nir: Rename nir_intrinsic_barrier to control_barrier
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include "util/u_math.h"
36
37 #include <stdio.h>
38
39 void
40 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
41 size_t spirv_offset, const char *message)
42 {
43 if (b->options->debug.func) {
44 b->options->debug.func(b->options->debug.private_data,
45 level, spirv_offset, message);
46 }
47
48 #ifndef NDEBUG
49 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
50 fprintf(stderr, "%s\n", message);
51 #endif
52 }
53
54 void
55 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
56 size_t spirv_offset, const char *fmt, ...)
57 {
58 va_list args;
59 char *msg;
60
61 va_start(args, fmt);
62 msg = ralloc_vasprintf(NULL, fmt, args);
63 va_end(args);
64
65 vtn_log(b, level, spirv_offset, msg);
66
67 ralloc_free(msg);
68 }
69
70 static void
71 vtn_log_err(struct vtn_builder *b,
72 enum nir_spirv_debug_level level, const char *prefix,
73 const char *file, unsigned line,
74 const char *fmt, va_list args)
75 {
76 char *msg;
77
78 msg = ralloc_strdup(NULL, prefix);
79
80 #ifndef NDEBUG
81 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
82 #endif
83
84 ralloc_asprintf_append(&msg, " ");
85
86 ralloc_vasprintf_append(&msg, fmt, args);
87
88 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
89 b->spirv_offset);
90
91 if (b->file) {
92 ralloc_asprintf_append(&msg,
93 "\n in SPIR-V source file %s, line %d, col %d",
94 b->file, b->line, b->col);
95 }
96
97 vtn_log(b, level, b->spirv_offset, msg);
98
99 ralloc_free(msg);
100 }
101
102 static void
103 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
104 {
105 static int idx = 0;
106
107 char filename[1024];
108 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
109 path, prefix, idx++);
110 if (len < 0 || len >= sizeof(filename))
111 return;
112
113 FILE *f = fopen(filename, "w");
114 if (f == NULL)
115 return;
116
117 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
118 fclose(f);
119
120 vtn_info("SPIR-V shader dumped to %s", filename);
121 }
122
123 void
124 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
125 const char *fmt, ...)
126 {
127 va_list args;
128
129 va_start(args, fmt);
130 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
131 file, line, fmt, args);
132 va_end(args);
133 }
134
135 void
136 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
137 const char *fmt, ...)
138 {
139 va_list args;
140
141 va_start(args, fmt);
142 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
143 file, line, fmt, args);
144 va_end(args);
145 }
146
147 void
148 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
149 const char *fmt, ...)
150 {
151 va_list args;
152
153 va_start(args, fmt);
154 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
155 file, line, fmt, args);
156 va_end(args);
157
158 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
159 if (dump_path)
160 vtn_dump_shader(b, dump_path, "fail");
161
162 longjmp(b->fail_jump, 1);
163 }
164
165 struct spec_constant_value {
166 bool is_double;
167 union {
168 uint32_t data32;
169 uint64_t data64;
170 };
171 };
172
173 static struct vtn_ssa_value *
174 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
175 {
176 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
177 val->type = type;
178
179 if (glsl_type_is_vector_or_scalar(type)) {
180 unsigned num_components = glsl_get_vector_elements(val->type);
181 unsigned bit_size = glsl_get_bit_size(val->type);
182 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
183 } else {
184 unsigned elems = glsl_get_length(val->type);
185 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
186 if (glsl_type_is_matrix(type)) {
187 const struct glsl_type *elem_type =
188 glsl_vector_type(glsl_get_base_type(type),
189 glsl_get_vector_elements(type));
190
191 for (unsigned i = 0; i < elems; i++)
192 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
193 } else if (glsl_type_is_array(type)) {
194 const struct glsl_type *elem_type = glsl_get_array_element(type);
195 for (unsigned i = 0; i < elems; i++)
196 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
197 } else {
198 for (unsigned i = 0; i < elems; i++) {
199 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
200 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
201 }
202 }
203 }
204
205 return val;
206 }
207
208 static struct vtn_ssa_value *
209 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
210 const struct glsl_type *type)
211 {
212 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
213
214 if (entry)
215 return entry->data;
216
217 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
218 val->type = type;
219
220 switch (glsl_get_base_type(type)) {
221 case GLSL_TYPE_INT:
222 case GLSL_TYPE_UINT:
223 case GLSL_TYPE_INT16:
224 case GLSL_TYPE_UINT16:
225 case GLSL_TYPE_UINT8:
226 case GLSL_TYPE_INT8:
227 case GLSL_TYPE_INT64:
228 case GLSL_TYPE_UINT64:
229 case GLSL_TYPE_BOOL:
230 case GLSL_TYPE_FLOAT:
231 case GLSL_TYPE_FLOAT16:
232 case GLSL_TYPE_DOUBLE: {
233 int bit_size = glsl_get_bit_size(type);
234 if (glsl_type_is_vector_or_scalar(type)) {
235 unsigned num_components = glsl_get_vector_elements(val->type);
236 nir_load_const_instr *load =
237 nir_load_const_instr_create(b->shader, num_components, bit_size);
238
239 memcpy(load->value, constant->values,
240 sizeof(nir_const_value) * load->def.num_components);
241
242 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
243 val->def = &load->def;
244 } else {
245 assert(glsl_type_is_matrix(type));
246 unsigned columns = glsl_get_matrix_columns(val->type);
247 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
248 const struct glsl_type *column_type = glsl_get_column_type(val->type);
249 for (unsigned i = 0; i < columns; i++)
250 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
251 column_type);
252 }
253 break;
254 }
255
256 case GLSL_TYPE_ARRAY: {
257 unsigned elems = glsl_get_length(val->type);
258 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
259 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
260 for (unsigned i = 0; i < elems; i++)
261 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
262 elem_type);
263 break;
264 }
265
266 case GLSL_TYPE_STRUCT: {
267 unsigned elems = glsl_get_length(val->type);
268 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
269 for (unsigned i = 0; i < elems; i++) {
270 const struct glsl_type *elem_type =
271 glsl_get_struct_field(val->type, i);
272 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
273 elem_type);
274 }
275 break;
276 }
277
278 default:
279 vtn_fail("bad constant type");
280 }
281
282 return val;
283 }
284
285 struct vtn_ssa_value *
286 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
287 {
288 struct vtn_value *val = vtn_untyped_value(b, value_id);
289 switch (val->value_type) {
290 case vtn_value_type_undef:
291 return vtn_undef_ssa_value(b, val->type->type);
292
293 case vtn_value_type_constant:
294 return vtn_const_ssa_value(b, val->constant, val->type->type);
295
296 case vtn_value_type_ssa:
297 return val->ssa;
298
299 case vtn_value_type_pointer:
300 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
301 struct vtn_ssa_value *ssa =
302 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
303 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
304 return ssa;
305
306 default:
307 vtn_fail("Invalid type for an SSA value");
308 }
309 }
310
311 static char *
312 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
313 unsigned word_count, unsigned *words_used)
314 {
315 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
316 if (words_used) {
317 /* Ammount of space taken by the string (including the null) */
318 unsigned len = strlen(dup) + 1;
319 *words_used = DIV_ROUND_UP(len, sizeof(*words));
320 }
321 return dup;
322 }
323
324 const uint32_t *
325 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
326 const uint32_t *end, vtn_instruction_handler handler)
327 {
328 b->file = NULL;
329 b->line = -1;
330 b->col = -1;
331
332 const uint32_t *w = start;
333 while (w < end) {
334 SpvOp opcode = w[0] & SpvOpCodeMask;
335 unsigned count = w[0] >> SpvWordCountShift;
336 vtn_assert(count >= 1 && w + count <= end);
337
338 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
339
340 switch (opcode) {
341 case SpvOpNop:
342 break; /* Do nothing */
343
344 case SpvOpLine:
345 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
346 b->line = w[2];
347 b->col = w[3];
348 break;
349
350 case SpvOpNoLine:
351 b->file = NULL;
352 b->line = -1;
353 b->col = -1;
354 break;
355
356 default:
357 if (!handler(b, opcode, w, count))
358 return w;
359 break;
360 }
361
362 w += count;
363 }
364
365 b->spirv_offset = 0;
366 b->file = NULL;
367 b->line = -1;
368 b->col = -1;
369
370 assert(w == end);
371 return w;
372 }
373
374 static bool
375 vtn_handle_non_semantic_instruction(struct vtn_builder *b, SpvOp ext_opcode,
376 const uint32_t *w, unsigned count)
377 {
378 /* Do nothing. */
379 return true;
380 }
381
382 static void
383 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
384 const uint32_t *w, unsigned count)
385 {
386 const char *ext = (const char *)&w[2];
387 switch (opcode) {
388 case SpvOpExtInstImport: {
389 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
390 if (strcmp(ext, "GLSL.std.450") == 0) {
391 val->ext_handler = vtn_handle_glsl450_instruction;
392 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
393 && (b->options && b->options->caps.amd_gcn_shader)) {
394 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
395 } else if ((strcmp(ext, "SPV_AMD_shader_ballot") == 0)
396 && (b->options && b->options->caps.amd_shader_ballot)) {
397 val->ext_handler = vtn_handle_amd_shader_ballot_instruction;
398 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
399 && (b->options && b->options->caps.amd_trinary_minmax)) {
400 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
401 } else if (strcmp(ext, "OpenCL.std") == 0) {
402 val->ext_handler = vtn_handle_opencl_instruction;
403 } else if (strstr(ext, "NonSemantic.") == ext) {
404 val->ext_handler = vtn_handle_non_semantic_instruction;
405 } else {
406 vtn_fail("Unsupported extension: %s", ext);
407 }
408 break;
409 }
410
411 case SpvOpExtInst: {
412 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
413 bool handled = val->ext_handler(b, w[4], w, count);
414 vtn_assert(handled);
415 break;
416 }
417
418 default:
419 vtn_fail_with_opcode("Unhandled opcode", opcode);
420 }
421 }
422
423 static void
424 _foreach_decoration_helper(struct vtn_builder *b,
425 struct vtn_value *base_value,
426 int parent_member,
427 struct vtn_value *value,
428 vtn_decoration_foreach_cb cb, void *data)
429 {
430 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
431 int member;
432 if (dec->scope == VTN_DEC_DECORATION) {
433 member = parent_member;
434 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
435 vtn_fail_if(value->value_type != vtn_value_type_type ||
436 value->type->base_type != vtn_base_type_struct,
437 "OpMemberDecorate and OpGroupMemberDecorate are only "
438 "allowed on OpTypeStruct");
439 /* This means we haven't recursed yet */
440 assert(value == base_value);
441
442 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
443
444 vtn_fail_if(member >= base_value->type->length,
445 "OpMemberDecorate specifies member %d but the "
446 "OpTypeStruct has only %u members",
447 member, base_value->type->length);
448 } else {
449 /* Not a decoration */
450 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
451 continue;
452 }
453
454 if (dec->group) {
455 assert(dec->group->value_type == vtn_value_type_decoration_group);
456 _foreach_decoration_helper(b, base_value, member, dec->group,
457 cb, data);
458 } else {
459 cb(b, base_value, member, dec, data);
460 }
461 }
462 }
463
464 /** Iterates (recursively if needed) over all of the decorations on a value
465 *
466 * This function iterates over all of the decorations applied to a given
467 * value. If it encounters a decoration group, it recurses into the group
468 * and iterates over all of those decorations as well.
469 */
470 void
471 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
472 vtn_decoration_foreach_cb cb, void *data)
473 {
474 _foreach_decoration_helper(b, value, -1, value, cb, data);
475 }
476
477 void
478 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
479 vtn_execution_mode_foreach_cb cb, void *data)
480 {
481 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
482 if (dec->scope != VTN_DEC_EXECUTION_MODE)
483 continue;
484
485 assert(dec->group == NULL);
486 cb(b, value, dec, data);
487 }
488 }
489
490 void
491 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
492 const uint32_t *w, unsigned count)
493 {
494 const uint32_t *w_end = w + count;
495 const uint32_t target = w[1];
496 w += 2;
497
498 switch (opcode) {
499 case SpvOpDecorationGroup:
500 vtn_push_value(b, target, vtn_value_type_decoration_group);
501 break;
502
503 case SpvOpDecorate:
504 case SpvOpDecorateId:
505 case SpvOpMemberDecorate:
506 case SpvOpDecorateString:
507 case SpvOpMemberDecorateString:
508 case SpvOpExecutionMode:
509 case SpvOpExecutionModeId: {
510 struct vtn_value *val = vtn_untyped_value(b, target);
511
512 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
513 switch (opcode) {
514 case SpvOpDecorate:
515 case SpvOpDecorateId:
516 case SpvOpDecorateString:
517 dec->scope = VTN_DEC_DECORATION;
518 break;
519 case SpvOpMemberDecorate:
520 case SpvOpMemberDecorateString:
521 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
522 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
523 "Member argument of OpMemberDecorate too large");
524 break;
525 case SpvOpExecutionMode:
526 case SpvOpExecutionModeId:
527 dec->scope = VTN_DEC_EXECUTION_MODE;
528 break;
529 default:
530 unreachable("Invalid decoration opcode");
531 }
532 dec->decoration = *(w++);
533 dec->operands = w;
534
535 /* Link into the list */
536 dec->next = val->decoration;
537 val->decoration = dec;
538 break;
539 }
540
541 case SpvOpGroupMemberDecorate:
542 case SpvOpGroupDecorate: {
543 struct vtn_value *group =
544 vtn_value(b, target, vtn_value_type_decoration_group);
545
546 for (; w < w_end; w++) {
547 struct vtn_value *val = vtn_untyped_value(b, *w);
548 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
549
550 dec->group = group;
551 if (opcode == SpvOpGroupDecorate) {
552 dec->scope = VTN_DEC_DECORATION;
553 } else {
554 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
555 vtn_fail_if(dec->scope < 0, /* Check for overflow */
556 "Member argument of OpGroupMemberDecorate too large");
557 }
558
559 /* Link into the list */
560 dec->next = val->decoration;
561 val->decoration = dec;
562 }
563 break;
564 }
565
566 default:
567 unreachable("Unhandled opcode");
568 }
569 }
570
571 struct member_decoration_ctx {
572 unsigned num_fields;
573 struct glsl_struct_field *fields;
574 struct vtn_type *type;
575 };
576
577 /**
578 * Returns true if the given type contains a struct decorated Block or
579 * BufferBlock
580 */
581 bool
582 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
583 {
584 switch (type->base_type) {
585 case vtn_base_type_array:
586 return vtn_type_contains_block(b, type->array_element);
587 case vtn_base_type_struct:
588 if (type->block || type->buffer_block)
589 return true;
590 for (unsigned i = 0; i < type->length; i++) {
591 if (vtn_type_contains_block(b, type->members[i]))
592 return true;
593 }
594 return false;
595 default:
596 return false;
597 }
598 }
599
600 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
601 * OpStore, or OpCopyMemory between them without breaking anything.
602 * Technically, the SPIR-V rules require the exact same type ID but this lets
603 * us internally be a bit looser.
604 */
605 bool
606 vtn_types_compatible(struct vtn_builder *b,
607 struct vtn_type *t1, struct vtn_type *t2)
608 {
609 if (t1->id == t2->id)
610 return true;
611
612 if (t1->base_type != t2->base_type)
613 return false;
614
615 switch (t1->base_type) {
616 case vtn_base_type_void:
617 case vtn_base_type_scalar:
618 case vtn_base_type_vector:
619 case vtn_base_type_matrix:
620 case vtn_base_type_image:
621 case vtn_base_type_sampler:
622 case vtn_base_type_sampled_image:
623 return t1->type == t2->type;
624
625 case vtn_base_type_array:
626 return t1->length == t2->length &&
627 vtn_types_compatible(b, t1->array_element, t2->array_element);
628
629 case vtn_base_type_pointer:
630 return vtn_types_compatible(b, t1->deref, t2->deref);
631
632 case vtn_base_type_struct:
633 if (t1->length != t2->length)
634 return false;
635
636 for (unsigned i = 0; i < t1->length; i++) {
637 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
638 return false;
639 }
640 return true;
641
642 case vtn_base_type_function:
643 /* This case shouldn't get hit since you can't copy around function
644 * types. Just require them to be identical.
645 */
646 return false;
647 }
648
649 vtn_fail("Invalid base type");
650 }
651
652 struct vtn_type *
653 vtn_type_without_array(struct vtn_type *type)
654 {
655 while (type->base_type == vtn_base_type_array)
656 type = type->array_element;
657 return type;
658 }
659
660 /* does a shallow copy of a vtn_type */
661
662 static struct vtn_type *
663 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
664 {
665 struct vtn_type *dest = ralloc(b, struct vtn_type);
666 *dest = *src;
667
668 switch (src->base_type) {
669 case vtn_base_type_void:
670 case vtn_base_type_scalar:
671 case vtn_base_type_vector:
672 case vtn_base_type_matrix:
673 case vtn_base_type_array:
674 case vtn_base_type_pointer:
675 case vtn_base_type_image:
676 case vtn_base_type_sampler:
677 case vtn_base_type_sampled_image:
678 /* Nothing more to do */
679 break;
680
681 case vtn_base_type_struct:
682 dest->members = ralloc_array(b, struct vtn_type *, src->length);
683 memcpy(dest->members, src->members,
684 src->length * sizeof(src->members[0]));
685
686 dest->offsets = ralloc_array(b, unsigned, src->length);
687 memcpy(dest->offsets, src->offsets,
688 src->length * sizeof(src->offsets[0]));
689 break;
690
691 case vtn_base_type_function:
692 dest->params = ralloc_array(b, struct vtn_type *, src->length);
693 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
694 break;
695 }
696
697 return dest;
698 }
699
700 static struct vtn_type *
701 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
702 {
703 type->members[member] = vtn_type_copy(b, type->members[member]);
704 type = type->members[member];
705
706 /* We may have an array of matrices.... Oh, joy! */
707 while (glsl_type_is_array(type->type)) {
708 type->array_element = vtn_type_copy(b, type->array_element);
709 type = type->array_element;
710 }
711
712 vtn_assert(glsl_type_is_matrix(type->type));
713
714 return type;
715 }
716
717 static void
718 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
719 int member, enum gl_access_qualifier access)
720 {
721 type->members[member] = vtn_type_copy(b, type->members[member]);
722 type = type->members[member];
723
724 type->access |= access;
725 }
726
727 static void
728 array_stride_decoration_cb(struct vtn_builder *b,
729 struct vtn_value *val, int member,
730 const struct vtn_decoration *dec, void *void_ctx)
731 {
732 struct vtn_type *type = val->type;
733
734 if (dec->decoration == SpvDecorationArrayStride) {
735 if (vtn_type_contains_block(b, type)) {
736 vtn_warn("The ArrayStride decoration cannot be applied to an array "
737 "type which contains a structure type decorated Block "
738 "or BufferBlock");
739 /* Ignore the decoration */
740 } else {
741 vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
742 type->stride = dec->operands[0];
743 }
744 }
745 }
746
747 static void
748 struct_member_decoration_cb(struct vtn_builder *b,
749 struct vtn_value *val, int member,
750 const struct vtn_decoration *dec, void *void_ctx)
751 {
752 struct member_decoration_ctx *ctx = void_ctx;
753
754 if (member < 0)
755 return;
756
757 assert(member < ctx->num_fields);
758
759 switch (dec->decoration) {
760 case SpvDecorationRelaxedPrecision:
761 case SpvDecorationUniform:
762 case SpvDecorationUniformId:
763 break; /* FIXME: Do nothing with this for now. */
764 case SpvDecorationNonWritable:
765 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
766 break;
767 case SpvDecorationNonReadable:
768 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
769 break;
770 case SpvDecorationVolatile:
771 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
772 break;
773 case SpvDecorationCoherent:
774 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
775 break;
776 case SpvDecorationNoPerspective:
777 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
778 break;
779 case SpvDecorationFlat:
780 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
781 break;
782 case SpvDecorationCentroid:
783 ctx->fields[member].centroid = true;
784 break;
785 case SpvDecorationSample:
786 ctx->fields[member].sample = true;
787 break;
788 case SpvDecorationStream:
789 /* Vulkan only allows one GS stream */
790 vtn_assert(dec->operands[0] == 0);
791 break;
792 case SpvDecorationLocation:
793 ctx->fields[member].location = dec->operands[0];
794 break;
795 case SpvDecorationComponent:
796 break; /* FIXME: What should we do with these? */
797 case SpvDecorationBuiltIn:
798 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
799 ctx->type->members[member]->is_builtin = true;
800 ctx->type->members[member]->builtin = dec->operands[0];
801 ctx->type->builtin_block = true;
802 break;
803 case SpvDecorationOffset:
804 ctx->type->offsets[member] = dec->operands[0];
805 ctx->fields[member].offset = dec->operands[0];
806 break;
807 case SpvDecorationMatrixStride:
808 /* Handled as a second pass */
809 break;
810 case SpvDecorationColMajor:
811 break; /* Nothing to do here. Column-major is the default. */
812 case SpvDecorationRowMajor:
813 mutable_matrix_member(b, ctx->type, member)->row_major = true;
814 break;
815
816 case SpvDecorationPatch:
817 break;
818
819 case SpvDecorationSpecId:
820 case SpvDecorationBlock:
821 case SpvDecorationBufferBlock:
822 case SpvDecorationArrayStride:
823 case SpvDecorationGLSLShared:
824 case SpvDecorationGLSLPacked:
825 case SpvDecorationInvariant:
826 case SpvDecorationRestrict:
827 case SpvDecorationAliased:
828 case SpvDecorationConstant:
829 case SpvDecorationIndex:
830 case SpvDecorationBinding:
831 case SpvDecorationDescriptorSet:
832 case SpvDecorationLinkageAttributes:
833 case SpvDecorationNoContraction:
834 case SpvDecorationInputAttachmentIndex:
835 vtn_warn("Decoration not allowed on struct members: %s",
836 spirv_decoration_to_string(dec->decoration));
837 break;
838
839 case SpvDecorationXfbBuffer:
840 case SpvDecorationXfbStride:
841 vtn_warn("Vulkan does not have transform feedback");
842 break;
843
844 case SpvDecorationCPacked:
845 if (b->shader->info.stage != MESA_SHADER_KERNEL)
846 vtn_warn("Decoration only allowed for CL-style kernels: %s",
847 spirv_decoration_to_string(dec->decoration));
848 else
849 ctx->type->packed = true;
850 break;
851
852 case SpvDecorationSaturatedConversion:
853 case SpvDecorationFuncParamAttr:
854 case SpvDecorationFPRoundingMode:
855 case SpvDecorationFPFastMathMode:
856 case SpvDecorationAlignment:
857 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
858 vtn_warn("Decoration only allowed for CL-style kernels: %s",
859 spirv_decoration_to_string(dec->decoration));
860 }
861 break;
862
863 case SpvDecorationUserSemantic:
864 /* User semantic decorations can safely be ignored by the driver. */
865 break;
866
867 default:
868 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
869 }
870 }
871
872 /** Chases the array type all the way down to the tail and rewrites the
873 * glsl_types to be based off the tail's glsl_type.
874 */
875 static void
876 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
877 {
878 if (type->base_type != vtn_base_type_array)
879 return;
880
881 vtn_array_type_rewrite_glsl_type(type->array_element);
882
883 type->type = glsl_array_type(type->array_element->type,
884 type->length, type->stride);
885 }
886
887 /* Matrix strides are handled as a separate pass because we need to know
888 * whether the matrix is row-major or not first.
889 */
890 static void
891 struct_member_matrix_stride_cb(struct vtn_builder *b,
892 struct vtn_value *val, int member,
893 const struct vtn_decoration *dec,
894 void *void_ctx)
895 {
896 if (dec->decoration != SpvDecorationMatrixStride)
897 return;
898
899 vtn_fail_if(member < 0,
900 "The MatrixStride decoration is only allowed on members "
901 "of OpTypeStruct");
902 vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
903
904 struct member_decoration_ctx *ctx = void_ctx;
905
906 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
907 if (mat_type->row_major) {
908 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
909 mat_type->stride = mat_type->array_element->stride;
910 mat_type->array_element->stride = dec->operands[0];
911
912 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
913 dec->operands[0], true);
914 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
915 } else {
916 vtn_assert(mat_type->array_element->stride > 0);
917 mat_type->stride = dec->operands[0];
918
919 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
920 dec->operands[0], false);
921 }
922
923 /* Now that we've replaced the glsl_type with a properly strided matrix
924 * type, rewrite the member type so that it's an array of the proper kind
925 * of glsl_type.
926 */
927 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
928 ctx->fields[member].type = ctx->type->members[member]->type;
929 }
930
931 static void
932 struct_block_decoration_cb(struct vtn_builder *b,
933 struct vtn_value *val, int member,
934 const struct vtn_decoration *dec, void *ctx)
935 {
936 if (member != -1)
937 return;
938
939 struct vtn_type *type = val->type;
940 if (dec->decoration == SpvDecorationBlock)
941 type->block = true;
942 else if (dec->decoration == SpvDecorationBufferBlock)
943 type->buffer_block = true;
944 }
945
946 static void
947 type_decoration_cb(struct vtn_builder *b,
948 struct vtn_value *val, int member,
949 const struct vtn_decoration *dec, void *ctx)
950 {
951 struct vtn_type *type = val->type;
952
953 if (member != -1) {
954 /* This should have been handled by OpTypeStruct */
955 assert(val->type->base_type == vtn_base_type_struct);
956 assert(member >= 0 && member < val->type->length);
957 return;
958 }
959
960 switch (dec->decoration) {
961 case SpvDecorationArrayStride:
962 vtn_assert(type->base_type == vtn_base_type_array ||
963 type->base_type == vtn_base_type_pointer);
964 break;
965 case SpvDecorationBlock:
966 vtn_assert(type->base_type == vtn_base_type_struct);
967 vtn_assert(type->block);
968 break;
969 case SpvDecorationBufferBlock:
970 vtn_assert(type->base_type == vtn_base_type_struct);
971 vtn_assert(type->buffer_block);
972 break;
973 case SpvDecorationGLSLShared:
974 case SpvDecorationGLSLPacked:
975 /* Ignore these, since we get explicit offsets anyways */
976 break;
977
978 case SpvDecorationRowMajor:
979 case SpvDecorationColMajor:
980 case SpvDecorationMatrixStride:
981 case SpvDecorationBuiltIn:
982 case SpvDecorationNoPerspective:
983 case SpvDecorationFlat:
984 case SpvDecorationPatch:
985 case SpvDecorationCentroid:
986 case SpvDecorationSample:
987 case SpvDecorationVolatile:
988 case SpvDecorationCoherent:
989 case SpvDecorationNonWritable:
990 case SpvDecorationNonReadable:
991 case SpvDecorationUniform:
992 case SpvDecorationUniformId:
993 case SpvDecorationLocation:
994 case SpvDecorationComponent:
995 case SpvDecorationOffset:
996 case SpvDecorationXfbBuffer:
997 case SpvDecorationXfbStride:
998 case SpvDecorationUserSemantic:
999 vtn_warn("Decoration only allowed for struct members: %s",
1000 spirv_decoration_to_string(dec->decoration));
1001 break;
1002
1003 case SpvDecorationStream:
1004 /* We don't need to do anything here, as stream is filled up when
1005 * aplying the decoration to a variable, just check that if it is not a
1006 * struct member, it should be a struct.
1007 */
1008 vtn_assert(type->base_type == vtn_base_type_struct);
1009 break;
1010
1011 case SpvDecorationRelaxedPrecision:
1012 case SpvDecorationSpecId:
1013 case SpvDecorationInvariant:
1014 case SpvDecorationRestrict:
1015 case SpvDecorationAliased:
1016 case SpvDecorationConstant:
1017 case SpvDecorationIndex:
1018 case SpvDecorationBinding:
1019 case SpvDecorationDescriptorSet:
1020 case SpvDecorationLinkageAttributes:
1021 case SpvDecorationNoContraction:
1022 case SpvDecorationInputAttachmentIndex:
1023 vtn_warn("Decoration not allowed on types: %s",
1024 spirv_decoration_to_string(dec->decoration));
1025 break;
1026
1027 case SpvDecorationCPacked:
1028 if (b->shader->info.stage != MESA_SHADER_KERNEL)
1029 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1030 spirv_decoration_to_string(dec->decoration));
1031 else
1032 type->packed = true;
1033 break;
1034
1035 case SpvDecorationSaturatedConversion:
1036 case SpvDecorationFuncParamAttr:
1037 case SpvDecorationFPRoundingMode:
1038 case SpvDecorationFPFastMathMode:
1039 case SpvDecorationAlignment:
1040 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1041 spirv_decoration_to_string(dec->decoration));
1042 break;
1043
1044 default:
1045 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1046 }
1047 }
1048
1049 static unsigned
1050 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
1051 {
1052 switch (format) {
1053 case SpvImageFormatUnknown: return 0; /* GL_NONE */
1054 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
1055 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
1056 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
1057 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
1058 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
1059 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
1060 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
1061 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
1062 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
1063 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
1064 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
1065 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
1066 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
1067 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
1068 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
1069 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
1070 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
1071 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
1072 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
1073 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
1074 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
1075 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
1076 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
1077 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
1078 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
1079 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
1080 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
1081 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
1082 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
1083 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
1084 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
1085 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
1086 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
1087 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
1088 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
1089 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
1090 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
1091 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
1092 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
1093 default:
1094 vtn_fail("Invalid image format: %s (%u)",
1095 spirv_imageformat_to_string(format), format);
1096 }
1097 }
1098
1099 static void
1100 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1101 const uint32_t *w, unsigned count)
1102 {
1103 struct vtn_value *val = NULL;
1104
1105 /* In order to properly handle forward declarations, we have to defer
1106 * allocation for pointer types.
1107 */
1108 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1109 val = vtn_push_value(b, w[1], vtn_value_type_type);
1110 vtn_fail_if(val->type != NULL,
1111 "Only pointers can have forward declarations");
1112 val->type = rzalloc(b, struct vtn_type);
1113 val->type->id = w[1];
1114 }
1115
1116 switch (opcode) {
1117 case SpvOpTypeVoid:
1118 val->type->base_type = vtn_base_type_void;
1119 val->type->type = glsl_void_type();
1120 break;
1121 case SpvOpTypeBool:
1122 val->type->base_type = vtn_base_type_scalar;
1123 val->type->type = glsl_bool_type();
1124 val->type->length = 1;
1125 break;
1126 case SpvOpTypeInt: {
1127 int bit_size = w[2];
1128 const bool signedness = w[3];
1129 val->type->base_type = vtn_base_type_scalar;
1130 switch (bit_size) {
1131 case 64:
1132 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1133 break;
1134 case 32:
1135 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1136 break;
1137 case 16:
1138 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1139 break;
1140 case 8:
1141 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1142 break;
1143 default:
1144 vtn_fail("Invalid int bit size: %u", bit_size);
1145 }
1146 val->type->length = 1;
1147 break;
1148 }
1149
1150 case SpvOpTypeFloat: {
1151 int bit_size = w[2];
1152 val->type->base_type = vtn_base_type_scalar;
1153 switch (bit_size) {
1154 case 16:
1155 val->type->type = glsl_float16_t_type();
1156 break;
1157 case 32:
1158 val->type->type = glsl_float_type();
1159 break;
1160 case 64:
1161 val->type->type = glsl_double_type();
1162 break;
1163 default:
1164 vtn_fail("Invalid float bit size: %u", bit_size);
1165 }
1166 val->type->length = 1;
1167 break;
1168 }
1169
1170 case SpvOpTypeVector: {
1171 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1172 unsigned elems = w[3];
1173
1174 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1175 "Base type for OpTypeVector must be a scalar");
1176 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1177 "Invalid component count for OpTypeVector");
1178
1179 val->type->base_type = vtn_base_type_vector;
1180 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1181 val->type->length = elems;
1182 val->type->stride = glsl_type_is_boolean(val->type->type)
1183 ? 4 : glsl_get_bit_size(base->type) / 8;
1184 val->type->array_element = base;
1185 break;
1186 }
1187
1188 case SpvOpTypeMatrix: {
1189 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1190 unsigned columns = w[3];
1191
1192 vtn_fail_if(base->base_type != vtn_base_type_vector,
1193 "Base type for OpTypeMatrix must be a vector");
1194 vtn_fail_if(columns < 2 || columns > 4,
1195 "Invalid column count for OpTypeMatrix");
1196
1197 val->type->base_type = vtn_base_type_matrix;
1198 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1199 glsl_get_vector_elements(base->type),
1200 columns);
1201 vtn_fail_if(glsl_type_is_error(val->type->type),
1202 "Unsupported base type for OpTypeMatrix");
1203 assert(!glsl_type_is_error(val->type->type));
1204 val->type->length = columns;
1205 val->type->array_element = base;
1206 val->type->row_major = false;
1207 val->type->stride = 0;
1208 break;
1209 }
1210
1211 case SpvOpTypeRuntimeArray:
1212 case SpvOpTypeArray: {
1213 struct vtn_type *array_element =
1214 vtn_value(b, w[2], vtn_value_type_type)->type;
1215
1216 if (opcode == SpvOpTypeRuntimeArray) {
1217 /* A length of 0 is used to denote unsized arrays */
1218 val->type->length = 0;
1219 } else {
1220 val->type->length = vtn_constant_uint(b, w[3]);
1221 }
1222
1223 val->type->base_type = vtn_base_type_array;
1224 val->type->array_element = array_element;
1225 if (b->shader->info.stage == MESA_SHADER_KERNEL)
1226 val->type->stride = glsl_get_cl_size(array_element->type);
1227
1228 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1229 val->type->type = glsl_array_type(array_element->type, val->type->length,
1230 val->type->stride);
1231 break;
1232 }
1233
1234 case SpvOpTypeStruct: {
1235 unsigned num_fields = count - 2;
1236 val->type->base_type = vtn_base_type_struct;
1237 val->type->length = num_fields;
1238 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1239 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1240 val->type->packed = false;
1241
1242 NIR_VLA(struct glsl_struct_field, fields, count);
1243 for (unsigned i = 0; i < num_fields; i++) {
1244 val->type->members[i] =
1245 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1246 fields[i] = (struct glsl_struct_field) {
1247 .type = val->type->members[i]->type,
1248 .name = ralloc_asprintf(b, "field%d", i),
1249 .location = -1,
1250 .offset = -1,
1251 };
1252 }
1253
1254 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1255 unsigned offset = 0;
1256 for (unsigned i = 0; i < num_fields; i++) {
1257 offset = align(offset, glsl_get_cl_alignment(fields[i].type));
1258 fields[i].offset = offset;
1259 offset += glsl_get_cl_size(fields[i].type);
1260 }
1261 }
1262
1263 struct member_decoration_ctx ctx = {
1264 .num_fields = num_fields,
1265 .fields = fields,
1266 .type = val->type
1267 };
1268
1269 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1270 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1271
1272 vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
1273
1274 const char *name = val->name;
1275
1276 if (val->type->block || val->type->buffer_block) {
1277 /* Packing will be ignored since types coming from SPIR-V are
1278 * explicitly laid out.
1279 */
1280 val->type->type = glsl_interface_type(fields, num_fields,
1281 /* packing */ 0, false,
1282 name ? name : "block");
1283 } else {
1284 val->type->type = glsl_struct_type(fields, num_fields,
1285 name ? name : "struct", false);
1286 }
1287 break;
1288 }
1289
1290 case SpvOpTypeFunction: {
1291 val->type->base_type = vtn_base_type_function;
1292 val->type->type = NULL;
1293
1294 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1295
1296 const unsigned num_params = count - 3;
1297 val->type->length = num_params;
1298 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1299 for (unsigned i = 0; i < count - 3; i++) {
1300 val->type->params[i] =
1301 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1302 }
1303 break;
1304 }
1305
1306 case SpvOpTypePointer:
1307 case SpvOpTypeForwardPointer: {
1308 /* We can't blindly push the value because it might be a forward
1309 * declaration.
1310 */
1311 val = vtn_untyped_value(b, w[1]);
1312
1313 SpvStorageClass storage_class = w[2];
1314
1315 if (val->value_type == vtn_value_type_invalid) {
1316 val->value_type = vtn_value_type_type;
1317 val->type = rzalloc(b, struct vtn_type);
1318 val->type->id = w[1];
1319 val->type->base_type = vtn_base_type_pointer;
1320 val->type->storage_class = storage_class;
1321
1322 /* These can actually be stored to nir_variables and used as SSA
1323 * values so they need a real glsl_type.
1324 */
1325 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1326 b, storage_class, NULL, NULL);
1327 val->type->type = nir_address_format_to_glsl_type(
1328 vtn_mode_to_address_format(b, mode));
1329 } else {
1330 vtn_fail_if(val->type->storage_class != storage_class,
1331 "The storage classes of an OpTypePointer and any "
1332 "OpTypeForwardPointers that provide forward "
1333 "declarations of it must match.");
1334 }
1335
1336 if (opcode == SpvOpTypePointer) {
1337 vtn_fail_if(val->type->deref != NULL,
1338 "While OpTypeForwardPointer can be used to provide a "
1339 "forward declaration of a pointer, OpTypePointer can "
1340 "only be used once for a given id.");
1341
1342 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1343
1344 /* Only certain storage classes use ArrayStride. The others (in
1345 * particular Workgroup) are expected to be laid out by the driver.
1346 */
1347 switch (storage_class) {
1348 case SpvStorageClassUniform:
1349 case SpvStorageClassPushConstant:
1350 case SpvStorageClassStorageBuffer:
1351 case SpvStorageClassPhysicalStorageBufferEXT:
1352 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1353 break;
1354 default:
1355 /* Nothing to do. */
1356 break;
1357 }
1358
1359 if (b->physical_ptrs) {
1360 switch (storage_class) {
1361 case SpvStorageClassFunction:
1362 case SpvStorageClassWorkgroup:
1363 case SpvStorageClassCrossWorkgroup:
1364 case SpvStorageClassUniformConstant:
1365 val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
1366 glsl_get_cl_alignment(val->type->deref->type));
1367 break;
1368 default:
1369 break;
1370 }
1371 }
1372 }
1373 break;
1374 }
1375
1376 case SpvOpTypeImage: {
1377 val->type->base_type = vtn_base_type_image;
1378
1379 const struct vtn_type *sampled_type =
1380 vtn_value(b, w[2], vtn_value_type_type)->type;
1381
1382 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1383 glsl_get_bit_size(sampled_type->type) != 32,
1384 "Sampled type of OpTypeImage must be a 32-bit scalar");
1385
1386 enum glsl_sampler_dim dim;
1387 switch ((SpvDim)w[3]) {
1388 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1389 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1390 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1391 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1392 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1393 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1394 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1395 default:
1396 vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
1397 spirv_dim_to_string((SpvDim)w[3]), w[3]);
1398 }
1399
1400 /* w[4]: as per Vulkan spec "Validation Rules within a Module",
1401 * The “Depth” operand of OpTypeImage is ignored.
1402 */
1403 bool is_array = w[5];
1404 bool multisampled = w[6];
1405 unsigned sampled = w[7];
1406 SpvImageFormat format = w[8];
1407
1408 if (count > 9)
1409 val->type->access_qualifier = w[9];
1410 else
1411 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1412
1413 if (multisampled) {
1414 if (dim == GLSL_SAMPLER_DIM_2D)
1415 dim = GLSL_SAMPLER_DIM_MS;
1416 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1417 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1418 else
1419 vtn_fail("Unsupported multisampled image type");
1420 }
1421
1422 val->type->image_format = translate_image_format(b, format);
1423
1424 enum glsl_base_type sampled_base_type =
1425 glsl_get_base_type(sampled_type->type);
1426 if (sampled == 1) {
1427 val->type->sampled = true;
1428 val->type->type = glsl_sampler_type(dim, false, is_array,
1429 sampled_base_type);
1430 } else if (sampled == 2) {
1431 val->type->sampled = false;
1432 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1433 } else {
1434 vtn_fail("We need to know if the image will be sampled");
1435 }
1436 break;
1437 }
1438
1439 case SpvOpTypeSampledImage:
1440 val->type->base_type = vtn_base_type_sampled_image;
1441 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1442 val->type->type = val->type->image->type;
1443 break;
1444
1445 case SpvOpTypeSampler:
1446 /* The actual sampler type here doesn't really matter. It gets
1447 * thrown away the moment you combine it with an image. What really
1448 * matters is that it's a sampler type as opposed to an integer type
1449 * so the backend knows what to do.
1450 */
1451 val->type->base_type = vtn_base_type_sampler;
1452 val->type->type = glsl_bare_sampler_type();
1453 break;
1454
1455 case SpvOpTypeOpaque:
1456 case SpvOpTypeEvent:
1457 case SpvOpTypeDeviceEvent:
1458 case SpvOpTypeReserveId:
1459 case SpvOpTypeQueue:
1460 case SpvOpTypePipe:
1461 default:
1462 vtn_fail_with_opcode("Unhandled opcode", opcode);
1463 }
1464
1465 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1466
1467 if (val->type->base_type == vtn_base_type_struct &&
1468 (val->type->block || val->type->buffer_block)) {
1469 for (unsigned i = 0; i < val->type->length; i++) {
1470 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1471 "Block and BufferBlock decorations cannot decorate a "
1472 "structure type that is nested at any level inside "
1473 "another structure type decorated with Block or "
1474 "BufferBlock.");
1475 }
1476 }
1477 }
1478
1479 static nir_constant *
1480 vtn_null_constant(struct vtn_builder *b, struct vtn_type *type)
1481 {
1482 nir_constant *c = rzalloc(b, nir_constant);
1483
1484 switch (type->base_type) {
1485 case vtn_base_type_scalar:
1486 case vtn_base_type_vector:
1487 /* Nothing to do here. It's already initialized to zero */
1488 break;
1489
1490 case vtn_base_type_pointer: {
1491 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1492 b, type->storage_class, type->deref, NULL);
1493 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
1494
1495 const nir_const_value *null_value = nir_address_format_null_value(addr_format);
1496 memcpy(c->values, null_value,
1497 sizeof(nir_const_value) * nir_address_format_num_components(addr_format));
1498 break;
1499 }
1500
1501 case vtn_base_type_void:
1502 case vtn_base_type_image:
1503 case vtn_base_type_sampler:
1504 case vtn_base_type_sampled_image:
1505 case vtn_base_type_function:
1506 /* For those we have to return something but it doesn't matter what. */
1507 break;
1508
1509 case vtn_base_type_matrix:
1510 case vtn_base_type_array:
1511 vtn_assert(type->length > 0);
1512 c->num_elements = type->length;
1513 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1514
1515 c->elements[0] = vtn_null_constant(b, type->array_element);
1516 for (unsigned i = 1; i < c->num_elements; i++)
1517 c->elements[i] = c->elements[0];
1518 break;
1519
1520 case vtn_base_type_struct:
1521 c->num_elements = type->length;
1522 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1523 for (unsigned i = 0; i < c->num_elements; i++)
1524 c->elements[i] = vtn_null_constant(b, type->members[i]);
1525 break;
1526
1527 default:
1528 vtn_fail("Invalid type for null constant");
1529 }
1530
1531 return c;
1532 }
1533
1534 static void
1535 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1536 int member, const struct vtn_decoration *dec,
1537 void *data)
1538 {
1539 vtn_assert(member == -1);
1540 if (dec->decoration != SpvDecorationSpecId)
1541 return;
1542
1543 struct spec_constant_value *const_value = data;
1544
1545 for (unsigned i = 0; i < b->num_specializations; i++) {
1546 if (b->specializations[i].id == dec->operands[0]) {
1547 if (const_value->is_double)
1548 const_value->data64 = b->specializations[i].data64;
1549 else
1550 const_value->data32 = b->specializations[i].data32;
1551 return;
1552 }
1553 }
1554 }
1555
1556 static uint32_t
1557 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1558 uint32_t const_value)
1559 {
1560 struct spec_constant_value data;
1561 data.is_double = false;
1562 data.data32 = const_value;
1563 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1564 return data.data32;
1565 }
1566
1567 static uint64_t
1568 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1569 uint64_t const_value)
1570 {
1571 struct spec_constant_value data;
1572 data.is_double = true;
1573 data.data64 = const_value;
1574 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1575 return data.data64;
1576 }
1577
1578 static void
1579 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1580 struct vtn_value *val,
1581 int member,
1582 const struct vtn_decoration *dec,
1583 void *data)
1584 {
1585 vtn_assert(member == -1);
1586 if (dec->decoration != SpvDecorationBuiltIn ||
1587 dec->operands[0] != SpvBuiltInWorkgroupSize)
1588 return;
1589
1590 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1591 b->workgroup_size_builtin = val;
1592 }
1593
1594 static void
1595 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1596 const uint32_t *w, unsigned count)
1597 {
1598 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1599 val->constant = rzalloc(b, nir_constant);
1600 switch (opcode) {
1601 case SpvOpConstantTrue:
1602 case SpvOpConstantFalse:
1603 case SpvOpSpecConstantTrue:
1604 case SpvOpSpecConstantFalse: {
1605 vtn_fail_if(val->type->type != glsl_bool_type(),
1606 "Result type of %s must be OpTypeBool",
1607 spirv_op_to_string(opcode));
1608
1609 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1610 opcode == SpvOpSpecConstantTrue);
1611
1612 if (opcode == SpvOpSpecConstantTrue ||
1613 opcode == SpvOpSpecConstantFalse)
1614 int_val = get_specialization(b, val, int_val);
1615
1616 val->constant->values[0].b = int_val != 0;
1617 break;
1618 }
1619
1620 case SpvOpConstant: {
1621 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1622 "Result type of %s must be a scalar",
1623 spirv_op_to_string(opcode));
1624 int bit_size = glsl_get_bit_size(val->type->type);
1625 switch (bit_size) {
1626 case 64:
1627 val->constant->values[0].u64 = vtn_u64_literal(&w[3]);
1628 break;
1629 case 32:
1630 val->constant->values[0].u32 = w[3];
1631 break;
1632 case 16:
1633 val->constant->values[0].u16 = w[3];
1634 break;
1635 case 8:
1636 val->constant->values[0].u8 = w[3];
1637 break;
1638 default:
1639 vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
1640 }
1641 break;
1642 }
1643
1644 case SpvOpSpecConstant: {
1645 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1646 "Result type of %s must be a scalar",
1647 spirv_op_to_string(opcode));
1648 int bit_size = glsl_get_bit_size(val->type->type);
1649 switch (bit_size) {
1650 case 64:
1651 val->constant->values[0].u64 =
1652 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1653 break;
1654 case 32:
1655 val->constant->values[0].u32 = get_specialization(b, val, w[3]);
1656 break;
1657 case 16:
1658 val->constant->values[0].u16 = get_specialization(b, val, w[3]);
1659 break;
1660 case 8:
1661 val->constant->values[0].u8 = get_specialization(b, val, w[3]);
1662 break;
1663 default:
1664 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1665 }
1666 break;
1667 }
1668
1669 case SpvOpSpecConstantComposite:
1670 case SpvOpConstantComposite: {
1671 unsigned elem_count = count - 3;
1672 vtn_fail_if(elem_count != val->type->length,
1673 "%s has %u constituents, expected %u",
1674 spirv_op_to_string(opcode), elem_count, val->type->length);
1675
1676 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1677 for (unsigned i = 0; i < elem_count; i++) {
1678 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1679
1680 if (val->value_type == vtn_value_type_constant) {
1681 elems[i] = val->constant;
1682 } else {
1683 vtn_fail_if(val->value_type != vtn_value_type_undef,
1684 "only constants or undefs allowed for "
1685 "SpvOpConstantComposite");
1686 /* to make it easier, just insert a NULL constant for now */
1687 elems[i] = vtn_null_constant(b, val->type);
1688 }
1689 }
1690
1691 switch (val->type->base_type) {
1692 case vtn_base_type_vector: {
1693 assert(glsl_type_is_vector(val->type->type));
1694 for (unsigned i = 0; i < elem_count; i++)
1695 val->constant->values[i] = elems[i]->values[0];
1696 break;
1697 }
1698
1699 case vtn_base_type_matrix:
1700 case vtn_base_type_struct:
1701 case vtn_base_type_array:
1702 ralloc_steal(val->constant, elems);
1703 val->constant->num_elements = elem_count;
1704 val->constant->elements = elems;
1705 break;
1706
1707 default:
1708 vtn_fail("Result type of %s must be a composite type",
1709 spirv_op_to_string(opcode));
1710 }
1711 break;
1712 }
1713
1714 case SpvOpSpecConstantOp: {
1715 SpvOp opcode = get_specialization(b, val, w[3]);
1716 switch (opcode) {
1717 case SpvOpVectorShuffle: {
1718 struct vtn_value *v0 = &b->values[w[4]];
1719 struct vtn_value *v1 = &b->values[w[5]];
1720
1721 vtn_assert(v0->value_type == vtn_value_type_constant ||
1722 v0->value_type == vtn_value_type_undef);
1723 vtn_assert(v1->value_type == vtn_value_type_constant ||
1724 v1->value_type == vtn_value_type_undef);
1725
1726 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1727 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1728
1729 vtn_assert(len0 + len1 < 16);
1730
1731 unsigned bit_size = glsl_get_bit_size(val->type->type);
1732 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1733 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1734
1735 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1736 (void)bit_size0; (void)bit_size1;
1737
1738 nir_const_value undef = { .u64 = 0xdeadbeefdeadbeef };
1739 nir_const_value combined[NIR_MAX_VEC_COMPONENTS * 2];
1740
1741 if (v0->value_type == vtn_value_type_constant) {
1742 for (unsigned i = 0; i < len0; i++)
1743 combined[i] = v0->constant->values[i];
1744 }
1745 if (v1->value_type == vtn_value_type_constant) {
1746 for (unsigned i = 0; i < len1; i++)
1747 combined[len0 + i] = v1->constant->values[i];
1748 }
1749
1750 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1751 uint32_t comp = w[i + 6];
1752 if (comp == (uint32_t)-1) {
1753 /* If component is not used, set the value to a known constant
1754 * to detect if it is wrongly used.
1755 */
1756 val->constant->values[j] = undef;
1757 } else {
1758 vtn_fail_if(comp >= len0 + len1,
1759 "All Component literals must either be FFFFFFFF "
1760 "or in [0, N - 1] (inclusive).");
1761 val->constant->values[j] = combined[comp];
1762 }
1763 }
1764 break;
1765 }
1766
1767 case SpvOpCompositeExtract:
1768 case SpvOpCompositeInsert: {
1769 struct vtn_value *comp;
1770 unsigned deref_start;
1771 struct nir_constant **c;
1772 if (opcode == SpvOpCompositeExtract) {
1773 comp = vtn_value(b, w[4], vtn_value_type_constant);
1774 deref_start = 5;
1775 c = &comp->constant;
1776 } else {
1777 comp = vtn_value(b, w[5], vtn_value_type_constant);
1778 deref_start = 6;
1779 val->constant = nir_constant_clone(comp->constant,
1780 (nir_variable *)b);
1781 c = &val->constant;
1782 }
1783
1784 int elem = -1;
1785 const struct vtn_type *type = comp->type;
1786 for (unsigned i = deref_start; i < count; i++) {
1787 vtn_fail_if(w[i] > type->length,
1788 "%uth index of %s is %u but the type has only "
1789 "%u elements", i - deref_start,
1790 spirv_op_to_string(opcode), w[i], type->length);
1791
1792 switch (type->base_type) {
1793 case vtn_base_type_vector:
1794 elem = w[i];
1795 type = type->array_element;
1796 break;
1797
1798 case vtn_base_type_matrix:
1799 case vtn_base_type_array:
1800 c = &(*c)->elements[w[i]];
1801 type = type->array_element;
1802 break;
1803
1804 case vtn_base_type_struct:
1805 c = &(*c)->elements[w[i]];
1806 type = type->members[w[i]];
1807 break;
1808
1809 default:
1810 vtn_fail("%s must only index into composite types",
1811 spirv_op_to_string(opcode));
1812 }
1813 }
1814
1815 if (opcode == SpvOpCompositeExtract) {
1816 if (elem == -1) {
1817 val->constant = *c;
1818 } else {
1819 unsigned num_components = type->length;
1820 for (unsigned i = 0; i < num_components; i++)
1821 val->constant->values[i] = (*c)->values[elem + i];
1822 }
1823 } else {
1824 struct vtn_value *insert =
1825 vtn_value(b, w[4], vtn_value_type_constant);
1826 vtn_assert(insert->type == type);
1827 if (elem == -1) {
1828 *c = insert->constant;
1829 } else {
1830 unsigned num_components = type->length;
1831 for (unsigned i = 0; i < num_components; i++)
1832 (*c)->values[elem + i] = insert->constant->values[i];
1833 }
1834 }
1835 break;
1836 }
1837
1838 default: {
1839 bool swap;
1840 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1841 nir_alu_type src_alu_type = dst_alu_type;
1842 unsigned num_components = glsl_get_vector_elements(val->type->type);
1843 unsigned bit_size;
1844
1845 vtn_assert(count <= 7);
1846
1847 switch (opcode) {
1848 case SpvOpSConvert:
1849 case SpvOpFConvert:
1850 case SpvOpUConvert:
1851 /* We have a source in a conversion */
1852 src_alu_type =
1853 nir_get_nir_type_for_glsl_type(
1854 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1855 /* We use the bitsize of the conversion source to evaluate the opcode later */
1856 bit_size = glsl_get_bit_size(
1857 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1858 break;
1859 default:
1860 bit_size = glsl_get_bit_size(val->type->type);
1861 };
1862
1863 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1864 nir_alu_type_get_type_size(src_alu_type),
1865 nir_alu_type_get_type_size(dst_alu_type));
1866 nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
1867
1868 for (unsigned i = 0; i < count - 4; i++) {
1869 struct vtn_value *src_val =
1870 vtn_value(b, w[4 + i], vtn_value_type_constant);
1871
1872 /* If this is an unsized source, pull the bit size from the
1873 * source; otherwise, we'll use the bit size from the destination.
1874 */
1875 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1876 bit_size = glsl_get_bit_size(src_val->type->type);
1877
1878 unsigned src_comps = nir_op_infos[op].input_sizes[i] ?
1879 nir_op_infos[op].input_sizes[i] :
1880 num_components;
1881
1882 unsigned j = swap ? 1 - i : i;
1883 for (unsigned c = 0; c < src_comps; c++)
1884 src[j][c] = src_val->constant->values[c];
1885 }
1886
1887 /* fix up fixed size sources */
1888 switch (op) {
1889 case nir_op_ishl:
1890 case nir_op_ishr:
1891 case nir_op_ushr: {
1892 if (bit_size == 32)
1893 break;
1894 for (unsigned i = 0; i < num_components; ++i) {
1895 switch (bit_size) {
1896 case 64: src[1][i].u32 = src[1][i].u64; break;
1897 case 16: src[1][i].u32 = src[1][i].u16; break;
1898 case 8: src[1][i].u32 = src[1][i].u8; break;
1899 }
1900 }
1901 break;
1902 }
1903 default:
1904 break;
1905 }
1906
1907 nir_const_value *srcs[3] = {
1908 src[0], src[1], src[2],
1909 };
1910 nir_eval_const_opcode(op, val->constant->values,
1911 num_components, bit_size, srcs,
1912 b->shader->info.float_controls_execution_mode);
1913 break;
1914 } /* default */
1915 }
1916 break;
1917 }
1918
1919 case SpvOpConstantNull:
1920 val->constant = vtn_null_constant(b, val->type);
1921 break;
1922
1923 case SpvOpConstantSampler:
1924 vtn_fail("OpConstantSampler requires Kernel Capability");
1925 break;
1926
1927 default:
1928 vtn_fail_with_opcode("Unhandled opcode", opcode);
1929 }
1930
1931 /* Now that we have the value, update the workgroup size if needed */
1932 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1933 }
1934
1935 SpvMemorySemanticsMask
1936 vtn_storage_class_to_memory_semantics(SpvStorageClass sc)
1937 {
1938 switch (sc) {
1939 case SpvStorageClassStorageBuffer:
1940 case SpvStorageClassPhysicalStorageBufferEXT:
1941 return SpvMemorySemanticsUniformMemoryMask;
1942 case SpvStorageClassWorkgroup:
1943 return SpvMemorySemanticsWorkgroupMemoryMask;
1944 default:
1945 return SpvMemorySemanticsMaskNone;
1946 }
1947 }
1948
1949 static void
1950 vtn_split_barrier_semantics(struct vtn_builder *b,
1951 SpvMemorySemanticsMask semantics,
1952 SpvMemorySemanticsMask *before,
1953 SpvMemorySemanticsMask *after)
1954 {
1955 /* For memory semantics embedded in operations, we split them into up to
1956 * two barriers, to be added before and after the operation. This is less
1957 * strict than if we propagated until the final backend stage, but still
1958 * result in correct execution.
1959 *
1960 * A further improvement could be pipe this information (and use!) into the
1961 * next compiler layers, at the expense of making the handling of barriers
1962 * more complicated.
1963 */
1964
1965 *before = SpvMemorySemanticsMaskNone;
1966 *after = SpvMemorySemanticsMaskNone;
1967
1968 SpvMemorySemanticsMask order_semantics =
1969 semantics & (SpvMemorySemanticsAcquireMask |
1970 SpvMemorySemanticsReleaseMask |
1971 SpvMemorySemanticsAcquireReleaseMask |
1972 SpvMemorySemanticsSequentiallyConsistentMask);
1973
1974 if (util_bitcount(order_semantics) > 1) {
1975 /* Old GLSLang versions incorrectly set all the ordering bits. This was
1976 * fixed in c51287d744fb6e7e9ccc09f6f8451e6c64b1dad6 of glslang repo,
1977 * and it is in GLSLang since revision "SPIRV99.1321" (from Jul-2016).
1978 */
1979 vtn_warn("Multiple memory ordering semantics specified, "
1980 "assuming AcquireRelease.");
1981 order_semantics = SpvMemorySemanticsAcquireReleaseMask;
1982 }
1983
1984 const SpvMemorySemanticsMask av_vis_semantics =
1985 semantics & (SpvMemorySemanticsMakeAvailableMask |
1986 SpvMemorySemanticsMakeVisibleMask);
1987
1988 const SpvMemorySemanticsMask storage_semantics =
1989 semantics & (SpvMemorySemanticsUniformMemoryMask |
1990 SpvMemorySemanticsSubgroupMemoryMask |
1991 SpvMemorySemanticsWorkgroupMemoryMask |
1992 SpvMemorySemanticsCrossWorkgroupMemoryMask |
1993 SpvMemorySemanticsAtomicCounterMemoryMask |
1994 SpvMemorySemanticsImageMemoryMask |
1995 SpvMemorySemanticsOutputMemoryMask);
1996
1997 const SpvMemorySemanticsMask other_semantics =
1998 semantics & ~(order_semantics | av_vis_semantics | storage_semantics);
1999
2000 if (other_semantics)
2001 vtn_warn("Ignoring unhandled memory semantics: %u\n", other_semantics);
2002
2003 /* SequentiallyConsistent is treated as AcquireRelease. */
2004
2005 /* The RELEASE barrier happens BEFORE the operation, and it is usually
2006 * associated with a Store. All the write operations with a matching
2007 * semantics will not be reordered after the Store.
2008 */
2009 if (order_semantics & (SpvMemorySemanticsReleaseMask |
2010 SpvMemorySemanticsAcquireReleaseMask |
2011 SpvMemorySemanticsSequentiallyConsistentMask)) {
2012 *before |= SpvMemorySemanticsReleaseMask | storage_semantics;
2013 }
2014
2015 /* The ACQUIRE barrier happens AFTER the operation, and it is usually
2016 * associated with a Load. All the operations with a matching semantics
2017 * will not be reordered before the Load.
2018 */
2019 if (order_semantics & (SpvMemorySemanticsAcquireMask |
2020 SpvMemorySemanticsAcquireReleaseMask |
2021 SpvMemorySemanticsSequentiallyConsistentMask)) {
2022 *after |= SpvMemorySemanticsAcquireMask | storage_semantics;
2023 }
2024
2025 if (av_vis_semantics & SpvMemorySemanticsMakeVisibleMask)
2026 *before |= SpvMemorySemanticsMakeVisibleMask | storage_semantics;
2027
2028 if (av_vis_semantics & SpvMemorySemanticsMakeAvailableMask)
2029 *after |= SpvMemorySemanticsMakeAvailableMask | storage_semantics;
2030 }
2031
2032 static void
2033 vtn_emit_scoped_memory_barrier(struct vtn_builder *b, SpvScope scope,
2034 SpvMemorySemanticsMask semantics)
2035 {
2036 nir_memory_semantics nir_semantics = 0;
2037
2038 SpvMemorySemanticsMask order_semantics =
2039 semantics & (SpvMemorySemanticsAcquireMask |
2040 SpvMemorySemanticsReleaseMask |
2041 SpvMemorySemanticsAcquireReleaseMask |
2042 SpvMemorySemanticsSequentiallyConsistentMask);
2043
2044 if (util_bitcount(order_semantics) > 1) {
2045 /* Old GLSLang versions incorrectly set all the ordering bits. This was
2046 * fixed in c51287d744fb6e7e9ccc09f6f8451e6c64b1dad6 of glslang repo,
2047 * and it is in GLSLang since revision "SPIRV99.1321" (from Jul-2016).
2048 */
2049 vtn_warn("Multiple memory ordering semantics bits specified, "
2050 "assuming AcquireRelease.");
2051 order_semantics = SpvMemorySemanticsAcquireReleaseMask;
2052 }
2053
2054 switch (order_semantics) {
2055 case 0:
2056 /* Not an ordering barrier. */
2057 break;
2058
2059 case SpvMemorySemanticsAcquireMask:
2060 nir_semantics = NIR_MEMORY_ACQUIRE;
2061 break;
2062
2063 case SpvMemorySemanticsReleaseMask:
2064 nir_semantics = NIR_MEMORY_RELEASE;
2065 break;
2066
2067 case SpvMemorySemanticsSequentiallyConsistentMask:
2068 /* Fall through. Treated as AcquireRelease in Vulkan. */
2069 case SpvMemorySemanticsAcquireReleaseMask:
2070 nir_semantics = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE;
2071 break;
2072
2073 default:
2074 unreachable("Invalid memory order semantics");
2075 }
2076
2077 if (semantics & SpvMemorySemanticsMakeAvailableMask) {
2078 vtn_fail_if(!b->options->caps.vk_memory_model,
2079 "To use MakeAvailable memory semantics the VulkanMemoryModel "
2080 "capability must be declared.");
2081 nir_semantics |= NIR_MEMORY_MAKE_AVAILABLE;
2082 }
2083
2084 if (semantics & SpvMemorySemanticsMakeVisibleMask) {
2085 vtn_fail_if(!b->options->caps.vk_memory_model,
2086 "To use MakeVisible memory semantics the VulkanMemoryModel "
2087 "capability must be declared.");
2088 nir_semantics |= NIR_MEMORY_MAKE_VISIBLE;
2089 }
2090
2091 /* Vulkan Environment for SPIR-V says "SubgroupMemory, CrossWorkgroupMemory,
2092 * and AtomicCounterMemory are ignored".
2093 */
2094 semantics &= ~(SpvMemorySemanticsSubgroupMemoryMask |
2095 SpvMemorySemanticsCrossWorkgroupMemoryMask |
2096 SpvMemorySemanticsAtomicCounterMemoryMask);
2097
2098 /* TODO: Consider adding nir_var_mem_image mode to NIR so it can be used
2099 * for SpvMemorySemanticsImageMemoryMask.
2100 */
2101
2102 nir_variable_mode modes = 0;
2103 if (semantics & (SpvMemorySemanticsUniformMemoryMask |
2104 SpvMemorySemanticsImageMemoryMask))
2105 modes |= nir_var_mem_ubo | nir_var_mem_ssbo | nir_var_uniform;
2106 if (semantics & SpvMemorySemanticsWorkgroupMemoryMask)
2107 modes |= nir_var_mem_shared;
2108 if (semantics & SpvMemorySemanticsOutputMemoryMask) {
2109 modes |= nir_var_shader_out;
2110 }
2111
2112 /* No barrier to add. */
2113 if (nir_semantics == 0 || modes == 0)
2114 return;
2115
2116 nir_scope nir_scope;
2117 switch (scope) {
2118 case SpvScopeDevice:
2119 vtn_fail_if(b->options->caps.vk_memory_model &&
2120 !b->options->caps.vk_memory_model_device_scope,
2121 "If the Vulkan memory model is declared and any instruction "
2122 "uses Device scope, the VulkanMemoryModelDeviceScope "
2123 "capability must be declared.");
2124 nir_scope = NIR_SCOPE_DEVICE;
2125 break;
2126
2127 case SpvScopeQueueFamily:
2128 vtn_fail_if(!b->options->caps.vk_memory_model,
2129 "To use Queue Family scope, the VulkanMemoryModel capability "
2130 "must be declared.");
2131 nir_scope = NIR_SCOPE_QUEUE_FAMILY;
2132 break;
2133
2134 case SpvScopeWorkgroup:
2135 nir_scope = NIR_SCOPE_WORKGROUP;
2136 break;
2137
2138 case SpvScopeSubgroup:
2139 nir_scope = NIR_SCOPE_SUBGROUP;
2140 break;
2141
2142 case SpvScopeInvocation:
2143 nir_scope = NIR_SCOPE_INVOCATION;
2144 break;
2145
2146 default:
2147 vtn_fail("Invalid memory scope");
2148 }
2149
2150 nir_intrinsic_instr *intrin =
2151 nir_intrinsic_instr_create(b->shader, nir_intrinsic_scoped_memory_barrier);
2152 nir_intrinsic_set_memory_semantics(intrin, nir_semantics);
2153
2154 nir_intrinsic_set_memory_modes(intrin, modes);
2155 nir_intrinsic_set_memory_scope(intrin, nir_scope);
2156 nir_builder_instr_insert(&b->nb, &intrin->instr);
2157 }
2158
2159 struct vtn_ssa_value *
2160 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
2161 {
2162 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
2163 val->type = type;
2164
2165 if (!glsl_type_is_vector_or_scalar(type)) {
2166 unsigned elems = glsl_get_length(type);
2167 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2168 for (unsigned i = 0; i < elems; i++) {
2169 const struct glsl_type *child_type;
2170
2171 switch (glsl_get_base_type(type)) {
2172 case GLSL_TYPE_INT:
2173 case GLSL_TYPE_UINT:
2174 case GLSL_TYPE_INT16:
2175 case GLSL_TYPE_UINT16:
2176 case GLSL_TYPE_UINT8:
2177 case GLSL_TYPE_INT8:
2178 case GLSL_TYPE_INT64:
2179 case GLSL_TYPE_UINT64:
2180 case GLSL_TYPE_BOOL:
2181 case GLSL_TYPE_FLOAT:
2182 case GLSL_TYPE_FLOAT16:
2183 case GLSL_TYPE_DOUBLE:
2184 child_type = glsl_get_column_type(type);
2185 break;
2186 case GLSL_TYPE_ARRAY:
2187 child_type = glsl_get_array_element(type);
2188 break;
2189 case GLSL_TYPE_STRUCT:
2190 case GLSL_TYPE_INTERFACE:
2191 child_type = glsl_get_struct_field(type, i);
2192 break;
2193 default:
2194 vtn_fail("unkown base type");
2195 }
2196
2197 val->elems[i] = vtn_create_ssa_value(b, child_type);
2198 }
2199 }
2200
2201 return val;
2202 }
2203
2204 static nir_tex_src
2205 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
2206 {
2207 nir_tex_src src;
2208 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
2209 src.src_type = type;
2210 return src;
2211 }
2212
2213 static uint32_t
2214 image_operand_arg(struct vtn_builder *b, const uint32_t *w, uint32_t count,
2215 uint32_t mask_idx, SpvImageOperandsMask op)
2216 {
2217 static const SpvImageOperandsMask ops_with_arg =
2218 SpvImageOperandsBiasMask |
2219 SpvImageOperandsLodMask |
2220 SpvImageOperandsGradMask |
2221 SpvImageOperandsConstOffsetMask |
2222 SpvImageOperandsOffsetMask |
2223 SpvImageOperandsConstOffsetsMask |
2224 SpvImageOperandsSampleMask |
2225 SpvImageOperandsMinLodMask |
2226 SpvImageOperandsMakeTexelAvailableMask |
2227 SpvImageOperandsMakeTexelVisibleMask;
2228
2229 assert(util_bitcount(op) == 1);
2230 assert(w[mask_idx] & op);
2231 assert(op & ops_with_arg);
2232
2233 uint32_t idx = util_bitcount(w[mask_idx] & (op - 1) & ops_with_arg) + 1;
2234
2235 /* Adjust indices for operands with two arguments. */
2236 static const SpvImageOperandsMask ops_with_two_args =
2237 SpvImageOperandsGradMask;
2238 idx += util_bitcount(w[mask_idx] & (op - 1) & ops_with_two_args);
2239
2240 idx += mask_idx;
2241
2242 vtn_fail_if(idx + (op & ops_with_two_args ? 1 : 0) >= count,
2243 "Image op claims to have %s but does not enough "
2244 "following operands", spirv_imageoperands_to_string(op));
2245
2246 return idx;
2247 }
2248
2249 static void
2250 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
2251 const uint32_t *w, unsigned count)
2252 {
2253 if (opcode == SpvOpSampledImage) {
2254 struct vtn_value *val =
2255 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2256 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2257 val->sampled_image->image =
2258 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2259 val->sampled_image->sampler =
2260 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
2261 return;
2262 } else if (opcode == SpvOpImage) {
2263 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
2264 if (src_val->value_type == vtn_value_type_sampled_image) {
2265 vtn_push_value_pointer(b, w[2], src_val->sampled_image->image);
2266 } else {
2267 vtn_assert(src_val->value_type == vtn_value_type_pointer);
2268 vtn_push_value_pointer(b, w[2], src_val->pointer);
2269 }
2270 return;
2271 }
2272
2273 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2274
2275 struct vtn_pointer *image = NULL, *sampler = NULL;
2276 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2277 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2278 image = sampled_val->sampled_image->image;
2279 sampler = sampled_val->sampled_image->sampler;
2280 } else {
2281 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2282 image = sampled_val->pointer;
2283 }
2284
2285 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image);
2286 nir_deref_instr *sampler_deref =
2287 sampler ? vtn_pointer_to_deref(b, sampler) : NULL;
2288
2289 const struct glsl_type *image_type = sampled_val->type->type;
2290 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2291 const bool is_array = glsl_sampler_type_is_array(image_type);
2292 nir_alu_type dest_type = nir_type_invalid;
2293
2294 /* Figure out the base texture operation */
2295 nir_texop texop;
2296 switch (opcode) {
2297 case SpvOpImageSampleImplicitLod:
2298 case SpvOpImageSampleDrefImplicitLod:
2299 case SpvOpImageSampleProjImplicitLod:
2300 case SpvOpImageSampleProjDrefImplicitLod:
2301 texop = nir_texop_tex;
2302 break;
2303
2304 case SpvOpImageSampleExplicitLod:
2305 case SpvOpImageSampleDrefExplicitLod:
2306 case SpvOpImageSampleProjExplicitLod:
2307 case SpvOpImageSampleProjDrefExplicitLod:
2308 texop = nir_texop_txl;
2309 break;
2310
2311 case SpvOpImageFetch:
2312 if (sampler_dim == GLSL_SAMPLER_DIM_MS) {
2313 texop = nir_texop_txf_ms;
2314 } else {
2315 texop = nir_texop_txf;
2316 }
2317 break;
2318
2319 case SpvOpImageGather:
2320 case SpvOpImageDrefGather:
2321 texop = nir_texop_tg4;
2322 break;
2323
2324 case SpvOpImageQuerySizeLod:
2325 case SpvOpImageQuerySize:
2326 texop = nir_texop_txs;
2327 dest_type = nir_type_int;
2328 break;
2329
2330 case SpvOpImageQueryLod:
2331 texop = nir_texop_lod;
2332 dest_type = nir_type_float;
2333 break;
2334
2335 case SpvOpImageQueryLevels:
2336 texop = nir_texop_query_levels;
2337 dest_type = nir_type_int;
2338 break;
2339
2340 case SpvOpImageQuerySamples:
2341 texop = nir_texop_texture_samples;
2342 dest_type = nir_type_int;
2343 break;
2344
2345 default:
2346 vtn_fail_with_opcode("Unhandled opcode", opcode);
2347 }
2348
2349 nir_tex_src srcs[10]; /* 10 should be enough */
2350 nir_tex_src *p = srcs;
2351
2352 p->src = nir_src_for_ssa(&image_deref->dest.ssa);
2353 p->src_type = nir_tex_src_texture_deref;
2354 p++;
2355
2356 switch (texop) {
2357 case nir_texop_tex:
2358 case nir_texop_txb:
2359 case nir_texop_txl:
2360 case nir_texop_txd:
2361 case nir_texop_tg4:
2362 case nir_texop_lod:
2363 vtn_fail_if(sampler == NULL,
2364 "%s requires an image of type OpTypeSampledImage",
2365 spirv_op_to_string(opcode));
2366 p->src = nir_src_for_ssa(&sampler_deref->dest.ssa);
2367 p->src_type = nir_tex_src_sampler_deref;
2368 p++;
2369 break;
2370 case nir_texop_txf:
2371 case nir_texop_txf_ms:
2372 case nir_texop_txs:
2373 case nir_texop_query_levels:
2374 case nir_texop_texture_samples:
2375 case nir_texop_samples_identical:
2376 /* These don't */
2377 break;
2378 case nir_texop_txf_ms_fb:
2379 vtn_fail("unexpected nir_texop_txf_ms_fb");
2380 break;
2381 case nir_texop_txf_ms_mcs:
2382 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2383 case nir_texop_tex_prefetch:
2384 vtn_fail("unexpected nir_texop_tex_prefetch");
2385 }
2386
2387 unsigned idx = 4;
2388
2389 struct nir_ssa_def *coord;
2390 unsigned coord_components;
2391 switch (opcode) {
2392 case SpvOpImageSampleImplicitLod:
2393 case SpvOpImageSampleExplicitLod:
2394 case SpvOpImageSampleDrefImplicitLod:
2395 case SpvOpImageSampleDrefExplicitLod:
2396 case SpvOpImageSampleProjImplicitLod:
2397 case SpvOpImageSampleProjExplicitLod:
2398 case SpvOpImageSampleProjDrefImplicitLod:
2399 case SpvOpImageSampleProjDrefExplicitLod:
2400 case SpvOpImageFetch:
2401 case SpvOpImageGather:
2402 case SpvOpImageDrefGather:
2403 case SpvOpImageQueryLod: {
2404 /* All these types have the coordinate as their first real argument */
2405 switch (sampler_dim) {
2406 case GLSL_SAMPLER_DIM_1D:
2407 case GLSL_SAMPLER_DIM_BUF:
2408 coord_components = 1;
2409 break;
2410 case GLSL_SAMPLER_DIM_2D:
2411 case GLSL_SAMPLER_DIM_RECT:
2412 case GLSL_SAMPLER_DIM_MS:
2413 coord_components = 2;
2414 break;
2415 case GLSL_SAMPLER_DIM_3D:
2416 case GLSL_SAMPLER_DIM_CUBE:
2417 coord_components = 3;
2418 break;
2419 default:
2420 vtn_fail("Invalid sampler type");
2421 }
2422
2423 if (is_array && texop != nir_texop_lod)
2424 coord_components++;
2425
2426 coord = vtn_ssa_value(b, w[idx++])->def;
2427 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2428 (1 << coord_components) - 1));
2429 p->src_type = nir_tex_src_coord;
2430 p++;
2431 break;
2432 }
2433
2434 default:
2435 coord = NULL;
2436 coord_components = 0;
2437 break;
2438 }
2439
2440 switch (opcode) {
2441 case SpvOpImageSampleProjImplicitLod:
2442 case SpvOpImageSampleProjExplicitLod:
2443 case SpvOpImageSampleProjDrefImplicitLod:
2444 case SpvOpImageSampleProjDrefExplicitLod:
2445 /* These have the projector as the last coordinate component */
2446 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2447 p->src_type = nir_tex_src_projector;
2448 p++;
2449 break;
2450
2451 default:
2452 break;
2453 }
2454
2455 bool is_shadow = false;
2456 unsigned gather_component = 0;
2457 switch (opcode) {
2458 case SpvOpImageSampleDrefImplicitLod:
2459 case SpvOpImageSampleDrefExplicitLod:
2460 case SpvOpImageSampleProjDrefImplicitLod:
2461 case SpvOpImageSampleProjDrefExplicitLod:
2462 case SpvOpImageDrefGather:
2463 /* These all have an explicit depth value as their next source */
2464 is_shadow = true;
2465 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2466 break;
2467
2468 case SpvOpImageGather:
2469 /* This has a component as its next source */
2470 gather_component = vtn_constant_uint(b, w[idx++]);
2471 break;
2472
2473 default:
2474 break;
2475 }
2476
2477 /* For OpImageQuerySizeLod, we always have an LOD */
2478 if (opcode == SpvOpImageQuerySizeLod)
2479 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2480
2481 /* Now we need to handle some number of optional arguments */
2482 struct vtn_value *gather_offsets = NULL;
2483 if (idx < count) {
2484 uint32_t operands = w[idx];
2485
2486 if (operands & SpvImageOperandsBiasMask) {
2487 vtn_assert(texop == nir_texop_tex);
2488 texop = nir_texop_txb;
2489 uint32_t arg = image_operand_arg(b, w, count, idx,
2490 SpvImageOperandsBiasMask);
2491 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_bias);
2492 }
2493
2494 if (operands & SpvImageOperandsLodMask) {
2495 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2496 texop == nir_texop_txs);
2497 uint32_t arg = image_operand_arg(b, w, count, idx,
2498 SpvImageOperandsLodMask);
2499 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_lod);
2500 }
2501
2502 if (operands & SpvImageOperandsGradMask) {
2503 vtn_assert(texop == nir_texop_txl);
2504 texop = nir_texop_txd;
2505 uint32_t arg = image_operand_arg(b, w, count, idx,
2506 SpvImageOperandsGradMask);
2507 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_ddx);
2508 (*p++) = vtn_tex_src(b, w[arg + 1], nir_tex_src_ddy);
2509 }
2510
2511 vtn_fail_if(util_bitcount(operands & (SpvImageOperandsConstOffsetsMask |
2512 SpvImageOperandsOffsetMask |
2513 SpvImageOperandsConstOffsetMask)) > 1,
2514 "At most one of the ConstOffset, Offset, and ConstOffsets "
2515 "image operands can be used on a given instruction.");
2516
2517 if (operands & SpvImageOperandsOffsetMask) {
2518 uint32_t arg = image_operand_arg(b, w, count, idx,
2519 SpvImageOperandsOffsetMask);
2520 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_offset);
2521 }
2522
2523 if (operands & SpvImageOperandsConstOffsetMask) {
2524 uint32_t arg = image_operand_arg(b, w, count, idx,
2525 SpvImageOperandsConstOffsetMask);
2526 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_offset);
2527 }
2528
2529 if (operands & SpvImageOperandsConstOffsetsMask) {
2530 vtn_assert(texop == nir_texop_tg4);
2531 uint32_t arg = image_operand_arg(b, w, count, idx,
2532 SpvImageOperandsConstOffsetsMask);
2533 gather_offsets = vtn_value(b, w[arg], vtn_value_type_constant);
2534 }
2535
2536 if (operands & SpvImageOperandsSampleMask) {
2537 vtn_assert(texop == nir_texop_txf_ms);
2538 uint32_t arg = image_operand_arg(b, w, count, idx,
2539 SpvImageOperandsSampleMask);
2540 texop = nir_texop_txf_ms;
2541 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_ms_index);
2542 }
2543
2544 if (operands & SpvImageOperandsMinLodMask) {
2545 vtn_assert(texop == nir_texop_tex ||
2546 texop == nir_texop_txb ||
2547 texop == nir_texop_txd);
2548 uint32_t arg = image_operand_arg(b, w, count, idx,
2549 SpvImageOperandsMinLodMask);
2550 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_min_lod);
2551 }
2552 }
2553
2554 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2555 instr->op = texop;
2556
2557 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2558
2559 instr->coord_components = coord_components;
2560 instr->sampler_dim = sampler_dim;
2561 instr->is_array = is_array;
2562 instr->is_shadow = is_shadow;
2563 instr->is_new_style_shadow =
2564 is_shadow && glsl_get_components(ret_type->type) == 1;
2565 instr->component = gather_component;
2566
2567 if (image && (image->access & ACCESS_NON_UNIFORM))
2568 instr->texture_non_uniform = true;
2569
2570 if (sampler && (sampler->access & ACCESS_NON_UNIFORM))
2571 instr->sampler_non_uniform = true;
2572
2573 /* for non-query ops, get dest_type from sampler type */
2574 if (dest_type == nir_type_invalid) {
2575 switch (glsl_get_sampler_result_type(image_type)) {
2576 case GLSL_TYPE_FLOAT: dest_type = nir_type_float; break;
2577 case GLSL_TYPE_INT: dest_type = nir_type_int; break;
2578 case GLSL_TYPE_UINT: dest_type = nir_type_uint; break;
2579 case GLSL_TYPE_BOOL: dest_type = nir_type_bool; break;
2580 default:
2581 vtn_fail("Invalid base type for sampler result");
2582 }
2583 }
2584
2585 instr->dest_type = dest_type;
2586
2587 nir_ssa_dest_init(&instr->instr, &instr->dest,
2588 nir_tex_instr_dest_size(instr), 32, NULL);
2589
2590 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2591 nir_tex_instr_dest_size(instr));
2592
2593 if (gather_offsets) {
2594 vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
2595 gather_offsets->type->length != 4,
2596 "ConstOffsets must be an array of size four of vectors "
2597 "of two integer components");
2598
2599 struct vtn_type *vec_type = gather_offsets->type->array_element;
2600 vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
2601 vec_type->length != 2 ||
2602 !glsl_type_is_integer(vec_type->type),
2603 "ConstOffsets must be an array of size four of vectors "
2604 "of two integer components");
2605
2606 unsigned bit_size = glsl_get_bit_size(vec_type->type);
2607 for (uint32_t i = 0; i < 4; i++) {
2608 const nir_const_value *cvec =
2609 gather_offsets->constant->elements[i]->values;
2610 for (uint32_t j = 0; j < 2; j++) {
2611 switch (bit_size) {
2612 case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
2613 case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
2614 case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
2615 case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
2616 default:
2617 vtn_fail("Unsupported bit size: %u", bit_size);
2618 }
2619 }
2620 }
2621 }
2622
2623 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, ret_type->type);
2624 ssa->def = &instr->dest.ssa;
2625 vtn_push_ssa(b, w[2], ret_type, ssa);
2626
2627 nir_builder_instr_insert(&b->nb, &instr->instr);
2628 }
2629
2630 static void
2631 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2632 const uint32_t *w, nir_src *src)
2633 {
2634 switch (opcode) {
2635 case SpvOpAtomicIIncrement:
2636 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2637 break;
2638
2639 case SpvOpAtomicIDecrement:
2640 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2641 break;
2642
2643 case SpvOpAtomicISub:
2644 src[0] =
2645 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2646 break;
2647
2648 case SpvOpAtomicCompareExchange:
2649 case SpvOpAtomicCompareExchangeWeak:
2650 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2651 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2652 break;
2653
2654 case SpvOpAtomicExchange:
2655 case SpvOpAtomicIAdd:
2656 case SpvOpAtomicSMin:
2657 case SpvOpAtomicUMin:
2658 case SpvOpAtomicSMax:
2659 case SpvOpAtomicUMax:
2660 case SpvOpAtomicAnd:
2661 case SpvOpAtomicOr:
2662 case SpvOpAtomicXor:
2663 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2664 break;
2665
2666 default:
2667 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2668 }
2669 }
2670
2671 static nir_ssa_def *
2672 get_image_coord(struct vtn_builder *b, uint32_t value)
2673 {
2674 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2675
2676 /* The image_load_store intrinsics assume a 4-dim coordinate */
2677 unsigned dim = glsl_get_vector_elements(coord->type);
2678 unsigned swizzle[4];
2679 for (unsigned i = 0; i < 4; i++)
2680 swizzle[i] = MIN2(i, dim - 1);
2681
2682 return nir_swizzle(&b->nb, coord->def, swizzle, 4);
2683 }
2684
2685 static nir_ssa_def *
2686 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2687 {
2688 if (value->num_components == 4)
2689 return value;
2690
2691 unsigned swiz[4];
2692 for (unsigned i = 0; i < 4; i++)
2693 swiz[i] = i < value->num_components ? i : 0;
2694 return nir_swizzle(b, value, swiz, 4);
2695 }
2696
2697 static void
2698 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2699 const uint32_t *w, unsigned count)
2700 {
2701 /* Just get this one out of the way */
2702 if (opcode == SpvOpImageTexelPointer) {
2703 struct vtn_value *val =
2704 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2705 val->image = ralloc(b, struct vtn_image_pointer);
2706
2707 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2708 val->image->coord = get_image_coord(b, w[4]);
2709 val->image->sample = vtn_ssa_value(b, w[5])->def;
2710 val->image->lod = nir_imm_int(&b->nb, 0);
2711 return;
2712 }
2713
2714 struct vtn_image_pointer image;
2715 SpvScope scope = SpvScopeInvocation;
2716 SpvMemorySemanticsMask semantics = 0;
2717
2718 switch (opcode) {
2719 case SpvOpAtomicExchange:
2720 case SpvOpAtomicCompareExchange:
2721 case SpvOpAtomicCompareExchangeWeak:
2722 case SpvOpAtomicIIncrement:
2723 case SpvOpAtomicIDecrement:
2724 case SpvOpAtomicIAdd:
2725 case SpvOpAtomicISub:
2726 case SpvOpAtomicLoad:
2727 case SpvOpAtomicSMin:
2728 case SpvOpAtomicUMin:
2729 case SpvOpAtomicSMax:
2730 case SpvOpAtomicUMax:
2731 case SpvOpAtomicAnd:
2732 case SpvOpAtomicOr:
2733 case SpvOpAtomicXor:
2734 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2735 scope = vtn_constant_uint(b, w[4]);
2736 semantics = vtn_constant_uint(b, w[5]);
2737 break;
2738
2739 case SpvOpAtomicStore:
2740 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2741 scope = vtn_constant_uint(b, w[2]);
2742 semantics = vtn_constant_uint(b, w[3]);
2743 break;
2744
2745 case SpvOpImageQuerySize:
2746 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2747 image.coord = NULL;
2748 image.sample = NULL;
2749 image.lod = NULL;
2750 break;
2751
2752 case SpvOpImageRead: {
2753 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2754 image.coord = get_image_coord(b, w[4]);
2755
2756 const SpvImageOperandsMask operands =
2757 count > 5 ? w[5] : SpvImageOperandsMaskNone;
2758
2759 if (operands & SpvImageOperandsSampleMask) {
2760 uint32_t arg = image_operand_arg(b, w, count, 5,
2761 SpvImageOperandsSampleMask);
2762 image.sample = vtn_ssa_value(b, w[arg])->def;
2763 } else {
2764 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2765 }
2766
2767 if (operands & SpvImageOperandsMakeTexelVisibleMask) {
2768 vtn_fail_if((operands & SpvImageOperandsNonPrivateTexelMask) == 0,
2769 "MakeTexelVisible requires NonPrivateTexel to also be set.");
2770 uint32_t arg = image_operand_arg(b, w, count, 5,
2771 SpvImageOperandsMakeTexelVisibleMask);
2772 semantics = SpvMemorySemanticsMakeVisibleMask;
2773 scope = vtn_constant_uint(b, w[arg]);
2774 }
2775
2776 if (operands & SpvImageOperandsLodMask) {
2777 uint32_t arg = image_operand_arg(b, w, count, 5,
2778 SpvImageOperandsLodMask);
2779 image.lod = vtn_ssa_value(b, w[arg])->def;
2780 } else {
2781 image.lod = nir_imm_int(&b->nb, 0);
2782 }
2783
2784 /* TODO: Volatile. */
2785
2786 break;
2787 }
2788
2789 case SpvOpImageWrite: {
2790 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2791 image.coord = get_image_coord(b, w[2]);
2792
2793 /* texel = w[3] */
2794
2795 const SpvImageOperandsMask operands =
2796 count > 4 ? w[4] : SpvImageOperandsMaskNone;
2797
2798 if (operands & SpvImageOperandsSampleMask) {
2799 uint32_t arg = image_operand_arg(b, w, count, 4,
2800 SpvImageOperandsSampleMask);
2801 image.sample = vtn_ssa_value(b, w[arg])->def;
2802 } else {
2803 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2804 }
2805
2806 if (operands & SpvImageOperandsMakeTexelAvailableMask) {
2807 vtn_fail_if((operands & SpvImageOperandsNonPrivateTexelMask) == 0,
2808 "MakeTexelAvailable requires NonPrivateTexel to also be set.");
2809 uint32_t arg = image_operand_arg(b, w, count, 4,
2810 SpvImageOperandsMakeTexelAvailableMask);
2811 semantics = SpvMemorySemanticsMakeAvailableMask;
2812 scope = vtn_constant_uint(b, w[arg]);
2813 }
2814
2815 if (operands & SpvImageOperandsLodMask) {
2816 uint32_t arg = image_operand_arg(b, w, count, 4,
2817 SpvImageOperandsLodMask);
2818 image.lod = vtn_ssa_value(b, w[arg])->def;
2819 } else {
2820 image.lod = nir_imm_int(&b->nb, 0);
2821 }
2822
2823 /* TODO: Volatile. */
2824
2825 break;
2826 }
2827
2828 default:
2829 vtn_fail_with_opcode("Invalid image opcode", opcode);
2830 }
2831
2832 nir_intrinsic_op op;
2833 switch (opcode) {
2834 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2835 OP(ImageQuerySize, size)
2836 OP(ImageRead, load)
2837 OP(ImageWrite, store)
2838 OP(AtomicLoad, load)
2839 OP(AtomicStore, store)
2840 OP(AtomicExchange, atomic_exchange)
2841 OP(AtomicCompareExchange, atomic_comp_swap)
2842 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2843 OP(AtomicIIncrement, atomic_add)
2844 OP(AtomicIDecrement, atomic_add)
2845 OP(AtomicIAdd, atomic_add)
2846 OP(AtomicISub, atomic_add)
2847 OP(AtomicSMin, atomic_imin)
2848 OP(AtomicUMin, atomic_umin)
2849 OP(AtomicSMax, atomic_imax)
2850 OP(AtomicUMax, atomic_umax)
2851 OP(AtomicAnd, atomic_and)
2852 OP(AtomicOr, atomic_or)
2853 OP(AtomicXor, atomic_xor)
2854 #undef OP
2855 default:
2856 vtn_fail_with_opcode("Invalid image opcode", opcode);
2857 }
2858
2859 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2860
2861 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2862 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2863
2864 /* ImageQuerySize doesn't take any extra parameters */
2865 if (opcode != SpvOpImageQuerySize) {
2866 /* The image coordinate is always 4 components but we may not have that
2867 * many. Swizzle to compensate.
2868 */
2869 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2870 intrin->src[2] = nir_src_for_ssa(image.sample);
2871 }
2872
2873 nir_intrinsic_set_access(intrin, image.image->access);
2874
2875 switch (opcode) {
2876 case SpvOpAtomicLoad:
2877 case SpvOpImageQuerySize:
2878 case SpvOpImageRead:
2879 if (opcode == SpvOpImageRead || opcode == SpvOpAtomicLoad) {
2880 /* Only OpImageRead can support a lod parameter if
2881 * SPV_AMD_shader_image_load_store_lod is used but the current NIR
2882 * intrinsics definition for atomics requires us to set it for
2883 * OpAtomicLoad.
2884 */
2885 intrin->src[3] = nir_src_for_ssa(image.lod);
2886 }
2887 break;
2888 case SpvOpAtomicStore:
2889 case SpvOpImageWrite: {
2890 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2891 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2892 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2893 assert(op == nir_intrinsic_image_deref_store);
2894 intrin->num_components = 4;
2895 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2896 /* Only OpImageWrite can support a lod parameter if
2897 * SPV_AMD_shader_image_load_store_lod is used but the current NIR
2898 * intrinsics definition for atomics requires us to set it for
2899 * OpAtomicStore.
2900 */
2901 intrin->src[4] = nir_src_for_ssa(image.lod);
2902 break;
2903 }
2904
2905 case SpvOpAtomicCompareExchange:
2906 case SpvOpAtomicCompareExchangeWeak:
2907 case SpvOpAtomicIIncrement:
2908 case SpvOpAtomicIDecrement:
2909 case SpvOpAtomicExchange:
2910 case SpvOpAtomicIAdd:
2911 case SpvOpAtomicISub:
2912 case SpvOpAtomicSMin:
2913 case SpvOpAtomicUMin:
2914 case SpvOpAtomicSMax:
2915 case SpvOpAtomicUMax:
2916 case SpvOpAtomicAnd:
2917 case SpvOpAtomicOr:
2918 case SpvOpAtomicXor:
2919 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2920 break;
2921
2922 default:
2923 vtn_fail_with_opcode("Invalid image opcode", opcode);
2924 }
2925
2926 /* Image operations implicitly have the Image storage memory semantics. */
2927 semantics |= SpvMemorySemanticsImageMemoryMask;
2928
2929 SpvMemorySemanticsMask before_semantics;
2930 SpvMemorySemanticsMask after_semantics;
2931 vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
2932
2933 if (before_semantics)
2934 vtn_emit_memory_barrier(b, scope, before_semantics);
2935
2936 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2937 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2938
2939 unsigned dest_components = glsl_get_vector_elements(type->type);
2940 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2941 if (intrin->num_components == 0)
2942 intrin->num_components = dest_components;
2943
2944 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2945 intrin->num_components, 32, NULL);
2946
2947 nir_builder_instr_insert(&b->nb, &intrin->instr);
2948
2949 nir_ssa_def *result = &intrin->dest.ssa;
2950 if (intrin->num_components != dest_components)
2951 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2952
2953 struct vtn_value *val =
2954 vtn_push_ssa(b, w[2], type, vtn_create_ssa_value(b, type->type));
2955 val->ssa->def = result;
2956 } else {
2957 nir_builder_instr_insert(&b->nb, &intrin->instr);
2958 }
2959
2960 if (after_semantics)
2961 vtn_emit_memory_barrier(b, scope, after_semantics);
2962 }
2963
2964 static nir_intrinsic_op
2965 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2966 {
2967 switch (opcode) {
2968 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2969 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2970 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2971 OP(AtomicExchange, atomic_exchange)
2972 OP(AtomicCompareExchange, atomic_comp_swap)
2973 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2974 OP(AtomicIIncrement, atomic_add)
2975 OP(AtomicIDecrement, atomic_add)
2976 OP(AtomicIAdd, atomic_add)
2977 OP(AtomicISub, atomic_add)
2978 OP(AtomicSMin, atomic_imin)
2979 OP(AtomicUMin, atomic_umin)
2980 OP(AtomicSMax, atomic_imax)
2981 OP(AtomicUMax, atomic_umax)
2982 OP(AtomicAnd, atomic_and)
2983 OP(AtomicOr, atomic_or)
2984 OP(AtomicXor, atomic_xor)
2985 #undef OP
2986 default:
2987 vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
2988 }
2989 }
2990
2991 static nir_intrinsic_op
2992 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2993 {
2994 switch (opcode) {
2995 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2996 OP(AtomicLoad, read_deref)
2997 OP(AtomicExchange, exchange)
2998 OP(AtomicCompareExchange, comp_swap)
2999 OP(AtomicCompareExchangeWeak, comp_swap)
3000 OP(AtomicIIncrement, inc_deref)
3001 OP(AtomicIDecrement, post_dec_deref)
3002 OP(AtomicIAdd, add_deref)
3003 OP(AtomicISub, add_deref)
3004 OP(AtomicUMin, min_deref)
3005 OP(AtomicUMax, max_deref)
3006 OP(AtomicAnd, and_deref)
3007 OP(AtomicOr, or_deref)
3008 OP(AtomicXor, xor_deref)
3009 #undef OP
3010 default:
3011 /* We left the following out: AtomicStore, AtomicSMin and
3012 * AtomicSmax. Right now there are not nir intrinsics for them. At this
3013 * moment Atomic Counter support is needed for ARB_spirv support, so is
3014 * only need to support GLSL Atomic Counters that are uints and don't
3015 * allow direct storage.
3016 */
3017 unreachable("Invalid uniform atomic");
3018 }
3019 }
3020
3021 static nir_intrinsic_op
3022 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
3023 {
3024 switch (opcode) {
3025 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
3026 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
3027 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
3028 OP(AtomicExchange, atomic_exchange)
3029 OP(AtomicCompareExchange, atomic_comp_swap)
3030 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
3031 OP(AtomicIIncrement, atomic_add)
3032 OP(AtomicIDecrement, atomic_add)
3033 OP(AtomicIAdd, atomic_add)
3034 OP(AtomicISub, atomic_add)
3035 OP(AtomicSMin, atomic_imin)
3036 OP(AtomicUMin, atomic_umin)
3037 OP(AtomicSMax, atomic_imax)
3038 OP(AtomicUMax, atomic_umax)
3039 OP(AtomicAnd, atomic_and)
3040 OP(AtomicOr, atomic_or)
3041 OP(AtomicXor, atomic_xor)
3042 #undef OP
3043 default:
3044 vtn_fail_with_opcode("Invalid shared atomic", opcode);
3045 }
3046 }
3047
3048 /*
3049 * Handles shared atomics, ssbo atomics and atomic counters.
3050 */
3051 static void
3052 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
3053 const uint32_t *w, unsigned count)
3054 {
3055 struct vtn_pointer *ptr;
3056 nir_intrinsic_instr *atomic;
3057
3058 SpvScope scope = SpvScopeInvocation;
3059 SpvMemorySemanticsMask semantics = 0;
3060
3061 switch (opcode) {
3062 case SpvOpAtomicLoad:
3063 case SpvOpAtomicExchange:
3064 case SpvOpAtomicCompareExchange:
3065 case SpvOpAtomicCompareExchangeWeak:
3066 case SpvOpAtomicIIncrement:
3067 case SpvOpAtomicIDecrement:
3068 case SpvOpAtomicIAdd:
3069 case SpvOpAtomicISub:
3070 case SpvOpAtomicSMin:
3071 case SpvOpAtomicUMin:
3072 case SpvOpAtomicSMax:
3073 case SpvOpAtomicUMax:
3074 case SpvOpAtomicAnd:
3075 case SpvOpAtomicOr:
3076 case SpvOpAtomicXor:
3077 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
3078 scope = vtn_constant_uint(b, w[4]);
3079 semantics = vtn_constant_uint(b, w[5]);
3080 break;
3081
3082 case SpvOpAtomicStore:
3083 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
3084 scope = vtn_constant_uint(b, w[2]);
3085 semantics = vtn_constant_uint(b, w[3]);
3086 break;
3087
3088 default:
3089 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
3090 }
3091
3092 /* uniform as "atomic counter uniform" */
3093 if (ptr->mode == vtn_variable_mode_uniform) {
3094 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
3095 const struct glsl_type *deref_type = deref->type;
3096 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
3097 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
3098 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
3099
3100 /* SSBO needs to initialize index/offset. In this case we don't need to,
3101 * as that info is already stored on the ptr->var->var nir_variable (see
3102 * vtn_create_variable)
3103 */
3104
3105 switch (opcode) {
3106 case SpvOpAtomicLoad:
3107 atomic->num_components = glsl_get_vector_elements(deref_type);
3108 break;
3109
3110 case SpvOpAtomicStore:
3111 atomic->num_components = glsl_get_vector_elements(deref_type);
3112 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
3113 break;
3114
3115 case SpvOpAtomicExchange:
3116 case SpvOpAtomicCompareExchange:
3117 case SpvOpAtomicCompareExchangeWeak:
3118 case SpvOpAtomicIIncrement:
3119 case SpvOpAtomicIDecrement:
3120 case SpvOpAtomicIAdd:
3121 case SpvOpAtomicISub:
3122 case SpvOpAtomicSMin:
3123 case SpvOpAtomicUMin:
3124 case SpvOpAtomicSMax:
3125 case SpvOpAtomicUMax:
3126 case SpvOpAtomicAnd:
3127 case SpvOpAtomicOr:
3128 case SpvOpAtomicXor:
3129 /* Nothing: we don't need to call fill_common_atomic_sources here, as
3130 * atomic counter uniforms doesn't have sources
3131 */
3132 break;
3133
3134 default:
3135 unreachable("Invalid SPIR-V atomic");
3136
3137 }
3138 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
3139 nir_ssa_def *offset, *index;
3140 offset = vtn_pointer_to_offset(b, ptr, &index);
3141
3142 assert(ptr->mode == vtn_variable_mode_ssbo);
3143
3144 nir_intrinsic_op op = get_ssbo_nir_atomic_op(b, opcode);
3145 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
3146
3147 int src = 0;
3148 switch (opcode) {
3149 case SpvOpAtomicLoad:
3150 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
3151 nir_intrinsic_set_align(atomic, 4, 0);
3152 if (ptr->mode == vtn_variable_mode_ssbo)
3153 atomic->src[src++] = nir_src_for_ssa(index);
3154 atomic->src[src++] = nir_src_for_ssa(offset);
3155 break;
3156
3157 case SpvOpAtomicStore:
3158 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
3159 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
3160 nir_intrinsic_set_align(atomic, 4, 0);
3161 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
3162 if (ptr->mode == vtn_variable_mode_ssbo)
3163 atomic->src[src++] = nir_src_for_ssa(index);
3164 atomic->src[src++] = nir_src_for_ssa(offset);
3165 break;
3166
3167 case SpvOpAtomicExchange:
3168 case SpvOpAtomicCompareExchange:
3169 case SpvOpAtomicCompareExchangeWeak:
3170 case SpvOpAtomicIIncrement:
3171 case SpvOpAtomicIDecrement:
3172 case SpvOpAtomicIAdd:
3173 case SpvOpAtomicISub:
3174 case SpvOpAtomicSMin:
3175 case SpvOpAtomicUMin:
3176 case SpvOpAtomicSMax:
3177 case SpvOpAtomicUMax:
3178 case SpvOpAtomicAnd:
3179 case SpvOpAtomicOr:
3180 case SpvOpAtomicXor:
3181 if (ptr->mode == vtn_variable_mode_ssbo)
3182 atomic->src[src++] = nir_src_for_ssa(index);
3183 atomic->src[src++] = nir_src_for_ssa(offset);
3184 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
3185 break;
3186
3187 default:
3188 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
3189 }
3190 } else {
3191 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
3192 const struct glsl_type *deref_type = deref->type;
3193 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
3194 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
3195 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
3196
3197 switch (opcode) {
3198 case SpvOpAtomicLoad:
3199 atomic->num_components = glsl_get_vector_elements(deref_type);
3200 break;
3201
3202 case SpvOpAtomicStore:
3203 atomic->num_components = glsl_get_vector_elements(deref_type);
3204 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
3205 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
3206 break;
3207
3208 case SpvOpAtomicExchange:
3209 case SpvOpAtomicCompareExchange:
3210 case SpvOpAtomicCompareExchangeWeak:
3211 case SpvOpAtomicIIncrement:
3212 case SpvOpAtomicIDecrement:
3213 case SpvOpAtomicIAdd:
3214 case SpvOpAtomicISub:
3215 case SpvOpAtomicSMin:
3216 case SpvOpAtomicUMin:
3217 case SpvOpAtomicSMax:
3218 case SpvOpAtomicUMax:
3219 case SpvOpAtomicAnd:
3220 case SpvOpAtomicOr:
3221 case SpvOpAtomicXor:
3222 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
3223 break;
3224
3225 default:
3226 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
3227 }
3228 }
3229
3230 /* Atomic ordering operations will implicitly apply to the atomic operation
3231 * storage class, so include that too.
3232 */
3233 semantics |= vtn_storage_class_to_memory_semantics(ptr->ptr_type->storage_class);
3234
3235 SpvMemorySemanticsMask before_semantics;
3236 SpvMemorySemanticsMask after_semantics;
3237 vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
3238
3239 if (before_semantics)
3240 vtn_emit_memory_barrier(b, scope, before_semantics);
3241
3242 if (opcode != SpvOpAtomicStore) {
3243 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
3244
3245 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
3246 glsl_get_vector_elements(type->type),
3247 glsl_get_bit_size(type->type), NULL);
3248
3249 struct vtn_ssa_value *ssa = rzalloc(b, struct vtn_ssa_value);
3250 ssa->def = &atomic->dest.ssa;
3251 ssa->type = type->type;
3252 vtn_push_ssa(b, w[2], type, ssa);
3253 }
3254
3255 nir_builder_instr_insert(&b->nb, &atomic->instr);
3256
3257 if (after_semantics)
3258 vtn_emit_memory_barrier(b, scope, after_semantics);
3259 }
3260
3261 static nir_alu_instr *
3262 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
3263 {
3264 nir_op op = nir_op_vec(num_components);
3265 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
3266 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
3267 bit_size, NULL);
3268 vec->dest.write_mask = (1 << num_components) - 1;
3269
3270 return vec;
3271 }
3272
3273 struct vtn_ssa_value *
3274 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
3275 {
3276 if (src->transposed)
3277 return src->transposed;
3278
3279 struct vtn_ssa_value *dest =
3280 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
3281
3282 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
3283 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
3284 glsl_get_bit_size(src->type));
3285 if (glsl_type_is_vector_or_scalar(src->type)) {
3286 vec->src[0].src = nir_src_for_ssa(src->def);
3287 vec->src[0].swizzle[0] = i;
3288 } else {
3289 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
3290 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
3291 vec->src[j].swizzle[0] = i;
3292 }
3293 }
3294 nir_builder_instr_insert(&b->nb, &vec->instr);
3295 dest->elems[i]->def = &vec->dest.dest.ssa;
3296 }
3297
3298 dest->transposed = src;
3299
3300 return dest;
3301 }
3302
3303 nir_ssa_def *
3304 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
3305 {
3306 return nir_channel(&b->nb, src, index);
3307 }
3308
3309 nir_ssa_def *
3310 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
3311 unsigned index)
3312 {
3313 nir_alu_instr *vec = create_vec(b, src->num_components,
3314 src->bit_size);
3315
3316 for (unsigned i = 0; i < src->num_components; i++) {
3317 if (i == index) {
3318 vec->src[i].src = nir_src_for_ssa(insert);
3319 } else {
3320 vec->src[i].src = nir_src_for_ssa(src);
3321 vec->src[i].swizzle[0] = i;
3322 }
3323 }
3324
3325 nir_builder_instr_insert(&b->nb, &vec->instr);
3326
3327 return &vec->dest.dest.ssa;
3328 }
3329
3330 static nir_ssa_def *
3331 nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i)
3332 {
3333 return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size));
3334 }
3335
3336 nir_ssa_def *
3337 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3338 nir_ssa_def *index)
3339 {
3340 return nir_vector_extract(&b->nb, src, nir_i2i(&b->nb, index, 32));
3341 }
3342
3343 nir_ssa_def *
3344 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3345 nir_ssa_def *insert, nir_ssa_def *index)
3346 {
3347 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
3348 for (unsigned i = 1; i < src->num_components; i++)
3349 dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
3350 vtn_vector_insert(b, src, insert, i), dest);
3351
3352 return dest;
3353 }
3354
3355 static nir_ssa_def *
3356 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
3357 nir_ssa_def *src0, nir_ssa_def *src1,
3358 const uint32_t *indices)
3359 {
3360 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
3361
3362 for (unsigned i = 0; i < num_components; i++) {
3363 uint32_t index = indices[i];
3364 if (index == 0xffffffff) {
3365 vec->src[i].src =
3366 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
3367 } else if (index < src0->num_components) {
3368 vec->src[i].src = nir_src_for_ssa(src0);
3369 vec->src[i].swizzle[0] = index;
3370 } else {
3371 vec->src[i].src = nir_src_for_ssa(src1);
3372 vec->src[i].swizzle[0] = index - src0->num_components;
3373 }
3374 }
3375
3376 nir_builder_instr_insert(&b->nb, &vec->instr);
3377
3378 return &vec->dest.dest.ssa;
3379 }
3380
3381 /*
3382 * Concatentates a number of vectors/scalars together to produce a vector
3383 */
3384 static nir_ssa_def *
3385 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
3386 unsigned num_srcs, nir_ssa_def **srcs)
3387 {
3388 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
3389
3390 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3391 *
3392 * "When constructing a vector, there must be at least two Constituent
3393 * operands."
3394 */
3395 vtn_assert(num_srcs >= 2);
3396
3397 unsigned dest_idx = 0;
3398 for (unsigned i = 0; i < num_srcs; i++) {
3399 nir_ssa_def *src = srcs[i];
3400 vtn_assert(dest_idx + src->num_components <= num_components);
3401 for (unsigned j = 0; j < src->num_components; j++) {
3402 vec->src[dest_idx].src = nir_src_for_ssa(src);
3403 vec->src[dest_idx].swizzle[0] = j;
3404 dest_idx++;
3405 }
3406 }
3407
3408 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3409 *
3410 * "When constructing a vector, the total number of components in all
3411 * the operands must equal the number of components in Result Type."
3412 */
3413 vtn_assert(dest_idx == num_components);
3414
3415 nir_builder_instr_insert(&b->nb, &vec->instr);
3416
3417 return &vec->dest.dest.ssa;
3418 }
3419
3420 static struct vtn_ssa_value *
3421 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3422 {
3423 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3424 dest->type = src->type;
3425
3426 if (glsl_type_is_vector_or_scalar(src->type)) {
3427 dest->def = src->def;
3428 } else {
3429 unsigned elems = glsl_get_length(src->type);
3430
3431 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3432 for (unsigned i = 0; i < elems; i++)
3433 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3434 }
3435
3436 return dest;
3437 }
3438
3439 static struct vtn_ssa_value *
3440 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3441 struct vtn_ssa_value *insert, const uint32_t *indices,
3442 unsigned num_indices)
3443 {
3444 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3445
3446 struct vtn_ssa_value *cur = dest;
3447 unsigned i;
3448 for (i = 0; i < num_indices - 1; i++) {
3449 cur = cur->elems[indices[i]];
3450 }
3451
3452 if (glsl_type_is_vector_or_scalar(cur->type)) {
3453 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3454 * the component granularity. In that case, the last index will be
3455 * the index to insert the scalar into the vector.
3456 */
3457
3458 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
3459 } else {
3460 cur->elems[indices[i]] = insert;
3461 }
3462
3463 return dest;
3464 }
3465
3466 static struct vtn_ssa_value *
3467 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3468 const uint32_t *indices, unsigned num_indices)
3469 {
3470 struct vtn_ssa_value *cur = src;
3471 for (unsigned i = 0; i < num_indices; i++) {
3472 if (glsl_type_is_vector_or_scalar(cur->type)) {
3473 vtn_assert(i == num_indices - 1);
3474 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3475 * the component granularity. The last index will be the index of the
3476 * vector to extract.
3477 */
3478
3479 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3480 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3481 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
3482 return ret;
3483 } else {
3484 cur = cur->elems[indices[i]];
3485 }
3486 }
3487
3488 return cur;
3489 }
3490
3491 static void
3492 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3493 const uint32_t *w, unsigned count)
3494 {
3495 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
3496 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, type->type);
3497
3498 switch (opcode) {
3499 case SpvOpVectorExtractDynamic:
3500 ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
3501 vtn_ssa_value(b, w[4])->def);
3502 break;
3503
3504 case SpvOpVectorInsertDynamic:
3505 ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
3506 vtn_ssa_value(b, w[4])->def,
3507 vtn_ssa_value(b, w[5])->def);
3508 break;
3509
3510 case SpvOpVectorShuffle:
3511 ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type->type),
3512 vtn_ssa_value(b, w[3])->def,
3513 vtn_ssa_value(b, w[4])->def,
3514 w + 5);
3515 break;
3516
3517 case SpvOpCompositeConstruct: {
3518 unsigned elems = count - 3;
3519 assume(elems >= 1);
3520 if (glsl_type_is_vector_or_scalar(type->type)) {
3521 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3522 for (unsigned i = 0; i < elems; i++)
3523 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3524 ssa->def =
3525 vtn_vector_construct(b, glsl_get_vector_elements(type->type),
3526 elems, srcs);
3527 } else {
3528 ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3529 for (unsigned i = 0; i < elems; i++)
3530 ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3531 }
3532 break;
3533 }
3534 case SpvOpCompositeExtract:
3535 ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3536 w + 4, count - 4);
3537 break;
3538
3539 case SpvOpCompositeInsert:
3540 ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3541 vtn_ssa_value(b, w[3]),
3542 w + 5, count - 5);
3543 break;
3544
3545 case SpvOpCopyLogical:
3546 case SpvOpCopyObject:
3547 ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3548 break;
3549
3550 default:
3551 vtn_fail_with_opcode("unknown composite operation", opcode);
3552 }
3553
3554 vtn_push_ssa(b, w[2], type, ssa);
3555 }
3556
3557 static void
3558 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3559 {
3560 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3561 nir_builder_instr_insert(&b->nb, &intrin->instr);
3562 }
3563
3564 void
3565 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3566 SpvMemorySemanticsMask semantics)
3567 {
3568 if (b->options->use_scoped_memory_barrier) {
3569 vtn_emit_scoped_memory_barrier(b, scope, semantics);
3570 return;
3571 }
3572
3573 static const SpvMemorySemanticsMask all_memory_semantics =
3574 SpvMemorySemanticsUniformMemoryMask |
3575 SpvMemorySemanticsWorkgroupMemoryMask |
3576 SpvMemorySemanticsAtomicCounterMemoryMask |
3577 SpvMemorySemanticsImageMemoryMask;
3578
3579 /* If we're not actually doing a memory barrier, bail */
3580 if (!(semantics & all_memory_semantics))
3581 return;
3582
3583 /* GL and Vulkan don't have these */
3584 vtn_assert(scope != SpvScopeCrossDevice);
3585
3586 if (scope == SpvScopeSubgroup)
3587 return; /* Nothing to do here */
3588
3589 if (scope == SpvScopeWorkgroup) {
3590 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3591 return;
3592 }
3593
3594 /* There's only two scopes thing left */
3595 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3596
3597 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3598 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3599 return;
3600 }
3601
3602 /* Issue a bunch of more specific barriers */
3603 uint32_t bits = semantics;
3604 while (bits) {
3605 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3606 switch (semantic) {
3607 case SpvMemorySemanticsUniformMemoryMask:
3608 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3609 break;
3610 case SpvMemorySemanticsWorkgroupMemoryMask:
3611 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3612 break;
3613 case SpvMemorySemanticsAtomicCounterMemoryMask:
3614 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3615 break;
3616 case SpvMemorySemanticsImageMemoryMask:
3617 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3618 break;
3619 case SpvMemorySemanticsOutputMemoryMask:
3620 if (b->nb.shader->info.stage == MESA_SHADER_TESS_CTRL)
3621 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_tcs_patch);
3622 break;
3623 default:
3624 break;;
3625 }
3626 }
3627 }
3628
3629 static void
3630 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3631 const uint32_t *w, unsigned count)
3632 {
3633 switch (opcode) {
3634 case SpvOpEmitVertex:
3635 case SpvOpEmitStreamVertex:
3636 case SpvOpEndPrimitive:
3637 case SpvOpEndStreamPrimitive: {
3638 nir_intrinsic_op intrinsic_op;
3639 switch (opcode) {
3640 case SpvOpEmitVertex:
3641 case SpvOpEmitStreamVertex:
3642 intrinsic_op = nir_intrinsic_emit_vertex;
3643 break;
3644 case SpvOpEndPrimitive:
3645 case SpvOpEndStreamPrimitive:
3646 intrinsic_op = nir_intrinsic_end_primitive;
3647 break;
3648 default:
3649 unreachable("Invalid opcode");
3650 }
3651
3652 nir_intrinsic_instr *intrin =
3653 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3654
3655 switch (opcode) {
3656 case SpvOpEmitStreamVertex:
3657 case SpvOpEndStreamPrimitive: {
3658 unsigned stream = vtn_constant_uint(b, w[1]);
3659 nir_intrinsic_set_stream_id(intrin, stream);
3660 break;
3661 }
3662
3663 default:
3664 break;
3665 }
3666
3667 nir_builder_instr_insert(&b->nb, &intrin->instr);
3668 break;
3669 }
3670
3671 case SpvOpMemoryBarrier: {
3672 SpvScope scope = vtn_constant_uint(b, w[1]);
3673 SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
3674 vtn_emit_memory_barrier(b, scope, semantics);
3675 return;
3676 }
3677
3678 case SpvOpControlBarrier: {
3679 SpvScope execution_scope = vtn_constant_uint(b, w[1]);
3680 SpvScope memory_scope = vtn_constant_uint(b, w[2]);
3681 SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
3682
3683 /* GLSLang, prior to commit 8297936dd6eb3, emitted OpControlBarrier with
3684 * memory semantics of None for GLSL barrier().
3685 */
3686 if (b->wa_glslang_cs_barrier &&
3687 b->nb.shader->info.stage == MESA_SHADER_COMPUTE &&
3688 execution_scope == SpvScopeWorkgroup &&
3689 memory_semantics == SpvMemorySemanticsMaskNone) {
3690 memory_scope = SpvScopeWorkgroup;
3691 memory_semantics = SpvMemorySemanticsAcquireReleaseMask |
3692 SpvMemorySemanticsWorkgroupMemoryMask;
3693 }
3694
3695 /* From the SPIR-V spec:
3696 *
3697 * "When used with the TessellationControl execution model, it also
3698 * implicitly synchronizes the Output Storage Class: Writes to Output
3699 * variables performed by any invocation executed prior to a
3700 * OpControlBarrier will be visible to any other invocation after
3701 * return from that OpControlBarrier."
3702 */
3703 if (b->nb.shader->info.stage == MESA_SHADER_TESS_CTRL) {
3704 memory_semantics &= ~(SpvMemorySemanticsAcquireMask |
3705 SpvMemorySemanticsReleaseMask |
3706 SpvMemorySemanticsAcquireReleaseMask |
3707 SpvMemorySemanticsSequentiallyConsistentMask);
3708 memory_semantics |= SpvMemorySemanticsAcquireReleaseMask |
3709 SpvMemorySemanticsOutputMemoryMask;
3710 }
3711
3712 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3713
3714 if (execution_scope == SpvScopeWorkgroup)
3715 vtn_emit_barrier(b, nir_intrinsic_control_barrier);
3716 break;
3717 }
3718
3719 default:
3720 unreachable("unknown barrier instruction");
3721 }
3722 }
3723
3724 static unsigned
3725 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3726 SpvExecutionMode mode)
3727 {
3728 switch (mode) {
3729 case SpvExecutionModeInputPoints:
3730 case SpvExecutionModeOutputPoints:
3731 return 0; /* GL_POINTS */
3732 case SpvExecutionModeInputLines:
3733 return 1; /* GL_LINES */
3734 case SpvExecutionModeInputLinesAdjacency:
3735 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3736 case SpvExecutionModeTriangles:
3737 return 4; /* GL_TRIANGLES */
3738 case SpvExecutionModeInputTrianglesAdjacency:
3739 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3740 case SpvExecutionModeQuads:
3741 return 7; /* GL_QUADS */
3742 case SpvExecutionModeIsolines:
3743 return 0x8E7A; /* GL_ISOLINES */
3744 case SpvExecutionModeOutputLineStrip:
3745 return 3; /* GL_LINE_STRIP */
3746 case SpvExecutionModeOutputTriangleStrip:
3747 return 5; /* GL_TRIANGLE_STRIP */
3748 default:
3749 vtn_fail("Invalid primitive type: %s (%u)",
3750 spirv_executionmode_to_string(mode), mode);
3751 }
3752 }
3753
3754 static unsigned
3755 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3756 SpvExecutionMode mode)
3757 {
3758 switch (mode) {
3759 case SpvExecutionModeInputPoints:
3760 return 1;
3761 case SpvExecutionModeInputLines:
3762 return 2;
3763 case SpvExecutionModeInputLinesAdjacency:
3764 return 4;
3765 case SpvExecutionModeTriangles:
3766 return 3;
3767 case SpvExecutionModeInputTrianglesAdjacency:
3768 return 6;
3769 default:
3770 vtn_fail("Invalid GS input mode: %s (%u)",
3771 spirv_executionmode_to_string(mode), mode);
3772 }
3773 }
3774
3775 static gl_shader_stage
3776 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3777 {
3778 switch (model) {
3779 case SpvExecutionModelVertex:
3780 return MESA_SHADER_VERTEX;
3781 case SpvExecutionModelTessellationControl:
3782 return MESA_SHADER_TESS_CTRL;
3783 case SpvExecutionModelTessellationEvaluation:
3784 return MESA_SHADER_TESS_EVAL;
3785 case SpvExecutionModelGeometry:
3786 return MESA_SHADER_GEOMETRY;
3787 case SpvExecutionModelFragment:
3788 return MESA_SHADER_FRAGMENT;
3789 case SpvExecutionModelGLCompute:
3790 return MESA_SHADER_COMPUTE;
3791 case SpvExecutionModelKernel:
3792 return MESA_SHADER_KERNEL;
3793 default:
3794 vtn_fail("Unsupported execution model: %s (%u)",
3795 spirv_executionmodel_to_string(model), model);
3796 }
3797 }
3798
3799 #define spv_check_supported(name, cap) do { \
3800 if (!(b->options && b->options->caps.name)) \
3801 vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
3802 spirv_capability_to_string(cap), cap); \
3803 } while(0)
3804
3805
3806 void
3807 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3808 unsigned count)
3809 {
3810 struct vtn_value *entry_point = &b->values[w[2]];
3811 /* Let this be a name label regardless */
3812 unsigned name_words;
3813 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3814
3815 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3816 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3817 return;
3818
3819 vtn_assert(b->entry_point == NULL);
3820 b->entry_point = entry_point;
3821 }
3822
3823 static bool
3824 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3825 const uint32_t *w, unsigned count)
3826 {
3827 switch (opcode) {
3828 case SpvOpSource: {
3829 const char *lang;
3830 switch (w[1]) {
3831 default:
3832 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3833 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3834 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3835 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3836 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3837 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3838 }
3839
3840 uint32_t version = w[2];
3841
3842 const char *file =
3843 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3844
3845 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3846 break;
3847 }
3848
3849 case SpvOpSourceExtension:
3850 case SpvOpSourceContinued:
3851 case SpvOpExtension:
3852 case SpvOpModuleProcessed:
3853 /* Unhandled, but these are for debug so that's ok. */
3854 break;
3855
3856 case SpvOpCapability: {
3857 SpvCapability cap = w[1];
3858 switch (cap) {
3859 case SpvCapabilityMatrix:
3860 case SpvCapabilityShader:
3861 case SpvCapabilityGeometry:
3862 case SpvCapabilityGeometryPointSize:
3863 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3864 case SpvCapabilitySampledImageArrayDynamicIndexing:
3865 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3866 case SpvCapabilityStorageImageArrayDynamicIndexing:
3867 case SpvCapabilityImageRect:
3868 case SpvCapabilitySampledRect:
3869 case SpvCapabilitySampled1D:
3870 case SpvCapabilityImage1D:
3871 case SpvCapabilitySampledCubeArray:
3872 case SpvCapabilityImageCubeArray:
3873 case SpvCapabilitySampledBuffer:
3874 case SpvCapabilityImageBuffer:
3875 case SpvCapabilityImageQuery:
3876 case SpvCapabilityDerivativeControl:
3877 case SpvCapabilityInterpolationFunction:
3878 case SpvCapabilityMultiViewport:
3879 case SpvCapabilitySampleRateShading:
3880 case SpvCapabilityClipDistance:
3881 case SpvCapabilityCullDistance:
3882 case SpvCapabilityInputAttachment:
3883 case SpvCapabilityImageGatherExtended:
3884 case SpvCapabilityStorageImageExtendedFormats:
3885 case SpvCapabilityVector16:
3886 break;
3887
3888 case SpvCapabilityLinkage:
3889 case SpvCapabilityFloat16Buffer:
3890 case SpvCapabilitySparseResidency:
3891 vtn_warn("Unsupported SPIR-V capability: %s",
3892 spirv_capability_to_string(cap));
3893 break;
3894
3895 case SpvCapabilityMinLod:
3896 spv_check_supported(min_lod, cap);
3897 break;
3898
3899 case SpvCapabilityAtomicStorage:
3900 spv_check_supported(atomic_storage, cap);
3901 break;
3902
3903 case SpvCapabilityFloat64:
3904 spv_check_supported(float64, cap);
3905 break;
3906 case SpvCapabilityInt64:
3907 spv_check_supported(int64, cap);
3908 break;
3909 case SpvCapabilityInt16:
3910 spv_check_supported(int16, cap);
3911 break;
3912 case SpvCapabilityInt8:
3913 spv_check_supported(int8, cap);
3914 break;
3915
3916 case SpvCapabilityTransformFeedback:
3917 spv_check_supported(transform_feedback, cap);
3918 break;
3919
3920 case SpvCapabilityGeometryStreams:
3921 spv_check_supported(geometry_streams, cap);
3922 break;
3923
3924 case SpvCapabilityInt64Atomics:
3925 spv_check_supported(int64_atomics, cap);
3926 break;
3927
3928 case SpvCapabilityStorageImageMultisample:
3929 spv_check_supported(storage_image_ms, cap);
3930 break;
3931
3932 case SpvCapabilityAddresses:
3933 spv_check_supported(address, cap);
3934 break;
3935
3936 case SpvCapabilityKernel:
3937 spv_check_supported(kernel, cap);
3938 break;
3939
3940 case SpvCapabilityImageBasic:
3941 case SpvCapabilityImageReadWrite:
3942 case SpvCapabilityImageMipmap:
3943 case SpvCapabilityPipes:
3944 case SpvCapabilityDeviceEnqueue:
3945 case SpvCapabilityLiteralSampler:
3946 case SpvCapabilityGenericPointer:
3947 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3948 spirv_capability_to_string(cap));
3949 break;
3950
3951 case SpvCapabilityImageMSArray:
3952 spv_check_supported(image_ms_array, cap);
3953 break;
3954
3955 case SpvCapabilityTessellation:
3956 case SpvCapabilityTessellationPointSize:
3957 spv_check_supported(tessellation, cap);
3958 break;
3959
3960 case SpvCapabilityDrawParameters:
3961 spv_check_supported(draw_parameters, cap);
3962 break;
3963
3964 case SpvCapabilityStorageImageReadWithoutFormat:
3965 spv_check_supported(image_read_without_format, cap);
3966 break;
3967
3968 case SpvCapabilityStorageImageWriteWithoutFormat:
3969 spv_check_supported(image_write_without_format, cap);
3970 break;
3971
3972 case SpvCapabilityDeviceGroup:
3973 spv_check_supported(device_group, cap);
3974 break;
3975
3976 case SpvCapabilityMultiView:
3977 spv_check_supported(multiview, cap);
3978 break;
3979
3980 case SpvCapabilityGroupNonUniform:
3981 spv_check_supported(subgroup_basic, cap);
3982 break;
3983
3984 case SpvCapabilitySubgroupVoteKHR:
3985 case SpvCapabilityGroupNonUniformVote:
3986 spv_check_supported(subgroup_vote, cap);
3987 break;
3988
3989 case SpvCapabilitySubgroupBallotKHR:
3990 case SpvCapabilityGroupNonUniformBallot:
3991 spv_check_supported(subgroup_ballot, cap);
3992 break;
3993
3994 case SpvCapabilityGroupNonUniformShuffle:
3995 case SpvCapabilityGroupNonUniformShuffleRelative:
3996 spv_check_supported(subgroup_shuffle, cap);
3997 break;
3998
3999 case SpvCapabilityGroupNonUniformQuad:
4000 spv_check_supported(subgroup_quad, cap);
4001 break;
4002
4003 case SpvCapabilityGroupNonUniformArithmetic:
4004 case SpvCapabilityGroupNonUniformClustered:
4005 spv_check_supported(subgroup_arithmetic, cap);
4006 break;
4007
4008 case SpvCapabilityGroups:
4009 spv_check_supported(amd_shader_ballot, cap);
4010 break;
4011
4012 case SpvCapabilityVariablePointersStorageBuffer:
4013 case SpvCapabilityVariablePointers:
4014 spv_check_supported(variable_pointers, cap);
4015 b->variable_pointers = true;
4016 break;
4017
4018 case SpvCapabilityStorageUniformBufferBlock16:
4019 case SpvCapabilityStorageUniform16:
4020 case SpvCapabilityStoragePushConstant16:
4021 case SpvCapabilityStorageInputOutput16:
4022 spv_check_supported(storage_16bit, cap);
4023 break;
4024
4025 case SpvCapabilityShaderLayer:
4026 case SpvCapabilityShaderViewportIndex:
4027 case SpvCapabilityShaderViewportIndexLayerEXT:
4028 spv_check_supported(shader_viewport_index_layer, cap);
4029 break;
4030
4031 case SpvCapabilityStorageBuffer8BitAccess:
4032 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
4033 case SpvCapabilityStoragePushConstant8:
4034 spv_check_supported(storage_8bit, cap);
4035 break;
4036
4037 case SpvCapabilityShaderNonUniformEXT:
4038 spv_check_supported(descriptor_indexing, cap);
4039 break;
4040
4041 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
4042 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
4043 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
4044 spv_check_supported(descriptor_array_dynamic_indexing, cap);
4045 break;
4046
4047 case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
4048 case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
4049 case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
4050 case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
4051 case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
4052 case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
4053 case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
4054 spv_check_supported(descriptor_array_non_uniform_indexing, cap);
4055 break;
4056
4057 case SpvCapabilityRuntimeDescriptorArrayEXT:
4058 spv_check_supported(runtime_descriptor_array, cap);
4059 break;
4060
4061 case SpvCapabilityStencilExportEXT:
4062 spv_check_supported(stencil_export, cap);
4063 break;
4064
4065 case SpvCapabilitySampleMaskPostDepthCoverage:
4066 spv_check_supported(post_depth_coverage, cap);
4067 break;
4068
4069 case SpvCapabilityDenormFlushToZero:
4070 case SpvCapabilityDenormPreserve:
4071 case SpvCapabilitySignedZeroInfNanPreserve:
4072 case SpvCapabilityRoundingModeRTE:
4073 case SpvCapabilityRoundingModeRTZ:
4074 spv_check_supported(float_controls, cap);
4075 break;
4076
4077 case SpvCapabilityPhysicalStorageBufferAddressesEXT:
4078 spv_check_supported(physical_storage_buffer_address, cap);
4079 break;
4080
4081 case SpvCapabilityComputeDerivativeGroupQuadsNV:
4082 case SpvCapabilityComputeDerivativeGroupLinearNV:
4083 spv_check_supported(derivative_group, cap);
4084 break;
4085
4086 case SpvCapabilityFloat16:
4087 spv_check_supported(float16, cap);
4088 break;
4089
4090 case SpvCapabilityFragmentShaderSampleInterlockEXT:
4091 spv_check_supported(fragment_shader_sample_interlock, cap);
4092 break;
4093
4094 case SpvCapabilityFragmentShaderPixelInterlockEXT:
4095 spv_check_supported(fragment_shader_pixel_interlock, cap);
4096 break;
4097
4098 case SpvCapabilityDemoteToHelperInvocationEXT:
4099 spv_check_supported(demote_to_helper_invocation, cap);
4100 break;
4101
4102 case SpvCapabilityShaderClockKHR:
4103 spv_check_supported(shader_clock, cap);
4104 break;
4105
4106 case SpvCapabilityVulkanMemoryModel:
4107 spv_check_supported(vk_memory_model, cap);
4108 break;
4109
4110 case SpvCapabilityVulkanMemoryModelDeviceScope:
4111 spv_check_supported(vk_memory_model_device_scope, cap);
4112 break;
4113
4114 case SpvCapabilityImageReadWriteLodAMD:
4115 spv_check_supported(amd_image_read_write_lod, cap);
4116 break;
4117
4118 default:
4119 vtn_fail("Unhandled capability: %s (%u)",
4120 spirv_capability_to_string(cap), cap);
4121 }
4122 break;
4123 }
4124
4125 case SpvOpExtInstImport:
4126 vtn_handle_extension(b, opcode, w, count);
4127 break;
4128
4129 case SpvOpMemoryModel:
4130 switch (w[1]) {
4131 case SpvAddressingModelPhysical32:
4132 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
4133 "AddressingModelPhysical32 only supported for kernels");
4134 b->shader->info.cs.ptr_size = 32;
4135 b->physical_ptrs = true;
4136 b->options->shared_addr_format = nir_address_format_32bit_global;
4137 b->options->global_addr_format = nir_address_format_32bit_global;
4138 b->options->temp_addr_format = nir_address_format_32bit_global;
4139 break;
4140 case SpvAddressingModelPhysical64:
4141 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
4142 "AddressingModelPhysical64 only supported for kernels");
4143 b->shader->info.cs.ptr_size = 64;
4144 b->physical_ptrs = true;
4145 b->options->shared_addr_format = nir_address_format_64bit_global;
4146 b->options->global_addr_format = nir_address_format_64bit_global;
4147 b->options->temp_addr_format = nir_address_format_64bit_global;
4148 break;
4149 case SpvAddressingModelLogical:
4150 vtn_fail_if(b->shader->info.stage >= MESA_SHADER_STAGES,
4151 "AddressingModelLogical only supported for shaders");
4152 b->physical_ptrs = false;
4153 break;
4154 case SpvAddressingModelPhysicalStorageBuffer64EXT:
4155 vtn_fail_if(!b->options ||
4156 !b->options->caps.physical_storage_buffer_address,
4157 "AddressingModelPhysicalStorageBuffer64EXT not supported");
4158 break;
4159 default:
4160 vtn_fail("Unknown addressing model: %s (%u)",
4161 spirv_addressingmodel_to_string(w[1]), w[1]);
4162 break;
4163 }
4164
4165 switch (w[2]) {
4166 case SpvMemoryModelSimple:
4167 case SpvMemoryModelGLSL450:
4168 case SpvMemoryModelOpenCL:
4169 break;
4170 case SpvMemoryModelVulkan:
4171 vtn_fail_if(!b->options->caps.vk_memory_model,
4172 "Vulkan memory model is unsupported by this driver");
4173 break;
4174 default:
4175 vtn_fail("Unsupported memory model: %s",
4176 spirv_memorymodel_to_string(w[2]));
4177 break;
4178 }
4179 break;
4180
4181 case SpvOpEntryPoint:
4182 vtn_handle_entry_point(b, w, count);
4183 break;
4184
4185 case SpvOpString:
4186 vtn_push_value(b, w[1], vtn_value_type_string)->str =
4187 vtn_string_literal(b, &w[2], count - 2, NULL);
4188 break;
4189
4190 case SpvOpName:
4191 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
4192 break;
4193
4194 case SpvOpMemberName:
4195 /* TODO */
4196 break;
4197
4198 case SpvOpExecutionMode:
4199 case SpvOpExecutionModeId:
4200 case SpvOpDecorationGroup:
4201 case SpvOpDecorate:
4202 case SpvOpDecorateId:
4203 case SpvOpMemberDecorate:
4204 case SpvOpGroupDecorate:
4205 case SpvOpGroupMemberDecorate:
4206 case SpvOpDecorateString:
4207 case SpvOpMemberDecorateString:
4208 vtn_handle_decoration(b, opcode, w, count);
4209 break;
4210
4211 case SpvOpExtInst: {
4212 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
4213 if (val->ext_handler == vtn_handle_non_semantic_instruction) {
4214 /* NonSemantic extended instructions are acceptable in preamble. */
4215 vtn_handle_non_semantic_instruction(b, w[4], w, count);
4216 return true;
4217 } else {
4218 return false; /* End of preamble. */
4219 }
4220 }
4221
4222 default:
4223 return false; /* End of preamble */
4224 }
4225
4226 return true;
4227 }
4228
4229 static void
4230 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
4231 const struct vtn_decoration *mode, void *data)
4232 {
4233 vtn_assert(b->entry_point == entry_point);
4234
4235 switch(mode->exec_mode) {
4236 case SpvExecutionModeOriginUpperLeft:
4237 case SpvExecutionModeOriginLowerLeft:
4238 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4239 b->shader->info.fs.origin_upper_left =
4240 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
4241 break;
4242
4243 case SpvExecutionModeEarlyFragmentTests:
4244 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4245 b->shader->info.fs.early_fragment_tests = true;
4246 break;
4247
4248 case SpvExecutionModePostDepthCoverage:
4249 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4250 b->shader->info.fs.post_depth_coverage = true;
4251 break;
4252
4253 case SpvExecutionModeInvocations:
4254 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4255 b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
4256 break;
4257
4258 case SpvExecutionModeDepthReplacing:
4259 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4260 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
4261 break;
4262 case SpvExecutionModeDepthGreater:
4263 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4264 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
4265 break;
4266 case SpvExecutionModeDepthLess:
4267 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4268 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
4269 break;
4270 case SpvExecutionModeDepthUnchanged:
4271 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4272 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
4273 break;
4274
4275 case SpvExecutionModeLocalSize:
4276 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
4277 b->shader->info.cs.local_size[0] = mode->operands[0];
4278 b->shader->info.cs.local_size[1] = mode->operands[1];
4279 b->shader->info.cs.local_size[2] = mode->operands[2];
4280 break;
4281
4282 case SpvExecutionModeLocalSizeId:
4283 b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
4284 b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
4285 b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
4286 break;
4287
4288 case SpvExecutionModeLocalSizeHint:
4289 case SpvExecutionModeLocalSizeHintId:
4290 break; /* Nothing to do with this */
4291
4292 case SpvExecutionModeOutputVertices:
4293 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4294 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4295 b->shader->info.tess.tcs_vertices_out = mode->operands[0];
4296 } else {
4297 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4298 b->shader->info.gs.vertices_out = mode->operands[0];
4299 }
4300 break;
4301
4302 case SpvExecutionModeInputPoints:
4303 case SpvExecutionModeInputLines:
4304 case SpvExecutionModeInputLinesAdjacency:
4305 case SpvExecutionModeTriangles:
4306 case SpvExecutionModeInputTrianglesAdjacency:
4307 case SpvExecutionModeQuads:
4308 case SpvExecutionModeIsolines:
4309 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4310 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4311 b->shader->info.tess.primitive_mode =
4312 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4313 } else {
4314 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4315 b->shader->info.gs.vertices_in =
4316 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
4317 b->shader->info.gs.input_primitive =
4318 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4319 }
4320 break;
4321
4322 case SpvExecutionModeOutputPoints:
4323 case SpvExecutionModeOutputLineStrip:
4324 case SpvExecutionModeOutputTriangleStrip:
4325 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4326 b->shader->info.gs.output_primitive =
4327 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4328 break;
4329
4330 case SpvExecutionModeSpacingEqual:
4331 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4332 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4333 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
4334 break;
4335 case SpvExecutionModeSpacingFractionalEven:
4336 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4337 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4338 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
4339 break;
4340 case SpvExecutionModeSpacingFractionalOdd:
4341 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4342 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4343 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
4344 break;
4345 case SpvExecutionModeVertexOrderCw:
4346 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4347 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4348 b->shader->info.tess.ccw = false;
4349 break;
4350 case SpvExecutionModeVertexOrderCcw:
4351 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4352 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4353 b->shader->info.tess.ccw = true;
4354 break;
4355 case SpvExecutionModePointMode:
4356 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4357 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4358 b->shader->info.tess.point_mode = true;
4359 break;
4360
4361 case SpvExecutionModePixelCenterInteger:
4362 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4363 b->shader->info.fs.pixel_center_integer = true;
4364 break;
4365
4366 case SpvExecutionModeXfb:
4367 b->shader->info.has_transform_feedback_varyings = true;
4368 break;
4369
4370 case SpvExecutionModeVecTypeHint:
4371 break; /* OpenCL */
4372
4373 case SpvExecutionModeContractionOff:
4374 if (b->shader->info.stage != MESA_SHADER_KERNEL)
4375 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
4376 spirv_executionmode_to_string(mode->exec_mode));
4377 else
4378 b->exact = true;
4379 break;
4380
4381 case SpvExecutionModeStencilRefReplacingEXT:
4382 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4383 break;
4384
4385 case SpvExecutionModeDerivativeGroupQuadsNV:
4386 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4387 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
4388 break;
4389
4390 case SpvExecutionModeDerivativeGroupLinearNV:
4391 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4392 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
4393 break;
4394
4395 case SpvExecutionModePixelInterlockOrderedEXT:
4396 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4397 b->shader->info.fs.pixel_interlock_ordered = true;
4398 break;
4399
4400 case SpvExecutionModePixelInterlockUnorderedEXT:
4401 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4402 b->shader->info.fs.pixel_interlock_unordered = true;
4403 break;
4404
4405 case SpvExecutionModeSampleInterlockOrderedEXT:
4406 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4407 b->shader->info.fs.sample_interlock_ordered = true;
4408 break;
4409
4410 case SpvExecutionModeSampleInterlockUnorderedEXT:
4411 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4412 b->shader->info.fs.sample_interlock_unordered = true;
4413 break;
4414
4415 case SpvExecutionModeDenormPreserve:
4416 case SpvExecutionModeDenormFlushToZero:
4417 case SpvExecutionModeSignedZeroInfNanPreserve:
4418 case SpvExecutionModeRoundingModeRTE:
4419 case SpvExecutionModeRoundingModeRTZ:
4420 /* Already handled in vtn_handle_rounding_mode_in_execution_mode() */
4421 break;
4422
4423 default:
4424 vtn_fail("Unhandled execution mode: %s (%u)",
4425 spirv_executionmode_to_string(mode->exec_mode),
4426 mode->exec_mode);
4427 }
4428 }
4429
4430 static void
4431 vtn_handle_rounding_mode_in_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
4432 const struct vtn_decoration *mode, void *data)
4433 {
4434 vtn_assert(b->entry_point == entry_point);
4435
4436 unsigned execution_mode = 0;
4437
4438 switch(mode->exec_mode) {
4439 case SpvExecutionModeDenormPreserve:
4440 switch (mode->operands[0]) {
4441 case 16: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP16; break;
4442 case 32: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP32; break;
4443 case 64: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP64; break;
4444 default: vtn_fail("Floating point type not supported");
4445 }
4446 break;
4447 case SpvExecutionModeDenormFlushToZero:
4448 switch (mode->operands[0]) {
4449 case 16: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16; break;
4450 case 32: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32; break;
4451 case 64: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64; break;
4452 default: vtn_fail("Floating point type not supported");
4453 }
4454 break;
4455 case SpvExecutionModeSignedZeroInfNanPreserve:
4456 switch (mode->operands[0]) {
4457 case 16: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16; break;
4458 case 32: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32; break;
4459 case 64: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64; break;
4460 default: vtn_fail("Floating point type not supported");
4461 }
4462 break;
4463 case SpvExecutionModeRoundingModeRTE:
4464 switch (mode->operands[0]) {
4465 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16; break;
4466 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32; break;
4467 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64; break;
4468 default: vtn_fail("Floating point type not supported");
4469 }
4470 break;
4471 case SpvExecutionModeRoundingModeRTZ:
4472 switch (mode->operands[0]) {
4473 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16; break;
4474 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32; break;
4475 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64; break;
4476 default: vtn_fail("Floating point type not supported");
4477 }
4478 break;
4479
4480 default:
4481 break;
4482 }
4483
4484 b->shader->info.float_controls_execution_mode |= execution_mode;
4485 }
4486
4487 static bool
4488 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
4489 const uint32_t *w, unsigned count)
4490 {
4491 vtn_set_instruction_result_type(b, opcode, w, count);
4492
4493 switch (opcode) {
4494 case SpvOpSource:
4495 case SpvOpSourceContinued:
4496 case SpvOpSourceExtension:
4497 case SpvOpExtension:
4498 case SpvOpCapability:
4499 case SpvOpExtInstImport:
4500 case SpvOpMemoryModel:
4501 case SpvOpEntryPoint:
4502 case SpvOpExecutionMode:
4503 case SpvOpString:
4504 case SpvOpName:
4505 case SpvOpMemberName:
4506 case SpvOpDecorationGroup:
4507 case SpvOpDecorate:
4508 case SpvOpDecorateId:
4509 case SpvOpMemberDecorate:
4510 case SpvOpGroupDecorate:
4511 case SpvOpGroupMemberDecorate:
4512 case SpvOpDecorateString:
4513 case SpvOpMemberDecorateString:
4514 vtn_fail("Invalid opcode types and variables section");
4515 break;
4516
4517 case SpvOpTypeVoid:
4518 case SpvOpTypeBool:
4519 case SpvOpTypeInt:
4520 case SpvOpTypeFloat:
4521 case SpvOpTypeVector:
4522 case SpvOpTypeMatrix:
4523 case SpvOpTypeImage:
4524 case SpvOpTypeSampler:
4525 case SpvOpTypeSampledImage:
4526 case SpvOpTypeArray:
4527 case SpvOpTypeRuntimeArray:
4528 case SpvOpTypeStruct:
4529 case SpvOpTypeOpaque:
4530 case SpvOpTypePointer:
4531 case SpvOpTypeForwardPointer:
4532 case SpvOpTypeFunction:
4533 case SpvOpTypeEvent:
4534 case SpvOpTypeDeviceEvent:
4535 case SpvOpTypeReserveId:
4536 case SpvOpTypeQueue:
4537 case SpvOpTypePipe:
4538 vtn_handle_type(b, opcode, w, count);
4539 break;
4540
4541 case SpvOpConstantTrue:
4542 case SpvOpConstantFalse:
4543 case SpvOpConstant:
4544 case SpvOpConstantComposite:
4545 case SpvOpConstantSampler:
4546 case SpvOpConstantNull:
4547 case SpvOpSpecConstantTrue:
4548 case SpvOpSpecConstantFalse:
4549 case SpvOpSpecConstant:
4550 case SpvOpSpecConstantComposite:
4551 case SpvOpSpecConstantOp:
4552 vtn_handle_constant(b, opcode, w, count);
4553 break;
4554
4555 case SpvOpUndef:
4556 case SpvOpVariable:
4557 vtn_handle_variables(b, opcode, w, count);
4558 break;
4559
4560 case SpvOpExtInst: {
4561 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
4562 /* NonSemantic extended instructions are acceptable in preamble, others
4563 * will indicate the end of preamble.
4564 */
4565 return val->ext_handler == vtn_handle_non_semantic_instruction;
4566 }
4567
4568 default:
4569 return false; /* End of preamble */
4570 }
4571
4572 return true;
4573 }
4574
4575 static struct vtn_ssa_value *
4576 vtn_nir_select(struct vtn_builder *b, struct vtn_ssa_value *src0,
4577 struct vtn_ssa_value *src1, struct vtn_ssa_value *src2)
4578 {
4579 struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
4580 dest->type = src1->type;
4581
4582 if (glsl_type_is_vector_or_scalar(src1->type)) {
4583 dest->def = nir_bcsel(&b->nb, src0->def, src1->def, src2->def);
4584 } else {
4585 unsigned elems = glsl_get_length(src1->type);
4586
4587 dest->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
4588 for (unsigned i = 0; i < elems; i++) {
4589 dest->elems[i] = vtn_nir_select(b, src0,
4590 src1->elems[i], src2->elems[i]);
4591 }
4592 }
4593
4594 return dest;
4595 }
4596
4597 static void
4598 vtn_handle_select(struct vtn_builder *b, SpvOp opcode,
4599 const uint32_t *w, unsigned count)
4600 {
4601 /* Handle OpSelect up-front here because it needs to be able to handle
4602 * pointers and not just regular vectors and scalars.
4603 */
4604 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4605 struct vtn_value *cond_val = vtn_untyped_value(b, w[3]);
4606 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4607 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4608
4609 vtn_fail_if(obj1_val->type != res_val->type ||
4610 obj2_val->type != res_val->type,
4611 "Object types must match the result type in OpSelect");
4612
4613 vtn_fail_if((cond_val->type->base_type != vtn_base_type_scalar &&
4614 cond_val->type->base_type != vtn_base_type_vector) ||
4615 !glsl_type_is_boolean(cond_val->type->type),
4616 "OpSelect must have either a vector of booleans or "
4617 "a boolean as Condition type");
4618
4619 vtn_fail_if(cond_val->type->base_type == vtn_base_type_vector &&
4620 (res_val->type->base_type != vtn_base_type_vector ||
4621 res_val->type->length != cond_val->type->length),
4622 "When Condition type in OpSelect is a vector, the Result "
4623 "type must be a vector of the same length");
4624
4625 switch (res_val->type->base_type) {
4626 case vtn_base_type_scalar:
4627 case vtn_base_type_vector:
4628 case vtn_base_type_matrix:
4629 case vtn_base_type_array:
4630 case vtn_base_type_struct:
4631 /* OK. */
4632 break;
4633 case vtn_base_type_pointer:
4634 /* We need to have actual storage for pointer types. */
4635 vtn_fail_if(res_val->type->type == NULL,
4636 "Invalid pointer result type for OpSelect");
4637 break;
4638 default:
4639 vtn_fail("Result type of OpSelect must be a scalar, composite, or pointer");
4640 }
4641
4642 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4643 struct vtn_ssa_value *ssa = vtn_nir_select(b,
4644 vtn_ssa_value(b, w[3]), vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[5]));
4645
4646 vtn_push_ssa(b, w[2], res_type, ssa);
4647 }
4648
4649 static void
4650 vtn_handle_ptr(struct vtn_builder *b, SpvOp opcode,
4651 const uint32_t *w, unsigned count)
4652 {
4653 struct vtn_type *type1 = vtn_untyped_value(b, w[3])->type;
4654 struct vtn_type *type2 = vtn_untyped_value(b, w[4])->type;
4655 vtn_fail_if(type1->base_type != vtn_base_type_pointer ||
4656 type2->base_type != vtn_base_type_pointer,
4657 "%s operands must have pointer types",
4658 spirv_op_to_string(opcode));
4659 vtn_fail_if(type1->storage_class != type2->storage_class,
4660 "%s operands must have the same storage class",
4661 spirv_op_to_string(opcode));
4662
4663 struct vtn_type *vtn_type =
4664 vtn_value(b, w[1], vtn_value_type_type)->type;
4665 const struct glsl_type *type = vtn_type->type;
4666
4667 nir_address_format addr_format = vtn_mode_to_address_format(
4668 b, vtn_storage_class_to_mode(b, type1->storage_class, NULL, NULL));
4669
4670 nir_ssa_def *def;
4671
4672 switch (opcode) {
4673 case SpvOpPtrDiff: {
4674 /* OpPtrDiff returns the difference in number of elements (not byte offset). */
4675 unsigned elem_size, elem_align;
4676 glsl_get_natural_size_align_bytes(type1->deref->type,
4677 &elem_size, &elem_align);
4678
4679 def = nir_build_addr_isub(&b->nb,
4680 vtn_ssa_value(b, w[3])->def,
4681 vtn_ssa_value(b, w[4])->def,
4682 addr_format);
4683 def = nir_idiv(&b->nb, def, nir_imm_intN_t(&b->nb, elem_size, def->bit_size));
4684 def = nir_i2i(&b->nb, def, glsl_get_bit_size(type));
4685 break;
4686 }
4687
4688 case SpvOpPtrEqual:
4689 case SpvOpPtrNotEqual: {
4690 def = nir_build_addr_ieq(&b->nb,
4691 vtn_ssa_value(b, w[3])->def,
4692 vtn_ssa_value(b, w[4])->def,
4693 addr_format);
4694 if (opcode == SpvOpPtrNotEqual)
4695 def = nir_inot(&b->nb, def);
4696 break;
4697 }
4698
4699 default:
4700 unreachable("Invalid ptr operation");
4701 }
4702
4703 struct vtn_ssa_value *ssa_value = vtn_create_ssa_value(b, type);
4704 ssa_value->def = def;
4705 vtn_push_ssa(b, w[2], vtn_type, ssa_value);
4706 }
4707
4708 static bool
4709 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4710 const uint32_t *w, unsigned count)
4711 {
4712 switch (opcode) {
4713 case SpvOpLabel:
4714 break;
4715
4716 case SpvOpLoopMerge:
4717 case SpvOpSelectionMerge:
4718 /* This is handled by cfg pre-pass and walk_blocks */
4719 break;
4720
4721 case SpvOpUndef: {
4722 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4723 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4724 break;
4725 }
4726
4727 case SpvOpExtInst:
4728 vtn_handle_extension(b, opcode, w, count);
4729 break;
4730
4731 case SpvOpVariable:
4732 case SpvOpLoad:
4733 case SpvOpStore:
4734 case SpvOpCopyMemory:
4735 case SpvOpCopyMemorySized:
4736 case SpvOpAccessChain:
4737 case SpvOpPtrAccessChain:
4738 case SpvOpInBoundsAccessChain:
4739 case SpvOpInBoundsPtrAccessChain:
4740 case SpvOpArrayLength:
4741 case SpvOpConvertPtrToU:
4742 case SpvOpConvertUToPtr:
4743 vtn_handle_variables(b, opcode, w, count);
4744 break;
4745
4746 case SpvOpFunctionCall:
4747 vtn_handle_function_call(b, opcode, w, count);
4748 break;
4749
4750 case SpvOpSampledImage:
4751 case SpvOpImage:
4752 case SpvOpImageSampleImplicitLod:
4753 case SpvOpImageSampleExplicitLod:
4754 case SpvOpImageSampleDrefImplicitLod:
4755 case SpvOpImageSampleDrefExplicitLod:
4756 case SpvOpImageSampleProjImplicitLod:
4757 case SpvOpImageSampleProjExplicitLod:
4758 case SpvOpImageSampleProjDrefImplicitLod:
4759 case SpvOpImageSampleProjDrefExplicitLod:
4760 case SpvOpImageFetch:
4761 case SpvOpImageGather:
4762 case SpvOpImageDrefGather:
4763 case SpvOpImageQuerySizeLod:
4764 case SpvOpImageQueryLod:
4765 case SpvOpImageQueryLevels:
4766 case SpvOpImageQuerySamples:
4767 vtn_handle_texture(b, opcode, w, count);
4768 break;
4769
4770 case SpvOpImageRead:
4771 case SpvOpImageWrite:
4772 case SpvOpImageTexelPointer:
4773 vtn_handle_image(b, opcode, w, count);
4774 break;
4775
4776 case SpvOpImageQuerySize: {
4777 struct vtn_pointer *image =
4778 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4779 if (glsl_type_is_image(image->type->type)) {
4780 vtn_handle_image(b, opcode, w, count);
4781 } else {
4782 vtn_assert(glsl_type_is_sampler(image->type->type));
4783 vtn_handle_texture(b, opcode, w, count);
4784 }
4785 break;
4786 }
4787
4788 case SpvOpAtomicLoad:
4789 case SpvOpAtomicExchange:
4790 case SpvOpAtomicCompareExchange:
4791 case SpvOpAtomicCompareExchangeWeak:
4792 case SpvOpAtomicIIncrement:
4793 case SpvOpAtomicIDecrement:
4794 case SpvOpAtomicIAdd:
4795 case SpvOpAtomicISub:
4796 case SpvOpAtomicSMin:
4797 case SpvOpAtomicUMin:
4798 case SpvOpAtomicSMax:
4799 case SpvOpAtomicUMax:
4800 case SpvOpAtomicAnd:
4801 case SpvOpAtomicOr:
4802 case SpvOpAtomicXor: {
4803 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4804 if (pointer->value_type == vtn_value_type_image_pointer) {
4805 vtn_handle_image(b, opcode, w, count);
4806 } else {
4807 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4808 vtn_handle_atomics(b, opcode, w, count);
4809 }
4810 break;
4811 }
4812
4813 case SpvOpAtomicStore: {
4814 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4815 if (pointer->value_type == vtn_value_type_image_pointer) {
4816 vtn_handle_image(b, opcode, w, count);
4817 } else {
4818 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4819 vtn_handle_atomics(b, opcode, w, count);
4820 }
4821 break;
4822 }
4823
4824 case SpvOpSelect:
4825 vtn_handle_select(b, opcode, w, count);
4826 break;
4827
4828 case SpvOpSNegate:
4829 case SpvOpFNegate:
4830 case SpvOpNot:
4831 case SpvOpAny:
4832 case SpvOpAll:
4833 case SpvOpConvertFToU:
4834 case SpvOpConvertFToS:
4835 case SpvOpConvertSToF:
4836 case SpvOpConvertUToF:
4837 case SpvOpUConvert:
4838 case SpvOpSConvert:
4839 case SpvOpFConvert:
4840 case SpvOpQuantizeToF16:
4841 case SpvOpPtrCastToGeneric:
4842 case SpvOpGenericCastToPtr:
4843 case SpvOpIsNan:
4844 case SpvOpIsInf:
4845 case SpvOpIsFinite:
4846 case SpvOpIsNormal:
4847 case SpvOpSignBitSet:
4848 case SpvOpLessOrGreater:
4849 case SpvOpOrdered:
4850 case SpvOpUnordered:
4851 case SpvOpIAdd:
4852 case SpvOpFAdd:
4853 case SpvOpISub:
4854 case SpvOpFSub:
4855 case SpvOpIMul:
4856 case SpvOpFMul:
4857 case SpvOpUDiv:
4858 case SpvOpSDiv:
4859 case SpvOpFDiv:
4860 case SpvOpUMod:
4861 case SpvOpSRem:
4862 case SpvOpSMod:
4863 case SpvOpFRem:
4864 case SpvOpFMod:
4865 case SpvOpVectorTimesScalar:
4866 case SpvOpDot:
4867 case SpvOpIAddCarry:
4868 case SpvOpISubBorrow:
4869 case SpvOpUMulExtended:
4870 case SpvOpSMulExtended:
4871 case SpvOpShiftRightLogical:
4872 case SpvOpShiftRightArithmetic:
4873 case SpvOpShiftLeftLogical:
4874 case SpvOpLogicalEqual:
4875 case SpvOpLogicalNotEqual:
4876 case SpvOpLogicalOr:
4877 case SpvOpLogicalAnd:
4878 case SpvOpLogicalNot:
4879 case SpvOpBitwiseOr:
4880 case SpvOpBitwiseXor:
4881 case SpvOpBitwiseAnd:
4882 case SpvOpIEqual:
4883 case SpvOpFOrdEqual:
4884 case SpvOpFUnordEqual:
4885 case SpvOpINotEqual:
4886 case SpvOpFOrdNotEqual:
4887 case SpvOpFUnordNotEqual:
4888 case SpvOpULessThan:
4889 case SpvOpSLessThan:
4890 case SpvOpFOrdLessThan:
4891 case SpvOpFUnordLessThan:
4892 case SpvOpUGreaterThan:
4893 case SpvOpSGreaterThan:
4894 case SpvOpFOrdGreaterThan:
4895 case SpvOpFUnordGreaterThan:
4896 case SpvOpULessThanEqual:
4897 case SpvOpSLessThanEqual:
4898 case SpvOpFOrdLessThanEqual:
4899 case SpvOpFUnordLessThanEqual:
4900 case SpvOpUGreaterThanEqual:
4901 case SpvOpSGreaterThanEqual:
4902 case SpvOpFOrdGreaterThanEqual:
4903 case SpvOpFUnordGreaterThanEqual:
4904 case SpvOpDPdx:
4905 case SpvOpDPdy:
4906 case SpvOpFwidth:
4907 case SpvOpDPdxFine:
4908 case SpvOpDPdyFine:
4909 case SpvOpFwidthFine:
4910 case SpvOpDPdxCoarse:
4911 case SpvOpDPdyCoarse:
4912 case SpvOpFwidthCoarse:
4913 case SpvOpBitFieldInsert:
4914 case SpvOpBitFieldSExtract:
4915 case SpvOpBitFieldUExtract:
4916 case SpvOpBitReverse:
4917 case SpvOpBitCount:
4918 case SpvOpTranspose:
4919 case SpvOpOuterProduct:
4920 case SpvOpMatrixTimesScalar:
4921 case SpvOpVectorTimesMatrix:
4922 case SpvOpMatrixTimesVector:
4923 case SpvOpMatrixTimesMatrix:
4924 vtn_handle_alu(b, opcode, w, count);
4925 break;
4926
4927 case SpvOpBitcast:
4928 vtn_handle_bitcast(b, w, count);
4929 break;
4930
4931 case SpvOpVectorExtractDynamic:
4932 case SpvOpVectorInsertDynamic:
4933 case SpvOpVectorShuffle:
4934 case SpvOpCompositeConstruct:
4935 case SpvOpCompositeExtract:
4936 case SpvOpCompositeInsert:
4937 case SpvOpCopyLogical:
4938 case SpvOpCopyObject:
4939 vtn_handle_composite(b, opcode, w, count);
4940 break;
4941
4942 case SpvOpEmitVertex:
4943 case SpvOpEndPrimitive:
4944 case SpvOpEmitStreamVertex:
4945 case SpvOpEndStreamPrimitive:
4946 case SpvOpControlBarrier:
4947 case SpvOpMemoryBarrier:
4948 vtn_handle_barrier(b, opcode, w, count);
4949 break;
4950
4951 case SpvOpGroupNonUniformElect:
4952 case SpvOpGroupNonUniformAll:
4953 case SpvOpGroupNonUniformAny:
4954 case SpvOpGroupNonUniformAllEqual:
4955 case SpvOpGroupNonUniformBroadcast:
4956 case SpvOpGroupNonUniformBroadcastFirst:
4957 case SpvOpGroupNonUniformBallot:
4958 case SpvOpGroupNonUniformInverseBallot:
4959 case SpvOpGroupNonUniformBallotBitExtract:
4960 case SpvOpGroupNonUniformBallotBitCount:
4961 case SpvOpGroupNonUniformBallotFindLSB:
4962 case SpvOpGroupNonUniformBallotFindMSB:
4963 case SpvOpGroupNonUniformShuffle:
4964 case SpvOpGroupNonUniformShuffleXor:
4965 case SpvOpGroupNonUniformShuffleUp:
4966 case SpvOpGroupNonUniformShuffleDown:
4967 case SpvOpGroupNonUniformIAdd:
4968 case SpvOpGroupNonUniformFAdd:
4969 case SpvOpGroupNonUniformIMul:
4970 case SpvOpGroupNonUniformFMul:
4971 case SpvOpGroupNonUniformSMin:
4972 case SpvOpGroupNonUniformUMin:
4973 case SpvOpGroupNonUniformFMin:
4974 case SpvOpGroupNonUniformSMax:
4975 case SpvOpGroupNonUniformUMax:
4976 case SpvOpGroupNonUniformFMax:
4977 case SpvOpGroupNonUniformBitwiseAnd:
4978 case SpvOpGroupNonUniformBitwiseOr:
4979 case SpvOpGroupNonUniformBitwiseXor:
4980 case SpvOpGroupNonUniformLogicalAnd:
4981 case SpvOpGroupNonUniformLogicalOr:
4982 case SpvOpGroupNonUniformLogicalXor:
4983 case SpvOpGroupNonUniformQuadBroadcast:
4984 case SpvOpGroupNonUniformQuadSwap:
4985 case SpvOpGroupAll:
4986 case SpvOpGroupAny:
4987 case SpvOpGroupBroadcast:
4988 case SpvOpGroupIAdd:
4989 case SpvOpGroupFAdd:
4990 case SpvOpGroupFMin:
4991 case SpvOpGroupUMin:
4992 case SpvOpGroupSMin:
4993 case SpvOpGroupFMax:
4994 case SpvOpGroupUMax:
4995 case SpvOpGroupSMax:
4996 case SpvOpSubgroupBallotKHR:
4997 case SpvOpSubgroupFirstInvocationKHR:
4998 case SpvOpSubgroupReadInvocationKHR:
4999 case SpvOpSubgroupAllKHR:
5000 case SpvOpSubgroupAnyKHR:
5001 case SpvOpSubgroupAllEqualKHR:
5002 case SpvOpGroupIAddNonUniformAMD:
5003 case SpvOpGroupFAddNonUniformAMD:
5004 case SpvOpGroupFMinNonUniformAMD:
5005 case SpvOpGroupUMinNonUniformAMD:
5006 case SpvOpGroupSMinNonUniformAMD:
5007 case SpvOpGroupFMaxNonUniformAMD:
5008 case SpvOpGroupUMaxNonUniformAMD:
5009 case SpvOpGroupSMaxNonUniformAMD:
5010 vtn_handle_subgroup(b, opcode, w, count);
5011 break;
5012
5013 case SpvOpPtrDiff:
5014 case SpvOpPtrEqual:
5015 case SpvOpPtrNotEqual:
5016 vtn_handle_ptr(b, opcode, w, count);
5017 break;
5018
5019 case SpvOpBeginInvocationInterlockEXT:
5020 vtn_emit_barrier(b, nir_intrinsic_begin_invocation_interlock);
5021 break;
5022
5023 case SpvOpEndInvocationInterlockEXT:
5024 vtn_emit_barrier(b, nir_intrinsic_end_invocation_interlock);
5025 break;
5026
5027 case SpvOpDemoteToHelperInvocationEXT: {
5028 nir_intrinsic_instr *intrin =
5029 nir_intrinsic_instr_create(b->shader, nir_intrinsic_demote);
5030 nir_builder_instr_insert(&b->nb, &intrin->instr);
5031 break;
5032 }
5033
5034 case SpvOpIsHelperInvocationEXT: {
5035 nir_intrinsic_instr *intrin =
5036 nir_intrinsic_instr_create(b->shader, nir_intrinsic_is_helper_invocation);
5037 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 1, 1, NULL);
5038 nir_builder_instr_insert(&b->nb, &intrin->instr);
5039
5040 struct vtn_type *res_type =
5041 vtn_value(b, w[1], vtn_value_type_type)->type;
5042 struct vtn_ssa_value *val = vtn_create_ssa_value(b, res_type->type);
5043 val->def = &intrin->dest.ssa;
5044
5045 vtn_push_ssa(b, w[2], res_type, val);
5046 break;
5047 }
5048
5049 case SpvOpReadClockKHR: {
5050 assert(vtn_constant_uint(b, w[3]) == SpvScopeSubgroup);
5051
5052 /* Operation supports two result types: uvec2 and uint64_t. The NIR
5053 * intrinsic gives uvec2, so pack the result for the other case.
5054 */
5055 nir_intrinsic_instr *intrin =
5056 nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_shader_clock);
5057 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 2, 32, NULL);
5058 nir_builder_instr_insert(&b->nb, &intrin->instr);
5059
5060 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
5061 const struct glsl_type *dest_type = type->type;
5062 nir_ssa_def *result;
5063
5064 if (glsl_type_is_vector(dest_type)) {
5065 assert(dest_type == glsl_vector_type(GLSL_TYPE_UINT, 2));
5066 result = &intrin->dest.ssa;
5067 } else {
5068 assert(glsl_type_is_scalar(dest_type));
5069 assert(glsl_get_base_type(dest_type) == GLSL_TYPE_UINT64);
5070 result = nir_pack_64_2x32(&b->nb, &intrin->dest.ssa);
5071 }
5072
5073 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
5074 val->type = type;
5075 val->ssa = vtn_create_ssa_value(b, dest_type);
5076 val->ssa->def = result;
5077 break;
5078 }
5079
5080 case SpvOpLifetimeStart:
5081 case SpvOpLifetimeStop:
5082 break;
5083
5084 default:
5085 vtn_fail_with_opcode("Unhandled opcode", opcode);
5086 }
5087
5088 return true;
5089 }
5090
5091 struct vtn_builder*
5092 vtn_create_builder(const uint32_t *words, size_t word_count,
5093 gl_shader_stage stage, const char *entry_point_name,
5094 const struct spirv_to_nir_options *options)
5095 {
5096 /* Initialize the vtn_builder object */
5097 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
5098 struct spirv_to_nir_options *dup_options =
5099 ralloc(b, struct spirv_to_nir_options);
5100 *dup_options = *options;
5101
5102 b->spirv = words;
5103 b->spirv_word_count = word_count;
5104 b->file = NULL;
5105 b->line = -1;
5106 b->col = -1;
5107 exec_list_make_empty(&b->functions);
5108 b->entry_point_stage = stage;
5109 b->entry_point_name = entry_point_name;
5110 b->options = dup_options;
5111
5112 /*
5113 * Handle the SPIR-V header (first 5 dwords).
5114 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
5115 */
5116 if (word_count <= 5)
5117 goto fail;
5118
5119 if (words[0] != SpvMagicNumber) {
5120 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
5121 goto fail;
5122 }
5123 if (words[1] < 0x10000) {
5124 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
5125 goto fail;
5126 }
5127
5128 uint16_t generator_id = words[2] >> 16;
5129 uint16_t generator_version = words[2];
5130
5131 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
5132 * but this should at least let us shut the workaround off for modern
5133 * versions of GLSLang.
5134 */
5135 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
5136
5137 /* In GLSLang commit 8297936dd6eb3, their handling of barrier() was fixed
5138 * to provide correct memory semantics on compute shader barrier()
5139 * commands. Prior to that, we need to fix them up ourselves. This
5140 * GLSLang fix caused them to bump to generator version 3.
5141 */
5142 b->wa_glslang_cs_barrier = (generator_id == 8 && generator_version < 3);
5143
5144 /* words[2] == generator magic */
5145 unsigned value_id_bound = words[3];
5146 if (words[4] != 0) {
5147 vtn_err("words[4] was %u, want 0", words[4]);
5148 goto fail;
5149 }
5150
5151 b->value_id_bound = value_id_bound;
5152 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
5153
5154 return b;
5155 fail:
5156 ralloc_free(b);
5157 return NULL;
5158 }
5159
5160 static nir_function *
5161 vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
5162 nir_function *entry_point)
5163 {
5164 vtn_assert(entry_point == b->entry_point->func->impl->function);
5165 vtn_fail_if(!entry_point->name, "entry points are required to have a name");
5166 const char *func_name =
5167 ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
5168
5169 /* we shouldn't have any inputs yet */
5170 vtn_assert(!entry_point->shader->num_inputs);
5171 vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
5172
5173 nir_function *main_entry_point = nir_function_create(b->shader, func_name);
5174 main_entry_point->impl = nir_function_impl_create(main_entry_point);
5175 nir_builder_init(&b->nb, main_entry_point->impl);
5176 b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
5177 b->func_param_idx = 0;
5178
5179 nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
5180
5181 for (unsigned i = 0; i < entry_point->num_params; ++i) {
5182 struct vtn_type *param_type = b->entry_point->func->type->params[i];
5183
5184 /* consider all pointers to function memory to be parameters passed
5185 * by value
5186 */
5187 bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
5188 param_type->storage_class == SpvStorageClassFunction;
5189
5190 /* input variable */
5191 nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
5192 in_var->data.mode = nir_var_shader_in;
5193 in_var->data.read_only = true;
5194 in_var->data.location = i;
5195
5196 if (is_by_val)
5197 in_var->type = param_type->deref->type;
5198 else
5199 in_var->type = param_type->type;
5200
5201 nir_shader_add_variable(b->nb.shader, in_var);
5202 b->nb.shader->num_inputs++;
5203
5204 /* we have to copy the entire variable into function memory */
5205 if (is_by_val) {
5206 nir_variable *copy_var =
5207 nir_local_variable_create(main_entry_point->impl, in_var->type,
5208 "copy_in");
5209 nir_copy_var(&b->nb, copy_var, in_var);
5210 call->params[i] =
5211 nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
5212 } else {
5213 call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
5214 }
5215 }
5216
5217 nir_builder_instr_insert(&b->nb, &call->instr);
5218
5219 return main_entry_point;
5220 }
5221
5222 nir_shader *
5223 spirv_to_nir(const uint32_t *words, size_t word_count,
5224 struct nir_spirv_specialization *spec, unsigned num_spec,
5225 gl_shader_stage stage, const char *entry_point_name,
5226 const struct spirv_to_nir_options *options,
5227 const nir_shader_compiler_options *nir_options)
5228
5229 {
5230 const uint32_t *word_end = words + word_count;
5231
5232 struct vtn_builder *b = vtn_create_builder(words, word_count,
5233 stage, entry_point_name,
5234 options);
5235
5236 if (b == NULL)
5237 return NULL;
5238
5239 /* See also _vtn_fail() */
5240 if (setjmp(b->fail_jump)) {
5241 ralloc_free(b);
5242 return NULL;
5243 }
5244
5245 /* Skip the SPIR-V header, handled at vtn_create_builder */
5246 words+= 5;
5247
5248 b->shader = nir_shader_create(b, stage, nir_options, NULL);
5249
5250 /* Handle all the preamble instructions */
5251 words = vtn_foreach_instruction(b, words, word_end,
5252 vtn_handle_preamble_instruction);
5253
5254 if (b->entry_point == NULL) {
5255 vtn_fail("Entry point not found");
5256 ralloc_free(b);
5257 return NULL;
5258 }
5259
5260 /* Set shader info defaults */
5261 if (stage == MESA_SHADER_GEOMETRY)
5262 b->shader->info.gs.invocations = 1;
5263
5264 /* Parse rounding mode execution modes. This has to happen earlier than
5265 * other changes in the execution modes since they can affect, for example,
5266 * the result of the floating point constants.
5267 */
5268 vtn_foreach_execution_mode(b, b->entry_point,
5269 vtn_handle_rounding_mode_in_execution_mode, NULL);
5270
5271 b->specializations = spec;
5272 b->num_specializations = num_spec;
5273
5274 /* Handle all variable, type, and constant instructions */
5275 words = vtn_foreach_instruction(b, words, word_end,
5276 vtn_handle_variable_or_type_instruction);
5277
5278 /* Parse execution modes */
5279 vtn_foreach_execution_mode(b, b->entry_point,
5280 vtn_handle_execution_mode, NULL);
5281
5282 if (b->workgroup_size_builtin) {
5283 vtn_assert(b->workgroup_size_builtin->type->type ==
5284 glsl_vector_type(GLSL_TYPE_UINT, 3));
5285
5286 nir_const_value *const_size =
5287 b->workgroup_size_builtin->constant->values;
5288
5289 b->shader->info.cs.local_size[0] = const_size[0].u32;
5290 b->shader->info.cs.local_size[1] = const_size[1].u32;
5291 b->shader->info.cs.local_size[2] = const_size[2].u32;
5292 }
5293
5294 /* Set types on all vtn_values */
5295 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
5296
5297 vtn_build_cfg(b, words, word_end);
5298
5299 assert(b->entry_point->value_type == vtn_value_type_function);
5300 b->entry_point->func->referenced = true;
5301
5302 bool progress;
5303 do {
5304 progress = false;
5305 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
5306 if (func->referenced && !func->emitted) {
5307 b->const_table = _mesa_pointer_hash_table_create(b);
5308
5309 vtn_function_emit(b, func, vtn_handle_body_instruction);
5310 progress = true;
5311 }
5312 }
5313 } while (progress);
5314
5315 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
5316 nir_function *entry_point = b->entry_point->func->impl->function;
5317 vtn_assert(entry_point);
5318
5319 /* post process entry_points with input params */
5320 if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
5321 entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
5322
5323 entry_point->is_entrypoint = true;
5324
5325 /* When multiple shader stages exist in the same SPIR-V module, we
5326 * generate input and output variables for every stage, in the same
5327 * NIR program. These dead variables can be invalid NIR. For example,
5328 * TCS outputs must be per-vertex arrays (or decorated 'patch'), while
5329 * VS output variables wouldn't be.
5330 *
5331 * To ensure we have valid NIR, we eliminate any dead inputs and outputs
5332 * right away. In order to do so, we must lower any constant initializers
5333 * on outputs so nir_remove_dead_variables sees that they're written to.
5334 */
5335 nir_lower_constant_initializers(b->shader, nir_var_shader_out);
5336 nir_remove_dead_variables(b->shader,
5337 nir_var_shader_in | nir_var_shader_out);
5338
5339 /* We sometimes generate bogus derefs that, while never used, give the
5340 * validator a bit of heartburn. Run dead code to get rid of them.
5341 */
5342 nir_opt_dce(b->shader);
5343
5344 /* Unparent the shader from the vtn_builder before we delete the builder */
5345 ralloc_steal(NULL, b->shader);
5346
5347 nir_shader *shader = b->shader;
5348 ralloc_free(b);
5349
5350 return shader;
5351 }