nir: Make nir_constant a vector rather than a matrix
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include "util/u_math.h"
36
37 #include <stdio.h>
38
39 void
40 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
41 size_t spirv_offset, const char *message)
42 {
43 if (b->options->debug.func) {
44 b->options->debug.func(b->options->debug.private_data,
45 level, spirv_offset, message);
46 }
47
48 #ifndef NDEBUG
49 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
50 fprintf(stderr, "%s\n", message);
51 #endif
52 }
53
54 void
55 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
56 size_t spirv_offset, const char *fmt, ...)
57 {
58 va_list args;
59 char *msg;
60
61 va_start(args, fmt);
62 msg = ralloc_vasprintf(NULL, fmt, args);
63 va_end(args);
64
65 vtn_log(b, level, spirv_offset, msg);
66
67 ralloc_free(msg);
68 }
69
70 static void
71 vtn_log_err(struct vtn_builder *b,
72 enum nir_spirv_debug_level level, const char *prefix,
73 const char *file, unsigned line,
74 const char *fmt, va_list args)
75 {
76 char *msg;
77
78 msg = ralloc_strdup(NULL, prefix);
79
80 #ifndef NDEBUG
81 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
82 #endif
83
84 ralloc_asprintf_append(&msg, " ");
85
86 ralloc_vasprintf_append(&msg, fmt, args);
87
88 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
89 b->spirv_offset);
90
91 if (b->file) {
92 ralloc_asprintf_append(&msg,
93 "\n in SPIR-V source file %s, line %d, col %d",
94 b->file, b->line, b->col);
95 }
96
97 vtn_log(b, level, b->spirv_offset, msg);
98
99 ralloc_free(msg);
100 }
101
102 static void
103 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
104 {
105 static int idx = 0;
106
107 char filename[1024];
108 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
109 path, prefix, idx++);
110 if (len < 0 || len >= sizeof(filename))
111 return;
112
113 FILE *f = fopen(filename, "w");
114 if (f == NULL)
115 return;
116
117 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
118 fclose(f);
119
120 vtn_info("SPIR-V shader dumped to %s", filename);
121 }
122
123 void
124 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
125 const char *fmt, ...)
126 {
127 va_list args;
128
129 va_start(args, fmt);
130 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
131 file, line, fmt, args);
132 va_end(args);
133 }
134
135 void
136 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
137 const char *fmt, ...)
138 {
139 va_list args;
140
141 va_start(args, fmt);
142 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
143 file, line, fmt, args);
144 va_end(args);
145 }
146
147 void
148 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
149 const char *fmt, ...)
150 {
151 va_list args;
152
153 va_start(args, fmt);
154 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
155 file, line, fmt, args);
156 va_end(args);
157
158 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
159 if (dump_path)
160 vtn_dump_shader(b, dump_path, "fail");
161
162 longjmp(b->fail_jump, 1);
163 }
164
165 struct spec_constant_value {
166 bool is_double;
167 union {
168 uint32_t data32;
169 uint64_t data64;
170 };
171 };
172
173 static struct vtn_ssa_value *
174 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
175 {
176 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
177 val->type = type;
178
179 if (glsl_type_is_vector_or_scalar(type)) {
180 unsigned num_components = glsl_get_vector_elements(val->type);
181 unsigned bit_size = glsl_get_bit_size(val->type);
182 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
183 } else {
184 unsigned elems = glsl_get_length(val->type);
185 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
186 if (glsl_type_is_matrix(type)) {
187 const struct glsl_type *elem_type =
188 glsl_vector_type(glsl_get_base_type(type),
189 glsl_get_vector_elements(type));
190
191 for (unsigned i = 0; i < elems; i++)
192 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
193 } else if (glsl_type_is_array(type)) {
194 const struct glsl_type *elem_type = glsl_get_array_element(type);
195 for (unsigned i = 0; i < elems; i++)
196 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
197 } else {
198 for (unsigned i = 0; i < elems; i++) {
199 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
200 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
201 }
202 }
203 }
204
205 return val;
206 }
207
208 static struct vtn_ssa_value *
209 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
210 const struct glsl_type *type)
211 {
212 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
213
214 if (entry)
215 return entry->data;
216
217 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
218 val->type = type;
219
220 switch (glsl_get_base_type(type)) {
221 case GLSL_TYPE_INT:
222 case GLSL_TYPE_UINT:
223 case GLSL_TYPE_INT16:
224 case GLSL_TYPE_UINT16:
225 case GLSL_TYPE_UINT8:
226 case GLSL_TYPE_INT8:
227 case GLSL_TYPE_INT64:
228 case GLSL_TYPE_UINT64:
229 case GLSL_TYPE_BOOL:
230 case GLSL_TYPE_FLOAT:
231 case GLSL_TYPE_FLOAT16:
232 case GLSL_TYPE_DOUBLE: {
233 int bit_size = glsl_get_bit_size(type);
234 if (glsl_type_is_vector_or_scalar(type)) {
235 unsigned num_components = glsl_get_vector_elements(val->type);
236 nir_load_const_instr *load =
237 nir_load_const_instr_create(b->shader, num_components, bit_size);
238
239 memcpy(load->value, constant->values,
240 sizeof(nir_const_value) * load->def.num_components);
241
242 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
243 val->def = &load->def;
244 } else {
245 assert(glsl_type_is_matrix(type));
246 unsigned columns = glsl_get_matrix_columns(val->type);
247 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
248 const struct glsl_type *column_type = glsl_get_column_type(val->type);
249 for (unsigned i = 0; i < columns; i++)
250 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
251 column_type);
252 }
253 break;
254 }
255
256 case GLSL_TYPE_ARRAY: {
257 unsigned elems = glsl_get_length(val->type);
258 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
259 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
260 for (unsigned i = 0; i < elems; i++)
261 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
262 elem_type);
263 break;
264 }
265
266 case GLSL_TYPE_STRUCT: {
267 unsigned elems = glsl_get_length(val->type);
268 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
269 for (unsigned i = 0; i < elems; i++) {
270 const struct glsl_type *elem_type =
271 glsl_get_struct_field(val->type, i);
272 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
273 elem_type);
274 }
275 break;
276 }
277
278 default:
279 vtn_fail("bad constant type");
280 }
281
282 return val;
283 }
284
285 struct vtn_ssa_value *
286 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
287 {
288 struct vtn_value *val = vtn_untyped_value(b, value_id);
289 switch (val->value_type) {
290 case vtn_value_type_undef:
291 return vtn_undef_ssa_value(b, val->type->type);
292
293 case vtn_value_type_constant:
294 return vtn_const_ssa_value(b, val->constant, val->type->type);
295
296 case vtn_value_type_ssa:
297 return val->ssa;
298
299 case vtn_value_type_pointer:
300 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
301 struct vtn_ssa_value *ssa =
302 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
303 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
304 return ssa;
305
306 default:
307 vtn_fail("Invalid type for an SSA value");
308 }
309 }
310
311 static char *
312 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
313 unsigned word_count, unsigned *words_used)
314 {
315 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
316 if (words_used) {
317 /* Ammount of space taken by the string (including the null) */
318 unsigned len = strlen(dup) + 1;
319 *words_used = DIV_ROUND_UP(len, sizeof(*words));
320 }
321 return dup;
322 }
323
324 const uint32_t *
325 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
326 const uint32_t *end, vtn_instruction_handler handler)
327 {
328 b->file = NULL;
329 b->line = -1;
330 b->col = -1;
331
332 const uint32_t *w = start;
333 while (w < end) {
334 SpvOp opcode = w[0] & SpvOpCodeMask;
335 unsigned count = w[0] >> SpvWordCountShift;
336 vtn_assert(count >= 1 && w + count <= end);
337
338 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
339
340 switch (opcode) {
341 case SpvOpNop:
342 break; /* Do nothing */
343
344 case SpvOpLine:
345 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
346 b->line = w[2];
347 b->col = w[3];
348 break;
349
350 case SpvOpNoLine:
351 b->file = NULL;
352 b->line = -1;
353 b->col = -1;
354 break;
355
356 default:
357 if (!handler(b, opcode, w, count))
358 return w;
359 break;
360 }
361
362 w += count;
363 }
364
365 b->spirv_offset = 0;
366 b->file = NULL;
367 b->line = -1;
368 b->col = -1;
369
370 assert(w == end);
371 return w;
372 }
373
374 static void
375 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
376 const uint32_t *w, unsigned count)
377 {
378 const char *ext = (const char *)&w[2];
379 switch (opcode) {
380 case SpvOpExtInstImport: {
381 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
382 if (strcmp(ext, "GLSL.std.450") == 0) {
383 val->ext_handler = vtn_handle_glsl450_instruction;
384 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
385 && (b->options && b->options->caps.amd_gcn_shader)) {
386 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
387 } else if ((strcmp(ext, "SPV_AMD_shader_ballot") == 0)
388 && (b->options && b->options->caps.amd_shader_ballot)) {
389 val->ext_handler = vtn_handle_amd_shader_ballot_instruction;
390 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
391 && (b->options && b->options->caps.amd_trinary_minmax)) {
392 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
393 } else if (strcmp(ext, "OpenCL.std") == 0) {
394 val->ext_handler = vtn_handle_opencl_instruction;
395 } else {
396 vtn_fail("Unsupported extension: %s", ext);
397 }
398 break;
399 }
400
401 case SpvOpExtInst: {
402 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
403 bool handled = val->ext_handler(b, w[4], w, count);
404 vtn_assert(handled);
405 break;
406 }
407
408 default:
409 vtn_fail_with_opcode("Unhandled opcode", opcode);
410 }
411 }
412
413 static void
414 _foreach_decoration_helper(struct vtn_builder *b,
415 struct vtn_value *base_value,
416 int parent_member,
417 struct vtn_value *value,
418 vtn_decoration_foreach_cb cb, void *data)
419 {
420 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
421 int member;
422 if (dec->scope == VTN_DEC_DECORATION) {
423 member = parent_member;
424 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
425 vtn_fail_if(value->value_type != vtn_value_type_type ||
426 value->type->base_type != vtn_base_type_struct,
427 "OpMemberDecorate and OpGroupMemberDecorate are only "
428 "allowed on OpTypeStruct");
429 /* This means we haven't recursed yet */
430 assert(value == base_value);
431
432 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
433
434 vtn_fail_if(member >= base_value->type->length,
435 "OpMemberDecorate specifies member %d but the "
436 "OpTypeStruct has only %u members",
437 member, base_value->type->length);
438 } else {
439 /* Not a decoration */
440 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
441 continue;
442 }
443
444 if (dec->group) {
445 assert(dec->group->value_type == vtn_value_type_decoration_group);
446 _foreach_decoration_helper(b, base_value, member, dec->group,
447 cb, data);
448 } else {
449 cb(b, base_value, member, dec, data);
450 }
451 }
452 }
453
454 /** Iterates (recursively if needed) over all of the decorations on a value
455 *
456 * This function iterates over all of the decorations applied to a given
457 * value. If it encounters a decoration group, it recurses into the group
458 * and iterates over all of those decorations as well.
459 */
460 void
461 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
462 vtn_decoration_foreach_cb cb, void *data)
463 {
464 _foreach_decoration_helper(b, value, -1, value, cb, data);
465 }
466
467 void
468 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
469 vtn_execution_mode_foreach_cb cb, void *data)
470 {
471 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
472 if (dec->scope != VTN_DEC_EXECUTION_MODE)
473 continue;
474
475 assert(dec->group == NULL);
476 cb(b, value, dec, data);
477 }
478 }
479
480 void
481 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
482 const uint32_t *w, unsigned count)
483 {
484 const uint32_t *w_end = w + count;
485 const uint32_t target = w[1];
486 w += 2;
487
488 switch (opcode) {
489 case SpvOpDecorationGroup:
490 vtn_push_value(b, target, vtn_value_type_decoration_group);
491 break;
492
493 case SpvOpDecorate:
494 case SpvOpDecorateId:
495 case SpvOpMemberDecorate:
496 case SpvOpDecorateString:
497 case SpvOpMemberDecorateString:
498 case SpvOpExecutionMode:
499 case SpvOpExecutionModeId: {
500 struct vtn_value *val = vtn_untyped_value(b, target);
501
502 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
503 switch (opcode) {
504 case SpvOpDecorate:
505 case SpvOpDecorateId:
506 case SpvOpDecorateString:
507 dec->scope = VTN_DEC_DECORATION;
508 break;
509 case SpvOpMemberDecorate:
510 case SpvOpMemberDecorateString:
511 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
512 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
513 "Member argument of OpMemberDecorate too large");
514 break;
515 case SpvOpExecutionMode:
516 case SpvOpExecutionModeId:
517 dec->scope = VTN_DEC_EXECUTION_MODE;
518 break;
519 default:
520 unreachable("Invalid decoration opcode");
521 }
522 dec->decoration = *(w++);
523 dec->operands = w;
524
525 /* Link into the list */
526 dec->next = val->decoration;
527 val->decoration = dec;
528 break;
529 }
530
531 case SpvOpGroupMemberDecorate:
532 case SpvOpGroupDecorate: {
533 struct vtn_value *group =
534 vtn_value(b, target, vtn_value_type_decoration_group);
535
536 for (; w < w_end; w++) {
537 struct vtn_value *val = vtn_untyped_value(b, *w);
538 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
539
540 dec->group = group;
541 if (opcode == SpvOpGroupDecorate) {
542 dec->scope = VTN_DEC_DECORATION;
543 } else {
544 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
545 vtn_fail_if(dec->scope < 0, /* Check for overflow */
546 "Member argument of OpGroupMemberDecorate too large");
547 }
548
549 /* Link into the list */
550 dec->next = val->decoration;
551 val->decoration = dec;
552 }
553 break;
554 }
555
556 default:
557 unreachable("Unhandled opcode");
558 }
559 }
560
561 struct member_decoration_ctx {
562 unsigned num_fields;
563 struct glsl_struct_field *fields;
564 struct vtn_type *type;
565 };
566
567 /**
568 * Returns true if the given type contains a struct decorated Block or
569 * BufferBlock
570 */
571 bool
572 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
573 {
574 switch (type->base_type) {
575 case vtn_base_type_array:
576 return vtn_type_contains_block(b, type->array_element);
577 case vtn_base_type_struct:
578 if (type->block || type->buffer_block)
579 return true;
580 for (unsigned i = 0; i < type->length; i++) {
581 if (vtn_type_contains_block(b, type->members[i]))
582 return true;
583 }
584 return false;
585 default:
586 return false;
587 }
588 }
589
590 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
591 * OpStore, or OpCopyMemory between them without breaking anything.
592 * Technically, the SPIR-V rules require the exact same type ID but this lets
593 * us internally be a bit looser.
594 */
595 bool
596 vtn_types_compatible(struct vtn_builder *b,
597 struct vtn_type *t1, struct vtn_type *t2)
598 {
599 if (t1->id == t2->id)
600 return true;
601
602 if (t1->base_type != t2->base_type)
603 return false;
604
605 switch (t1->base_type) {
606 case vtn_base_type_void:
607 case vtn_base_type_scalar:
608 case vtn_base_type_vector:
609 case vtn_base_type_matrix:
610 case vtn_base_type_image:
611 case vtn_base_type_sampler:
612 case vtn_base_type_sampled_image:
613 return t1->type == t2->type;
614
615 case vtn_base_type_array:
616 return t1->length == t2->length &&
617 vtn_types_compatible(b, t1->array_element, t2->array_element);
618
619 case vtn_base_type_pointer:
620 return vtn_types_compatible(b, t1->deref, t2->deref);
621
622 case vtn_base_type_struct:
623 if (t1->length != t2->length)
624 return false;
625
626 for (unsigned i = 0; i < t1->length; i++) {
627 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
628 return false;
629 }
630 return true;
631
632 case vtn_base_type_function:
633 /* This case shouldn't get hit since you can't copy around function
634 * types. Just require them to be identical.
635 */
636 return false;
637 }
638
639 vtn_fail("Invalid base type");
640 }
641
642 struct vtn_type *
643 vtn_type_without_array(struct vtn_type *type)
644 {
645 while (type->base_type == vtn_base_type_array)
646 type = type->array_element;
647 return type;
648 }
649
650 /* does a shallow copy of a vtn_type */
651
652 static struct vtn_type *
653 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
654 {
655 struct vtn_type *dest = ralloc(b, struct vtn_type);
656 *dest = *src;
657
658 switch (src->base_type) {
659 case vtn_base_type_void:
660 case vtn_base_type_scalar:
661 case vtn_base_type_vector:
662 case vtn_base_type_matrix:
663 case vtn_base_type_array:
664 case vtn_base_type_pointer:
665 case vtn_base_type_image:
666 case vtn_base_type_sampler:
667 case vtn_base_type_sampled_image:
668 /* Nothing more to do */
669 break;
670
671 case vtn_base_type_struct:
672 dest->members = ralloc_array(b, struct vtn_type *, src->length);
673 memcpy(dest->members, src->members,
674 src->length * sizeof(src->members[0]));
675
676 dest->offsets = ralloc_array(b, unsigned, src->length);
677 memcpy(dest->offsets, src->offsets,
678 src->length * sizeof(src->offsets[0]));
679 break;
680
681 case vtn_base_type_function:
682 dest->params = ralloc_array(b, struct vtn_type *, src->length);
683 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
684 break;
685 }
686
687 return dest;
688 }
689
690 static struct vtn_type *
691 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
692 {
693 type->members[member] = vtn_type_copy(b, type->members[member]);
694 type = type->members[member];
695
696 /* We may have an array of matrices.... Oh, joy! */
697 while (glsl_type_is_array(type->type)) {
698 type->array_element = vtn_type_copy(b, type->array_element);
699 type = type->array_element;
700 }
701
702 vtn_assert(glsl_type_is_matrix(type->type));
703
704 return type;
705 }
706
707 static void
708 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
709 int member, enum gl_access_qualifier access)
710 {
711 type->members[member] = vtn_type_copy(b, type->members[member]);
712 type = type->members[member];
713
714 type->access |= access;
715 }
716
717 static void
718 array_stride_decoration_cb(struct vtn_builder *b,
719 struct vtn_value *val, int member,
720 const struct vtn_decoration *dec, void *void_ctx)
721 {
722 struct vtn_type *type = val->type;
723
724 if (dec->decoration == SpvDecorationArrayStride) {
725 vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
726 type->stride = dec->operands[0];
727 }
728 }
729
730 static void
731 struct_member_decoration_cb(struct vtn_builder *b,
732 struct vtn_value *val, int member,
733 const struct vtn_decoration *dec, void *void_ctx)
734 {
735 struct member_decoration_ctx *ctx = void_ctx;
736
737 if (member < 0)
738 return;
739
740 assert(member < ctx->num_fields);
741
742 switch (dec->decoration) {
743 case SpvDecorationRelaxedPrecision:
744 case SpvDecorationUniform:
745 case SpvDecorationUniformId:
746 break; /* FIXME: Do nothing with this for now. */
747 case SpvDecorationNonWritable:
748 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
749 break;
750 case SpvDecorationNonReadable:
751 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
752 break;
753 case SpvDecorationVolatile:
754 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
755 break;
756 case SpvDecorationCoherent:
757 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
758 break;
759 case SpvDecorationNoPerspective:
760 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
761 break;
762 case SpvDecorationFlat:
763 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
764 break;
765 case SpvDecorationCentroid:
766 ctx->fields[member].centroid = true;
767 break;
768 case SpvDecorationSample:
769 ctx->fields[member].sample = true;
770 break;
771 case SpvDecorationStream:
772 /* Vulkan only allows one GS stream */
773 vtn_assert(dec->operands[0] == 0);
774 break;
775 case SpvDecorationLocation:
776 ctx->fields[member].location = dec->operands[0];
777 break;
778 case SpvDecorationComponent:
779 break; /* FIXME: What should we do with these? */
780 case SpvDecorationBuiltIn:
781 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
782 ctx->type->members[member]->is_builtin = true;
783 ctx->type->members[member]->builtin = dec->operands[0];
784 ctx->type->builtin_block = true;
785 break;
786 case SpvDecorationOffset:
787 ctx->type->offsets[member] = dec->operands[0];
788 ctx->fields[member].offset = dec->operands[0];
789 break;
790 case SpvDecorationMatrixStride:
791 /* Handled as a second pass */
792 break;
793 case SpvDecorationColMajor:
794 break; /* Nothing to do here. Column-major is the default. */
795 case SpvDecorationRowMajor:
796 mutable_matrix_member(b, ctx->type, member)->row_major = true;
797 break;
798
799 case SpvDecorationPatch:
800 break;
801
802 case SpvDecorationSpecId:
803 case SpvDecorationBlock:
804 case SpvDecorationBufferBlock:
805 case SpvDecorationArrayStride:
806 case SpvDecorationGLSLShared:
807 case SpvDecorationGLSLPacked:
808 case SpvDecorationInvariant:
809 case SpvDecorationRestrict:
810 case SpvDecorationAliased:
811 case SpvDecorationConstant:
812 case SpvDecorationIndex:
813 case SpvDecorationBinding:
814 case SpvDecorationDescriptorSet:
815 case SpvDecorationLinkageAttributes:
816 case SpvDecorationNoContraction:
817 case SpvDecorationInputAttachmentIndex:
818 vtn_warn("Decoration not allowed on struct members: %s",
819 spirv_decoration_to_string(dec->decoration));
820 break;
821
822 case SpvDecorationXfbBuffer:
823 case SpvDecorationXfbStride:
824 vtn_warn("Vulkan does not have transform feedback");
825 break;
826
827 case SpvDecorationCPacked:
828 if (b->shader->info.stage != MESA_SHADER_KERNEL)
829 vtn_warn("Decoration only allowed for CL-style kernels: %s",
830 spirv_decoration_to_string(dec->decoration));
831 else
832 ctx->type->packed = true;
833 break;
834
835 case SpvDecorationSaturatedConversion:
836 case SpvDecorationFuncParamAttr:
837 case SpvDecorationFPRoundingMode:
838 case SpvDecorationFPFastMathMode:
839 case SpvDecorationAlignment:
840 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
841 vtn_warn("Decoration only allowed for CL-style kernels: %s",
842 spirv_decoration_to_string(dec->decoration));
843 }
844 break;
845
846 case SpvDecorationUserSemantic:
847 /* User semantic decorations can safely be ignored by the driver. */
848 break;
849
850 default:
851 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
852 }
853 }
854
855 /** Chases the array type all the way down to the tail and rewrites the
856 * glsl_types to be based off the tail's glsl_type.
857 */
858 static void
859 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
860 {
861 if (type->base_type != vtn_base_type_array)
862 return;
863
864 vtn_array_type_rewrite_glsl_type(type->array_element);
865
866 type->type = glsl_array_type(type->array_element->type,
867 type->length, type->stride);
868 }
869
870 /* Matrix strides are handled as a separate pass because we need to know
871 * whether the matrix is row-major or not first.
872 */
873 static void
874 struct_member_matrix_stride_cb(struct vtn_builder *b,
875 struct vtn_value *val, int member,
876 const struct vtn_decoration *dec,
877 void *void_ctx)
878 {
879 if (dec->decoration != SpvDecorationMatrixStride)
880 return;
881
882 vtn_fail_if(member < 0,
883 "The MatrixStride decoration is only allowed on members "
884 "of OpTypeStruct");
885 vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
886
887 struct member_decoration_ctx *ctx = void_ctx;
888
889 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
890 if (mat_type->row_major) {
891 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
892 mat_type->stride = mat_type->array_element->stride;
893 mat_type->array_element->stride = dec->operands[0];
894
895 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
896 dec->operands[0], true);
897 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
898 } else {
899 vtn_assert(mat_type->array_element->stride > 0);
900 mat_type->stride = dec->operands[0];
901
902 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
903 dec->operands[0], false);
904 }
905
906 /* Now that we've replaced the glsl_type with a properly strided matrix
907 * type, rewrite the member type so that it's an array of the proper kind
908 * of glsl_type.
909 */
910 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
911 ctx->fields[member].type = ctx->type->members[member]->type;
912 }
913
914 static void
915 struct_block_decoration_cb(struct vtn_builder *b,
916 struct vtn_value *val, int member,
917 const struct vtn_decoration *dec, void *ctx)
918 {
919 if (member != -1)
920 return;
921
922 struct vtn_type *type = val->type;
923 if (dec->decoration == SpvDecorationBlock)
924 type->block = true;
925 else if (dec->decoration == SpvDecorationBufferBlock)
926 type->buffer_block = true;
927 }
928
929 static void
930 type_decoration_cb(struct vtn_builder *b,
931 struct vtn_value *val, int member,
932 const struct vtn_decoration *dec, void *ctx)
933 {
934 struct vtn_type *type = val->type;
935
936 if (member != -1) {
937 /* This should have been handled by OpTypeStruct */
938 assert(val->type->base_type == vtn_base_type_struct);
939 assert(member >= 0 && member < val->type->length);
940 return;
941 }
942
943 switch (dec->decoration) {
944 case SpvDecorationArrayStride:
945 vtn_assert(type->base_type == vtn_base_type_array ||
946 type->base_type == vtn_base_type_pointer);
947 break;
948 case SpvDecorationBlock:
949 vtn_assert(type->base_type == vtn_base_type_struct);
950 vtn_assert(type->block);
951 break;
952 case SpvDecorationBufferBlock:
953 vtn_assert(type->base_type == vtn_base_type_struct);
954 vtn_assert(type->buffer_block);
955 break;
956 case SpvDecorationGLSLShared:
957 case SpvDecorationGLSLPacked:
958 /* Ignore these, since we get explicit offsets anyways */
959 break;
960
961 case SpvDecorationRowMajor:
962 case SpvDecorationColMajor:
963 case SpvDecorationMatrixStride:
964 case SpvDecorationBuiltIn:
965 case SpvDecorationNoPerspective:
966 case SpvDecorationFlat:
967 case SpvDecorationPatch:
968 case SpvDecorationCentroid:
969 case SpvDecorationSample:
970 case SpvDecorationVolatile:
971 case SpvDecorationCoherent:
972 case SpvDecorationNonWritable:
973 case SpvDecorationNonReadable:
974 case SpvDecorationUniform:
975 case SpvDecorationUniformId:
976 case SpvDecorationLocation:
977 case SpvDecorationComponent:
978 case SpvDecorationOffset:
979 case SpvDecorationXfbBuffer:
980 case SpvDecorationXfbStride:
981 case SpvDecorationUserSemantic:
982 vtn_warn("Decoration only allowed for struct members: %s",
983 spirv_decoration_to_string(dec->decoration));
984 break;
985
986 case SpvDecorationStream:
987 /* We don't need to do anything here, as stream is filled up when
988 * aplying the decoration to a variable, just check that if it is not a
989 * struct member, it should be a struct.
990 */
991 vtn_assert(type->base_type == vtn_base_type_struct);
992 break;
993
994 case SpvDecorationRelaxedPrecision:
995 case SpvDecorationSpecId:
996 case SpvDecorationInvariant:
997 case SpvDecorationRestrict:
998 case SpvDecorationAliased:
999 case SpvDecorationConstant:
1000 case SpvDecorationIndex:
1001 case SpvDecorationBinding:
1002 case SpvDecorationDescriptorSet:
1003 case SpvDecorationLinkageAttributes:
1004 case SpvDecorationNoContraction:
1005 case SpvDecorationInputAttachmentIndex:
1006 vtn_warn("Decoration not allowed on types: %s",
1007 spirv_decoration_to_string(dec->decoration));
1008 break;
1009
1010 case SpvDecorationCPacked:
1011 if (b->shader->info.stage != MESA_SHADER_KERNEL)
1012 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1013 spirv_decoration_to_string(dec->decoration));
1014 else
1015 type->packed = true;
1016 break;
1017
1018 case SpvDecorationSaturatedConversion:
1019 case SpvDecorationFuncParamAttr:
1020 case SpvDecorationFPRoundingMode:
1021 case SpvDecorationFPFastMathMode:
1022 case SpvDecorationAlignment:
1023 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1024 spirv_decoration_to_string(dec->decoration));
1025 break;
1026
1027 default:
1028 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1029 }
1030 }
1031
1032 static unsigned
1033 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
1034 {
1035 switch (format) {
1036 case SpvImageFormatUnknown: return 0; /* GL_NONE */
1037 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
1038 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
1039 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
1040 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
1041 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
1042 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
1043 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
1044 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
1045 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
1046 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
1047 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
1048 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
1049 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
1050 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
1051 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
1052 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
1053 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
1054 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
1055 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
1056 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
1057 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
1058 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
1059 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
1060 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
1061 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
1062 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
1063 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
1064 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
1065 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
1066 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
1067 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
1068 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
1069 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
1070 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
1071 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
1072 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
1073 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
1074 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
1075 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
1076 default:
1077 vtn_fail("Invalid image format: %s (%u)",
1078 spirv_imageformat_to_string(format), format);
1079 }
1080 }
1081
1082 static struct vtn_type *
1083 vtn_type_layout_std430(struct vtn_builder *b, struct vtn_type *type,
1084 uint32_t *size_out, uint32_t *align_out)
1085 {
1086 switch (type->base_type) {
1087 case vtn_base_type_scalar: {
1088 uint32_t comp_size = glsl_type_is_boolean(type->type)
1089 ? 4 : glsl_get_bit_size(type->type) / 8;
1090 *size_out = comp_size;
1091 *align_out = comp_size;
1092 return type;
1093 }
1094
1095 case vtn_base_type_vector: {
1096 uint32_t comp_size = glsl_type_is_boolean(type->type)
1097 ? 4 : glsl_get_bit_size(type->type) / 8;
1098 unsigned align_comps = type->length == 3 ? 4 : type->length;
1099 *size_out = comp_size * type->length,
1100 *align_out = comp_size * align_comps;
1101 return type;
1102 }
1103
1104 case vtn_base_type_matrix:
1105 case vtn_base_type_array: {
1106 /* We're going to add an array stride */
1107 type = vtn_type_copy(b, type);
1108 uint32_t elem_size, elem_align;
1109 type->array_element = vtn_type_layout_std430(b, type->array_element,
1110 &elem_size, &elem_align);
1111 type->stride = vtn_align_u32(elem_size, elem_align);
1112 *size_out = type->stride * type->length;
1113 *align_out = elem_align;
1114 return type;
1115 }
1116
1117 case vtn_base_type_struct: {
1118 /* We're going to add member offsets */
1119 type = vtn_type_copy(b, type);
1120 uint32_t offset = 0;
1121 uint32_t align = 0;
1122 for (unsigned i = 0; i < type->length; i++) {
1123 uint32_t mem_size, mem_align;
1124 type->members[i] = vtn_type_layout_std430(b, type->members[i],
1125 &mem_size, &mem_align);
1126 offset = vtn_align_u32(offset, mem_align);
1127 type->offsets[i] = offset;
1128 offset += mem_size;
1129 align = MAX2(align, mem_align);
1130 }
1131 *size_out = offset;
1132 *align_out = align;
1133 return type;
1134 }
1135
1136 default:
1137 unreachable("Invalid SPIR-V type for std430");
1138 }
1139 }
1140
1141 static void
1142 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1143 const uint32_t *w, unsigned count)
1144 {
1145 struct vtn_value *val = NULL;
1146
1147 /* In order to properly handle forward declarations, we have to defer
1148 * allocation for pointer types.
1149 */
1150 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1151 val = vtn_push_value(b, w[1], vtn_value_type_type);
1152 vtn_fail_if(val->type != NULL,
1153 "Only pointers can have forward declarations");
1154 val->type = rzalloc(b, struct vtn_type);
1155 val->type->id = w[1];
1156 }
1157
1158 switch (opcode) {
1159 case SpvOpTypeVoid:
1160 val->type->base_type = vtn_base_type_void;
1161 val->type->type = glsl_void_type();
1162 break;
1163 case SpvOpTypeBool:
1164 val->type->base_type = vtn_base_type_scalar;
1165 val->type->type = glsl_bool_type();
1166 val->type->length = 1;
1167 break;
1168 case SpvOpTypeInt: {
1169 int bit_size = w[2];
1170 const bool signedness = w[3];
1171 val->type->base_type = vtn_base_type_scalar;
1172 switch (bit_size) {
1173 case 64:
1174 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1175 break;
1176 case 32:
1177 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1178 break;
1179 case 16:
1180 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1181 break;
1182 case 8:
1183 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1184 break;
1185 default:
1186 vtn_fail("Invalid int bit size: %u", bit_size);
1187 }
1188 val->type->length = 1;
1189 break;
1190 }
1191
1192 case SpvOpTypeFloat: {
1193 int bit_size = w[2];
1194 val->type->base_type = vtn_base_type_scalar;
1195 switch (bit_size) {
1196 case 16:
1197 val->type->type = glsl_float16_t_type();
1198 break;
1199 case 32:
1200 val->type->type = glsl_float_type();
1201 break;
1202 case 64:
1203 val->type->type = glsl_double_type();
1204 break;
1205 default:
1206 vtn_fail("Invalid float bit size: %u", bit_size);
1207 }
1208 val->type->length = 1;
1209 break;
1210 }
1211
1212 case SpvOpTypeVector: {
1213 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1214 unsigned elems = w[3];
1215
1216 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1217 "Base type for OpTypeVector must be a scalar");
1218 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1219 "Invalid component count for OpTypeVector");
1220
1221 val->type->base_type = vtn_base_type_vector;
1222 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1223 val->type->length = elems;
1224 val->type->stride = glsl_type_is_boolean(val->type->type)
1225 ? 4 : glsl_get_bit_size(base->type) / 8;
1226 val->type->array_element = base;
1227 break;
1228 }
1229
1230 case SpvOpTypeMatrix: {
1231 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1232 unsigned columns = w[3];
1233
1234 vtn_fail_if(base->base_type != vtn_base_type_vector,
1235 "Base type for OpTypeMatrix must be a vector");
1236 vtn_fail_if(columns < 2 || columns > 4,
1237 "Invalid column count for OpTypeMatrix");
1238
1239 val->type->base_type = vtn_base_type_matrix;
1240 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1241 glsl_get_vector_elements(base->type),
1242 columns);
1243 vtn_fail_if(glsl_type_is_error(val->type->type),
1244 "Unsupported base type for OpTypeMatrix");
1245 assert(!glsl_type_is_error(val->type->type));
1246 val->type->length = columns;
1247 val->type->array_element = base;
1248 val->type->row_major = false;
1249 val->type->stride = 0;
1250 break;
1251 }
1252
1253 case SpvOpTypeRuntimeArray:
1254 case SpvOpTypeArray: {
1255 struct vtn_type *array_element =
1256 vtn_value(b, w[2], vtn_value_type_type)->type;
1257
1258 if (opcode == SpvOpTypeRuntimeArray) {
1259 /* A length of 0 is used to denote unsized arrays */
1260 val->type->length = 0;
1261 } else {
1262 val->type->length = vtn_constant_uint(b, w[3]);
1263 }
1264
1265 val->type->base_type = vtn_base_type_array;
1266 val->type->array_element = array_element;
1267 if (b->shader->info.stage == MESA_SHADER_KERNEL)
1268 val->type->stride = glsl_get_cl_size(array_element->type);
1269
1270 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1271 val->type->type = glsl_array_type(array_element->type, val->type->length,
1272 val->type->stride);
1273 break;
1274 }
1275
1276 case SpvOpTypeStruct: {
1277 unsigned num_fields = count - 2;
1278 val->type->base_type = vtn_base_type_struct;
1279 val->type->length = num_fields;
1280 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1281 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1282 val->type->packed = false;
1283
1284 NIR_VLA(struct glsl_struct_field, fields, count);
1285 for (unsigned i = 0; i < num_fields; i++) {
1286 val->type->members[i] =
1287 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1288 fields[i] = (struct glsl_struct_field) {
1289 .type = val->type->members[i]->type,
1290 .name = ralloc_asprintf(b, "field%d", i),
1291 .location = -1,
1292 .offset = -1,
1293 };
1294 }
1295
1296 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1297 unsigned offset = 0;
1298 for (unsigned i = 0; i < num_fields; i++) {
1299 offset = align(offset, glsl_get_cl_alignment(fields[i].type));
1300 fields[i].offset = offset;
1301 offset += glsl_get_cl_size(fields[i].type);
1302 }
1303 }
1304
1305 struct member_decoration_ctx ctx = {
1306 .num_fields = num_fields,
1307 .fields = fields,
1308 .type = val->type
1309 };
1310
1311 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1312 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1313
1314 vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
1315
1316 const char *name = val->name;
1317
1318 if (val->type->block || val->type->buffer_block) {
1319 /* Packing will be ignored since types coming from SPIR-V are
1320 * explicitly laid out.
1321 */
1322 val->type->type = glsl_interface_type(fields, num_fields,
1323 /* packing */ 0, false,
1324 name ? name : "block");
1325 } else {
1326 val->type->type = glsl_struct_type(fields, num_fields,
1327 name ? name : "struct", false);
1328 }
1329 break;
1330 }
1331
1332 case SpvOpTypeFunction: {
1333 val->type->base_type = vtn_base_type_function;
1334 val->type->type = NULL;
1335
1336 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1337
1338 const unsigned num_params = count - 3;
1339 val->type->length = num_params;
1340 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1341 for (unsigned i = 0; i < count - 3; i++) {
1342 val->type->params[i] =
1343 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1344 }
1345 break;
1346 }
1347
1348 case SpvOpTypePointer:
1349 case SpvOpTypeForwardPointer: {
1350 /* We can't blindly push the value because it might be a forward
1351 * declaration.
1352 */
1353 val = vtn_untyped_value(b, w[1]);
1354
1355 SpvStorageClass storage_class = w[2];
1356
1357 if (val->value_type == vtn_value_type_invalid) {
1358 val->value_type = vtn_value_type_type;
1359 val->type = rzalloc(b, struct vtn_type);
1360 val->type->id = w[1];
1361 val->type->base_type = vtn_base_type_pointer;
1362 val->type->storage_class = storage_class;
1363
1364 /* These can actually be stored to nir_variables and used as SSA
1365 * values so they need a real glsl_type.
1366 */
1367 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1368 b, storage_class, NULL, NULL);
1369 val->type->type = nir_address_format_to_glsl_type(
1370 vtn_mode_to_address_format(b, mode));
1371 } else {
1372 vtn_fail_if(val->type->storage_class != storage_class,
1373 "The storage classes of an OpTypePointer and any "
1374 "OpTypeForwardPointers that provide forward "
1375 "declarations of it must match.");
1376 }
1377
1378 if (opcode == SpvOpTypePointer) {
1379 vtn_fail_if(val->type->deref != NULL,
1380 "While OpTypeForwardPointer can be used to provide a "
1381 "forward declaration of a pointer, OpTypePointer can "
1382 "only be used once for a given id.");
1383
1384 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1385
1386 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1387
1388 if (b->physical_ptrs) {
1389 switch (storage_class) {
1390 case SpvStorageClassFunction:
1391 case SpvStorageClassWorkgroup:
1392 case SpvStorageClassCrossWorkgroup:
1393 val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
1394 glsl_get_cl_alignment(val->type->deref->type));
1395 break;
1396 default:
1397 break;
1398 }
1399 }
1400
1401 if (storage_class == SpvStorageClassWorkgroup &&
1402 b->options->lower_workgroup_access_to_offsets) {
1403 uint32_t size, align;
1404 val->type->deref = vtn_type_layout_std430(b, val->type->deref,
1405 &size, &align);
1406 val->type->length = size;
1407 val->type->align = align;
1408 }
1409 }
1410 break;
1411 }
1412
1413 case SpvOpTypeImage: {
1414 val->type->base_type = vtn_base_type_image;
1415
1416 const struct vtn_type *sampled_type =
1417 vtn_value(b, w[2], vtn_value_type_type)->type;
1418
1419 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1420 glsl_get_bit_size(sampled_type->type) != 32,
1421 "Sampled type of OpTypeImage must be a 32-bit scalar");
1422
1423 enum glsl_sampler_dim dim;
1424 switch ((SpvDim)w[3]) {
1425 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1426 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1427 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1428 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1429 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1430 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1431 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1432 default:
1433 vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
1434 spirv_dim_to_string((SpvDim)w[3]), w[3]);
1435 }
1436
1437 /* w[4]: as per Vulkan spec "Validation Rules within a Module",
1438 * The “Depth” operand of OpTypeImage is ignored.
1439 */
1440 bool is_array = w[5];
1441 bool multisampled = w[6];
1442 unsigned sampled = w[7];
1443 SpvImageFormat format = w[8];
1444
1445 if (count > 9)
1446 val->type->access_qualifier = w[9];
1447 else
1448 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1449
1450 if (multisampled) {
1451 if (dim == GLSL_SAMPLER_DIM_2D)
1452 dim = GLSL_SAMPLER_DIM_MS;
1453 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1454 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1455 else
1456 vtn_fail("Unsupported multisampled image type");
1457 }
1458
1459 val->type->image_format = translate_image_format(b, format);
1460
1461 enum glsl_base_type sampled_base_type =
1462 glsl_get_base_type(sampled_type->type);
1463 if (sampled == 1) {
1464 val->type->sampled = true;
1465 val->type->type = glsl_sampler_type(dim, false, is_array,
1466 sampled_base_type);
1467 } else if (sampled == 2) {
1468 val->type->sampled = false;
1469 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1470 } else {
1471 vtn_fail("We need to know if the image will be sampled");
1472 }
1473 break;
1474 }
1475
1476 case SpvOpTypeSampledImage:
1477 val->type->base_type = vtn_base_type_sampled_image;
1478 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1479 val->type->type = val->type->image->type;
1480 break;
1481
1482 case SpvOpTypeSampler:
1483 /* The actual sampler type here doesn't really matter. It gets
1484 * thrown away the moment you combine it with an image. What really
1485 * matters is that it's a sampler type as opposed to an integer type
1486 * so the backend knows what to do.
1487 */
1488 val->type->base_type = vtn_base_type_sampler;
1489 val->type->type = glsl_bare_sampler_type();
1490 break;
1491
1492 case SpvOpTypeOpaque:
1493 case SpvOpTypeEvent:
1494 case SpvOpTypeDeviceEvent:
1495 case SpvOpTypeReserveId:
1496 case SpvOpTypeQueue:
1497 case SpvOpTypePipe:
1498 default:
1499 vtn_fail_with_opcode("Unhandled opcode", opcode);
1500 }
1501
1502 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1503
1504 if (val->type->base_type == vtn_base_type_struct &&
1505 (val->type->block || val->type->buffer_block)) {
1506 for (unsigned i = 0; i < val->type->length; i++) {
1507 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1508 "Block and BufferBlock decorations cannot decorate a "
1509 "structure type that is nested at any level inside "
1510 "another structure type decorated with Block or "
1511 "BufferBlock.");
1512 }
1513 }
1514 }
1515
1516 static nir_constant *
1517 vtn_null_constant(struct vtn_builder *b, struct vtn_type *type)
1518 {
1519 nir_constant *c = rzalloc(b, nir_constant);
1520
1521 switch (type->base_type) {
1522 case vtn_base_type_scalar:
1523 case vtn_base_type_vector:
1524 /* Nothing to do here. It's already initialized to zero */
1525 break;
1526
1527 case vtn_base_type_pointer: {
1528 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1529 b, type->storage_class, type->deref, NULL);
1530 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
1531
1532 const nir_const_value *null_value = nir_address_format_null_value(addr_format);
1533 memcpy(c->values, null_value,
1534 sizeof(nir_const_value) * nir_address_format_num_components(addr_format));
1535 break;
1536 }
1537
1538 case vtn_base_type_void:
1539 case vtn_base_type_image:
1540 case vtn_base_type_sampler:
1541 case vtn_base_type_sampled_image:
1542 case vtn_base_type_function:
1543 /* For those we have to return something but it doesn't matter what. */
1544 break;
1545
1546 case vtn_base_type_matrix:
1547 case vtn_base_type_array:
1548 vtn_assert(type->length > 0);
1549 c->num_elements = type->length;
1550 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1551
1552 c->elements[0] = vtn_null_constant(b, type->array_element);
1553 for (unsigned i = 1; i < c->num_elements; i++)
1554 c->elements[i] = c->elements[0];
1555 break;
1556
1557 case vtn_base_type_struct:
1558 c->num_elements = type->length;
1559 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1560 for (unsigned i = 0; i < c->num_elements; i++)
1561 c->elements[i] = vtn_null_constant(b, type->members[i]);
1562 break;
1563
1564 default:
1565 vtn_fail("Invalid type for null constant");
1566 }
1567
1568 return c;
1569 }
1570
1571 static void
1572 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1573 int member, const struct vtn_decoration *dec,
1574 void *data)
1575 {
1576 vtn_assert(member == -1);
1577 if (dec->decoration != SpvDecorationSpecId)
1578 return;
1579
1580 struct spec_constant_value *const_value = data;
1581
1582 for (unsigned i = 0; i < b->num_specializations; i++) {
1583 if (b->specializations[i].id == dec->operands[0]) {
1584 if (const_value->is_double)
1585 const_value->data64 = b->specializations[i].data64;
1586 else
1587 const_value->data32 = b->specializations[i].data32;
1588 return;
1589 }
1590 }
1591 }
1592
1593 static uint32_t
1594 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1595 uint32_t const_value)
1596 {
1597 struct spec_constant_value data;
1598 data.is_double = false;
1599 data.data32 = const_value;
1600 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1601 return data.data32;
1602 }
1603
1604 static uint64_t
1605 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1606 uint64_t const_value)
1607 {
1608 struct spec_constant_value data;
1609 data.is_double = true;
1610 data.data64 = const_value;
1611 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1612 return data.data64;
1613 }
1614
1615 static void
1616 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1617 struct vtn_value *val,
1618 int member,
1619 const struct vtn_decoration *dec,
1620 void *data)
1621 {
1622 vtn_assert(member == -1);
1623 if (dec->decoration != SpvDecorationBuiltIn ||
1624 dec->operands[0] != SpvBuiltInWorkgroupSize)
1625 return;
1626
1627 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1628 b->workgroup_size_builtin = val;
1629 }
1630
1631 static void
1632 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1633 const uint32_t *w, unsigned count)
1634 {
1635 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1636 val->constant = rzalloc(b, nir_constant);
1637 switch (opcode) {
1638 case SpvOpConstantTrue:
1639 case SpvOpConstantFalse:
1640 case SpvOpSpecConstantTrue:
1641 case SpvOpSpecConstantFalse: {
1642 vtn_fail_if(val->type->type != glsl_bool_type(),
1643 "Result type of %s must be OpTypeBool",
1644 spirv_op_to_string(opcode));
1645
1646 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1647 opcode == SpvOpSpecConstantTrue);
1648
1649 if (opcode == SpvOpSpecConstantTrue ||
1650 opcode == SpvOpSpecConstantFalse)
1651 int_val = get_specialization(b, val, int_val);
1652
1653 val->constant->values[0].b = int_val != 0;
1654 break;
1655 }
1656
1657 case SpvOpConstant: {
1658 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1659 "Result type of %s must be a scalar",
1660 spirv_op_to_string(opcode));
1661 int bit_size = glsl_get_bit_size(val->type->type);
1662 switch (bit_size) {
1663 case 64:
1664 val->constant->values[0].u64 = vtn_u64_literal(&w[3]);
1665 break;
1666 case 32:
1667 val->constant->values[0].u32 = w[3];
1668 break;
1669 case 16:
1670 val->constant->values[0].u16 = w[3];
1671 break;
1672 case 8:
1673 val->constant->values[0].u8 = w[3];
1674 break;
1675 default:
1676 vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
1677 }
1678 break;
1679 }
1680
1681 case SpvOpSpecConstant: {
1682 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1683 "Result type of %s must be a scalar",
1684 spirv_op_to_string(opcode));
1685 int bit_size = glsl_get_bit_size(val->type->type);
1686 switch (bit_size) {
1687 case 64:
1688 val->constant->values[0].u64 =
1689 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1690 break;
1691 case 32:
1692 val->constant->values[0].u32 = get_specialization(b, val, w[3]);
1693 break;
1694 case 16:
1695 val->constant->values[0].u16 = get_specialization(b, val, w[3]);
1696 break;
1697 case 8:
1698 val->constant->values[0].u8 = get_specialization(b, val, w[3]);
1699 break;
1700 default:
1701 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1702 }
1703 break;
1704 }
1705
1706 case SpvOpSpecConstantComposite:
1707 case SpvOpConstantComposite: {
1708 unsigned elem_count = count - 3;
1709 vtn_fail_if(elem_count != val->type->length,
1710 "%s has %u constituents, expected %u",
1711 spirv_op_to_string(opcode), elem_count, val->type->length);
1712
1713 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1714 for (unsigned i = 0; i < elem_count; i++) {
1715 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1716
1717 if (val->value_type == vtn_value_type_constant) {
1718 elems[i] = val->constant;
1719 } else {
1720 vtn_fail_if(val->value_type != vtn_value_type_undef,
1721 "only constants or undefs allowed for "
1722 "SpvOpConstantComposite");
1723 /* to make it easier, just insert a NULL constant for now */
1724 elems[i] = vtn_null_constant(b, val->type);
1725 }
1726 }
1727
1728 switch (val->type->base_type) {
1729 case vtn_base_type_vector: {
1730 assert(glsl_type_is_vector(val->type->type));
1731 for (unsigned i = 0; i < elem_count; i++)
1732 val->constant->values[i] = elems[i]->values[0];
1733 break;
1734 }
1735
1736 case vtn_base_type_matrix:
1737 case vtn_base_type_struct:
1738 case vtn_base_type_array:
1739 ralloc_steal(val->constant, elems);
1740 val->constant->num_elements = elem_count;
1741 val->constant->elements = elems;
1742 break;
1743
1744 default:
1745 vtn_fail("Result type of %s must be a composite type",
1746 spirv_op_to_string(opcode));
1747 }
1748 break;
1749 }
1750
1751 case SpvOpSpecConstantOp: {
1752 SpvOp opcode = get_specialization(b, val, w[3]);
1753 switch (opcode) {
1754 case SpvOpVectorShuffle: {
1755 struct vtn_value *v0 = &b->values[w[4]];
1756 struct vtn_value *v1 = &b->values[w[5]];
1757
1758 vtn_assert(v0->value_type == vtn_value_type_constant ||
1759 v0->value_type == vtn_value_type_undef);
1760 vtn_assert(v1->value_type == vtn_value_type_constant ||
1761 v1->value_type == vtn_value_type_undef);
1762
1763 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1764 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1765
1766 vtn_assert(len0 + len1 < 16);
1767
1768 unsigned bit_size = glsl_get_bit_size(val->type->type);
1769 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1770 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1771
1772 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1773 (void)bit_size0; (void)bit_size1;
1774
1775 nir_const_value undef = { .u64 = 0xdeadbeefdeadbeef };
1776 nir_const_value combined[NIR_MAX_VEC_COMPONENTS * 2];
1777
1778 if (v0->value_type == vtn_value_type_constant) {
1779 for (unsigned i = 0; i < len0; i++)
1780 combined[i] = v0->constant->values[i];
1781 }
1782 if (v1->value_type == vtn_value_type_constant) {
1783 for (unsigned i = 0; i < len1; i++)
1784 combined[len0 + i] = v1->constant->values[i];
1785 }
1786
1787 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1788 uint32_t comp = w[i + 6];
1789 if (comp == (uint32_t)-1) {
1790 /* If component is not used, set the value to a known constant
1791 * to detect if it is wrongly used.
1792 */
1793 val->constant->values[j] = undef;
1794 } else {
1795 vtn_fail_if(comp >= len0 + len1,
1796 "All Component literals must either be FFFFFFFF "
1797 "or in [0, N - 1] (inclusive).");
1798 val->constant->values[j] = combined[comp];
1799 }
1800 }
1801 break;
1802 }
1803
1804 case SpvOpCompositeExtract:
1805 case SpvOpCompositeInsert: {
1806 struct vtn_value *comp;
1807 unsigned deref_start;
1808 struct nir_constant **c;
1809 if (opcode == SpvOpCompositeExtract) {
1810 comp = vtn_value(b, w[4], vtn_value_type_constant);
1811 deref_start = 5;
1812 c = &comp->constant;
1813 } else {
1814 comp = vtn_value(b, w[5], vtn_value_type_constant);
1815 deref_start = 6;
1816 val->constant = nir_constant_clone(comp->constant,
1817 (nir_variable *)b);
1818 c = &val->constant;
1819 }
1820
1821 int elem = -1;
1822 const struct vtn_type *type = comp->type;
1823 for (unsigned i = deref_start; i < count; i++) {
1824 vtn_fail_if(w[i] > type->length,
1825 "%uth index of %s is %u but the type has only "
1826 "%u elements", i - deref_start,
1827 spirv_op_to_string(opcode), w[i], type->length);
1828
1829 switch (type->base_type) {
1830 case vtn_base_type_vector:
1831 elem = w[i];
1832 type = type->array_element;
1833 break;
1834
1835 case vtn_base_type_matrix:
1836 case vtn_base_type_array:
1837 c = &(*c)->elements[w[i]];
1838 type = type->array_element;
1839 break;
1840
1841 case vtn_base_type_struct:
1842 c = &(*c)->elements[w[i]];
1843 type = type->members[w[i]];
1844 break;
1845
1846 default:
1847 vtn_fail("%s must only index into composite types",
1848 spirv_op_to_string(opcode));
1849 }
1850 }
1851
1852 if (opcode == SpvOpCompositeExtract) {
1853 if (elem == -1) {
1854 val->constant = *c;
1855 } else {
1856 unsigned num_components = type->length;
1857 for (unsigned i = 0; i < num_components; i++)
1858 val->constant->values[i] = (*c)->values[elem + i];
1859 }
1860 } else {
1861 struct vtn_value *insert =
1862 vtn_value(b, w[4], vtn_value_type_constant);
1863 vtn_assert(insert->type == type);
1864 if (elem == -1) {
1865 *c = insert->constant;
1866 } else {
1867 unsigned num_components = type->length;
1868 for (unsigned i = 0; i < num_components; i++)
1869 (*c)->values[elem + i] = insert->constant->values[i];
1870 }
1871 }
1872 break;
1873 }
1874
1875 default: {
1876 bool swap;
1877 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1878 nir_alu_type src_alu_type = dst_alu_type;
1879 unsigned num_components = glsl_get_vector_elements(val->type->type);
1880 unsigned bit_size;
1881
1882 vtn_assert(count <= 7);
1883
1884 switch (opcode) {
1885 case SpvOpSConvert:
1886 case SpvOpFConvert:
1887 case SpvOpUConvert:
1888 /* We have a source in a conversion */
1889 src_alu_type =
1890 nir_get_nir_type_for_glsl_type(
1891 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1892 /* We use the bitsize of the conversion source to evaluate the opcode later */
1893 bit_size = glsl_get_bit_size(
1894 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1895 break;
1896 default:
1897 bit_size = glsl_get_bit_size(val->type->type);
1898 };
1899
1900 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1901 nir_alu_type_get_type_size(src_alu_type),
1902 nir_alu_type_get_type_size(dst_alu_type));
1903 nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
1904
1905 for (unsigned i = 0; i < count - 4; i++) {
1906 struct vtn_value *src_val =
1907 vtn_value(b, w[4 + i], vtn_value_type_constant);
1908
1909 /* If this is an unsized source, pull the bit size from the
1910 * source; otherwise, we'll use the bit size from the destination.
1911 */
1912 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1913 bit_size = glsl_get_bit_size(src_val->type->type);
1914
1915 unsigned src_comps = nir_op_infos[op].input_sizes[i] ?
1916 nir_op_infos[op].input_sizes[i] :
1917 num_components;
1918
1919 unsigned j = swap ? 1 - i : i;
1920 for (unsigned c = 0; c < src_comps; c++)
1921 src[j][c] = src_val->constant->values[c];
1922 }
1923
1924 /* fix up fixed size sources */
1925 switch (op) {
1926 case nir_op_ishl:
1927 case nir_op_ishr:
1928 case nir_op_ushr: {
1929 if (bit_size == 32)
1930 break;
1931 for (unsigned i = 0; i < num_components; ++i) {
1932 switch (bit_size) {
1933 case 64: src[1][i].u32 = src[1][i].u64; break;
1934 case 16: src[1][i].u32 = src[1][i].u16; break;
1935 case 8: src[1][i].u32 = src[1][i].u8; break;
1936 }
1937 }
1938 break;
1939 }
1940 default:
1941 break;
1942 }
1943
1944 nir_const_value *srcs[3] = {
1945 src[0], src[1], src[2],
1946 };
1947 nir_eval_const_opcode(op, val->constant->values, num_components, bit_size, srcs);
1948 break;
1949 } /* default */
1950 }
1951 break;
1952 }
1953
1954 case SpvOpConstantNull:
1955 val->constant = vtn_null_constant(b, val->type);
1956 break;
1957
1958 case SpvOpConstantSampler:
1959 vtn_fail("OpConstantSampler requires Kernel Capability");
1960 break;
1961
1962 default:
1963 vtn_fail_with_opcode("Unhandled opcode", opcode);
1964 }
1965
1966 /* Now that we have the value, update the workgroup size if needed */
1967 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1968 }
1969
1970 struct vtn_ssa_value *
1971 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1972 {
1973 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1974 val->type = type;
1975
1976 if (!glsl_type_is_vector_or_scalar(type)) {
1977 unsigned elems = glsl_get_length(type);
1978 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1979 for (unsigned i = 0; i < elems; i++) {
1980 const struct glsl_type *child_type;
1981
1982 switch (glsl_get_base_type(type)) {
1983 case GLSL_TYPE_INT:
1984 case GLSL_TYPE_UINT:
1985 case GLSL_TYPE_INT16:
1986 case GLSL_TYPE_UINT16:
1987 case GLSL_TYPE_UINT8:
1988 case GLSL_TYPE_INT8:
1989 case GLSL_TYPE_INT64:
1990 case GLSL_TYPE_UINT64:
1991 case GLSL_TYPE_BOOL:
1992 case GLSL_TYPE_FLOAT:
1993 case GLSL_TYPE_FLOAT16:
1994 case GLSL_TYPE_DOUBLE:
1995 child_type = glsl_get_column_type(type);
1996 break;
1997 case GLSL_TYPE_ARRAY:
1998 child_type = glsl_get_array_element(type);
1999 break;
2000 case GLSL_TYPE_STRUCT:
2001 case GLSL_TYPE_INTERFACE:
2002 child_type = glsl_get_struct_field(type, i);
2003 break;
2004 default:
2005 vtn_fail("unkown base type");
2006 }
2007
2008 val->elems[i] = vtn_create_ssa_value(b, child_type);
2009 }
2010 }
2011
2012 return val;
2013 }
2014
2015 static nir_tex_src
2016 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
2017 {
2018 nir_tex_src src;
2019 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
2020 src.src_type = type;
2021 return src;
2022 }
2023
2024 static void
2025 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
2026 const uint32_t *w, unsigned count)
2027 {
2028 if (opcode == SpvOpSampledImage) {
2029 struct vtn_value *val =
2030 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2031 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2032 val->sampled_image->type =
2033 vtn_value(b, w[1], vtn_value_type_type)->type;
2034 val->sampled_image->image =
2035 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2036 val->sampled_image->sampler =
2037 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
2038 return;
2039 } else if (opcode == SpvOpImage) {
2040 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
2041 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
2042 if (src_val->value_type == vtn_value_type_sampled_image) {
2043 val->pointer = src_val->sampled_image->image;
2044 } else {
2045 vtn_assert(src_val->value_type == vtn_value_type_pointer);
2046 val->pointer = src_val->pointer;
2047 }
2048 return;
2049 }
2050
2051 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2052 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2053
2054 struct vtn_sampled_image sampled;
2055 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2056 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2057 sampled = *sampled_val->sampled_image;
2058 } else {
2059 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2060 sampled.type = sampled_val->pointer->type;
2061 sampled.image = NULL;
2062 sampled.sampler = sampled_val->pointer;
2063 }
2064
2065 const struct glsl_type *image_type = sampled.type->type;
2066 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2067 const bool is_array = glsl_sampler_type_is_array(image_type);
2068
2069 /* Figure out the base texture operation */
2070 nir_texop texop;
2071 switch (opcode) {
2072 case SpvOpImageSampleImplicitLod:
2073 case SpvOpImageSampleDrefImplicitLod:
2074 case SpvOpImageSampleProjImplicitLod:
2075 case SpvOpImageSampleProjDrefImplicitLod:
2076 texop = nir_texop_tex;
2077 break;
2078
2079 case SpvOpImageSampleExplicitLod:
2080 case SpvOpImageSampleDrefExplicitLod:
2081 case SpvOpImageSampleProjExplicitLod:
2082 case SpvOpImageSampleProjDrefExplicitLod:
2083 texop = nir_texop_txl;
2084 break;
2085
2086 case SpvOpImageFetch:
2087 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
2088 texop = nir_texop_txf_ms;
2089 } else {
2090 texop = nir_texop_txf;
2091 }
2092 break;
2093
2094 case SpvOpImageGather:
2095 case SpvOpImageDrefGather:
2096 texop = nir_texop_tg4;
2097 break;
2098
2099 case SpvOpImageQuerySizeLod:
2100 case SpvOpImageQuerySize:
2101 texop = nir_texop_txs;
2102 break;
2103
2104 case SpvOpImageQueryLod:
2105 texop = nir_texop_lod;
2106 break;
2107
2108 case SpvOpImageQueryLevels:
2109 texop = nir_texop_query_levels;
2110 break;
2111
2112 case SpvOpImageQuerySamples:
2113 texop = nir_texop_texture_samples;
2114 break;
2115
2116 default:
2117 vtn_fail_with_opcode("Unhandled opcode", opcode);
2118 }
2119
2120 nir_tex_src srcs[10]; /* 10 should be enough */
2121 nir_tex_src *p = srcs;
2122
2123 nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2124 nir_deref_instr *texture =
2125 sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler;
2126
2127 p->src = nir_src_for_ssa(&texture->dest.ssa);
2128 p->src_type = nir_tex_src_texture_deref;
2129 p++;
2130
2131 switch (texop) {
2132 case nir_texop_tex:
2133 case nir_texop_txb:
2134 case nir_texop_txl:
2135 case nir_texop_txd:
2136 case nir_texop_tg4:
2137 case nir_texop_lod:
2138 /* These operations require a sampler */
2139 p->src = nir_src_for_ssa(&sampler->dest.ssa);
2140 p->src_type = nir_tex_src_sampler_deref;
2141 p++;
2142 break;
2143 case nir_texop_txf:
2144 case nir_texop_txf_ms:
2145 case nir_texop_txs:
2146 case nir_texop_query_levels:
2147 case nir_texop_texture_samples:
2148 case nir_texop_samples_identical:
2149 /* These don't */
2150 break;
2151 case nir_texop_txf_ms_fb:
2152 vtn_fail("unexpected nir_texop_txf_ms_fb");
2153 break;
2154 case nir_texop_txf_ms_mcs:
2155 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2156 }
2157
2158 unsigned idx = 4;
2159
2160 struct nir_ssa_def *coord;
2161 unsigned coord_components;
2162 switch (opcode) {
2163 case SpvOpImageSampleImplicitLod:
2164 case SpvOpImageSampleExplicitLod:
2165 case SpvOpImageSampleDrefImplicitLod:
2166 case SpvOpImageSampleDrefExplicitLod:
2167 case SpvOpImageSampleProjImplicitLod:
2168 case SpvOpImageSampleProjExplicitLod:
2169 case SpvOpImageSampleProjDrefImplicitLod:
2170 case SpvOpImageSampleProjDrefExplicitLod:
2171 case SpvOpImageFetch:
2172 case SpvOpImageGather:
2173 case SpvOpImageDrefGather:
2174 case SpvOpImageQueryLod: {
2175 /* All these types have the coordinate as their first real argument */
2176 switch (sampler_dim) {
2177 case GLSL_SAMPLER_DIM_1D:
2178 case GLSL_SAMPLER_DIM_BUF:
2179 coord_components = 1;
2180 break;
2181 case GLSL_SAMPLER_DIM_2D:
2182 case GLSL_SAMPLER_DIM_RECT:
2183 case GLSL_SAMPLER_DIM_MS:
2184 coord_components = 2;
2185 break;
2186 case GLSL_SAMPLER_DIM_3D:
2187 case GLSL_SAMPLER_DIM_CUBE:
2188 coord_components = 3;
2189 break;
2190 default:
2191 vtn_fail("Invalid sampler type");
2192 }
2193
2194 if (is_array && texop != nir_texop_lod)
2195 coord_components++;
2196
2197 coord = vtn_ssa_value(b, w[idx++])->def;
2198 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2199 (1 << coord_components) - 1));
2200 p->src_type = nir_tex_src_coord;
2201 p++;
2202 break;
2203 }
2204
2205 default:
2206 coord = NULL;
2207 coord_components = 0;
2208 break;
2209 }
2210
2211 switch (opcode) {
2212 case SpvOpImageSampleProjImplicitLod:
2213 case SpvOpImageSampleProjExplicitLod:
2214 case SpvOpImageSampleProjDrefImplicitLod:
2215 case SpvOpImageSampleProjDrefExplicitLod:
2216 /* These have the projector as the last coordinate component */
2217 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2218 p->src_type = nir_tex_src_projector;
2219 p++;
2220 break;
2221
2222 default:
2223 break;
2224 }
2225
2226 bool is_shadow = false;
2227 unsigned gather_component = 0;
2228 switch (opcode) {
2229 case SpvOpImageSampleDrefImplicitLod:
2230 case SpvOpImageSampleDrefExplicitLod:
2231 case SpvOpImageSampleProjDrefImplicitLod:
2232 case SpvOpImageSampleProjDrefExplicitLod:
2233 case SpvOpImageDrefGather:
2234 /* These all have an explicit depth value as their next source */
2235 is_shadow = true;
2236 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2237 break;
2238
2239 case SpvOpImageGather:
2240 /* This has a component as its next source */
2241 gather_component = vtn_constant_uint(b, w[idx++]);
2242 break;
2243
2244 default:
2245 break;
2246 }
2247
2248 /* For OpImageQuerySizeLod, we always have an LOD */
2249 if (opcode == SpvOpImageQuerySizeLod)
2250 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2251
2252 /* Now we need to handle some number of optional arguments */
2253 struct vtn_value *gather_offsets = NULL;
2254 if (idx < count) {
2255 uint32_t operands = w[idx++];
2256
2257 if (operands & SpvImageOperandsBiasMask) {
2258 vtn_assert(texop == nir_texop_tex);
2259 texop = nir_texop_txb;
2260 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2261 }
2262
2263 if (operands & SpvImageOperandsLodMask) {
2264 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2265 texop == nir_texop_txs);
2266 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2267 }
2268
2269 if (operands & SpvImageOperandsGradMask) {
2270 vtn_assert(texop == nir_texop_txl);
2271 texop = nir_texop_txd;
2272 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2273 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2274 }
2275
2276 if (operands & SpvImageOperandsOffsetMask ||
2277 operands & SpvImageOperandsConstOffsetMask)
2278 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2279
2280 if (operands & SpvImageOperandsConstOffsetsMask) {
2281 vtn_assert(texop == nir_texop_tg4);
2282 gather_offsets = vtn_value(b, w[idx++], vtn_value_type_constant);
2283 }
2284
2285 if (operands & SpvImageOperandsSampleMask) {
2286 vtn_assert(texop == nir_texop_txf_ms);
2287 texop = nir_texop_txf_ms;
2288 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2289 }
2290
2291 if (operands & SpvImageOperandsMinLodMask) {
2292 vtn_assert(texop == nir_texop_tex ||
2293 texop == nir_texop_txb ||
2294 texop == nir_texop_txd);
2295 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod);
2296 }
2297 }
2298 /* We should have now consumed exactly all of the arguments */
2299 vtn_assert(idx == count);
2300
2301 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2302 instr->op = texop;
2303
2304 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2305
2306 instr->coord_components = coord_components;
2307 instr->sampler_dim = sampler_dim;
2308 instr->is_array = is_array;
2309 instr->is_shadow = is_shadow;
2310 instr->is_new_style_shadow =
2311 is_shadow && glsl_get_components(ret_type->type) == 1;
2312 instr->component = gather_component;
2313
2314 if (sampled.image && (sampled.image->access & ACCESS_NON_UNIFORM))
2315 instr->texture_non_uniform = true;
2316
2317 if (sampled.sampler && (sampled.sampler->access & ACCESS_NON_UNIFORM))
2318 instr->sampler_non_uniform = true;
2319
2320 switch (glsl_get_sampler_result_type(image_type)) {
2321 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
2322 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
2323 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
2324 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
2325 default:
2326 vtn_fail("Invalid base type for sampler result");
2327 }
2328
2329 nir_ssa_dest_init(&instr->instr, &instr->dest,
2330 nir_tex_instr_dest_size(instr), 32, NULL);
2331
2332 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2333 nir_tex_instr_dest_size(instr));
2334
2335 if (gather_offsets) {
2336 vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
2337 gather_offsets->type->length != 4,
2338 "ConstOffsets must be an array of size four of vectors "
2339 "of two integer components");
2340
2341 struct vtn_type *vec_type = gather_offsets->type->array_element;
2342 vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
2343 vec_type->length != 2 ||
2344 !glsl_type_is_integer(vec_type->type),
2345 "ConstOffsets must be an array of size four of vectors "
2346 "of two integer components");
2347
2348 unsigned bit_size = glsl_get_bit_size(vec_type->type);
2349 for (uint32_t i = 0; i < 4; i++) {
2350 const nir_const_value *cvec =
2351 gather_offsets->constant->elements[i]->values;
2352 for (uint32_t j = 0; j < 2; j++) {
2353 switch (bit_size) {
2354 case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
2355 case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
2356 case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
2357 case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
2358 default:
2359 vtn_fail("Unsupported bit size: %u", bit_size);
2360 }
2361 }
2362 }
2363 }
2364
2365 val->ssa = vtn_create_ssa_value(b, ret_type->type);
2366 val->ssa->def = &instr->dest.ssa;
2367
2368 nir_builder_instr_insert(&b->nb, &instr->instr);
2369 }
2370
2371 static void
2372 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2373 const uint32_t *w, nir_src *src)
2374 {
2375 switch (opcode) {
2376 case SpvOpAtomicIIncrement:
2377 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2378 break;
2379
2380 case SpvOpAtomicIDecrement:
2381 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2382 break;
2383
2384 case SpvOpAtomicISub:
2385 src[0] =
2386 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2387 break;
2388
2389 case SpvOpAtomicCompareExchange:
2390 case SpvOpAtomicCompareExchangeWeak:
2391 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2392 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2393 break;
2394
2395 case SpvOpAtomicExchange:
2396 case SpvOpAtomicIAdd:
2397 case SpvOpAtomicSMin:
2398 case SpvOpAtomicUMin:
2399 case SpvOpAtomicSMax:
2400 case SpvOpAtomicUMax:
2401 case SpvOpAtomicAnd:
2402 case SpvOpAtomicOr:
2403 case SpvOpAtomicXor:
2404 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2405 break;
2406
2407 default:
2408 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2409 }
2410 }
2411
2412 static nir_ssa_def *
2413 get_image_coord(struct vtn_builder *b, uint32_t value)
2414 {
2415 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2416
2417 /* The image_load_store intrinsics assume a 4-dim coordinate */
2418 unsigned dim = glsl_get_vector_elements(coord->type);
2419 unsigned swizzle[4];
2420 for (unsigned i = 0; i < 4; i++)
2421 swizzle[i] = MIN2(i, dim - 1);
2422
2423 return nir_swizzle(&b->nb, coord->def, swizzle, 4);
2424 }
2425
2426 static nir_ssa_def *
2427 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2428 {
2429 if (value->num_components == 4)
2430 return value;
2431
2432 unsigned swiz[4];
2433 for (unsigned i = 0; i < 4; i++)
2434 swiz[i] = i < value->num_components ? i : 0;
2435 return nir_swizzle(b, value, swiz, 4);
2436 }
2437
2438 static void
2439 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2440 const uint32_t *w, unsigned count)
2441 {
2442 /* Just get this one out of the way */
2443 if (opcode == SpvOpImageTexelPointer) {
2444 struct vtn_value *val =
2445 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2446 val->image = ralloc(b, struct vtn_image_pointer);
2447
2448 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2449 val->image->coord = get_image_coord(b, w[4]);
2450 val->image->sample = vtn_ssa_value(b, w[5])->def;
2451 return;
2452 }
2453
2454 struct vtn_image_pointer image;
2455
2456 switch (opcode) {
2457 case SpvOpAtomicExchange:
2458 case SpvOpAtomicCompareExchange:
2459 case SpvOpAtomicCompareExchangeWeak:
2460 case SpvOpAtomicIIncrement:
2461 case SpvOpAtomicIDecrement:
2462 case SpvOpAtomicIAdd:
2463 case SpvOpAtomicISub:
2464 case SpvOpAtomicLoad:
2465 case SpvOpAtomicSMin:
2466 case SpvOpAtomicUMin:
2467 case SpvOpAtomicSMax:
2468 case SpvOpAtomicUMax:
2469 case SpvOpAtomicAnd:
2470 case SpvOpAtomicOr:
2471 case SpvOpAtomicXor:
2472 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2473 break;
2474
2475 case SpvOpAtomicStore:
2476 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2477 break;
2478
2479 case SpvOpImageQuerySize:
2480 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2481 image.coord = NULL;
2482 image.sample = NULL;
2483 break;
2484
2485 case SpvOpImageRead:
2486 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2487 image.coord = get_image_coord(b, w[4]);
2488
2489 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2490 vtn_assert(w[5] == SpvImageOperandsSampleMask);
2491 image.sample = vtn_ssa_value(b, w[6])->def;
2492 } else {
2493 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2494 }
2495 break;
2496
2497 case SpvOpImageWrite:
2498 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2499 image.coord = get_image_coord(b, w[2]);
2500
2501 /* texel = w[3] */
2502
2503 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2504 vtn_assert(w[4] == SpvImageOperandsSampleMask);
2505 image.sample = vtn_ssa_value(b, w[5])->def;
2506 } else {
2507 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2508 }
2509 break;
2510
2511 default:
2512 vtn_fail_with_opcode("Invalid image opcode", opcode);
2513 }
2514
2515 nir_intrinsic_op op;
2516 switch (opcode) {
2517 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2518 OP(ImageQuerySize, size)
2519 OP(ImageRead, load)
2520 OP(ImageWrite, store)
2521 OP(AtomicLoad, load)
2522 OP(AtomicStore, store)
2523 OP(AtomicExchange, atomic_exchange)
2524 OP(AtomicCompareExchange, atomic_comp_swap)
2525 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2526 OP(AtomicIIncrement, atomic_add)
2527 OP(AtomicIDecrement, atomic_add)
2528 OP(AtomicIAdd, atomic_add)
2529 OP(AtomicISub, atomic_add)
2530 OP(AtomicSMin, atomic_min)
2531 OP(AtomicUMin, atomic_min)
2532 OP(AtomicSMax, atomic_max)
2533 OP(AtomicUMax, atomic_max)
2534 OP(AtomicAnd, atomic_and)
2535 OP(AtomicOr, atomic_or)
2536 OP(AtomicXor, atomic_xor)
2537 #undef OP
2538 default:
2539 vtn_fail_with_opcode("Invalid image opcode", opcode);
2540 }
2541
2542 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2543
2544 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2545 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2546
2547 /* ImageQuerySize doesn't take any extra parameters */
2548 if (opcode != SpvOpImageQuerySize) {
2549 /* The image coordinate is always 4 components but we may not have that
2550 * many. Swizzle to compensate.
2551 */
2552 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2553 intrin->src[2] = nir_src_for_ssa(image.sample);
2554 }
2555
2556 switch (opcode) {
2557 case SpvOpAtomicLoad:
2558 case SpvOpImageQuerySize:
2559 case SpvOpImageRead:
2560 break;
2561 case SpvOpAtomicStore:
2562 case SpvOpImageWrite: {
2563 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2564 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2565 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2566 assert(op == nir_intrinsic_image_deref_store);
2567 intrin->num_components = 4;
2568 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2569 break;
2570 }
2571
2572 case SpvOpAtomicCompareExchange:
2573 case SpvOpAtomicCompareExchangeWeak:
2574 case SpvOpAtomicIIncrement:
2575 case SpvOpAtomicIDecrement:
2576 case SpvOpAtomicExchange:
2577 case SpvOpAtomicIAdd:
2578 case SpvOpAtomicISub:
2579 case SpvOpAtomicSMin:
2580 case SpvOpAtomicUMin:
2581 case SpvOpAtomicSMax:
2582 case SpvOpAtomicUMax:
2583 case SpvOpAtomicAnd:
2584 case SpvOpAtomicOr:
2585 case SpvOpAtomicXor:
2586 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2587 break;
2588
2589 default:
2590 vtn_fail_with_opcode("Invalid image opcode", opcode);
2591 }
2592
2593 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2594 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2595 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2596
2597 unsigned dest_components = glsl_get_vector_elements(type->type);
2598 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2599 if (intrin->num_components == 0)
2600 intrin->num_components = dest_components;
2601
2602 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2603 intrin->num_components, 32, NULL);
2604
2605 nir_builder_instr_insert(&b->nb, &intrin->instr);
2606
2607 nir_ssa_def *result = &intrin->dest.ssa;
2608 if (intrin->num_components != dest_components)
2609 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2610
2611 val->ssa = vtn_create_ssa_value(b, type->type);
2612 val->ssa->def = result;
2613 } else {
2614 nir_builder_instr_insert(&b->nb, &intrin->instr);
2615 }
2616 }
2617
2618 static nir_intrinsic_op
2619 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2620 {
2621 switch (opcode) {
2622 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2623 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2624 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2625 OP(AtomicExchange, atomic_exchange)
2626 OP(AtomicCompareExchange, atomic_comp_swap)
2627 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2628 OP(AtomicIIncrement, atomic_add)
2629 OP(AtomicIDecrement, atomic_add)
2630 OP(AtomicIAdd, atomic_add)
2631 OP(AtomicISub, atomic_add)
2632 OP(AtomicSMin, atomic_imin)
2633 OP(AtomicUMin, atomic_umin)
2634 OP(AtomicSMax, atomic_imax)
2635 OP(AtomicUMax, atomic_umax)
2636 OP(AtomicAnd, atomic_and)
2637 OP(AtomicOr, atomic_or)
2638 OP(AtomicXor, atomic_xor)
2639 #undef OP
2640 default:
2641 vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
2642 }
2643 }
2644
2645 static nir_intrinsic_op
2646 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2647 {
2648 switch (opcode) {
2649 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2650 OP(AtomicLoad, read_deref)
2651 OP(AtomicExchange, exchange)
2652 OP(AtomicCompareExchange, comp_swap)
2653 OP(AtomicCompareExchangeWeak, comp_swap)
2654 OP(AtomicIIncrement, inc_deref)
2655 OP(AtomicIDecrement, post_dec_deref)
2656 OP(AtomicIAdd, add_deref)
2657 OP(AtomicISub, add_deref)
2658 OP(AtomicUMin, min_deref)
2659 OP(AtomicUMax, max_deref)
2660 OP(AtomicAnd, and_deref)
2661 OP(AtomicOr, or_deref)
2662 OP(AtomicXor, xor_deref)
2663 #undef OP
2664 default:
2665 /* We left the following out: AtomicStore, AtomicSMin and
2666 * AtomicSmax. Right now there are not nir intrinsics for them. At this
2667 * moment Atomic Counter support is needed for ARB_spirv support, so is
2668 * only need to support GLSL Atomic Counters that are uints and don't
2669 * allow direct storage.
2670 */
2671 unreachable("Invalid uniform atomic");
2672 }
2673 }
2674
2675 static nir_intrinsic_op
2676 get_shared_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2677 {
2678 switch (opcode) {
2679 case SpvOpAtomicLoad: return nir_intrinsic_load_shared;
2680 case SpvOpAtomicStore: return nir_intrinsic_store_shared;
2681 #define OP(S, N) case SpvOp##S: return nir_intrinsic_shared_##N;
2682 OP(AtomicExchange, atomic_exchange)
2683 OP(AtomicCompareExchange, atomic_comp_swap)
2684 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2685 OP(AtomicIIncrement, atomic_add)
2686 OP(AtomicIDecrement, atomic_add)
2687 OP(AtomicIAdd, atomic_add)
2688 OP(AtomicISub, atomic_add)
2689 OP(AtomicSMin, atomic_imin)
2690 OP(AtomicUMin, atomic_umin)
2691 OP(AtomicSMax, atomic_imax)
2692 OP(AtomicUMax, atomic_umax)
2693 OP(AtomicAnd, atomic_and)
2694 OP(AtomicOr, atomic_or)
2695 OP(AtomicXor, atomic_xor)
2696 #undef OP
2697 default:
2698 vtn_fail_with_opcode("Invalid shared atomic", opcode);
2699 }
2700 }
2701
2702 static nir_intrinsic_op
2703 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2704 {
2705 switch (opcode) {
2706 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
2707 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
2708 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
2709 OP(AtomicExchange, atomic_exchange)
2710 OP(AtomicCompareExchange, atomic_comp_swap)
2711 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2712 OP(AtomicIIncrement, atomic_add)
2713 OP(AtomicIDecrement, atomic_add)
2714 OP(AtomicIAdd, atomic_add)
2715 OP(AtomicISub, atomic_add)
2716 OP(AtomicSMin, atomic_imin)
2717 OP(AtomicUMin, atomic_umin)
2718 OP(AtomicSMax, atomic_imax)
2719 OP(AtomicUMax, atomic_umax)
2720 OP(AtomicAnd, atomic_and)
2721 OP(AtomicOr, atomic_or)
2722 OP(AtomicXor, atomic_xor)
2723 #undef OP
2724 default:
2725 vtn_fail_with_opcode("Invalid shared atomic", opcode);
2726 }
2727 }
2728
2729 /*
2730 * Handles shared atomics, ssbo atomics and atomic counters.
2731 */
2732 static void
2733 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
2734 const uint32_t *w, unsigned count)
2735 {
2736 struct vtn_pointer *ptr;
2737 nir_intrinsic_instr *atomic;
2738
2739 switch (opcode) {
2740 case SpvOpAtomicLoad:
2741 case SpvOpAtomicExchange:
2742 case SpvOpAtomicCompareExchange:
2743 case SpvOpAtomicCompareExchangeWeak:
2744 case SpvOpAtomicIIncrement:
2745 case SpvOpAtomicIDecrement:
2746 case SpvOpAtomicIAdd:
2747 case SpvOpAtomicISub:
2748 case SpvOpAtomicSMin:
2749 case SpvOpAtomicUMin:
2750 case SpvOpAtomicSMax:
2751 case SpvOpAtomicUMax:
2752 case SpvOpAtomicAnd:
2753 case SpvOpAtomicOr:
2754 case SpvOpAtomicXor:
2755 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2756 break;
2757
2758 case SpvOpAtomicStore:
2759 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2760 break;
2761
2762 default:
2763 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2764 }
2765
2766 /*
2767 SpvScope scope = w[4];
2768 SpvMemorySemanticsMask semantics = w[5];
2769 */
2770
2771 /* uniform as "atomic counter uniform" */
2772 if (ptr->mode == vtn_variable_mode_uniform) {
2773 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2774 const struct glsl_type *deref_type = deref->type;
2775 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
2776 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2777 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2778
2779 /* SSBO needs to initialize index/offset. In this case we don't need to,
2780 * as that info is already stored on the ptr->var->var nir_variable (see
2781 * vtn_create_variable)
2782 */
2783
2784 switch (opcode) {
2785 case SpvOpAtomicLoad:
2786 atomic->num_components = glsl_get_vector_elements(deref_type);
2787 break;
2788
2789 case SpvOpAtomicStore:
2790 atomic->num_components = glsl_get_vector_elements(deref_type);
2791 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2792 break;
2793
2794 case SpvOpAtomicExchange:
2795 case SpvOpAtomicCompareExchange:
2796 case SpvOpAtomicCompareExchangeWeak:
2797 case SpvOpAtomicIIncrement:
2798 case SpvOpAtomicIDecrement:
2799 case SpvOpAtomicIAdd:
2800 case SpvOpAtomicISub:
2801 case SpvOpAtomicSMin:
2802 case SpvOpAtomicUMin:
2803 case SpvOpAtomicSMax:
2804 case SpvOpAtomicUMax:
2805 case SpvOpAtomicAnd:
2806 case SpvOpAtomicOr:
2807 case SpvOpAtomicXor:
2808 /* Nothing: we don't need to call fill_common_atomic_sources here, as
2809 * atomic counter uniforms doesn't have sources
2810 */
2811 break;
2812
2813 default:
2814 unreachable("Invalid SPIR-V atomic");
2815
2816 }
2817 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
2818 nir_ssa_def *offset, *index;
2819 offset = vtn_pointer_to_offset(b, ptr, &index);
2820
2821 nir_intrinsic_op op;
2822 if (ptr->mode == vtn_variable_mode_ssbo) {
2823 op = get_ssbo_nir_atomic_op(b, opcode);
2824 } else {
2825 vtn_assert(ptr->mode == vtn_variable_mode_workgroup &&
2826 b->options->lower_workgroup_access_to_offsets);
2827 op = get_shared_nir_atomic_op(b, opcode);
2828 }
2829
2830 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2831
2832 int src = 0;
2833 switch (opcode) {
2834 case SpvOpAtomicLoad:
2835 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2836 nir_intrinsic_set_align(atomic, 4, 0);
2837 if (ptr->mode == vtn_variable_mode_ssbo)
2838 atomic->src[src++] = nir_src_for_ssa(index);
2839 atomic->src[src++] = nir_src_for_ssa(offset);
2840 break;
2841
2842 case SpvOpAtomicStore:
2843 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2844 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2845 nir_intrinsic_set_align(atomic, 4, 0);
2846 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2847 if (ptr->mode == vtn_variable_mode_ssbo)
2848 atomic->src[src++] = nir_src_for_ssa(index);
2849 atomic->src[src++] = nir_src_for_ssa(offset);
2850 break;
2851
2852 case SpvOpAtomicExchange:
2853 case SpvOpAtomicCompareExchange:
2854 case SpvOpAtomicCompareExchangeWeak:
2855 case SpvOpAtomicIIncrement:
2856 case SpvOpAtomicIDecrement:
2857 case SpvOpAtomicIAdd:
2858 case SpvOpAtomicISub:
2859 case SpvOpAtomicSMin:
2860 case SpvOpAtomicUMin:
2861 case SpvOpAtomicSMax:
2862 case SpvOpAtomicUMax:
2863 case SpvOpAtomicAnd:
2864 case SpvOpAtomicOr:
2865 case SpvOpAtomicXor:
2866 if (ptr->mode == vtn_variable_mode_ssbo)
2867 atomic->src[src++] = nir_src_for_ssa(index);
2868 atomic->src[src++] = nir_src_for_ssa(offset);
2869 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2870 break;
2871
2872 default:
2873 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2874 }
2875 } else {
2876 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2877 const struct glsl_type *deref_type = deref->type;
2878 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
2879 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2880 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2881
2882 switch (opcode) {
2883 case SpvOpAtomicLoad:
2884 atomic->num_components = glsl_get_vector_elements(deref_type);
2885 break;
2886
2887 case SpvOpAtomicStore:
2888 atomic->num_components = glsl_get_vector_elements(deref_type);
2889 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2890 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2891 break;
2892
2893 case SpvOpAtomicExchange:
2894 case SpvOpAtomicCompareExchange:
2895 case SpvOpAtomicCompareExchangeWeak:
2896 case SpvOpAtomicIIncrement:
2897 case SpvOpAtomicIDecrement:
2898 case SpvOpAtomicIAdd:
2899 case SpvOpAtomicISub:
2900 case SpvOpAtomicSMin:
2901 case SpvOpAtomicUMin:
2902 case SpvOpAtomicSMax:
2903 case SpvOpAtomicUMax:
2904 case SpvOpAtomicAnd:
2905 case SpvOpAtomicOr:
2906 case SpvOpAtomicXor:
2907 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
2908 break;
2909
2910 default:
2911 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2912 }
2913 }
2914
2915 if (opcode != SpvOpAtomicStore) {
2916 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2917
2918 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2919 glsl_get_vector_elements(type->type),
2920 glsl_get_bit_size(type->type), NULL);
2921
2922 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2923 val->ssa = rzalloc(b, struct vtn_ssa_value);
2924 val->ssa->def = &atomic->dest.ssa;
2925 val->ssa->type = type->type;
2926 }
2927
2928 nir_builder_instr_insert(&b->nb, &atomic->instr);
2929 }
2930
2931 static nir_alu_instr *
2932 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2933 {
2934 nir_op op = nir_op_vec(num_components);
2935 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2936 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2937 bit_size, NULL);
2938 vec->dest.write_mask = (1 << num_components) - 1;
2939
2940 return vec;
2941 }
2942
2943 struct vtn_ssa_value *
2944 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
2945 {
2946 if (src->transposed)
2947 return src->transposed;
2948
2949 struct vtn_ssa_value *dest =
2950 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
2951
2952 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
2953 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
2954 glsl_get_bit_size(src->type));
2955 if (glsl_type_is_vector_or_scalar(src->type)) {
2956 vec->src[0].src = nir_src_for_ssa(src->def);
2957 vec->src[0].swizzle[0] = i;
2958 } else {
2959 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
2960 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
2961 vec->src[j].swizzle[0] = i;
2962 }
2963 }
2964 nir_builder_instr_insert(&b->nb, &vec->instr);
2965 dest->elems[i]->def = &vec->dest.dest.ssa;
2966 }
2967
2968 dest->transposed = src;
2969
2970 return dest;
2971 }
2972
2973 nir_ssa_def *
2974 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
2975 {
2976 return nir_channel(&b->nb, src, index);
2977 }
2978
2979 nir_ssa_def *
2980 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
2981 unsigned index)
2982 {
2983 nir_alu_instr *vec = create_vec(b, src->num_components,
2984 src->bit_size);
2985
2986 for (unsigned i = 0; i < src->num_components; i++) {
2987 if (i == index) {
2988 vec->src[i].src = nir_src_for_ssa(insert);
2989 } else {
2990 vec->src[i].src = nir_src_for_ssa(src);
2991 vec->src[i].swizzle[0] = i;
2992 }
2993 }
2994
2995 nir_builder_instr_insert(&b->nb, &vec->instr);
2996
2997 return &vec->dest.dest.ssa;
2998 }
2999
3000 static nir_ssa_def *
3001 nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i)
3002 {
3003 return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size));
3004 }
3005
3006 nir_ssa_def *
3007 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3008 nir_ssa_def *index)
3009 {
3010 return nir_vector_extract(&b->nb, src, nir_i2i(&b->nb, index, 32));
3011 }
3012
3013 nir_ssa_def *
3014 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3015 nir_ssa_def *insert, nir_ssa_def *index)
3016 {
3017 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
3018 for (unsigned i = 1; i < src->num_components; i++)
3019 dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
3020 vtn_vector_insert(b, src, insert, i), dest);
3021
3022 return dest;
3023 }
3024
3025 static nir_ssa_def *
3026 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
3027 nir_ssa_def *src0, nir_ssa_def *src1,
3028 const uint32_t *indices)
3029 {
3030 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
3031
3032 for (unsigned i = 0; i < num_components; i++) {
3033 uint32_t index = indices[i];
3034 if (index == 0xffffffff) {
3035 vec->src[i].src =
3036 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
3037 } else if (index < src0->num_components) {
3038 vec->src[i].src = nir_src_for_ssa(src0);
3039 vec->src[i].swizzle[0] = index;
3040 } else {
3041 vec->src[i].src = nir_src_for_ssa(src1);
3042 vec->src[i].swizzle[0] = index - src0->num_components;
3043 }
3044 }
3045
3046 nir_builder_instr_insert(&b->nb, &vec->instr);
3047
3048 return &vec->dest.dest.ssa;
3049 }
3050
3051 /*
3052 * Concatentates a number of vectors/scalars together to produce a vector
3053 */
3054 static nir_ssa_def *
3055 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
3056 unsigned num_srcs, nir_ssa_def **srcs)
3057 {
3058 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
3059
3060 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3061 *
3062 * "When constructing a vector, there must be at least two Constituent
3063 * operands."
3064 */
3065 vtn_assert(num_srcs >= 2);
3066
3067 unsigned dest_idx = 0;
3068 for (unsigned i = 0; i < num_srcs; i++) {
3069 nir_ssa_def *src = srcs[i];
3070 vtn_assert(dest_idx + src->num_components <= num_components);
3071 for (unsigned j = 0; j < src->num_components; j++) {
3072 vec->src[dest_idx].src = nir_src_for_ssa(src);
3073 vec->src[dest_idx].swizzle[0] = j;
3074 dest_idx++;
3075 }
3076 }
3077
3078 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3079 *
3080 * "When constructing a vector, the total number of components in all
3081 * the operands must equal the number of components in Result Type."
3082 */
3083 vtn_assert(dest_idx == num_components);
3084
3085 nir_builder_instr_insert(&b->nb, &vec->instr);
3086
3087 return &vec->dest.dest.ssa;
3088 }
3089
3090 static struct vtn_ssa_value *
3091 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3092 {
3093 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3094 dest->type = src->type;
3095
3096 if (glsl_type_is_vector_or_scalar(src->type)) {
3097 dest->def = src->def;
3098 } else {
3099 unsigned elems = glsl_get_length(src->type);
3100
3101 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3102 for (unsigned i = 0; i < elems; i++)
3103 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3104 }
3105
3106 return dest;
3107 }
3108
3109 static struct vtn_ssa_value *
3110 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3111 struct vtn_ssa_value *insert, const uint32_t *indices,
3112 unsigned num_indices)
3113 {
3114 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3115
3116 struct vtn_ssa_value *cur = dest;
3117 unsigned i;
3118 for (i = 0; i < num_indices - 1; i++) {
3119 cur = cur->elems[indices[i]];
3120 }
3121
3122 if (glsl_type_is_vector_or_scalar(cur->type)) {
3123 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3124 * the component granularity. In that case, the last index will be
3125 * the index to insert the scalar into the vector.
3126 */
3127
3128 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
3129 } else {
3130 cur->elems[indices[i]] = insert;
3131 }
3132
3133 return dest;
3134 }
3135
3136 static struct vtn_ssa_value *
3137 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3138 const uint32_t *indices, unsigned num_indices)
3139 {
3140 struct vtn_ssa_value *cur = src;
3141 for (unsigned i = 0; i < num_indices; i++) {
3142 if (glsl_type_is_vector_or_scalar(cur->type)) {
3143 vtn_assert(i == num_indices - 1);
3144 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3145 * the component granularity. The last index will be the index of the
3146 * vector to extract.
3147 */
3148
3149 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3150 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3151 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
3152 return ret;
3153 } else {
3154 cur = cur->elems[indices[i]];
3155 }
3156 }
3157
3158 return cur;
3159 }
3160
3161 static void
3162 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3163 const uint32_t *w, unsigned count)
3164 {
3165 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
3166 const struct glsl_type *type =
3167 vtn_value(b, w[1], vtn_value_type_type)->type->type;
3168 val->ssa = vtn_create_ssa_value(b, type);
3169
3170 switch (opcode) {
3171 case SpvOpVectorExtractDynamic:
3172 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
3173 vtn_ssa_value(b, w[4])->def);
3174 break;
3175
3176 case SpvOpVectorInsertDynamic:
3177 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
3178 vtn_ssa_value(b, w[4])->def,
3179 vtn_ssa_value(b, w[5])->def);
3180 break;
3181
3182 case SpvOpVectorShuffle:
3183 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
3184 vtn_ssa_value(b, w[3])->def,
3185 vtn_ssa_value(b, w[4])->def,
3186 w + 5);
3187 break;
3188
3189 case SpvOpCompositeConstruct: {
3190 unsigned elems = count - 3;
3191 assume(elems >= 1);
3192 if (glsl_type_is_vector_or_scalar(type)) {
3193 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3194 for (unsigned i = 0; i < elems; i++)
3195 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3196 val->ssa->def =
3197 vtn_vector_construct(b, glsl_get_vector_elements(type),
3198 elems, srcs);
3199 } else {
3200 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3201 for (unsigned i = 0; i < elems; i++)
3202 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3203 }
3204 break;
3205 }
3206 case SpvOpCompositeExtract:
3207 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3208 w + 4, count - 4);
3209 break;
3210
3211 case SpvOpCompositeInsert:
3212 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3213 vtn_ssa_value(b, w[3]),
3214 w + 5, count - 5);
3215 break;
3216
3217 case SpvOpCopyLogical:
3218 case SpvOpCopyObject:
3219 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3220 break;
3221
3222 default:
3223 vtn_fail_with_opcode("unknown composite operation", opcode);
3224 }
3225 }
3226
3227 static void
3228 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3229 {
3230 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3231 nir_builder_instr_insert(&b->nb, &intrin->instr);
3232 }
3233
3234 static void
3235 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3236 SpvMemorySemanticsMask semantics)
3237 {
3238 static const SpvMemorySemanticsMask all_memory_semantics =
3239 SpvMemorySemanticsUniformMemoryMask |
3240 SpvMemorySemanticsWorkgroupMemoryMask |
3241 SpvMemorySemanticsAtomicCounterMemoryMask |
3242 SpvMemorySemanticsImageMemoryMask;
3243
3244 /* If we're not actually doing a memory barrier, bail */
3245 if (!(semantics & all_memory_semantics))
3246 return;
3247
3248 /* GL and Vulkan don't have these */
3249 vtn_assert(scope != SpvScopeCrossDevice);
3250
3251 if (scope == SpvScopeSubgroup)
3252 return; /* Nothing to do here */
3253
3254 if (scope == SpvScopeWorkgroup) {
3255 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3256 return;
3257 }
3258
3259 /* There's only two scopes thing left */
3260 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3261
3262 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3263 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3264 return;
3265 }
3266
3267 /* Issue a bunch of more specific barriers */
3268 uint32_t bits = semantics;
3269 while (bits) {
3270 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3271 switch (semantic) {
3272 case SpvMemorySemanticsUniformMemoryMask:
3273 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3274 break;
3275 case SpvMemorySemanticsWorkgroupMemoryMask:
3276 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3277 break;
3278 case SpvMemorySemanticsAtomicCounterMemoryMask:
3279 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3280 break;
3281 case SpvMemorySemanticsImageMemoryMask:
3282 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3283 break;
3284 default:
3285 break;;
3286 }
3287 }
3288 }
3289
3290 static void
3291 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3292 const uint32_t *w, unsigned count)
3293 {
3294 switch (opcode) {
3295 case SpvOpEmitVertex:
3296 case SpvOpEmitStreamVertex:
3297 case SpvOpEndPrimitive:
3298 case SpvOpEndStreamPrimitive: {
3299 nir_intrinsic_op intrinsic_op;
3300 switch (opcode) {
3301 case SpvOpEmitVertex:
3302 case SpvOpEmitStreamVertex:
3303 intrinsic_op = nir_intrinsic_emit_vertex;
3304 break;
3305 case SpvOpEndPrimitive:
3306 case SpvOpEndStreamPrimitive:
3307 intrinsic_op = nir_intrinsic_end_primitive;
3308 break;
3309 default:
3310 unreachable("Invalid opcode");
3311 }
3312
3313 nir_intrinsic_instr *intrin =
3314 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3315
3316 switch (opcode) {
3317 case SpvOpEmitStreamVertex:
3318 case SpvOpEndStreamPrimitive: {
3319 unsigned stream = vtn_constant_uint(b, w[1]);
3320 nir_intrinsic_set_stream_id(intrin, stream);
3321 break;
3322 }
3323
3324 default:
3325 break;
3326 }
3327
3328 nir_builder_instr_insert(&b->nb, &intrin->instr);
3329 break;
3330 }
3331
3332 case SpvOpMemoryBarrier: {
3333 SpvScope scope = vtn_constant_uint(b, w[1]);
3334 SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
3335 vtn_emit_memory_barrier(b, scope, semantics);
3336 return;
3337 }
3338
3339 case SpvOpControlBarrier: {
3340 SpvScope execution_scope = vtn_constant_uint(b, w[1]);
3341 if (execution_scope == SpvScopeWorkgroup)
3342 vtn_emit_barrier(b, nir_intrinsic_barrier);
3343
3344 SpvScope memory_scope = vtn_constant_uint(b, w[2]);
3345 SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
3346 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3347 break;
3348 }
3349
3350 default:
3351 unreachable("unknown barrier instruction");
3352 }
3353 }
3354
3355 static unsigned
3356 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3357 SpvExecutionMode mode)
3358 {
3359 switch (mode) {
3360 case SpvExecutionModeInputPoints:
3361 case SpvExecutionModeOutputPoints:
3362 return 0; /* GL_POINTS */
3363 case SpvExecutionModeInputLines:
3364 return 1; /* GL_LINES */
3365 case SpvExecutionModeInputLinesAdjacency:
3366 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3367 case SpvExecutionModeTriangles:
3368 return 4; /* GL_TRIANGLES */
3369 case SpvExecutionModeInputTrianglesAdjacency:
3370 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3371 case SpvExecutionModeQuads:
3372 return 7; /* GL_QUADS */
3373 case SpvExecutionModeIsolines:
3374 return 0x8E7A; /* GL_ISOLINES */
3375 case SpvExecutionModeOutputLineStrip:
3376 return 3; /* GL_LINE_STRIP */
3377 case SpvExecutionModeOutputTriangleStrip:
3378 return 5; /* GL_TRIANGLE_STRIP */
3379 default:
3380 vtn_fail("Invalid primitive type: %s (%u)",
3381 spirv_executionmode_to_string(mode), mode);
3382 }
3383 }
3384
3385 static unsigned
3386 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3387 SpvExecutionMode mode)
3388 {
3389 switch (mode) {
3390 case SpvExecutionModeInputPoints:
3391 return 1;
3392 case SpvExecutionModeInputLines:
3393 return 2;
3394 case SpvExecutionModeInputLinesAdjacency:
3395 return 4;
3396 case SpvExecutionModeTriangles:
3397 return 3;
3398 case SpvExecutionModeInputTrianglesAdjacency:
3399 return 6;
3400 default:
3401 vtn_fail("Invalid GS input mode: %s (%u)",
3402 spirv_executionmode_to_string(mode), mode);
3403 }
3404 }
3405
3406 static gl_shader_stage
3407 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3408 {
3409 switch (model) {
3410 case SpvExecutionModelVertex:
3411 return MESA_SHADER_VERTEX;
3412 case SpvExecutionModelTessellationControl:
3413 return MESA_SHADER_TESS_CTRL;
3414 case SpvExecutionModelTessellationEvaluation:
3415 return MESA_SHADER_TESS_EVAL;
3416 case SpvExecutionModelGeometry:
3417 return MESA_SHADER_GEOMETRY;
3418 case SpvExecutionModelFragment:
3419 return MESA_SHADER_FRAGMENT;
3420 case SpvExecutionModelGLCompute:
3421 return MESA_SHADER_COMPUTE;
3422 case SpvExecutionModelKernel:
3423 return MESA_SHADER_KERNEL;
3424 default:
3425 vtn_fail("Unsupported execution model: %s (%u)",
3426 spirv_executionmodel_to_string(model), model);
3427 }
3428 }
3429
3430 #define spv_check_supported(name, cap) do { \
3431 if (!(b->options && b->options->caps.name)) \
3432 vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
3433 spirv_capability_to_string(cap), cap); \
3434 } while(0)
3435
3436
3437 void
3438 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3439 unsigned count)
3440 {
3441 struct vtn_value *entry_point = &b->values[w[2]];
3442 /* Let this be a name label regardless */
3443 unsigned name_words;
3444 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3445
3446 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3447 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3448 return;
3449
3450 vtn_assert(b->entry_point == NULL);
3451 b->entry_point = entry_point;
3452 }
3453
3454 static bool
3455 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3456 const uint32_t *w, unsigned count)
3457 {
3458 switch (opcode) {
3459 case SpvOpSource: {
3460 const char *lang;
3461 switch (w[1]) {
3462 default:
3463 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3464 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3465 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3466 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3467 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3468 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3469 }
3470
3471 uint32_t version = w[2];
3472
3473 const char *file =
3474 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3475
3476 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3477 break;
3478 }
3479
3480 case SpvOpSourceExtension:
3481 case SpvOpSourceContinued:
3482 case SpvOpExtension:
3483 case SpvOpModuleProcessed:
3484 /* Unhandled, but these are for debug so that's ok. */
3485 break;
3486
3487 case SpvOpCapability: {
3488 SpvCapability cap = w[1];
3489 switch (cap) {
3490 case SpvCapabilityMatrix:
3491 case SpvCapabilityShader:
3492 case SpvCapabilityGeometry:
3493 case SpvCapabilityGeometryPointSize:
3494 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3495 case SpvCapabilitySampledImageArrayDynamicIndexing:
3496 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3497 case SpvCapabilityStorageImageArrayDynamicIndexing:
3498 case SpvCapabilityImageRect:
3499 case SpvCapabilitySampledRect:
3500 case SpvCapabilitySampled1D:
3501 case SpvCapabilityImage1D:
3502 case SpvCapabilitySampledCubeArray:
3503 case SpvCapabilityImageCubeArray:
3504 case SpvCapabilitySampledBuffer:
3505 case SpvCapabilityImageBuffer:
3506 case SpvCapabilityImageQuery:
3507 case SpvCapabilityDerivativeControl:
3508 case SpvCapabilityInterpolationFunction:
3509 case SpvCapabilityMultiViewport:
3510 case SpvCapabilitySampleRateShading:
3511 case SpvCapabilityClipDistance:
3512 case SpvCapabilityCullDistance:
3513 case SpvCapabilityInputAttachment:
3514 case SpvCapabilityImageGatherExtended:
3515 case SpvCapabilityStorageImageExtendedFormats:
3516 break;
3517
3518 case SpvCapabilityLinkage:
3519 case SpvCapabilityVector16:
3520 case SpvCapabilityFloat16Buffer:
3521 case SpvCapabilitySparseResidency:
3522 vtn_warn("Unsupported SPIR-V capability: %s",
3523 spirv_capability_to_string(cap));
3524 break;
3525
3526 case SpvCapabilityMinLod:
3527 spv_check_supported(min_lod, cap);
3528 break;
3529
3530 case SpvCapabilityAtomicStorage:
3531 spv_check_supported(atomic_storage, cap);
3532 break;
3533
3534 case SpvCapabilityFloat64:
3535 spv_check_supported(float64, cap);
3536 break;
3537 case SpvCapabilityInt64:
3538 spv_check_supported(int64, cap);
3539 break;
3540 case SpvCapabilityInt16:
3541 spv_check_supported(int16, cap);
3542 break;
3543 case SpvCapabilityInt8:
3544 spv_check_supported(int8, cap);
3545 break;
3546
3547 case SpvCapabilityTransformFeedback:
3548 spv_check_supported(transform_feedback, cap);
3549 break;
3550
3551 case SpvCapabilityGeometryStreams:
3552 spv_check_supported(geometry_streams, cap);
3553 break;
3554
3555 case SpvCapabilityInt64Atomics:
3556 spv_check_supported(int64_atomics, cap);
3557 break;
3558
3559 case SpvCapabilityStorageImageMultisample:
3560 spv_check_supported(storage_image_ms, cap);
3561 break;
3562
3563 case SpvCapabilityAddresses:
3564 spv_check_supported(address, cap);
3565 break;
3566
3567 case SpvCapabilityKernel:
3568 spv_check_supported(kernel, cap);
3569 break;
3570
3571 case SpvCapabilityImageBasic:
3572 case SpvCapabilityImageReadWrite:
3573 case SpvCapabilityImageMipmap:
3574 case SpvCapabilityPipes:
3575 case SpvCapabilityDeviceEnqueue:
3576 case SpvCapabilityLiteralSampler:
3577 case SpvCapabilityGenericPointer:
3578 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3579 spirv_capability_to_string(cap));
3580 break;
3581
3582 case SpvCapabilityImageMSArray:
3583 spv_check_supported(image_ms_array, cap);
3584 break;
3585
3586 case SpvCapabilityTessellation:
3587 case SpvCapabilityTessellationPointSize:
3588 spv_check_supported(tessellation, cap);
3589 break;
3590
3591 case SpvCapabilityDrawParameters:
3592 spv_check_supported(draw_parameters, cap);
3593 break;
3594
3595 case SpvCapabilityStorageImageReadWithoutFormat:
3596 spv_check_supported(image_read_without_format, cap);
3597 break;
3598
3599 case SpvCapabilityStorageImageWriteWithoutFormat:
3600 spv_check_supported(image_write_without_format, cap);
3601 break;
3602
3603 case SpvCapabilityDeviceGroup:
3604 spv_check_supported(device_group, cap);
3605 break;
3606
3607 case SpvCapabilityMultiView:
3608 spv_check_supported(multiview, cap);
3609 break;
3610
3611 case SpvCapabilityGroupNonUniform:
3612 spv_check_supported(subgroup_basic, cap);
3613 break;
3614
3615 case SpvCapabilitySubgroupVoteKHR:
3616 case SpvCapabilityGroupNonUniformVote:
3617 spv_check_supported(subgroup_vote, cap);
3618 break;
3619
3620 case SpvCapabilitySubgroupBallotKHR:
3621 case SpvCapabilityGroupNonUniformBallot:
3622 spv_check_supported(subgroup_ballot, cap);
3623 break;
3624
3625 case SpvCapabilityGroupNonUniformShuffle:
3626 case SpvCapabilityGroupNonUniformShuffleRelative:
3627 spv_check_supported(subgroup_shuffle, cap);
3628 break;
3629
3630 case SpvCapabilityGroupNonUniformQuad:
3631 spv_check_supported(subgroup_quad, cap);
3632 break;
3633
3634 case SpvCapabilityGroupNonUniformArithmetic:
3635 case SpvCapabilityGroupNonUniformClustered:
3636 spv_check_supported(subgroup_arithmetic, cap);
3637 break;
3638
3639 case SpvCapabilityGroups:
3640 spv_check_supported(amd_shader_ballot, cap);
3641 break;
3642
3643 case SpvCapabilityVariablePointersStorageBuffer:
3644 case SpvCapabilityVariablePointers:
3645 spv_check_supported(variable_pointers, cap);
3646 b->variable_pointers = true;
3647 break;
3648
3649 case SpvCapabilityStorageUniformBufferBlock16:
3650 case SpvCapabilityStorageUniform16:
3651 case SpvCapabilityStoragePushConstant16:
3652 case SpvCapabilityStorageInputOutput16:
3653 spv_check_supported(storage_16bit, cap);
3654 break;
3655
3656 case SpvCapabilityShaderViewportIndexLayerEXT:
3657 spv_check_supported(shader_viewport_index_layer, cap);
3658 break;
3659
3660 case SpvCapabilityStorageBuffer8BitAccess:
3661 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
3662 case SpvCapabilityStoragePushConstant8:
3663 spv_check_supported(storage_8bit, cap);
3664 break;
3665
3666 case SpvCapabilityShaderNonUniformEXT:
3667 spv_check_supported(descriptor_indexing, cap);
3668 break;
3669
3670 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3671 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3672 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3673 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3674 break;
3675
3676 case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
3677 case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
3678 case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
3679 case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
3680 case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
3681 case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
3682 case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
3683 spv_check_supported(descriptor_array_non_uniform_indexing, cap);
3684 break;
3685
3686 case SpvCapabilityRuntimeDescriptorArrayEXT:
3687 spv_check_supported(runtime_descriptor_array, cap);
3688 break;
3689
3690 case SpvCapabilityStencilExportEXT:
3691 spv_check_supported(stencil_export, cap);
3692 break;
3693
3694 case SpvCapabilitySampleMaskPostDepthCoverage:
3695 spv_check_supported(post_depth_coverage, cap);
3696 break;
3697
3698 case SpvCapabilityPhysicalStorageBufferAddressesEXT:
3699 spv_check_supported(physical_storage_buffer_address, cap);
3700 break;
3701
3702 case SpvCapabilityComputeDerivativeGroupQuadsNV:
3703 case SpvCapabilityComputeDerivativeGroupLinearNV:
3704 spv_check_supported(derivative_group, cap);
3705 break;
3706
3707 case SpvCapabilityFloat16:
3708 spv_check_supported(float16, cap);
3709 break;
3710
3711 case SpvCapabilityFragmentShaderSampleInterlockEXT:
3712 spv_check_supported(fragment_shader_sample_interlock, cap);
3713 break;
3714
3715 case SpvCapabilityFragmentShaderPixelInterlockEXT:
3716 spv_check_supported(fragment_shader_pixel_interlock, cap);
3717 break;
3718
3719 default:
3720 vtn_fail("Unhandled capability: %s (%u)",
3721 spirv_capability_to_string(cap), cap);
3722 }
3723 break;
3724 }
3725
3726 case SpvOpExtInstImport:
3727 vtn_handle_extension(b, opcode, w, count);
3728 break;
3729
3730 case SpvOpMemoryModel:
3731 switch (w[1]) {
3732 case SpvAddressingModelPhysical32:
3733 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3734 "AddressingModelPhysical32 only supported for kernels");
3735 b->shader->info.cs.ptr_size = 32;
3736 b->physical_ptrs = true;
3737 b->options->shared_addr_format = nir_address_format_32bit_global;
3738 b->options->global_addr_format = nir_address_format_32bit_global;
3739 b->options->temp_addr_format = nir_address_format_32bit_global;
3740 break;
3741 case SpvAddressingModelPhysical64:
3742 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3743 "AddressingModelPhysical64 only supported for kernels");
3744 b->shader->info.cs.ptr_size = 64;
3745 b->physical_ptrs = true;
3746 b->options->shared_addr_format = nir_address_format_64bit_global;
3747 b->options->global_addr_format = nir_address_format_64bit_global;
3748 b->options->temp_addr_format = nir_address_format_64bit_global;
3749 break;
3750 case SpvAddressingModelLogical:
3751 vtn_fail_if(b->shader->info.stage >= MESA_SHADER_STAGES,
3752 "AddressingModelLogical only supported for shaders");
3753 b->shader->info.cs.ptr_size = 0;
3754 b->physical_ptrs = false;
3755 break;
3756 case SpvAddressingModelPhysicalStorageBuffer64EXT:
3757 vtn_fail_if(!b->options ||
3758 !b->options->caps.physical_storage_buffer_address,
3759 "AddressingModelPhysicalStorageBuffer64EXT not supported");
3760 break;
3761 default:
3762 vtn_fail("Unknown addressing model: %s (%u)",
3763 spirv_addressingmodel_to_string(w[1]), w[1]);
3764 break;
3765 }
3766
3767 vtn_assert(w[2] == SpvMemoryModelSimple ||
3768 w[2] == SpvMemoryModelGLSL450 ||
3769 w[2] == SpvMemoryModelOpenCL);
3770 break;
3771
3772 case SpvOpEntryPoint:
3773 vtn_handle_entry_point(b, w, count);
3774 break;
3775
3776 case SpvOpString:
3777 vtn_push_value(b, w[1], vtn_value_type_string)->str =
3778 vtn_string_literal(b, &w[2], count - 2, NULL);
3779 break;
3780
3781 case SpvOpName:
3782 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3783 break;
3784
3785 case SpvOpMemberName:
3786 /* TODO */
3787 break;
3788
3789 case SpvOpExecutionMode:
3790 case SpvOpExecutionModeId:
3791 case SpvOpDecorationGroup:
3792 case SpvOpDecorate:
3793 case SpvOpDecorateId:
3794 case SpvOpMemberDecorate:
3795 case SpvOpGroupDecorate:
3796 case SpvOpGroupMemberDecorate:
3797 case SpvOpDecorateString:
3798 case SpvOpMemberDecorateString:
3799 vtn_handle_decoration(b, opcode, w, count);
3800 break;
3801
3802 default:
3803 return false; /* End of preamble */
3804 }
3805
3806 return true;
3807 }
3808
3809 static void
3810 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3811 const struct vtn_decoration *mode, void *data)
3812 {
3813 vtn_assert(b->entry_point == entry_point);
3814
3815 switch(mode->exec_mode) {
3816 case SpvExecutionModeOriginUpperLeft:
3817 case SpvExecutionModeOriginLowerLeft:
3818 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3819 b->shader->info.fs.origin_upper_left =
3820 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3821 break;
3822
3823 case SpvExecutionModeEarlyFragmentTests:
3824 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3825 b->shader->info.fs.early_fragment_tests = true;
3826 break;
3827
3828 case SpvExecutionModePostDepthCoverage:
3829 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3830 b->shader->info.fs.post_depth_coverage = true;
3831 break;
3832
3833 case SpvExecutionModeInvocations:
3834 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3835 b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
3836 break;
3837
3838 case SpvExecutionModeDepthReplacing:
3839 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3840 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3841 break;
3842 case SpvExecutionModeDepthGreater:
3843 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3844 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3845 break;
3846 case SpvExecutionModeDepthLess:
3847 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3848 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3849 break;
3850 case SpvExecutionModeDepthUnchanged:
3851 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3852 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3853 break;
3854
3855 case SpvExecutionModeLocalSize:
3856 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
3857 b->shader->info.cs.local_size[0] = mode->operands[0];
3858 b->shader->info.cs.local_size[1] = mode->operands[1];
3859 b->shader->info.cs.local_size[2] = mode->operands[2];
3860 break;
3861
3862 case SpvExecutionModeLocalSizeId:
3863 b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
3864 b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
3865 b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
3866 break;
3867
3868 case SpvExecutionModeLocalSizeHint:
3869 case SpvExecutionModeLocalSizeHintId:
3870 break; /* Nothing to do with this */
3871
3872 case SpvExecutionModeOutputVertices:
3873 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3874 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3875 b->shader->info.tess.tcs_vertices_out = mode->operands[0];
3876 } else {
3877 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3878 b->shader->info.gs.vertices_out = mode->operands[0];
3879 }
3880 break;
3881
3882 case SpvExecutionModeInputPoints:
3883 case SpvExecutionModeInputLines:
3884 case SpvExecutionModeInputLinesAdjacency:
3885 case SpvExecutionModeTriangles:
3886 case SpvExecutionModeInputTrianglesAdjacency:
3887 case SpvExecutionModeQuads:
3888 case SpvExecutionModeIsolines:
3889 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3890 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3891 b->shader->info.tess.primitive_mode =
3892 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3893 } else {
3894 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3895 b->shader->info.gs.vertices_in =
3896 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3897 b->shader->info.gs.input_primitive =
3898 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3899 }
3900 break;
3901
3902 case SpvExecutionModeOutputPoints:
3903 case SpvExecutionModeOutputLineStrip:
3904 case SpvExecutionModeOutputTriangleStrip:
3905 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3906 b->shader->info.gs.output_primitive =
3907 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3908 break;
3909
3910 case SpvExecutionModeSpacingEqual:
3911 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3912 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3913 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3914 break;
3915 case SpvExecutionModeSpacingFractionalEven:
3916 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3917 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3918 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3919 break;
3920 case SpvExecutionModeSpacingFractionalOdd:
3921 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3922 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3923 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3924 break;
3925 case SpvExecutionModeVertexOrderCw:
3926 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3927 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3928 b->shader->info.tess.ccw = false;
3929 break;
3930 case SpvExecutionModeVertexOrderCcw:
3931 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3932 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3933 b->shader->info.tess.ccw = true;
3934 break;
3935 case SpvExecutionModePointMode:
3936 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3937 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3938 b->shader->info.tess.point_mode = true;
3939 break;
3940
3941 case SpvExecutionModePixelCenterInteger:
3942 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3943 b->shader->info.fs.pixel_center_integer = true;
3944 break;
3945
3946 case SpvExecutionModeXfb:
3947 b->shader->info.has_transform_feedback_varyings = true;
3948 break;
3949
3950 case SpvExecutionModeVecTypeHint:
3951 break; /* OpenCL */
3952
3953 case SpvExecutionModeContractionOff:
3954 if (b->shader->info.stage != MESA_SHADER_KERNEL)
3955 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
3956 spirv_executionmode_to_string(mode->exec_mode));
3957 else
3958 b->exact = true;
3959 break;
3960
3961 case SpvExecutionModeStencilRefReplacingEXT:
3962 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3963 break;
3964
3965 case SpvExecutionModeDerivativeGroupQuadsNV:
3966 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3967 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
3968 break;
3969
3970 case SpvExecutionModeDerivativeGroupLinearNV:
3971 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3972 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
3973 break;
3974
3975 case SpvExecutionModePixelInterlockOrderedEXT:
3976 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3977 b->shader->info.fs.pixel_interlock_ordered = true;
3978 break;
3979
3980 case SpvExecutionModePixelInterlockUnorderedEXT:
3981 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3982 b->shader->info.fs.pixel_interlock_unordered = true;
3983 break;
3984
3985 case SpvExecutionModeSampleInterlockOrderedEXT:
3986 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3987 b->shader->info.fs.sample_interlock_ordered = true;
3988 break;
3989
3990 case SpvExecutionModeSampleInterlockUnorderedEXT:
3991 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3992 b->shader->info.fs.sample_interlock_unordered = true;
3993 break;
3994
3995 default:
3996 vtn_fail("Unhandled execution mode: %s (%u)",
3997 spirv_executionmode_to_string(mode->exec_mode),
3998 mode->exec_mode);
3999 }
4000 }
4001
4002 static bool
4003 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
4004 const uint32_t *w, unsigned count)
4005 {
4006 vtn_set_instruction_result_type(b, opcode, w, count);
4007
4008 switch (opcode) {
4009 case SpvOpSource:
4010 case SpvOpSourceContinued:
4011 case SpvOpSourceExtension:
4012 case SpvOpExtension:
4013 case SpvOpCapability:
4014 case SpvOpExtInstImport:
4015 case SpvOpMemoryModel:
4016 case SpvOpEntryPoint:
4017 case SpvOpExecutionMode:
4018 case SpvOpString:
4019 case SpvOpName:
4020 case SpvOpMemberName:
4021 case SpvOpDecorationGroup:
4022 case SpvOpDecorate:
4023 case SpvOpDecorateId:
4024 case SpvOpMemberDecorate:
4025 case SpvOpGroupDecorate:
4026 case SpvOpGroupMemberDecorate:
4027 case SpvOpDecorateString:
4028 case SpvOpMemberDecorateString:
4029 vtn_fail("Invalid opcode types and variables section");
4030 break;
4031
4032 case SpvOpTypeVoid:
4033 case SpvOpTypeBool:
4034 case SpvOpTypeInt:
4035 case SpvOpTypeFloat:
4036 case SpvOpTypeVector:
4037 case SpvOpTypeMatrix:
4038 case SpvOpTypeImage:
4039 case SpvOpTypeSampler:
4040 case SpvOpTypeSampledImage:
4041 case SpvOpTypeArray:
4042 case SpvOpTypeRuntimeArray:
4043 case SpvOpTypeStruct:
4044 case SpvOpTypeOpaque:
4045 case SpvOpTypePointer:
4046 case SpvOpTypeForwardPointer:
4047 case SpvOpTypeFunction:
4048 case SpvOpTypeEvent:
4049 case SpvOpTypeDeviceEvent:
4050 case SpvOpTypeReserveId:
4051 case SpvOpTypeQueue:
4052 case SpvOpTypePipe:
4053 vtn_handle_type(b, opcode, w, count);
4054 break;
4055
4056 case SpvOpConstantTrue:
4057 case SpvOpConstantFalse:
4058 case SpvOpConstant:
4059 case SpvOpConstantComposite:
4060 case SpvOpConstantSampler:
4061 case SpvOpConstantNull:
4062 case SpvOpSpecConstantTrue:
4063 case SpvOpSpecConstantFalse:
4064 case SpvOpSpecConstant:
4065 case SpvOpSpecConstantComposite:
4066 case SpvOpSpecConstantOp:
4067 vtn_handle_constant(b, opcode, w, count);
4068 break;
4069
4070 case SpvOpUndef:
4071 case SpvOpVariable:
4072 vtn_handle_variables(b, opcode, w, count);
4073 break;
4074
4075 default:
4076 return false; /* End of preamble */
4077 }
4078
4079 return true;
4080 }
4081
4082 static struct vtn_ssa_value *
4083 vtn_nir_select(struct vtn_builder *b, struct vtn_ssa_value *src0,
4084 struct vtn_ssa_value *src1, struct vtn_ssa_value *src2)
4085 {
4086 struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
4087 dest->type = src1->type;
4088
4089 if (glsl_type_is_vector_or_scalar(src1->type)) {
4090 dest->def = nir_bcsel(&b->nb, src0->def, src1->def, src2->def);
4091 } else {
4092 unsigned elems = glsl_get_length(src1->type);
4093
4094 dest->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
4095 for (unsigned i = 0; i < elems; i++) {
4096 dest->elems[i] = vtn_nir_select(b, src0,
4097 src1->elems[i], src2->elems[i]);
4098 }
4099 }
4100
4101 return dest;
4102 }
4103
4104 static void
4105 vtn_handle_select(struct vtn_builder *b, SpvOp opcode,
4106 const uint32_t *w, unsigned count)
4107 {
4108 /* Handle OpSelect up-front here because it needs to be able to handle
4109 * pointers and not just regular vectors and scalars.
4110 */
4111 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4112 struct vtn_value *cond_val = vtn_untyped_value(b, w[3]);
4113 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4114 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4115
4116 vtn_fail_if(obj1_val->type != res_val->type ||
4117 obj2_val->type != res_val->type,
4118 "Object types must match the result type in OpSelect");
4119
4120 vtn_fail_if((cond_val->type->base_type != vtn_base_type_scalar &&
4121 cond_val->type->base_type != vtn_base_type_vector) ||
4122 !glsl_type_is_boolean(cond_val->type->type),
4123 "OpSelect must have either a vector of booleans or "
4124 "a boolean as Condition type");
4125
4126 vtn_fail_if(cond_val->type->base_type == vtn_base_type_vector &&
4127 (res_val->type->base_type != vtn_base_type_vector ||
4128 res_val->type->length != cond_val->type->length),
4129 "When Condition type in OpSelect is a vector, the Result "
4130 "type must be a vector of the same length");
4131
4132 switch (res_val->type->base_type) {
4133 case vtn_base_type_scalar:
4134 case vtn_base_type_vector:
4135 case vtn_base_type_matrix:
4136 case vtn_base_type_array:
4137 case vtn_base_type_struct:
4138 /* OK. */
4139 break;
4140 case vtn_base_type_pointer:
4141 /* We need to have actual storage for pointer types. */
4142 vtn_fail_if(res_val->type->type == NULL,
4143 "Invalid pointer result type for OpSelect");
4144 break;
4145 default:
4146 vtn_fail("Result type of OpSelect must be a scalar, composite, or pointer");
4147 }
4148
4149 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4150 struct vtn_ssa_value *ssa = vtn_nir_select(b,
4151 vtn_ssa_value(b, w[3]), vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[5]));
4152
4153 vtn_push_ssa(b, w[2], res_type, ssa);
4154 }
4155
4156 static void
4157 vtn_handle_ptr(struct vtn_builder *b, SpvOp opcode,
4158 const uint32_t *w, unsigned count)
4159 {
4160 struct vtn_type *type1 = vtn_untyped_value(b, w[3])->type;
4161 struct vtn_type *type2 = vtn_untyped_value(b, w[4])->type;
4162 vtn_fail_if(type1->base_type != vtn_base_type_pointer ||
4163 type2->base_type != vtn_base_type_pointer,
4164 "%s operands must have pointer types",
4165 spirv_op_to_string(opcode));
4166 vtn_fail_if(type1->storage_class != type2->storage_class,
4167 "%s operands must have the same storage class",
4168 spirv_op_to_string(opcode));
4169
4170 const struct glsl_type *type =
4171 vtn_value(b, w[1], vtn_value_type_type)->type->type;
4172
4173 nir_address_format addr_format = vtn_mode_to_address_format(
4174 b, vtn_storage_class_to_mode(b, type1->storage_class, NULL, NULL));
4175
4176 nir_ssa_def *def;
4177
4178 switch (opcode) {
4179 case SpvOpPtrDiff: {
4180 /* OpPtrDiff returns the difference in number of elements (not byte offset). */
4181 unsigned elem_size, elem_align;
4182 glsl_get_natural_size_align_bytes(type1->deref->type,
4183 &elem_size, &elem_align);
4184
4185 def = nir_build_addr_isub(&b->nb,
4186 vtn_ssa_value(b, w[3])->def,
4187 vtn_ssa_value(b, w[4])->def,
4188 addr_format);
4189 def = nir_idiv(&b->nb, def, nir_imm_intN_t(&b->nb, elem_size, def->bit_size));
4190 def = nir_i2i(&b->nb, def, glsl_get_bit_size(type));
4191 break;
4192 }
4193
4194 case SpvOpPtrEqual:
4195 case SpvOpPtrNotEqual: {
4196 def = nir_build_addr_ieq(&b->nb,
4197 vtn_ssa_value(b, w[3])->def,
4198 vtn_ssa_value(b, w[4])->def,
4199 addr_format);
4200 if (opcode == SpvOpPtrNotEqual)
4201 def = nir_inot(&b->nb, def);
4202 break;
4203 }
4204
4205 default:
4206 unreachable("Invalid ptr operation");
4207 }
4208
4209 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
4210 val->ssa = vtn_create_ssa_value(b, type);
4211 val->ssa->def = def;
4212 }
4213
4214 static bool
4215 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4216 const uint32_t *w, unsigned count)
4217 {
4218 switch (opcode) {
4219 case SpvOpLabel:
4220 break;
4221
4222 case SpvOpLoopMerge:
4223 case SpvOpSelectionMerge:
4224 /* This is handled by cfg pre-pass and walk_blocks */
4225 break;
4226
4227 case SpvOpUndef: {
4228 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4229 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4230 break;
4231 }
4232
4233 case SpvOpExtInst:
4234 vtn_handle_extension(b, opcode, w, count);
4235 break;
4236
4237 case SpvOpVariable:
4238 case SpvOpLoad:
4239 case SpvOpStore:
4240 case SpvOpCopyMemory:
4241 case SpvOpCopyMemorySized:
4242 case SpvOpAccessChain:
4243 case SpvOpPtrAccessChain:
4244 case SpvOpInBoundsAccessChain:
4245 case SpvOpInBoundsPtrAccessChain:
4246 case SpvOpArrayLength:
4247 case SpvOpConvertPtrToU:
4248 case SpvOpConvertUToPtr:
4249 vtn_handle_variables(b, opcode, w, count);
4250 break;
4251
4252 case SpvOpFunctionCall:
4253 vtn_handle_function_call(b, opcode, w, count);
4254 break;
4255
4256 case SpvOpSampledImage:
4257 case SpvOpImage:
4258 case SpvOpImageSampleImplicitLod:
4259 case SpvOpImageSampleExplicitLod:
4260 case SpvOpImageSampleDrefImplicitLod:
4261 case SpvOpImageSampleDrefExplicitLod:
4262 case SpvOpImageSampleProjImplicitLod:
4263 case SpvOpImageSampleProjExplicitLod:
4264 case SpvOpImageSampleProjDrefImplicitLod:
4265 case SpvOpImageSampleProjDrefExplicitLod:
4266 case SpvOpImageFetch:
4267 case SpvOpImageGather:
4268 case SpvOpImageDrefGather:
4269 case SpvOpImageQuerySizeLod:
4270 case SpvOpImageQueryLod:
4271 case SpvOpImageQueryLevels:
4272 case SpvOpImageQuerySamples:
4273 vtn_handle_texture(b, opcode, w, count);
4274 break;
4275
4276 case SpvOpImageRead:
4277 case SpvOpImageWrite:
4278 case SpvOpImageTexelPointer:
4279 vtn_handle_image(b, opcode, w, count);
4280 break;
4281
4282 case SpvOpImageQuerySize: {
4283 struct vtn_pointer *image =
4284 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4285 if (glsl_type_is_image(image->type->type)) {
4286 vtn_handle_image(b, opcode, w, count);
4287 } else {
4288 vtn_assert(glsl_type_is_sampler(image->type->type));
4289 vtn_handle_texture(b, opcode, w, count);
4290 }
4291 break;
4292 }
4293
4294 case SpvOpAtomicLoad:
4295 case SpvOpAtomicExchange:
4296 case SpvOpAtomicCompareExchange:
4297 case SpvOpAtomicCompareExchangeWeak:
4298 case SpvOpAtomicIIncrement:
4299 case SpvOpAtomicIDecrement:
4300 case SpvOpAtomicIAdd:
4301 case SpvOpAtomicISub:
4302 case SpvOpAtomicSMin:
4303 case SpvOpAtomicUMin:
4304 case SpvOpAtomicSMax:
4305 case SpvOpAtomicUMax:
4306 case SpvOpAtomicAnd:
4307 case SpvOpAtomicOr:
4308 case SpvOpAtomicXor: {
4309 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4310 if (pointer->value_type == vtn_value_type_image_pointer) {
4311 vtn_handle_image(b, opcode, w, count);
4312 } else {
4313 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4314 vtn_handle_atomics(b, opcode, w, count);
4315 }
4316 break;
4317 }
4318
4319 case SpvOpAtomicStore: {
4320 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4321 if (pointer->value_type == vtn_value_type_image_pointer) {
4322 vtn_handle_image(b, opcode, w, count);
4323 } else {
4324 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4325 vtn_handle_atomics(b, opcode, w, count);
4326 }
4327 break;
4328 }
4329
4330 case SpvOpSelect:
4331 vtn_handle_select(b, opcode, w, count);
4332 break;
4333
4334 case SpvOpSNegate:
4335 case SpvOpFNegate:
4336 case SpvOpNot:
4337 case SpvOpAny:
4338 case SpvOpAll:
4339 case SpvOpConvertFToU:
4340 case SpvOpConvertFToS:
4341 case SpvOpConvertSToF:
4342 case SpvOpConvertUToF:
4343 case SpvOpUConvert:
4344 case SpvOpSConvert:
4345 case SpvOpFConvert:
4346 case SpvOpQuantizeToF16:
4347 case SpvOpPtrCastToGeneric:
4348 case SpvOpGenericCastToPtr:
4349 case SpvOpIsNan:
4350 case SpvOpIsInf:
4351 case SpvOpIsFinite:
4352 case SpvOpIsNormal:
4353 case SpvOpSignBitSet:
4354 case SpvOpLessOrGreater:
4355 case SpvOpOrdered:
4356 case SpvOpUnordered:
4357 case SpvOpIAdd:
4358 case SpvOpFAdd:
4359 case SpvOpISub:
4360 case SpvOpFSub:
4361 case SpvOpIMul:
4362 case SpvOpFMul:
4363 case SpvOpUDiv:
4364 case SpvOpSDiv:
4365 case SpvOpFDiv:
4366 case SpvOpUMod:
4367 case SpvOpSRem:
4368 case SpvOpSMod:
4369 case SpvOpFRem:
4370 case SpvOpFMod:
4371 case SpvOpVectorTimesScalar:
4372 case SpvOpDot:
4373 case SpvOpIAddCarry:
4374 case SpvOpISubBorrow:
4375 case SpvOpUMulExtended:
4376 case SpvOpSMulExtended:
4377 case SpvOpShiftRightLogical:
4378 case SpvOpShiftRightArithmetic:
4379 case SpvOpShiftLeftLogical:
4380 case SpvOpLogicalEqual:
4381 case SpvOpLogicalNotEqual:
4382 case SpvOpLogicalOr:
4383 case SpvOpLogicalAnd:
4384 case SpvOpLogicalNot:
4385 case SpvOpBitwiseOr:
4386 case SpvOpBitwiseXor:
4387 case SpvOpBitwiseAnd:
4388 case SpvOpIEqual:
4389 case SpvOpFOrdEqual:
4390 case SpvOpFUnordEqual:
4391 case SpvOpINotEqual:
4392 case SpvOpFOrdNotEqual:
4393 case SpvOpFUnordNotEqual:
4394 case SpvOpULessThan:
4395 case SpvOpSLessThan:
4396 case SpvOpFOrdLessThan:
4397 case SpvOpFUnordLessThan:
4398 case SpvOpUGreaterThan:
4399 case SpvOpSGreaterThan:
4400 case SpvOpFOrdGreaterThan:
4401 case SpvOpFUnordGreaterThan:
4402 case SpvOpULessThanEqual:
4403 case SpvOpSLessThanEqual:
4404 case SpvOpFOrdLessThanEqual:
4405 case SpvOpFUnordLessThanEqual:
4406 case SpvOpUGreaterThanEqual:
4407 case SpvOpSGreaterThanEqual:
4408 case SpvOpFOrdGreaterThanEqual:
4409 case SpvOpFUnordGreaterThanEqual:
4410 case SpvOpDPdx:
4411 case SpvOpDPdy:
4412 case SpvOpFwidth:
4413 case SpvOpDPdxFine:
4414 case SpvOpDPdyFine:
4415 case SpvOpFwidthFine:
4416 case SpvOpDPdxCoarse:
4417 case SpvOpDPdyCoarse:
4418 case SpvOpFwidthCoarse:
4419 case SpvOpBitFieldInsert:
4420 case SpvOpBitFieldSExtract:
4421 case SpvOpBitFieldUExtract:
4422 case SpvOpBitReverse:
4423 case SpvOpBitCount:
4424 case SpvOpTranspose:
4425 case SpvOpOuterProduct:
4426 case SpvOpMatrixTimesScalar:
4427 case SpvOpVectorTimesMatrix:
4428 case SpvOpMatrixTimesVector:
4429 case SpvOpMatrixTimesMatrix:
4430 vtn_handle_alu(b, opcode, w, count);
4431 break;
4432
4433 case SpvOpBitcast:
4434 vtn_handle_bitcast(b, w, count);
4435 break;
4436
4437 case SpvOpVectorExtractDynamic:
4438 case SpvOpVectorInsertDynamic:
4439 case SpvOpVectorShuffle:
4440 case SpvOpCompositeConstruct:
4441 case SpvOpCompositeExtract:
4442 case SpvOpCompositeInsert:
4443 case SpvOpCopyLogical:
4444 case SpvOpCopyObject:
4445 vtn_handle_composite(b, opcode, w, count);
4446 break;
4447
4448 case SpvOpEmitVertex:
4449 case SpvOpEndPrimitive:
4450 case SpvOpEmitStreamVertex:
4451 case SpvOpEndStreamPrimitive:
4452 case SpvOpControlBarrier:
4453 case SpvOpMemoryBarrier:
4454 vtn_handle_barrier(b, opcode, w, count);
4455 break;
4456
4457 case SpvOpGroupNonUniformElect:
4458 case SpvOpGroupNonUniformAll:
4459 case SpvOpGroupNonUniformAny:
4460 case SpvOpGroupNonUniformAllEqual:
4461 case SpvOpGroupNonUniformBroadcast:
4462 case SpvOpGroupNonUniformBroadcastFirst:
4463 case SpvOpGroupNonUniformBallot:
4464 case SpvOpGroupNonUniformInverseBallot:
4465 case SpvOpGroupNonUniformBallotBitExtract:
4466 case SpvOpGroupNonUniformBallotBitCount:
4467 case SpvOpGroupNonUniformBallotFindLSB:
4468 case SpvOpGroupNonUniformBallotFindMSB:
4469 case SpvOpGroupNonUniformShuffle:
4470 case SpvOpGroupNonUniformShuffleXor:
4471 case SpvOpGroupNonUniformShuffleUp:
4472 case SpvOpGroupNonUniformShuffleDown:
4473 case SpvOpGroupNonUniformIAdd:
4474 case SpvOpGroupNonUniformFAdd:
4475 case SpvOpGroupNonUniformIMul:
4476 case SpvOpGroupNonUniformFMul:
4477 case SpvOpGroupNonUniformSMin:
4478 case SpvOpGroupNonUniformUMin:
4479 case SpvOpGroupNonUniformFMin:
4480 case SpvOpGroupNonUniformSMax:
4481 case SpvOpGroupNonUniformUMax:
4482 case SpvOpGroupNonUniformFMax:
4483 case SpvOpGroupNonUniformBitwiseAnd:
4484 case SpvOpGroupNonUniformBitwiseOr:
4485 case SpvOpGroupNonUniformBitwiseXor:
4486 case SpvOpGroupNonUniformLogicalAnd:
4487 case SpvOpGroupNonUniformLogicalOr:
4488 case SpvOpGroupNonUniformLogicalXor:
4489 case SpvOpGroupNonUniformQuadBroadcast:
4490 case SpvOpGroupNonUniformQuadSwap:
4491 case SpvOpGroupAll:
4492 case SpvOpGroupAny:
4493 case SpvOpGroupBroadcast:
4494 case SpvOpGroupIAdd:
4495 case SpvOpGroupFAdd:
4496 case SpvOpGroupFMin:
4497 case SpvOpGroupUMin:
4498 case SpvOpGroupSMin:
4499 case SpvOpGroupFMax:
4500 case SpvOpGroupUMax:
4501 case SpvOpGroupSMax:
4502 case SpvOpSubgroupBallotKHR:
4503 case SpvOpSubgroupFirstInvocationKHR:
4504 case SpvOpSubgroupReadInvocationKHR:
4505 case SpvOpSubgroupAllKHR:
4506 case SpvOpSubgroupAnyKHR:
4507 case SpvOpSubgroupAllEqualKHR:
4508 case SpvOpGroupIAddNonUniformAMD:
4509 case SpvOpGroupFAddNonUniformAMD:
4510 case SpvOpGroupFMinNonUniformAMD:
4511 case SpvOpGroupUMinNonUniformAMD:
4512 case SpvOpGroupSMinNonUniformAMD:
4513 case SpvOpGroupFMaxNonUniformAMD:
4514 case SpvOpGroupUMaxNonUniformAMD:
4515 case SpvOpGroupSMaxNonUniformAMD:
4516 vtn_handle_subgroup(b, opcode, w, count);
4517 break;
4518
4519 case SpvOpPtrDiff:
4520 case SpvOpPtrEqual:
4521 case SpvOpPtrNotEqual:
4522 vtn_handle_ptr(b, opcode, w, count);
4523 break;
4524
4525 case SpvOpBeginInvocationInterlockEXT:
4526 vtn_emit_barrier(b, nir_intrinsic_begin_invocation_interlock);
4527 break;
4528
4529 case SpvOpEndInvocationInterlockEXT:
4530 vtn_emit_barrier(b, nir_intrinsic_end_invocation_interlock);
4531 break;
4532
4533 default:
4534 vtn_fail_with_opcode("Unhandled opcode", opcode);
4535 }
4536
4537 return true;
4538 }
4539
4540 struct vtn_builder*
4541 vtn_create_builder(const uint32_t *words, size_t word_count,
4542 gl_shader_stage stage, const char *entry_point_name,
4543 const struct spirv_to_nir_options *options)
4544 {
4545 /* Initialize the vtn_builder object */
4546 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
4547 struct spirv_to_nir_options *dup_options =
4548 ralloc(b, struct spirv_to_nir_options);
4549 *dup_options = *options;
4550
4551 b->spirv = words;
4552 b->spirv_word_count = word_count;
4553 b->file = NULL;
4554 b->line = -1;
4555 b->col = -1;
4556 exec_list_make_empty(&b->functions);
4557 b->entry_point_stage = stage;
4558 b->entry_point_name = entry_point_name;
4559 b->options = dup_options;
4560
4561 /*
4562 * Handle the SPIR-V header (first 5 dwords).
4563 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
4564 */
4565 if (word_count <= 5)
4566 goto fail;
4567
4568 if (words[0] != SpvMagicNumber) {
4569 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
4570 goto fail;
4571 }
4572 if (words[1] < 0x10000) {
4573 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
4574 goto fail;
4575 }
4576
4577 uint16_t generator_id = words[2] >> 16;
4578 uint16_t generator_version = words[2];
4579
4580 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
4581 * but this should at least let us shut the workaround off for modern
4582 * versions of GLSLang.
4583 */
4584 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
4585
4586 /* words[2] == generator magic */
4587 unsigned value_id_bound = words[3];
4588 if (words[4] != 0) {
4589 vtn_err("words[4] was %u, want 0", words[4]);
4590 goto fail;
4591 }
4592
4593 b->value_id_bound = value_id_bound;
4594 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
4595
4596 return b;
4597 fail:
4598 ralloc_free(b);
4599 return NULL;
4600 }
4601
4602 static nir_function *
4603 vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
4604 nir_function *entry_point)
4605 {
4606 vtn_assert(entry_point == b->entry_point->func->impl->function);
4607 vtn_fail_if(!entry_point->name, "entry points are required to have a name");
4608 const char *func_name =
4609 ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
4610
4611 /* we shouldn't have any inputs yet */
4612 vtn_assert(!entry_point->shader->num_inputs);
4613 vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
4614
4615 nir_function *main_entry_point = nir_function_create(b->shader, func_name);
4616 main_entry_point->impl = nir_function_impl_create(main_entry_point);
4617 nir_builder_init(&b->nb, main_entry_point->impl);
4618 b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
4619 b->func_param_idx = 0;
4620
4621 nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
4622
4623 for (unsigned i = 0; i < entry_point->num_params; ++i) {
4624 struct vtn_type *param_type = b->entry_point->func->type->params[i];
4625
4626 /* consider all pointers to function memory to be parameters passed
4627 * by value
4628 */
4629 bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
4630 param_type->storage_class == SpvStorageClassFunction;
4631
4632 /* input variable */
4633 nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
4634 in_var->data.mode = nir_var_shader_in;
4635 in_var->data.read_only = true;
4636 in_var->data.location = i;
4637
4638 if (is_by_val)
4639 in_var->type = param_type->deref->type;
4640 else
4641 in_var->type = param_type->type;
4642
4643 nir_shader_add_variable(b->nb.shader, in_var);
4644 b->nb.shader->num_inputs++;
4645
4646 /* we have to copy the entire variable into function memory */
4647 if (is_by_val) {
4648 nir_variable *copy_var =
4649 nir_local_variable_create(main_entry_point->impl, in_var->type,
4650 "copy_in");
4651 nir_copy_var(&b->nb, copy_var, in_var);
4652 call->params[i] =
4653 nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
4654 } else {
4655 call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
4656 }
4657 }
4658
4659 nir_builder_instr_insert(&b->nb, &call->instr);
4660
4661 return main_entry_point;
4662 }
4663
4664 nir_shader *
4665 spirv_to_nir(const uint32_t *words, size_t word_count,
4666 struct nir_spirv_specialization *spec, unsigned num_spec,
4667 gl_shader_stage stage, const char *entry_point_name,
4668 const struct spirv_to_nir_options *options,
4669 const nir_shader_compiler_options *nir_options)
4670
4671 {
4672 const uint32_t *word_end = words + word_count;
4673
4674 struct vtn_builder *b = vtn_create_builder(words, word_count,
4675 stage, entry_point_name,
4676 options);
4677
4678 if (b == NULL)
4679 return NULL;
4680
4681 /* See also _vtn_fail() */
4682 if (setjmp(b->fail_jump)) {
4683 ralloc_free(b);
4684 return NULL;
4685 }
4686
4687 /* Skip the SPIR-V header, handled at vtn_create_builder */
4688 words+= 5;
4689
4690 b->shader = nir_shader_create(b, stage, nir_options, NULL);
4691
4692 /* Handle all the preamble instructions */
4693 words = vtn_foreach_instruction(b, words, word_end,
4694 vtn_handle_preamble_instruction);
4695
4696 if (b->entry_point == NULL) {
4697 vtn_fail("Entry point not found");
4698 ralloc_free(b);
4699 return NULL;
4700 }
4701
4702 /* Set shader info defaults */
4703 b->shader->info.gs.invocations = 1;
4704
4705 b->specializations = spec;
4706 b->num_specializations = num_spec;
4707
4708 /* Handle all variable, type, and constant instructions */
4709 words = vtn_foreach_instruction(b, words, word_end,
4710 vtn_handle_variable_or_type_instruction);
4711
4712 /* Parse execution modes */
4713 vtn_foreach_execution_mode(b, b->entry_point,
4714 vtn_handle_execution_mode, NULL);
4715
4716 if (b->workgroup_size_builtin) {
4717 vtn_assert(b->workgroup_size_builtin->type->type ==
4718 glsl_vector_type(GLSL_TYPE_UINT, 3));
4719
4720 nir_const_value *const_size =
4721 b->workgroup_size_builtin->constant->values;
4722
4723 b->shader->info.cs.local_size[0] = const_size[0].u32;
4724 b->shader->info.cs.local_size[1] = const_size[1].u32;
4725 b->shader->info.cs.local_size[2] = const_size[2].u32;
4726 }
4727
4728 /* Set types on all vtn_values */
4729 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
4730
4731 vtn_build_cfg(b, words, word_end);
4732
4733 assert(b->entry_point->value_type == vtn_value_type_function);
4734 b->entry_point->func->referenced = true;
4735
4736 bool progress;
4737 do {
4738 progress = false;
4739 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
4740 if (func->referenced && !func->emitted) {
4741 b->const_table = _mesa_pointer_hash_table_create(b);
4742
4743 vtn_function_emit(b, func, vtn_handle_body_instruction);
4744 progress = true;
4745 }
4746 }
4747 } while (progress);
4748
4749 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
4750 nir_function *entry_point = b->entry_point->func->impl->function;
4751 vtn_assert(entry_point);
4752
4753 /* post process entry_points with input params */
4754 if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
4755 entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
4756
4757 entry_point->is_entrypoint = true;
4758
4759 /* When multiple shader stages exist in the same SPIR-V module, we
4760 * generate input and output variables for every stage, in the same
4761 * NIR program. These dead variables can be invalid NIR. For example,
4762 * TCS outputs must be per-vertex arrays (or decorated 'patch'), while
4763 * VS output variables wouldn't be.
4764 *
4765 * To ensure we have valid NIR, we eliminate any dead inputs and outputs
4766 * right away. In order to do so, we must lower any constant initializers
4767 * on outputs so nir_remove_dead_variables sees that they're written to.
4768 */
4769 nir_lower_constant_initializers(b->shader, nir_var_shader_out);
4770 nir_remove_dead_variables(b->shader,
4771 nir_var_shader_in | nir_var_shader_out);
4772
4773 /* We sometimes generate bogus derefs that, while never used, give the
4774 * validator a bit of heartburn. Run dead code to get rid of them.
4775 */
4776 nir_opt_dce(b->shader);
4777
4778 /* Unparent the shader from the vtn_builder before we delete the builder */
4779 ralloc_steal(NULL, b->shader);
4780
4781 nir_shader *shader = b->shader;
4782 ralloc_free(b);
4783
4784 return shader;
4785 }