3048 return dest;
3049 }
3050
3051 static struct vtn_ssa_value *
3052 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3053 const uint32_t *indices, unsigned num_indices)
3054 {
3055 struct vtn_ssa_value *cur = src;
3056 for (unsigned i = 0; i < num_indices; i++) {
3057 if (glsl_type_is_vector_or_scalar(cur->type)) {
3058 vtn_assert(i == num_indices - 1);
3059 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3060 * the component granularity. The last index will be the index of the
3061 * vector to extract.
3062 */
3063
3064 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3065 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3066 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
3067 return ret;
3068 } else {
3069 cur = cur->elems[indices[i]];
3070 }
3071 }
3072
3073 return cur;
3074 }
3075
3076 static void
3077 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3078 const uint32_t *w, unsigned count)
3079 {
3080 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
3081 const struct glsl_type *type =
3082 vtn_value(b, w[1], vtn_value_type_type)->type->type;
3083 val->ssa = vtn_create_ssa_value(b, type);
3084
3085 switch (opcode) {
3086 case SpvOpVectorExtractDynamic:
3087 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
3088 vtn_ssa_value(b, w[4])->def);
3089 break;
3090
3091 case SpvOpVectorInsertDynamic:
3092 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
3093 vtn_ssa_value(b, w[4])->def,
3094 vtn_ssa_value(b, w[5])->def);
3095 break;
3096
3097 case SpvOpVectorShuffle:
3098 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
3099 vtn_ssa_value(b, w[3])->def,
3100 vtn_ssa_value(b, w[4])->def,
3101 w + 5);
3102 break;
3103
3104 case SpvOpCompositeConstruct: {
3105 unsigned elems = count - 3;
3106 assume(elems >= 1);
3107 if (glsl_type_is_vector_or_scalar(type)) {
3108 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3109 for (unsigned i = 0; i < elems; i++)
3110 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3111 val->ssa->def =
3112 vtn_vector_construct(b, glsl_get_vector_elements(type),
3113 elems, srcs);
3114 } else {
3115 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3116 for (unsigned i = 0; i < elems; i++)
3117 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3118 }
3119 break;
3120 }
3121 case SpvOpCompositeExtract:
3122 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3123 w + 4, count - 4);
3124 break;
3125
3126 case SpvOpCompositeInsert:
3127 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3128 vtn_ssa_value(b, w[3]),
3129 w + 5, count - 5);
3130 break;
3131
3132 case SpvOpCopyObject:
3133 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3134 break;
3135
3136 default:
3137 vtn_fail("unknown composite operation");
3138 }
3139 }
3140
3141 static void
3142 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3143 {
3144 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3145 nir_builder_instr_insert(&b->nb, &intrin->instr);
3146 }
3147
3148 static void
3149 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3150 SpvMemorySemanticsMask semantics)
3151 {
3152 static const SpvMemorySemanticsMask all_memory_semantics =
3153 SpvMemorySemanticsUniformMemoryMask |
3154 SpvMemorySemanticsWorkgroupMemoryMask |
3155 SpvMemorySemanticsAtomicCounterMemoryMask |
3156 SpvMemorySemanticsImageMemoryMask;
3157
3158 /* If we're not actually doing a memory barrier, bail */
3159 if (!(semantics & all_memory_semantics))
3160 return;
3161
3162 /* GL and Vulkan don't have these */
3163 vtn_assert(scope != SpvScopeCrossDevice);
3164
3165 if (scope == SpvScopeSubgroup)
3166 return; /* Nothing to do here */
3167
3168 if (scope == SpvScopeWorkgroup) {
3169 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3170 return;
3171 }
3172
3173 /* There's only two scopes thing left */
3174 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3175
3176 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3177 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3178 return;
3179 }
3180
3181 /* Issue a bunch of more specific barriers */
3182 uint32_t bits = semantics;
3183 while (bits) {
3184 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3185 switch (semantic) {
3186 case SpvMemorySemanticsUniformMemoryMask:
3187 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3188 break;
3189 case SpvMemorySemanticsWorkgroupMemoryMask:
3190 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3191 break;
3192 case SpvMemorySemanticsAtomicCounterMemoryMask:
3193 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3194 break;
3195 case SpvMemorySemanticsImageMemoryMask:
3196 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3197 break;
3198 default:
3199 break;;
3200 }
3201 }
3202 }
3203
3204 static void
3205 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3206 const uint32_t *w, unsigned count)
3207 {
3208 switch (opcode) {
3209 case SpvOpEmitVertex:
3210 case SpvOpEmitStreamVertex:
3211 case SpvOpEndPrimitive:
3212 case SpvOpEndStreamPrimitive: {
3213 nir_intrinsic_op intrinsic_op;
3214 switch (opcode) {
3215 case SpvOpEmitVertex:
3216 case SpvOpEmitStreamVertex:
3217 intrinsic_op = nir_intrinsic_emit_vertex;
3218 break;
3219 case SpvOpEndPrimitive:
3220 case SpvOpEndStreamPrimitive:
3221 intrinsic_op = nir_intrinsic_end_primitive;
3222 break;
3223 default:
3224 unreachable("Invalid opcode");
3225 }
3226
3227 nir_intrinsic_instr *intrin =
3228 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3229
3230 switch (opcode) {
3231 case SpvOpEmitStreamVertex:
3232 case SpvOpEndStreamPrimitive: {
3233 unsigned stream = vtn_constant_value(b, w[1])->values[0].u32[0];
3234 nir_intrinsic_set_stream_id(intrin, stream);
3235 break;
3236 }
3237
3238 default:
3239 break;
3240 }
3241
3242 nir_builder_instr_insert(&b->nb, &intrin->instr);
3243 break;
3244 }
3245
3246 case SpvOpMemoryBarrier: {
3247 SpvScope scope = vtn_constant_value(b, w[1])->values[0].u32[0];
3248 SpvMemorySemanticsMask semantics =
3249 vtn_constant_value(b, w[2])->values[0].u32[0];
3250 vtn_emit_memory_barrier(b, scope, semantics);
3251 return;
3252 }
3253
3254 case SpvOpControlBarrier: {
3255 SpvScope execution_scope =
3256 vtn_constant_value(b, w[1])->values[0].u32[0];
3257 if (execution_scope == SpvScopeWorkgroup)
3258 vtn_emit_barrier(b, nir_intrinsic_barrier);
3259
3260 SpvScope memory_scope =
3261 vtn_constant_value(b, w[2])->values[0].u32[0];
3262 SpvMemorySemanticsMask memory_semantics =
3263 vtn_constant_value(b, w[3])->values[0].u32[0];
3264 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3265 break;
3266 }
3267
3268 default:
3269 unreachable("unknown barrier instruction");
3270 }
3271 }
3272
3273 static unsigned
3274 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3275 SpvExecutionMode mode)
3276 {
3277 switch (mode) {
3278 case SpvExecutionModeInputPoints:
3279 case SpvExecutionModeOutputPoints:
3280 return 0; /* GL_POINTS */
3281 case SpvExecutionModeInputLines:
3282 return 1; /* GL_LINES */
3283 case SpvExecutionModeInputLinesAdjacency:
3284 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3285 case SpvExecutionModeTriangles:
3286 return 4; /* GL_TRIANGLES */
3287 case SpvExecutionModeInputTrianglesAdjacency:
3288 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3289 case SpvExecutionModeQuads:
3290 return 7; /* GL_QUADS */
3291 case SpvExecutionModeIsolines:
3292 return 0x8E7A; /* GL_ISOLINES */
3293 case SpvExecutionModeOutputLineStrip:
3294 return 3; /* GL_LINE_STRIP */
3295 case SpvExecutionModeOutputTriangleStrip:
3296 return 5; /* GL_TRIANGLE_STRIP */
3297 default:
3298 vtn_fail("Invalid primitive type");
3299 }
3300 }
3301
3302 static unsigned
3303 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3304 SpvExecutionMode mode)
3305 {
3306 switch (mode) {
3307 case SpvExecutionModeInputPoints:
3308 return 1;
3309 case SpvExecutionModeInputLines:
3310 return 2;
3311 case SpvExecutionModeInputLinesAdjacency:
3312 return 4;
3313 case SpvExecutionModeTriangles:
3314 return 3;
3315 case SpvExecutionModeInputTrianglesAdjacency:
3316 return 6;
3317 default:
3318 vtn_fail("Invalid GS input mode");
3319 }
3320 }
3321
3322 static gl_shader_stage
3323 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3324 {
3325 switch (model) {
3326 case SpvExecutionModelVertex:
3327 return MESA_SHADER_VERTEX;
3328 case SpvExecutionModelTessellationControl:
3329 return MESA_SHADER_TESS_CTRL;
3330 case SpvExecutionModelTessellationEvaluation:
3331 return MESA_SHADER_TESS_EVAL;
3332 case SpvExecutionModelGeometry:
3333 return MESA_SHADER_GEOMETRY;
3334 case SpvExecutionModelFragment:
3335 return MESA_SHADER_FRAGMENT;
3336 case SpvExecutionModelGLCompute:
3337 return MESA_SHADER_COMPUTE;
3338 default:
3339 vtn_fail("Unsupported execution model");
3340 }
3341 }
3342
3343 #define spv_check_supported(name, cap) do { \
3344 if (!(b->options && b->options->caps.name)) \
3345 vtn_warn("Unsupported SPIR-V capability: %s", \
3346 spirv_capability_to_string(cap)); \
3347 } while(0)
3348
3349
3350 void
3351 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3352 unsigned count)
3353 {
3354 struct vtn_value *entry_point = &b->values[w[2]];
3355 /* Let this be a name label regardless */
3356 unsigned name_words;
3357 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3358
3359 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3360 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3361 return;
3362
3363 vtn_assert(b->entry_point == NULL);
3364 b->entry_point = entry_point;
3365 }
3366
3367 static bool
3368 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3369 const uint32_t *w, unsigned count)
3370 {
3371 switch (opcode) {
3372 case SpvOpSource: {
3373 const char *lang;
3374 switch (w[1]) {
3375 default:
3376 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3377 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3378 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3379 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3380 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3381 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3382 }
3383
3384 uint32_t version = w[2];
3385
3386 const char *file =
3387 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3388
3389 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3390 break;
3391 }
3392
3393 case SpvOpSourceExtension:
3394 case SpvOpSourceContinued:
3395 case SpvOpExtension:
3396 case SpvOpModuleProcessed:
3397 /* Unhandled, but these are for debug so that's ok. */
3398 break;
3399
3400 case SpvOpCapability: {
3401 SpvCapability cap = w[1];
3402 switch (cap) {
3403 case SpvCapabilityMatrix:
3404 case SpvCapabilityShader:
3405 case SpvCapabilityGeometry:
3406 case SpvCapabilityGeometryPointSize:
3407 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3408 case SpvCapabilitySampledImageArrayDynamicIndexing:
3409 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3410 case SpvCapabilityStorageImageArrayDynamicIndexing:
3411 case SpvCapabilityImageRect:
3412 case SpvCapabilitySampledRect:
3413 case SpvCapabilitySampled1D:
3414 case SpvCapabilityImage1D:
3415 case SpvCapabilitySampledCubeArray:
3416 case SpvCapabilityImageCubeArray:
3417 case SpvCapabilitySampledBuffer:
3418 case SpvCapabilityImageBuffer:
3419 case SpvCapabilityImageQuery:
3420 case SpvCapabilityDerivativeControl:
3421 case SpvCapabilityInterpolationFunction:
3422 case SpvCapabilityMultiViewport:
3423 case SpvCapabilitySampleRateShading:
3424 case SpvCapabilityClipDistance:
3425 case SpvCapabilityCullDistance:
3426 case SpvCapabilityInputAttachment:
3427 case SpvCapabilityImageGatherExtended:
3428 case SpvCapabilityStorageImageExtendedFormats:
3429 break;
3430
3431 case SpvCapabilityLinkage:
3432 case SpvCapabilityVector16:
3433 case SpvCapabilityFloat16Buffer:
3434 case SpvCapabilityFloat16:
3435 case SpvCapabilityStorageImageMultisample:
3436 case SpvCapabilityInt8:
3437 case SpvCapabilitySparseResidency:
3438 vtn_warn("Unsupported SPIR-V capability: %s",
3439 spirv_capability_to_string(cap));
3440 break;
3441
3442 case SpvCapabilityMinLod:
3443 spv_check_supported(min_lod, cap);
3444 break;
3445
3446 case SpvCapabilityAtomicStorage:
3447 spv_check_supported(atomic_storage, cap);
3448 break;
3449
3450 case SpvCapabilityFloat64:
3451 spv_check_supported(float64, cap);
3452 break;
3453 case SpvCapabilityInt64:
3454 spv_check_supported(int64, cap);
3455 break;
3456 case SpvCapabilityInt16:
3457 spv_check_supported(int16, cap);
3458 break;
3459
3460 case SpvCapabilityTransformFeedback:
3461 spv_check_supported(transform_feedback, cap);
3462 break;
3463
3464 case SpvCapabilityGeometryStreams:
3465 spv_check_supported(geometry_streams, cap);
3466 break;
3467
3468 case SpvCapabilityInt64Atomics:
3469 spv_check_supported(int64_atomics, cap);
3470 break;
3471
3472 case SpvCapabilityAddresses:
3473 case SpvCapabilityKernel:
3474 case SpvCapabilityImageBasic:
3475 case SpvCapabilityImageReadWrite:
3476 case SpvCapabilityImageMipmap:
3477 case SpvCapabilityPipes:
3478 case SpvCapabilityGroups:
3479 case SpvCapabilityDeviceEnqueue:
3480 case SpvCapabilityLiteralSampler:
3481 case SpvCapabilityGenericPointer:
3482 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3483 spirv_capability_to_string(cap));
3484 break;
3485
3486 case SpvCapabilityImageMSArray:
3487 spv_check_supported(image_ms_array, cap);
3488 break;
3489
3490 case SpvCapabilityTessellation:
3491 case SpvCapabilityTessellationPointSize:
3492 spv_check_supported(tessellation, cap);
3493 break;
3494
3495 case SpvCapabilityDrawParameters:
3496 spv_check_supported(draw_parameters, cap);
3497 break;
3498
3499 case SpvCapabilityStorageImageReadWithoutFormat:
3500 spv_check_supported(image_read_without_format, cap);
3501 break;
3502
3503 case SpvCapabilityStorageImageWriteWithoutFormat:
3504 spv_check_supported(image_write_without_format, cap);
3505 break;
3506
3507 case SpvCapabilityDeviceGroup:
3508 spv_check_supported(device_group, cap);
3509 break;
3510
3511 case SpvCapabilityMultiView:
3512 spv_check_supported(multiview, cap);
3513 break;
3514
3515 case SpvCapabilityGroupNonUniform:
3516 spv_check_supported(subgroup_basic, cap);
3517 break;
3518
3519 case SpvCapabilityGroupNonUniformVote:
3520 spv_check_supported(subgroup_vote, cap);
3521 break;
3522
3523 case SpvCapabilitySubgroupBallotKHR:
3524 case SpvCapabilityGroupNonUniformBallot:
3525 spv_check_supported(subgroup_ballot, cap);
3526 break;
3527
3528 case SpvCapabilityGroupNonUniformShuffle:
3529 case SpvCapabilityGroupNonUniformShuffleRelative:
3530 spv_check_supported(subgroup_shuffle, cap);
3531 break;
3532
3533 case SpvCapabilityGroupNonUniformQuad:
3534 spv_check_supported(subgroup_quad, cap);
3535 break;
3536
3537 case SpvCapabilityGroupNonUniformArithmetic:
3538 case SpvCapabilityGroupNonUniformClustered:
3539 spv_check_supported(subgroup_arithmetic, cap);
3540 break;
3541
3542 case SpvCapabilityVariablePointersStorageBuffer:
3543 case SpvCapabilityVariablePointers:
3544 spv_check_supported(variable_pointers, cap);
3545 break;
3546
3547 case SpvCapabilityStorageUniformBufferBlock16:
3548 case SpvCapabilityStorageUniform16:
3549 case SpvCapabilityStoragePushConstant16:
3550 case SpvCapabilityStorageInputOutput16:
3551 spv_check_supported(storage_16bit, cap);
3552 break;
3553
3554 case SpvCapabilityShaderViewportIndexLayerEXT:
3555 spv_check_supported(shader_viewport_index_layer, cap);
3556 break;
3557
3558 case SpvCapabilityStorageBuffer8BitAccess:
3559 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
3560 case SpvCapabilityStoragePushConstant8:
3561 spv_check_supported(storage_8bit, cap);
3562 break;
3563
3564 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3565 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3566 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3567 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3568 break;
3569
3570 case SpvCapabilityRuntimeDescriptorArrayEXT:
3571 spv_check_supported(runtime_descriptor_array, cap);
3572 break;
3573
3574 case SpvCapabilityStencilExportEXT:
3575 spv_check_supported(stencil_export, cap);
3576 break;
3577
3578 case SpvCapabilitySampleMaskPostDepthCoverage:
3579 spv_check_supported(post_depth_coverage, cap);
3580 break;
3581
3582 default:
3583 vtn_fail("Unhandled capability");
3584 }
3585 break;
3586 }
3587
3588 case SpvOpExtInstImport:
3589 vtn_handle_extension(b, opcode, w, count);
3590 break;
3591
3592 case SpvOpMemoryModel:
3593 vtn_assert(w[1] == SpvAddressingModelLogical);
3594 vtn_assert(w[2] == SpvMemoryModelSimple ||
3595 w[2] == SpvMemoryModelGLSL450);
3596 break;
3597
3598 case SpvOpEntryPoint:
3599 vtn_handle_entry_point(b, w, count);
3600 break;
3601
3602 case SpvOpString:
3603 vtn_push_value(b, w[1], vtn_value_type_string)->str =
3604 vtn_string_literal(b, &w[2], count - 2, NULL);
3605 break;
3606
3607 case SpvOpName:
3608 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3609 break;
3610
3611 case SpvOpMemberName:
3612 /* TODO */
3613 break;
3614
3615 case SpvOpExecutionMode:
3616 case SpvOpDecorationGroup:
3617 case SpvOpDecorate:
3618 case SpvOpMemberDecorate:
3619 case SpvOpGroupDecorate:
3620 case SpvOpGroupMemberDecorate:
3621 case SpvOpDecorateStringGOOGLE:
3622 case SpvOpMemberDecorateStringGOOGLE:
3623 vtn_handle_decoration(b, opcode, w, count);
3624 break;
3625
3626 default:
3627 return false; /* End of preamble */
3628 }
3629
3630 return true;
3631 }
3632
3633 static void
3634 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3635 const struct vtn_decoration *mode, void *data)
3636 {
3637 vtn_assert(b->entry_point == entry_point);
3638
3639 switch(mode->exec_mode) {
3640 case SpvExecutionModeOriginUpperLeft:
3641 case SpvExecutionModeOriginLowerLeft:
3642 b->origin_upper_left =
3643 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3644 break;
3645
3646 case SpvExecutionModeEarlyFragmentTests:
3647 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3648 b->shader->info.fs.early_fragment_tests = true;
3649 break;
3650
3651 case SpvExecutionModePostDepthCoverage:
3652 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3653 b->shader->info.fs.post_depth_coverage = true;
3654 break;
3655
3656 case SpvExecutionModeInvocations:
3657 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3658 b->shader->info.gs.invocations = MAX2(1, mode->literals[0]);
3659 break;
3660
3661 case SpvExecutionModeDepthReplacing:
3662 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3663 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3664 break;
3665 case SpvExecutionModeDepthGreater:
3666 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3667 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3668 break;
3669 case SpvExecutionModeDepthLess:
3670 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3671 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3672 break;
3673 case SpvExecutionModeDepthUnchanged:
3674 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3675 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3676 break;
3677
3678 case SpvExecutionModeLocalSize:
3679 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3680 b->shader->info.cs.local_size[0] = mode->literals[0];
3681 b->shader->info.cs.local_size[1] = mode->literals[1];
3682 b->shader->info.cs.local_size[2] = mode->literals[2];
3683 break;
3684 case SpvExecutionModeLocalSizeHint:
3685 break; /* Nothing to do with this */
3686
3687 case SpvExecutionModeOutputVertices:
3688 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3689 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3690 b->shader->info.tess.tcs_vertices_out = mode->literals[0];
3691 } else {
3692 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3693 b->shader->info.gs.vertices_out = mode->literals[0];
3694 }
3695 break;
3696
3697 case SpvExecutionModeInputPoints:
3698 case SpvExecutionModeInputLines:
3699 case SpvExecutionModeInputLinesAdjacency:
3700 case SpvExecutionModeTriangles:
3701 case SpvExecutionModeInputTrianglesAdjacency:
3702 case SpvExecutionModeQuads:
3703 case SpvExecutionModeIsolines:
3704 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3705 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3706 b->shader->info.tess.primitive_mode =
3707 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3708 } else {
3709 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3710 b->shader->info.gs.vertices_in =
3711 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3712 b->shader->info.gs.input_primitive =
3713 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3714 }
3715 break;
3716
3717 case SpvExecutionModeOutputPoints:
3718 case SpvExecutionModeOutputLineStrip:
3719 case SpvExecutionModeOutputTriangleStrip:
3720 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3721 b->shader->info.gs.output_primitive =
3722 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3723 break;
3724
3725 case SpvExecutionModeSpacingEqual:
3726 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3727 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3728 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3729 break;
3730 case SpvExecutionModeSpacingFractionalEven:
3731 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3732 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3733 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3734 break;
3735 case SpvExecutionModeSpacingFractionalOdd:
3736 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3737 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3738 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3739 break;
3740 case SpvExecutionModeVertexOrderCw:
3741 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3742 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3743 b->shader->info.tess.ccw = false;
3744 break;
3745 case SpvExecutionModeVertexOrderCcw:
3746 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3747 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3748 b->shader->info.tess.ccw = true;
3749 break;
3750 case SpvExecutionModePointMode:
3751 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3752 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3753 b->shader->info.tess.point_mode = true;
3754 break;
3755
3756 case SpvExecutionModePixelCenterInteger:
3757 b->pixel_center_integer = true;
3758 break;
3759
3760 case SpvExecutionModeXfb:
3761 b->shader->info.has_transform_feedback_varyings = true;
3762 break;
3763
3764 case SpvExecutionModeVecTypeHint:
3765 case SpvExecutionModeContractionOff:
3766 break; /* OpenCL */
3767
3768 case SpvExecutionModeStencilRefReplacingEXT:
3769 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3770 break;
3771
3772 default:
3773 vtn_fail("Unhandled execution mode");
3774 }
3775 }
3776
3777 static bool
3778 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
3779 const uint32_t *w, unsigned count)
3780 {
3781 vtn_set_instruction_result_type(b, opcode, w, count);
3782
3783 switch (opcode) {
3784 case SpvOpSource:
3785 case SpvOpSourceContinued:
3786 case SpvOpSourceExtension:
3787 case SpvOpExtension:
3788 case SpvOpCapability:
3789 case SpvOpExtInstImport:
3790 case SpvOpMemoryModel:
3791 case SpvOpEntryPoint:
3792 case SpvOpExecutionMode:
3793 case SpvOpString:
3794 case SpvOpName:
3795 case SpvOpMemberName:
3796 case SpvOpDecorationGroup:
3797 case SpvOpDecorate:
3798 case SpvOpMemberDecorate:
3799 case SpvOpGroupDecorate:
3800 case SpvOpGroupMemberDecorate:
3801 case SpvOpDecorateStringGOOGLE:
3802 case SpvOpMemberDecorateStringGOOGLE:
3803 vtn_fail("Invalid opcode types and variables section");
3804 break;
3805
3806 case SpvOpTypeVoid:
3807 case SpvOpTypeBool:
3808 case SpvOpTypeInt:
3809 case SpvOpTypeFloat:
3810 case SpvOpTypeVector:
3811 case SpvOpTypeMatrix:
3812 case SpvOpTypeImage:
3813 case SpvOpTypeSampler:
3814 case SpvOpTypeSampledImage:
3815 case SpvOpTypeArray:
3816 case SpvOpTypeRuntimeArray:
3817 case SpvOpTypeStruct:
3818 case SpvOpTypeOpaque:
3819 case SpvOpTypePointer:
3820 case SpvOpTypeFunction:
3821 case SpvOpTypeEvent:
3822 case SpvOpTypeDeviceEvent:
3823 case SpvOpTypeReserveId:
3824 case SpvOpTypeQueue:
3825 case SpvOpTypePipe:
3826 vtn_handle_type(b, opcode, w, count);
3827 break;
3828
3829 case SpvOpConstantTrue:
3830 case SpvOpConstantFalse:
3831 case SpvOpConstant:
3832 case SpvOpConstantComposite:
3833 case SpvOpConstantSampler:
3834 case SpvOpConstantNull:
3835 case SpvOpSpecConstantTrue:
3836 case SpvOpSpecConstantFalse:
3837 case SpvOpSpecConstant:
3838 case SpvOpSpecConstantComposite:
3839 case SpvOpSpecConstantOp:
3840 vtn_handle_constant(b, opcode, w, count);
3841 break;
3842
3843 case SpvOpUndef:
3844 case SpvOpVariable:
3845 vtn_handle_variables(b, opcode, w, count);
3846 break;
3847
3848 default:
3849 return false; /* End of preamble */
3850 }
3851
3852 return true;
3853 }
3854
3855 static bool
3856 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
3857 const uint32_t *w, unsigned count)
3858 {
3859 switch (opcode) {
3860 case SpvOpLabel:
3861 break;
3862
3863 case SpvOpLoopMerge:
3864 case SpvOpSelectionMerge:
3865 /* This is handled by cfg pre-pass and walk_blocks */
3866 break;
3867
3868 case SpvOpUndef: {
3869 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
3870 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
3871 break;
3872 }
3873
3874 case SpvOpExtInst:
3875 vtn_handle_extension(b, opcode, w, count);
3876 break;
3877
3878 case SpvOpVariable:
3879 case SpvOpLoad:
3880 case SpvOpStore:
3881 case SpvOpCopyMemory:
3882 case SpvOpCopyMemorySized:
3883 case SpvOpAccessChain:
3884 case SpvOpPtrAccessChain:
3885 case SpvOpInBoundsAccessChain:
3886 case SpvOpArrayLength:
3887 vtn_handle_variables(b, opcode, w, count);
3888 break;
3889
3890 case SpvOpFunctionCall:
3891 vtn_handle_function_call(b, opcode, w, count);
3892 break;
3893
3894 case SpvOpSampledImage:
3895 case SpvOpImage:
3896 case SpvOpImageSampleImplicitLod:
3897 case SpvOpImageSampleExplicitLod:
3898 case SpvOpImageSampleDrefImplicitLod:
3899 case SpvOpImageSampleDrefExplicitLod:
3900 case SpvOpImageSampleProjImplicitLod:
3901 case SpvOpImageSampleProjExplicitLod:
3902 case SpvOpImageSampleProjDrefImplicitLod:
3903 case SpvOpImageSampleProjDrefExplicitLod:
3904 case SpvOpImageFetch:
3905 case SpvOpImageGather:
3906 case SpvOpImageDrefGather:
3907 case SpvOpImageQuerySizeLod:
3908 case SpvOpImageQueryLod:
3909 case SpvOpImageQueryLevels:
3910 case SpvOpImageQuerySamples:
3911 vtn_handle_texture(b, opcode, w, count);
3912 break;
3913
3914 case SpvOpImageRead:
3915 case SpvOpImageWrite:
3916 case SpvOpImageTexelPointer:
3917 vtn_handle_image(b, opcode, w, count);
3918 break;
3919
3920 case SpvOpImageQuerySize: {
3921 struct vtn_pointer *image =
3922 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
3923 if (glsl_type_is_image(image->type->type)) {
3924 vtn_handle_image(b, opcode, w, count);
3925 } else {
3926 vtn_assert(glsl_type_is_sampler(image->type->type));
3927 vtn_handle_texture(b, opcode, w, count);
3928 }
3929 break;
3930 }
3931
3932 case SpvOpAtomicLoad:
3933 case SpvOpAtomicExchange:
3934 case SpvOpAtomicCompareExchange:
3935 case SpvOpAtomicCompareExchangeWeak:
3936 case SpvOpAtomicIIncrement:
3937 case SpvOpAtomicIDecrement:
3938 case SpvOpAtomicIAdd:
3939 case SpvOpAtomicISub:
3940 case SpvOpAtomicSMin:
3941 case SpvOpAtomicUMin:
3942 case SpvOpAtomicSMax:
3943 case SpvOpAtomicUMax:
3944 case SpvOpAtomicAnd:
3945 case SpvOpAtomicOr:
3946 case SpvOpAtomicXor: {
3947 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
3948 if (pointer->value_type == vtn_value_type_image_pointer) {
3949 vtn_handle_image(b, opcode, w, count);
3950 } else {
3951 vtn_assert(pointer->value_type == vtn_value_type_pointer);
3952 vtn_handle_atomics(b, opcode, w, count);
3953 }
3954 break;
3955 }
3956
3957 case SpvOpAtomicStore: {
3958 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
3959 if (pointer->value_type == vtn_value_type_image_pointer) {
3960 vtn_handle_image(b, opcode, w, count);
3961 } else {
3962 vtn_assert(pointer->value_type == vtn_value_type_pointer);
3963 vtn_handle_atomics(b, opcode, w, count);
3964 }
3965 break;
3966 }
3967
3968 case SpvOpSelect: {
3969 /* Handle OpSelect up-front here because it needs to be able to handle
3970 * pointers and not just regular vectors and scalars.
3971 */
3972 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
3973 struct vtn_value *sel_val = vtn_untyped_value(b, w[3]);
3974 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
3975 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
3976
3977 const struct glsl_type *sel_type;
3978 switch (res_val->type->base_type) {
3979 case vtn_base_type_scalar:
3980 sel_type = glsl_bool_type();
3981 break;
3982 case vtn_base_type_vector:
3983 sel_type = glsl_vector_type(GLSL_TYPE_BOOL, res_val->type->length);
3984 break;
3985 case vtn_base_type_pointer:
3986 /* We need to have actual storage for pointer types */
3987 vtn_fail_if(res_val->type->type == NULL,
3988 "Invalid pointer result type for OpSelect");
3989 sel_type = glsl_bool_type();
3990 break;
3991 default:
3992 vtn_fail("Result type of OpSelect must be a scalar, vector, or pointer");
3993 }
3994
3995 if (unlikely(sel_val->type->type != sel_type)) {
3996 if (sel_val->type->type == glsl_bool_type()) {
3997 /* This case is illegal but some older versions of GLSLang produce
3998 * it. The GLSLang issue was fixed on March 30, 2017:
3999 *
4000 * https://github.com/KhronosGroup/glslang/issues/809
4001 *
4002 * Unfortunately, there are applications in the wild which are
4003 * shipping with this bug so it isn't nice to fail on them so we
4004 * throw a warning instead. It's not actually a problem for us as
4005 * nir_builder will just splat the condition out which is most
4006 * likely what the client wanted anyway.
4007 */
4008 vtn_warn("Condition type of OpSelect must have the same number "
4009 "of components as Result Type");
4010 } else {
4011 vtn_fail("Condition type of OpSelect must be a scalar or vector "
4012 "of Boolean type. It must have the same number of "
4013 "components as Result Type");
4014 }
4015 }
4016
4017 vtn_fail_if(obj1_val->type != res_val->type ||
4018 obj2_val->type != res_val->type,
4019 "Object types must match the result type in OpSelect");
4020
4021 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4022 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, res_type->type);
4023 ssa->def = nir_bcsel(&b->nb, vtn_ssa_value(b, w[3])->def,
4024 vtn_ssa_value(b, w[4])->def,
4025 vtn_ssa_value(b, w[5])->def);
4026 vtn_push_ssa(b, w[2], res_type, ssa);
4027 break;
4028 }
4029
4030 case SpvOpSNegate:
4031 case SpvOpFNegate:
4032 case SpvOpNot:
4033 case SpvOpAny:
4034 case SpvOpAll:
4035 case SpvOpConvertFToU:
4036 case SpvOpConvertFToS:
4037 case SpvOpConvertSToF:
4038 case SpvOpConvertUToF:
4039 case SpvOpUConvert:
4040 case SpvOpSConvert:
4041 case SpvOpFConvert:
4042 case SpvOpQuantizeToF16:
4043 case SpvOpConvertPtrToU:
4044 case SpvOpConvertUToPtr:
4045 case SpvOpPtrCastToGeneric:
4046 case SpvOpGenericCastToPtr:
4047 case SpvOpBitcast:
4048 case SpvOpIsNan:
4049 case SpvOpIsInf:
4050 case SpvOpIsFinite:
4051 case SpvOpIsNormal:
4052 case SpvOpSignBitSet:
4053 case SpvOpLessOrGreater:
4054 case SpvOpOrdered:
4055 case SpvOpUnordered:
4056 case SpvOpIAdd:
4057 case SpvOpFAdd:
4058 case SpvOpISub:
4059 case SpvOpFSub:
4060 case SpvOpIMul:
4061 case SpvOpFMul:
4062 case SpvOpUDiv:
4063 case SpvOpSDiv:
4064 case SpvOpFDiv:
4065 case SpvOpUMod:
4066 case SpvOpSRem:
4067 case SpvOpSMod:
4068 case SpvOpFRem:
4069 case SpvOpFMod:
4070 case SpvOpVectorTimesScalar:
4071 case SpvOpDot:
4072 case SpvOpIAddCarry:
4073 case SpvOpISubBorrow:
4074 case SpvOpUMulExtended:
4075 case SpvOpSMulExtended:
4076 case SpvOpShiftRightLogical:
4077 case SpvOpShiftRightArithmetic:
4078 case SpvOpShiftLeftLogical:
4079 case SpvOpLogicalEqual:
4080 case SpvOpLogicalNotEqual:
4081 case SpvOpLogicalOr:
4082 case SpvOpLogicalAnd:
4083 case SpvOpLogicalNot:
4084 case SpvOpBitwiseOr:
4085 case SpvOpBitwiseXor:
4086 case SpvOpBitwiseAnd:
4087 case SpvOpIEqual:
4088 case SpvOpFOrdEqual:
4089 case SpvOpFUnordEqual:
4090 case SpvOpINotEqual:
4091 case SpvOpFOrdNotEqual:
4092 case SpvOpFUnordNotEqual:
4093 case SpvOpULessThan:
4094 case SpvOpSLessThan:
4095 case SpvOpFOrdLessThan:
4096 case SpvOpFUnordLessThan:
4097 case SpvOpUGreaterThan:
4098 case SpvOpSGreaterThan:
4099 case SpvOpFOrdGreaterThan:
4100 case SpvOpFUnordGreaterThan:
4101 case SpvOpULessThanEqual:
4102 case SpvOpSLessThanEqual:
4103 case SpvOpFOrdLessThanEqual:
4104 case SpvOpFUnordLessThanEqual:
4105 case SpvOpUGreaterThanEqual:
4106 case SpvOpSGreaterThanEqual:
4107 case SpvOpFOrdGreaterThanEqual:
4108 case SpvOpFUnordGreaterThanEqual:
4109 case SpvOpDPdx:
4110 case SpvOpDPdy:
4111 case SpvOpFwidth:
4112 case SpvOpDPdxFine:
4113 case SpvOpDPdyFine:
4114 case SpvOpFwidthFine:
4115 case SpvOpDPdxCoarse:
4116 case SpvOpDPdyCoarse:
4117 case SpvOpFwidthCoarse:
4118 case SpvOpBitFieldInsert:
4119 case SpvOpBitFieldSExtract:
4120 case SpvOpBitFieldUExtract:
4121 case SpvOpBitReverse:
4122 case SpvOpBitCount:
4123 case SpvOpTranspose:
4124 case SpvOpOuterProduct:
4125 case SpvOpMatrixTimesScalar:
4126 case SpvOpVectorTimesMatrix:
4127 case SpvOpMatrixTimesVector:
4128 case SpvOpMatrixTimesMatrix:
4129 vtn_handle_alu(b, opcode, w, count);
4130 break;
4131
4132 case SpvOpVectorExtractDynamic:
4133 case SpvOpVectorInsertDynamic:
4134 case SpvOpVectorShuffle:
4135 case SpvOpCompositeConstruct:
4136 case SpvOpCompositeExtract:
4137 case SpvOpCompositeInsert:
4138 case SpvOpCopyObject:
4139 vtn_handle_composite(b, opcode, w, count);
4140 break;
4141
4142 case SpvOpEmitVertex:
4143 case SpvOpEndPrimitive:
4144 case SpvOpEmitStreamVertex:
4145 case SpvOpEndStreamPrimitive:
4146 case SpvOpControlBarrier:
4147 case SpvOpMemoryBarrier:
4148 vtn_handle_barrier(b, opcode, w, count);
4149 break;
4150
4151 case SpvOpGroupNonUniformElect:
4152 case SpvOpGroupNonUniformAll:
4153 case SpvOpGroupNonUniformAny:
4154 case SpvOpGroupNonUniformAllEqual:
4155 case SpvOpGroupNonUniformBroadcast:
4156 case SpvOpGroupNonUniformBroadcastFirst:
4157 case SpvOpGroupNonUniformBallot:
4158 case SpvOpGroupNonUniformInverseBallot:
4159 case SpvOpGroupNonUniformBallotBitExtract:
4160 case SpvOpGroupNonUniformBallotBitCount:
4161 case SpvOpGroupNonUniformBallotFindLSB:
4162 case SpvOpGroupNonUniformBallotFindMSB:
4163 case SpvOpGroupNonUniformShuffle:
4164 case SpvOpGroupNonUniformShuffleXor:
4165 case SpvOpGroupNonUniformShuffleUp:
4166 case SpvOpGroupNonUniformShuffleDown:
4167 case SpvOpGroupNonUniformIAdd:
4168 case SpvOpGroupNonUniformFAdd:
4169 case SpvOpGroupNonUniformIMul:
4170 case SpvOpGroupNonUniformFMul:
4171 case SpvOpGroupNonUniformSMin:
4172 case SpvOpGroupNonUniformUMin:
4173 case SpvOpGroupNonUniformFMin:
4174 case SpvOpGroupNonUniformSMax:
4175 case SpvOpGroupNonUniformUMax:
4176 case SpvOpGroupNonUniformFMax:
4177 case SpvOpGroupNonUniformBitwiseAnd:
4178 case SpvOpGroupNonUniformBitwiseOr:
4179 case SpvOpGroupNonUniformBitwiseXor:
4180 case SpvOpGroupNonUniformLogicalAnd:
4181 case SpvOpGroupNonUniformLogicalOr:
4182 case SpvOpGroupNonUniformLogicalXor:
4183 case SpvOpGroupNonUniformQuadBroadcast:
4184 case SpvOpGroupNonUniformQuadSwap:
4185 vtn_handle_subgroup(b, opcode, w, count);
4186 break;
4187
4188 default:
4189 vtn_fail("Unhandled opcode");
4190 }
4191
4192 return true;
4193 }
4194
4195 struct vtn_builder*
4196 vtn_create_builder(const uint32_t *words, size_t word_count,
4197 gl_shader_stage stage, const char *entry_point_name,
4198 const struct spirv_to_nir_options *options)
4199 {
4200 /* Initialize the vtn_builder object */
4201 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
4202 b->spirv = words;
4203 b->spirv_word_count = word_count;
4204 b->file = NULL;
4205 b->line = -1;
4206 b->col = -1;
4207 exec_list_make_empty(&b->functions);
4208 b->entry_point_stage = stage;
4209 b->entry_point_name = entry_point_name;
4210 b->options = options;
4211
4212 /*
4213 * Handle the SPIR-V header (first 5 dwords).
4214 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
4215 */
4216 if (word_count <= 5)
4217 goto fail;
4218
4219 if (words[0] != SpvMagicNumber) {
4220 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
4221 goto fail;
4222 }
4223 if (words[1] < 0x10000) {
4224 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
4225 goto fail;
4226 }
4227
4228 /* words[2] == generator magic */
4229 unsigned value_id_bound = words[3];
4230 if (words[4] != 0) {
4231 vtn_err("words[4] was %u, want 0", words[4]);
4232 goto fail;
4233 }
4234
4235 b->value_id_bound = value_id_bound;
4236 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
4237
4238 return b;
4239 fail:
4240 ralloc_free(b);
4241 return NULL;
4242 }
4243
4244 nir_function *
4245 spirv_to_nir(const uint32_t *words, size_t word_count,
4246 struct nir_spirv_specialization *spec, unsigned num_spec,
4247 gl_shader_stage stage, const char *entry_point_name,
4248 const struct spirv_to_nir_options *options,
4249 const nir_shader_compiler_options *nir_options)
4250
4251 {
4252 const uint32_t *word_end = words + word_count;
4253
4254 struct vtn_builder *b = vtn_create_builder(words, word_count,
4255 stage, entry_point_name,
4256 options);
4257
4258 if (b == NULL)
4259 return NULL;
4260
4261 /* See also _vtn_fail() */
4262 if (setjmp(b->fail_jump)) {
4263 ralloc_free(b);
4264 return NULL;
4265 }
4266
4267 /* Skip the SPIR-V header, handled at vtn_create_builder */
4268 words+= 5;
4269
4270 /* Handle all the preamble instructions */
4271 words = vtn_foreach_instruction(b, words, word_end,
4272 vtn_handle_preamble_instruction);
4273
4274 if (b->entry_point == NULL) {
4275 vtn_fail("Entry point not found");
4276 ralloc_free(b);
4277 return NULL;
4278 }
4279
4280 b->shader = nir_shader_create(b, stage, nir_options, NULL);
4281
4282 /* Set shader info defaults */
4283 b->shader->info.gs.invocations = 1;
4284
4285 /* Parse execution modes */
4286 vtn_foreach_execution_mode(b, b->entry_point,
4287 vtn_handle_execution_mode, NULL);
4288
4289 b->specializations = spec;
4290 b->num_specializations = num_spec;
4291
4292 /* Handle all variable, type, and constant instructions */
4293 words = vtn_foreach_instruction(b, words, word_end,
4294 vtn_handle_variable_or_type_instruction);
4295
4296 /* Set types on all vtn_values */
4297 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
4298
4299 vtn_build_cfg(b, words, word_end);
4300
4301 assert(b->entry_point->value_type == vtn_value_type_function);
4302 b->entry_point->func->referenced = true;
4303
4304 bool progress;
4305 do {
4306 progress = false;
4307 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
4308 if (func->referenced && !func->emitted) {
4309 b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
4310 _mesa_key_pointer_equal);
4311
4312 vtn_function_emit(b, func, vtn_handle_body_instruction);
4313 progress = true;
4314 }
4315 }
4316 } while (progress);
4317
4318 /* We sometimes generate bogus derefs that, while never used, give the
4319 * validator a bit of heartburn. Run dead code to get rid of them.
4320 */
4321 nir_opt_dce(b->shader);
4322
4323 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
4324 nir_function *entry_point = b->entry_point->func->impl->function;
4325 vtn_assert(entry_point);
4326
4327 /* Unparent the shader from the vtn_builder before we delete the builder */
4328 ralloc_steal(NULL, b->shader);
4329
4330 ralloc_free(b);
4331
4332 return entry_point;
4333 }