spirv: Implement SPV_KHR_shader_clock
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include "util/u_math.h"
36
37 #include <stdio.h>
38
39 void
40 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
41 size_t spirv_offset, const char *message)
42 {
43 if (b->options->debug.func) {
44 b->options->debug.func(b->options->debug.private_data,
45 level, spirv_offset, message);
46 }
47
48 #ifndef NDEBUG
49 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
50 fprintf(stderr, "%s\n", message);
51 #endif
52 }
53
54 void
55 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
56 size_t spirv_offset, const char *fmt, ...)
57 {
58 va_list args;
59 char *msg;
60
61 va_start(args, fmt);
62 msg = ralloc_vasprintf(NULL, fmt, args);
63 va_end(args);
64
65 vtn_log(b, level, spirv_offset, msg);
66
67 ralloc_free(msg);
68 }
69
70 static void
71 vtn_log_err(struct vtn_builder *b,
72 enum nir_spirv_debug_level level, const char *prefix,
73 const char *file, unsigned line,
74 const char *fmt, va_list args)
75 {
76 char *msg;
77
78 msg = ralloc_strdup(NULL, prefix);
79
80 #ifndef NDEBUG
81 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
82 #endif
83
84 ralloc_asprintf_append(&msg, " ");
85
86 ralloc_vasprintf_append(&msg, fmt, args);
87
88 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
89 b->spirv_offset);
90
91 if (b->file) {
92 ralloc_asprintf_append(&msg,
93 "\n in SPIR-V source file %s, line %d, col %d",
94 b->file, b->line, b->col);
95 }
96
97 vtn_log(b, level, b->spirv_offset, msg);
98
99 ralloc_free(msg);
100 }
101
102 static void
103 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
104 {
105 static int idx = 0;
106
107 char filename[1024];
108 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
109 path, prefix, idx++);
110 if (len < 0 || len >= sizeof(filename))
111 return;
112
113 FILE *f = fopen(filename, "w");
114 if (f == NULL)
115 return;
116
117 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
118 fclose(f);
119
120 vtn_info("SPIR-V shader dumped to %s", filename);
121 }
122
123 void
124 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
125 const char *fmt, ...)
126 {
127 va_list args;
128
129 va_start(args, fmt);
130 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
131 file, line, fmt, args);
132 va_end(args);
133 }
134
135 void
136 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
137 const char *fmt, ...)
138 {
139 va_list args;
140
141 va_start(args, fmt);
142 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
143 file, line, fmt, args);
144 va_end(args);
145 }
146
147 void
148 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
149 const char *fmt, ...)
150 {
151 va_list args;
152
153 va_start(args, fmt);
154 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
155 file, line, fmt, args);
156 va_end(args);
157
158 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
159 if (dump_path)
160 vtn_dump_shader(b, dump_path, "fail");
161
162 longjmp(b->fail_jump, 1);
163 }
164
165 struct spec_constant_value {
166 bool is_double;
167 union {
168 uint32_t data32;
169 uint64_t data64;
170 };
171 };
172
173 static struct vtn_ssa_value *
174 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
175 {
176 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
177 val->type = type;
178
179 if (glsl_type_is_vector_or_scalar(type)) {
180 unsigned num_components = glsl_get_vector_elements(val->type);
181 unsigned bit_size = glsl_get_bit_size(val->type);
182 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
183 } else {
184 unsigned elems = glsl_get_length(val->type);
185 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
186 if (glsl_type_is_matrix(type)) {
187 const struct glsl_type *elem_type =
188 glsl_vector_type(glsl_get_base_type(type),
189 glsl_get_vector_elements(type));
190
191 for (unsigned i = 0; i < elems; i++)
192 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
193 } else if (glsl_type_is_array(type)) {
194 const struct glsl_type *elem_type = glsl_get_array_element(type);
195 for (unsigned i = 0; i < elems; i++)
196 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
197 } else {
198 for (unsigned i = 0; i < elems; i++) {
199 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
200 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
201 }
202 }
203 }
204
205 return val;
206 }
207
208 static struct vtn_ssa_value *
209 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
210 const struct glsl_type *type)
211 {
212 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
213
214 if (entry)
215 return entry->data;
216
217 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
218 val->type = type;
219
220 switch (glsl_get_base_type(type)) {
221 case GLSL_TYPE_INT:
222 case GLSL_TYPE_UINT:
223 case GLSL_TYPE_INT16:
224 case GLSL_TYPE_UINT16:
225 case GLSL_TYPE_UINT8:
226 case GLSL_TYPE_INT8:
227 case GLSL_TYPE_INT64:
228 case GLSL_TYPE_UINT64:
229 case GLSL_TYPE_BOOL:
230 case GLSL_TYPE_FLOAT:
231 case GLSL_TYPE_FLOAT16:
232 case GLSL_TYPE_DOUBLE: {
233 int bit_size = glsl_get_bit_size(type);
234 if (glsl_type_is_vector_or_scalar(type)) {
235 unsigned num_components = glsl_get_vector_elements(val->type);
236 nir_load_const_instr *load =
237 nir_load_const_instr_create(b->shader, num_components, bit_size);
238
239 memcpy(load->value, constant->values,
240 sizeof(nir_const_value) * load->def.num_components);
241
242 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
243 val->def = &load->def;
244 } else {
245 assert(glsl_type_is_matrix(type));
246 unsigned columns = glsl_get_matrix_columns(val->type);
247 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
248 const struct glsl_type *column_type = glsl_get_column_type(val->type);
249 for (unsigned i = 0; i < columns; i++)
250 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
251 column_type);
252 }
253 break;
254 }
255
256 case GLSL_TYPE_ARRAY: {
257 unsigned elems = glsl_get_length(val->type);
258 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
259 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
260 for (unsigned i = 0; i < elems; i++)
261 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
262 elem_type);
263 break;
264 }
265
266 case GLSL_TYPE_STRUCT: {
267 unsigned elems = glsl_get_length(val->type);
268 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
269 for (unsigned i = 0; i < elems; i++) {
270 const struct glsl_type *elem_type =
271 glsl_get_struct_field(val->type, i);
272 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
273 elem_type);
274 }
275 break;
276 }
277
278 default:
279 vtn_fail("bad constant type");
280 }
281
282 return val;
283 }
284
285 struct vtn_ssa_value *
286 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
287 {
288 struct vtn_value *val = vtn_untyped_value(b, value_id);
289 switch (val->value_type) {
290 case vtn_value_type_undef:
291 return vtn_undef_ssa_value(b, val->type->type);
292
293 case vtn_value_type_constant:
294 return vtn_const_ssa_value(b, val->constant, val->type->type);
295
296 case vtn_value_type_ssa:
297 return val->ssa;
298
299 case vtn_value_type_pointer:
300 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
301 struct vtn_ssa_value *ssa =
302 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
303 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
304 return ssa;
305
306 default:
307 vtn_fail("Invalid type for an SSA value");
308 }
309 }
310
311 static char *
312 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
313 unsigned word_count, unsigned *words_used)
314 {
315 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
316 if (words_used) {
317 /* Ammount of space taken by the string (including the null) */
318 unsigned len = strlen(dup) + 1;
319 *words_used = DIV_ROUND_UP(len, sizeof(*words));
320 }
321 return dup;
322 }
323
324 const uint32_t *
325 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
326 const uint32_t *end, vtn_instruction_handler handler)
327 {
328 b->file = NULL;
329 b->line = -1;
330 b->col = -1;
331
332 const uint32_t *w = start;
333 while (w < end) {
334 SpvOp opcode = w[0] & SpvOpCodeMask;
335 unsigned count = w[0] >> SpvWordCountShift;
336 vtn_assert(count >= 1 && w + count <= end);
337
338 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
339
340 switch (opcode) {
341 case SpvOpNop:
342 break; /* Do nothing */
343
344 case SpvOpLine:
345 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
346 b->line = w[2];
347 b->col = w[3];
348 break;
349
350 case SpvOpNoLine:
351 b->file = NULL;
352 b->line = -1;
353 b->col = -1;
354 break;
355
356 default:
357 if (!handler(b, opcode, w, count))
358 return w;
359 break;
360 }
361
362 w += count;
363 }
364
365 b->spirv_offset = 0;
366 b->file = NULL;
367 b->line = -1;
368 b->col = -1;
369
370 assert(w == end);
371 return w;
372 }
373
374 static void
375 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
376 const uint32_t *w, unsigned count)
377 {
378 const char *ext = (const char *)&w[2];
379 switch (opcode) {
380 case SpvOpExtInstImport: {
381 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
382 if (strcmp(ext, "GLSL.std.450") == 0) {
383 val->ext_handler = vtn_handle_glsl450_instruction;
384 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
385 && (b->options && b->options->caps.amd_gcn_shader)) {
386 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
387 } else if ((strcmp(ext, "SPV_AMD_shader_ballot") == 0)
388 && (b->options && b->options->caps.amd_shader_ballot)) {
389 val->ext_handler = vtn_handle_amd_shader_ballot_instruction;
390 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
391 && (b->options && b->options->caps.amd_trinary_minmax)) {
392 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
393 } else if (strcmp(ext, "OpenCL.std") == 0) {
394 val->ext_handler = vtn_handle_opencl_instruction;
395 } else {
396 vtn_fail("Unsupported extension: %s", ext);
397 }
398 break;
399 }
400
401 case SpvOpExtInst: {
402 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
403 bool handled = val->ext_handler(b, w[4], w, count);
404 vtn_assert(handled);
405 break;
406 }
407
408 default:
409 vtn_fail_with_opcode("Unhandled opcode", opcode);
410 }
411 }
412
413 static void
414 _foreach_decoration_helper(struct vtn_builder *b,
415 struct vtn_value *base_value,
416 int parent_member,
417 struct vtn_value *value,
418 vtn_decoration_foreach_cb cb, void *data)
419 {
420 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
421 int member;
422 if (dec->scope == VTN_DEC_DECORATION) {
423 member = parent_member;
424 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
425 vtn_fail_if(value->value_type != vtn_value_type_type ||
426 value->type->base_type != vtn_base_type_struct,
427 "OpMemberDecorate and OpGroupMemberDecorate are only "
428 "allowed on OpTypeStruct");
429 /* This means we haven't recursed yet */
430 assert(value == base_value);
431
432 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
433
434 vtn_fail_if(member >= base_value->type->length,
435 "OpMemberDecorate specifies member %d but the "
436 "OpTypeStruct has only %u members",
437 member, base_value->type->length);
438 } else {
439 /* Not a decoration */
440 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
441 continue;
442 }
443
444 if (dec->group) {
445 assert(dec->group->value_type == vtn_value_type_decoration_group);
446 _foreach_decoration_helper(b, base_value, member, dec->group,
447 cb, data);
448 } else {
449 cb(b, base_value, member, dec, data);
450 }
451 }
452 }
453
454 /** Iterates (recursively if needed) over all of the decorations on a value
455 *
456 * This function iterates over all of the decorations applied to a given
457 * value. If it encounters a decoration group, it recurses into the group
458 * and iterates over all of those decorations as well.
459 */
460 void
461 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
462 vtn_decoration_foreach_cb cb, void *data)
463 {
464 _foreach_decoration_helper(b, value, -1, value, cb, data);
465 }
466
467 void
468 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
469 vtn_execution_mode_foreach_cb cb, void *data)
470 {
471 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
472 if (dec->scope != VTN_DEC_EXECUTION_MODE)
473 continue;
474
475 assert(dec->group == NULL);
476 cb(b, value, dec, data);
477 }
478 }
479
480 void
481 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
482 const uint32_t *w, unsigned count)
483 {
484 const uint32_t *w_end = w + count;
485 const uint32_t target = w[1];
486 w += 2;
487
488 switch (opcode) {
489 case SpvOpDecorationGroup:
490 vtn_push_value(b, target, vtn_value_type_decoration_group);
491 break;
492
493 case SpvOpDecorate:
494 case SpvOpDecorateId:
495 case SpvOpMemberDecorate:
496 case SpvOpDecorateString:
497 case SpvOpMemberDecorateString:
498 case SpvOpExecutionMode:
499 case SpvOpExecutionModeId: {
500 struct vtn_value *val = vtn_untyped_value(b, target);
501
502 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
503 switch (opcode) {
504 case SpvOpDecorate:
505 case SpvOpDecorateId:
506 case SpvOpDecorateString:
507 dec->scope = VTN_DEC_DECORATION;
508 break;
509 case SpvOpMemberDecorate:
510 case SpvOpMemberDecorateString:
511 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
512 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
513 "Member argument of OpMemberDecorate too large");
514 break;
515 case SpvOpExecutionMode:
516 case SpvOpExecutionModeId:
517 dec->scope = VTN_DEC_EXECUTION_MODE;
518 break;
519 default:
520 unreachable("Invalid decoration opcode");
521 }
522 dec->decoration = *(w++);
523 dec->operands = w;
524
525 /* Link into the list */
526 dec->next = val->decoration;
527 val->decoration = dec;
528 break;
529 }
530
531 case SpvOpGroupMemberDecorate:
532 case SpvOpGroupDecorate: {
533 struct vtn_value *group =
534 vtn_value(b, target, vtn_value_type_decoration_group);
535
536 for (; w < w_end; w++) {
537 struct vtn_value *val = vtn_untyped_value(b, *w);
538 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
539
540 dec->group = group;
541 if (opcode == SpvOpGroupDecorate) {
542 dec->scope = VTN_DEC_DECORATION;
543 } else {
544 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
545 vtn_fail_if(dec->scope < 0, /* Check for overflow */
546 "Member argument of OpGroupMemberDecorate too large");
547 }
548
549 /* Link into the list */
550 dec->next = val->decoration;
551 val->decoration = dec;
552 }
553 break;
554 }
555
556 default:
557 unreachable("Unhandled opcode");
558 }
559 }
560
561 struct member_decoration_ctx {
562 unsigned num_fields;
563 struct glsl_struct_field *fields;
564 struct vtn_type *type;
565 };
566
567 /**
568 * Returns true if the given type contains a struct decorated Block or
569 * BufferBlock
570 */
571 bool
572 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
573 {
574 switch (type->base_type) {
575 case vtn_base_type_array:
576 return vtn_type_contains_block(b, type->array_element);
577 case vtn_base_type_struct:
578 if (type->block || type->buffer_block)
579 return true;
580 for (unsigned i = 0; i < type->length; i++) {
581 if (vtn_type_contains_block(b, type->members[i]))
582 return true;
583 }
584 return false;
585 default:
586 return false;
587 }
588 }
589
590 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
591 * OpStore, or OpCopyMemory between them without breaking anything.
592 * Technically, the SPIR-V rules require the exact same type ID but this lets
593 * us internally be a bit looser.
594 */
595 bool
596 vtn_types_compatible(struct vtn_builder *b,
597 struct vtn_type *t1, struct vtn_type *t2)
598 {
599 if (t1->id == t2->id)
600 return true;
601
602 if (t1->base_type != t2->base_type)
603 return false;
604
605 switch (t1->base_type) {
606 case vtn_base_type_void:
607 case vtn_base_type_scalar:
608 case vtn_base_type_vector:
609 case vtn_base_type_matrix:
610 case vtn_base_type_image:
611 case vtn_base_type_sampler:
612 case vtn_base_type_sampled_image:
613 return t1->type == t2->type;
614
615 case vtn_base_type_array:
616 return t1->length == t2->length &&
617 vtn_types_compatible(b, t1->array_element, t2->array_element);
618
619 case vtn_base_type_pointer:
620 return vtn_types_compatible(b, t1->deref, t2->deref);
621
622 case vtn_base_type_struct:
623 if (t1->length != t2->length)
624 return false;
625
626 for (unsigned i = 0; i < t1->length; i++) {
627 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
628 return false;
629 }
630 return true;
631
632 case vtn_base_type_function:
633 /* This case shouldn't get hit since you can't copy around function
634 * types. Just require them to be identical.
635 */
636 return false;
637 }
638
639 vtn_fail("Invalid base type");
640 }
641
642 struct vtn_type *
643 vtn_type_without_array(struct vtn_type *type)
644 {
645 while (type->base_type == vtn_base_type_array)
646 type = type->array_element;
647 return type;
648 }
649
650 /* does a shallow copy of a vtn_type */
651
652 static struct vtn_type *
653 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
654 {
655 struct vtn_type *dest = ralloc(b, struct vtn_type);
656 *dest = *src;
657
658 switch (src->base_type) {
659 case vtn_base_type_void:
660 case vtn_base_type_scalar:
661 case vtn_base_type_vector:
662 case vtn_base_type_matrix:
663 case vtn_base_type_array:
664 case vtn_base_type_pointer:
665 case vtn_base_type_image:
666 case vtn_base_type_sampler:
667 case vtn_base_type_sampled_image:
668 /* Nothing more to do */
669 break;
670
671 case vtn_base_type_struct:
672 dest->members = ralloc_array(b, struct vtn_type *, src->length);
673 memcpy(dest->members, src->members,
674 src->length * sizeof(src->members[0]));
675
676 dest->offsets = ralloc_array(b, unsigned, src->length);
677 memcpy(dest->offsets, src->offsets,
678 src->length * sizeof(src->offsets[0]));
679 break;
680
681 case vtn_base_type_function:
682 dest->params = ralloc_array(b, struct vtn_type *, src->length);
683 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
684 break;
685 }
686
687 return dest;
688 }
689
690 static struct vtn_type *
691 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
692 {
693 type->members[member] = vtn_type_copy(b, type->members[member]);
694 type = type->members[member];
695
696 /* We may have an array of matrices.... Oh, joy! */
697 while (glsl_type_is_array(type->type)) {
698 type->array_element = vtn_type_copy(b, type->array_element);
699 type = type->array_element;
700 }
701
702 vtn_assert(glsl_type_is_matrix(type->type));
703
704 return type;
705 }
706
707 static void
708 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
709 int member, enum gl_access_qualifier access)
710 {
711 type->members[member] = vtn_type_copy(b, type->members[member]);
712 type = type->members[member];
713
714 type->access |= access;
715 }
716
717 static void
718 array_stride_decoration_cb(struct vtn_builder *b,
719 struct vtn_value *val, int member,
720 const struct vtn_decoration *dec, void *void_ctx)
721 {
722 struct vtn_type *type = val->type;
723
724 if (dec->decoration == SpvDecorationArrayStride) {
725 if (vtn_type_contains_block(b, type)) {
726 vtn_warn("The ArrayStride decoration cannot be applied to an array "
727 "type which contains a structure type decorated Block "
728 "or BufferBlock");
729 /* Ignore the decoration */
730 } else {
731 vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
732 type->stride = dec->operands[0];
733 }
734 }
735 }
736
737 static void
738 struct_member_decoration_cb(struct vtn_builder *b,
739 struct vtn_value *val, int member,
740 const struct vtn_decoration *dec, void *void_ctx)
741 {
742 struct member_decoration_ctx *ctx = void_ctx;
743
744 if (member < 0)
745 return;
746
747 assert(member < ctx->num_fields);
748
749 switch (dec->decoration) {
750 case SpvDecorationRelaxedPrecision:
751 case SpvDecorationUniform:
752 case SpvDecorationUniformId:
753 break; /* FIXME: Do nothing with this for now. */
754 case SpvDecorationNonWritable:
755 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
756 break;
757 case SpvDecorationNonReadable:
758 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
759 break;
760 case SpvDecorationVolatile:
761 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
762 break;
763 case SpvDecorationCoherent:
764 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
765 break;
766 case SpvDecorationNoPerspective:
767 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
768 break;
769 case SpvDecorationFlat:
770 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
771 break;
772 case SpvDecorationCentroid:
773 ctx->fields[member].centroid = true;
774 break;
775 case SpvDecorationSample:
776 ctx->fields[member].sample = true;
777 break;
778 case SpvDecorationStream:
779 /* Vulkan only allows one GS stream */
780 vtn_assert(dec->operands[0] == 0);
781 break;
782 case SpvDecorationLocation:
783 ctx->fields[member].location = dec->operands[0];
784 break;
785 case SpvDecorationComponent:
786 break; /* FIXME: What should we do with these? */
787 case SpvDecorationBuiltIn:
788 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
789 ctx->type->members[member]->is_builtin = true;
790 ctx->type->members[member]->builtin = dec->operands[0];
791 ctx->type->builtin_block = true;
792 break;
793 case SpvDecorationOffset:
794 ctx->type->offsets[member] = dec->operands[0];
795 ctx->fields[member].offset = dec->operands[0];
796 break;
797 case SpvDecorationMatrixStride:
798 /* Handled as a second pass */
799 break;
800 case SpvDecorationColMajor:
801 break; /* Nothing to do here. Column-major is the default. */
802 case SpvDecorationRowMajor:
803 mutable_matrix_member(b, ctx->type, member)->row_major = true;
804 break;
805
806 case SpvDecorationPatch:
807 break;
808
809 case SpvDecorationSpecId:
810 case SpvDecorationBlock:
811 case SpvDecorationBufferBlock:
812 case SpvDecorationArrayStride:
813 case SpvDecorationGLSLShared:
814 case SpvDecorationGLSLPacked:
815 case SpvDecorationInvariant:
816 case SpvDecorationRestrict:
817 case SpvDecorationAliased:
818 case SpvDecorationConstant:
819 case SpvDecorationIndex:
820 case SpvDecorationBinding:
821 case SpvDecorationDescriptorSet:
822 case SpvDecorationLinkageAttributes:
823 case SpvDecorationNoContraction:
824 case SpvDecorationInputAttachmentIndex:
825 vtn_warn("Decoration not allowed on struct members: %s",
826 spirv_decoration_to_string(dec->decoration));
827 break;
828
829 case SpvDecorationXfbBuffer:
830 case SpvDecorationXfbStride:
831 vtn_warn("Vulkan does not have transform feedback");
832 break;
833
834 case SpvDecorationCPacked:
835 if (b->shader->info.stage != MESA_SHADER_KERNEL)
836 vtn_warn("Decoration only allowed for CL-style kernels: %s",
837 spirv_decoration_to_string(dec->decoration));
838 else
839 ctx->type->packed = true;
840 break;
841
842 case SpvDecorationSaturatedConversion:
843 case SpvDecorationFuncParamAttr:
844 case SpvDecorationFPRoundingMode:
845 case SpvDecorationFPFastMathMode:
846 case SpvDecorationAlignment:
847 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
848 vtn_warn("Decoration only allowed for CL-style kernels: %s",
849 spirv_decoration_to_string(dec->decoration));
850 }
851 break;
852
853 case SpvDecorationUserSemantic:
854 /* User semantic decorations can safely be ignored by the driver. */
855 break;
856
857 default:
858 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
859 }
860 }
861
862 /** Chases the array type all the way down to the tail and rewrites the
863 * glsl_types to be based off the tail's glsl_type.
864 */
865 static void
866 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
867 {
868 if (type->base_type != vtn_base_type_array)
869 return;
870
871 vtn_array_type_rewrite_glsl_type(type->array_element);
872
873 type->type = glsl_array_type(type->array_element->type,
874 type->length, type->stride);
875 }
876
877 /* Matrix strides are handled as a separate pass because we need to know
878 * whether the matrix is row-major or not first.
879 */
880 static void
881 struct_member_matrix_stride_cb(struct vtn_builder *b,
882 struct vtn_value *val, int member,
883 const struct vtn_decoration *dec,
884 void *void_ctx)
885 {
886 if (dec->decoration != SpvDecorationMatrixStride)
887 return;
888
889 vtn_fail_if(member < 0,
890 "The MatrixStride decoration is only allowed on members "
891 "of OpTypeStruct");
892 vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
893
894 struct member_decoration_ctx *ctx = void_ctx;
895
896 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
897 if (mat_type->row_major) {
898 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
899 mat_type->stride = mat_type->array_element->stride;
900 mat_type->array_element->stride = dec->operands[0];
901
902 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
903 dec->operands[0], true);
904 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
905 } else {
906 vtn_assert(mat_type->array_element->stride > 0);
907 mat_type->stride = dec->operands[0];
908
909 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
910 dec->operands[0], false);
911 }
912
913 /* Now that we've replaced the glsl_type with a properly strided matrix
914 * type, rewrite the member type so that it's an array of the proper kind
915 * of glsl_type.
916 */
917 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
918 ctx->fields[member].type = ctx->type->members[member]->type;
919 }
920
921 static void
922 struct_block_decoration_cb(struct vtn_builder *b,
923 struct vtn_value *val, int member,
924 const struct vtn_decoration *dec, void *ctx)
925 {
926 if (member != -1)
927 return;
928
929 struct vtn_type *type = val->type;
930 if (dec->decoration == SpvDecorationBlock)
931 type->block = true;
932 else if (dec->decoration == SpvDecorationBufferBlock)
933 type->buffer_block = true;
934 }
935
936 static void
937 type_decoration_cb(struct vtn_builder *b,
938 struct vtn_value *val, int member,
939 const struct vtn_decoration *dec, void *ctx)
940 {
941 struct vtn_type *type = val->type;
942
943 if (member != -1) {
944 /* This should have been handled by OpTypeStruct */
945 assert(val->type->base_type == vtn_base_type_struct);
946 assert(member >= 0 && member < val->type->length);
947 return;
948 }
949
950 switch (dec->decoration) {
951 case SpvDecorationArrayStride:
952 vtn_assert(type->base_type == vtn_base_type_array ||
953 type->base_type == vtn_base_type_pointer);
954 break;
955 case SpvDecorationBlock:
956 vtn_assert(type->base_type == vtn_base_type_struct);
957 vtn_assert(type->block);
958 break;
959 case SpvDecorationBufferBlock:
960 vtn_assert(type->base_type == vtn_base_type_struct);
961 vtn_assert(type->buffer_block);
962 break;
963 case SpvDecorationGLSLShared:
964 case SpvDecorationGLSLPacked:
965 /* Ignore these, since we get explicit offsets anyways */
966 break;
967
968 case SpvDecorationRowMajor:
969 case SpvDecorationColMajor:
970 case SpvDecorationMatrixStride:
971 case SpvDecorationBuiltIn:
972 case SpvDecorationNoPerspective:
973 case SpvDecorationFlat:
974 case SpvDecorationPatch:
975 case SpvDecorationCentroid:
976 case SpvDecorationSample:
977 case SpvDecorationVolatile:
978 case SpvDecorationCoherent:
979 case SpvDecorationNonWritable:
980 case SpvDecorationNonReadable:
981 case SpvDecorationUniform:
982 case SpvDecorationUniformId:
983 case SpvDecorationLocation:
984 case SpvDecorationComponent:
985 case SpvDecorationOffset:
986 case SpvDecorationXfbBuffer:
987 case SpvDecorationXfbStride:
988 case SpvDecorationUserSemantic:
989 vtn_warn("Decoration only allowed for struct members: %s",
990 spirv_decoration_to_string(dec->decoration));
991 break;
992
993 case SpvDecorationStream:
994 /* We don't need to do anything here, as stream is filled up when
995 * aplying the decoration to a variable, just check that if it is not a
996 * struct member, it should be a struct.
997 */
998 vtn_assert(type->base_type == vtn_base_type_struct);
999 break;
1000
1001 case SpvDecorationRelaxedPrecision:
1002 case SpvDecorationSpecId:
1003 case SpvDecorationInvariant:
1004 case SpvDecorationRestrict:
1005 case SpvDecorationAliased:
1006 case SpvDecorationConstant:
1007 case SpvDecorationIndex:
1008 case SpvDecorationBinding:
1009 case SpvDecorationDescriptorSet:
1010 case SpvDecorationLinkageAttributes:
1011 case SpvDecorationNoContraction:
1012 case SpvDecorationInputAttachmentIndex:
1013 vtn_warn("Decoration not allowed on types: %s",
1014 spirv_decoration_to_string(dec->decoration));
1015 break;
1016
1017 case SpvDecorationCPacked:
1018 if (b->shader->info.stage != MESA_SHADER_KERNEL)
1019 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1020 spirv_decoration_to_string(dec->decoration));
1021 else
1022 type->packed = true;
1023 break;
1024
1025 case SpvDecorationSaturatedConversion:
1026 case SpvDecorationFuncParamAttr:
1027 case SpvDecorationFPRoundingMode:
1028 case SpvDecorationFPFastMathMode:
1029 case SpvDecorationAlignment:
1030 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1031 spirv_decoration_to_string(dec->decoration));
1032 break;
1033
1034 default:
1035 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1036 }
1037 }
1038
1039 static unsigned
1040 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
1041 {
1042 switch (format) {
1043 case SpvImageFormatUnknown: return 0; /* GL_NONE */
1044 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
1045 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
1046 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
1047 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
1048 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
1049 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
1050 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
1051 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
1052 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
1053 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
1054 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
1055 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
1056 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
1057 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
1058 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
1059 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
1060 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
1061 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
1062 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
1063 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
1064 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
1065 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
1066 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
1067 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
1068 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
1069 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
1070 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
1071 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
1072 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
1073 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
1074 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
1075 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
1076 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
1077 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
1078 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
1079 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
1080 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
1081 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
1082 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
1083 default:
1084 vtn_fail("Invalid image format: %s (%u)",
1085 spirv_imageformat_to_string(format), format);
1086 }
1087 }
1088
1089 static void
1090 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1091 const uint32_t *w, unsigned count)
1092 {
1093 struct vtn_value *val = NULL;
1094
1095 /* In order to properly handle forward declarations, we have to defer
1096 * allocation for pointer types.
1097 */
1098 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1099 val = vtn_push_value(b, w[1], vtn_value_type_type);
1100 vtn_fail_if(val->type != NULL,
1101 "Only pointers can have forward declarations");
1102 val->type = rzalloc(b, struct vtn_type);
1103 val->type->id = w[1];
1104 }
1105
1106 switch (opcode) {
1107 case SpvOpTypeVoid:
1108 val->type->base_type = vtn_base_type_void;
1109 val->type->type = glsl_void_type();
1110 break;
1111 case SpvOpTypeBool:
1112 val->type->base_type = vtn_base_type_scalar;
1113 val->type->type = glsl_bool_type();
1114 val->type->length = 1;
1115 break;
1116 case SpvOpTypeInt: {
1117 int bit_size = w[2];
1118 const bool signedness = w[3];
1119 val->type->base_type = vtn_base_type_scalar;
1120 switch (bit_size) {
1121 case 64:
1122 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1123 break;
1124 case 32:
1125 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1126 break;
1127 case 16:
1128 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1129 break;
1130 case 8:
1131 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1132 break;
1133 default:
1134 vtn_fail("Invalid int bit size: %u", bit_size);
1135 }
1136 val->type->length = 1;
1137 break;
1138 }
1139
1140 case SpvOpTypeFloat: {
1141 int bit_size = w[2];
1142 val->type->base_type = vtn_base_type_scalar;
1143 switch (bit_size) {
1144 case 16:
1145 val->type->type = glsl_float16_t_type();
1146 break;
1147 case 32:
1148 val->type->type = glsl_float_type();
1149 break;
1150 case 64:
1151 val->type->type = glsl_double_type();
1152 break;
1153 default:
1154 vtn_fail("Invalid float bit size: %u", bit_size);
1155 }
1156 val->type->length = 1;
1157 break;
1158 }
1159
1160 case SpvOpTypeVector: {
1161 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1162 unsigned elems = w[3];
1163
1164 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1165 "Base type for OpTypeVector must be a scalar");
1166 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1167 "Invalid component count for OpTypeVector");
1168
1169 val->type->base_type = vtn_base_type_vector;
1170 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1171 val->type->length = elems;
1172 val->type->stride = glsl_type_is_boolean(val->type->type)
1173 ? 4 : glsl_get_bit_size(base->type) / 8;
1174 val->type->array_element = base;
1175 break;
1176 }
1177
1178 case SpvOpTypeMatrix: {
1179 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1180 unsigned columns = w[3];
1181
1182 vtn_fail_if(base->base_type != vtn_base_type_vector,
1183 "Base type for OpTypeMatrix must be a vector");
1184 vtn_fail_if(columns < 2 || columns > 4,
1185 "Invalid column count for OpTypeMatrix");
1186
1187 val->type->base_type = vtn_base_type_matrix;
1188 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1189 glsl_get_vector_elements(base->type),
1190 columns);
1191 vtn_fail_if(glsl_type_is_error(val->type->type),
1192 "Unsupported base type for OpTypeMatrix");
1193 assert(!glsl_type_is_error(val->type->type));
1194 val->type->length = columns;
1195 val->type->array_element = base;
1196 val->type->row_major = false;
1197 val->type->stride = 0;
1198 break;
1199 }
1200
1201 case SpvOpTypeRuntimeArray:
1202 case SpvOpTypeArray: {
1203 struct vtn_type *array_element =
1204 vtn_value(b, w[2], vtn_value_type_type)->type;
1205
1206 if (opcode == SpvOpTypeRuntimeArray) {
1207 /* A length of 0 is used to denote unsized arrays */
1208 val->type->length = 0;
1209 } else {
1210 val->type->length = vtn_constant_uint(b, w[3]);
1211 }
1212
1213 val->type->base_type = vtn_base_type_array;
1214 val->type->array_element = array_element;
1215 if (b->shader->info.stage == MESA_SHADER_KERNEL)
1216 val->type->stride = glsl_get_cl_size(array_element->type);
1217
1218 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1219 val->type->type = glsl_array_type(array_element->type, val->type->length,
1220 val->type->stride);
1221 break;
1222 }
1223
1224 case SpvOpTypeStruct: {
1225 unsigned num_fields = count - 2;
1226 val->type->base_type = vtn_base_type_struct;
1227 val->type->length = num_fields;
1228 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1229 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1230 val->type->packed = false;
1231
1232 NIR_VLA(struct glsl_struct_field, fields, count);
1233 for (unsigned i = 0; i < num_fields; i++) {
1234 val->type->members[i] =
1235 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1236 fields[i] = (struct glsl_struct_field) {
1237 .type = val->type->members[i]->type,
1238 .name = ralloc_asprintf(b, "field%d", i),
1239 .location = -1,
1240 .offset = -1,
1241 };
1242 }
1243
1244 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1245 unsigned offset = 0;
1246 for (unsigned i = 0; i < num_fields; i++) {
1247 offset = align(offset, glsl_get_cl_alignment(fields[i].type));
1248 fields[i].offset = offset;
1249 offset += glsl_get_cl_size(fields[i].type);
1250 }
1251 }
1252
1253 struct member_decoration_ctx ctx = {
1254 .num_fields = num_fields,
1255 .fields = fields,
1256 .type = val->type
1257 };
1258
1259 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1260 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1261
1262 vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
1263
1264 const char *name = val->name;
1265
1266 if (val->type->block || val->type->buffer_block) {
1267 /* Packing will be ignored since types coming from SPIR-V are
1268 * explicitly laid out.
1269 */
1270 val->type->type = glsl_interface_type(fields, num_fields,
1271 /* packing */ 0, false,
1272 name ? name : "block");
1273 } else {
1274 val->type->type = glsl_struct_type(fields, num_fields,
1275 name ? name : "struct", false);
1276 }
1277 break;
1278 }
1279
1280 case SpvOpTypeFunction: {
1281 val->type->base_type = vtn_base_type_function;
1282 val->type->type = NULL;
1283
1284 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1285
1286 const unsigned num_params = count - 3;
1287 val->type->length = num_params;
1288 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1289 for (unsigned i = 0; i < count - 3; i++) {
1290 val->type->params[i] =
1291 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1292 }
1293 break;
1294 }
1295
1296 case SpvOpTypePointer:
1297 case SpvOpTypeForwardPointer: {
1298 /* We can't blindly push the value because it might be a forward
1299 * declaration.
1300 */
1301 val = vtn_untyped_value(b, w[1]);
1302
1303 SpvStorageClass storage_class = w[2];
1304
1305 if (val->value_type == vtn_value_type_invalid) {
1306 val->value_type = vtn_value_type_type;
1307 val->type = rzalloc(b, struct vtn_type);
1308 val->type->id = w[1];
1309 val->type->base_type = vtn_base_type_pointer;
1310 val->type->storage_class = storage_class;
1311
1312 /* These can actually be stored to nir_variables and used as SSA
1313 * values so they need a real glsl_type.
1314 */
1315 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1316 b, storage_class, NULL, NULL);
1317 val->type->type = nir_address_format_to_glsl_type(
1318 vtn_mode_to_address_format(b, mode));
1319 } else {
1320 vtn_fail_if(val->type->storage_class != storage_class,
1321 "The storage classes of an OpTypePointer and any "
1322 "OpTypeForwardPointers that provide forward "
1323 "declarations of it must match.");
1324 }
1325
1326 if (opcode == SpvOpTypePointer) {
1327 vtn_fail_if(val->type->deref != NULL,
1328 "While OpTypeForwardPointer can be used to provide a "
1329 "forward declaration of a pointer, OpTypePointer can "
1330 "only be used once for a given id.");
1331
1332 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1333
1334 /* Only certain storage classes use ArrayStride. The others (in
1335 * particular Workgroup) are expected to be laid out by the driver.
1336 */
1337 switch (storage_class) {
1338 case SpvStorageClassUniform:
1339 case SpvStorageClassPushConstant:
1340 case SpvStorageClassStorageBuffer:
1341 case SpvStorageClassPhysicalStorageBufferEXT:
1342 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1343 break;
1344 default:
1345 /* Nothing to do. */
1346 break;
1347 }
1348
1349 if (b->physical_ptrs) {
1350 switch (storage_class) {
1351 case SpvStorageClassFunction:
1352 case SpvStorageClassWorkgroup:
1353 case SpvStorageClassCrossWorkgroup:
1354 val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
1355 glsl_get_cl_alignment(val->type->deref->type));
1356 break;
1357 default:
1358 break;
1359 }
1360 }
1361 }
1362 break;
1363 }
1364
1365 case SpvOpTypeImage: {
1366 val->type->base_type = vtn_base_type_image;
1367
1368 const struct vtn_type *sampled_type =
1369 vtn_value(b, w[2], vtn_value_type_type)->type;
1370
1371 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1372 glsl_get_bit_size(sampled_type->type) != 32,
1373 "Sampled type of OpTypeImage must be a 32-bit scalar");
1374
1375 enum glsl_sampler_dim dim;
1376 switch ((SpvDim)w[3]) {
1377 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1378 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1379 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1380 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1381 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1382 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1383 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1384 default:
1385 vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
1386 spirv_dim_to_string((SpvDim)w[3]), w[3]);
1387 }
1388
1389 /* w[4]: as per Vulkan spec "Validation Rules within a Module",
1390 * The “Depth” operand of OpTypeImage is ignored.
1391 */
1392 bool is_array = w[5];
1393 bool multisampled = w[6];
1394 unsigned sampled = w[7];
1395 SpvImageFormat format = w[8];
1396
1397 if (count > 9)
1398 val->type->access_qualifier = w[9];
1399 else
1400 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1401
1402 if (multisampled) {
1403 if (dim == GLSL_SAMPLER_DIM_2D)
1404 dim = GLSL_SAMPLER_DIM_MS;
1405 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1406 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1407 else
1408 vtn_fail("Unsupported multisampled image type");
1409 }
1410
1411 val->type->image_format = translate_image_format(b, format);
1412
1413 enum glsl_base_type sampled_base_type =
1414 glsl_get_base_type(sampled_type->type);
1415 if (sampled == 1) {
1416 val->type->sampled = true;
1417 val->type->type = glsl_sampler_type(dim, false, is_array,
1418 sampled_base_type);
1419 } else if (sampled == 2) {
1420 val->type->sampled = false;
1421 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1422 } else {
1423 vtn_fail("We need to know if the image will be sampled");
1424 }
1425 break;
1426 }
1427
1428 case SpvOpTypeSampledImage:
1429 val->type->base_type = vtn_base_type_sampled_image;
1430 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1431 val->type->type = val->type->image->type;
1432 break;
1433
1434 case SpvOpTypeSampler:
1435 /* The actual sampler type here doesn't really matter. It gets
1436 * thrown away the moment you combine it with an image. What really
1437 * matters is that it's a sampler type as opposed to an integer type
1438 * so the backend knows what to do.
1439 */
1440 val->type->base_type = vtn_base_type_sampler;
1441 val->type->type = glsl_bare_sampler_type();
1442 break;
1443
1444 case SpvOpTypeOpaque:
1445 case SpvOpTypeEvent:
1446 case SpvOpTypeDeviceEvent:
1447 case SpvOpTypeReserveId:
1448 case SpvOpTypeQueue:
1449 case SpvOpTypePipe:
1450 default:
1451 vtn_fail_with_opcode("Unhandled opcode", opcode);
1452 }
1453
1454 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1455
1456 if (val->type->base_type == vtn_base_type_struct &&
1457 (val->type->block || val->type->buffer_block)) {
1458 for (unsigned i = 0; i < val->type->length; i++) {
1459 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1460 "Block and BufferBlock decorations cannot decorate a "
1461 "structure type that is nested at any level inside "
1462 "another structure type decorated with Block or "
1463 "BufferBlock.");
1464 }
1465 }
1466 }
1467
1468 static nir_constant *
1469 vtn_null_constant(struct vtn_builder *b, struct vtn_type *type)
1470 {
1471 nir_constant *c = rzalloc(b, nir_constant);
1472
1473 switch (type->base_type) {
1474 case vtn_base_type_scalar:
1475 case vtn_base_type_vector:
1476 /* Nothing to do here. It's already initialized to zero */
1477 break;
1478
1479 case vtn_base_type_pointer: {
1480 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1481 b, type->storage_class, type->deref, NULL);
1482 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
1483
1484 const nir_const_value *null_value = nir_address_format_null_value(addr_format);
1485 memcpy(c->values, null_value,
1486 sizeof(nir_const_value) * nir_address_format_num_components(addr_format));
1487 break;
1488 }
1489
1490 case vtn_base_type_void:
1491 case vtn_base_type_image:
1492 case vtn_base_type_sampler:
1493 case vtn_base_type_sampled_image:
1494 case vtn_base_type_function:
1495 /* For those we have to return something but it doesn't matter what. */
1496 break;
1497
1498 case vtn_base_type_matrix:
1499 case vtn_base_type_array:
1500 vtn_assert(type->length > 0);
1501 c->num_elements = type->length;
1502 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1503
1504 c->elements[0] = vtn_null_constant(b, type->array_element);
1505 for (unsigned i = 1; i < c->num_elements; i++)
1506 c->elements[i] = c->elements[0];
1507 break;
1508
1509 case vtn_base_type_struct:
1510 c->num_elements = type->length;
1511 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1512 for (unsigned i = 0; i < c->num_elements; i++)
1513 c->elements[i] = vtn_null_constant(b, type->members[i]);
1514 break;
1515
1516 default:
1517 vtn_fail("Invalid type for null constant");
1518 }
1519
1520 return c;
1521 }
1522
1523 static void
1524 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1525 int member, const struct vtn_decoration *dec,
1526 void *data)
1527 {
1528 vtn_assert(member == -1);
1529 if (dec->decoration != SpvDecorationSpecId)
1530 return;
1531
1532 struct spec_constant_value *const_value = data;
1533
1534 for (unsigned i = 0; i < b->num_specializations; i++) {
1535 if (b->specializations[i].id == dec->operands[0]) {
1536 if (const_value->is_double)
1537 const_value->data64 = b->specializations[i].data64;
1538 else
1539 const_value->data32 = b->specializations[i].data32;
1540 return;
1541 }
1542 }
1543 }
1544
1545 static uint32_t
1546 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1547 uint32_t const_value)
1548 {
1549 struct spec_constant_value data;
1550 data.is_double = false;
1551 data.data32 = const_value;
1552 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1553 return data.data32;
1554 }
1555
1556 static uint64_t
1557 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1558 uint64_t const_value)
1559 {
1560 struct spec_constant_value data;
1561 data.is_double = true;
1562 data.data64 = const_value;
1563 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1564 return data.data64;
1565 }
1566
1567 static void
1568 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1569 struct vtn_value *val,
1570 int member,
1571 const struct vtn_decoration *dec,
1572 void *data)
1573 {
1574 vtn_assert(member == -1);
1575 if (dec->decoration != SpvDecorationBuiltIn ||
1576 dec->operands[0] != SpvBuiltInWorkgroupSize)
1577 return;
1578
1579 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1580 b->workgroup_size_builtin = val;
1581 }
1582
1583 static void
1584 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1585 const uint32_t *w, unsigned count)
1586 {
1587 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1588 val->constant = rzalloc(b, nir_constant);
1589 switch (opcode) {
1590 case SpvOpConstantTrue:
1591 case SpvOpConstantFalse:
1592 case SpvOpSpecConstantTrue:
1593 case SpvOpSpecConstantFalse: {
1594 vtn_fail_if(val->type->type != glsl_bool_type(),
1595 "Result type of %s must be OpTypeBool",
1596 spirv_op_to_string(opcode));
1597
1598 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1599 opcode == SpvOpSpecConstantTrue);
1600
1601 if (opcode == SpvOpSpecConstantTrue ||
1602 opcode == SpvOpSpecConstantFalse)
1603 int_val = get_specialization(b, val, int_val);
1604
1605 val->constant->values[0].b = int_val != 0;
1606 break;
1607 }
1608
1609 case SpvOpConstant: {
1610 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1611 "Result type of %s must be a scalar",
1612 spirv_op_to_string(opcode));
1613 int bit_size = glsl_get_bit_size(val->type->type);
1614 switch (bit_size) {
1615 case 64:
1616 val->constant->values[0].u64 = vtn_u64_literal(&w[3]);
1617 break;
1618 case 32:
1619 val->constant->values[0].u32 = w[3];
1620 break;
1621 case 16:
1622 val->constant->values[0].u16 = w[3];
1623 break;
1624 case 8:
1625 val->constant->values[0].u8 = w[3];
1626 break;
1627 default:
1628 vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
1629 }
1630 break;
1631 }
1632
1633 case SpvOpSpecConstant: {
1634 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1635 "Result type of %s must be a scalar",
1636 spirv_op_to_string(opcode));
1637 int bit_size = glsl_get_bit_size(val->type->type);
1638 switch (bit_size) {
1639 case 64:
1640 val->constant->values[0].u64 =
1641 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1642 break;
1643 case 32:
1644 val->constant->values[0].u32 = get_specialization(b, val, w[3]);
1645 break;
1646 case 16:
1647 val->constant->values[0].u16 = get_specialization(b, val, w[3]);
1648 break;
1649 case 8:
1650 val->constant->values[0].u8 = get_specialization(b, val, w[3]);
1651 break;
1652 default:
1653 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1654 }
1655 break;
1656 }
1657
1658 case SpvOpSpecConstantComposite:
1659 case SpvOpConstantComposite: {
1660 unsigned elem_count = count - 3;
1661 vtn_fail_if(elem_count != val->type->length,
1662 "%s has %u constituents, expected %u",
1663 spirv_op_to_string(opcode), elem_count, val->type->length);
1664
1665 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1666 for (unsigned i = 0; i < elem_count; i++) {
1667 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1668
1669 if (val->value_type == vtn_value_type_constant) {
1670 elems[i] = val->constant;
1671 } else {
1672 vtn_fail_if(val->value_type != vtn_value_type_undef,
1673 "only constants or undefs allowed for "
1674 "SpvOpConstantComposite");
1675 /* to make it easier, just insert a NULL constant for now */
1676 elems[i] = vtn_null_constant(b, val->type);
1677 }
1678 }
1679
1680 switch (val->type->base_type) {
1681 case vtn_base_type_vector: {
1682 assert(glsl_type_is_vector(val->type->type));
1683 for (unsigned i = 0; i < elem_count; i++)
1684 val->constant->values[i] = elems[i]->values[0];
1685 break;
1686 }
1687
1688 case vtn_base_type_matrix:
1689 case vtn_base_type_struct:
1690 case vtn_base_type_array:
1691 ralloc_steal(val->constant, elems);
1692 val->constant->num_elements = elem_count;
1693 val->constant->elements = elems;
1694 break;
1695
1696 default:
1697 vtn_fail("Result type of %s must be a composite type",
1698 spirv_op_to_string(opcode));
1699 }
1700 break;
1701 }
1702
1703 case SpvOpSpecConstantOp: {
1704 SpvOp opcode = get_specialization(b, val, w[3]);
1705 switch (opcode) {
1706 case SpvOpVectorShuffle: {
1707 struct vtn_value *v0 = &b->values[w[4]];
1708 struct vtn_value *v1 = &b->values[w[5]];
1709
1710 vtn_assert(v0->value_type == vtn_value_type_constant ||
1711 v0->value_type == vtn_value_type_undef);
1712 vtn_assert(v1->value_type == vtn_value_type_constant ||
1713 v1->value_type == vtn_value_type_undef);
1714
1715 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1716 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1717
1718 vtn_assert(len0 + len1 < 16);
1719
1720 unsigned bit_size = glsl_get_bit_size(val->type->type);
1721 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1722 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1723
1724 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1725 (void)bit_size0; (void)bit_size1;
1726
1727 nir_const_value undef = { .u64 = 0xdeadbeefdeadbeef };
1728 nir_const_value combined[NIR_MAX_VEC_COMPONENTS * 2];
1729
1730 if (v0->value_type == vtn_value_type_constant) {
1731 for (unsigned i = 0; i < len0; i++)
1732 combined[i] = v0->constant->values[i];
1733 }
1734 if (v1->value_type == vtn_value_type_constant) {
1735 for (unsigned i = 0; i < len1; i++)
1736 combined[len0 + i] = v1->constant->values[i];
1737 }
1738
1739 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1740 uint32_t comp = w[i + 6];
1741 if (comp == (uint32_t)-1) {
1742 /* If component is not used, set the value to a known constant
1743 * to detect if it is wrongly used.
1744 */
1745 val->constant->values[j] = undef;
1746 } else {
1747 vtn_fail_if(comp >= len0 + len1,
1748 "All Component literals must either be FFFFFFFF "
1749 "or in [0, N - 1] (inclusive).");
1750 val->constant->values[j] = combined[comp];
1751 }
1752 }
1753 break;
1754 }
1755
1756 case SpvOpCompositeExtract:
1757 case SpvOpCompositeInsert: {
1758 struct vtn_value *comp;
1759 unsigned deref_start;
1760 struct nir_constant **c;
1761 if (opcode == SpvOpCompositeExtract) {
1762 comp = vtn_value(b, w[4], vtn_value_type_constant);
1763 deref_start = 5;
1764 c = &comp->constant;
1765 } else {
1766 comp = vtn_value(b, w[5], vtn_value_type_constant);
1767 deref_start = 6;
1768 val->constant = nir_constant_clone(comp->constant,
1769 (nir_variable *)b);
1770 c = &val->constant;
1771 }
1772
1773 int elem = -1;
1774 const struct vtn_type *type = comp->type;
1775 for (unsigned i = deref_start; i < count; i++) {
1776 vtn_fail_if(w[i] > type->length,
1777 "%uth index of %s is %u but the type has only "
1778 "%u elements", i - deref_start,
1779 spirv_op_to_string(opcode), w[i], type->length);
1780
1781 switch (type->base_type) {
1782 case vtn_base_type_vector:
1783 elem = w[i];
1784 type = type->array_element;
1785 break;
1786
1787 case vtn_base_type_matrix:
1788 case vtn_base_type_array:
1789 c = &(*c)->elements[w[i]];
1790 type = type->array_element;
1791 break;
1792
1793 case vtn_base_type_struct:
1794 c = &(*c)->elements[w[i]];
1795 type = type->members[w[i]];
1796 break;
1797
1798 default:
1799 vtn_fail("%s must only index into composite types",
1800 spirv_op_to_string(opcode));
1801 }
1802 }
1803
1804 if (opcode == SpvOpCompositeExtract) {
1805 if (elem == -1) {
1806 val->constant = *c;
1807 } else {
1808 unsigned num_components = type->length;
1809 for (unsigned i = 0; i < num_components; i++)
1810 val->constant->values[i] = (*c)->values[elem + i];
1811 }
1812 } else {
1813 struct vtn_value *insert =
1814 vtn_value(b, w[4], vtn_value_type_constant);
1815 vtn_assert(insert->type == type);
1816 if (elem == -1) {
1817 *c = insert->constant;
1818 } else {
1819 unsigned num_components = type->length;
1820 for (unsigned i = 0; i < num_components; i++)
1821 (*c)->values[elem + i] = insert->constant->values[i];
1822 }
1823 }
1824 break;
1825 }
1826
1827 default: {
1828 bool swap;
1829 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1830 nir_alu_type src_alu_type = dst_alu_type;
1831 unsigned num_components = glsl_get_vector_elements(val->type->type);
1832 unsigned bit_size;
1833
1834 vtn_assert(count <= 7);
1835
1836 switch (opcode) {
1837 case SpvOpSConvert:
1838 case SpvOpFConvert:
1839 case SpvOpUConvert:
1840 /* We have a source in a conversion */
1841 src_alu_type =
1842 nir_get_nir_type_for_glsl_type(
1843 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1844 /* We use the bitsize of the conversion source to evaluate the opcode later */
1845 bit_size = glsl_get_bit_size(
1846 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1847 break;
1848 default:
1849 bit_size = glsl_get_bit_size(val->type->type);
1850 };
1851
1852 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1853 nir_alu_type_get_type_size(src_alu_type),
1854 nir_alu_type_get_type_size(dst_alu_type));
1855 nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
1856
1857 for (unsigned i = 0; i < count - 4; i++) {
1858 struct vtn_value *src_val =
1859 vtn_value(b, w[4 + i], vtn_value_type_constant);
1860
1861 /* If this is an unsized source, pull the bit size from the
1862 * source; otherwise, we'll use the bit size from the destination.
1863 */
1864 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1865 bit_size = glsl_get_bit_size(src_val->type->type);
1866
1867 unsigned src_comps = nir_op_infos[op].input_sizes[i] ?
1868 nir_op_infos[op].input_sizes[i] :
1869 num_components;
1870
1871 unsigned j = swap ? 1 - i : i;
1872 for (unsigned c = 0; c < src_comps; c++)
1873 src[j][c] = src_val->constant->values[c];
1874 }
1875
1876 /* fix up fixed size sources */
1877 switch (op) {
1878 case nir_op_ishl:
1879 case nir_op_ishr:
1880 case nir_op_ushr: {
1881 if (bit_size == 32)
1882 break;
1883 for (unsigned i = 0; i < num_components; ++i) {
1884 switch (bit_size) {
1885 case 64: src[1][i].u32 = src[1][i].u64; break;
1886 case 16: src[1][i].u32 = src[1][i].u16; break;
1887 case 8: src[1][i].u32 = src[1][i].u8; break;
1888 }
1889 }
1890 break;
1891 }
1892 default:
1893 break;
1894 }
1895
1896 nir_const_value *srcs[3] = {
1897 src[0], src[1], src[2],
1898 };
1899 nir_eval_const_opcode(op, val->constant->values,
1900 num_components, bit_size, srcs,
1901 b->shader->info.float_controls_execution_mode);
1902 break;
1903 } /* default */
1904 }
1905 break;
1906 }
1907
1908 case SpvOpConstantNull:
1909 val->constant = vtn_null_constant(b, val->type);
1910 break;
1911
1912 case SpvOpConstantSampler:
1913 vtn_fail("OpConstantSampler requires Kernel Capability");
1914 break;
1915
1916 default:
1917 vtn_fail_with_opcode("Unhandled opcode", opcode);
1918 }
1919
1920 /* Now that we have the value, update the workgroup size if needed */
1921 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1922 }
1923
1924 struct vtn_ssa_value *
1925 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1926 {
1927 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1928 val->type = type;
1929
1930 if (!glsl_type_is_vector_or_scalar(type)) {
1931 unsigned elems = glsl_get_length(type);
1932 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1933 for (unsigned i = 0; i < elems; i++) {
1934 const struct glsl_type *child_type;
1935
1936 switch (glsl_get_base_type(type)) {
1937 case GLSL_TYPE_INT:
1938 case GLSL_TYPE_UINT:
1939 case GLSL_TYPE_INT16:
1940 case GLSL_TYPE_UINT16:
1941 case GLSL_TYPE_UINT8:
1942 case GLSL_TYPE_INT8:
1943 case GLSL_TYPE_INT64:
1944 case GLSL_TYPE_UINT64:
1945 case GLSL_TYPE_BOOL:
1946 case GLSL_TYPE_FLOAT:
1947 case GLSL_TYPE_FLOAT16:
1948 case GLSL_TYPE_DOUBLE:
1949 child_type = glsl_get_column_type(type);
1950 break;
1951 case GLSL_TYPE_ARRAY:
1952 child_type = glsl_get_array_element(type);
1953 break;
1954 case GLSL_TYPE_STRUCT:
1955 case GLSL_TYPE_INTERFACE:
1956 child_type = glsl_get_struct_field(type, i);
1957 break;
1958 default:
1959 vtn_fail("unkown base type");
1960 }
1961
1962 val->elems[i] = vtn_create_ssa_value(b, child_type);
1963 }
1964 }
1965
1966 return val;
1967 }
1968
1969 static nir_tex_src
1970 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
1971 {
1972 nir_tex_src src;
1973 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
1974 src.src_type = type;
1975 return src;
1976 }
1977
1978 static void
1979 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
1980 const uint32_t *w, unsigned count)
1981 {
1982 if (opcode == SpvOpSampledImage) {
1983 struct vtn_value *val =
1984 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1985 val->sampled_image = ralloc(b, struct vtn_sampled_image);
1986 val->sampled_image->type =
1987 vtn_value(b, w[1], vtn_value_type_type)->type;
1988 val->sampled_image->image =
1989 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
1990 val->sampled_image->sampler =
1991 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
1992 return;
1993 } else if (opcode == SpvOpImage) {
1994 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
1995 if (src_val->value_type == vtn_value_type_sampled_image) {
1996 vtn_push_value_pointer(b, w[2], src_val->sampled_image->image);
1997 } else {
1998 vtn_assert(src_val->value_type == vtn_value_type_pointer);
1999 vtn_push_value_pointer(b, w[2], src_val->pointer);
2000 }
2001 return;
2002 }
2003
2004 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2005
2006 struct vtn_sampled_image sampled;
2007 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2008 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2009 sampled = *sampled_val->sampled_image;
2010 } else {
2011 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2012 sampled.type = sampled_val->pointer->type;
2013 sampled.image = NULL;
2014 sampled.sampler = sampled_val->pointer;
2015 }
2016
2017 const struct glsl_type *image_type = sampled.type->type;
2018 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2019 const bool is_array = glsl_sampler_type_is_array(image_type);
2020
2021 /* Figure out the base texture operation */
2022 nir_texop texop;
2023 switch (opcode) {
2024 case SpvOpImageSampleImplicitLod:
2025 case SpvOpImageSampleDrefImplicitLod:
2026 case SpvOpImageSampleProjImplicitLod:
2027 case SpvOpImageSampleProjDrefImplicitLod:
2028 texop = nir_texop_tex;
2029 break;
2030
2031 case SpvOpImageSampleExplicitLod:
2032 case SpvOpImageSampleDrefExplicitLod:
2033 case SpvOpImageSampleProjExplicitLod:
2034 case SpvOpImageSampleProjDrefExplicitLod:
2035 texop = nir_texop_txl;
2036 break;
2037
2038 case SpvOpImageFetch:
2039 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
2040 texop = nir_texop_txf_ms;
2041 } else {
2042 texop = nir_texop_txf;
2043 }
2044 break;
2045
2046 case SpvOpImageGather:
2047 case SpvOpImageDrefGather:
2048 texop = nir_texop_tg4;
2049 break;
2050
2051 case SpvOpImageQuerySizeLod:
2052 case SpvOpImageQuerySize:
2053 texop = nir_texop_txs;
2054 break;
2055
2056 case SpvOpImageQueryLod:
2057 texop = nir_texop_lod;
2058 break;
2059
2060 case SpvOpImageQueryLevels:
2061 texop = nir_texop_query_levels;
2062 break;
2063
2064 case SpvOpImageQuerySamples:
2065 texop = nir_texop_texture_samples;
2066 break;
2067
2068 default:
2069 vtn_fail_with_opcode("Unhandled opcode", opcode);
2070 }
2071
2072 nir_tex_src srcs[10]; /* 10 should be enough */
2073 nir_tex_src *p = srcs;
2074
2075 nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2076 nir_deref_instr *texture =
2077 sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler;
2078
2079 p->src = nir_src_for_ssa(&texture->dest.ssa);
2080 p->src_type = nir_tex_src_texture_deref;
2081 p++;
2082
2083 switch (texop) {
2084 case nir_texop_tex:
2085 case nir_texop_txb:
2086 case nir_texop_txl:
2087 case nir_texop_txd:
2088 case nir_texop_tg4:
2089 case nir_texop_lod:
2090 /* These operations require a sampler */
2091 p->src = nir_src_for_ssa(&sampler->dest.ssa);
2092 p->src_type = nir_tex_src_sampler_deref;
2093 p++;
2094 break;
2095 case nir_texop_txf:
2096 case nir_texop_txf_ms:
2097 case nir_texop_txs:
2098 case nir_texop_query_levels:
2099 case nir_texop_texture_samples:
2100 case nir_texop_samples_identical:
2101 /* These don't */
2102 break;
2103 case nir_texop_txf_ms_fb:
2104 vtn_fail("unexpected nir_texop_txf_ms_fb");
2105 break;
2106 case nir_texop_txf_ms_mcs:
2107 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2108 }
2109
2110 unsigned idx = 4;
2111
2112 struct nir_ssa_def *coord;
2113 unsigned coord_components;
2114 switch (opcode) {
2115 case SpvOpImageSampleImplicitLod:
2116 case SpvOpImageSampleExplicitLod:
2117 case SpvOpImageSampleDrefImplicitLod:
2118 case SpvOpImageSampleDrefExplicitLod:
2119 case SpvOpImageSampleProjImplicitLod:
2120 case SpvOpImageSampleProjExplicitLod:
2121 case SpvOpImageSampleProjDrefImplicitLod:
2122 case SpvOpImageSampleProjDrefExplicitLod:
2123 case SpvOpImageFetch:
2124 case SpvOpImageGather:
2125 case SpvOpImageDrefGather:
2126 case SpvOpImageQueryLod: {
2127 /* All these types have the coordinate as their first real argument */
2128 switch (sampler_dim) {
2129 case GLSL_SAMPLER_DIM_1D:
2130 case GLSL_SAMPLER_DIM_BUF:
2131 coord_components = 1;
2132 break;
2133 case GLSL_SAMPLER_DIM_2D:
2134 case GLSL_SAMPLER_DIM_RECT:
2135 case GLSL_SAMPLER_DIM_MS:
2136 coord_components = 2;
2137 break;
2138 case GLSL_SAMPLER_DIM_3D:
2139 case GLSL_SAMPLER_DIM_CUBE:
2140 coord_components = 3;
2141 break;
2142 default:
2143 vtn_fail("Invalid sampler type");
2144 }
2145
2146 if (is_array && texop != nir_texop_lod)
2147 coord_components++;
2148
2149 coord = vtn_ssa_value(b, w[idx++])->def;
2150 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2151 (1 << coord_components) - 1));
2152 p->src_type = nir_tex_src_coord;
2153 p++;
2154 break;
2155 }
2156
2157 default:
2158 coord = NULL;
2159 coord_components = 0;
2160 break;
2161 }
2162
2163 switch (opcode) {
2164 case SpvOpImageSampleProjImplicitLod:
2165 case SpvOpImageSampleProjExplicitLod:
2166 case SpvOpImageSampleProjDrefImplicitLod:
2167 case SpvOpImageSampleProjDrefExplicitLod:
2168 /* These have the projector as the last coordinate component */
2169 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2170 p->src_type = nir_tex_src_projector;
2171 p++;
2172 break;
2173
2174 default:
2175 break;
2176 }
2177
2178 bool is_shadow = false;
2179 unsigned gather_component = 0;
2180 switch (opcode) {
2181 case SpvOpImageSampleDrefImplicitLod:
2182 case SpvOpImageSampleDrefExplicitLod:
2183 case SpvOpImageSampleProjDrefImplicitLod:
2184 case SpvOpImageSampleProjDrefExplicitLod:
2185 case SpvOpImageDrefGather:
2186 /* These all have an explicit depth value as their next source */
2187 is_shadow = true;
2188 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2189 break;
2190
2191 case SpvOpImageGather:
2192 /* This has a component as its next source */
2193 gather_component = vtn_constant_uint(b, w[idx++]);
2194 break;
2195
2196 default:
2197 break;
2198 }
2199
2200 /* For OpImageQuerySizeLod, we always have an LOD */
2201 if (opcode == SpvOpImageQuerySizeLod)
2202 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2203
2204 /* Now we need to handle some number of optional arguments */
2205 struct vtn_value *gather_offsets = NULL;
2206 if (idx < count) {
2207 uint32_t operands = w[idx++];
2208
2209 if (operands & SpvImageOperandsBiasMask) {
2210 vtn_assert(texop == nir_texop_tex);
2211 texop = nir_texop_txb;
2212 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2213 }
2214
2215 if (operands & SpvImageOperandsLodMask) {
2216 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2217 texop == nir_texop_txs);
2218 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2219 }
2220
2221 if (operands & SpvImageOperandsGradMask) {
2222 vtn_assert(texop == nir_texop_txl);
2223 texop = nir_texop_txd;
2224 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2225 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2226 }
2227
2228 if (operands & SpvImageOperandsOffsetMask ||
2229 operands & SpvImageOperandsConstOffsetMask)
2230 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2231
2232 if (operands & SpvImageOperandsConstOffsetsMask) {
2233 vtn_assert(texop == nir_texop_tg4);
2234 gather_offsets = vtn_value(b, w[idx++], vtn_value_type_constant);
2235 }
2236
2237 if (operands & SpvImageOperandsSampleMask) {
2238 vtn_assert(texop == nir_texop_txf_ms);
2239 texop = nir_texop_txf_ms;
2240 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2241 }
2242
2243 if (operands & SpvImageOperandsMinLodMask) {
2244 vtn_assert(texop == nir_texop_tex ||
2245 texop == nir_texop_txb ||
2246 texop == nir_texop_txd);
2247 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod);
2248 }
2249 }
2250 /* We should have now consumed exactly all of the arguments */
2251 vtn_assert(idx == count);
2252
2253 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2254 instr->op = texop;
2255
2256 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2257
2258 instr->coord_components = coord_components;
2259 instr->sampler_dim = sampler_dim;
2260 instr->is_array = is_array;
2261 instr->is_shadow = is_shadow;
2262 instr->is_new_style_shadow =
2263 is_shadow && glsl_get_components(ret_type->type) == 1;
2264 instr->component = gather_component;
2265
2266 if (sampled.image && (sampled.image->access & ACCESS_NON_UNIFORM))
2267 instr->texture_non_uniform = true;
2268
2269 if (sampled.sampler && (sampled.sampler->access & ACCESS_NON_UNIFORM))
2270 instr->sampler_non_uniform = true;
2271
2272 switch (glsl_get_sampler_result_type(image_type)) {
2273 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
2274 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
2275 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
2276 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
2277 default:
2278 vtn_fail("Invalid base type for sampler result");
2279 }
2280
2281 nir_ssa_dest_init(&instr->instr, &instr->dest,
2282 nir_tex_instr_dest_size(instr), 32, NULL);
2283
2284 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2285 nir_tex_instr_dest_size(instr));
2286
2287 if (gather_offsets) {
2288 vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
2289 gather_offsets->type->length != 4,
2290 "ConstOffsets must be an array of size four of vectors "
2291 "of two integer components");
2292
2293 struct vtn_type *vec_type = gather_offsets->type->array_element;
2294 vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
2295 vec_type->length != 2 ||
2296 !glsl_type_is_integer(vec_type->type),
2297 "ConstOffsets must be an array of size four of vectors "
2298 "of two integer components");
2299
2300 unsigned bit_size = glsl_get_bit_size(vec_type->type);
2301 for (uint32_t i = 0; i < 4; i++) {
2302 const nir_const_value *cvec =
2303 gather_offsets->constant->elements[i]->values;
2304 for (uint32_t j = 0; j < 2; j++) {
2305 switch (bit_size) {
2306 case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
2307 case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
2308 case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
2309 case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
2310 default:
2311 vtn_fail("Unsupported bit size: %u", bit_size);
2312 }
2313 }
2314 }
2315 }
2316
2317 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, ret_type->type);
2318 ssa->def = &instr->dest.ssa;
2319 vtn_push_ssa(b, w[2], ret_type, ssa);
2320
2321 nir_builder_instr_insert(&b->nb, &instr->instr);
2322 }
2323
2324 static void
2325 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2326 const uint32_t *w, nir_src *src)
2327 {
2328 switch (opcode) {
2329 case SpvOpAtomicIIncrement:
2330 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2331 break;
2332
2333 case SpvOpAtomicIDecrement:
2334 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2335 break;
2336
2337 case SpvOpAtomicISub:
2338 src[0] =
2339 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2340 break;
2341
2342 case SpvOpAtomicCompareExchange:
2343 case SpvOpAtomicCompareExchangeWeak:
2344 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2345 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2346 break;
2347
2348 case SpvOpAtomicExchange:
2349 case SpvOpAtomicIAdd:
2350 case SpvOpAtomicSMin:
2351 case SpvOpAtomicUMin:
2352 case SpvOpAtomicSMax:
2353 case SpvOpAtomicUMax:
2354 case SpvOpAtomicAnd:
2355 case SpvOpAtomicOr:
2356 case SpvOpAtomicXor:
2357 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2358 break;
2359
2360 default:
2361 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2362 }
2363 }
2364
2365 static nir_ssa_def *
2366 get_image_coord(struct vtn_builder *b, uint32_t value)
2367 {
2368 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2369
2370 /* The image_load_store intrinsics assume a 4-dim coordinate */
2371 unsigned dim = glsl_get_vector_elements(coord->type);
2372 unsigned swizzle[4];
2373 for (unsigned i = 0; i < 4; i++)
2374 swizzle[i] = MIN2(i, dim - 1);
2375
2376 return nir_swizzle(&b->nb, coord->def, swizzle, 4);
2377 }
2378
2379 static nir_ssa_def *
2380 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2381 {
2382 if (value->num_components == 4)
2383 return value;
2384
2385 unsigned swiz[4];
2386 for (unsigned i = 0; i < 4; i++)
2387 swiz[i] = i < value->num_components ? i : 0;
2388 return nir_swizzle(b, value, swiz, 4);
2389 }
2390
2391 static void
2392 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2393 const uint32_t *w, unsigned count)
2394 {
2395 /* Just get this one out of the way */
2396 if (opcode == SpvOpImageTexelPointer) {
2397 struct vtn_value *val =
2398 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2399 val->image = ralloc(b, struct vtn_image_pointer);
2400
2401 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2402 val->image->coord = get_image_coord(b, w[4]);
2403 val->image->sample = vtn_ssa_value(b, w[5])->def;
2404 return;
2405 }
2406
2407 struct vtn_image_pointer image;
2408
2409 switch (opcode) {
2410 case SpvOpAtomicExchange:
2411 case SpvOpAtomicCompareExchange:
2412 case SpvOpAtomicCompareExchangeWeak:
2413 case SpvOpAtomicIIncrement:
2414 case SpvOpAtomicIDecrement:
2415 case SpvOpAtomicIAdd:
2416 case SpvOpAtomicISub:
2417 case SpvOpAtomicLoad:
2418 case SpvOpAtomicSMin:
2419 case SpvOpAtomicUMin:
2420 case SpvOpAtomicSMax:
2421 case SpvOpAtomicUMax:
2422 case SpvOpAtomicAnd:
2423 case SpvOpAtomicOr:
2424 case SpvOpAtomicXor:
2425 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2426 break;
2427
2428 case SpvOpAtomicStore:
2429 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2430 break;
2431
2432 case SpvOpImageQuerySize:
2433 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2434 image.coord = NULL;
2435 image.sample = NULL;
2436 break;
2437
2438 case SpvOpImageRead:
2439 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2440 image.coord = get_image_coord(b, w[4]);
2441
2442 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2443 vtn_assert(w[5] == SpvImageOperandsSampleMask);
2444 image.sample = vtn_ssa_value(b, w[6])->def;
2445 } else {
2446 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2447 }
2448 break;
2449
2450 case SpvOpImageWrite:
2451 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2452 image.coord = get_image_coord(b, w[2]);
2453
2454 /* texel = w[3] */
2455
2456 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2457 vtn_assert(w[4] == SpvImageOperandsSampleMask);
2458 image.sample = vtn_ssa_value(b, w[5])->def;
2459 } else {
2460 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2461 }
2462 break;
2463
2464 default:
2465 vtn_fail_with_opcode("Invalid image opcode", opcode);
2466 }
2467
2468 nir_intrinsic_op op;
2469 switch (opcode) {
2470 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2471 OP(ImageQuerySize, size)
2472 OP(ImageRead, load)
2473 OP(ImageWrite, store)
2474 OP(AtomicLoad, load)
2475 OP(AtomicStore, store)
2476 OP(AtomicExchange, atomic_exchange)
2477 OP(AtomicCompareExchange, atomic_comp_swap)
2478 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2479 OP(AtomicIIncrement, atomic_add)
2480 OP(AtomicIDecrement, atomic_add)
2481 OP(AtomicIAdd, atomic_add)
2482 OP(AtomicISub, atomic_add)
2483 OP(AtomicSMin, atomic_imin)
2484 OP(AtomicUMin, atomic_umin)
2485 OP(AtomicSMax, atomic_imax)
2486 OP(AtomicUMax, atomic_umax)
2487 OP(AtomicAnd, atomic_and)
2488 OP(AtomicOr, atomic_or)
2489 OP(AtomicXor, atomic_xor)
2490 #undef OP
2491 default:
2492 vtn_fail_with_opcode("Invalid image opcode", opcode);
2493 }
2494
2495 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2496
2497 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2498 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2499
2500 /* ImageQuerySize doesn't take any extra parameters */
2501 if (opcode != SpvOpImageQuerySize) {
2502 /* The image coordinate is always 4 components but we may not have that
2503 * many. Swizzle to compensate.
2504 */
2505 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2506 intrin->src[2] = nir_src_for_ssa(image.sample);
2507 }
2508
2509 nir_intrinsic_set_access(intrin, image.image->access);
2510
2511 switch (opcode) {
2512 case SpvOpAtomicLoad:
2513 case SpvOpImageQuerySize:
2514 case SpvOpImageRead:
2515 break;
2516 case SpvOpAtomicStore:
2517 case SpvOpImageWrite: {
2518 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2519 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2520 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2521 assert(op == nir_intrinsic_image_deref_store);
2522 intrin->num_components = 4;
2523 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2524 break;
2525 }
2526
2527 case SpvOpAtomicCompareExchange:
2528 case SpvOpAtomicCompareExchangeWeak:
2529 case SpvOpAtomicIIncrement:
2530 case SpvOpAtomicIDecrement:
2531 case SpvOpAtomicExchange:
2532 case SpvOpAtomicIAdd:
2533 case SpvOpAtomicISub:
2534 case SpvOpAtomicSMin:
2535 case SpvOpAtomicUMin:
2536 case SpvOpAtomicSMax:
2537 case SpvOpAtomicUMax:
2538 case SpvOpAtomicAnd:
2539 case SpvOpAtomicOr:
2540 case SpvOpAtomicXor:
2541 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2542 break;
2543
2544 default:
2545 vtn_fail_with_opcode("Invalid image opcode", opcode);
2546 }
2547
2548 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2549 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2550
2551 unsigned dest_components = glsl_get_vector_elements(type->type);
2552 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2553 if (intrin->num_components == 0)
2554 intrin->num_components = dest_components;
2555
2556 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2557 intrin->num_components, 32, NULL);
2558
2559 nir_builder_instr_insert(&b->nb, &intrin->instr);
2560
2561 nir_ssa_def *result = &intrin->dest.ssa;
2562 if (intrin->num_components != dest_components)
2563 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2564
2565 struct vtn_value *val =
2566 vtn_push_ssa(b, w[2], type, vtn_create_ssa_value(b, type->type));
2567 val->ssa->def = result;
2568 } else {
2569 nir_builder_instr_insert(&b->nb, &intrin->instr);
2570 }
2571 }
2572
2573 static nir_intrinsic_op
2574 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2575 {
2576 switch (opcode) {
2577 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2578 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2579 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2580 OP(AtomicExchange, atomic_exchange)
2581 OP(AtomicCompareExchange, atomic_comp_swap)
2582 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2583 OP(AtomicIIncrement, atomic_add)
2584 OP(AtomicIDecrement, atomic_add)
2585 OP(AtomicIAdd, atomic_add)
2586 OP(AtomicISub, atomic_add)
2587 OP(AtomicSMin, atomic_imin)
2588 OP(AtomicUMin, atomic_umin)
2589 OP(AtomicSMax, atomic_imax)
2590 OP(AtomicUMax, atomic_umax)
2591 OP(AtomicAnd, atomic_and)
2592 OP(AtomicOr, atomic_or)
2593 OP(AtomicXor, atomic_xor)
2594 #undef OP
2595 default:
2596 vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
2597 }
2598 }
2599
2600 static nir_intrinsic_op
2601 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2602 {
2603 switch (opcode) {
2604 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2605 OP(AtomicLoad, read_deref)
2606 OP(AtomicExchange, exchange)
2607 OP(AtomicCompareExchange, comp_swap)
2608 OP(AtomicCompareExchangeWeak, comp_swap)
2609 OP(AtomicIIncrement, inc_deref)
2610 OP(AtomicIDecrement, post_dec_deref)
2611 OP(AtomicIAdd, add_deref)
2612 OP(AtomicISub, add_deref)
2613 OP(AtomicUMin, min_deref)
2614 OP(AtomicUMax, max_deref)
2615 OP(AtomicAnd, and_deref)
2616 OP(AtomicOr, or_deref)
2617 OP(AtomicXor, xor_deref)
2618 #undef OP
2619 default:
2620 /* We left the following out: AtomicStore, AtomicSMin and
2621 * AtomicSmax. Right now there are not nir intrinsics for them. At this
2622 * moment Atomic Counter support is needed for ARB_spirv support, so is
2623 * only need to support GLSL Atomic Counters that are uints and don't
2624 * allow direct storage.
2625 */
2626 unreachable("Invalid uniform atomic");
2627 }
2628 }
2629
2630 static nir_intrinsic_op
2631 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2632 {
2633 switch (opcode) {
2634 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
2635 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
2636 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
2637 OP(AtomicExchange, atomic_exchange)
2638 OP(AtomicCompareExchange, atomic_comp_swap)
2639 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2640 OP(AtomicIIncrement, atomic_add)
2641 OP(AtomicIDecrement, atomic_add)
2642 OP(AtomicIAdd, atomic_add)
2643 OP(AtomicISub, atomic_add)
2644 OP(AtomicSMin, atomic_imin)
2645 OP(AtomicUMin, atomic_umin)
2646 OP(AtomicSMax, atomic_imax)
2647 OP(AtomicUMax, atomic_umax)
2648 OP(AtomicAnd, atomic_and)
2649 OP(AtomicOr, atomic_or)
2650 OP(AtomicXor, atomic_xor)
2651 #undef OP
2652 default:
2653 vtn_fail_with_opcode("Invalid shared atomic", opcode);
2654 }
2655 }
2656
2657 /*
2658 * Handles shared atomics, ssbo atomics and atomic counters.
2659 */
2660 static void
2661 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
2662 const uint32_t *w, unsigned count)
2663 {
2664 struct vtn_pointer *ptr;
2665 nir_intrinsic_instr *atomic;
2666
2667 switch (opcode) {
2668 case SpvOpAtomicLoad:
2669 case SpvOpAtomicExchange:
2670 case SpvOpAtomicCompareExchange:
2671 case SpvOpAtomicCompareExchangeWeak:
2672 case SpvOpAtomicIIncrement:
2673 case SpvOpAtomicIDecrement:
2674 case SpvOpAtomicIAdd:
2675 case SpvOpAtomicISub:
2676 case SpvOpAtomicSMin:
2677 case SpvOpAtomicUMin:
2678 case SpvOpAtomicSMax:
2679 case SpvOpAtomicUMax:
2680 case SpvOpAtomicAnd:
2681 case SpvOpAtomicOr:
2682 case SpvOpAtomicXor:
2683 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2684 break;
2685
2686 case SpvOpAtomicStore:
2687 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2688 break;
2689
2690 default:
2691 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2692 }
2693
2694 /*
2695 SpvScope scope = w[4];
2696 SpvMemorySemanticsMask semantics = w[5];
2697 */
2698
2699 /* uniform as "atomic counter uniform" */
2700 if (ptr->mode == vtn_variable_mode_uniform) {
2701 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2702 const struct glsl_type *deref_type = deref->type;
2703 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
2704 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2705 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2706
2707 /* SSBO needs to initialize index/offset. In this case we don't need to,
2708 * as that info is already stored on the ptr->var->var nir_variable (see
2709 * vtn_create_variable)
2710 */
2711
2712 switch (opcode) {
2713 case SpvOpAtomicLoad:
2714 atomic->num_components = glsl_get_vector_elements(deref_type);
2715 break;
2716
2717 case SpvOpAtomicStore:
2718 atomic->num_components = glsl_get_vector_elements(deref_type);
2719 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2720 break;
2721
2722 case SpvOpAtomicExchange:
2723 case SpvOpAtomicCompareExchange:
2724 case SpvOpAtomicCompareExchangeWeak:
2725 case SpvOpAtomicIIncrement:
2726 case SpvOpAtomicIDecrement:
2727 case SpvOpAtomicIAdd:
2728 case SpvOpAtomicISub:
2729 case SpvOpAtomicSMin:
2730 case SpvOpAtomicUMin:
2731 case SpvOpAtomicSMax:
2732 case SpvOpAtomicUMax:
2733 case SpvOpAtomicAnd:
2734 case SpvOpAtomicOr:
2735 case SpvOpAtomicXor:
2736 /* Nothing: we don't need to call fill_common_atomic_sources here, as
2737 * atomic counter uniforms doesn't have sources
2738 */
2739 break;
2740
2741 default:
2742 unreachable("Invalid SPIR-V atomic");
2743
2744 }
2745 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
2746 nir_ssa_def *offset, *index;
2747 offset = vtn_pointer_to_offset(b, ptr, &index);
2748
2749 assert(ptr->mode == vtn_variable_mode_ssbo);
2750
2751 nir_intrinsic_op op = get_ssbo_nir_atomic_op(b, opcode);
2752 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2753
2754 int src = 0;
2755 switch (opcode) {
2756 case SpvOpAtomicLoad:
2757 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2758 nir_intrinsic_set_align(atomic, 4, 0);
2759 if (ptr->mode == vtn_variable_mode_ssbo)
2760 atomic->src[src++] = nir_src_for_ssa(index);
2761 atomic->src[src++] = nir_src_for_ssa(offset);
2762 break;
2763
2764 case SpvOpAtomicStore:
2765 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2766 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2767 nir_intrinsic_set_align(atomic, 4, 0);
2768 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2769 if (ptr->mode == vtn_variable_mode_ssbo)
2770 atomic->src[src++] = nir_src_for_ssa(index);
2771 atomic->src[src++] = nir_src_for_ssa(offset);
2772 break;
2773
2774 case SpvOpAtomicExchange:
2775 case SpvOpAtomicCompareExchange:
2776 case SpvOpAtomicCompareExchangeWeak:
2777 case SpvOpAtomicIIncrement:
2778 case SpvOpAtomicIDecrement:
2779 case SpvOpAtomicIAdd:
2780 case SpvOpAtomicISub:
2781 case SpvOpAtomicSMin:
2782 case SpvOpAtomicUMin:
2783 case SpvOpAtomicSMax:
2784 case SpvOpAtomicUMax:
2785 case SpvOpAtomicAnd:
2786 case SpvOpAtomicOr:
2787 case SpvOpAtomicXor:
2788 if (ptr->mode == vtn_variable_mode_ssbo)
2789 atomic->src[src++] = nir_src_for_ssa(index);
2790 atomic->src[src++] = nir_src_for_ssa(offset);
2791 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2792 break;
2793
2794 default:
2795 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2796 }
2797 } else {
2798 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2799 const struct glsl_type *deref_type = deref->type;
2800 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
2801 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2802 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2803
2804 switch (opcode) {
2805 case SpvOpAtomicLoad:
2806 atomic->num_components = glsl_get_vector_elements(deref_type);
2807 break;
2808
2809 case SpvOpAtomicStore:
2810 atomic->num_components = glsl_get_vector_elements(deref_type);
2811 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2812 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2813 break;
2814
2815 case SpvOpAtomicExchange:
2816 case SpvOpAtomicCompareExchange:
2817 case SpvOpAtomicCompareExchangeWeak:
2818 case SpvOpAtomicIIncrement:
2819 case SpvOpAtomicIDecrement:
2820 case SpvOpAtomicIAdd:
2821 case SpvOpAtomicISub:
2822 case SpvOpAtomicSMin:
2823 case SpvOpAtomicUMin:
2824 case SpvOpAtomicSMax:
2825 case SpvOpAtomicUMax:
2826 case SpvOpAtomicAnd:
2827 case SpvOpAtomicOr:
2828 case SpvOpAtomicXor:
2829 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
2830 break;
2831
2832 default:
2833 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2834 }
2835 }
2836
2837 if (opcode != SpvOpAtomicStore) {
2838 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2839
2840 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2841 glsl_get_vector_elements(type->type),
2842 glsl_get_bit_size(type->type), NULL);
2843
2844 struct vtn_ssa_value *ssa = rzalloc(b, struct vtn_ssa_value);
2845 ssa->def = &atomic->dest.ssa;
2846 ssa->type = type->type;
2847 vtn_push_ssa(b, w[2], type, ssa);
2848 }
2849
2850 nir_builder_instr_insert(&b->nb, &atomic->instr);
2851 }
2852
2853 static nir_alu_instr *
2854 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2855 {
2856 nir_op op = nir_op_vec(num_components);
2857 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2858 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2859 bit_size, NULL);
2860 vec->dest.write_mask = (1 << num_components) - 1;
2861
2862 return vec;
2863 }
2864
2865 struct vtn_ssa_value *
2866 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
2867 {
2868 if (src->transposed)
2869 return src->transposed;
2870
2871 struct vtn_ssa_value *dest =
2872 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
2873
2874 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
2875 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
2876 glsl_get_bit_size(src->type));
2877 if (glsl_type_is_vector_or_scalar(src->type)) {
2878 vec->src[0].src = nir_src_for_ssa(src->def);
2879 vec->src[0].swizzle[0] = i;
2880 } else {
2881 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
2882 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
2883 vec->src[j].swizzle[0] = i;
2884 }
2885 }
2886 nir_builder_instr_insert(&b->nb, &vec->instr);
2887 dest->elems[i]->def = &vec->dest.dest.ssa;
2888 }
2889
2890 dest->transposed = src;
2891
2892 return dest;
2893 }
2894
2895 nir_ssa_def *
2896 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
2897 {
2898 return nir_channel(&b->nb, src, index);
2899 }
2900
2901 nir_ssa_def *
2902 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
2903 unsigned index)
2904 {
2905 nir_alu_instr *vec = create_vec(b, src->num_components,
2906 src->bit_size);
2907
2908 for (unsigned i = 0; i < src->num_components; i++) {
2909 if (i == index) {
2910 vec->src[i].src = nir_src_for_ssa(insert);
2911 } else {
2912 vec->src[i].src = nir_src_for_ssa(src);
2913 vec->src[i].swizzle[0] = i;
2914 }
2915 }
2916
2917 nir_builder_instr_insert(&b->nb, &vec->instr);
2918
2919 return &vec->dest.dest.ssa;
2920 }
2921
2922 static nir_ssa_def *
2923 nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i)
2924 {
2925 return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size));
2926 }
2927
2928 nir_ssa_def *
2929 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2930 nir_ssa_def *index)
2931 {
2932 return nir_vector_extract(&b->nb, src, nir_i2i(&b->nb, index, 32));
2933 }
2934
2935 nir_ssa_def *
2936 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2937 nir_ssa_def *insert, nir_ssa_def *index)
2938 {
2939 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
2940 for (unsigned i = 1; i < src->num_components; i++)
2941 dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
2942 vtn_vector_insert(b, src, insert, i), dest);
2943
2944 return dest;
2945 }
2946
2947 static nir_ssa_def *
2948 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
2949 nir_ssa_def *src0, nir_ssa_def *src1,
2950 const uint32_t *indices)
2951 {
2952 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
2953
2954 for (unsigned i = 0; i < num_components; i++) {
2955 uint32_t index = indices[i];
2956 if (index == 0xffffffff) {
2957 vec->src[i].src =
2958 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
2959 } else if (index < src0->num_components) {
2960 vec->src[i].src = nir_src_for_ssa(src0);
2961 vec->src[i].swizzle[0] = index;
2962 } else {
2963 vec->src[i].src = nir_src_for_ssa(src1);
2964 vec->src[i].swizzle[0] = index - src0->num_components;
2965 }
2966 }
2967
2968 nir_builder_instr_insert(&b->nb, &vec->instr);
2969
2970 return &vec->dest.dest.ssa;
2971 }
2972
2973 /*
2974 * Concatentates a number of vectors/scalars together to produce a vector
2975 */
2976 static nir_ssa_def *
2977 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
2978 unsigned num_srcs, nir_ssa_def **srcs)
2979 {
2980 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
2981
2982 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2983 *
2984 * "When constructing a vector, there must be at least two Constituent
2985 * operands."
2986 */
2987 vtn_assert(num_srcs >= 2);
2988
2989 unsigned dest_idx = 0;
2990 for (unsigned i = 0; i < num_srcs; i++) {
2991 nir_ssa_def *src = srcs[i];
2992 vtn_assert(dest_idx + src->num_components <= num_components);
2993 for (unsigned j = 0; j < src->num_components; j++) {
2994 vec->src[dest_idx].src = nir_src_for_ssa(src);
2995 vec->src[dest_idx].swizzle[0] = j;
2996 dest_idx++;
2997 }
2998 }
2999
3000 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3001 *
3002 * "When constructing a vector, the total number of components in all
3003 * the operands must equal the number of components in Result Type."
3004 */
3005 vtn_assert(dest_idx == num_components);
3006
3007 nir_builder_instr_insert(&b->nb, &vec->instr);
3008
3009 return &vec->dest.dest.ssa;
3010 }
3011
3012 static struct vtn_ssa_value *
3013 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3014 {
3015 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3016 dest->type = src->type;
3017
3018 if (glsl_type_is_vector_or_scalar(src->type)) {
3019 dest->def = src->def;
3020 } else {
3021 unsigned elems = glsl_get_length(src->type);
3022
3023 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3024 for (unsigned i = 0; i < elems; i++)
3025 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3026 }
3027
3028 return dest;
3029 }
3030
3031 static struct vtn_ssa_value *
3032 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3033 struct vtn_ssa_value *insert, const uint32_t *indices,
3034 unsigned num_indices)
3035 {
3036 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3037
3038 struct vtn_ssa_value *cur = dest;
3039 unsigned i;
3040 for (i = 0; i < num_indices - 1; i++) {
3041 cur = cur->elems[indices[i]];
3042 }
3043
3044 if (glsl_type_is_vector_or_scalar(cur->type)) {
3045 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3046 * the component granularity. In that case, the last index will be
3047 * the index to insert the scalar into the vector.
3048 */
3049
3050 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
3051 } else {
3052 cur->elems[indices[i]] = insert;
3053 }
3054
3055 return dest;
3056 }
3057
3058 static struct vtn_ssa_value *
3059 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3060 const uint32_t *indices, unsigned num_indices)
3061 {
3062 struct vtn_ssa_value *cur = src;
3063 for (unsigned i = 0; i < num_indices; i++) {
3064 if (glsl_type_is_vector_or_scalar(cur->type)) {
3065 vtn_assert(i == num_indices - 1);
3066 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3067 * the component granularity. The last index will be the index of the
3068 * vector to extract.
3069 */
3070
3071 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3072 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3073 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
3074 return ret;
3075 } else {
3076 cur = cur->elems[indices[i]];
3077 }
3078 }
3079
3080 return cur;
3081 }
3082
3083 static void
3084 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3085 const uint32_t *w, unsigned count)
3086 {
3087 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
3088 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, type->type);
3089
3090 switch (opcode) {
3091 case SpvOpVectorExtractDynamic:
3092 ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
3093 vtn_ssa_value(b, w[4])->def);
3094 break;
3095
3096 case SpvOpVectorInsertDynamic:
3097 ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
3098 vtn_ssa_value(b, w[4])->def,
3099 vtn_ssa_value(b, w[5])->def);
3100 break;
3101
3102 case SpvOpVectorShuffle:
3103 ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type->type),
3104 vtn_ssa_value(b, w[3])->def,
3105 vtn_ssa_value(b, w[4])->def,
3106 w + 5);
3107 break;
3108
3109 case SpvOpCompositeConstruct: {
3110 unsigned elems = count - 3;
3111 assume(elems >= 1);
3112 if (glsl_type_is_vector_or_scalar(type->type)) {
3113 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3114 for (unsigned i = 0; i < elems; i++)
3115 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3116 ssa->def =
3117 vtn_vector_construct(b, glsl_get_vector_elements(type->type),
3118 elems, srcs);
3119 } else {
3120 ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3121 for (unsigned i = 0; i < elems; i++)
3122 ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3123 }
3124 break;
3125 }
3126 case SpvOpCompositeExtract:
3127 ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3128 w + 4, count - 4);
3129 break;
3130
3131 case SpvOpCompositeInsert:
3132 ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3133 vtn_ssa_value(b, w[3]),
3134 w + 5, count - 5);
3135 break;
3136
3137 case SpvOpCopyLogical:
3138 case SpvOpCopyObject:
3139 ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3140 break;
3141
3142 default:
3143 vtn_fail_with_opcode("unknown composite operation", opcode);
3144 }
3145
3146 vtn_push_ssa(b, w[2], type, ssa);
3147 }
3148
3149 static void
3150 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3151 {
3152 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3153 nir_builder_instr_insert(&b->nb, &intrin->instr);
3154 }
3155
3156 static void
3157 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3158 SpvMemorySemanticsMask semantics)
3159 {
3160 static const SpvMemorySemanticsMask all_memory_semantics =
3161 SpvMemorySemanticsUniformMemoryMask |
3162 SpvMemorySemanticsWorkgroupMemoryMask |
3163 SpvMemorySemanticsAtomicCounterMemoryMask |
3164 SpvMemorySemanticsImageMemoryMask;
3165
3166 /* If we're not actually doing a memory barrier, bail */
3167 if (!(semantics & all_memory_semantics))
3168 return;
3169
3170 /* GL and Vulkan don't have these */
3171 vtn_assert(scope != SpvScopeCrossDevice);
3172
3173 if (scope == SpvScopeSubgroup)
3174 return; /* Nothing to do here */
3175
3176 if (scope == SpvScopeWorkgroup) {
3177 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3178 return;
3179 }
3180
3181 /* There's only two scopes thing left */
3182 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3183
3184 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3185 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3186 return;
3187 }
3188
3189 /* Issue a bunch of more specific barriers */
3190 uint32_t bits = semantics;
3191 while (bits) {
3192 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3193 switch (semantic) {
3194 case SpvMemorySemanticsUniformMemoryMask:
3195 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3196 break;
3197 case SpvMemorySemanticsWorkgroupMemoryMask:
3198 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3199 break;
3200 case SpvMemorySemanticsAtomicCounterMemoryMask:
3201 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3202 break;
3203 case SpvMemorySemanticsImageMemoryMask:
3204 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3205 break;
3206 default:
3207 break;;
3208 }
3209 }
3210 }
3211
3212 static void
3213 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3214 const uint32_t *w, unsigned count)
3215 {
3216 switch (opcode) {
3217 case SpvOpEmitVertex:
3218 case SpvOpEmitStreamVertex:
3219 case SpvOpEndPrimitive:
3220 case SpvOpEndStreamPrimitive: {
3221 nir_intrinsic_op intrinsic_op;
3222 switch (opcode) {
3223 case SpvOpEmitVertex:
3224 case SpvOpEmitStreamVertex:
3225 intrinsic_op = nir_intrinsic_emit_vertex;
3226 break;
3227 case SpvOpEndPrimitive:
3228 case SpvOpEndStreamPrimitive:
3229 intrinsic_op = nir_intrinsic_end_primitive;
3230 break;
3231 default:
3232 unreachable("Invalid opcode");
3233 }
3234
3235 nir_intrinsic_instr *intrin =
3236 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3237
3238 switch (opcode) {
3239 case SpvOpEmitStreamVertex:
3240 case SpvOpEndStreamPrimitive: {
3241 unsigned stream = vtn_constant_uint(b, w[1]);
3242 nir_intrinsic_set_stream_id(intrin, stream);
3243 break;
3244 }
3245
3246 default:
3247 break;
3248 }
3249
3250 nir_builder_instr_insert(&b->nb, &intrin->instr);
3251 break;
3252 }
3253
3254 case SpvOpMemoryBarrier: {
3255 SpvScope scope = vtn_constant_uint(b, w[1]);
3256 SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
3257 vtn_emit_memory_barrier(b, scope, semantics);
3258 return;
3259 }
3260
3261 case SpvOpControlBarrier: {
3262 SpvScope memory_scope = vtn_constant_uint(b, w[2]);
3263 SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
3264 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3265
3266 SpvScope execution_scope = vtn_constant_uint(b, w[1]);
3267 if (execution_scope == SpvScopeWorkgroup)
3268 vtn_emit_barrier(b, nir_intrinsic_barrier);
3269 break;
3270 }
3271
3272 default:
3273 unreachable("unknown barrier instruction");
3274 }
3275 }
3276
3277 static unsigned
3278 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3279 SpvExecutionMode mode)
3280 {
3281 switch (mode) {
3282 case SpvExecutionModeInputPoints:
3283 case SpvExecutionModeOutputPoints:
3284 return 0; /* GL_POINTS */
3285 case SpvExecutionModeInputLines:
3286 return 1; /* GL_LINES */
3287 case SpvExecutionModeInputLinesAdjacency:
3288 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3289 case SpvExecutionModeTriangles:
3290 return 4; /* GL_TRIANGLES */
3291 case SpvExecutionModeInputTrianglesAdjacency:
3292 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3293 case SpvExecutionModeQuads:
3294 return 7; /* GL_QUADS */
3295 case SpvExecutionModeIsolines:
3296 return 0x8E7A; /* GL_ISOLINES */
3297 case SpvExecutionModeOutputLineStrip:
3298 return 3; /* GL_LINE_STRIP */
3299 case SpvExecutionModeOutputTriangleStrip:
3300 return 5; /* GL_TRIANGLE_STRIP */
3301 default:
3302 vtn_fail("Invalid primitive type: %s (%u)",
3303 spirv_executionmode_to_string(mode), mode);
3304 }
3305 }
3306
3307 static unsigned
3308 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3309 SpvExecutionMode mode)
3310 {
3311 switch (mode) {
3312 case SpvExecutionModeInputPoints:
3313 return 1;
3314 case SpvExecutionModeInputLines:
3315 return 2;
3316 case SpvExecutionModeInputLinesAdjacency:
3317 return 4;
3318 case SpvExecutionModeTriangles:
3319 return 3;
3320 case SpvExecutionModeInputTrianglesAdjacency:
3321 return 6;
3322 default:
3323 vtn_fail("Invalid GS input mode: %s (%u)",
3324 spirv_executionmode_to_string(mode), mode);
3325 }
3326 }
3327
3328 static gl_shader_stage
3329 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3330 {
3331 switch (model) {
3332 case SpvExecutionModelVertex:
3333 return MESA_SHADER_VERTEX;
3334 case SpvExecutionModelTessellationControl:
3335 return MESA_SHADER_TESS_CTRL;
3336 case SpvExecutionModelTessellationEvaluation:
3337 return MESA_SHADER_TESS_EVAL;
3338 case SpvExecutionModelGeometry:
3339 return MESA_SHADER_GEOMETRY;
3340 case SpvExecutionModelFragment:
3341 return MESA_SHADER_FRAGMENT;
3342 case SpvExecutionModelGLCompute:
3343 return MESA_SHADER_COMPUTE;
3344 case SpvExecutionModelKernel:
3345 return MESA_SHADER_KERNEL;
3346 default:
3347 vtn_fail("Unsupported execution model: %s (%u)",
3348 spirv_executionmodel_to_string(model), model);
3349 }
3350 }
3351
3352 #define spv_check_supported(name, cap) do { \
3353 if (!(b->options && b->options->caps.name)) \
3354 vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
3355 spirv_capability_to_string(cap), cap); \
3356 } while(0)
3357
3358
3359 void
3360 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3361 unsigned count)
3362 {
3363 struct vtn_value *entry_point = &b->values[w[2]];
3364 /* Let this be a name label regardless */
3365 unsigned name_words;
3366 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3367
3368 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3369 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3370 return;
3371
3372 vtn_assert(b->entry_point == NULL);
3373 b->entry_point = entry_point;
3374 }
3375
3376 static bool
3377 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3378 const uint32_t *w, unsigned count)
3379 {
3380 switch (opcode) {
3381 case SpvOpSource: {
3382 const char *lang;
3383 switch (w[1]) {
3384 default:
3385 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3386 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3387 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3388 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3389 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3390 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3391 }
3392
3393 uint32_t version = w[2];
3394
3395 const char *file =
3396 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3397
3398 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3399 break;
3400 }
3401
3402 case SpvOpSourceExtension:
3403 case SpvOpSourceContinued:
3404 case SpvOpExtension:
3405 case SpvOpModuleProcessed:
3406 /* Unhandled, but these are for debug so that's ok. */
3407 break;
3408
3409 case SpvOpCapability: {
3410 SpvCapability cap = w[1];
3411 switch (cap) {
3412 case SpvCapabilityMatrix:
3413 case SpvCapabilityShader:
3414 case SpvCapabilityGeometry:
3415 case SpvCapabilityGeometryPointSize:
3416 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3417 case SpvCapabilitySampledImageArrayDynamicIndexing:
3418 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3419 case SpvCapabilityStorageImageArrayDynamicIndexing:
3420 case SpvCapabilityImageRect:
3421 case SpvCapabilitySampledRect:
3422 case SpvCapabilitySampled1D:
3423 case SpvCapabilityImage1D:
3424 case SpvCapabilitySampledCubeArray:
3425 case SpvCapabilityImageCubeArray:
3426 case SpvCapabilitySampledBuffer:
3427 case SpvCapabilityImageBuffer:
3428 case SpvCapabilityImageQuery:
3429 case SpvCapabilityDerivativeControl:
3430 case SpvCapabilityInterpolationFunction:
3431 case SpvCapabilityMultiViewport:
3432 case SpvCapabilitySampleRateShading:
3433 case SpvCapabilityClipDistance:
3434 case SpvCapabilityCullDistance:
3435 case SpvCapabilityInputAttachment:
3436 case SpvCapabilityImageGatherExtended:
3437 case SpvCapabilityStorageImageExtendedFormats:
3438 break;
3439
3440 case SpvCapabilityLinkage:
3441 case SpvCapabilityVector16:
3442 case SpvCapabilityFloat16Buffer:
3443 case SpvCapabilitySparseResidency:
3444 vtn_warn("Unsupported SPIR-V capability: %s",
3445 spirv_capability_to_string(cap));
3446 break;
3447
3448 case SpvCapabilityMinLod:
3449 spv_check_supported(min_lod, cap);
3450 break;
3451
3452 case SpvCapabilityAtomicStorage:
3453 spv_check_supported(atomic_storage, cap);
3454 break;
3455
3456 case SpvCapabilityFloat64:
3457 spv_check_supported(float64, cap);
3458 break;
3459 case SpvCapabilityInt64:
3460 spv_check_supported(int64, cap);
3461 break;
3462 case SpvCapabilityInt16:
3463 spv_check_supported(int16, cap);
3464 break;
3465 case SpvCapabilityInt8:
3466 spv_check_supported(int8, cap);
3467 break;
3468
3469 case SpvCapabilityTransformFeedback:
3470 spv_check_supported(transform_feedback, cap);
3471 break;
3472
3473 case SpvCapabilityGeometryStreams:
3474 spv_check_supported(geometry_streams, cap);
3475 break;
3476
3477 case SpvCapabilityInt64Atomics:
3478 spv_check_supported(int64_atomics, cap);
3479 break;
3480
3481 case SpvCapabilityStorageImageMultisample:
3482 spv_check_supported(storage_image_ms, cap);
3483 break;
3484
3485 case SpvCapabilityAddresses:
3486 spv_check_supported(address, cap);
3487 break;
3488
3489 case SpvCapabilityKernel:
3490 spv_check_supported(kernel, cap);
3491 break;
3492
3493 case SpvCapabilityImageBasic:
3494 case SpvCapabilityImageReadWrite:
3495 case SpvCapabilityImageMipmap:
3496 case SpvCapabilityPipes:
3497 case SpvCapabilityDeviceEnqueue:
3498 case SpvCapabilityLiteralSampler:
3499 case SpvCapabilityGenericPointer:
3500 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3501 spirv_capability_to_string(cap));
3502 break;
3503
3504 case SpvCapabilityImageMSArray:
3505 spv_check_supported(image_ms_array, cap);
3506 break;
3507
3508 case SpvCapabilityTessellation:
3509 case SpvCapabilityTessellationPointSize:
3510 spv_check_supported(tessellation, cap);
3511 break;
3512
3513 case SpvCapabilityDrawParameters:
3514 spv_check_supported(draw_parameters, cap);
3515 break;
3516
3517 case SpvCapabilityStorageImageReadWithoutFormat:
3518 spv_check_supported(image_read_without_format, cap);
3519 break;
3520
3521 case SpvCapabilityStorageImageWriteWithoutFormat:
3522 spv_check_supported(image_write_without_format, cap);
3523 break;
3524
3525 case SpvCapabilityDeviceGroup:
3526 spv_check_supported(device_group, cap);
3527 break;
3528
3529 case SpvCapabilityMultiView:
3530 spv_check_supported(multiview, cap);
3531 break;
3532
3533 case SpvCapabilityGroupNonUniform:
3534 spv_check_supported(subgroup_basic, cap);
3535 break;
3536
3537 case SpvCapabilitySubgroupVoteKHR:
3538 case SpvCapabilityGroupNonUniformVote:
3539 spv_check_supported(subgroup_vote, cap);
3540 break;
3541
3542 case SpvCapabilitySubgroupBallotKHR:
3543 case SpvCapabilityGroupNonUniformBallot:
3544 spv_check_supported(subgroup_ballot, cap);
3545 break;
3546
3547 case SpvCapabilityGroupNonUniformShuffle:
3548 case SpvCapabilityGroupNonUniformShuffleRelative:
3549 spv_check_supported(subgroup_shuffle, cap);
3550 break;
3551
3552 case SpvCapabilityGroupNonUniformQuad:
3553 spv_check_supported(subgroup_quad, cap);
3554 break;
3555
3556 case SpvCapabilityGroupNonUniformArithmetic:
3557 case SpvCapabilityGroupNonUniformClustered:
3558 spv_check_supported(subgroup_arithmetic, cap);
3559 break;
3560
3561 case SpvCapabilityGroups:
3562 spv_check_supported(amd_shader_ballot, cap);
3563 break;
3564
3565 case SpvCapabilityVariablePointersStorageBuffer:
3566 case SpvCapabilityVariablePointers:
3567 spv_check_supported(variable_pointers, cap);
3568 b->variable_pointers = true;
3569 break;
3570
3571 case SpvCapabilityStorageUniformBufferBlock16:
3572 case SpvCapabilityStorageUniform16:
3573 case SpvCapabilityStoragePushConstant16:
3574 case SpvCapabilityStorageInputOutput16:
3575 spv_check_supported(storage_16bit, cap);
3576 break;
3577
3578 case SpvCapabilityShaderLayer:
3579 case SpvCapabilityShaderViewportIndex:
3580 case SpvCapabilityShaderViewportIndexLayerEXT:
3581 spv_check_supported(shader_viewport_index_layer, cap);
3582 break;
3583
3584 case SpvCapabilityStorageBuffer8BitAccess:
3585 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
3586 case SpvCapabilityStoragePushConstant8:
3587 spv_check_supported(storage_8bit, cap);
3588 break;
3589
3590 case SpvCapabilityShaderNonUniformEXT:
3591 spv_check_supported(descriptor_indexing, cap);
3592 break;
3593
3594 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3595 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3596 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3597 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3598 break;
3599
3600 case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
3601 case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
3602 case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
3603 case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
3604 case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
3605 case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
3606 case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
3607 spv_check_supported(descriptor_array_non_uniform_indexing, cap);
3608 break;
3609
3610 case SpvCapabilityRuntimeDescriptorArrayEXT:
3611 spv_check_supported(runtime_descriptor_array, cap);
3612 break;
3613
3614 case SpvCapabilityStencilExportEXT:
3615 spv_check_supported(stencil_export, cap);
3616 break;
3617
3618 case SpvCapabilitySampleMaskPostDepthCoverage:
3619 spv_check_supported(post_depth_coverage, cap);
3620 break;
3621
3622 case SpvCapabilityDenormFlushToZero:
3623 case SpvCapabilityDenormPreserve:
3624 case SpvCapabilitySignedZeroInfNanPreserve:
3625 case SpvCapabilityRoundingModeRTE:
3626 case SpvCapabilityRoundingModeRTZ:
3627 spv_check_supported(float_controls, cap);
3628 break;
3629
3630 case SpvCapabilityPhysicalStorageBufferAddressesEXT:
3631 spv_check_supported(physical_storage_buffer_address, cap);
3632 break;
3633
3634 case SpvCapabilityComputeDerivativeGroupQuadsNV:
3635 case SpvCapabilityComputeDerivativeGroupLinearNV:
3636 spv_check_supported(derivative_group, cap);
3637 break;
3638
3639 case SpvCapabilityFloat16:
3640 spv_check_supported(float16, cap);
3641 break;
3642
3643 case SpvCapabilityFragmentShaderSampleInterlockEXT:
3644 spv_check_supported(fragment_shader_sample_interlock, cap);
3645 break;
3646
3647 case SpvCapabilityFragmentShaderPixelInterlockEXT:
3648 spv_check_supported(fragment_shader_pixel_interlock, cap);
3649 break;
3650
3651 case SpvCapabilityDemoteToHelperInvocationEXT:
3652 spv_check_supported(demote_to_helper_invocation, cap);
3653 break;
3654
3655 case SpvCapabilityShaderClockKHR:
3656 spv_check_supported(shader_clock, cap);
3657 break;
3658
3659 default:
3660 vtn_fail("Unhandled capability: %s (%u)",
3661 spirv_capability_to_string(cap), cap);
3662 }
3663 break;
3664 }
3665
3666 case SpvOpExtInstImport:
3667 vtn_handle_extension(b, opcode, w, count);
3668 break;
3669
3670 case SpvOpMemoryModel:
3671 switch (w[1]) {
3672 case SpvAddressingModelPhysical32:
3673 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3674 "AddressingModelPhysical32 only supported for kernels");
3675 b->shader->info.cs.ptr_size = 32;
3676 b->physical_ptrs = true;
3677 b->options->shared_addr_format = nir_address_format_32bit_global;
3678 b->options->global_addr_format = nir_address_format_32bit_global;
3679 b->options->temp_addr_format = nir_address_format_32bit_global;
3680 break;
3681 case SpvAddressingModelPhysical64:
3682 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3683 "AddressingModelPhysical64 only supported for kernels");
3684 b->shader->info.cs.ptr_size = 64;
3685 b->physical_ptrs = true;
3686 b->options->shared_addr_format = nir_address_format_64bit_global;
3687 b->options->global_addr_format = nir_address_format_64bit_global;
3688 b->options->temp_addr_format = nir_address_format_64bit_global;
3689 break;
3690 case SpvAddressingModelLogical:
3691 vtn_fail_if(b->shader->info.stage >= MESA_SHADER_STAGES,
3692 "AddressingModelLogical only supported for shaders");
3693 b->shader->info.cs.ptr_size = 0;
3694 b->physical_ptrs = false;
3695 break;
3696 case SpvAddressingModelPhysicalStorageBuffer64EXT:
3697 vtn_fail_if(!b->options ||
3698 !b->options->caps.physical_storage_buffer_address,
3699 "AddressingModelPhysicalStorageBuffer64EXT not supported");
3700 break;
3701 default:
3702 vtn_fail("Unknown addressing model: %s (%u)",
3703 spirv_addressingmodel_to_string(w[1]), w[1]);
3704 break;
3705 }
3706
3707 vtn_assert(w[2] == SpvMemoryModelSimple ||
3708 w[2] == SpvMemoryModelGLSL450 ||
3709 w[2] == SpvMemoryModelOpenCL);
3710 break;
3711
3712 case SpvOpEntryPoint:
3713 vtn_handle_entry_point(b, w, count);
3714 break;
3715
3716 case SpvOpString:
3717 vtn_push_value(b, w[1], vtn_value_type_string)->str =
3718 vtn_string_literal(b, &w[2], count - 2, NULL);
3719 break;
3720
3721 case SpvOpName:
3722 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3723 break;
3724
3725 case SpvOpMemberName:
3726 /* TODO */
3727 break;
3728
3729 case SpvOpExecutionMode:
3730 case SpvOpExecutionModeId:
3731 case SpvOpDecorationGroup:
3732 case SpvOpDecorate:
3733 case SpvOpDecorateId:
3734 case SpvOpMemberDecorate:
3735 case SpvOpGroupDecorate:
3736 case SpvOpGroupMemberDecorate:
3737 case SpvOpDecorateString:
3738 case SpvOpMemberDecorateString:
3739 vtn_handle_decoration(b, opcode, w, count);
3740 break;
3741
3742 default:
3743 return false; /* End of preamble */
3744 }
3745
3746 return true;
3747 }
3748
3749 static void
3750 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3751 const struct vtn_decoration *mode, void *data)
3752 {
3753 vtn_assert(b->entry_point == entry_point);
3754
3755 switch(mode->exec_mode) {
3756 case SpvExecutionModeOriginUpperLeft:
3757 case SpvExecutionModeOriginLowerLeft:
3758 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3759 b->shader->info.fs.origin_upper_left =
3760 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3761 break;
3762
3763 case SpvExecutionModeEarlyFragmentTests:
3764 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3765 b->shader->info.fs.early_fragment_tests = true;
3766 break;
3767
3768 case SpvExecutionModePostDepthCoverage:
3769 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3770 b->shader->info.fs.post_depth_coverage = true;
3771 break;
3772
3773 case SpvExecutionModeInvocations:
3774 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3775 b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
3776 break;
3777
3778 case SpvExecutionModeDepthReplacing:
3779 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3780 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3781 break;
3782 case SpvExecutionModeDepthGreater:
3783 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3784 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3785 break;
3786 case SpvExecutionModeDepthLess:
3787 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3788 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3789 break;
3790 case SpvExecutionModeDepthUnchanged:
3791 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3792 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3793 break;
3794
3795 case SpvExecutionModeLocalSize:
3796 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
3797 b->shader->info.cs.local_size[0] = mode->operands[0];
3798 b->shader->info.cs.local_size[1] = mode->operands[1];
3799 b->shader->info.cs.local_size[2] = mode->operands[2];
3800 break;
3801
3802 case SpvExecutionModeLocalSizeId:
3803 b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
3804 b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
3805 b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
3806 break;
3807
3808 case SpvExecutionModeLocalSizeHint:
3809 case SpvExecutionModeLocalSizeHintId:
3810 break; /* Nothing to do with this */
3811
3812 case SpvExecutionModeOutputVertices:
3813 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3814 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3815 b->shader->info.tess.tcs_vertices_out = mode->operands[0];
3816 } else {
3817 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3818 b->shader->info.gs.vertices_out = mode->operands[0];
3819 }
3820 break;
3821
3822 case SpvExecutionModeInputPoints:
3823 case SpvExecutionModeInputLines:
3824 case SpvExecutionModeInputLinesAdjacency:
3825 case SpvExecutionModeTriangles:
3826 case SpvExecutionModeInputTrianglesAdjacency:
3827 case SpvExecutionModeQuads:
3828 case SpvExecutionModeIsolines:
3829 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3830 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3831 b->shader->info.tess.primitive_mode =
3832 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3833 } else {
3834 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3835 b->shader->info.gs.vertices_in =
3836 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3837 b->shader->info.gs.input_primitive =
3838 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3839 }
3840 break;
3841
3842 case SpvExecutionModeOutputPoints:
3843 case SpvExecutionModeOutputLineStrip:
3844 case SpvExecutionModeOutputTriangleStrip:
3845 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3846 b->shader->info.gs.output_primitive =
3847 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3848 break;
3849
3850 case SpvExecutionModeSpacingEqual:
3851 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3852 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3853 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3854 break;
3855 case SpvExecutionModeSpacingFractionalEven:
3856 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3857 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3858 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3859 break;
3860 case SpvExecutionModeSpacingFractionalOdd:
3861 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3862 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3863 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3864 break;
3865 case SpvExecutionModeVertexOrderCw:
3866 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3867 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3868 b->shader->info.tess.ccw = false;
3869 break;
3870 case SpvExecutionModeVertexOrderCcw:
3871 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3872 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3873 b->shader->info.tess.ccw = true;
3874 break;
3875 case SpvExecutionModePointMode:
3876 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3877 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3878 b->shader->info.tess.point_mode = true;
3879 break;
3880
3881 case SpvExecutionModePixelCenterInteger:
3882 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3883 b->shader->info.fs.pixel_center_integer = true;
3884 break;
3885
3886 case SpvExecutionModeXfb:
3887 b->shader->info.has_transform_feedback_varyings = true;
3888 break;
3889
3890 case SpvExecutionModeVecTypeHint:
3891 break; /* OpenCL */
3892
3893 case SpvExecutionModeContractionOff:
3894 if (b->shader->info.stage != MESA_SHADER_KERNEL)
3895 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
3896 spirv_executionmode_to_string(mode->exec_mode));
3897 else
3898 b->exact = true;
3899 break;
3900
3901 case SpvExecutionModeStencilRefReplacingEXT:
3902 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3903 break;
3904
3905 case SpvExecutionModeDerivativeGroupQuadsNV:
3906 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3907 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
3908 break;
3909
3910 case SpvExecutionModeDerivativeGroupLinearNV:
3911 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3912 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
3913 break;
3914
3915 case SpvExecutionModePixelInterlockOrderedEXT:
3916 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3917 b->shader->info.fs.pixel_interlock_ordered = true;
3918 break;
3919
3920 case SpvExecutionModePixelInterlockUnorderedEXT:
3921 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3922 b->shader->info.fs.pixel_interlock_unordered = true;
3923 break;
3924
3925 case SpvExecutionModeSampleInterlockOrderedEXT:
3926 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3927 b->shader->info.fs.sample_interlock_ordered = true;
3928 break;
3929
3930 case SpvExecutionModeSampleInterlockUnorderedEXT:
3931 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3932 b->shader->info.fs.sample_interlock_unordered = true;
3933 break;
3934
3935 case SpvExecutionModeDenormPreserve:
3936 case SpvExecutionModeDenormFlushToZero:
3937 case SpvExecutionModeSignedZeroInfNanPreserve:
3938 case SpvExecutionModeRoundingModeRTE:
3939 case SpvExecutionModeRoundingModeRTZ:
3940 /* Already handled in vtn_handle_rounding_mode_in_execution_mode() */
3941 break;
3942
3943 default:
3944 vtn_fail("Unhandled execution mode: %s (%u)",
3945 spirv_executionmode_to_string(mode->exec_mode),
3946 mode->exec_mode);
3947 }
3948 }
3949
3950 static void
3951 vtn_handle_rounding_mode_in_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3952 const struct vtn_decoration *mode, void *data)
3953 {
3954 vtn_assert(b->entry_point == entry_point);
3955
3956 unsigned execution_mode = 0;
3957
3958 switch(mode->exec_mode) {
3959 case SpvExecutionModeDenormPreserve:
3960 switch (mode->operands[0]) {
3961 case 16: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP16; break;
3962 case 32: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP32; break;
3963 case 64: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP64; break;
3964 default: vtn_fail("Floating point type not supported");
3965 }
3966 break;
3967 case SpvExecutionModeDenormFlushToZero:
3968 switch (mode->operands[0]) {
3969 case 16: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16; break;
3970 case 32: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32; break;
3971 case 64: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64; break;
3972 default: vtn_fail("Floating point type not supported");
3973 }
3974 break;
3975 case SpvExecutionModeSignedZeroInfNanPreserve:
3976 switch (mode->operands[0]) {
3977 case 16: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16; break;
3978 case 32: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32; break;
3979 case 64: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64; break;
3980 default: vtn_fail("Floating point type not supported");
3981 }
3982 break;
3983 case SpvExecutionModeRoundingModeRTE:
3984 switch (mode->operands[0]) {
3985 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16; break;
3986 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32; break;
3987 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64; break;
3988 default: vtn_fail("Floating point type not supported");
3989 }
3990 break;
3991 case SpvExecutionModeRoundingModeRTZ:
3992 switch (mode->operands[0]) {
3993 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16; break;
3994 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32; break;
3995 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64; break;
3996 default: vtn_fail("Floating point type not supported");
3997 }
3998 break;
3999
4000 default:
4001 break;
4002 }
4003
4004 b->shader->info.float_controls_execution_mode |= execution_mode;
4005 }
4006
4007 static bool
4008 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
4009 const uint32_t *w, unsigned count)
4010 {
4011 vtn_set_instruction_result_type(b, opcode, w, count);
4012
4013 switch (opcode) {
4014 case SpvOpSource:
4015 case SpvOpSourceContinued:
4016 case SpvOpSourceExtension:
4017 case SpvOpExtension:
4018 case SpvOpCapability:
4019 case SpvOpExtInstImport:
4020 case SpvOpMemoryModel:
4021 case SpvOpEntryPoint:
4022 case SpvOpExecutionMode:
4023 case SpvOpString:
4024 case SpvOpName:
4025 case SpvOpMemberName:
4026 case SpvOpDecorationGroup:
4027 case SpvOpDecorate:
4028 case SpvOpDecorateId:
4029 case SpvOpMemberDecorate:
4030 case SpvOpGroupDecorate:
4031 case SpvOpGroupMemberDecorate:
4032 case SpvOpDecorateString:
4033 case SpvOpMemberDecorateString:
4034 vtn_fail("Invalid opcode types and variables section");
4035 break;
4036
4037 case SpvOpTypeVoid:
4038 case SpvOpTypeBool:
4039 case SpvOpTypeInt:
4040 case SpvOpTypeFloat:
4041 case SpvOpTypeVector:
4042 case SpvOpTypeMatrix:
4043 case SpvOpTypeImage:
4044 case SpvOpTypeSampler:
4045 case SpvOpTypeSampledImage:
4046 case SpvOpTypeArray:
4047 case SpvOpTypeRuntimeArray:
4048 case SpvOpTypeStruct:
4049 case SpvOpTypeOpaque:
4050 case SpvOpTypePointer:
4051 case SpvOpTypeForwardPointer:
4052 case SpvOpTypeFunction:
4053 case SpvOpTypeEvent:
4054 case SpvOpTypeDeviceEvent:
4055 case SpvOpTypeReserveId:
4056 case SpvOpTypeQueue:
4057 case SpvOpTypePipe:
4058 vtn_handle_type(b, opcode, w, count);
4059 break;
4060
4061 case SpvOpConstantTrue:
4062 case SpvOpConstantFalse:
4063 case SpvOpConstant:
4064 case SpvOpConstantComposite:
4065 case SpvOpConstantSampler:
4066 case SpvOpConstantNull:
4067 case SpvOpSpecConstantTrue:
4068 case SpvOpSpecConstantFalse:
4069 case SpvOpSpecConstant:
4070 case SpvOpSpecConstantComposite:
4071 case SpvOpSpecConstantOp:
4072 vtn_handle_constant(b, opcode, w, count);
4073 break;
4074
4075 case SpvOpUndef:
4076 case SpvOpVariable:
4077 vtn_handle_variables(b, opcode, w, count);
4078 break;
4079
4080 default:
4081 return false; /* End of preamble */
4082 }
4083
4084 return true;
4085 }
4086
4087 static struct vtn_ssa_value *
4088 vtn_nir_select(struct vtn_builder *b, struct vtn_ssa_value *src0,
4089 struct vtn_ssa_value *src1, struct vtn_ssa_value *src2)
4090 {
4091 struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
4092 dest->type = src1->type;
4093
4094 if (glsl_type_is_vector_or_scalar(src1->type)) {
4095 dest->def = nir_bcsel(&b->nb, src0->def, src1->def, src2->def);
4096 } else {
4097 unsigned elems = glsl_get_length(src1->type);
4098
4099 dest->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
4100 for (unsigned i = 0; i < elems; i++) {
4101 dest->elems[i] = vtn_nir_select(b, src0,
4102 src1->elems[i], src2->elems[i]);
4103 }
4104 }
4105
4106 return dest;
4107 }
4108
4109 static void
4110 vtn_handle_select(struct vtn_builder *b, SpvOp opcode,
4111 const uint32_t *w, unsigned count)
4112 {
4113 /* Handle OpSelect up-front here because it needs to be able to handle
4114 * pointers and not just regular vectors and scalars.
4115 */
4116 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4117 struct vtn_value *cond_val = vtn_untyped_value(b, w[3]);
4118 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4119 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4120
4121 vtn_fail_if(obj1_val->type != res_val->type ||
4122 obj2_val->type != res_val->type,
4123 "Object types must match the result type in OpSelect");
4124
4125 vtn_fail_if((cond_val->type->base_type != vtn_base_type_scalar &&
4126 cond_val->type->base_type != vtn_base_type_vector) ||
4127 !glsl_type_is_boolean(cond_val->type->type),
4128 "OpSelect must have either a vector of booleans or "
4129 "a boolean as Condition type");
4130
4131 vtn_fail_if(cond_val->type->base_type == vtn_base_type_vector &&
4132 (res_val->type->base_type != vtn_base_type_vector ||
4133 res_val->type->length != cond_val->type->length),
4134 "When Condition type in OpSelect is a vector, the Result "
4135 "type must be a vector of the same length");
4136
4137 switch (res_val->type->base_type) {
4138 case vtn_base_type_scalar:
4139 case vtn_base_type_vector:
4140 case vtn_base_type_matrix:
4141 case vtn_base_type_array:
4142 case vtn_base_type_struct:
4143 /* OK. */
4144 break;
4145 case vtn_base_type_pointer:
4146 /* We need to have actual storage for pointer types. */
4147 vtn_fail_if(res_val->type->type == NULL,
4148 "Invalid pointer result type for OpSelect");
4149 break;
4150 default:
4151 vtn_fail("Result type of OpSelect must be a scalar, composite, or pointer");
4152 }
4153
4154 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4155 struct vtn_ssa_value *ssa = vtn_nir_select(b,
4156 vtn_ssa_value(b, w[3]), vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[5]));
4157
4158 vtn_push_ssa(b, w[2], res_type, ssa);
4159 }
4160
4161 static void
4162 vtn_handle_ptr(struct vtn_builder *b, SpvOp opcode,
4163 const uint32_t *w, unsigned count)
4164 {
4165 struct vtn_type *type1 = vtn_untyped_value(b, w[3])->type;
4166 struct vtn_type *type2 = vtn_untyped_value(b, w[4])->type;
4167 vtn_fail_if(type1->base_type != vtn_base_type_pointer ||
4168 type2->base_type != vtn_base_type_pointer,
4169 "%s operands must have pointer types",
4170 spirv_op_to_string(opcode));
4171 vtn_fail_if(type1->storage_class != type2->storage_class,
4172 "%s operands must have the same storage class",
4173 spirv_op_to_string(opcode));
4174
4175 struct vtn_type *vtn_type =
4176 vtn_value(b, w[1], vtn_value_type_type)->type;
4177 const struct glsl_type *type = vtn_type->type;
4178
4179 nir_address_format addr_format = vtn_mode_to_address_format(
4180 b, vtn_storage_class_to_mode(b, type1->storage_class, NULL, NULL));
4181
4182 nir_ssa_def *def;
4183
4184 switch (opcode) {
4185 case SpvOpPtrDiff: {
4186 /* OpPtrDiff returns the difference in number of elements (not byte offset). */
4187 unsigned elem_size, elem_align;
4188 glsl_get_natural_size_align_bytes(type1->deref->type,
4189 &elem_size, &elem_align);
4190
4191 def = nir_build_addr_isub(&b->nb,
4192 vtn_ssa_value(b, w[3])->def,
4193 vtn_ssa_value(b, w[4])->def,
4194 addr_format);
4195 def = nir_idiv(&b->nb, def, nir_imm_intN_t(&b->nb, elem_size, def->bit_size));
4196 def = nir_i2i(&b->nb, def, glsl_get_bit_size(type));
4197 break;
4198 }
4199
4200 case SpvOpPtrEqual:
4201 case SpvOpPtrNotEqual: {
4202 def = nir_build_addr_ieq(&b->nb,
4203 vtn_ssa_value(b, w[3])->def,
4204 vtn_ssa_value(b, w[4])->def,
4205 addr_format);
4206 if (opcode == SpvOpPtrNotEqual)
4207 def = nir_inot(&b->nb, def);
4208 break;
4209 }
4210
4211 default:
4212 unreachable("Invalid ptr operation");
4213 }
4214
4215 struct vtn_ssa_value *ssa_value = vtn_create_ssa_value(b, type);
4216 ssa_value->def = def;
4217 vtn_push_ssa(b, w[2], vtn_type, ssa_value);
4218 }
4219
4220 static bool
4221 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4222 const uint32_t *w, unsigned count)
4223 {
4224 switch (opcode) {
4225 case SpvOpLabel:
4226 break;
4227
4228 case SpvOpLoopMerge:
4229 case SpvOpSelectionMerge:
4230 /* This is handled by cfg pre-pass and walk_blocks */
4231 break;
4232
4233 case SpvOpUndef: {
4234 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4235 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4236 break;
4237 }
4238
4239 case SpvOpExtInst:
4240 vtn_handle_extension(b, opcode, w, count);
4241 break;
4242
4243 case SpvOpVariable:
4244 case SpvOpLoad:
4245 case SpvOpStore:
4246 case SpvOpCopyMemory:
4247 case SpvOpCopyMemorySized:
4248 case SpvOpAccessChain:
4249 case SpvOpPtrAccessChain:
4250 case SpvOpInBoundsAccessChain:
4251 case SpvOpInBoundsPtrAccessChain:
4252 case SpvOpArrayLength:
4253 case SpvOpConvertPtrToU:
4254 case SpvOpConvertUToPtr:
4255 vtn_handle_variables(b, opcode, w, count);
4256 break;
4257
4258 case SpvOpFunctionCall:
4259 vtn_handle_function_call(b, opcode, w, count);
4260 break;
4261
4262 case SpvOpSampledImage:
4263 case SpvOpImage:
4264 case SpvOpImageSampleImplicitLod:
4265 case SpvOpImageSampleExplicitLod:
4266 case SpvOpImageSampleDrefImplicitLod:
4267 case SpvOpImageSampleDrefExplicitLod:
4268 case SpvOpImageSampleProjImplicitLod:
4269 case SpvOpImageSampleProjExplicitLod:
4270 case SpvOpImageSampleProjDrefImplicitLod:
4271 case SpvOpImageSampleProjDrefExplicitLod:
4272 case SpvOpImageFetch:
4273 case SpvOpImageGather:
4274 case SpvOpImageDrefGather:
4275 case SpvOpImageQuerySizeLod:
4276 case SpvOpImageQueryLod:
4277 case SpvOpImageQueryLevels:
4278 case SpvOpImageQuerySamples:
4279 vtn_handle_texture(b, opcode, w, count);
4280 break;
4281
4282 case SpvOpImageRead:
4283 case SpvOpImageWrite:
4284 case SpvOpImageTexelPointer:
4285 vtn_handle_image(b, opcode, w, count);
4286 break;
4287
4288 case SpvOpImageQuerySize: {
4289 struct vtn_pointer *image =
4290 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4291 if (glsl_type_is_image(image->type->type)) {
4292 vtn_handle_image(b, opcode, w, count);
4293 } else {
4294 vtn_assert(glsl_type_is_sampler(image->type->type));
4295 vtn_handle_texture(b, opcode, w, count);
4296 }
4297 break;
4298 }
4299
4300 case SpvOpAtomicLoad:
4301 case SpvOpAtomicExchange:
4302 case SpvOpAtomicCompareExchange:
4303 case SpvOpAtomicCompareExchangeWeak:
4304 case SpvOpAtomicIIncrement:
4305 case SpvOpAtomicIDecrement:
4306 case SpvOpAtomicIAdd:
4307 case SpvOpAtomicISub:
4308 case SpvOpAtomicSMin:
4309 case SpvOpAtomicUMin:
4310 case SpvOpAtomicSMax:
4311 case SpvOpAtomicUMax:
4312 case SpvOpAtomicAnd:
4313 case SpvOpAtomicOr:
4314 case SpvOpAtomicXor: {
4315 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4316 if (pointer->value_type == vtn_value_type_image_pointer) {
4317 vtn_handle_image(b, opcode, w, count);
4318 } else {
4319 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4320 vtn_handle_atomics(b, opcode, w, count);
4321 }
4322 break;
4323 }
4324
4325 case SpvOpAtomicStore: {
4326 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4327 if (pointer->value_type == vtn_value_type_image_pointer) {
4328 vtn_handle_image(b, opcode, w, count);
4329 } else {
4330 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4331 vtn_handle_atomics(b, opcode, w, count);
4332 }
4333 break;
4334 }
4335
4336 case SpvOpSelect:
4337 vtn_handle_select(b, opcode, w, count);
4338 break;
4339
4340 case SpvOpSNegate:
4341 case SpvOpFNegate:
4342 case SpvOpNot:
4343 case SpvOpAny:
4344 case SpvOpAll:
4345 case SpvOpConvertFToU:
4346 case SpvOpConvertFToS:
4347 case SpvOpConvertSToF:
4348 case SpvOpConvertUToF:
4349 case SpvOpUConvert:
4350 case SpvOpSConvert:
4351 case SpvOpFConvert:
4352 case SpvOpQuantizeToF16:
4353 case SpvOpPtrCastToGeneric:
4354 case SpvOpGenericCastToPtr:
4355 case SpvOpIsNan:
4356 case SpvOpIsInf:
4357 case SpvOpIsFinite:
4358 case SpvOpIsNormal:
4359 case SpvOpSignBitSet:
4360 case SpvOpLessOrGreater:
4361 case SpvOpOrdered:
4362 case SpvOpUnordered:
4363 case SpvOpIAdd:
4364 case SpvOpFAdd:
4365 case SpvOpISub:
4366 case SpvOpFSub:
4367 case SpvOpIMul:
4368 case SpvOpFMul:
4369 case SpvOpUDiv:
4370 case SpvOpSDiv:
4371 case SpvOpFDiv:
4372 case SpvOpUMod:
4373 case SpvOpSRem:
4374 case SpvOpSMod:
4375 case SpvOpFRem:
4376 case SpvOpFMod:
4377 case SpvOpVectorTimesScalar:
4378 case SpvOpDot:
4379 case SpvOpIAddCarry:
4380 case SpvOpISubBorrow:
4381 case SpvOpUMulExtended:
4382 case SpvOpSMulExtended:
4383 case SpvOpShiftRightLogical:
4384 case SpvOpShiftRightArithmetic:
4385 case SpvOpShiftLeftLogical:
4386 case SpvOpLogicalEqual:
4387 case SpvOpLogicalNotEqual:
4388 case SpvOpLogicalOr:
4389 case SpvOpLogicalAnd:
4390 case SpvOpLogicalNot:
4391 case SpvOpBitwiseOr:
4392 case SpvOpBitwiseXor:
4393 case SpvOpBitwiseAnd:
4394 case SpvOpIEqual:
4395 case SpvOpFOrdEqual:
4396 case SpvOpFUnordEqual:
4397 case SpvOpINotEqual:
4398 case SpvOpFOrdNotEqual:
4399 case SpvOpFUnordNotEqual:
4400 case SpvOpULessThan:
4401 case SpvOpSLessThan:
4402 case SpvOpFOrdLessThan:
4403 case SpvOpFUnordLessThan:
4404 case SpvOpUGreaterThan:
4405 case SpvOpSGreaterThan:
4406 case SpvOpFOrdGreaterThan:
4407 case SpvOpFUnordGreaterThan:
4408 case SpvOpULessThanEqual:
4409 case SpvOpSLessThanEqual:
4410 case SpvOpFOrdLessThanEqual:
4411 case SpvOpFUnordLessThanEqual:
4412 case SpvOpUGreaterThanEqual:
4413 case SpvOpSGreaterThanEqual:
4414 case SpvOpFOrdGreaterThanEqual:
4415 case SpvOpFUnordGreaterThanEqual:
4416 case SpvOpDPdx:
4417 case SpvOpDPdy:
4418 case SpvOpFwidth:
4419 case SpvOpDPdxFine:
4420 case SpvOpDPdyFine:
4421 case SpvOpFwidthFine:
4422 case SpvOpDPdxCoarse:
4423 case SpvOpDPdyCoarse:
4424 case SpvOpFwidthCoarse:
4425 case SpvOpBitFieldInsert:
4426 case SpvOpBitFieldSExtract:
4427 case SpvOpBitFieldUExtract:
4428 case SpvOpBitReverse:
4429 case SpvOpBitCount:
4430 case SpvOpTranspose:
4431 case SpvOpOuterProduct:
4432 case SpvOpMatrixTimesScalar:
4433 case SpvOpVectorTimesMatrix:
4434 case SpvOpMatrixTimesVector:
4435 case SpvOpMatrixTimesMatrix:
4436 vtn_handle_alu(b, opcode, w, count);
4437 break;
4438
4439 case SpvOpBitcast:
4440 vtn_handle_bitcast(b, w, count);
4441 break;
4442
4443 case SpvOpVectorExtractDynamic:
4444 case SpvOpVectorInsertDynamic:
4445 case SpvOpVectorShuffle:
4446 case SpvOpCompositeConstruct:
4447 case SpvOpCompositeExtract:
4448 case SpvOpCompositeInsert:
4449 case SpvOpCopyLogical:
4450 case SpvOpCopyObject:
4451 vtn_handle_composite(b, opcode, w, count);
4452 break;
4453
4454 case SpvOpEmitVertex:
4455 case SpvOpEndPrimitive:
4456 case SpvOpEmitStreamVertex:
4457 case SpvOpEndStreamPrimitive:
4458 case SpvOpControlBarrier:
4459 case SpvOpMemoryBarrier:
4460 vtn_handle_barrier(b, opcode, w, count);
4461 break;
4462
4463 case SpvOpGroupNonUniformElect:
4464 case SpvOpGroupNonUniformAll:
4465 case SpvOpGroupNonUniformAny:
4466 case SpvOpGroupNonUniformAllEqual:
4467 case SpvOpGroupNonUniformBroadcast:
4468 case SpvOpGroupNonUniformBroadcastFirst:
4469 case SpvOpGroupNonUniformBallot:
4470 case SpvOpGroupNonUniformInverseBallot:
4471 case SpvOpGroupNonUniformBallotBitExtract:
4472 case SpvOpGroupNonUniformBallotBitCount:
4473 case SpvOpGroupNonUniformBallotFindLSB:
4474 case SpvOpGroupNonUniformBallotFindMSB:
4475 case SpvOpGroupNonUniformShuffle:
4476 case SpvOpGroupNonUniformShuffleXor:
4477 case SpvOpGroupNonUniformShuffleUp:
4478 case SpvOpGroupNonUniformShuffleDown:
4479 case SpvOpGroupNonUniformIAdd:
4480 case SpvOpGroupNonUniformFAdd:
4481 case SpvOpGroupNonUniformIMul:
4482 case SpvOpGroupNonUniformFMul:
4483 case SpvOpGroupNonUniformSMin:
4484 case SpvOpGroupNonUniformUMin:
4485 case SpvOpGroupNonUniformFMin:
4486 case SpvOpGroupNonUniformSMax:
4487 case SpvOpGroupNonUniformUMax:
4488 case SpvOpGroupNonUniformFMax:
4489 case SpvOpGroupNonUniformBitwiseAnd:
4490 case SpvOpGroupNonUniformBitwiseOr:
4491 case SpvOpGroupNonUniformBitwiseXor:
4492 case SpvOpGroupNonUniformLogicalAnd:
4493 case SpvOpGroupNonUniformLogicalOr:
4494 case SpvOpGroupNonUniformLogicalXor:
4495 case SpvOpGroupNonUniformQuadBroadcast:
4496 case SpvOpGroupNonUniformQuadSwap:
4497 case SpvOpGroupAll:
4498 case SpvOpGroupAny:
4499 case SpvOpGroupBroadcast:
4500 case SpvOpGroupIAdd:
4501 case SpvOpGroupFAdd:
4502 case SpvOpGroupFMin:
4503 case SpvOpGroupUMin:
4504 case SpvOpGroupSMin:
4505 case SpvOpGroupFMax:
4506 case SpvOpGroupUMax:
4507 case SpvOpGroupSMax:
4508 case SpvOpSubgroupBallotKHR:
4509 case SpvOpSubgroupFirstInvocationKHR:
4510 case SpvOpSubgroupReadInvocationKHR:
4511 case SpvOpSubgroupAllKHR:
4512 case SpvOpSubgroupAnyKHR:
4513 case SpvOpSubgroupAllEqualKHR:
4514 case SpvOpGroupIAddNonUniformAMD:
4515 case SpvOpGroupFAddNonUniformAMD:
4516 case SpvOpGroupFMinNonUniformAMD:
4517 case SpvOpGroupUMinNonUniformAMD:
4518 case SpvOpGroupSMinNonUniformAMD:
4519 case SpvOpGroupFMaxNonUniformAMD:
4520 case SpvOpGroupUMaxNonUniformAMD:
4521 case SpvOpGroupSMaxNonUniformAMD:
4522 vtn_handle_subgroup(b, opcode, w, count);
4523 break;
4524
4525 case SpvOpPtrDiff:
4526 case SpvOpPtrEqual:
4527 case SpvOpPtrNotEqual:
4528 vtn_handle_ptr(b, opcode, w, count);
4529 break;
4530
4531 case SpvOpBeginInvocationInterlockEXT:
4532 vtn_emit_barrier(b, nir_intrinsic_begin_invocation_interlock);
4533 break;
4534
4535 case SpvOpEndInvocationInterlockEXT:
4536 vtn_emit_barrier(b, nir_intrinsic_end_invocation_interlock);
4537 break;
4538
4539 case SpvOpDemoteToHelperInvocationEXT: {
4540 nir_intrinsic_instr *intrin =
4541 nir_intrinsic_instr_create(b->shader, nir_intrinsic_demote);
4542 nir_builder_instr_insert(&b->nb, &intrin->instr);
4543 break;
4544 }
4545
4546 case SpvOpIsHelperInvocationEXT: {
4547 nir_intrinsic_instr *intrin =
4548 nir_intrinsic_instr_create(b->shader, nir_intrinsic_is_helper_invocation);
4549 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 1, 1, NULL);
4550 nir_builder_instr_insert(&b->nb, &intrin->instr);
4551
4552 struct vtn_type *res_type =
4553 vtn_value(b, w[1], vtn_value_type_type)->type;
4554 struct vtn_ssa_value *val = vtn_create_ssa_value(b, res_type->type);
4555 val->def = &intrin->dest.ssa;
4556
4557 vtn_push_ssa(b, w[2], res_type, val);
4558 break;
4559 }
4560
4561 case SpvOpReadClockKHR: {
4562 assert(vtn_constant_uint(b, w[3]) == SpvScopeSubgroup);
4563
4564 /* Operation supports two result types: uvec2 and uint64_t. The NIR
4565 * intrinsic gives uvec2, so pack the result for the other case.
4566 */
4567 nir_intrinsic_instr *intrin =
4568 nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_shader_clock);
4569 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 2, 32, NULL);
4570 nir_builder_instr_insert(&b->nb, &intrin->instr);
4571
4572 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
4573 const struct glsl_type *dest_type = type->type;
4574 nir_ssa_def *result;
4575
4576 if (glsl_type_is_vector(dest_type)) {
4577 assert(dest_type == glsl_vector_type(GLSL_TYPE_UINT, 2));
4578 result = &intrin->dest.ssa;
4579 } else {
4580 assert(glsl_type_is_scalar(dest_type));
4581 assert(glsl_get_base_type(dest_type) == GLSL_TYPE_UINT64);
4582 result = nir_pack_64_2x32(&b->nb, &intrin->dest.ssa);
4583 }
4584
4585 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
4586 val->type = type;
4587 val->ssa = vtn_create_ssa_value(b, dest_type);
4588 val->ssa->def = result;
4589 break;
4590 }
4591
4592 default:
4593 vtn_fail_with_opcode("Unhandled opcode", opcode);
4594 }
4595
4596 return true;
4597 }
4598
4599 struct vtn_builder*
4600 vtn_create_builder(const uint32_t *words, size_t word_count,
4601 gl_shader_stage stage, const char *entry_point_name,
4602 const struct spirv_to_nir_options *options)
4603 {
4604 /* Initialize the vtn_builder object */
4605 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
4606 struct spirv_to_nir_options *dup_options =
4607 ralloc(b, struct spirv_to_nir_options);
4608 *dup_options = *options;
4609
4610 b->spirv = words;
4611 b->spirv_word_count = word_count;
4612 b->file = NULL;
4613 b->line = -1;
4614 b->col = -1;
4615 exec_list_make_empty(&b->functions);
4616 b->entry_point_stage = stage;
4617 b->entry_point_name = entry_point_name;
4618 b->options = dup_options;
4619
4620 /*
4621 * Handle the SPIR-V header (first 5 dwords).
4622 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
4623 */
4624 if (word_count <= 5)
4625 goto fail;
4626
4627 if (words[0] != SpvMagicNumber) {
4628 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
4629 goto fail;
4630 }
4631 if (words[1] < 0x10000) {
4632 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
4633 goto fail;
4634 }
4635
4636 uint16_t generator_id = words[2] >> 16;
4637 uint16_t generator_version = words[2];
4638
4639 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
4640 * but this should at least let us shut the workaround off for modern
4641 * versions of GLSLang.
4642 */
4643 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
4644
4645 /* words[2] == generator magic */
4646 unsigned value_id_bound = words[3];
4647 if (words[4] != 0) {
4648 vtn_err("words[4] was %u, want 0", words[4]);
4649 goto fail;
4650 }
4651
4652 b->value_id_bound = value_id_bound;
4653 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
4654
4655 return b;
4656 fail:
4657 ralloc_free(b);
4658 return NULL;
4659 }
4660
4661 static nir_function *
4662 vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
4663 nir_function *entry_point)
4664 {
4665 vtn_assert(entry_point == b->entry_point->func->impl->function);
4666 vtn_fail_if(!entry_point->name, "entry points are required to have a name");
4667 const char *func_name =
4668 ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
4669
4670 /* we shouldn't have any inputs yet */
4671 vtn_assert(!entry_point->shader->num_inputs);
4672 vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
4673
4674 nir_function *main_entry_point = nir_function_create(b->shader, func_name);
4675 main_entry_point->impl = nir_function_impl_create(main_entry_point);
4676 nir_builder_init(&b->nb, main_entry_point->impl);
4677 b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
4678 b->func_param_idx = 0;
4679
4680 nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
4681
4682 for (unsigned i = 0; i < entry_point->num_params; ++i) {
4683 struct vtn_type *param_type = b->entry_point->func->type->params[i];
4684
4685 /* consider all pointers to function memory to be parameters passed
4686 * by value
4687 */
4688 bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
4689 param_type->storage_class == SpvStorageClassFunction;
4690
4691 /* input variable */
4692 nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
4693 in_var->data.mode = nir_var_shader_in;
4694 in_var->data.read_only = true;
4695 in_var->data.location = i;
4696
4697 if (is_by_val)
4698 in_var->type = param_type->deref->type;
4699 else
4700 in_var->type = param_type->type;
4701
4702 nir_shader_add_variable(b->nb.shader, in_var);
4703 b->nb.shader->num_inputs++;
4704
4705 /* we have to copy the entire variable into function memory */
4706 if (is_by_val) {
4707 nir_variable *copy_var =
4708 nir_local_variable_create(main_entry_point->impl, in_var->type,
4709 "copy_in");
4710 nir_copy_var(&b->nb, copy_var, in_var);
4711 call->params[i] =
4712 nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
4713 } else {
4714 call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
4715 }
4716 }
4717
4718 nir_builder_instr_insert(&b->nb, &call->instr);
4719
4720 return main_entry_point;
4721 }
4722
4723 nir_shader *
4724 spirv_to_nir(const uint32_t *words, size_t word_count,
4725 struct nir_spirv_specialization *spec, unsigned num_spec,
4726 gl_shader_stage stage, const char *entry_point_name,
4727 const struct spirv_to_nir_options *options,
4728 const nir_shader_compiler_options *nir_options)
4729
4730 {
4731 const uint32_t *word_end = words + word_count;
4732
4733 struct vtn_builder *b = vtn_create_builder(words, word_count,
4734 stage, entry_point_name,
4735 options);
4736
4737 if (b == NULL)
4738 return NULL;
4739
4740 /* See also _vtn_fail() */
4741 if (setjmp(b->fail_jump)) {
4742 ralloc_free(b);
4743 return NULL;
4744 }
4745
4746 /* Skip the SPIR-V header, handled at vtn_create_builder */
4747 words+= 5;
4748
4749 b->shader = nir_shader_create(b, stage, nir_options, NULL);
4750
4751 /* Handle all the preamble instructions */
4752 words = vtn_foreach_instruction(b, words, word_end,
4753 vtn_handle_preamble_instruction);
4754
4755 if (b->entry_point == NULL) {
4756 vtn_fail("Entry point not found");
4757 ralloc_free(b);
4758 return NULL;
4759 }
4760
4761 /* Set shader info defaults */
4762 b->shader->info.gs.invocations = 1;
4763
4764 /* Parse rounding mode execution modes. This has to happen earlier than
4765 * other changes in the execution modes since they can affect, for example,
4766 * the result of the floating point constants.
4767 */
4768 vtn_foreach_execution_mode(b, b->entry_point,
4769 vtn_handle_rounding_mode_in_execution_mode, NULL);
4770
4771 b->specializations = spec;
4772 b->num_specializations = num_spec;
4773
4774 /* Handle all variable, type, and constant instructions */
4775 words = vtn_foreach_instruction(b, words, word_end,
4776 vtn_handle_variable_or_type_instruction);
4777
4778 /* Parse execution modes */
4779 vtn_foreach_execution_mode(b, b->entry_point,
4780 vtn_handle_execution_mode, NULL);
4781
4782 if (b->workgroup_size_builtin) {
4783 vtn_assert(b->workgroup_size_builtin->type->type ==
4784 glsl_vector_type(GLSL_TYPE_UINT, 3));
4785
4786 nir_const_value *const_size =
4787 b->workgroup_size_builtin->constant->values;
4788
4789 b->shader->info.cs.local_size[0] = const_size[0].u32;
4790 b->shader->info.cs.local_size[1] = const_size[1].u32;
4791 b->shader->info.cs.local_size[2] = const_size[2].u32;
4792 }
4793
4794 /* Set types on all vtn_values */
4795 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
4796
4797 vtn_build_cfg(b, words, word_end);
4798
4799 assert(b->entry_point->value_type == vtn_value_type_function);
4800 b->entry_point->func->referenced = true;
4801
4802 bool progress;
4803 do {
4804 progress = false;
4805 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
4806 if (func->referenced && !func->emitted) {
4807 b->const_table = _mesa_pointer_hash_table_create(b);
4808
4809 vtn_function_emit(b, func, vtn_handle_body_instruction);
4810 progress = true;
4811 }
4812 }
4813 } while (progress);
4814
4815 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
4816 nir_function *entry_point = b->entry_point->func->impl->function;
4817 vtn_assert(entry_point);
4818
4819 /* post process entry_points with input params */
4820 if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
4821 entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
4822
4823 entry_point->is_entrypoint = true;
4824
4825 /* When multiple shader stages exist in the same SPIR-V module, we
4826 * generate input and output variables for every stage, in the same
4827 * NIR program. These dead variables can be invalid NIR. For example,
4828 * TCS outputs must be per-vertex arrays (or decorated 'patch'), while
4829 * VS output variables wouldn't be.
4830 *
4831 * To ensure we have valid NIR, we eliminate any dead inputs and outputs
4832 * right away. In order to do so, we must lower any constant initializers
4833 * on outputs so nir_remove_dead_variables sees that they're written to.
4834 */
4835 nir_lower_constant_initializers(b->shader, nir_var_shader_out);
4836 nir_remove_dead_variables(b->shader,
4837 nir_var_shader_in | nir_var_shader_out);
4838
4839 /* We sometimes generate bogus derefs that, while never used, give the
4840 * validator a bit of heartburn. Run dead code to get rid of them.
4841 */
4842 nir_opt_dce(b->shader);
4843
4844 /* Unparent the shader from the vtn_builder before we delete the builder */
4845 ralloc_steal(NULL, b->shader);
4846
4847 nir_shader *shader = b->shader;
4848 ralloc_free(b);
4849
4850 return shader;
4851 }