spirv: Check that only one offset is defined as Image Operand
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include "util/u_math.h"
36
37 #include <stdio.h>
38
39 void
40 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
41 size_t spirv_offset, const char *message)
42 {
43 if (b->options->debug.func) {
44 b->options->debug.func(b->options->debug.private_data,
45 level, spirv_offset, message);
46 }
47
48 #ifndef NDEBUG
49 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
50 fprintf(stderr, "%s\n", message);
51 #endif
52 }
53
54 void
55 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
56 size_t spirv_offset, const char *fmt, ...)
57 {
58 va_list args;
59 char *msg;
60
61 va_start(args, fmt);
62 msg = ralloc_vasprintf(NULL, fmt, args);
63 va_end(args);
64
65 vtn_log(b, level, spirv_offset, msg);
66
67 ralloc_free(msg);
68 }
69
70 static void
71 vtn_log_err(struct vtn_builder *b,
72 enum nir_spirv_debug_level level, const char *prefix,
73 const char *file, unsigned line,
74 const char *fmt, va_list args)
75 {
76 char *msg;
77
78 msg = ralloc_strdup(NULL, prefix);
79
80 #ifndef NDEBUG
81 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
82 #endif
83
84 ralloc_asprintf_append(&msg, " ");
85
86 ralloc_vasprintf_append(&msg, fmt, args);
87
88 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
89 b->spirv_offset);
90
91 if (b->file) {
92 ralloc_asprintf_append(&msg,
93 "\n in SPIR-V source file %s, line %d, col %d",
94 b->file, b->line, b->col);
95 }
96
97 vtn_log(b, level, b->spirv_offset, msg);
98
99 ralloc_free(msg);
100 }
101
102 static void
103 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
104 {
105 static int idx = 0;
106
107 char filename[1024];
108 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
109 path, prefix, idx++);
110 if (len < 0 || len >= sizeof(filename))
111 return;
112
113 FILE *f = fopen(filename, "w");
114 if (f == NULL)
115 return;
116
117 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
118 fclose(f);
119
120 vtn_info("SPIR-V shader dumped to %s", filename);
121 }
122
123 void
124 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
125 const char *fmt, ...)
126 {
127 va_list args;
128
129 va_start(args, fmt);
130 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
131 file, line, fmt, args);
132 va_end(args);
133 }
134
135 void
136 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
137 const char *fmt, ...)
138 {
139 va_list args;
140
141 va_start(args, fmt);
142 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
143 file, line, fmt, args);
144 va_end(args);
145 }
146
147 void
148 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
149 const char *fmt, ...)
150 {
151 va_list args;
152
153 va_start(args, fmt);
154 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
155 file, line, fmt, args);
156 va_end(args);
157
158 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
159 if (dump_path)
160 vtn_dump_shader(b, dump_path, "fail");
161
162 longjmp(b->fail_jump, 1);
163 }
164
165 struct spec_constant_value {
166 bool is_double;
167 union {
168 uint32_t data32;
169 uint64_t data64;
170 };
171 };
172
173 static struct vtn_ssa_value *
174 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
175 {
176 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
177 val->type = type;
178
179 if (glsl_type_is_vector_or_scalar(type)) {
180 unsigned num_components = glsl_get_vector_elements(val->type);
181 unsigned bit_size = glsl_get_bit_size(val->type);
182 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
183 } else {
184 unsigned elems = glsl_get_length(val->type);
185 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
186 if (glsl_type_is_matrix(type)) {
187 const struct glsl_type *elem_type =
188 glsl_vector_type(glsl_get_base_type(type),
189 glsl_get_vector_elements(type));
190
191 for (unsigned i = 0; i < elems; i++)
192 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
193 } else if (glsl_type_is_array(type)) {
194 const struct glsl_type *elem_type = glsl_get_array_element(type);
195 for (unsigned i = 0; i < elems; i++)
196 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
197 } else {
198 for (unsigned i = 0; i < elems; i++) {
199 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
200 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
201 }
202 }
203 }
204
205 return val;
206 }
207
208 static struct vtn_ssa_value *
209 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
210 const struct glsl_type *type)
211 {
212 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
213
214 if (entry)
215 return entry->data;
216
217 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
218 val->type = type;
219
220 switch (glsl_get_base_type(type)) {
221 case GLSL_TYPE_INT:
222 case GLSL_TYPE_UINT:
223 case GLSL_TYPE_INT16:
224 case GLSL_TYPE_UINT16:
225 case GLSL_TYPE_UINT8:
226 case GLSL_TYPE_INT8:
227 case GLSL_TYPE_INT64:
228 case GLSL_TYPE_UINT64:
229 case GLSL_TYPE_BOOL:
230 case GLSL_TYPE_FLOAT:
231 case GLSL_TYPE_FLOAT16:
232 case GLSL_TYPE_DOUBLE: {
233 int bit_size = glsl_get_bit_size(type);
234 if (glsl_type_is_vector_or_scalar(type)) {
235 unsigned num_components = glsl_get_vector_elements(val->type);
236 nir_load_const_instr *load =
237 nir_load_const_instr_create(b->shader, num_components, bit_size);
238
239 memcpy(load->value, constant->values,
240 sizeof(nir_const_value) * load->def.num_components);
241
242 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
243 val->def = &load->def;
244 } else {
245 assert(glsl_type_is_matrix(type));
246 unsigned columns = glsl_get_matrix_columns(val->type);
247 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
248 const struct glsl_type *column_type = glsl_get_column_type(val->type);
249 for (unsigned i = 0; i < columns; i++)
250 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
251 column_type);
252 }
253 break;
254 }
255
256 case GLSL_TYPE_ARRAY: {
257 unsigned elems = glsl_get_length(val->type);
258 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
259 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
260 for (unsigned i = 0; i < elems; i++)
261 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
262 elem_type);
263 break;
264 }
265
266 case GLSL_TYPE_STRUCT: {
267 unsigned elems = glsl_get_length(val->type);
268 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
269 for (unsigned i = 0; i < elems; i++) {
270 const struct glsl_type *elem_type =
271 glsl_get_struct_field(val->type, i);
272 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
273 elem_type);
274 }
275 break;
276 }
277
278 default:
279 vtn_fail("bad constant type");
280 }
281
282 return val;
283 }
284
285 struct vtn_ssa_value *
286 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
287 {
288 struct vtn_value *val = vtn_untyped_value(b, value_id);
289 switch (val->value_type) {
290 case vtn_value_type_undef:
291 return vtn_undef_ssa_value(b, val->type->type);
292
293 case vtn_value_type_constant:
294 return vtn_const_ssa_value(b, val->constant, val->type->type);
295
296 case vtn_value_type_ssa:
297 return val->ssa;
298
299 case vtn_value_type_pointer:
300 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
301 struct vtn_ssa_value *ssa =
302 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
303 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
304 return ssa;
305
306 default:
307 vtn_fail("Invalid type for an SSA value");
308 }
309 }
310
311 static char *
312 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
313 unsigned word_count, unsigned *words_used)
314 {
315 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
316 if (words_used) {
317 /* Ammount of space taken by the string (including the null) */
318 unsigned len = strlen(dup) + 1;
319 *words_used = DIV_ROUND_UP(len, sizeof(*words));
320 }
321 return dup;
322 }
323
324 const uint32_t *
325 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
326 const uint32_t *end, vtn_instruction_handler handler)
327 {
328 b->file = NULL;
329 b->line = -1;
330 b->col = -1;
331
332 const uint32_t *w = start;
333 while (w < end) {
334 SpvOp opcode = w[0] & SpvOpCodeMask;
335 unsigned count = w[0] >> SpvWordCountShift;
336 vtn_assert(count >= 1 && w + count <= end);
337
338 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
339
340 switch (opcode) {
341 case SpvOpNop:
342 break; /* Do nothing */
343
344 case SpvOpLine:
345 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
346 b->line = w[2];
347 b->col = w[3];
348 break;
349
350 case SpvOpNoLine:
351 b->file = NULL;
352 b->line = -1;
353 b->col = -1;
354 break;
355
356 default:
357 if (!handler(b, opcode, w, count))
358 return w;
359 break;
360 }
361
362 w += count;
363 }
364
365 b->spirv_offset = 0;
366 b->file = NULL;
367 b->line = -1;
368 b->col = -1;
369
370 assert(w == end);
371 return w;
372 }
373
374 static void
375 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
376 const uint32_t *w, unsigned count)
377 {
378 const char *ext = (const char *)&w[2];
379 switch (opcode) {
380 case SpvOpExtInstImport: {
381 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
382 if (strcmp(ext, "GLSL.std.450") == 0) {
383 val->ext_handler = vtn_handle_glsl450_instruction;
384 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
385 && (b->options && b->options->caps.amd_gcn_shader)) {
386 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
387 } else if ((strcmp(ext, "SPV_AMD_shader_ballot") == 0)
388 && (b->options && b->options->caps.amd_shader_ballot)) {
389 val->ext_handler = vtn_handle_amd_shader_ballot_instruction;
390 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
391 && (b->options && b->options->caps.amd_trinary_minmax)) {
392 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
393 } else if (strcmp(ext, "OpenCL.std") == 0) {
394 val->ext_handler = vtn_handle_opencl_instruction;
395 } else {
396 vtn_fail("Unsupported extension: %s", ext);
397 }
398 break;
399 }
400
401 case SpvOpExtInst: {
402 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
403 bool handled = val->ext_handler(b, w[4], w, count);
404 vtn_assert(handled);
405 break;
406 }
407
408 default:
409 vtn_fail_with_opcode("Unhandled opcode", opcode);
410 }
411 }
412
413 static void
414 _foreach_decoration_helper(struct vtn_builder *b,
415 struct vtn_value *base_value,
416 int parent_member,
417 struct vtn_value *value,
418 vtn_decoration_foreach_cb cb, void *data)
419 {
420 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
421 int member;
422 if (dec->scope == VTN_DEC_DECORATION) {
423 member = parent_member;
424 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
425 vtn_fail_if(value->value_type != vtn_value_type_type ||
426 value->type->base_type != vtn_base_type_struct,
427 "OpMemberDecorate and OpGroupMemberDecorate are only "
428 "allowed on OpTypeStruct");
429 /* This means we haven't recursed yet */
430 assert(value == base_value);
431
432 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
433
434 vtn_fail_if(member >= base_value->type->length,
435 "OpMemberDecorate specifies member %d but the "
436 "OpTypeStruct has only %u members",
437 member, base_value->type->length);
438 } else {
439 /* Not a decoration */
440 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
441 continue;
442 }
443
444 if (dec->group) {
445 assert(dec->group->value_type == vtn_value_type_decoration_group);
446 _foreach_decoration_helper(b, base_value, member, dec->group,
447 cb, data);
448 } else {
449 cb(b, base_value, member, dec, data);
450 }
451 }
452 }
453
454 /** Iterates (recursively if needed) over all of the decorations on a value
455 *
456 * This function iterates over all of the decorations applied to a given
457 * value. If it encounters a decoration group, it recurses into the group
458 * and iterates over all of those decorations as well.
459 */
460 void
461 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
462 vtn_decoration_foreach_cb cb, void *data)
463 {
464 _foreach_decoration_helper(b, value, -1, value, cb, data);
465 }
466
467 void
468 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
469 vtn_execution_mode_foreach_cb cb, void *data)
470 {
471 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
472 if (dec->scope != VTN_DEC_EXECUTION_MODE)
473 continue;
474
475 assert(dec->group == NULL);
476 cb(b, value, dec, data);
477 }
478 }
479
480 void
481 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
482 const uint32_t *w, unsigned count)
483 {
484 const uint32_t *w_end = w + count;
485 const uint32_t target = w[1];
486 w += 2;
487
488 switch (opcode) {
489 case SpvOpDecorationGroup:
490 vtn_push_value(b, target, vtn_value_type_decoration_group);
491 break;
492
493 case SpvOpDecorate:
494 case SpvOpDecorateId:
495 case SpvOpMemberDecorate:
496 case SpvOpDecorateString:
497 case SpvOpMemberDecorateString:
498 case SpvOpExecutionMode:
499 case SpvOpExecutionModeId: {
500 struct vtn_value *val = vtn_untyped_value(b, target);
501
502 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
503 switch (opcode) {
504 case SpvOpDecorate:
505 case SpvOpDecorateId:
506 case SpvOpDecorateString:
507 dec->scope = VTN_DEC_DECORATION;
508 break;
509 case SpvOpMemberDecorate:
510 case SpvOpMemberDecorateString:
511 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
512 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
513 "Member argument of OpMemberDecorate too large");
514 break;
515 case SpvOpExecutionMode:
516 case SpvOpExecutionModeId:
517 dec->scope = VTN_DEC_EXECUTION_MODE;
518 break;
519 default:
520 unreachable("Invalid decoration opcode");
521 }
522 dec->decoration = *(w++);
523 dec->operands = w;
524
525 /* Link into the list */
526 dec->next = val->decoration;
527 val->decoration = dec;
528 break;
529 }
530
531 case SpvOpGroupMemberDecorate:
532 case SpvOpGroupDecorate: {
533 struct vtn_value *group =
534 vtn_value(b, target, vtn_value_type_decoration_group);
535
536 for (; w < w_end; w++) {
537 struct vtn_value *val = vtn_untyped_value(b, *w);
538 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
539
540 dec->group = group;
541 if (opcode == SpvOpGroupDecorate) {
542 dec->scope = VTN_DEC_DECORATION;
543 } else {
544 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
545 vtn_fail_if(dec->scope < 0, /* Check for overflow */
546 "Member argument of OpGroupMemberDecorate too large");
547 }
548
549 /* Link into the list */
550 dec->next = val->decoration;
551 val->decoration = dec;
552 }
553 break;
554 }
555
556 default:
557 unreachable("Unhandled opcode");
558 }
559 }
560
561 struct member_decoration_ctx {
562 unsigned num_fields;
563 struct glsl_struct_field *fields;
564 struct vtn_type *type;
565 };
566
567 /**
568 * Returns true if the given type contains a struct decorated Block or
569 * BufferBlock
570 */
571 bool
572 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
573 {
574 switch (type->base_type) {
575 case vtn_base_type_array:
576 return vtn_type_contains_block(b, type->array_element);
577 case vtn_base_type_struct:
578 if (type->block || type->buffer_block)
579 return true;
580 for (unsigned i = 0; i < type->length; i++) {
581 if (vtn_type_contains_block(b, type->members[i]))
582 return true;
583 }
584 return false;
585 default:
586 return false;
587 }
588 }
589
590 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
591 * OpStore, or OpCopyMemory between them without breaking anything.
592 * Technically, the SPIR-V rules require the exact same type ID but this lets
593 * us internally be a bit looser.
594 */
595 bool
596 vtn_types_compatible(struct vtn_builder *b,
597 struct vtn_type *t1, struct vtn_type *t2)
598 {
599 if (t1->id == t2->id)
600 return true;
601
602 if (t1->base_type != t2->base_type)
603 return false;
604
605 switch (t1->base_type) {
606 case vtn_base_type_void:
607 case vtn_base_type_scalar:
608 case vtn_base_type_vector:
609 case vtn_base_type_matrix:
610 case vtn_base_type_image:
611 case vtn_base_type_sampler:
612 case vtn_base_type_sampled_image:
613 return t1->type == t2->type;
614
615 case vtn_base_type_array:
616 return t1->length == t2->length &&
617 vtn_types_compatible(b, t1->array_element, t2->array_element);
618
619 case vtn_base_type_pointer:
620 return vtn_types_compatible(b, t1->deref, t2->deref);
621
622 case vtn_base_type_struct:
623 if (t1->length != t2->length)
624 return false;
625
626 for (unsigned i = 0; i < t1->length; i++) {
627 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
628 return false;
629 }
630 return true;
631
632 case vtn_base_type_function:
633 /* This case shouldn't get hit since you can't copy around function
634 * types. Just require them to be identical.
635 */
636 return false;
637 }
638
639 vtn_fail("Invalid base type");
640 }
641
642 struct vtn_type *
643 vtn_type_without_array(struct vtn_type *type)
644 {
645 while (type->base_type == vtn_base_type_array)
646 type = type->array_element;
647 return type;
648 }
649
650 /* does a shallow copy of a vtn_type */
651
652 static struct vtn_type *
653 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
654 {
655 struct vtn_type *dest = ralloc(b, struct vtn_type);
656 *dest = *src;
657
658 switch (src->base_type) {
659 case vtn_base_type_void:
660 case vtn_base_type_scalar:
661 case vtn_base_type_vector:
662 case vtn_base_type_matrix:
663 case vtn_base_type_array:
664 case vtn_base_type_pointer:
665 case vtn_base_type_image:
666 case vtn_base_type_sampler:
667 case vtn_base_type_sampled_image:
668 /* Nothing more to do */
669 break;
670
671 case vtn_base_type_struct:
672 dest->members = ralloc_array(b, struct vtn_type *, src->length);
673 memcpy(dest->members, src->members,
674 src->length * sizeof(src->members[0]));
675
676 dest->offsets = ralloc_array(b, unsigned, src->length);
677 memcpy(dest->offsets, src->offsets,
678 src->length * sizeof(src->offsets[0]));
679 break;
680
681 case vtn_base_type_function:
682 dest->params = ralloc_array(b, struct vtn_type *, src->length);
683 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
684 break;
685 }
686
687 return dest;
688 }
689
690 static struct vtn_type *
691 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
692 {
693 type->members[member] = vtn_type_copy(b, type->members[member]);
694 type = type->members[member];
695
696 /* We may have an array of matrices.... Oh, joy! */
697 while (glsl_type_is_array(type->type)) {
698 type->array_element = vtn_type_copy(b, type->array_element);
699 type = type->array_element;
700 }
701
702 vtn_assert(glsl_type_is_matrix(type->type));
703
704 return type;
705 }
706
707 static void
708 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
709 int member, enum gl_access_qualifier access)
710 {
711 type->members[member] = vtn_type_copy(b, type->members[member]);
712 type = type->members[member];
713
714 type->access |= access;
715 }
716
717 static void
718 array_stride_decoration_cb(struct vtn_builder *b,
719 struct vtn_value *val, int member,
720 const struct vtn_decoration *dec, void *void_ctx)
721 {
722 struct vtn_type *type = val->type;
723
724 if (dec->decoration == SpvDecorationArrayStride) {
725 if (vtn_type_contains_block(b, type)) {
726 vtn_warn("The ArrayStride decoration cannot be applied to an array "
727 "type which contains a structure type decorated Block "
728 "or BufferBlock");
729 /* Ignore the decoration */
730 } else {
731 vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
732 type->stride = dec->operands[0];
733 }
734 }
735 }
736
737 static void
738 struct_member_decoration_cb(struct vtn_builder *b,
739 struct vtn_value *val, int member,
740 const struct vtn_decoration *dec, void *void_ctx)
741 {
742 struct member_decoration_ctx *ctx = void_ctx;
743
744 if (member < 0)
745 return;
746
747 assert(member < ctx->num_fields);
748
749 switch (dec->decoration) {
750 case SpvDecorationRelaxedPrecision:
751 case SpvDecorationUniform:
752 case SpvDecorationUniformId:
753 break; /* FIXME: Do nothing with this for now. */
754 case SpvDecorationNonWritable:
755 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
756 break;
757 case SpvDecorationNonReadable:
758 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
759 break;
760 case SpvDecorationVolatile:
761 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
762 break;
763 case SpvDecorationCoherent:
764 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
765 break;
766 case SpvDecorationNoPerspective:
767 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
768 break;
769 case SpvDecorationFlat:
770 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
771 break;
772 case SpvDecorationCentroid:
773 ctx->fields[member].centroid = true;
774 break;
775 case SpvDecorationSample:
776 ctx->fields[member].sample = true;
777 break;
778 case SpvDecorationStream:
779 /* Vulkan only allows one GS stream */
780 vtn_assert(dec->operands[0] == 0);
781 break;
782 case SpvDecorationLocation:
783 ctx->fields[member].location = dec->operands[0];
784 break;
785 case SpvDecorationComponent:
786 break; /* FIXME: What should we do with these? */
787 case SpvDecorationBuiltIn:
788 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
789 ctx->type->members[member]->is_builtin = true;
790 ctx->type->members[member]->builtin = dec->operands[0];
791 ctx->type->builtin_block = true;
792 break;
793 case SpvDecorationOffset:
794 ctx->type->offsets[member] = dec->operands[0];
795 ctx->fields[member].offset = dec->operands[0];
796 break;
797 case SpvDecorationMatrixStride:
798 /* Handled as a second pass */
799 break;
800 case SpvDecorationColMajor:
801 break; /* Nothing to do here. Column-major is the default. */
802 case SpvDecorationRowMajor:
803 mutable_matrix_member(b, ctx->type, member)->row_major = true;
804 break;
805
806 case SpvDecorationPatch:
807 break;
808
809 case SpvDecorationSpecId:
810 case SpvDecorationBlock:
811 case SpvDecorationBufferBlock:
812 case SpvDecorationArrayStride:
813 case SpvDecorationGLSLShared:
814 case SpvDecorationGLSLPacked:
815 case SpvDecorationInvariant:
816 case SpvDecorationRestrict:
817 case SpvDecorationAliased:
818 case SpvDecorationConstant:
819 case SpvDecorationIndex:
820 case SpvDecorationBinding:
821 case SpvDecorationDescriptorSet:
822 case SpvDecorationLinkageAttributes:
823 case SpvDecorationNoContraction:
824 case SpvDecorationInputAttachmentIndex:
825 vtn_warn("Decoration not allowed on struct members: %s",
826 spirv_decoration_to_string(dec->decoration));
827 break;
828
829 case SpvDecorationXfbBuffer:
830 case SpvDecorationXfbStride:
831 vtn_warn("Vulkan does not have transform feedback");
832 break;
833
834 case SpvDecorationCPacked:
835 if (b->shader->info.stage != MESA_SHADER_KERNEL)
836 vtn_warn("Decoration only allowed for CL-style kernels: %s",
837 spirv_decoration_to_string(dec->decoration));
838 else
839 ctx->type->packed = true;
840 break;
841
842 case SpvDecorationSaturatedConversion:
843 case SpvDecorationFuncParamAttr:
844 case SpvDecorationFPRoundingMode:
845 case SpvDecorationFPFastMathMode:
846 case SpvDecorationAlignment:
847 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
848 vtn_warn("Decoration only allowed for CL-style kernels: %s",
849 spirv_decoration_to_string(dec->decoration));
850 }
851 break;
852
853 case SpvDecorationUserSemantic:
854 /* User semantic decorations can safely be ignored by the driver. */
855 break;
856
857 default:
858 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
859 }
860 }
861
862 /** Chases the array type all the way down to the tail and rewrites the
863 * glsl_types to be based off the tail's glsl_type.
864 */
865 static void
866 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
867 {
868 if (type->base_type != vtn_base_type_array)
869 return;
870
871 vtn_array_type_rewrite_glsl_type(type->array_element);
872
873 type->type = glsl_array_type(type->array_element->type,
874 type->length, type->stride);
875 }
876
877 /* Matrix strides are handled as a separate pass because we need to know
878 * whether the matrix is row-major or not first.
879 */
880 static void
881 struct_member_matrix_stride_cb(struct vtn_builder *b,
882 struct vtn_value *val, int member,
883 const struct vtn_decoration *dec,
884 void *void_ctx)
885 {
886 if (dec->decoration != SpvDecorationMatrixStride)
887 return;
888
889 vtn_fail_if(member < 0,
890 "The MatrixStride decoration is only allowed on members "
891 "of OpTypeStruct");
892 vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
893
894 struct member_decoration_ctx *ctx = void_ctx;
895
896 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
897 if (mat_type->row_major) {
898 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
899 mat_type->stride = mat_type->array_element->stride;
900 mat_type->array_element->stride = dec->operands[0];
901
902 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
903 dec->operands[0], true);
904 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
905 } else {
906 vtn_assert(mat_type->array_element->stride > 0);
907 mat_type->stride = dec->operands[0];
908
909 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
910 dec->operands[0], false);
911 }
912
913 /* Now that we've replaced the glsl_type with a properly strided matrix
914 * type, rewrite the member type so that it's an array of the proper kind
915 * of glsl_type.
916 */
917 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
918 ctx->fields[member].type = ctx->type->members[member]->type;
919 }
920
921 static void
922 struct_block_decoration_cb(struct vtn_builder *b,
923 struct vtn_value *val, int member,
924 const struct vtn_decoration *dec, void *ctx)
925 {
926 if (member != -1)
927 return;
928
929 struct vtn_type *type = val->type;
930 if (dec->decoration == SpvDecorationBlock)
931 type->block = true;
932 else if (dec->decoration == SpvDecorationBufferBlock)
933 type->buffer_block = true;
934 }
935
936 static void
937 type_decoration_cb(struct vtn_builder *b,
938 struct vtn_value *val, int member,
939 const struct vtn_decoration *dec, void *ctx)
940 {
941 struct vtn_type *type = val->type;
942
943 if (member != -1) {
944 /* This should have been handled by OpTypeStruct */
945 assert(val->type->base_type == vtn_base_type_struct);
946 assert(member >= 0 && member < val->type->length);
947 return;
948 }
949
950 switch (dec->decoration) {
951 case SpvDecorationArrayStride:
952 vtn_assert(type->base_type == vtn_base_type_array ||
953 type->base_type == vtn_base_type_pointer);
954 break;
955 case SpvDecorationBlock:
956 vtn_assert(type->base_type == vtn_base_type_struct);
957 vtn_assert(type->block);
958 break;
959 case SpvDecorationBufferBlock:
960 vtn_assert(type->base_type == vtn_base_type_struct);
961 vtn_assert(type->buffer_block);
962 break;
963 case SpvDecorationGLSLShared:
964 case SpvDecorationGLSLPacked:
965 /* Ignore these, since we get explicit offsets anyways */
966 break;
967
968 case SpvDecorationRowMajor:
969 case SpvDecorationColMajor:
970 case SpvDecorationMatrixStride:
971 case SpvDecorationBuiltIn:
972 case SpvDecorationNoPerspective:
973 case SpvDecorationFlat:
974 case SpvDecorationPatch:
975 case SpvDecorationCentroid:
976 case SpvDecorationSample:
977 case SpvDecorationVolatile:
978 case SpvDecorationCoherent:
979 case SpvDecorationNonWritable:
980 case SpvDecorationNonReadable:
981 case SpvDecorationUniform:
982 case SpvDecorationUniformId:
983 case SpvDecorationLocation:
984 case SpvDecorationComponent:
985 case SpvDecorationOffset:
986 case SpvDecorationXfbBuffer:
987 case SpvDecorationXfbStride:
988 case SpvDecorationUserSemantic:
989 vtn_warn("Decoration only allowed for struct members: %s",
990 spirv_decoration_to_string(dec->decoration));
991 break;
992
993 case SpvDecorationStream:
994 /* We don't need to do anything here, as stream is filled up when
995 * aplying the decoration to a variable, just check that if it is not a
996 * struct member, it should be a struct.
997 */
998 vtn_assert(type->base_type == vtn_base_type_struct);
999 break;
1000
1001 case SpvDecorationRelaxedPrecision:
1002 case SpvDecorationSpecId:
1003 case SpvDecorationInvariant:
1004 case SpvDecorationRestrict:
1005 case SpvDecorationAliased:
1006 case SpvDecorationConstant:
1007 case SpvDecorationIndex:
1008 case SpvDecorationBinding:
1009 case SpvDecorationDescriptorSet:
1010 case SpvDecorationLinkageAttributes:
1011 case SpvDecorationNoContraction:
1012 case SpvDecorationInputAttachmentIndex:
1013 vtn_warn("Decoration not allowed on types: %s",
1014 spirv_decoration_to_string(dec->decoration));
1015 break;
1016
1017 case SpvDecorationCPacked:
1018 if (b->shader->info.stage != MESA_SHADER_KERNEL)
1019 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1020 spirv_decoration_to_string(dec->decoration));
1021 else
1022 type->packed = true;
1023 break;
1024
1025 case SpvDecorationSaturatedConversion:
1026 case SpvDecorationFuncParamAttr:
1027 case SpvDecorationFPRoundingMode:
1028 case SpvDecorationFPFastMathMode:
1029 case SpvDecorationAlignment:
1030 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1031 spirv_decoration_to_string(dec->decoration));
1032 break;
1033
1034 default:
1035 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1036 }
1037 }
1038
1039 static unsigned
1040 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
1041 {
1042 switch (format) {
1043 case SpvImageFormatUnknown: return 0; /* GL_NONE */
1044 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
1045 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
1046 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
1047 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
1048 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
1049 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
1050 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
1051 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
1052 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
1053 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
1054 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
1055 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
1056 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
1057 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
1058 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
1059 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
1060 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
1061 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
1062 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
1063 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
1064 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
1065 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
1066 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
1067 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
1068 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
1069 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
1070 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
1071 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
1072 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
1073 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
1074 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
1075 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
1076 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
1077 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
1078 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
1079 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
1080 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
1081 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
1082 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
1083 default:
1084 vtn_fail("Invalid image format: %s (%u)",
1085 spirv_imageformat_to_string(format), format);
1086 }
1087 }
1088
1089 static void
1090 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1091 const uint32_t *w, unsigned count)
1092 {
1093 struct vtn_value *val = NULL;
1094
1095 /* In order to properly handle forward declarations, we have to defer
1096 * allocation for pointer types.
1097 */
1098 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1099 val = vtn_push_value(b, w[1], vtn_value_type_type);
1100 vtn_fail_if(val->type != NULL,
1101 "Only pointers can have forward declarations");
1102 val->type = rzalloc(b, struct vtn_type);
1103 val->type->id = w[1];
1104 }
1105
1106 switch (opcode) {
1107 case SpvOpTypeVoid:
1108 val->type->base_type = vtn_base_type_void;
1109 val->type->type = glsl_void_type();
1110 break;
1111 case SpvOpTypeBool:
1112 val->type->base_type = vtn_base_type_scalar;
1113 val->type->type = glsl_bool_type();
1114 val->type->length = 1;
1115 break;
1116 case SpvOpTypeInt: {
1117 int bit_size = w[2];
1118 const bool signedness = w[3];
1119 val->type->base_type = vtn_base_type_scalar;
1120 switch (bit_size) {
1121 case 64:
1122 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1123 break;
1124 case 32:
1125 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1126 break;
1127 case 16:
1128 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1129 break;
1130 case 8:
1131 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1132 break;
1133 default:
1134 vtn_fail("Invalid int bit size: %u", bit_size);
1135 }
1136 val->type->length = 1;
1137 break;
1138 }
1139
1140 case SpvOpTypeFloat: {
1141 int bit_size = w[2];
1142 val->type->base_type = vtn_base_type_scalar;
1143 switch (bit_size) {
1144 case 16:
1145 val->type->type = glsl_float16_t_type();
1146 break;
1147 case 32:
1148 val->type->type = glsl_float_type();
1149 break;
1150 case 64:
1151 val->type->type = glsl_double_type();
1152 break;
1153 default:
1154 vtn_fail("Invalid float bit size: %u", bit_size);
1155 }
1156 val->type->length = 1;
1157 break;
1158 }
1159
1160 case SpvOpTypeVector: {
1161 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1162 unsigned elems = w[3];
1163
1164 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1165 "Base type for OpTypeVector must be a scalar");
1166 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1167 "Invalid component count for OpTypeVector");
1168
1169 val->type->base_type = vtn_base_type_vector;
1170 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1171 val->type->length = elems;
1172 val->type->stride = glsl_type_is_boolean(val->type->type)
1173 ? 4 : glsl_get_bit_size(base->type) / 8;
1174 val->type->array_element = base;
1175 break;
1176 }
1177
1178 case SpvOpTypeMatrix: {
1179 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1180 unsigned columns = w[3];
1181
1182 vtn_fail_if(base->base_type != vtn_base_type_vector,
1183 "Base type for OpTypeMatrix must be a vector");
1184 vtn_fail_if(columns < 2 || columns > 4,
1185 "Invalid column count for OpTypeMatrix");
1186
1187 val->type->base_type = vtn_base_type_matrix;
1188 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1189 glsl_get_vector_elements(base->type),
1190 columns);
1191 vtn_fail_if(glsl_type_is_error(val->type->type),
1192 "Unsupported base type for OpTypeMatrix");
1193 assert(!glsl_type_is_error(val->type->type));
1194 val->type->length = columns;
1195 val->type->array_element = base;
1196 val->type->row_major = false;
1197 val->type->stride = 0;
1198 break;
1199 }
1200
1201 case SpvOpTypeRuntimeArray:
1202 case SpvOpTypeArray: {
1203 struct vtn_type *array_element =
1204 vtn_value(b, w[2], vtn_value_type_type)->type;
1205
1206 if (opcode == SpvOpTypeRuntimeArray) {
1207 /* A length of 0 is used to denote unsized arrays */
1208 val->type->length = 0;
1209 } else {
1210 val->type->length = vtn_constant_uint(b, w[3]);
1211 }
1212
1213 val->type->base_type = vtn_base_type_array;
1214 val->type->array_element = array_element;
1215 if (b->shader->info.stage == MESA_SHADER_KERNEL)
1216 val->type->stride = glsl_get_cl_size(array_element->type);
1217
1218 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1219 val->type->type = glsl_array_type(array_element->type, val->type->length,
1220 val->type->stride);
1221 break;
1222 }
1223
1224 case SpvOpTypeStruct: {
1225 unsigned num_fields = count - 2;
1226 val->type->base_type = vtn_base_type_struct;
1227 val->type->length = num_fields;
1228 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1229 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1230 val->type->packed = false;
1231
1232 NIR_VLA(struct glsl_struct_field, fields, count);
1233 for (unsigned i = 0; i < num_fields; i++) {
1234 val->type->members[i] =
1235 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1236 fields[i] = (struct glsl_struct_field) {
1237 .type = val->type->members[i]->type,
1238 .name = ralloc_asprintf(b, "field%d", i),
1239 .location = -1,
1240 .offset = -1,
1241 };
1242 }
1243
1244 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1245 unsigned offset = 0;
1246 for (unsigned i = 0; i < num_fields; i++) {
1247 offset = align(offset, glsl_get_cl_alignment(fields[i].type));
1248 fields[i].offset = offset;
1249 offset += glsl_get_cl_size(fields[i].type);
1250 }
1251 }
1252
1253 struct member_decoration_ctx ctx = {
1254 .num_fields = num_fields,
1255 .fields = fields,
1256 .type = val->type
1257 };
1258
1259 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1260 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1261
1262 vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
1263
1264 const char *name = val->name;
1265
1266 if (val->type->block || val->type->buffer_block) {
1267 /* Packing will be ignored since types coming from SPIR-V are
1268 * explicitly laid out.
1269 */
1270 val->type->type = glsl_interface_type(fields, num_fields,
1271 /* packing */ 0, false,
1272 name ? name : "block");
1273 } else {
1274 val->type->type = glsl_struct_type(fields, num_fields,
1275 name ? name : "struct", false);
1276 }
1277 break;
1278 }
1279
1280 case SpvOpTypeFunction: {
1281 val->type->base_type = vtn_base_type_function;
1282 val->type->type = NULL;
1283
1284 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1285
1286 const unsigned num_params = count - 3;
1287 val->type->length = num_params;
1288 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1289 for (unsigned i = 0; i < count - 3; i++) {
1290 val->type->params[i] =
1291 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1292 }
1293 break;
1294 }
1295
1296 case SpvOpTypePointer:
1297 case SpvOpTypeForwardPointer: {
1298 /* We can't blindly push the value because it might be a forward
1299 * declaration.
1300 */
1301 val = vtn_untyped_value(b, w[1]);
1302
1303 SpvStorageClass storage_class = w[2];
1304
1305 if (val->value_type == vtn_value_type_invalid) {
1306 val->value_type = vtn_value_type_type;
1307 val->type = rzalloc(b, struct vtn_type);
1308 val->type->id = w[1];
1309 val->type->base_type = vtn_base_type_pointer;
1310 val->type->storage_class = storage_class;
1311
1312 /* These can actually be stored to nir_variables and used as SSA
1313 * values so they need a real glsl_type.
1314 */
1315 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1316 b, storage_class, NULL, NULL);
1317 val->type->type = nir_address_format_to_glsl_type(
1318 vtn_mode_to_address_format(b, mode));
1319 } else {
1320 vtn_fail_if(val->type->storage_class != storage_class,
1321 "The storage classes of an OpTypePointer and any "
1322 "OpTypeForwardPointers that provide forward "
1323 "declarations of it must match.");
1324 }
1325
1326 if (opcode == SpvOpTypePointer) {
1327 vtn_fail_if(val->type->deref != NULL,
1328 "While OpTypeForwardPointer can be used to provide a "
1329 "forward declaration of a pointer, OpTypePointer can "
1330 "only be used once for a given id.");
1331
1332 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1333
1334 /* Only certain storage classes use ArrayStride. The others (in
1335 * particular Workgroup) are expected to be laid out by the driver.
1336 */
1337 switch (storage_class) {
1338 case SpvStorageClassUniform:
1339 case SpvStorageClassPushConstant:
1340 case SpvStorageClassStorageBuffer:
1341 case SpvStorageClassPhysicalStorageBufferEXT:
1342 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1343 break;
1344 default:
1345 /* Nothing to do. */
1346 break;
1347 }
1348
1349 if (b->physical_ptrs) {
1350 switch (storage_class) {
1351 case SpvStorageClassFunction:
1352 case SpvStorageClassWorkgroup:
1353 case SpvStorageClassCrossWorkgroup:
1354 val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
1355 glsl_get_cl_alignment(val->type->deref->type));
1356 break;
1357 default:
1358 break;
1359 }
1360 }
1361 }
1362 break;
1363 }
1364
1365 case SpvOpTypeImage: {
1366 val->type->base_type = vtn_base_type_image;
1367
1368 const struct vtn_type *sampled_type =
1369 vtn_value(b, w[2], vtn_value_type_type)->type;
1370
1371 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1372 glsl_get_bit_size(sampled_type->type) != 32,
1373 "Sampled type of OpTypeImage must be a 32-bit scalar");
1374
1375 enum glsl_sampler_dim dim;
1376 switch ((SpvDim)w[3]) {
1377 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1378 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1379 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1380 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1381 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1382 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1383 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1384 default:
1385 vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
1386 spirv_dim_to_string((SpvDim)w[3]), w[3]);
1387 }
1388
1389 /* w[4]: as per Vulkan spec "Validation Rules within a Module",
1390 * The “Depth” operand of OpTypeImage is ignored.
1391 */
1392 bool is_array = w[5];
1393 bool multisampled = w[6];
1394 unsigned sampled = w[7];
1395 SpvImageFormat format = w[8];
1396
1397 if (count > 9)
1398 val->type->access_qualifier = w[9];
1399 else
1400 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1401
1402 if (multisampled) {
1403 if (dim == GLSL_SAMPLER_DIM_2D)
1404 dim = GLSL_SAMPLER_DIM_MS;
1405 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1406 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1407 else
1408 vtn_fail("Unsupported multisampled image type");
1409 }
1410
1411 val->type->image_format = translate_image_format(b, format);
1412
1413 enum glsl_base_type sampled_base_type =
1414 glsl_get_base_type(sampled_type->type);
1415 if (sampled == 1) {
1416 val->type->sampled = true;
1417 val->type->type = glsl_sampler_type(dim, false, is_array,
1418 sampled_base_type);
1419 } else if (sampled == 2) {
1420 val->type->sampled = false;
1421 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1422 } else {
1423 vtn_fail("We need to know if the image will be sampled");
1424 }
1425 break;
1426 }
1427
1428 case SpvOpTypeSampledImage:
1429 val->type->base_type = vtn_base_type_sampled_image;
1430 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1431 val->type->type = val->type->image->type;
1432 break;
1433
1434 case SpvOpTypeSampler:
1435 /* The actual sampler type here doesn't really matter. It gets
1436 * thrown away the moment you combine it with an image. What really
1437 * matters is that it's a sampler type as opposed to an integer type
1438 * so the backend knows what to do.
1439 */
1440 val->type->base_type = vtn_base_type_sampler;
1441 val->type->type = glsl_bare_sampler_type();
1442 break;
1443
1444 case SpvOpTypeOpaque:
1445 case SpvOpTypeEvent:
1446 case SpvOpTypeDeviceEvent:
1447 case SpvOpTypeReserveId:
1448 case SpvOpTypeQueue:
1449 case SpvOpTypePipe:
1450 default:
1451 vtn_fail_with_opcode("Unhandled opcode", opcode);
1452 }
1453
1454 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1455
1456 if (val->type->base_type == vtn_base_type_struct &&
1457 (val->type->block || val->type->buffer_block)) {
1458 for (unsigned i = 0; i < val->type->length; i++) {
1459 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1460 "Block and BufferBlock decorations cannot decorate a "
1461 "structure type that is nested at any level inside "
1462 "another structure type decorated with Block or "
1463 "BufferBlock.");
1464 }
1465 }
1466 }
1467
1468 static nir_constant *
1469 vtn_null_constant(struct vtn_builder *b, struct vtn_type *type)
1470 {
1471 nir_constant *c = rzalloc(b, nir_constant);
1472
1473 switch (type->base_type) {
1474 case vtn_base_type_scalar:
1475 case vtn_base_type_vector:
1476 /* Nothing to do here. It's already initialized to zero */
1477 break;
1478
1479 case vtn_base_type_pointer: {
1480 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1481 b, type->storage_class, type->deref, NULL);
1482 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
1483
1484 const nir_const_value *null_value = nir_address_format_null_value(addr_format);
1485 memcpy(c->values, null_value,
1486 sizeof(nir_const_value) * nir_address_format_num_components(addr_format));
1487 break;
1488 }
1489
1490 case vtn_base_type_void:
1491 case vtn_base_type_image:
1492 case vtn_base_type_sampler:
1493 case vtn_base_type_sampled_image:
1494 case vtn_base_type_function:
1495 /* For those we have to return something but it doesn't matter what. */
1496 break;
1497
1498 case vtn_base_type_matrix:
1499 case vtn_base_type_array:
1500 vtn_assert(type->length > 0);
1501 c->num_elements = type->length;
1502 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1503
1504 c->elements[0] = vtn_null_constant(b, type->array_element);
1505 for (unsigned i = 1; i < c->num_elements; i++)
1506 c->elements[i] = c->elements[0];
1507 break;
1508
1509 case vtn_base_type_struct:
1510 c->num_elements = type->length;
1511 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1512 for (unsigned i = 0; i < c->num_elements; i++)
1513 c->elements[i] = vtn_null_constant(b, type->members[i]);
1514 break;
1515
1516 default:
1517 vtn_fail("Invalid type for null constant");
1518 }
1519
1520 return c;
1521 }
1522
1523 static void
1524 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1525 int member, const struct vtn_decoration *dec,
1526 void *data)
1527 {
1528 vtn_assert(member == -1);
1529 if (dec->decoration != SpvDecorationSpecId)
1530 return;
1531
1532 struct spec_constant_value *const_value = data;
1533
1534 for (unsigned i = 0; i < b->num_specializations; i++) {
1535 if (b->specializations[i].id == dec->operands[0]) {
1536 if (const_value->is_double)
1537 const_value->data64 = b->specializations[i].data64;
1538 else
1539 const_value->data32 = b->specializations[i].data32;
1540 return;
1541 }
1542 }
1543 }
1544
1545 static uint32_t
1546 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1547 uint32_t const_value)
1548 {
1549 struct spec_constant_value data;
1550 data.is_double = false;
1551 data.data32 = const_value;
1552 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1553 return data.data32;
1554 }
1555
1556 static uint64_t
1557 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1558 uint64_t const_value)
1559 {
1560 struct spec_constant_value data;
1561 data.is_double = true;
1562 data.data64 = const_value;
1563 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1564 return data.data64;
1565 }
1566
1567 static void
1568 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1569 struct vtn_value *val,
1570 int member,
1571 const struct vtn_decoration *dec,
1572 void *data)
1573 {
1574 vtn_assert(member == -1);
1575 if (dec->decoration != SpvDecorationBuiltIn ||
1576 dec->operands[0] != SpvBuiltInWorkgroupSize)
1577 return;
1578
1579 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1580 b->workgroup_size_builtin = val;
1581 }
1582
1583 static void
1584 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1585 const uint32_t *w, unsigned count)
1586 {
1587 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1588 val->constant = rzalloc(b, nir_constant);
1589 switch (opcode) {
1590 case SpvOpConstantTrue:
1591 case SpvOpConstantFalse:
1592 case SpvOpSpecConstantTrue:
1593 case SpvOpSpecConstantFalse: {
1594 vtn_fail_if(val->type->type != glsl_bool_type(),
1595 "Result type of %s must be OpTypeBool",
1596 spirv_op_to_string(opcode));
1597
1598 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1599 opcode == SpvOpSpecConstantTrue);
1600
1601 if (opcode == SpvOpSpecConstantTrue ||
1602 opcode == SpvOpSpecConstantFalse)
1603 int_val = get_specialization(b, val, int_val);
1604
1605 val->constant->values[0].b = int_val != 0;
1606 break;
1607 }
1608
1609 case SpvOpConstant: {
1610 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1611 "Result type of %s must be a scalar",
1612 spirv_op_to_string(opcode));
1613 int bit_size = glsl_get_bit_size(val->type->type);
1614 switch (bit_size) {
1615 case 64:
1616 val->constant->values[0].u64 = vtn_u64_literal(&w[3]);
1617 break;
1618 case 32:
1619 val->constant->values[0].u32 = w[3];
1620 break;
1621 case 16:
1622 val->constant->values[0].u16 = w[3];
1623 break;
1624 case 8:
1625 val->constant->values[0].u8 = w[3];
1626 break;
1627 default:
1628 vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
1629 }
1630 break;
1631 }
1632
1633 case SpvOpSpecConstant: {
1634 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1635 "Result type of %s must be a scalar",
1636 spirv_op_to_string(opcode));
1637 int bit_size = glsl_get_bit_size(val->type->type);
1638 switch (bit_size) {
1639 case 64:
1640 val->constant->values[0].u64 =
1641 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1642 break;
1643 case 32:
1644 val->constant->values[0].u32 = get_specialization(b, val, w[3]);
1645 break;
1646 case 16:
1647 val->constant->values[0].u16 = get_specialization(b, val, w[3]);
1648 break;
1649 case 8:
1650 val->constant->values[0].u8 = get_specialization(b, val, w[3]);
1651 break;
1652 default:
1653 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1654 }
1655 break;
1656 }
1657
1658 case SpvOpSpecConstantComposite:
1659 case SpvOpConstantComposite: {
1660 unsigned elem_count = count - 3;
1661 vtn_fail_if(elem_count != val->type->length,
1662 "%s has %u constituents, expected %u",
1663 spirv_op_to_string(opcode), elem_count, val->type->length);
1664
1665 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1666 for (unsigned i = 0; i < elem_count; i++) {
1667 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1668
1669 if (val->value_type == vtn_value_type_constant) {
1670 elems[i] = val->constant;
1671 } else {
1672 vtn_fail_if(val->value_type != vtn_value_type_undef,
1673 "only constants or undefs allowed for "
1674 "SpvOpConstantComposite");
1675 /* to make it easier, just insert a NULL constant for now */
1676 elems[i] = vtn_null_constant(b, val->type);
1677 }
1678 }
1679
1680 switch (val->type->base_type) {
1681 case vtn_base_type_vector: {
1682 assert(glsl_type_is_vector(val->type->type));
1683 for (unsigned i = 0; i < elem_count; i++)
1684 val->constant->values[i] = elems[i]->values[0];
1685 break;
1686 }
1687
1688 case vtn_base_type_matrix:
1689 case vtn_base_type_struct:
1690 case vtn_base_type_array:
1691 ralloc_steal(val->constant, elems);
1692 val->constant->num_elements = elem_count;
1693 val->constant->elements = elems;
1694 break;
1695
1696 default:
1697 vtn_fail("Result type of %s must be a composite type",
1698 spirv_op_to_string(opcode));
1699 }
1700 break;
1701 }
1702
1703 case SpvOpSpecConstantOp: {
1704 SpvOp opcode = get_specialization(b, val, w[3]);
1705 switch (opcode) {
1706 case SpvOpVectorShuffle: {
1707 struct vtn_value *v0 = &b->values[w[4]];
1708 struct vtn_value *v1 = &b->values[w[5]];
1709
1710 vtn_assert(v0->value_type == vtn_value_type_constant ||
1711 v0->value_type == vtn_value_type_undef);
1712 vtn_assert(v1->value_type == vtn_value_type_constant ||
1713 v1->value_type == vtn_value_type_undef);
1714
1715 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1716 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1717
1718 vtn_assert(len0 + len1 < 16);
1719
1720 unsigned bit_size = glsl_get_bit_size(val->type->type);
1721 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1722 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1723
1724 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1725 (void)bit_size0; (void)bit_size1;
1726
1727 nir_const_value undef = { .u64 = 0xdeadbeefdeadbeef };
1728 nir_const_value combined[NIR_MAX_VEC_COMPONENTS * 2];
1729
1730 if (v0->value_type == vtn_value_type_constant) {
1731 for (unsigned i = 0; i < len0; i++)
1732 combined[i] = v0->constant->values[i];
1733 }
1734 if (v1->value_type == vtn_value_type_constant) {
1735 for (unsigned i = 0; i < len1; i++)
1736 combined[len0 + i] = v1->constant->values[i];
1737 }
1738
1739 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1740 uint32_t comp = w[i + 6];
1741 if (comp == (uint32_t)-1) {
1742 /* If component is not used, set the value to a known constant
1743 * to detect if it is wrongly used.
1744 */
1745 val->constant->values[j] = undef;
1746 } else {
1747 vtn_fail_if(comp >= len0 + len1,
1748 "All Component literals must either be FFFFFFFF "
1749 "or in [0, N - 1] (inclusive).");
1750 val->constant->values[j] = combined[comp];
1751 }
1752 }
1753 break;
1754 }
1755
1756 case SpvOpCompositeExtract:
1757 case SpvOpCompositeInsert: {
1758 struct vtn_value *comp;
1759 unsigned deref_start;
1760 struct nir_constant **c;
1761 if (opcode == SpvOpCompositeExtract) {
1762 comp = vtn_value(b, w[4], vtn_value_type_constant);
1763 deref_start = 5;
1764 c = &comp->constant;
1765 } else {
1766 comp = vtn_value(b, w[5], vtn_value_type_constant);
1767 deref_start = 6;
1768 val->constant = nir_constant_clone(comp->constant,
1769 (nir_variable *)b);
1770 c = &val->constant;
1771 }
1772
1773 int elem = -1;
1774 const struct vtn_type *type = comp->type;
1775 for (unsigned i = deref_start; i < count; i++) {
1776 vtn_fail_if(w[i] > type->length,
1777 "%uth index of %s is %u but the type has only "
1778 "%u elements", i - deref_start,
1779 spirv_op_to_string(opcode), w[i], type->length);
1780
1781 switch (type->base_type) {
1782 case vtn_base_type_vector:
1783 elem = w[i];
1784 type = type->array_element;
1785 break;
1786
1787 case vtn_base_type_matrix:
1788 case vtn_base_type_array:
1789 c = &(*c)->elements[w[i]];
1790 type = type->array_element;
1791 break;
1792
1793 case vtn_base_type_struct:
1794 c = &(*c)->elements[w[i]];
1795 type = type->members[w[i]];
1796 break;
1797
1798 default:
1799 vtn_fail("%s must only index into composite types",
1800 spirv_op_to_string(opcode));
1801 }
1802 }
1803
1804 if (opcode == SpvOpCompositeExtract) {
1805 if (elem == -1) {
1806 val->constant = *c;
1807 } else {
1808 unsigned num_components = type->length;
1809 for (unsigned i = 0; i < num_components; i++)
1810 val->constant->values[i] = (*c)->values[elem + i];
1811 }
1812 } else {
1813 struct vtn_value *insert =
1814 vtn_value(b, w[4], vtn_value_type_constant);
1815 vtn_assert(insert->type == type);
1816 if (elem == -1) {
1817 *c = insert->constant;
1818 } else {
1819 unsigned num_components = type->length;
1820 for (unsigned i = 0; i < num_components; i++)
1821 (*c)->values[elem + i] = insert->constant->values[i];
1822 }
1823 }
1824 break;
1825 }
1826
1827 default: {
1828 bool swap;
1829 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1830 nir_alu_type src_alu_type = dst_alu_type;
1831 unsigned num_components = glsl_get_vector_elements(val->type->type);
1832 unsigned bit_size;
1833
1834 vtn_assert(count <= 7);
1835
1836 switch (opcode) {
1837 case SpvOpSConvert:
1838 case SpvOpFConvert:
1839 case SpvOpUConvert:
1840 /* We have a source in a conversion */
1841 src_alu_type =
1842 nir_get_nir_type_for_glsl_type(
1843 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1844 /* We use the bitsize of the conversion source to evaluate the opcode later */
1845 bit_size = glsl_get_bit_size(
1846 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1847 break;
1848 default:
1849 bit_size = glsl_get_bit_size(val->type->type);
1850 };
1851
1852 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1853 nir_alu_type_get_type_size(src_alu_type),
1854 nir_alu_type_get_type_size(dst_alu_type));
1855 nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
1856
1857 for (unsigned i = 0; i < count - 4; i++) {
1858 struct vtn_value *src_val =
1859 vtn_value(b, w[4 + i], vtn_value_type_constant);
1860
1861 /* If this is an unsized source, pull the bit size from the
1862 * source; otherwise, we'll use the bit size from the destination.
1863 */
1864 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1865 bit_size = glsl_get_bit_size(src_val->type->type);
1866
1867 unsigned src_comps = nir_op_infos[op].input_sizes[i] ?
1868 nir_op_infos[op].input_sizes[i] :
1869 num_components;
1870
1871 unsigned j = swap ? 1 - i : i;
1872 for (unsigned c = 0; c < src_comps; c++)
1873 src[j][c] = src_val->constant->values[c];
1874 }
1875
1876 /* fix up fixed size sources */
1877 switch (op) {
1878 case nir_op_ishl:
1879 case nir_op_ishr:
1880 case nir_op_ushr: {
1881 if (bit_size == 32)
1882 break;
1883 for (unsigned i = 0; i < num_components; ++i) {
1884 switch (bit_size) {
1885 case 64: src[1][i].u32 = src[1][i].u64; break;
1886 case 16: src[1][i].u32 = src[1][i].u16; break;
1887 case 8: src[1][i].u32 = src[1][i].u8; break;
1888 }
1889 }
1890 break;
1891 }
1892 default:
1893 break;
1894 }
1895
1896 nir_const_value *srcs[3] = {
1897 src[0], src[1], src[2],
1898 };
1899 nir_eval_const_opcode(op, val->constant->values,
1900 num_components, bit_size, srcs,
1901 b->shader->info.float_controls_execution_mode);
1902 break;
1903 } /* default */
1904 }
1905 break;
1906 }
1907
1908 case SpvOpConstantNull:
1909 val->constant = vtn_null_constant(b, val->type);
1910 break;
1911
1912 case SpvOpConstantSampler:
1913 vtn_fail("OpConstantSampler requires Kernel Capability");
1914 break;
1915
1916 default:
1917 vtn_fail_with_opcode("Unhandled opcode", opcode);
1918 }
1919
1920 /* Now that we have the value, update the workgroup size if needed */
1921 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1922 }
1923
1924 SpvMemorySemanticsMask
1925 vtn_storage_class_to_memory_semantics(SpvStorageClass sc)
1926 {
1927 switch (sc) {
1928 case SpvStorageClassStorageBuffer:
1929 case SpvStorageClassPhysicalStorageBufferEXT:
1930 return SpvMemorySemanticsUniformMemoryMask;
1931 case SpvStorageClassWorkgroup:
1932 return SpvMemorySemanticsWorkgroupMemoryMask;
1933 default:
1934 return SpvMemorySemanticsMaskNone;
1935 }
1936 }
1937
1938 static void
1939 vtn_split_barrier_semantics(struct vtn_builder *b,
1940 SpvMemorySemanticsMask semantics,
1941 SpvMemorySemanticsMask *before,
1942 SpvMemorySemanticsMask *after)
1943 {
1944 /* For memory semantics embedded in operations, we split them into up to
1945 * two barriers, to be added before and after the operation. This is less
1946 * strict than if we propagated until the final backend stage, but still
1947 * result in correct execution.
1948 *
1949 * A further improvement could be pipe this information (and use!) into the
1950 * next compiler layers, at the expense of making the handling of barriers
1951 * more complicated.
1952 */
1953
1954 *before = SpvMemorySemanticsMaskNone;
1955 *after = SpvMemorySemanticsMaskNone;
1956
1957 const SpvMemorySemanticsMask order_semantics =
1958 semantics & (SpvMemorySemanticsAcquireMask |
1959 SpvMemorySemanticsReleaseMask |
1960 SpvMemorySemanticsAcquireReleaseMask |
1961 SpvMemorySemanticsSequentiallyConsistentMask);
1962
1963 const SpvMemorySemanticsMask av_vis_semantics =
1964 semantics & (SpvMemorySemanticsMakeAvailableMask |
1965 SpvMemorySemanticsMakeVisibleMask);
1966
1967 const SpvMemorySemanticsMask storage_semantics =
1968 semantics & (SpvMemorySemanticsUniformMemoryMask |
1969 SpvMemorySemanticsSubgroupMemoryMask |
1970 SpvMemorySemanticsWorkgroupMemoryMask |
1971 SpvMemorySemanticsCrossWorkgroupMemoryMask |
1972 SpvMemorySemanticsAtomicCounterMemoryMask |
1973 SpvMemorySemanticsImageMemoryMask |
1974 SpvMemorySemanticsOutputMemoryMask);
1975
1976 const SpvMemorySemanticsMask other_semantics =
1977 semantics & ~(order_semantics | av_vis_semantics | storage_semantics);
1978
1979 if (other_semantics)
1980 vtn_warn("Ignoring unhandled memory semantics: %u\n", other_semantics);
1981
1982 vtn_fail_if(util_bitcount(order_semantics) > 1,
1983 "Multiple memory ordering bits specified");
1984
1985 /* SequentiallyConsistent is treated as AcquireRelease. */
1986
1987 /* The RELEASE barrier happens BEFORE the operation, and it is usually
1988 * associated with a Store. All the write operations with a matching
1989 * semantics will not be reordered after the Store.
1990 */
1991 if (order_semantics & (SpvMemorySemanticsReleaseMask |
1992 SpvMemorySemanticsAcquireReleaseMask |
1993 SpvMemorySemanticsSequentiallyConsistentMask)) {
1994 *before |= SpvMemorySemanticsReleaseMask | storage_semantics;
1995 }
1996
1997 /* The ACQUIRE barrier happens AFTER the operation, and it is usually
1998 * associated with a Load. All the operations with a matching semantics
1999 * will not be reordered before the Load.
2000 */
2001 if (order_semantics & (SpvMemorySemanticsAcquireMask |
2002 SpvMemorySemanticsAcquireReleaseMask |
2003 SpvMemorySemanticsSequentiallyConsistentMask)) {
2004 *after |= SpvMemorySemanticsAcquireMask | storage_semantics;
2005 }
2006
2007 if (av_vis_semantics & SpvMemorySemanticsMakeVisibleMask)
2008 *before |= SpvMemorySemanticsMakeVisibleMask | storage_semantics;
2009
2010 if (av_vis_semantics & SpvMemorySemanticsMakeAvailableMask)
2011 *after |= SpvMemorySemanticsMakeAvailableMask | storage_semantics;
2012 }
2013
2014 static void
2015 vtn_emit_scoped_memory_barrier(struct vtn_builder *b, SpvScope scope,
2016 SpvMemorySemanticsMask semantics)
2017 {
2018 nir_memory_semantics nir_semantics = 0;
2019 switch (semantics & (SpvMemorySemanticsAcquireMask |
2020 SpvMemorySemanticsReleaseMask |
2021 SpvMemorySemanticsAcquireReleaseMask |
2022 SpvMemorySemanticsSequentiallyConsistentMask)) {
2023 case 0:
2024 /* Not an ordering barrier. */
2025 break;
2026
2027 case SpvMemorySemanticsAcquireMask:
2028 nir_semantics = NIR_MEMORY_ACQUIRE;
2029 break;
2030
2031 case SpvMemorySemanticsReleaseMask:
2032 nir_semantics = NIR_MEMORY_RELEASE;
2033 break;
2034
2035 case SpvMemorySemanticsSequentiallyConsistentMask:
2036 /* Fall through. Treated as AcquireRelease in Vulkan. */
2037 case SpvMemorySemanticsAcquireReleaseMask:
2038 nir_semantics = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE;
2039 break;
2040
2041 default:
2042 vtn_fail("Multiple memory ordering bits specified");
2043 }
2044
2045 if (semantics & SpvMemorySemanticsMakeAvailableMask) {
2046 vtn_fail_if(!b->options->caps.vk_memory_model,
2047 "To use MakeAvailable memory semantics the VulkanMemoryModel "
2048 "capability must be declared.");
2049 nir_semantics |= NIR_MEMORY_MAKE_AVAILABLE;
2050 }
2051
2052 if (semantics & SpvMemorySemanticsMakeVisibleMask) {
2053 vtn_fail_if(!b->options->caps.vk_memory_model,
2054 "To use MakeVisible memory semantics the VulkanMemoryModel "
2055 "capability must be declared.");
2056 nir_semantics |= NIR_MEMORY_MAKE_VISIBLE;
2057 }
2058
2059 /* Vulkan Environment for SPIR-V says "SubgroupMemory, CrossWorkgroupMemory,
2060 * and AtomicCounterMemory are ignored".
2061 */
2062 semantics &= ~(SpvMemorySemanticsSubgroupMemoryMask |
2063 SpvMemorySemanticsCrossWorkgroupMemoryMask |
2064 SpvMemorySemanticsAtomicCounterMemoryMask);
2065
2066 /* TODO: Consider adding nir_var_mem_image mode to NIR so it can be used
2067 * for SpvMemorySemanticsImageMemoryMask.
2068 */
2069
2070 nir_variable_mode modes = 0;
2071 if (semantics & (SpvMemorySemanticsUniformMemoryMask |
2072 SpvMemorySemanticsImageMemoryMask))
2073 modes |= nir_var_mem_ubo | nir_var_mem_ssbo | nir_var_uniform;
2074 if (semantics & SpvMemorySemanticsWorkgroupMemoryMask)
2075 modes |= nir_var_mem_shared;
2076 if (semantics & SpvMemorySemanticsOutputMemoryMask) {
2077 vtn_fail_if(!b->options->caps.vk_memory_model,
2078 "To use Output memory semantics, the VulkanMemoryModel "
2079 "capability must be declared.");
2080 modes |= nir_var_shader_out;
2081 }
2082
2083 /* No barrier to add. */
2084 if (nir_semantics == 0 || modes == 0)
2085 return;
2086
2087 nir_scope nir_scope;
2088 switch (scope) {
2089 case SpvScopeDevice:
2090 vtn_fail_if(b->options->caps.vk_memory_model &&
2091 !b->options->caps.vk_memory_model_device_scope,
2092 "If the Vulkan memory model is declared and any instruction "
2093 "uses Device scope, the VulkanMemoryModelDeviceScope "
2094 "capability must be declared.");
2095 nir_scope = NIR_SCOPE_DEVICE;
2096 break;
2097
2098 case SpvScopeQueueFamily:
2099 vtn_fail_if(!b->options->caps.vk_memory_model,
2100 "To use Queue Family scope, the VulkanMemoryModel capability "
2101 "must be declared.");
2102 nir_scope = NIR_SCOPE_QUEUE_FAMILY;
2103 break;
2104
2105 case SpvScopeWorkgroup:
2106 nir_scope = NIR_SCOPE_WORKGROUP;
2107 break;
2108
2109 case SpvScopeSubgroup:
2110 nir_scope = NIR_SCOPE_SUBGROUP;
2111 break;
2112
2113 case SpvScopeInvocation:
2114 nir_scope = NIR_SCOPE_INVOCATION;
2115 break;
2116
2117 default:
2118 vtn_fail("Invalid memory scope");
2119 }
2120
2121 nir_intrinsic_instr *intrin =
2122 nir_intrinsic_instr_create(b->shader, nir_intrinsic_scoped_memory_barrier);
2123 nir_intrinsic_set_memory_semantics(intrin, nir_semantics);
2124
2125 nir_intrinsic_set_memory_modes(intrin, modes);
2126 nir_intrinsic_set_memory_scope(intrin, nir_scope);
2127 nir_builder_instr_insert(&b->nb, &intrin->instr);
2128 }
2129
2130 struct vtn_ssa_value *
2131 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
2132 {
2133 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
2134 val->type = type;
2135
2136 if (!glsl_type_is_vector_or_scalar(type)) {
2137 unsigned elems = glsl_get_length(type);
2138 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2139 for (unsigned i = 0; i < elems; i++) {
2140 const struct glsl_type *child_type;
2141
2142 switch (glsl_get_base_type(type)) {
2143 case GLSL_TYPE_INT:
2144 case GLSL_TYPE_UINT:
2145 case GLSL_TYPE_INT16:
2146 case GLSL_TYPE_UINT16:
2147 case GLSL_TYPE_UINT8:
2148 case GLSL_TYPE_INT8:
2149 case GLSL_TYPE_INT64:
2150 case GLSL_TYPE_UINT64:
2151 case GLSL_TYPE_BOOL:
2152 case GLSL_TYPE_FLOAT:
2153 case GLSL_TYPE_FLOAT16:
2154 case GLSL_TYPE_DOUBLE:
2155 child_type = glsl_get_column_type(type);
2156 break;
2157 case GLSL_TYPE_ARRAY:
2158 child_type = glsl_get_array_element(type);
2159 break;
2160 case GLSL_TYPE_STRUCT:
2161 case GLSL_TYPE_INTERFACE:
2162 child_type = glsl_get_struct_field(type, i);
2163 break;
2164 default:
2165 vtn_fail("unkown base type");
2166 }
2167
2168 val->elems[i] = vtn_create_ssa_value(b, child_type);
2169 }
2170 }
2171
2172 return val;
2173 }
2174
2175 static nir_tex_src
2176 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
2177 {
2178 nir_tex_src src;
2179 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
2180 src.src_type = type;
2181 return src;
2182 }
2183
2184 static void
2185 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
2186 const uint32_t *w, unsigned count)
2187 {
2188 if (opcode == SpvOpSampledImage) {
2189 struct vtn_value *val =
2190 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2191 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2192 val->sampled_image->type =
2193 vtn_value(b, w[1], vtn_value_type_type)->type;
2194 val->sampled_image->image =
2195 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2196 val->sampled_image->sampler =
2197 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
2198 return;
2199 } else if (opcode == SpvOpImage) {
2200 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
2201 if (src_val->value_type == vtn_value_type_sampled_image) {
2202 vtn_push_value_pointer(b, w[2], src_val->sampled_image->image);
2203 } else {
2204 vtn_assert(src_val->value_type == vtn_value_type_pointer);
2205 vtn_push_value_pointer(b, w[2], src_val->pointer);
2206 }
2207 return;
2208 }
2209
2210 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2211
2212 struct vtn_sampled_image sampled;
2213 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2214 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2215 sampled = *sampled_val->sampled_image;
2216 } else {
2217 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2218 sampled.type = sampled_val->pointer->type;
2219 sampled.image = NULL;
2220 sampled.sampler = sampled_val->pointer;
2221 }
2222
2223 const struct glsl_type *image_type = sampled.type->type;
2224 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2225 const bool is_array = glsl_sampler_type_is_array(image_type);
2226 nir_alu_type dest_type = nir_type_invalid;
2227
2228 /* Figure out the base texture operation */
2229 nir_texop texop;
2230 switch (opcode) {
2231 case SpvOpImageSampleImplicitLod:
2232 case SpvOpImageSampleDrefImplicitLod:
2233 case SpvOpImageSampleProjImplicitLod:
2234 case SpvOpImageSampleProjDrefImplicitLod:
2235 texop = nir_texop_tex;
2236 break;
2237
2238 case SpvOpImageSampleExplicitLod:
2239 case SpvOpImageSampleDrefExplicitLod:
2240 case SpvOpImageSampleProjExplicitLod:
2241 case SpvOpImageSampleProjDrefExplicitLod:
2242 texop = nir_texop_txl;
2243 break;
2244
2245 case SpvOpImageFetch:
2246 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
2247 texop = nir_texop_txf_ms;
2248 } else {
2249 texop = nir_texop_txf;
2250 }
2251 break;
2252
2253 case SpvOpImageGather:
2254 case SpvOpImageDrefGather:
2255 texop = nir_texop_tg4;
2256 break;
2257
2258 case SpvOpImageQuerySizeLod:
2259 case SpvOpImageQuerySize:
2260 texop = nir_texop_txs;
2261 dest_type = nir_type_int;
2262 break;
2263
2264 case SpvOpImageQueryLod:
2265 texop = nir_texop_lod;
2266 dest_type = nir_type_float;
2267 break;
2268
2269 case SpvOpImageQueryLevels:
2270 texop = nir_texop_query_levels;
2271 dest_type = nir_type_int;
2272 break;
2273
2274 case SpvOpImageQuerySamples:
2275 texop = nir_texop_texture_samples;
2276 dest_type = nir_type_int;
2277 break;
2278
2279 default:
2280 vtn_fail_with_opcode("Unhandled opcode", opcode);
2281 }
2282
2283 nir_tex_src srcs[10]; /* 10 should be enough */
2284 nir_tex_src *p = srcs;
2285
2286 nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2287 nir_deref_instr *texture =
2288 sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler;
2289
2290 p->src = nir_src_for_ssa(&texture->dest.ssa);
2291 p->src_type = nir_tex_src_texture_deref;
2292 p++;
2293
2294 switch (texop) {
2295 case nir_texop_tex:
2296 case nir_texop_txb:
2297 case nir_texop_txl:
2298 case nir_texop_txd:
2299 case nir_texop_tg4:
2300 case nir_texop_lod:
2301 /* These operations require a sampler */
2302 p->src = nir_src_for_ssa(&sampler->dest.ssa);
2303 p->src_type = nir_tex_src_sampler_deref;
2304 p++;
2305 break;
2306 case nir_texop_txf:
2307 case nir_texop_txf_ms:
2308 case nir_texop_txs:
2309 case nir_texop_query_levels:
2310 case nir_texop_texture_samples:
2311 case nir_texop_samples_identical:
2312 /* These don't */
2313 break;
2314 case nir_texop_txf_ms_fb:
2315 vtn_fail("unexpected nir_texop_txf_ms_fb");
2316 break;
2317 case nir_texop_txf_ms_mcs:
2318 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2319 case nir_texop_tex_prefetch:
2320 vtn_fail("unexpected nir_texop_tex_prefetch");
2321 }
2322
2323 unsigned idx = 4;
2324
2325 struct nir_ssa_def *coord;
2326 unsigned coord_components;
2327 switch (opcode) {
2328 case SpvOpImageSampleImplicitLod:
2329 case SpvOpImageSampleExplicitLod:
2330 case SpvOpImageSampleDrefImplicitLod:
2331 case SpvOpImageSampleDrefExplicitLod:
2332 case SpvOpImageSampleProjImplicitLod:
2333 case SpvOpImageSampleProjExplicitLod:
2334 case SpvOpImageSampleProjDrefImplicitLod:
2335 case SpvOpImageSampleProjDrefExplicitLod:
2336 case SpvOpImageFetch:
2337 case SpvOpImageGather:
2338 case SpvOpImageDrefGather:
2339 case SpvOpImageQueryLod: {
2340 /* All these types have the coordinate as their first real argument */
2341 switch (sampler_dim) {
2342 case GLSL_SAMPLER_DIM_1D:
2343 case GLSL_SAMPLER_DIM_BUF:
2344 coord_components = 1;
2345 break;
2346 case GLSL_SAMPLER_DIM_2D:
2347 case GLSL_SAMPLER_DIM_RECT:
2348 case GLSL_SAMPLER_DIM_MS:
2349 coord_components = 2;
2350 break;
2351 case GLSL_SAMPLER_DIM_3D:
2352 case GLSL_SAMPLER_DIM_CUBE:
2353 coord_components = 3;
2354 break;
2355 default:
2356 vtn_fail("Invalid sampler type");
2357 }
2358
2359 if (is_array && texop != nir_texop_lod)
2360 coord_components++;
2361
2362 coord = vtn_ssa_value(b, w[idx++])->def;
2363 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2364 (1 << coord_components) - 1));
2365 p->src_type = nir_tex_src_coord;
2366 p++;
2367 break;
2368 }
2369
2370 default:
2371 coord = NULL;
2372 coord_components = 0;
2373 break;
2374 }
2375
2376 switch (opcode) {
2377 case SpvOpImageSampleProjImplicitLod:
2378 case SpvOpImageSampleProjExplicitLod:
2379 case SpvOpImageSampleProjDrefImplicitLod:
2380 case SpvOpImageSampleProjDrefExplicitLod:
2381 /* These have the projector as the last coordinate component */
2382 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2383 p->src_type = nir_tex_src_projector;
2384 p++;
2385 break;
2386
2387 default:
2388 break;
2389 }
2390
2391 bool is_shadow = false;
2392 unsigned gather_component = 0;
2393 switch (opcode) {
2394 case SpvOpImageSampleDrefImplicitLod:
2395 case SpvOpImageSampleDrefExplicitLod:
2396 case SpvOpImageSampleProjDrefImplicitLod:
2397 case SpvOpImageSampleProjDrefExplicitLod:
2398 case SpvOpImageDrefGather:
2399 /* These all have an explicit depth value as their next source */
2400 is_shadow = true;
2401 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2402 break;
2403
2404 case SpvOpImageGather:
2405 /* This has a component as its next source */
2406 gather_component = vtn_constant_uint(b, w[idx++]);
2407 break;
2408
2409 default:
2410 break;
2411 }
2412
2413 /* For OpImageQuerySizeLod, we always have an LOD */
2414 if (opcode == SpvOpImageQuerySizeLod)
2415 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2416
2417 /* Now we need to handle some number of optional arguments */
2418 struct vtn_value *gather_offsets = NULL;
2419 if (idx < count) {
2420 uint32_t operands = w[idx++];
2421
2422 if (operands & SpvImageOperandsBiasMask) {
2423 vtn_assert(texop == nir_texop_tex);
2424 texop = nir_texop_txb;
2425 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2426 }
2427
2428 if (operands & SpvImageOperandsLodMask) {
2429 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2430 texop == nir_texop_txs);
2431 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2432 }
2433
2434 if (operands & SpvImageOperandsGradMask) {
2435 vtn_assert(texop == nir_texop_txl);
2436 texop = nir_texop_txd;
2437 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2438 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2439 }
2440
2441 vtn_fail_if(util_bitcount(operands & (SpvImageOperandsConstOffsetsMask |
2442 SpvImageOperandsOffsetMask |
2443 SpvImageOperandsConstOffsetMask)) > 1,
2444 "At most one of the ConstOffset, Offset, and ConstOffsets "
2445 "image operands can be used on a given instruction.");
2446
2447 if (operands & SpvImageOperandsOffsetMask ||
2448 operands & SpvImageOperandsConstOffsetMask)
2449 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2450
2451 if (operands & SpvImageOperandsConstOffsetsMask) {
2452 vtn_assert(texop == nir_texop_tg4);
2453 gather_offsets = vtn_value(b, w[idx++], vtn_value_type_constant);
2454 }
2455
2456 if (operands & SpvImageOperandsSampleMask) {
2457 vtn_assert(texop == nir_texop_txf_ms);
2458 texop = nir_texop_txf_ms;
2459 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2460 }
2461
2462 if (operands & SpvImageOperandsMinLodMask) {
2463 vtn_assert(texop == nir_texop_tex ||
2464 texop == nir_texop_txb ||
2465 texop == nir_texop_txd);
2466 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod);
2467 }
2468 }
2469 /* We should have now consumed exactly all of the arguments */
2470 vtn_assert(idx == count);
2471
2472 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2473 instr->op = texop;
2474
2475 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2476
2477 instr->coord_components = coord_components;
2478 instr->sampler_dim = sampler_dim;
2479 instr->is_array = is_array;
2480 instr->is_shadow = is_shadow;
2481 instr->is_new_style_shadow =
2482 is_shadow && glsl_get_components(ret_type->type) == 1;
2483 instr->component = gather_component;
2484
2485 if (sampled.image && (sampled.image->access & ACCESS_NON_UNIFORM))
2486 instr->texture_non_uniform = true;
2487
2488 if (sampled.sampler && (sampled.sampler->access & ACCESS_NON_UNIFORM))
2489 instr->sampler_non_uniform = true;
2490
2491 /* for non-query ops, get dest_type from sampler type */
2492 if (dest_type == nir_type_invalid) {
2493 switch (glsl_get_sampler_result_type(image_type)) {
2494 case GLSL_TYPE_FLOAT: dest_type = nir_type_float; break;
2495 case GLSL_TYPE_INT: dest_type = nir_type_int; break;
2496 case GLSL_TYPE_UINT: dest_type = nir_type_uint; break;
2497 case GLSL_TYPE_BOOL: dest_type = nir_type_bool; break;
2498 default:
2499 vtn_fail("Invalid base type for sampler result");
2500 }
2501 }
2502
2503 instr->dest_type = dest_type;
2504
2505 nir_ssa_dest_init(&instr->instr, &instr->dest,
2506 nir_tex_instr_dest_size(instr), 32, NULL);
2507
2508 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2509 nir_tex_instr_dest_size(instr));
2510
2511 if (gather_offsets) {
2512 vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
2513 gather_offsets->type->length != 4,
2514 "ConstOffsets must be an array of size four of vectors "
2515 "of two integer components");
2516
2517 struct vtn_type *vec_type = gather_offsets->type->array_element;
2518 vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
2519 vec_type->length != 2 ||
2520 !glsl_type_is_integer(vec_type->type),
2521 "ConstOffsets must be an array of size four of vectors "
2522 "of two integer components");
2523
2524 unsigned bit_size = glsl_get_bit_size(vec_type->type);
2525 for (uint32_t i = 0; i < 4; i++) {
2526 const nir_const_value *cvec =
2527 gather_offsets->constant->elements[i]->values;
2528 for (uint32_t j = 0; j < 2; j++) {
2529 switch (bit_size) {
2530 case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
2531 case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
2532 case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
2533 case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
2534 default:
2535 vtn_fail("Unsupported bit size: %u", bit_size);
2536 }
2537 }
2538 }
2539 }
2540
2541 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, ret_type->type);
2542 ssa->def = &instr->dest.ssa;
2543 vtn_push_ssa(b, w[2], ret_type, ssa);
2544
2545 nir_builder_instr_insert(&b->nb, &instr->instr);
2546 }
2547
2548 static void
2549 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2550 const uint32_t *w, nir_src *src)
2551 {
2552 switch (opcode) {
2553 case SpvOpAtomicIIncrement:
2554 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2555 break;
2556
2557 case SpvOpAtomicIDecrement:
2558 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2559 break;
2560
2561 case SpvOpAtomicISub:
2562 src[0] =
2563 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2564 break;
2565
2566 case SpvOpAtomicCompareExchange:
2567 case SpvOpAtomicCompareExchangeWeak:
2568 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2569 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2570 break;
2571
2572 case SpvOpAtomicExchange:
2573 case SpvOpAtomicIAdd:
2574 case SpvOpAtomicSMin:
2575 case SpvOpAtomicUMin:
2576 case SpvOpAtomicSMax:
2577 case SpvOpAtomicUMax:
2578 case SpvOpAtomicAnd:
2579 case SpvOpAtomicOr:
2580 case SpvOpAtomicXor:
2581 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2582 break;
2583
2584 default:
2585 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2586 }
2587 }
2588
2589 static nir_ssa_def *
2590 get_image_coord(struct vtn_builder *b, uint32_t value)
2591 {
2592 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2593
2594 /* The image_load_store intrinsics assume a 4-dim coordinate */
2595 unsigned dim = glsl_get_vector_elements(coord->type);
2596 unsigned swizzle[4];
2597 for (unsigned i = 0; i < 4; i++)
2598 swizzle[i] = MIN2(i, dim - 1);
2599
2600 return nir_swizzle(&b->nb, coord->def, swizzle, 4);
2601 }
2602
2603 static nir_ssa_def *
2604 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2605 {
2606 if (value->num_components == 4)
2607 return value;
2608
2609 unsigned swiz[4];
2610 for (unsigned i = 0; i < 4; i++)
2611 swiz[i] = i < value->num_components ? i : 0;
2612 return nir_swizzle(b, value, swiz, 4);
2613 }
2614
2615 static void
2616 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2617 const uint32_t *w, unsigned count)
2618 {
2619 /* Just get this one out of the way */
2620 if (opcode == SpvOpImageTexelPointer) {
2621 struct vtn_value *val =
2622 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2623 val->image = ralloc(b, struct vtn_image_pointer);
2624
2625 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2626 val->image->coord = get_image_coord(b, w[4]);
2627 val->image->sample = vtn_ssa_value(b, w[5])->def;
2628 return;
2629 }
2630
2631 struct vtn_image_pointer image;
2632 SpvScope scope = SpvScopeInvocation;
2633 SpvMemorySemanticsMask semantics = 0;
2634
2635 switch (opcode) {
2636 case SpvOpAtomicExchange:
2637 case SpvOpAtomicCompareExchange:
2638 case SpvOpAtomicCompareExchangeWeak:
2639 case SpvOpAtomicIIncrement:
2640 case SpvOpAtomicIDecrement:
2641 case SpvOpAtomicIAdd:
2642 case SpvOpAtomicISub:
2643 case SpvOpAtomicLoad:
2644 case SpvOpAtomicSMin:
2645 case SpvOpAtomicUMin:
2646 case SpvOpAtomicSMax:
2647 case SpvOpAtomicUMax:
2648 case SpvOpAtomicAnd:
2649 case SpvOpAtomicOr:
2650 case SpvOpAtomicXor:
2651 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2652 scope = vtn_constant_uint(b, w[4]);
2653 semantics = vtn_constant_uint(b, w[5]);
2654 break;
2655
2656 case SpvOpAtomicStore:
2657 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2658 scope = vtn_constant_uint(b, w[2]);
2659 semantics = vtn_constant_uint(b, w[3]);
2660 break;
2661
2662 case SpvOpImageQuerySize:
2663 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2664 image.coord = NULL;
2665 image.sample = NULL;
2666 break;
2667
2668 case SpvOpImageRead: {
2669 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2670 image.coord = get_image_coord(b, w[4]);
2671
2672 const SpvImageOperandsMask operands =
2673 count > 5 ? w[5] : SpvImageOperandsMaskNone;
2674
2675 int idx = 6;
2676 if (operands & SpvImageOperandsSampleMask) {
2677 image.sample = vtn_ssa_value(b, w[idx])->def;
2678 idx++;
2679 } else {
2680 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2681 }
2682
2683 if (operands & SpvImageOperandsMakeTexelVisibleMask) {
2684 vtn_fail_if((operands & SpvImageOperandsNonPrivateTexelMask) == 0,
2685 "MakeTexelVisible requires NonPrivateTexel to also be set.");
2686 semantics = SpvMemorySemanticsMakeVisibleMask;
2687 scope = vtn_constant_uint(b, w[idx]);
2688 idx++;
2689 }
2690
2691 /* TODO: Volatile. */
2692
2693 break;
2694 }
2695
2696 case SpvOpImageWrite: {
2697 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2698 image.coord = get_image_coord(b, w[2]);
2699
2700 /* texel = w[3] */
2701
2702 const SpvImageOperandsMask operands =
2703 count > 4 ? w[4] : SpvImageOperandsMaskNone;
2704
2705 int idx = 5;
2706 if (operands & SpvImageOperandsSampleMask) {
2707 image.sample = vtn_ssa_value(b, w[idx])->def;
2708 idx++;
2709 } else {
2710 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2711 }
2712
2713 if (operands & SpvImageOperandsMakeTexelAvailableMask) {
2714 vtn_fail_if((operands & SpvImageOperandsNonPrivateTexelMask) == 0,
2715 "MakeTexelAvailable requires NonPrivateTexel to also be set.");
2716 semantics = SpvMemorySemanticsMakeAvailableMask;
2717 scope = vtn_constant_uint(b, w[idx]);
2718 }
2719
2720 /* TODO: Volatile. */
2721
2722 break;
2723 }
2724
2725 default:
2726 vtn_fail_with_opcode("Invalid image opcode", opcode);
2727 }
2728
2729 nir_intrinsic_op op;
2730 switch (opcode) {
2731 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2732 OP(ImageQuerySize, size)
2733 OP(ImageRead, load)
2734 OP(ImageWrite, store)
2735 OP(AtomicLoad, load)
2736 OP(AtomicStore, store)
2737 OP(AtomicExchange, atomic_exchange)
2738 OP(AtomicCompareExchange, atomic_comp_swap)
2739 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2740 OP(AtomicIIncrement, atomic_add)
2741 OP(AtomicIDecrement, atomic_add)
2742 OP(AtomicIAdd, atomic_add)
2743 OP(AtomicISub, atomic_add)
2744 OP(AtomicSMin, atomic_imin)
2745 OP(AtomicUMin, atomic_umin)
2746 OP(AtomicSMax, atomic_imax)
2747 OP(AtomicUMax, atomic_umax)
2748 OP(AtomicAnd, atomic_and)
2749 OP(AtomicOr, atomic_or)
2750 OP(AtomicXor, atomic_xor)
2751 #undef OP
2752 default:
2753 vtn_fail_with_opcode("Invalid image opcode", opcode);
2754 }
2755
2756 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2757
2758 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2759 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2760
2761 /* ImageQuerySize doesn't take any extra parameters */
2762 if (opcode != SpvOpImageQuerySize) {
2763 /* The image coordinate is always 4 components but we may not have that
2764 * many. Swizzle to compensate.
2765 */
2766 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2767 intrin->src[2] = nir_src_for_ssa(image.sample);
2768 }
2769
2770 nir_intrinsic_set_access(intrin, image.image->access);
2771
2772 switch (opcode) {
2773 case SpvOpAtomicLoad:
2774 case SpvOpImageQuerySize:
2775 case SpvOpImageRead:
2776 break;
2777 case SpvOpAtomicStore:
2778 case SpvOpImageWrite: {
2779 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2780 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2781 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2782 assert(op == nir_intrinsic_image_deref_store);
2783 intrin->num_components = 4;
2784 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2785 break;
2786 }
2787
2788 case SpvOpAtomicCompareExchange:
2789 case SpvOpAtomicCompareExchangeWeak:
2790 case SpvOpAtomicIIncrement:
2791 case SpvOpAtomicIDecrement:
2792 case SpvOpAtomicExchange:
2793 case SpvOpAtomicIAdd:
2794 case SpvOpAtomicISub:
2795 case SpvOpAtomicSMin:
2796 case SpvOpAtomicUMin:
2797 case SpvOpAtomicSMax:
2798 case SpvOpAtomicUMax:
2799 case SpvOpAtomicAnd:
2800 case SpvOpAtomicOr:
2801 case SpvOpAtomicXor:
2802 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2803 break;
2804
2805 default:
2806 vtn_fail_with_opcode("Invalid image opcode", opcode);
2807 }
2808
2809 /* Image operations implicitly have the Image storage memory semantics. */
2810 semantics |= SpvMemorySemanticsImageMemoryMask;
2811
2812 SpvMemorySemanticsMask before_semantics;
2813 SpvMemorySemanticsMask after_semantics;
2814 vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
2815
2816 if (before_semantics)
2817 vtn_emit_memory_barrier(b, scope, before_semantics);
2818
2819 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2820 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2821
2822 unsigned dest_components = glsl_get_vector_elements(type->type);
2823 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2824 if (intrin->num_components == 0)
2825 intrin->num_components = dest_components;
2826
2827 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2828 intrin->num_components, 32, NULL);
2829
2830 nir_builder_instr_insert(&b->nb, &intrin->instr);
2831
2832 nir_ssa_def *result = &intrin->dest.ssa;
2833 if (intrin->num_components != dest_components)
2834 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2835
2836 struct vtn_value *val =
2837 vtn_push_ssa(b, w[2], type, vtn_create_ssa_value(b, type->type));
2838 val->ssa->def = result;
2839 } else {
2840 nir_builder_instr_insert(&b->nb, &intrin->instr);
2841 }
2842
2843 if (after_semantics)
2844 vtn_emit_memory_barrier(b, scope, after_semantics);
2845 }
2846
2847 static nir_intrinsic_op
2848 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2849 {
2850 switch (opcode) {
2851 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2852 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2853 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2854 OP(AtomicExchange, atomic_exchange)
2855 OP(AtomicCompareExchange, atomic_comp_swap)
2856 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2857 OP(AtomicIIncrement, atomic_add)
2858 OP(AtomicIDecrement, atomic_add)
2859 OP(AtomicIAdd, atomic_add)
2860 OP(AtomicISub, atomic_add)
2861 OP(AtomicSMin, atomic_imin)
2862 OP(AtomicUMin, atomic_umin)
2863 OP(AtomicSMax, atomic_imax)
2864 OP(AtomicUMax, atomic_umax)
2865 OP(AtomicAnd, atomic_and)
2866 OP(AtomicOr, atomic_or)
2867 OP(AtomicXor, atomic_xor)
2868 #undef OP
2869 default:
2870 vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
2871 }
2872 }
2873
2874 static nir_intrinsic_op
2875 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2876 {
2877 switch (opcode) {
2878 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2879 OP(AtomicLoad, read_deref)
2880 OP(AtomicExchange, exchange)
2881 OP(AtomicCompareExchange, comp_swap)
2882 OP(AtomicCompareExchangeWeak, comp_swap)
2883 OP(AtomicIIncrement, inc_deref)
2884 OP(AtomicIDecrement, post_dec_deref)
2885 OP(AtomicIAdd, add_deref)
2886 OP(AtomicISub, add_deref)
2887 OP(AtomicUMin, min_deref)
2888 OP(AtomicUMax, max_deref)
2889 OP(AtomicAnd, and_deref)
2890 OP(AtomicOr, or_deref)
2891 OP(AtomicXor, xor_deref)
2892 #undef OP
2893 default:
2894 /* We left the following out: AtomicStore, AtomicSMin and
2895 * AtomicSmax. Right now there are not nir intrinsics for them. At this
2896 * moment Atomic Counter support is needed for ARB_spirv support, so is
2897 * only need to support GLSL Atomic Counters that are uints and don't
2898 * allow direct storage.
2899 */
2900 unreachable("Invalid uniform atomic");
2901 }
2902 }
2903
2904 static nir_intrinsic_op
2905 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2906 {
2907 switch (opcode) {
2908 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
2909 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
2910 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
2911 OP(AtomicExchange, atomic_exchange)
2912 OP(AtomicCompareExchange, atomic_comp_swap)
2913 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2914 OP(AtomicIIncrement, atomic_add)
2915 OP(AtomicIDecrement, atomic_add)
2916 OP(AtomicIAdd, atomic_add)
2917 OP(AtomicISub, atomic_add)
2918 OP(AtomicSMin, atomic_imin)
2919 OP(AtomicUMin, atomic_umin)
2920 OP(AtomicSMax, atomic_imax)
2921 OP(AtomicUMax, atomic_umax)
2922 OP(AtomicAnd, atomic_and)
2923 OP(AtomicOr, atomic_or)
2924 OP(AtomicXor, atomic_xor)
2925 #undef OP
2926 default:
2927 vtn_fail_with_opcode("Invalid shared atomic", opcode);
2928 }
2929 }
2930
2931 /*
2932 * Handles shared atomics, ssbo atomics and atomic counters.
2933 */
2934 static void
2935 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
2936 const uint32_t *w, unsigned count)
2937 {
2938 struct vtn_pointer *ptr;
2939 nir_intrinsic_instr *atomic;
2940
2941 SpvScope scope = SpvScopeInvocation;
2942 SpvMemorySemanticsMask semantics = 0;
2943
2944 switch (opcode) {
2945 case SpvOpAtomicLoad:
2946 case SpvOpAtomicExchange:
2947 case SpvOpAtomicCompareExchange:
2948 case SpvOpAtomicCompareExchangeWeak:
2949 case SpvOpAtomicIIncrement:
2950 case SpvOpAtomicIDecrement:
2951 case SpvOpAtomicIAdd:
2952 case SpvOpAtomicISub:
2953 case SpvOpAtomicSMin:
2954 case SpvOpAtomicUMin:
2955 case SpvOpAtomicSMax:
2956 case SpvOpAtomicUMax:
2957 case SpvOpAtomicAnd:
2958 case SpvOpAtomicOr:
2959 case SpvOpAtomicXor:
2960 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2961 scope = vtn_constant_uint(b, w[4]);
2962 semantics = vtn_constant_uint(b, w[5]);
2963 break;
2964
2965 case SpvOpAtomicStore:
2966 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2967 scope = vtn_constant_uint(b, w[2]);
2968 semantics = vtn_constant_uint(b, w[3]);
2969 break;
2970
2971 default:
2972 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2973 }
2974
2975 /* uniform as "atomic counter uniform" */
2976 if (ptr->mode == vtn_variable_mode_uniform) {
2977 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2978 const struct glsl_type *deref_type = deref->type;
2979 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
2980 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2981 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2982
2983 /* SSBO needs to initialize index/offset. In this case we don't need to,
2984 * as that info is already stored on the ptr->var->var nir_variable (see
2985 * vtn_create_variable)
2986 */
2987
2988 switch (opcode) {
2989 case SpvOpAtomicLoad:
2990 atomic->num_components = glsl_get_vector_elements(deref_type);
2991 break;
2992
2993 case SpvOpAtomicStore:
2994 atomic->num_components = glsl_get_vector_elements(deref_type);
2995 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2996 break;
2997
2998 case SpvOpAtomicExchange:
2999 case SpvOpAtomicCompareExchange:
3000 case SpvOpAtomicCompareExchangeWeak:
3001 case SpvOpAtomicIIncrement:
3002 case SpvOpAtomicIDecrement:
3003 case SpvOpAtomicIAdd:
3004 case SpvOpAtomicISub:
3005 case SpvOpAtomicSMin:
3006 case SpvOpAtomicUMin:
3007 case SpvOpAtomicSMax:
3008 case SpvOpAtomicUMax:
3009 case SpvOpAtomicAnd:
3010 case SpvOpAtomicOr:
3011 case SpvOpAtomicXor:
3012 /* Nothing: we don't need to call fill_common_atomic_sources here, as
3013 * atomic counter uniforms doesn't have sources
3014 */
3015 break;
3016
3017 default:
3018 unreachable("Invalid SPIR-V atomic");
3019
3020 }
3021 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
3022 nir_ssa_def *offset, *index;
3023 offset = vtn_pointer_to_offset(b, ptr, &index);
3024
3025 assert(ptr->mode == vtn_variable_mode_ssbo);
3026
3027 nir_intrinsic_op op = get_ssbo_nir_atomic_op(b, opcode);
3028 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
3029
3030 int src = 0;
3031 switch (opcode) {
3032 case SpvOpAtomicLoad:
3033 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
3034 nir_intrinsic_set_align(atomic, 4, 0);
3035 if (ptr->mode == vtn_variable_mode_ssbo)
3036 atomic->src[src++] = nir_src_for_ssa(index);
3037 atomic->src[src++] = nir_src_for_ssa(offset);
3038 break;
3039
3040 case SpvOpAtomicStore:
3041 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
3042 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
3043 nir_intrinsic_set_align(atomic, 4, 0);
3044 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
3045 if (ptr->mode == vtn_variable_mode_ssbo)
3046 atomic->src[src++] = nir_src_for_ssa(index);
3047 atomic->src[src++] = nir_src_for_ssa(offset);
3048 break;
3049
3050 case SpvOpAtomicExchange:
3051 case SpvOpAtomicCompareExchange:
3052 case SpvOpAtomicCompareExchangeWeak:
3053 case SpvOpAtomicIIncrement:
3054 case SpvOpAtomicIDecrement:
3055 case SpvOpAtomicIAdd:
3056 case SpvOpAtomicISub:
3057 case SpvOpAtomicSMin:
3058 case SpvOpAtomicUMin:
3059 case SpvOpAtomicSMax:
3060 case SpvOpAtomicUMax:
3061 case SpvOpAtomicAnd:
3062 case SpvOpAtomicOr:
3063 case SpvOpAtomicXor:
3064 if (ptr->mode == vtn_variable_mode_ssbo)
3065 atomic->src[src++] = nir_src_for_ssa(index);
3066 atomic->src[src++] = nir_src_for_ssa(offset);
3067 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
3068 break;
3069
3070 default:
3071 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
3072 }
3073 } else {
3074 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
3075 const struct glsl_type *deref_type = deref->type;
3076 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
3077 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
3078 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
3079
3080 switch (opcode) {
3081 case SpvOpAtomicLoad:
3082 atomic->num_components = glsl_get_vector_elements(deref_type);
3083 break;
3084
3085 case SpvOpAtomicStore:
3086 atomic->num_components = glsl_get_vector_elements(deref_type);
3087 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
3088 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
3089 break;
3090
3091 case SpvOpAtomicExchange:
3092 case SpvOpAtomicCompareExchange:
3093 case SpvOpAtomicCompareExchangeWeak:
3094 case SpvOpAtomicIIncrement:
3095 case SpvOpAtomicIDecrement:
3096 case SpvOpAtomicIAdd:
3097 case SpvOpAtomicISub:
3098 case SpvOpAtomicSMin:
3099 case SpvOpAtomicUMin:
3100 case SpvOpAtomicSMax:
3101 case SpvOpAtomicUMax:
3102 case SpvOpAtomicAnd:
3103 case SpvOpAtomicOr:
3104 case SpvOpAtomicXor:
3105 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
3106 break;
3107
3108 default:
3109 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
3110 }
3111 }
3112
3113 /* Atomic ordering operations will implicitly apply to the atomic operation
3114 * storage class, so include that too.
3115 */
3116 semantics |= vtn_storage_class_to_memory_semantics(ptr->ptr_type->storage_class);
3117
3118 SpvMemorySemanticsMask before_semantics;
3119 SpvMemorySemanticsMask after_semantics;
3120 vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
3121
3122 if (before_semantics)
3123 vtn_emit_memory_barrier(b, scope, before_semantics);
3124
3125 if (opcode != SpvOpAtomicStore) {
3126 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
3127
3128 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
3129 glsl_get_vector_elements(type->type),
3130 glsl_get_bit_size(type->type), NULL);
3131
3132 struct vtn_ssa_value *ssa = rzalloc(b, struct vtn_ssa_value);
3133 ssa->def = &atomic->dest.ssa;
3134 ssa->type = type->type;
3135 vtn_push_ssa(b, w[2], type, ssa);
3136 }
3137
3138 nir_builder_instr_insert(&b->nb, &atomic->instr);
3139
3140 if (after_semantics)
3141 vtn_emit_memory_barrier(b, scope, after_semantics);
3142 }
3143
3144 static nir_alu_instr *
3145 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
3146 {
3147 nir_op op = nir_op_vec(num_components);
3148 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
3149 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
3150 bit_size, NULL);
3151 vec->dest.write_mask = (1 << num_components) - 1;
3152
3153 return vec;
3154 }
3155
3156 struct vtn_ssa_value *
3157 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
3158 {
3159 if (src->transposed)
3160 return src->transposed;
3161
3162 struct vtn_ssa_value *dest =
3163 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
3164
3165 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
3166 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
3167 glsl_get_bit_size(src->type));
3168 if (glsl_type_is_vector_or_scalar(src->type)) {
3169 vec->src[0].src = nir_src_for_ssa(src->def);
3170 vec->src[0].swizzle[0] = i;
3171 } else {
3172 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
3173 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
3174 vec->src[j].swizzle[0] = i;
3175 }
3176 }
3177 nir_builder_instr_insert(&b->nb, &vec->instr);
3178 dest->elems[i]->def = &vec->dest.dest.ssa;
3179 }
3180
3181 dest->transposed = src;
3182
3183 return dest;
3184 }
3185
3186 nir_ssa_def *
3187 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
3188 {
3189 return nir_channel(&b->nb, src, index);
3190 }
3191
3192 nir_ssa_def *
3193 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
3194 unsigned index)
3195 {
3196 nir_alu_instr *vec = create_vec(b, src->num_components,
3197 src->bit_size);
3198
3199 for (unsigned i = 0; i < src->num_components; i++) {
3200 if (i == index) {
3201 vec->src[i].src = nir_src_for_ssa(insert);
3202 } else {
3203 vec->src[i].src = nir_src_for_ssa(src);
3204 vec->src[i].swizzle[0] = i;
3205 }
3206 }
3207
3208 nir_builder_instr_insert(&b->nb, &vec->instr);
3209
3210 return &vec->dest.dest.ssa;
3211 }
3212
3213 static nir_ssa_def *
3214 nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i)
3215 {
3216 return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size));
3217 }
3218
3219 nir_ssa_def *
3220 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3221 nir_ssa_def *index)
3222 {
3223 return nir_vector_extract(&b->nb, src, nir_i2i(&b->nb, index, 32));
3224 }
3225
3226 nir_ssa_def *
3227 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3228 nir_ssa_def *insert, nir_ssa_def *index)
3229 {
3230 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
3231 for (unsigned i = 1; i < src->num_components; i++)
3232 dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
3233 vtn_vector_insert(b, src, insert, i), dest);
3234
3235 return dest;
3236 }
3237
3238 static nir_ssa_def *
3239 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
3240 nir_ssa_def *src0, nir_ssa_def *src1,
3241 const uint32_t *indices)
3242 {
3243 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
3244
3245 for (unsigned i = 0; i < num_components; i++) {
3246 uint32_t index = indices[i];
3247 if (index == 0xffffffff) {
3248 vec->src[i].src =
3249 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
3250 } else if (index < src0->num_components) {
3251 vec->src[i].src = nir_src_for_ssa(src0);
3252 vec->src[i].swizzle[0] = index;
3253 } else {
3254 vec->src[i].src = nir_src_for_ssa(src1);
3255 vec->src[i].swizzle[0] = index - src0->num_components;
3256 }
3257 }
3258
3259 nir_builder_instr_insert(&b->nb, &vec->instr);
3260
3261 return &vec->dest.dest.ssa;
3262 }
3263
3264 /*
3265 * Concatentates a number of vectors/scalars together to produce a vector
3266 */
3267 static nir_ssa_def *
3268 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
3269 unsigned num_srcs, nir_ssa_def **srcs)
3270 {
3271 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
3272
3273 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3274 *
3275 * "When constructing a vector, there must be at least two Constituent
3276 * operands."
3277 */
3278 vtn_assert(num_srcs >= 2);
3279
3280 unsigned dest_idx = 0;
3281 for (unsigned i = 0; i < num_srcs; i++) {
3282 nir_ssa_def *src = srcs[i];
3283 vtn_assert(dest_idx + src->num_components <= num_components);
3284 for (unsigned j = 0; j < src->num_components; j++) {
3285 vec->src[dest_idx].src = nir_src_for_ssa(src);
3286 vec->src[dest_idx].swizzle[0] = j;
3287 dest_idx++;
3288 }
3289 }
3290
3291 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3292 *
3293 * "When constructing a vector, the total number of components in all
3294 * the operands must equal the number of components in Result Type."
3295 */
3296 vtn_assert(dest_idx == num_components);
3297
3298 nir_builder_instr_insert(&b->nb, &vec->instr);
3299
3300 return &vec->dest.dest.ssa;
3301 }
3302
3303 static struct vtn_ssa_value *
3304 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3305 {
3306 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3307 dest->type = src->type;
3308
3309 if (glsl_type_is_vector_or_scalar(src->type)) {
3310 dest->def = src->def;
3311 } else {
3312 unsigned elems = glsl_get_length(src->type);
3313
3314 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3315 for (unsigned i = 0; i < elems; i++)
3316 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3317 }
3318
3319 return dest;
3320 }
3321
3322 static struct vtn_ssa_value *
3323 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3324 struct vtn_ssa_value *insert, const uint32_t *indices,
3325 unsigned num_indices)
3326 {
3327 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3328
3329 struct vtn_ssa_value *cur = dest;
3330 unsigned i;
3331 for (i = 0; i < num_indices - 1; i++) {
3332 cur = cur->elems[indices[i]];
3333 }
3334
3335 if (glsl_type_is_vector_or_scalar(cur->type)) {
3336 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3337 * the component granularity. In that case, the last index will be
3338 * the index to insert the scalar into the vector.
3339 */
3340
3341 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
3342 } else {
3343 cur->elems[indices[i]] = insert;
3344 }
3345
3346 return dest;
3347 }
3348
3349 static struct vtn_ssa_value *
3350 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3351 const uint32_t *indices, unsigned num_indices)
3352 {
3353 struct vtn_ssa_value *cur = src;
3354 for (unsigned i = 0; i < num_indices; i++) {
3355 if (glsl_type_is_vector_or_scalar(cur->type)) {
3356 vtn_assert(i == num_indices - 1);
3357 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3358 * the component granularity. The last index will be the index of the
3359 * vector to extract.
3360 */
3361
3362 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3363 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3364 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
3365 return ret;
3366 } else {
3367 cur = cur->elems[indices[i]];
3368 }
3369 }
3370
3371 return cur;
3372 }
3373
3374 static void
3375 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3376 const uint32_t *w, unsigned count)
3377 {
3378 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
3379 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, type->type);
3380
3381 switch (opcode) {
3382 case SpvOpVectorExtractDynamic:
3383 ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
3384 vtn_ssa_value(b, w[4])->def);
3385 break;
3386
3387 case SpvOpVectorInsertDynamic:
3388 ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
3389 vtn_ssa_value(b, w[4])->def,
3390 vtn_ssa_value(b, w[5])->def);
3391 break;
3392
3393 case SpvOpVectorShuffle:
3394 ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type->type),
3395 vtn_ssa_value(b, w[3])->def,
3396 vtn_ssa_value(b, w[4])->def,
3397 w + 5);
3398 break;
3399
3400 case SpvOpCompositeConstruct: {
3401 unsigned elems = count - 3;
3402 assume(elems >= 1);
3403 if (glsl_type_is_vector_or_scalar(type->type)) {
3404 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3405 for (unsigned i = 0; i < elems; i++)
3406 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3407 ssa->def =
3408 vtn_vector_construct(b, glsl_get_vector_elements(type->type),
3409 elems, srcs);
3410 } else {
3411 ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3412 for (unsigned i = 0; i < elems; i++)
3413 ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3414 }
3415 break;
3416 }
3417 case SpvOpCompositeExtract:
3418 ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3419 w + 4, count - 4);
3420 break;
3421
3422 case SpvOpCompositeInsert:
3423 ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3424 vtn_ssa_value(b, w[3]),
3425 w + 5, count - 5);
3426 break;
3427
3428 case SpvOpCopyLogical:
3429 case SpvOpCopyObject:
3430 ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3431 break;
3432
3433 default:
3434 vtn_fail_with_opcode("unknown composite operation", opcode);
3435 }
3436
3437 vtn_push_ssa(b, w[2], type, ssa);
3438 }
3439
3440 static void
3441 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3442 {
3443 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3444 nir_builder_instr_insert(&b->nb, &intrin->instr);
3445 }
3446
3447 void
3448 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3449 SpvMemorySemanticsMask semantics)
3450 {
3451 if (b->options->use_scoped_memory_barrier) {
3452 vtn_emit_scoped_memory_barrier(b, scope, semantics);
3453 return;
3454 }
3455
3456 static const SpvMemorySemanticsMask all_memory_semantics =
3457 SpvMemorySemanticsUniformMemoryMask |
3458 SpvMemorySemanticsWorkgroupMemoryMask |
3459 SpvMemorySemanticsAtomicCounterMemoryMask |
3460 SpvMemorySemanticsImageMemoryMask;
3461
3462 /* If we're not actually doing a memory barrier, bail */
3463 if (!(semantics & all_memory_semantics))
3464 return;
3465
3466 /* GL and Vulkan don't have these */
3467 vtn_assert(scope != SpvScopeCrossDevice);
3468
3469 if (scope == SpvScopeSubgroup)
3470 return; /* Nothing to do here */
3471
3472 if (scope == SpvScopeWorkgroup) {
3473 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3474 return;
3475 }
3476
3477 /* There's only two scopes thing left */
3478 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3479
3480 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3481 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3482 return;
3483 }
3484
3485 /* Issue a bunch of more specific barriers */
3486 uint32_t bits = semantics;
3487 while (bits) {
3488 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3489 switch (semantic) {
3490 case SpvMemorySemanticsUniformMemoryMask:
3491 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3492 break;
3493 case SpvMemorySemanticsWorkgroupMemoryMask:
3494 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3495 break;
3496 case SpvMemorySemanticsAtomicCounterMemoryMask:
3497 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3498 break;
3499 case SpvMemorySemanticsImageMemoryMask:
3500 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3501 break;
3502 default:
3503 break;;
3504 }
3505 }
3506 }
3507
3508 static void
3509 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3510 const uint32_t *w, unsigned count)
3511 {
3512 switch (opcode) {
3513 case SpvOpEmitVertex:
3514 case SpvOpEmitStreamVertex:
3515 case SpvOpEndPrimitive:
3516 case SpvOpEndStreamPrimitive: {
3517 nir_intrinsic_op intrinsic_op;
3518 switch (opcode) {
3519 case SpvOpEmitVertex:
3520 case SpvOpEmitStreamVertex:
3521 intrinsic_op = nir_intrinsic_emit_vertex;
3522 break;
3523 case SpvOpEndPrimitive:
3524 case SpvOpEndStreamPrimitive:
3525 intrinsic_op = nir_intrinsic_end_primitive;
3526 break;
3527 default:
3528 unreachable("Invalid opcode");
3529 }
3530
3531 nir_intrinsic_instr *intrin =
3532 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3533
3534 switch (opcode) {
3535 case SpvOpEmitStreamVertex:
3536 case SpvOpEndStreamPrimitive: {
3537 unsigned stream = vtn_constant_uint(b, w[1]);
3538 nir_intrinsic_set_stream_id(intrin, stream);
3539 break;
3540 }
3541
3542 default:
3543 break;
3544 }
3545
3546 nir_builder_instr_insert(&b->nb, &intrin->instr);
3547 break;
3548 }
3549
3550 case SpvOpMemoryBarrier: {
3551 SpvScope scope = vtn_constant_uint(b, w[1]);
3552 SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
3553 vtn_emit_memory_barrier(b, scope, semantics);
3554 return;
3555 }
3556
3557 case SpvOpControlBarrier: {
3558 SpvScope memory_scope = vtn_constant_uint(b, w[2]);
3559 SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
3560 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3561
3562 SpvScope execution_scope = vtn_constant_uint(b, w[1]);
3563 if (execution_scope == SpvScopeWorkgroup)
3564 vtn_emit_barrier(b, nir_intrinsic_barrier);
3565 break;
3566 }
3567
3568 default:
3569 unreachable("unknown barrier instruction");
3570 }
3571 }
3572
3573 static unsigned
3574 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3575 SpvExecutionMode mode)
3576 {
3577 switch (mode) {
3578 case SpvExecutionModeInputPoints:
3579 case SpvExecutionModeOutputPoints:
3580 return 0; /* GL_POINTS */
3581 case SpvExecutionModeInputLines:
3582 return 1; /* GL_LINES */
3583 case SpvExecutionModeInputLinesAdjacency:
3584 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3585 case SpvExecutionModeTriangles:
3586 return 4; /* GL_TRIANGLES */
3587 case SpvExecutionModeInputTrianglesAdjacency:
3588 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3589 case SpvExecutionModeQuads:
3590 return 7; /* GL_QUADS */
3591 case SpvExecutionModeIsolines:
3592 return 0x8E7A; /* GL_ISOLINES */
3593 case SpvExecutionModeOutputLineStrip:
3594 return 3; /* GL_LINE_STRIP */
3595 case SpvExecutionModeOutputTriangleStrip:
3596 return 5; /* GL_TRIANGLE_STRIP */
3597 default:
3598 vtn_fail("Invalid primitive type: %s (%u)",
3599 spirv_executionmode_to_string(mode), mode);
3600 }
3601 }
3602
3603 static unsigned
3604 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3605 SpvExecutionMode mode)
3606 {
3607 switch (mode) {
3608 case SpvExecutionModeInputPoints:
3609 return 1;
3610 case SpvExecutionModeInputLines:
3611 return 2;
3612 case SpvExecutionModeInputLinesAdjacency:
3613 return 4;
3614 case SpvExecutionModeTriangles:
3615 return 3;
3616 case SpvExecutionModeInputTrianglesAdjacency:
3617 return 6;
3618 default:
3619 vtn_fail("Invalid GS input mode: %s (%u)",
3620 spirv_executionmode_to_string(mode), mode);
3621 }
3622 }
3623
3624 static gl_shader_stage
3625 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3626 {
3627 switch (model) {
3628 case SpvExecutionModelVertex:
3629 return MESA_SHADER_VERTEX;
3630 case SpvExecutionModelTessellationControl:
3631 return MESA_SHADER_TESS_CTRL;
3632 case SpvExecutionModelTessellationEvaluation:
3633 return MESA_SHADER_TESS_EVAL;
3634 case SpvExecutionModelGeometry:
3635 return MESA_SHADER_GEOMETRY;
3636 case SpvExecutionModelFragment:
3637 return MESA_SHADER_FRAGMENT;
3638 case SpvExecutionModelGLCompute:
3639 return MESA_SHADER_COMPUTE;
3640 case SpvExecutionModelKernel:
3641 return MESA_SHADER_KERNEL;
3642 default:
3643 vtn_fail("Unsupported execution model: %s (%u)",
3644 spirv_executionmodel_to_string(model), model);
3645 }
3646 }
3647
3648 #define spv_check_supported(name, cap) do { \
3649 if (!(b->options && b->options->caps.name)) \
3650 vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
3651 spirv_capability_to_string(cap), cap); \
3652 } while(0)
3653
3654
3655 void
3656 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3657 unsigned count)
3658 {
3659 struct vtn_value *entry_point = &b->values[w[2]];
3660 /* Let this be a name label regardless */
3661 unsigned name_words;
3662 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3663
3664 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3665 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3666 return;
3667
3668 vtn_assert(b->entry_point == NULL);
3669 b->entry_point = entry_point;
3670 }
3671
3672 static bool
3673 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3674 const uint32_t *w, unsigned count)
3675 {
3676 switch (opcode) {
3677 case SpvOpSource: {
3678 const char *lang;
3679 switch (w[1]) {
3680 default:
3681 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3682 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3683 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3684 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3685 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3686 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3687 }
3688
3689 uint32_t version = w[2];
3690
3691 const char *file =
3692 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3693
3694 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3695 break;
3696 }
3697
3698 case SpvOpSourceExtension:
3699 case SpvOpSourceContinued:
3700 case SpvOpExtension:
3701 case SpvOpModuleProcessed:
3702 /* Unhandled, but these are for debug so that's ok. */
3703 break;
3704
3705 case SpvOpCapability: {
3706 SpvCapability cap = w[1];
3707 switch (cap) {
3708 case SpvCapabilityMatrix:
3709 case SpvCapabilityShader:
3710 case SpvCapabilityGeometry:
3711 case SpvCapabilityGeometryPointSize:
3712 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3713 case SpvCapabilitySampledImageArrayDynamicIndexing:
3714 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3715 case SpvCapabilityStorageImageArrayDynamicIndexing:
3716 case SpvCapabilityImageRect:
3717 case SpvCapabilitySampledRect:
3718 case SpvCapabilitySampled1D:
3719 case SpvCapabilityImage1D:
3720 case SpvCapabilitySampledCubeArray:
3721 case SpvCapabilityImageCubeArray:
3722 case SpvCapabilitySampledBuffer:
3723 case SpvCapabilityImageBuffer:
3724 case SpvCapabilityImageQuery:
3725 case SpvCapabilityDerivativeControl:
3726 case SpvCapabilityInterpolationFunction:
3727 case SpvCapabilityMultiViewport:
3728 case SpvCapabilitySampleRateShading:
3729 case SpvCapabilityClipDistance:
3730 case SpvCapabilityCullDistance:
3731 case SpvCapabilityInputAttachment:
3732 case SpvCapabilityImageGatherExtended:
3733 case SpvCapabilityStorageImageExtendedFormats:
3734 break;
3735
3736 case SpvCapabilityLinkage:
3737 case SpvCapabilityVector16:
3738 case SpvCapabilityFloat16Buffer:
3739 case SpvCapabilitySparseResidency:
3740 vtn_warn("Unsupported SPIR-V capability: %s",
3741 spirv_capability_to_string(cap));
3742 break;
3743
3744 case SpvCapabilityMinLod:
3745 spv_check_supported(min_lod, cap);
3746 break;
3747
3748 case SpvCapabilityAtomicStorage:
3749 spv_check_supported(atomic_storage, cap);
3750 break;
3751
3752 case SpvCapabilityFloat64:
3753 spv_check_supported(float64, cap);
3754 break;
3755 case SpvCapabilityInt64:
3756 spv_check_supported(int64, cap);
3757 break;
3758 case SpvCapabilityInt16:
3759 spv_check_supported(int16, cap);
3760 break;
3761 case SpvCapabilityInt8:
3762 spv_check_supported(int8, cap);
3763 break;
3764
3765 case SpvCapabilityTransformFeedback:
3766 spv_check_supported(transform_feedback, cap);
3767 break;
3768
3769 case SpvCapabilityGeometryStreams:
3770 spv_check_supported(geometry_streams, cap);
3771 break;
3772
3773 case SpvCapabilityInt64Atomics:
3774 spv_check_supported(int64_atomics, cap);
3775 break;
3776
3777 case SpvCapabilityStorageImageMultisample:
3778 spv_check_supported(storage_image_ms, cap);
3779 break;
3780
3781 case SpvCapabilityAddresses:
3782 spv_check_supported(address, cap);
3783 break;
3784
3785 case SpvCapabilityKernel:
3786 spv_check_supported(kernel, cap);
3787 break;
3788
3789 case SpvCapabilityImageBasic:
3790 case SpvCapabilityImageReadWrite:
3791 case SpvCapabilityImageMipmap:
3792 case SpvCapabilityPipes:
3793 case SpvCapabilityDeviceEnqueue:
3794 case SpvCapabilityLiteralSampler:
3795 case SpvCapabilityGenericPointer:
3796 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3797 spirv_capability_to_string(cap));
3798 break;
3799
3800 case SpvCapabilityImageMSArray:
3801 spv_check_supported(image_ms_array, cap);
3802 break;
3803
3804 case SpvCapabilityTessellation:
3805 case SpvCapabilityTessellationPointSize:
3806 spv_check_supported(tessellation, cap);
3807 break;
3808
3809 case SpvCapabilityDrawParameters:
3810 spv_check_supported(draw_parameters, cap);
3811 break;
3812
3813 case SpvCapabilityStorageImageReadWithoutFormat:
3814 spv_check_supported(image_read_without_format, cap);
3815 break;
3816
3817 case SpvCapabilityStorageImageWriteWithoutFormat:
3818 spv_check_supported(image_write_without_format, cap);
3819 break;
3820
3821 case SpvCapabilityDeviceGroup:
3822 spv_check_supported(device_group, cap);
3823 break;
3824
3825 case SpvCapabilityMultiView:
3826 spv_check_supported(multiview, cap);
3827 break;
3828
3829 case SpvCapabilityGroupNonUniform:
3830 spv_check_supported(subgroup_basic, cap);
3831 break;
3832
3833 case SpvCapabilitySubgroupVoteKHR:
3834 case SpvCapabilityGroupNonUniformVote:
3835 spv_check_supported(subgroup_vote, cap);
3836 break;
3837
3838 case SpvCapabilitySubgroupBallotKHR:
3839 case SpvCapabilityGroupNonUniformBallot:
3840 spv_check_supported(subgroup_ballot, cap);
3841 break;
3842
3843 case SpvCapabilityGroupNonUniformShuffle:
3844 case SpvCapabilityGroupNonUniformShuffleRelative:
3845 spv_check_supported(subgroup_shuffle, cap);
3846 break;
3847
3848 case SpvCapabilityGroupNonUniformQuad:
3849 spv_check_supported(subgroup_quad, cap);
3850 break;
3851
3852 case SpvCapabilityGroupNonUniformArithmetic:
3853 case SpvCapabilityGroupNonUniformClustered:
3854 spv_check_supported(subgroup_arithmetic, cap);
3855 break;
3856
3857 case SpvCapabilityGroups:
3858 spv_check_supported(amd_shader_ballot, cap);
3859 break;
3860
3861 case SpvCapabilityVariablePointersStorageBuffer:
3862 case SpvCapabilityVariablePointers:
3863 spv_check_supported(variable_pointers, cap);
3864 b->variable_pointers = true;
3865 break;
3866
3867 case SpvCapabilityStorageUniformBufferBlock16:
3868 case SpvCapabilityStorageUniform16:
3869 case SpvCapabilityStoragePushConstant16:
3870 case SpvCapabilityStorageInputOutput16:
3871 spv_check_supported(storage_16bit, cap);
3872 break;
3873
3874 case SpvCapabilityShaderLayer:
3875 case SpvCapabilityShaderViewportIndex:
3876 case SpvCapabilityShaderViewportIndexLayerEXT:
3877 spv_check_supported(shader_viewport_index_layer, cap);
3878 break;
3879
3880 case SpvCapabilityStorageBuffer8BitAccess:
3881 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
3882 case SpvCapabilityStoragePushConstant8:
3883 spv_check_supported(storage_8bit, cap);
3884 break;
3885
3886 case SpvCapabilityShaderNonUniformEXT:
3887 spv_check_supported(descriptor_indexing, cap);
3888 break;
3889
3890 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3891 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3892 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3893 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3894 break;
3895
3896 case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
3897 case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
3898 case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
3899 case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
3900 case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
3901 case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
3902 case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
3903 spv_check_supported(descriptor_array_non_uniform_indexing, cap);
3904 break;
3905
3906 case SpvCapabilityRuntimeDescriptorArrayEXT:
3907 spv_check_supported(runtime_descriptor_array, cap);
3908 break;
3909
3910 case SpvCapabilityStencilExportEXT:
3911 spv_check_supported(stencil_export, cap);
3912 break;
3913
3914 case SpvCapabilitySampleMaskPostDepthCoverage:
3915 spv_check_supported(post_depth_coverage, cap);
3916 break;
3917
3918 case SpvCapabilityDenormFlushToZero:
3919 case SpvCapabilityDenormPreserve:
3920 case SpvCapabilitySignedZeroInfNanPreserve:
3921 case SpvCapabilityRoundingModeRTE:
3922 case SpvCapabilityRoundingModeRTZ:
3923 spv_check_supported(float_controls, cap);
3924 break;
3925
3926 case SpvCapabilityPhysicalStorageBufferAddressesEXT:
3927 spv_check_supported(physical_storage_buffer_address, cap);
3928 break;
3929
3930 case SpvCapabilityComputeDerivativeGroupQuadsNV:
3931 case SpvCapabilityComputeDerivativeGroupLinearNV:
3932 spv_check_supported(derivative_group, cap);
3933 break;
3934
3935 case SpvCapabilityFloat16:
3936 spv_check_supported(float16, cap);
3937 break;
3938
3939 case SpvCapabilityFragmentShaderSampleInterlockEXT:
3940 spv_check_supported(fragment_shader_sample_interlock, cap);
3941 break;
3942
3943 case SpvCapabilityFragmentShaderPixelInterlockEXT:
3944 spv_check_supported(fragment_shader_pixel_interlock, cap);
3945 break;
3946
3947 case SpvCapabilityDemoteToHelperInvocationEXT:
3948 spv_check_supported(demote_to_helper_invocation, cap);
3949 break;
3950
3951 case SpvCapabilityShaderClockKHR:
3952 spv_check_supported(shader_clock, cap);
3953 break;
3954
3955 case SpvCapabilityVulkanMemoryModel:
3956 spv_check_supported(vk_memory_model, cap);
3957 break;
3958
3959 case SpvCapabilityVulkanMemoryModelDeviceScope:
3960 spv_check_supported(vk_memory_model_device_scope, cap);
3961 break;
3962
3963 default:
3964 vtn_fail("Unhandled capability: %s (%u)",
3965 spirv_capability_to_string(cap), cap);
3966 }
3967 break;
3968 }
3969
3970 case SpvOpExtInstImport:
3971 vtn_handle_extension(b, opcode, w, count);
3972 break;
3973
3974 case SpvOpMemoryModel:
3975 switch (w[1]) {
3976 case SpvAddressingModelPhysical32:
3977 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3978 "AddressingModelPhysical32 only supported for kernels");
3979 b->shader->info.cs.ptr_size = 32;
3980 b->physical_ptrs = true;
3981 b->options->shared_addr_format = nir_address_format_32bit_global;
3982 b->options->global_addr_format = nir_address_format_32bit_global;
3983 b->options->temp_addr_format = nir_address_format_32bit_global;
3984 break;
3985 case SpvAddressingModelPhysical64:
3986 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3987 "AddressingModelPhysical64 only supported for kernels");
3988 b->shader->info.cs.ptr_size = 64;
3989 b->physical_ptrs = true;
3990 b->options->shared_addr_format = nir_address_format_64bit_global;
3991 b->options->global_addr_format = nir_address_format_64bit_global;
3992 b->options->temp_addr_format = nir_address_format_64bit_global;
3993 break;
3994 case SpvAddressingModelLogical:
3995 vtn_fail_if(b->shader->info.stage >= MESA_SHADER_STAGES,
3996 "AddressingModelLogical only supported for shaders");
3997 b->shader->info.cs.ptr_size = 0;
3998 b->physical_ptrs = false;
3999 break;
4000 case SpvAddressingModelPhysicalStorageBuffer64EXT:
4001 vtn_fail_if(!b->options ||
4002 !b->options->caps.physical_storage_buffer_address,
4003 "AddressingModelPhysicalStorageBuffer64EXT not supported");
4004 break;
4005 default:
4006 vtn_fail("Unknown addressing model: %s (%u)",
4007 spirv_addressingmodel_to_string(w[1]), w[1]);
4008 break;
4009 }
4010
4011 switch (w[2]) {
4012 case SpvMemoryModelSimple:
4013 case SpvMemoryModelGLSL450:
4014 case SpvMemoryModelOpenCL:
4015 break;
4016 case SpvMemoryModelVulkan:
4017 vtn_fail_if(!b->options->caps.vk_memory_model,
4018 "Vulkan memory model is unsupported by this driver");
4019 break;
4020 default:
4021 vtn_fail("Unsupported memory model: %s",
4022 spirv_memorymodel_to_string(w[2]));
4023 break;
4024 }
4025 break;
4026
4027 case SpvOpEntryPoint:
4028 vtn_handle_entry_point(b, w, count);
4029 break;
4030
4031 case SpvOpString:
4032 vtn_push_value(b, w[1], vtn_value_type_string)->str =
4033 vtn_string_literal(b, &w[2], count - 2, NULL);
4034 break;
4035
4036 case SpvOpName:
4037 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
4038 break;
4039
4040 case SpvOpMemberName:
4041 /* TODO */
4042 break;
4043
4044 case SpvOpExecutionMode:
4045 case SpvOpExecutionModeId:
4046 case SpvOpDecorationGroup:
4047 case SpvOpDecorate:
4048 case SpvOpDecorateId:
4049 case SpvOpMemberDecorate:
4050 case SpvOpGroupDecorate:
4051 case SpvOpGroupMemberDecorate:
4052 case SpvOpDecorateString:
4053 case SpvOpMemberDecorateString:
4054 vtn_handle_decoration(b, opcode, w, count);
4055 break;
4056
4057 default:
4058 return false; /* End of preamble */
4059 }
4060
4061 return true;
4062 }
4063
4064 static void
4065 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
4066 const struct vtn_decoration *mode, void *data)
4067 {
4068 vtn_assert(b->entry_point == entry_point);
4069
4070 switch(mode->exec_mode) {
4071 case SpvExecutionModeOriginUpperLeft:
4072 case SpvExecutionModeOriginLowerLeft:
4073 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4074 b->shader->info.fs.origin_upper_left =
4075 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
4076 break;
4077
4078 case SpvExecutionModeEarlyFragmentTests:
4079 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4080 b->shader->info.fs.early_fragment_tests = true;
4081 break;
4082
4083 case SpvExecutionModePostDepthCoverage:
4084 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4085 b->shader->info.fs.post_depth_coverage = true;
4086 break;
4087
4088 case SpvExecutionModeInvocations:
4089 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4090 b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
4091 break;
4092
4093 case SpvExecutionModeDepthReplacing:
4094 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4095 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
4096 break;
4097 case SpvExecutionModeDepthGreater:
4098 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4099 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
4100 break;
4101 case SpvExecutionModeDepthLess:
4102 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4103 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
4104 break;
4105 case SpvExecutionModeDepthUnchanged:
4106 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4107 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
4108 break;
4109
4110 case SpvExecutionModeLocalSize:
4111 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
4112 b->shader->info.cs.local_size[0] = mode->operands[0];
4113 b->shader->info.cs.local_size[1] = mode->operands[1];
4114 b->shader->info.cs.local_size[2] = mode->operands[2];
4115 break;
4116
4117 case SpvExecutionModeLocalSizeId:
4118 b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
4119 b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
4120 b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
4121 break;
4122
4123 case SpvExecutionModeLocalSizeHint:
4124 case SpvExecutionModeLocalSizeHintId:
4125 break; /* Nothing to do with this */
4126
4127 case SpvExecutionModeOutputVertices:
4128 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4129 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4130 b->shader->info.tess.tcs_vertices_out = mode->operands[0];
4131 } else {
4132 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4133 b->shader->info.gs.vertices_out = mode->operands[0];
4134 }
4135 break;
4136
4137 case SpvExecutionModeInputPoints:
4138 case SpvExecutionModeInputLines:
4139 case SpvExecutionModeInputLinesAdjacency:
4140 case SpvExecutionModeTriangles:
4141 case SpvExecutionModeInputTrianglesAdjacency:
4142 case SpvExecutionModeQuads:
4143 case SpvExecutionModeIsolines:
4144 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4145 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4146 b->shader->info.tess.primitive_mode =
4147 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4148 } else {
4149 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4150 b->shader->info.gs.vertices_in =
4151 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
4152 b->shader->info.gs.input_primitive =
4153 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4154 }
4155 break;
4156
4157 case SpvExecutionModeOutputPoints:
4158 case SpvExecutionModeOutputLineStrip:
4159 case SpvExecutionModeOutputTriangleStrip:
4160 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4161 b->shader->info.gs.output_primitive =
4162 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4163 break;
4164
4165 case SpvExecutionModeSpacingEqual:
4166 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4167 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4168 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
4169 break;
4170 case SpvExecutionModeSpacingFractionalEven:
4171 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4172 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4173 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
4174 break;
4175 case SpvExecutionModeSpacingFractionalOdd:
4176 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4177 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4178 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
4179 break;
4180 case SpvExecutionModeVertexOrderCw:
4181 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4182 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4183 b->shader->info.tess.ccw = false;
4184 break;
4185 case SpvExecutionModeVertexOrderCcw:
4186 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4187 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4188 b->shader->info.tess.ccw = true;
4189 break;
4190 case SpvExecutionModePointMode:
4191 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4192 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4193 b->shader->info.tess.point_mode = true;
4194 break;
4195
4196 case SpvExecutionModePixelCenterInteger:
4197 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4198 b->shader->info.fs.pixel_center_integer = true;
4199 break;
4200
4201 case SpvExecutionModeXfb:
4202 b->shader->info.has_transform_feedback_varyings = true;
4203 break;
4204
4205 case SpvExecutionModeVecTypeHint:
4206 break; /* OpenCL */
4207
4208 case SpvExecutionModeContractionOff:
4209 if (b->shader->info.stage != MESA_SHADER_KERNEL)
4210 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
4211 spirv_executionmode_to_string(mode->exec_mode));
4212 else
4213 b->exact = true;
4214 break;
4215
4216 case SpvExecutionModeStencilRefReplacingEXT:
4217 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4218 break;
4219
4220 case SpvExecutionModeDerivativeGroupQuadsNV:
4221 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4222 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
4223 break;
4224
4225 case SpvExecutionModeDerivativeGroupLinearNV:
4226 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4227 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
4228 break;
4229
4230 case SpvExecutionModePixelInterlockOrderedEXT:
4231 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4232 b->shader->info.fs.pixel_interlock_ordered = true;
4233 break;
4234
4235 case SpvExecutionModePixelInterlockUnorderedEXT:
4236 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4237 b->shader->info.fs.pixel_interlock_unordered = true;
4238 break;
4239
4240 case SpvExecutionModeSampleInterlockOrderedEXT:
4241 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4242 b->shader->info.fs.sample_interlock_ordered = true;
4243 break;
4244
4245 case SpvExecutionModeSampleInterlockUnorderedEXT:
4246 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4247 b->shader->info.fs.sample_interlock_unordered = true;
4248 break;
4249
4250 case SpvExecutionModeDenormPreserve:
4251 case SpvExecutionModeDenormFlushToZero:
4252 case SpvExecutionModeSignedZeroInfNanPreserve:
4253 case SpvExecutionModeRoundingModeRTE:
4254 case SpvExecutionModeRoundingModeRTZ:
4255 /* Already handled in vtn_handle_rounding_mode_in_execution_mode() */
4256 break;
4257
4258 default:
4259 vtn_fail("Unhandled execution mode: %s (%u)",
4260 spirv_executionmode_to_string(mode->exec_mode),
4261 mode->exec_mode);
4262 }
4263 }
4264
4265 static void
4266 vtn_handle_rounding_mode_in_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
4267 const struct vtn_decoration *mode, void *data)
4268 {
4269 vtn_assert(b->entry_point == entry_point);
4270
4271 unsigned execution_mode = 0;
4272
4273 switch(mode->exec_mode) {
4274 case SpvExecutionModeDenormPreserve:
4275 switch (mode->operands[0]) {
4276 case 16: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP16; break;
4277 case 32: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP32; break;
4278 case 64: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP64; break;
4279 default: vtn_fail("Floating point type not supported");
4280 }
4281 break;
4282 case SpvExecutionModeDenormFlushToZero:
4283 switch (mode->operands[0]) {
4284 case 16: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16; break;
4285 case 32: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32; break;
4286 case 64: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64; break;
4287 default: vtn_fail("Floating point type not supported");
4288 }
4289 break;
4290 case SpvExecutionModeSignedZeroInfNanPreserve:
4291 switch (mode->operands[0]) {
4292 case 16: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16; break;
4293 case 32: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32; break;
4294 case 64: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64; break;
4295 default: vtn_fail("Floating point type not supported");
4296 }
4297 break;
4298 case SpvExecutionModeRoundingModeRTE:
4299 switch (mode->operands[0]) {
4300 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16; break;
4301 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32; break;
4302 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64; break;
4303 default: vtn_fail("Floating point type not supported");
4304 }
4305 break;
4306 case SpvExecutionModeRoundingModeRTZ:
4307 switch (mode->operands[0]) {
4308 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16; break;
4309 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32; break;
4310 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64; break;
4311 default: vtn_fail("Floating point type not supported");
4312 }
4313 break;
4314
4315 default:
4316 break;
4317 }
4318
4319 b->shader->info.float_controls_execution_mode |= execution_mode;
4320 }
4321
4322 static bool
4323 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
4324 const uint32_t *w, unsigned count)
4325 {
4326 vtn_set_instruction_result_type(b, opcode, w, count);
4327
4328 switch (opcode) {
4329 case SpvOpSource:
4330 case SpvOpSourceContinued:
4331 case SpvOpSourceExtension:
4332 case SpvOpExtension:
4333 case SpvOpCapability:
4334 case SpvOpExtInstImport:
4335 case SpvOpMemoryModel:
4336 case SpvOpEntryPoint:
4337 case SpvOpExecutionMode:
4338 case SpvOpString:
4339 case SpvOpName:
4340 case SpvOpMemberName:
4341 case SpvOpDecorationGroup:
4342 case SpvOpDecorate:
4343 case SpvOpDecorateId:
4344 case SpvOpMemberDecorate:
4345 case SpvOpGroupDecorate:
4346 case SpvOpGroupMemberDecorate:
4347 case SpvOpDecorateString:
4348 case SpvOpMemberDecorateString:
4349 vtn_fail("Invalid opcode types and variables section");
4350 break;
4351
4352 case SpvOpTypeVoid:
4353 case SpvOpTypeBool:
4354 case SpvOpTypeInt:
4355 case SpvOpTypeFloat:
4356 case SpvOpTypeVector:
4357 case SpvOpTypeMatrix:
4358 case SpvOpTypeImage:
4359 case SpvOpTypeSampler:
4360 case SpvOpTypeSampledImage:
4361 case SpvOpTypeArray:
4362 case SpvOpTypeRuntimeArray:
4363 case SpvOpTypeStruct:
4364 case SpvOpTypeOpaque:
4365 case SpvOpTypePointer:
4366 case SpvOpTypeForwardPointer:
4367 case SpvOpTypeFunction:
4368 case SpvOpTypeEvent:
4369 case SpvOpTypeDeviceEvent:
4370 case SpvOpTypeReserveId:
4371 case SpvOpTypeQueue:
4372 case SpvOpTypePipe:
4373 vtn_handle_type(b, opcode, w, count);
4374 break;
4375
4376 case SpvOpConstantTrue:
4377 case SpvOpConstantFalse:
4378 case SpvOpConstant:
4379 case SpvOpConstantComposite:
4380 case SpvOpConstantSampler:
4381 case SpvOpConstantNull:
4382 case SpvOpSpecConstantTrue:
4383 case SpvOpSpecConstantFalse:
4384 case SpvOpSpecConstant:
4385 case SpvOpSpecConstantComposite:
4386 case SpvOpSpecConstantOp:
4387 vtn_handle_constant(b, opcode, w, count);
4388 break;
4389
4390 case SpvOpUndef:
4391 case SpvOpVariable:
4392 vtn_handle_variables(b, opcode, w, count);
4393 break;
4394
4395 default:
4396 return false; /* End of preamble */
4397 }
4398
4399 return true;
4400 }
4401
4402 static struct vtn_ssa_value *
4403 vtn_nir_select(struct vtn_builder *b, struct vtn_ssa_value *src0,
4404 struct vtn_ssa_value *src1, struct vtn_ssa_value *src2)
4405 {
4406 struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
4407 dest->type = src1->type;
4408
4409 if (glsl_type_is_vector_or_scalar(src1->type)) {
4410 dest->def = nir_bcsel(&b->nb, src0->def, src1->def, src2->def);
4411 } else {
4412 unsigned elems = glsl_get_length(src1->type);
4413
4414 dest->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
4415 for (unsigned i = 0; i < elems; i++) {
4416 dest->elems[i] = vtn_nir_select(b, src0,
4417 src1->elems[i], src2->elems[i]);
4418 }
4419 }
4420
4421 return dest;
4422 }
4423
4424 static void
4425 vtn_handle_select(struct vtn_builder *b, SpvOp opcode,
4426 const uint32_t *w, unsigned count)
4427 {
4428 /* Handle OpSelect up-front here because it needs to be able to handle
4429 * pointers and not just regular vectors and scalars.
4430 */
4431 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4432 struct vtn_value *cond_val = vtn_untyped_value(b, w[3]);
4433 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4434 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4435
4436 vtn_fail_if(obj1_val->type != res_val->type ||
4437 obj2_val->type != res_val->type,
4438 "Object types must match the result type in OpSelect");
4439
4440 vtn_fail_if((cond_val->type->base_type != vtn_base_type_scalar &&
4441 cond_val->type->base_type != vtn_base_type_vector) ||
4442 !glsl_type_is_boolean(cond_val->type->type),
4443 "OpSelect must have either a vector of booleans or "
4444 "a boolean as Condition type");
4445
4446 vtn_fail_if(cond_val->type->base_type == vtn_base_type_vector &&
4447 (res_val->type->base_type != vtn_base_type_vector ||
4448 res_val->type->length != cond_val->type->length),
4449 "When Condition type in OpSelect is a vector, the Result "
4450 "type must be a vector of the same length");
4451
4452 switch (res_val->type->base_type) {
4453 case vtn_base_type_scalar:
4454 case vtn_base_type_vector:
4455 case vtn_base_type_matrix:
4456 case vtn_base_type_array:
4457 case vtn_base_type_struct:
4458 /* OK. */
4459 break;
4460 case vtn_base_type_pointer:
4461 /* We need to have actual storage for pointer types. */
4462 vtn_fail_if(res_val->type->type == NULL,
4463 "Invalid pointer result type for OpSelect");
4464 break;
4465 default:
4466 vtn_fail("Result type of OpSelect must be a scalar, composite, or pointer");
4467 }
4468
4469 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4470 struct vtn_ssa_value *ssa = vtn_nir_select(b,
4471 vtn_ssa_value(b, w[3]), vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[5]));
4472
4473 vtn_push_ssa(b, w[2], res_type, ssa);
4474 }
4475
4476 static void
4477 vtn_handle_ptr(struct vtn_builder *b, SpvOp opcode,
4478 const uint32_t *w, unsigned count)
4479 {
4480 struct vtn_type *type1 = vtn_untyped_value(b, w[3])->type;
4481 struct vtn_type *type2 = vtn_untyped_value(b, w[4])->type;
4482 vtn_fail_if(type1->base_type != vtn_base_type_pointer ||
4483 type2->base_type != vtn_base_type_pointer,
4484 "%s operands must have pointer types",
4485 spirv_op_to_string(opcode));
4486 vtn_fail_if(type1->storage_class != type2->storage_class,
4487 "%s operands must have the same storage class",
4488 spirv_op_to_string(opcode));
4489
4490 struct vtn_type *vtn_type =
4491 vtn_value(b, w[1], vtn_value_type_type)->type;
4492 const struct glsl_type *type = vtn_type->type;
4493
4494 nir_address_format addr_format = vtn_mode_to_address_format(
4495 b, vtn_storage_class_to_mode(b, type1->storage_class, NULL, NULL));
4496
4497 nir_ssa_def *def;
4498
4499 switch (opcode) {
4500 case SpvOpPtrDiff: {
4501 /* OpPtrDiff returns the difference in number of elements (not byte offset). */
4502 unsigned elem_size, elem_align;
4503 glsl_get_natural_size_align_bytes(type1->deref->type,
4504 &elem_size, &elem_align);
4505
4506 def = nir_build_addr_isub(&b->nb,
4507 vtn_ssa_value(b, w[3])->def,
4508 vtn_ssa_value(b, w[4])->def,
4509 addr_format);
4510 def = nir_idiv(&b->nb, def, nir_imm_intN_t(&b->nb, elem_size, def->bit_size));
4511 def = nir_i2i(&b->nb, def, glsl_get_bit_size(type));
4512 break;
4513 }
4514
4515 case SpvOpPtrEqual:
4516 case SpvOpPtrNotEqual: {
4517 def = nir_build_addr_ieq(&b->nb,
4518 vtn_ssa_value(b, w[3])->def,
4519 vtn_ssa_value(b, w[4])->def,
4520 addr_format);
4521 if (opcode == SpvOpPtrNotEqual)
4522 def = nir_inot(&b->nb, def);
4523 break;
4524 }
4525
4526 default:
4527 unreachable("Invalid ptr operation");
4528 }
4529
4530 struct vtn_ssa_value *ssa_value = vtn_create_ssa_value(b, type);
4531 ssa_value->def = def;
4532 vtn_push_ssa(b, w[2], vtn_type, ssa_value);
4533 }
4534
4535 static bool
4536 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4537 const uint32_t *w, unsigned count)
4538 {
4539 switch (opcode) {
4540 case SpvOpLabel:
4541 break;
4542
4543 case SpvOpLoopMerge:
4544 case SpvOpSelectionMerge:
4545 /* This is handled by cfg pre-pass and walk_blocks */
4546 break;
4547
4548 case SpvOpUndef: {
4549 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4550 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4551 break;
4552 }
4553
4554 case SpvOpExtInst:
4555 vtn_handle_extension(b, opcode, w, count);
4556 break;
4557
4558 case SpvOpVariable:
4559 case SpvOpLoad:
4560 case SpvOpStore:
4561 case SpvOpCopyMemory:
4562 case SpvOpCopyMemorySized:
4563 case SpvOpAccessChain:
4564 case SpvOpPtrAccessChain:
4565 case SpvOpInBoundsAccessChain:
4566 case SpvOpInBoundsPtrAccessChain:
4567 case SpvOpArrayLength:
4568 case SpvOpConvertPtrToU:
4569 case SpvOpConvertUToPtr:
4570 vtn_handle_variables(b, opcode, w, count);
4571 break;
4572
4573 case SpvOpFunctionCall:
4574 vtn_handle_function_call(b, opcode, w, count);
4575 break;
4576
4577 case SpvOpSampledImage:
4578 case SpvOpImage:
4579 case SpvOpImageSampleImplicitLod:
4580 case SpvOpImageSampleExplicitLod:
4581 case SpvOpImageSampleDrefImplicitLod:
4582 case SpvOpImageSampleDrefExplicitLod:
4583 case SpvOpImageSampleProjImplicitLod:
4584 case SpvOpImageSampleProjExplicitLod:
4585 case SpvOpImageSampleProjDrefImplicitLod:
4586 case SpvOpImageSampleProjDrefExplicitLod:
4587 case SpvOpImageFetch:
4588 case SpvOpImageGather:
4589 case SpvOpImageDrefGather:
4590 case SpvOpImageQuerySizeLod:
4591 case SpvOpImageQueryLod:
4592 case SpvOpImageQueryLevels:
4593 case SpvOpImageQuerySamples:
4594 vtn_handle_texture(b, opcode, w, count);
4595 break;
4596
4597 case SpvOpImageRead:
4598 case SpvOpImageWrite:
4599 case SpvOpImageTexelPointer:
4600 vtn_handle_image(b, opcode, w, count);
4601 break;
4602
4603 case SpvOpImageQuerySize: {
4604 struct vtn_pointer *image =
4605 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4606 if (glsl_type_is_image(image->type->type)) {
4607 vtn_handle_image(b, opcode, w, count);
4608 } else {
4609 vtn_assert(glsl_type_is_sampler(image->type->type));
4610 vtn_handle_texture(b, opcode, w, count);
4611 }
4612 break;
4613 }
4614
4615 case SpvOpAtomicLoad:
4616 case SpvOpAtomicExchange:
4617 case SpvOpAtomicCompareExchange:
4618 case SpvOpAtomicCompareExchangeWeak:
4619 case SpvOpAtomicIIncrement:
4620 case SpvOpAtomicIDecrement:
4621 case SpvOpAtomicIAdd:
4622 case SpvOpAtomicISub:
4623 case SpvOpAtomicSMin:
4624 case SpvOpAtomicUMin:
4625 case SpvOpAtomicSMax:
4626 case SpvOpAtomicUMax:
4627 case SpvOpAtomicAnd:
4628 case SpvOpAtomicOr:
4629 case SpvOpAtomicXor: {
4630 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4631 if (pointer->value_type == vtn_value_type_image_pointer) {
4632 vtn_handle_image(b, opcode, w, count);
4633 } else {
4634 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4635 vtn_handle_atomics(b, opcode, w, count);
4636 }
4637 break;
4638 }
4639
4640 case SpvOpAtomicStore: {
4641 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4642 if (pointer->value_type == vtn_value_type_image_pointer) {
4643 vtn_handle_image(b, opcode, w, count);
4644 } else {
4645 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4646 vtn_handle_atomics(b, opcode, w, count);
4647 }
4648 break;
4649 }
4650
4651 case SpvOpSelect:
4652 vtn_handle_select(b, opcode, w, count);
4653 break;
4654
4655 case SpvOpSNegate:
4656 case SpvOpFNegate:
4657 case SpvOpNot:
4658 case SpvOpAny:
4659 case SpvOpAll:
4660 case SpvOpConvertFToU:
4661 case SpvOpConvertFToS:
4662 case SpvOpConvertSToF:
4663 case SpvOpConvertUToF:
4664 case SpvOpUConvert:
4665 case SpvOpSConvert:
4666 case SpvOpFConvert:
4667 case SpvOpQuantizeToF16:
4668 case SpvOpPtrCastToGeneric:
4669 case SpvOpGenericCastToPtr:
4670 case SpvOpIsNan:
4671 case SpvOpIsInf:
4672 case SpvOpIsFinite:
4673 case SpvOpIsNormal:
4674 case SpvOpSignBitSet:
4675 case SpvOpLessOrGreater:
4676 case SpvOpOrdered:
4677 case SpvOpUnordered:
4678 case SpvOpIAdd:
4679 case SpvOpFAdd:
4680 case SpvOpISub:
4681 case SpvOpFSub:
4682 case SpvOpIMul:
4683 case SpvOpFMul:
4684 case SpvOpUDiv:
4685 case SpvOpSDiv:
4686 case SpvOpFDiv:
4687 case SpvOpUMod:
4688 case SpvOpSRem:
4689 case SpvOpSMod:
4690 case SpvOpFRem:
4691 case SpvOpFMod:
4692 case SpvOpVectorTimesScalar:
4693 case SpvOpDot:
4694 case SpvOpIAddCarry:
4695 case SpvOpISubBorrow:
4696 case SpvOpUMulExtended:
4697 case SpvOpSMulExtended:
4698 case SpvOpShiftRightLogical:
4699 case SpvOpShiftRightArithmetic:
4700 case SpvOpShiftLeftLogical:
4701 case SpvOpLogicalEqual:
4702 case SpvOpLogicalNotEqual:
4703 case SpvOpLogicalOr:
4704 case SpvOpLogicalAnd:
4705 case SpvOpLogicalNot:
4706 case SpvOpBitwiseOr:
4707 case SpvOpBitwiseXor:
4708 case SpvOpBitwiseAnd:
4709 case SpvOpIEqual:
4710 case SpvOpFOrdEqual:
4711 case SpvOpFUnordEqual:
4712 case SpvOpINotEqual:
4713 case SpvOpFOrdNotEqual:
4714 case SpvOpFUnordNotEqual:
4715 case SpvOpULessThan:
4716 case SpvOpSLessThan:
4717 case SpvOpFOrdLessThan:
4718 case SpvOpFUnordLessThan:
4719 case SpvOpUGreaterThan:
4720 case SpvOpSGreaterThan:
4721 case SpvOpFOrdGreaterThan:
4722 case SpvOpFUnordGreaterThan:
4723 case SpvOpULessThanEqual:
4724 case SpvOpSLessThanEqual:
4725 case SpvOpFOrdLessThanEqual:
4726 case SpvOpFUnordLessThanEqual:
4727 case SpvOpUGreaterThanEqual:
4728 case SpvOpSGreaterThanEqual:
4729 case SpvOpFOrdGreaterThanEqual:
4730 case SpvOpFUnordGreaterThanEqual:
4731 case SpvOpDPdx:
4732 case SpvOpDPdy:
4733 case SpvOpFwidth:
4734 case SpvOpDPdxFine:
4735 case SpvOpDPdyFine:
4736 case SpvOpFwidthFine:
4737 case SpvOpDPdxCoarse:
4738 case SpvOpDPdyCoarse:
4739 case SpvOpFwidthCoarse:
4740 case SpvOpBitFieldInsert:
4741 case SpvOpBitFieldSExtract:
4742 case SpvOpBitFieldUExtract:
4743 case SpvOpBitReverse:
4744 case SpvOpBitCount:
4745 case SpvOpTranspose:
4746 case SpvOpOuterProduct:
4747 case SpvOpMatrixTimesScalar:
4748 case SpvOpVectorTimesMatrix:
4749 case SpvOpMatrixTimesVector:
4750 case SpvOpMatrixTimesMatrix:
4751 vtn_handle_alu(b, opcode, w, count);
4752 break;
4753
4754 case SpvOpBitcast:
4755 vtn_handle_bitcast(b, w, count);
4756 break;
4757
4758 case SpvOpVectorExtractDynamic:
4759 case SpvOpVectorInsertDynamic:
4760 case SpvOpVectorShuffle:
4761 case SpvOpCompositeConstruct:
4762 case SpvOpCompositeExtract:
4763 case SpvOpCompositeInsert:
4764 case SpvOpCopyLogical:
4765 case SpvOpCopyObject:
4766 vtn_handle_composite(b, opcode, w, count);
4767 break;
4768
4769 case SpvOpEmitVertex:
4770 case SpvOpEndPrimitive:
4771 case SpvOpEmitStreamVertex:
4772 case SpvOpEndStreamPrimitive:
4773 case SpvOpControlBarrier:
4774 case SpvOpMemoryBarrier:
4775 vtn_handle_barrier(b, opcode, w, count);
4776 break;
4777
4778 case SpvOpGroupNonUniformElect:
4779 case SpvOpGroupNonUniformAll:
4780 case SpvOpGroupNonUniformAny:
4781 case SpvOpGroupNonUniformAllEqual:
4782 case SpvOpGroupNonUniformBroadcast:
4783 case SpvOpGroupNonUniformBroadcastFirst:
4784 case SpvOpGroupNonUniformBallot:
4785 case SpvOpGroupNonUniformInverseBallot:
4786 case SpvOpGroupNonUniformBallotBitExtract:
4787 case SpvOpGroupNonUniformBallotBitCount:
4788 case SpvOpGroupNonUniformBallotFindLSB:
4789 case SpvOpGroupNonUniformBallotFindMSB:
4790 case SpvOpGroupNonUniformShuffle:
4791 case SpvOpGroupNonUniformShuffleXor:
4792 case SpvOpGroupNonUniformShuffleUp:
4793 case SpvOpGroupNonUniformShuffleDown:
4794 case SpvOpGroupNonUniformIAdd:
4795 case SpvOpGroupNonUniformFAdd:
4796 case SpvOpGroupNonUniformIMul:
4797 case SpvOpGroupNonUniformFMul:
4798 case SpvOpGroupNonUniformSMin:
4799 case SpvOpGroupNonUniformUMin:
4800 case SpvOpGroupNonUniformFMin:
4801 case SpvOpGroupNonUniformSMax:
4802 case SpvOpGroupNonUniformUMax:
4803 case SpvOpGroupNonUniformFMax:
4804 case SpvOpGroupNonUniformBitwiseAnd:
4805 case SpvOpGroupNonUniformBitwiseOr:
4806 case SpvOpGroupNonUniformBitwiseXor:
4807 case SpvOpGroupNonUniformLogicalAnd:
4808 case SpvOpGroupNonUniformLogicalOr:
4809 case SpvOpGroupNonUniformLogicalXor:
4810 case SpvOpGroupNonUniformQuadBroadcast:
4811 case SpvOpGroupNonUniformQuadSwap:
4812 case SpvOpGroupAll:
4813 case SpvOpGroupAny:
4814 case SpvOpGroupBroadcast:
4815 case SpvOpGroupIAdd:
4816 case SpvOpGroupFAdd:
4817 case SpvOpGroupFMin:
4818 case SpvOpGroupUMin:
4819 case SpvOpGroupSMin:
4820 case SpvOpGroupFMax:
4821 case SpvOpGroupUMax:
4822 case SpvOpGroupSMax:
4823 case SpvOpSubgroupBallotKHR:
4824 case SpvOpSubgroupFirstInvocationKHR:
4825 case SpvOpSubgroupReadInvocationKHR:
4826 case SpvOpSubgroupAllKHR:
4827 case SpvOpSubgroupAnyKHR:
4828 case SpvOpSubgroupAllEqualKHR:
4829 case SpvOpGroupIAddNonUniformAMD:
4830 case SpvOpGroupFAddNonUniformAMD:
4831 case SpvOpGroupFMinNonUniformAMD:
4832 case SpvOpGroupUMinNonUniformAMD:
4833 case SpvOpGroupSMinNonUniformAMD:
4834 case SpvOpGroupFMaxNonUniformAMD:
4835 case SpvOpGroupUMaxNonUniformAMD:
4836 case SpvOpGroupSMaxNonUniformAMD:
4837 vtn_handle_subgroup(b, opcode, w, count);
4838 break;
4839
4840 case SpvOpPtrDiff:
4841 case SpvOpPtrEqual:
4842 case SpvOpPtrNotEqual:
4843 vtn_handle_ptr(b, opcode, w, count);
4844 break;
4845
4846 case SpvOpBeginInvocationInterlockEXT:
4847 vtn_emit_barrier(b, nir_intrinsic_begin_invocation_interlock);
4848 break;
4849
4850 case SpvOpEndInvocationInterlockEXT:
4851 vtn_emit_barrier(b, nir_intrinsic_end_invocation_interlock);
4852 break;
4853
4854 case SpvOpDemoteToHelperInvocationEXT: {
4855 nir_intrinsic_instr *intrin =
4856 nir_intrinsic_instr_create(b->shader, nir_intrinsic_demote);
4857 nir_builder_instr_insert(&b->nb, &intrin->instr);
4858 break;
4859 }
4860
4861 case SpvOpIsHelperInvocationEXT: {
4862 nir_intrinsic_instr *intrin =
4863 nir_intrinsic_instr_create(b->shader, nir_intrinsic_is_helper_invocation);
4864 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 1, 1, NULL);
4865 nir_builder_instr_insert(&b->nb, &intrin->instr);
4866
4867 struct vtn_type *res_type =
4868 vtn_value(b, w[1], vtn_value_type_type)->type;
4869 struct vtn_ssa_value *val = vtn_create_ssa_value(b, res_type->type);
4870 val->def = &intrin->dest.ssa;
4871
4872 vtn_push_ssa(b, w[2], res_type, val);
4873 break;
4874 }
4875
4876 case SpvOpReadClockKHR: {
4877 assert(vtn_constant_uint(b, w[3]) == SpvScopeSubgroup);
4878
4879 /* Operation supports two result types: uvec2 and uint64_t. The NIR
4880 * intrinsic gives uvec2, so pack the result for the other case.
4881 */
4882 nir_intrinsic_instr *intrin =
4883 nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_shader_clock);
4884 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 2, 32, NULL);
4885 nir_builder_instr_insert(&b->nb, &intrin->instr);
4886
4887 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
4888 const struct glsl_type *dest_type = type->type;
4889 nir_ssa_def *result;
4890
4891 if (glsl_type_is_vector(dest_type)) {
4892 assert(dest_type == glsl_vector_type(GLSL_TYPE_UINT, 2));
4893 result = &intrin->dest.ssa;
4894 } else {
4895 assert(glsl_type_is_scalar(dest_type));
4896 assert(glsl_get_base_type(dest_type) == GLSL_TYPE_UINT64);
4897 result = nir_pack_64_2x32(&b->nb, &intrin->dest.ssa);
4898 }
4899
4900 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
4901 val->type = type;
4902 val->ssa = vtn_create_ssa_value(b, dest_type);
4903 val->ssa->def = result;
4904 break;
4905 }
4906
4907 default:
4908 vtn_fail_with_opcode("Unhandled opcode", opcode);
4909 }
4910
4911 return true;
4912 }
4913
4914 struct vtn_builder*
4915 vtn_create_builder(const uint32_t *words, size_t word_count,
4916 gl_shader_stage stage, const char *entry_point_name,
4917 const struct spirv_to_nir_options *options)
4918 {
4919 /* Initialize the vtn_builder object */
4920 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
4921 struct spirv_to_nir_options *dup_options =
4922 ralloc(b, struct spirv_to_nir_options);
4923 *dup_options = *options;
4924
4925 b->spirv = words;
4926 b->spirv_word_count = word_count;
4927 b->file = NULL;
4928 b->line = -1;
4929 b->col = -1;
4930 exec_list_make_empty(&b->functions);
4931 b->entry_point_stage = stage;
4932 b->entry_point_name = entry_point_name;
4933 b->options = dup_options;
4934
4935 /*
4936 * Handle the SPIR-V header (first 5 dwords).
4937 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
4938 */
4939 if (word_count <= 5)
4940 goto fail;
4941
4942 if (words[0] != SpvMagicNumber) {
4943 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
4944 goto fail;
4945 }
4946 if (words[1] < 0x10000) {
4947 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
4948 goto fail;
4949 }
4950
4951 uint16_t generator_id = words[2] >> 16;
4952 uint16_t generator_version = words[2];
4953
4954 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
4955 * but this should at least let us shut the workaround off for modern
4956 * versions of GLSLang.
4957 */
4958 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
4959
4960 /* words[2] == generator magic */
4961 unsigned value_id_bound = words[3];
4962 if (words[4] != 0) {
4963 vtn_err("words[4] was %u, want 0", words[4]);
4964 goto fail;
4965 }
4966
4967 b->value_id_bound = value_id_bound;
4968 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
4969
4970 return b;
4971 fail:
4972 ralloc_free(b);
4973 return NULL;
4974 }
4975
4976 static nir_function *
4977 vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
4978 nir_function *entry_point)
4979 {
4980 vtn_assert(entry_point == b->entry_point->func->impl->function);
4981 vtn_fail_if(!entry_point->name, "entry points are required to have a name");
4982 const char *func_name =
4983 ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
4984
4985 /* we shouldn't have any inputs yet */
4986 vtn_assert(!entry_point->shader->num_inputs);
4987 vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
4988
4989 nir_function *main_entry_point = nir_function_create(b->shader, func_name);
4990 main_entry_point->impl = nir_function_impl_create(main_entry_point);
4991 nir_builder_init(&b->nb, main_entry_point->impl);
4992 b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
4993 b->func_param_idx = 0;
4994
4995 nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
4996
4997 for (unsigned i = 0; i < entry_point->num_params; ++i) {
4998 struct vtn_type *param_type = b->entry_point->func->type->params[i];
4999
5000 /* consider all pointers to function memory to be parameters passed
5001 * by value
5002 */
5003 bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
5004 param_type->storage_class == SpvStorageClassFunction;
5005
5006 /* input variable */
5007 nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
5008 in_var->data.mode = nir_var_shader_in;
5009 in_var->data.read_only = true;
5010 in_var->data.location = i;
5011
5012 if (is_by_val)
5013 in_var->type = param_type->deref->type;
5014 else
5015 in_var->type = param_type->type;
5016
5017 nir_shader_add_variable(b->nb.shader, in_var);
5018 b->nb.shader->num_inputs++;
5019
5020 /* we have to copy the entire variable into function memory */
5021 if (is_by_val) {
5022 nir_variable *copy_var =
5023 nir_local_variable_create(main_entry_point->impl, in_var->type,
5024 "copy_in");
5025 nir_copy_var(&b->nb, copy_var, in_var);
5026 call->params[i] =
5027 nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
5028 } else {
5029 call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
5030 }
5031 }
5032
5033 nir_builder_instr_insert(&b->nb, &call->instr);
5034
5035 return main_entry_point;
5036 }
5037
5038 nir_shader *
5039 spirv_to_nir(const uint32_t *words, size_t word_count,
5040 struct nir_spirv_specialization *spec, unsigned num_spec,
5041 gl_shader_stage stage, const char *entry_point_name,
5042 const struct spirv_to_nir_options *options,
5043 const nir_shader_compiler_options *nir_options)
5044
5045 {
5046 const uint32_t *word_end = words + word_count;
5047
5048 struct vtn_builder *b = vtn_create_builder(words, word_count,
5049 stage, entry_point_name,
5050 options);
5051
5052 if (b == NULL)
5053 return NULL;
5054
5055 /* See also _vtn_fail() */
5056 if (setjmp(b->fail_jump)) {
5057 ralloc_free(b);
5058 return NULL;
5059 }
5060
5061 /* Skip the SPIR-V header, handled at vtn_create_builder */
5062 words+= 5;
5063
5064 b->shader = nir_shader_create(b, stage, nir_options, NULL);
5065
5066 /* Handle all the preamble instructions */
5067 words = vtn_foreach_instruction(b, words, word_end,
5068 vtn_handle_preamble_instruction);
5069
5070 if (b->entry_point == NULL) {
5071 vtn_fail("Entry point not found");
5072 ralloc_free(b);
5073 return NULL;
5074 }
5075
5076 /* Set shader info defaults */
5077 b->shader->info.gs.invocations = 1;
5078
5079 /* Parse rounding mode execution modes. This has to happen earlier than
5080 * other changes in the execution modes since they can affect, for example,
5081 * the result of the floating point constants.
5082 */
5083 vtn_foreach_execution_mode(b, b->entry_point,
5084 vtn_handle_rounding_mode_in_execution_mode, NULL);
5085
5086 b->specializations = spec;
5087 b->num_specializations = num_spec;
5088
5089 /* Handle all variable, type, and constant instructions */
5090 words = vtn_foreach_instruction(b, words, word_end,
5091 vtn_handle_variable_or_type_instruction);
5092
5093 /* Parse execution modes */
5094 vtn_foreach_execution_mode(b, b->entry_point,
5095 vtn_handle_execution_mode, NULL);
5096
5097 if (b->workgroup_size_builtin) {
5098 vtn_assert(b->workgroup_size_builtin->type->type ==
5099 glsl_vector_type(GLSL_TYPE_UINT, 3));
5100
5101 nir_const_value *const_size =
5102 b->workgroup_size_builtin->constant->values;
5103
5104 b->shader->info.cs.local_size[0] = const_size[0].u32;
5105 b->shader->info.cs.local_size[1] = const_size[1].u32;
5106 b->shader->info.cs.local_size[2] = const_size[2].u32;
5107 }
5108
5109 /* Set types on all vtn_values */
5110 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
5111
5112 vtn_build_cfg(b, words, word_end);
5113
5114 assert(b->entry_point->value_type == vtn_value_type_function);
5115 b->entry_point->func->referenced = true;
5116
5117 bool progress;
5118 do {
5119 progress = false;
5120 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
5121 if (func->referenced && !func->emitted) {
5122 b->const_table = _mesa_pointer_hash_table_create(b);
5123
5124 vtn_function_emit(b, func, vtn_handle_body_instruction);
5125 progress = true;
5126 }
5127 }
5128 } while (progress);
5129
5130 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
5131 nir_function *entry_point = b->entry_point->func->impl->function;
5132 vtn_assert(entry_point);
5133
5134 /* post process entry_points with input params */
5135 if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
5136 entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
5137
5138 entry_point->is_entrypoint = true;
5139
5140 /* When multiple shader stages exist in the same SPIR-V module, we
5141 * generate input and output variables for every stage, in the same
5142 * NIR program. These dead variables can be invalid NIR. For example,
5143 * TCS outputs must be per-vertex arrays (or decorated 'patch'), while
5144 * VS output variables wouldn't be.
5145 *
5146 * To ensure we have valid NIR, we eliminate any dead inputs and outputs
5147 * right away. In order to do so, we must lower any constant initializers
5148 * on outputs so nir_remove_dead_variables sees that they're written to.
5149 */
5150 nir_lower_constant_initializers(b->shader, nir_var_shader_out);
5151 nir_remove_dead_variables(b->shader,
5152 nir_var_shader_in | nir_var_shader_out);
5153
5154 /* We sometimes generate bogus derefs that, while never used, give the
5155 * validator a bit of heartburn. Run dead code to get rid of them.
5156 */
5157 nir_opt_dce(b->shader);
5158
5159 /* Unparent the shader from the vtn_builder before we delete the builder */
5160 ralloc_steal(NULL, b->shader);
5161
5162 nir_shader *shader = b->shader;
5163 ralloc_free(b);
5164
5165 return shader;
5166 }