freedreno/ir3: also track # of nops for shader-db
[mesa.git] / src / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "compiler/shader_enums.h"
31
32 #include "util/bitscan.h"
33 #include "util/list.h"
34 #include "util/set.h"
35 #include "util/u_debug.h"
36
37 #include "instr-a3xx.h"
38
39 /* low level intermediate representation of an adreno shader program */
40
41 struct ir3_compiler;
42 struct ir3;
43 struct ir3_instruction;
44 struct ir3_block;
45
46 struct ir3_info {
47 uint32_t gpu_id;
48 uint16_t sizedwords;
49 uint16_t instrs_count; /* expanded to account for rpt's */
50 uint16_t nops_count; /* # of nop instructions, including nopN */
51 /* NOTE: max_reg, etc, does not include registers not touched
52 * by the shader (ie. vertex fetched via VFD_DECODE but not
53 * touched by shader)
54 */
55 int8_t max_reg; /* highest GPR # used by shader */
56 int8_t max_half_reg;
57 int16_t max_const;
58
59 /* number of sync bits: */
60 uint16_t ss, sy;
61 };
62
63 struct ir3_register {
64 enum {
65 IR3_REG_CONST = 0x001,
66 IR3_REG_IMMED = 0x002,
67 IR3_REG_HALF = 0x004,
68 /* high registers are used for some things in compute shaders,
69 * for example. Seems to be for things that are global to all
70 * threads in a wave, so possibly these are global/shared by
71 * all the threads in the wave?
72 */
73 IR3_REG_HIGH = 0x008,
74 IR3_REG_RELATIV= 0x010,
75 IR3_REG_R = 0x020,
76 /* Most instructions, it seems, can do float abs/neg but not
77 * integer. The CP pass needs to know what is intended (int or
78 * float) in order to do the right thing. For this reason the
79 * abs/neg flags are split out into float and int variants. In
80 * addition, .b (bitwise) operations, the negate is actually a
81 * bitwise not, so split that out into a new flag to make it
82 * more clear.
83 */
84 IR3_REG_FNEG = 0x040,
85 IR3_REG_FABS = 0x080,
86 IR3_REG_SNEG = 0x100,
87 IR3_REG_SABS = 0x200,
88 IR3_REG_BNOT = 0x400,
89 IR3_REG_EVEN = 0x800,
90 IR3_REG_POS_INF= 0x1000,
91 /* (ei) flag, end-input? Set on last bary, presumably to signal
92 * that the shader needs no more input:
93 */
94 IR3_REG_EI = 0x2000,
95 /* meta-flags, for intermediate stages of IR, ie.
96 * before register assignment is done:
97 */
98 IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
99 IR3_REG_ARRAY = 0x8000,
100
101 } flags;
102
103 bool merged : 1; /* half-regs conflict with full regs (ie >= a6xx) */
104
105 /* normal registers:
106 * the component is in the low two bits of the reg #, so
107 * rN.x becomes: (N << 2) | x
108 */
109 uint16_t num;
110 union {
111 /* immediate: */
112 int32_t iim_val;
113 uint32_t uim_val;
114 float fim_val;
115 /* relative: */
116 struct {
117 uint16_t id;
118 int16_t offset;
119 } array;
120 };
121
122 /* For IR3_REG_SSA, src registers contain ptr back to assigning
123 * instruction.
124 *
125 * For IR3_REG_ARRAY, the pointer is back to the last dependent
126 * array access (although the net effect is the same, it points
127 * back to a previous instruction that we depend on).
128 */
129 struct ir3_instruction *instr;
130
131 union {
132 /* used for cat5 instructions, but also for internal/IR level
133 * tracking of what registers are read/written by an instruction.
134 * wrmask may be a bad name since it is used to represent both
135 * src and dst that touch multiple adjacent registers.
136 */
137 unsigned wrmask;
138 /* for relative addressing, 32bits for array size is too small,
139 * but otoh we don't need to deal with disjoint sets, so instead
140 * use a simple size field (number of scalar components).
141 */
142 unsigned size;
143 };
144 };
145
146 /*
147 * Stupid/simple growable array implementation:
148 */
149 #define DECLARE_ARRAY(type, name) \
150 unsigned name ## _count, name ## _sz; \
151 type * name;
152
153 #define array_insert(ctx, arr, val) do { \
154 if (arr ## _count == arr ## _sz) { \
155 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
156 arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
157 } \
158 arr[arr ##_count++] = val; \
159 } while (0)
160
161 struct ir3_instruction {
162 struct ir3_block *block;
163 opc_t opc;
164 enum {
165 /* (sy) flag is set on first instruction, and after sample
166 * instructions (probably just on RAW hazard).
167 */
168 IR3_INSTR_SY = 0x001,
169 /* (ss) flag is set on first instruction, and first instruction
170 * to depend on the result of "long" instructions (RAW hazard):
171 *
172 * rcp, rsq, log2, exp2, sin, cos, sqrt
173 *
174 * It seems to synchronize until all in-flight instructions are
175 * completed, for example:
176 *
177 * rsq hr1.w, hr1.w
178 * add.f hr2.z, (neg)hr2.z, hc0.y
179 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
180 * rsq hr2.x, hr2.x
181 * (rpt1)nop
182 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
183 * nop
184 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
185 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
186 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
187 *
188 * The last mul.f does not have (ss) set, presumably because the
189 * (ss) on the previous instruction does the job.
190 *
191 * The blob driver also seems to set it on WAR hazards, although
192 * not really clear if this is needed or just blob compiler being
193 * sloppy. So far I haven't found a case where removing the (ss)
194 * causes problems for WAR hazard, but I could just be getting
195 * lucky:
196 *
197 * rcp r1.y, r3.y
198 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
199 *
200 */
201 IR3_INSTR_SS = 0x002,
202 /* (jp) flag is set on jump targets:
203 */
204 IR3_INSTR_JP = 0x004,
205 IR3_INSTR_UL = 0x008,
206 IR3_INSTR_3D = 0x010,
207 IR3_INSTR_A = 0x020,
208 IR3_INSTR_O = 0x040,
209 IR3_INSTR_P = 0x080,
210 IR3_INSTR_S = 0x100,
211 IR3_INSTR_S2EN = 0x200,
212 IR3_INSTR_G = 0x400,
213 IR3_INSTR_SAT = 0x800,
214 /* meta-flags, for intermediate stages of IR, ie.
215 * before register assignment is done:
216 */
217 IR3_INSTR_MARK = 0x1000,
218 IR3_INSTR_UNUSED= 0x2000,
219 } flags;
220 uint8_t repeat;
221 uint8_t nop;
222 #ifdef DEBUG
223 unsigned regs_max;
224 #endif
225 unsigned regs_count;
226 struct ir3_register **regs;
227 union {
228 struct {
229 char inv;
230 char comp;
231 int immed;
232 struct ir3_block *target;
233 } cat0;
234 struct {
235 type_t src_type, dst_type;
236 } cat1;
237 struct {
238 enum {
239 IR3_COND_LT = 0,
240 IR3_COND_LE = 1,
241 IR3_COND_GT = 2,
242 IR3_COND_GE = 3,
243 IR3_COND_EQ = 4,
244 IR3_COND_NE = 5,
245 } condition;
246 } cat2;
247 struct {
248 unsigned samp, tex;
249 type_t type;
250 } cat5;
251 struct {
252 type_t type;
253 int src_offset;
254 int dst_offset;
255 int iim_val : 3; /* for ldgb/stgb, # of components */
256 unsigned d : 3;
257 bool typed : 1;
258 } cat6;
259 struct {
260 unsigned w : 1; /* write */
261 unsigned r : 1; /* read */
262 unsigned l : 1; /* local */
263 unsigned g : 1; /* global */
264 } cat7;
265 /* for meta-instructions, just used to hold extra data
266 * before instruction scheduling, etc
267 */
268 struct {
269 int off; /* component/offset */
270 } fo;
271 struct {
272 unsigned samp, tex;
273 unsigned input_offset;
274 } prefetch;
275 struct {
276 /* for sysvals, identifies the sysval type. Mostly so we can
277 * identify the special cases where a sysval should not be DCE'd
278 * (currently, just pre-fs texture fetch)
279 */
280 gl_system_value sysval;
281 } input;
282 };
283
284 /* transient values used during various algorithms: */
285 union {
286 /* The instruction depth is the max dependency distance to output.
287 *
288 * You can also think of it as the "cost", if we did any sort of
289 * optimization for register footprint. Ie. a value that is just
290 * result of moving a const to a reg would have a low cost, so to
291 * it could make sense to duplicate the instruction at various
292 * points where the result is needed to reduce register footprint.
293 */
294 int depth;
295 /* When we get to the RA stage, we no longer need depth, but
296 * we do need instruction's position/name:
297 */
298 struct {
299 uint16_t ip;
300 uint16_t name;
301 };
302 };
303
304 /* used for per-pass extra instruction data.
305 *
306 * TODO we should remove the per-pass data like this and 'use_count'
307 * and do something similar to what RA does w/ ir3_ra_instr_data..
308 * ie. use the ir3_count_instructions pass, and then use instr->ip
309 * to index into a table of pass-private data.
310 */
311 void *data;
312
313 int sun; /* Sethi–Ullman number, used by sched */
314 int use_count; /* currently just updated/used by cp */
315
316 /* Used during CP and RA stages. For fanin and shader inputs/
317 * outputs where we need a sequence of consecutive registers,
318 * keep track of each src instructions left (ie 'n-1') and right
319 * (ie 'n+1') neighbor. The front-end must insert enough mov's
320 * to ensure that each instruction has at most one left and at
321 * most one right neighbor. During the copy-propagation pass,
322 * we only remove mov's when we can preserve this constraint.
323 * And during the RA stage, we use the neighbor information to
324 * allocate a block of registers in one shot.
325 *
326 * TODO: maybe just add something like:
327 * struct ir3_instruction_ref {
328 * struct ir3_instruction *instr;
329 * unsigned cnt;
330 * }
331 *
332 * Or can we get away without the refcnt stuff? It seems like
333 * it should be overkill.. the problem is if, potentially after
334 * already eliminating some mov's, if you have a single mov that
335 * needs to be grouped with it's neighbors in two different
336 * places (ex. shader output and a fanin).
337 */
338 struct {
339 struct ir3_instruction *left, *right;
340 uint16_t left_cnt, right_cnt;
341 } cp;
342
343 /* an instruction can reference at most one address register amongst
344 * it's src/dst registers. Beyond that, you need to insert mov's.
345 *
346 * NOTE: do not write this directly, use ir3_instr_set_address()
347 */
348 struct ir3_instruction *address;
349
350 /* Tracking for additional dependent instructions. Used to handle
351 * barriers, WAR hazards for arrays/SSBOs/etc.
352 */
353 DECLARE_ARRAY(struct ir3_instruction *, deps);
354
355 /*
356 * From PoV of instruction scheduling, not execution (ie. ignores global/
357 * local distinction):
358 * shared image atomic SSBO everything
359 * barrier()/ - R/W R/W R/W R/W X
360 * groupMemoryBarrier()
361 * memoryBarrier() - R/W R/W
362 * (but only images declared coherent?)
363 * memoryBarrierAtomic() - R/W
364 * memoryBarrierBuffer() - R/W
365 * memoryBarrierImage() - R/W
366 * memoryBarrierShared() - R/W
367 *
368 * TODO I think for SSBO/image/shared, in cases where we can determine
369 * which variable is accessed, we don't need to care about accesses to
370 * different variables (unless declared coherent??)
371 */
372 enum {
373 IR3_BARRIER_EVERYTHING = 1 << 0,
374 IR3_BARRIER_SHARED_R = 1 << 1,
375 IR3_BARRIER_SHARED_W = 1 << 2,
376 IR3_BARRIER_IMAGE_R = 1 << 3,
377 IR3_BARRIER_IMAGE_W = 1 << 4,
378 IR3_BARRIER_BUFFER_R = 1 << 5,
379 IR3_BARRIER_BUFFER_W = 1 << 6,
380 IR3_BARRIER_ARRAY_R = 1 << 7,
381 IR3_BARRIER_ARRAY_W = 1 << 8,
382 } barrier_class, barrier_conflict;
383
384 /* Entry in ir3_block's instruction list: */
385 struct list_head node;
386
387 #ifdef DEBUG
388 uint32_t serialno;
389 #endif
390 };
391
392 static inline struct ir3_instruction *
393 ir3_neighbor_first(struct ir3_instruction *instr)
394 {
395 int cnt = 0;
396 while (instr->cp.left) {
397 instr = instr->cp.left;
398 if (++cnt > 0xffff) {
399 debug_assert(0);
400 break;
401 }
402 }
403 return instr;
404 }
405
406 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
407 {
408 int num = 1;
409
410 debug_assert(!instr->cp.left);
411
412 while (instr->cp.right) {
413 num++;
414 instr = instr->cp.right;
415 if (num > 0xffff) {
416 debug_assert(0);
417 break;
418 }
419 }
420
421 return num;
422 }
423
424 struct ir3 {
425 struct ir3_compiler *compiler;
426 gl_shader_stage type;
427
428 unsigned ninputs, noutputs;
429 struct ir3_instruction **inputs;
430 struct ir3_instruction **outputs;
431
432 /* Track bary.f (and ldlv) instructions.. this is needed in
433 * scheduling to ensure that all varying fetches happen before
434 * any potential kill instructions. The hw gets grumpy if all
435 * threads in a group are killed before the last bary.f gets
436 * a chance to signal end of input (ei).
437 */
438 DECLARE_ARRAY(struct ir3_instruction *, baryfs);
439
440 /* Track all indirect instructions (read and write). To avoid
441 * deadlock scenario where an address register gets scheduled,
442 * but other dependent src instructions cannot be scheduled due
443 * to dependency on a *different* address register value, the
444 * scheduler needs to ensure that all dependencies other than
445 * the instruction other than the address register are scheduled
446 * before the one that writes the address register. Having a
447 * convenient list of instructions that reference some address
448 * register simplifies this.
449 */
450 DECLARE_ARRAY(struct ir3_instruction *, indirects);
451
452 /* and same for instructions that consume predicate register: */
453 DECLARE_ARRAY(struct ir3_instruction *, predicates);
454
455 /* Track texture sample instructions which need texture state
456 * patched in (for astc-srgb workaround):
457 */
458 DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
459
460 /* List of blocks: */
461 struct list_head block_list;
462
463 /* List of ir3_array's: */
464 struct list_head array_list;
465
466 unsigned max_sun; /* max Sethi–Ullman number */
467
468 #ifdef DEBUG
469 unsigned block_count, instr_count;
470 #endif
471 };
472
473 struct ir3_array {
474 struct list_head node;
475 unsigned length;
476 unsigned id;
477
478 struct nir_register *r;
479
480 /* To avoid array write's from getting DCE'd, keep track of the
481 * most recent write. Any array access depends on the most
482 * recent write. This way, nothing depends on writes after the
483 * last read. But all the writes that happen before that have
484 * something depending on them
485 */
486 struct ir3_instruction *last_write;
487
488 /* extra stuff used in RA pass: */
489 unsigned base; /* base vreg name */
490 unsigned reg; /* base physical reg */
491 uint16_t start_ip, end_ip;
492 };
493
494 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
495
496 struct ir3_block {
497 struct list_head node;
498 struct ir3 *shader;
499
500 const struct nir_block *nblock;
501
502 struct list_head instr_list; /* list of ir3_instruction */
503
504 /* each block has either one or two successors.. in case of
505 * two successors, 'condition' decides which one to follow.
506 * A block preceding an if/else has two successors.
507 */
508 struct ir3_instruction *condition;
509 struct ir3_block *successors[2];
510
511 struct set *predecessors; /* set of ir3_block */
512
513 uint16_t start_ip, end_ip;
514
515 /* Track instructions which do not write a register but other-
516 * wise must not be discarded (such as kill, stg, etc)
517 */
518 DECLARE_ARRAY(struct ir3_instruction *, keeps);
519
520 /* used for per-pass extra block data. Mainly used right
521 * now in RA step to track livein/liveout.
522 */
523 void *data;
524
525 #ifdef DEBUG
526 uint32_t serialno;
527 #endif
528 };
529
530 static inline uint32_t
531 block_id(struct ir3_block *block)
532 {
533 #ifdef DEBUG
534 return block->serialno;
535 #else
536 return (uint32_t)(unsigned long)block;
537 #endif
538 }
539
540 struct ir3 * ir3_create(struct ir3_compiler *compiler,
541 gl_shader_stage type, unsigned nin, unsigned nout);
542 void ir3_destroy(struct ir3 *shader);
543 void * ir3_assemble(struct ir3 *shader,
544 struct ir3_info *info, uint32_t gpu_id);
545 void * ir3_alloc(struct ir3 *shader, int sz);
546
547 struct ir3_block * ir3_block_create(struct ir3 *shader);
548
549 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
550 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
551 opc_t opc, int nreg);
552 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
553 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
554 const char *ir3_instr_name(struct ir3_instruction *instr);
555
556 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
557 int num, int flags);
558 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
559 struct ir3_register *reg);
560
561 void ir3_instr_set_address(struct ir3_instruction *instr,
562 struct ir3_instruction *addr);
563
564 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
565 {
566 if (instr->flags & IR3_INSTR_MARK)
567 return true; /* already visited */
568 instr->flags |= IR3_INSTR_MARK;
569 return false;
570 }
571
572 void ir3_block_clear_mark(struct ir3_block *block);
573 void ir3_clear_mark(struct ir3 *shader);
574
575 unsigned ir3_count_instructions(struct ir3 *ir);
576
577 static inline int ir3_instr_regno(struct ir3_instruction *instr,
578 struct ir3_register *reg)
579 {
580 unsigned i;
581 for (i = 0; i < instr->regs_count; i++)
582 if (reg == instr->regs[i])
583 return i;
584 return -1;
585 }
586
587
588 #define MAX_ARRAYS 16
589
590 /* comp:
591 * 0 - x
592 * 1 - y
593 * 2 - z
594 * 3 - w
595 */
596 static inline uint32_t regid(int num, int comp)
597 {
598 return (num << 2) | (comp & 0x3);
599 }
600
601 static inline uint32_t reg_num(struct ir3_register *reg)
602 {
603 return reg->num >> 2;
604 }
605
606 static inline uint32_t reg_comp(struct ir3_register *reg)
607 {
608 return reg->num & 0x3;
609 }
610
611 static inline bool is_flow(struct ir3_instruction *instr)
612 {
613 return (opc_cat(instr->opc) == 0);
614 }
615
616 static inline bool is_kill(struct ir3_instruction *instr)
617 {
618 return instr->opc == OPC_KILL || instr->opc == OPC_CONDEND;
619 }
620
621 static inline bool is_nop(struct ir3_instruction *instr)
622 {
623 return instr->opc == OPC_NOP;
624 }
625
626 static inline bool is_same_type_reg(struct ir3_register *reg1,
627 struct ir3_register *reg2)
628 {
629 unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
630 unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
631
632 if (type_reg1 ^ type_reg2)
633 return false;
634 else
635 return true;
636 }
637
638 /* Is it a non-transformative (ie. not type changing) mov? This can
639 * also include absneg.s/absneg.f, which for the most part can be
640 * treated as a mov (single src argument).
641 */
642 static inline bool is_same_type_mov(struct ir3_instruction *instr)
643 {
644 struct ir3_register *dst;
645
646 switch (instr->opc) {
647 case OPC_MOV:
648 if (instr->cat1.src_type != instr->cat1.dst_type)
649 return false;
650 /* If the type of dest reg and src reg are different,
651 * it shouldn't be considered as same type mov
652 */
653 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
654 return false;
655 break;
656 case OPC_ABSNEG_F:
657 case OPC_ABSNEG_S:
658 if (instr->flags & IR3_INSTR_SAT)
659 return false;
660 /* If the type of dest reg and src reg are different,
661 * it shouldn't be considered as same type mov
662 */
663 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
664 return false;
665 break;
666 default:
667 return false;
668 }
669
670 dst = instr->regs[0];
671
672 /* mov's that write to a0.x or p0.x are special: */
673 if (dst->num == regid(REG_P0, 0))
674 return false;
675 if (dst->num == regid(REG_A0, 0))
676 return false;
677
678 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
679 return false;
680
681 return true;
682 }
683
684 static inline bool is_alu(struct ir3_instruction *instr)
685 {
686 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
687 }
688
689 static inline bool is_sfu(struct ir3_instruction *instr)
690 {
691 return (opc_cat(instr->opc) == 4);
692 }
693
694 static inline bool is_tex(struct ir3_instruction *instr)
695 {
696 return (opc_cat(instr->opc) == 5);
697 }
698
699 static inline bool is_mem(struct ir3_instruction *instr)
700 {
701 return (opc_cat(instr->opc) == 6);
702 }
703
704 static inline bool is_barrier(struct ir3_instruction *instr)
705 {
706 return (opc_cat(instr->opc) == 7);
707 }
708
709 static inline bool
710 is_store(struct ir3_instruction *instr)
711 {
712 /* these instructions, the "destination" register is
713 * actually a source, the address to store to.
714 */
715 switch (instr->opc) {
716 case OPC_STG:
717 case OPC_STGB:
718 case OPC_STIB:
719 case OPC_STP:
720 case OPC_STL:
721 case OPC_STLW:
722 case OPC_L2G:
723 case OPC_G2L:
724 return true;
725 default:
726 return false;
727 }
728 }
729
730 static inline bool is_load(struct ir3_instruction *instr)
731 {
732 switch (instr->opc) {
733 case OPC_LDG:
734 case OPC_LDGB:
735 case OPC_LDIB:
736 case OPC_LDL:
737 case OPC_LDP:
738 case OPC_L2G:
739 case OPC_LDLW:
740 case OPC_LDC:
741 case OPC_LDLV:
742 /* probably some others too.. */
743 return true;
744 default:
745 return false;
746 }
747 }
748
749 static inline bool is_input(struct ir3_instruction *instr)
750 {
751 /* in some cases, ldlv is used to fetch varying without
752 * interpolation.. fortunately inloc is the first src
753 * register in either case
754 */
755 switch (instr->opc) {
756 case OPC_LDLV:
757 case OPC_BARY_F:
758 return true;
759 default:
760 return false;
761 }
762 }
763
764 static inline bool is_bool(struct ir3_instruction *instr)
765 {
766 switch (instr->opc) {
767 case OPC_CMPS_F:
768 case OPC_CMPS_S:
769 case OPC_CMPS_U:
770 return true;
771 default:
772 return false;
773 }
774 }
775
776 static inline bool is_meta(struct ir3_instruction *instr)
777 {
778 return (opc_cat(instr->opc) == -1);
779 }
780
781 static inline unsigned dest_regs(struct ir3_instruction *instr)
782 {
783 if ((instr->regs_count == 0) || is_store(instr))
784 return 0;
785
786 return util_last_bit(instr->regs[0]->wrmask);
787 }
788
789 static inline bool writes_addr(struct ir3_instruction *instr)
790 {
791 if (instr->regs_count > 0) {
792 struct ir3_register *dst = instr->regs[0];
793 return reg_num(dst) == REG_A0;
794 }
795 return false;
796 }
797
798 static inline bool writes_pred(struct ir3_instruction *instr)
799 {
800 if (instr->regs_count > 0) {
801 struct ir3_register *dst = instr->regs[0];
802 return reg_num(dst) == REG_P0;
803 }
804 return false;
805 }
806
807 /* returns defining instruction for reg */
808 /* TODO better name */
809 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
810 {
811 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
812 return reg->instr;
813 }
814 return NULL;
815 }
816
817 static inline bool conflicts(struct ir3_instruction *a,
818 struct ir3_instruction *b)
819 {
820 return (a && b) && (a != b);
821 }
822
823 static inline bool reg_gpr(struct ir3_register *r)
824 {
825 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
826 return false;
827 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
828 return false;
829 return true;
830 }
831
832 static inline type_t half_type(type_t type)
833 {
834 switch (type) {
835 case TYPE_F32: return TYPE_F16;
836 case TYPE_U32: return TYPE_U16;
837 case TYPE_S32: return TYPE_S16;
838 case TYPE_F16:
839 case TYPE_U16:
840 case TYPE_S16:
841 return type;
842 default:
843 assert(0);
844 return ~0;
845 }
846 }
847
848 /* some cat2 instructions (ie. those which are not float) can embed an
849 * immediate:
850 */
851 static inline bool ir3_cat2_int(opc_t opc)
852 {
853 switch (opc) {
854 case OPC_ADD_U:
855 case OPC_ADD_S:
856 case OPC_SUB_U:
857 case OPC_SUB_S:
858 case OPC_CMPS_U:
859 case OPC_CMPS_S:
860 case OPC_MIN_U:
861 case OPC_MIN_S:
862 case OPC_MAX_U:
863 case OPC_MAX_S:
864 case OPC_CMPV_U:
865 case OPC_CMPV_S:
866 case OPC_MUL_U24:
867 case OPC_MUL_S24:
868 case OPC_MULL_U:
869 case OPC_CLZ_S:
870 case OPC_ABSNEG_S:
871 case OPC_AND_B:
872 case OPC_OR_B:
873 case OPC_NOT_B:
874 case OPC_XOR_B:
875 case OPC_BFREV_B:
876 case OPC_CLZ_B:
877 case OPC_SHL_B:
878 case OPC_SHR_B:
879 case OPC_ASHR_B:
880 case OPC_MGEN_B:
881 case OPC_GETBIT_B:
882 case OPC_CBITS_B:
883 case OPC_BARY_F:
884 return true;
885
886 default:
887 return false;
888 }
889 }
890
891 static inline bool ir3_cat2_float(opc_t opc)
892 {
893 switch (opc) {
894 case OPC_ADD_F:
895 case OPC_MIN_F:
896 case OPC_MAX_F:
897 case OPC_MUL_F:
898 case OPC_SIGN_F:
899 case OPC_CMPS_F:
900 case OPC_ABSNEG_F:
901 case OPC_CMPV_F:
902 case OPC_FLOOR_F:
903 case OPC_CEIL_F:
904 case OPC_RNDNE_F:
905 case OPC_RNDAZ_F:
906 case OPC_TRUNC_F:
907 return true;
908
909 default:
910 return false;
911 }
912 }
913
914 static inline bool ir3_cat3_float(opc_t opc)
915 {
916 switch (opc) {
917 case OPC_MAD_F16:
918 case OPC_MAD_F32:
919 case OPC_SEL_F16:
920 case OPC_SEL_F32:
921 return true;
922 default:
923 return false;
924 }
925 }
926
927 /* map cat2 instruction to valid abs/neg flags: */
928 static inline unsigned ir3_cat2_absneg(opc_t opc)
929 {
930 switch (opc) {
931 case OPC_ADD_F:
932 case OPC_MIN_F:
933 case OPC_MAX_F:
934 case OPC_MUL_F:
935 case OPC_SIGN_F:
936 case OPC_CMPS_F:
937 case OPC_ABSNEG_F:
938 case OPC_CMPV_F:
939 case OPC_FLOOR_F:
940 case OPC_CEIL_F:
941 case OPC_RNDNE_F:
942 case OPC_RNDAZ_F:
943 case OPC_TRUNC_F:
944 case OPC_BARY_F:
945 return IR3_REG_FABS | IR3_REG_FNEG;
946
947 case OPC_ADD_U:
948 case OPC_ADD_S:
949 case OPC_SUB_U:
950 case OPC_SUB_S:
951 case OPC_CMPS_U:
952 case OPC_CMPS_S:
953 case OPC_MIN_U:
954 case OPC_MIN_S:
955 case OPC_MAX_U:
956 case OPC_MAX_S:
957 case OPC_CMPV_U:
958 case OPC_CMPV_S:
959 case OPC_MUL_U24:
960 case OPC_MUL_S24:
961 case OPC_MULL_U:
962 case OPC_CLZ_S:
963 return 0;
964
965 case OPC_ABSNEG_S:
966 return IR3_REG_SABS | IR3_REG_SNEG;
967
968 case OPC_AND_B:
969 case OPC_OR_B:
970 case OPC_NOT_B:
971 case OPC_XOR_B:
972 case OPC_BFREV_B:
973 case OPC_CLZ_B:
974 case OPC_SHL_B:
975 case OPC_SHR_B:
976 case OPC_ASHR_B:
977 case OPC_MGEN_B:
978 case OPC_GETBIT_B:
979 case OPC_CBITS_B:
980 return IR3_REG_BNOT;
981
982 default:
983 return 0;
984 }
985 }
986
987 /* map cat3 instructions to valid abs/neg flags: */
988 static inline unsigned ir3_cat3_absneg(opc_t opc)
989 {
990 switch (opc) {
991 case OPC_MAD_F16:
992 case OPC_MAD_F32:
993 case OPC_SEL_F16:
994 case OPC_SEL_F32:
995 return IR3_REG_FNEG;
996
997 case OPC_MAD_U16:
998 case OPC_MADSH_U16:
999 case OPC_MAD_S16:
1000 case OPC_MADSH_M16:
1001 case OPC_MAD_U24:
1002 case OPC_MAD_S24:
1003 case OPC_SEL_S16:
1004 case OPC_SEL_S32:
1005 case OPC_SAD_S16:
1006 case OPC_SAD_S32:
1007 /* neg *may* work on 3rd src.. */
1008
1009 case OPC_SEL_B16:
1010 case OPC_SEL_B32:
1011
1012 default:
1013 return 0;
1014 }
1015 }
1016
1017 #define MASK(n) ((1 << (n)) - 1)
1018
1019 /* iterator for an instructions's sources (reg), also returns src #: */
1020 #define foreach_src_n(__srcreg, __n, __instr) \
1021 if ((__instr)->regs_count) \
1022 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
1023 if ((__srcreg = (__instr)->regs[__n + 1]))
1024
1025 /* iterator for an instructions's sources (reg): */
1026 #define foreach_src(__srcreg, __instr) \
1027 foreach_src_n(__srcreg, __i, __instr)
1028
1029 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
1030 {
1031 unsigned cnt = instr->regs_count + instr->deps_count;
1032 if (instr->address)
1033 cnt++;
1034 return cnt;
1035 }
1036
1037 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
1038 {
1039 if (n == (instr->regs_count + instr->deps_count))
1040 return instr->address;
1041 if (n >= instr->regs_count)
1042 return instr->deps[n - instr->regs_count];
1043 return ssa(instr->regs[n]);
1044 }
1045
1046 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
1047 {
1048 if (n == (instr->regs_count + instr->deps_count))
1049 return false;
1050 if (n >= instr->regs_count)
1051 return true;
1052 return false;
1053 }
1054
1055 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
1056
1057 /* iterator for an instruction's SSA sources (instr), also returns src #: */
1058 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
1059 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
1060 if ((__srcinst = __ssa_src_n(__instr, __n)))
1061
1062 /* iterator for an instruction's SSA sources (instr): */
1063 #define foreach_ssa_src(__srcinst, __instr) \
1064 foreach_ssa_src_n(__srcinst, __i, __instr)
1065
1066
1067 /* dump: */
1068 void ir3_print(struct ir3 *ir);
1069 void ir3_print_instr(struct ir3_instruction *instr);
1070
1071 /* depth calculation: */
1072 struct ir3_shader_variant;
1073 int ir3_delayslots(struct ir3_instruction *assigner,
1074 struct ir3_instruction *consumer, unsigned n);
1075 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
1076 void ir3_depth(struct ir3 *ir, struct ir3_shader_variant *so);
1077
1078 /* copy-propagate: */
1079 void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
1080
1081 /* group neighbors and insert mov's to resolve conflicts: */
1082 void ir3_group(struct ir3 *ir);
1083
1084 /* Sethi–Ullman numbering: */
1085 void ir3_sun(struct ir3 *ir);
1086
1087 /* scheduling: */
1088 void ir3_sched_add_deps(struct ir3 *ir);
1089 int ir3_sched(struct ir3 *ir);
1090
1091 void ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
1092
1093 /* register assignment: */
1094 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler);
1095 int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
1096
1097 /* legalize: */
1098 void ir3_legalize(struct ir3 *ir, bool *has_ssbo, bool *need_pixlod, int *max_bary);
1099
1100 /* ************************************************************************* */
1101 /* instruction helpers */
1102
1103 /* creates SSA src of correct type (ie. half vs full precision) */
1104 static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
1105 struct ir3_instruction *src, unsigned flags)
1106 {
1107 struct ir3_register *reg;
1108 if (src->regs[0]->flags & IR3_REG_HALF)
1109 flags |= IR3_REG_HALF;
1110 reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
1111 reg->instr = src;
1112 reg->wrmask = src->regs[0]->wrmask;
1113 return reg;
1114 }
1115
1116 static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr)
1117 {
1118 struct ir3_register *reg = ir3_reg_create(instr, 0, 0);
1119 reg->flags |= IR3_REG_SSA;
1120 return reg;
1121 }
1122
1123 static inline struct ir3_instruction *
1124 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
1125 {
1126 struct ir3_instruction *mov;
1127 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1128
1129 mov = ir3_instr_create(block, OPC_MOV);
1130 mov->cat1.src_type = type;
1131 mov->cat1.dst_type = type;
1132 __ssa_dst(mov)->flags |= flags;
1133 ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
1134
1135 return mov;
1136 }
1137
1138 static inline struct ir3_instruction *
1139 create_immed(struct ir3_block *block, uint32_t val)
1140 {
1141 return create_immed_typed(block, val, TYPE_U32);
1142 }
1143
1144 static inline struct ir3_instruction *
1145 create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
1146 {
1147 struct ir3_instruction *mov;
1148 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1149
1150 mov = ir3_instr_create(block, OPC_MOV);
1151 mov->cat1.src_type = type;
1152 mov->cat1.dst_type = type;
1153 __ssa_dst(mov)->flags |= flags;
1154 ir3_reg_create(mov, n, IR3_REG_CONST | flags);
1155
1156 return mov;
1157 }
1158
1159 static inline struct ir3_instruction *
1160 create_uniform(struct ir3_block *block, unsigned n)
1161 {
1162 return create_uniform_typed(block, n, TYPE_F32);
1163 }
1164
1165 static inline struct ir3_instruction *
1166 create_uniform_indirect(struct ir3_block *block, int n,
1167 struct ir3_instruction *address)
1168 {
1169 struct ir3_instruction *mov;
1170
1171 mov = ir3_instr_create(block, OPC_MOV);
1172 mov->cat1.src_type = TYPE_U32;
1173 mov->cat1.dst_type = TYPE_U32;
1174 __ssa_dst(mov);
1175 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
1176
1177 ir3_instr_set_address(mov, address);
1178
1179 return mov;
1180 }
1181
1182 static inline struct ir3_instruction *
1183 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1184 {
1185 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1186 __ssa_dst(instr);
1187 if (src->regs[0]->flags & IR3_REG_ARRAY) {
1188 struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
1189 src_reg->array = src->regs[0]->array;
1190 } else {
1191 __ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
1192 }
1193 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1194 instr->cat1.src_type = type;
1195 instr->cat1.dst_type = type;
1196 return instr;
1197 }
1198
1199 static inline struct ir3_instruction *
1200 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1201 type_t src_type, type_t dst_type)
1202 {
1203 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1204 unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
1205 unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
1206
1207 debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
1208
1209 __ssa_dst(instr)->flags |= dst_flags;
1210 __ssa_src(instr, src, 0);
1211 instr->cat1.src_type = src_type;
1212 instr->cat1.dst_type = dst_type;
1213 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1214 return instr;
1215 }
1216
1217 static inline struct ir3_instruction *
1218 ir3_NOP(struct ir3_block *block)
1219 {
1220 return ir3_instr_create(block, OPC_NOP);
1221 }
1222
1223 #define IR3_INSTR_0 0
1224
1225 #define __INSTR0(flag, name, opc) \
1226 static inline struct ir3_instruction * \
1227 ir3_##name(struct ir3_block *block) \
1228 { \
1229 struct ir3_instruction *instr = \
1230 ir3_instr_create(block, opc); \
1231 instr->flags |= flag; \
1232 return instr; \
1233 }
1234 #define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
1235 #define INSTR0(name) __INSTR0(0, name, OPC_##name)
1236
1237 #define __INSTR1(flag, name, opc) \
1238 static inline struct ir3_instruction * \
1239 ir3_##name(struct ir3_block *block, \
1240 struct ir3_instruction *a, unsigned aflags) \
1241 { \
1242 struct ir3_instruction *instr = \
1243 ir3_instr_create(block, opc); \
1244 __ssa_dst(instr); \
1245 __ssa_src(instr, a, aflags); \
1246 instr->flags |= flag; \
1247 return instr; \
1248 }
1249 #define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
1250 #define INSTR1(name) __INSTR1(0, name, OPC_##name)
1251
1252 #define __INSTR2(flag, name, opc) \
1253 static inline struct ir3_instruction * \
1254 ir3_##name(struct ir3_block *block, \
1255 struct ir3_instruction *a, unsigned aflags, \
1256 struct ir3_instruction *b, unsigned bflags) \
1257 { \
1258 struct ir3_instruction *instr = \
1259 ir3_instr_create(block, opc); \
1260 __ssa_dst(instr); \
1261 __ssa_src(instr, a, aflags); \
1262 __ssa_src(instr, b, bflags); \
1263 instr->flags |= flag; \
1264 return instr; \
1265 }
1266 #define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
1267 #define INSTR2(name) __INSTR2(0, name, OPC_##name)
1268
1269 #define __INSTR3(flag, name, opc) \
1270 static inline struct ir3_instruction * \
1271 ir3_##name(struct ir3_block *block, \
1272 struct ir3_instruction *a, unsigned aflags, \
1273 struct ir3_instruction *b, unsigned bflags, \
1274 struct ir3_instruction *c, unsigned cflags) \
1275 { \
1276 struct ir3_instruction *instr = \
1277 ir3_instr_create2(block, opc, 4); \
1278 __ssa_dst(instr); \
1279 __ssa_src(instr, a, aflags); \
1280 __ssa_src(instr, b, bflags); \
1281 __ssa_src(instr, c, cflags); \
1282 instr->flags |= flag; \
1283 return instr; \
1284 }
1285 #define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
1286 #define INSTR3(name) __INSTR3(0, name, OPC_##name)
1287
1288 #define __INSTR4(flag, name, opc) \
1289 static inline struct ir3_instruction * \
1290 ir3_##name(struct ir3_block *block, \
1291 struct ir3_instruction *a, unsigned aflags, \
1292 struct ir3_instruction *b, unsigned bflags, \
1293 struct ir3_instruction *c, unsigned cflags, \
1294 struct ir3_instruction *d, unsigned dflags) \
1295 { \
1296 struct ir3_instruction *instr = \
1297 ir3_instr_create2(block, opc, 5); \
1298 __ssa_dst(instr); \
1299 __ssa_src(instr, a, aflags); \
1300 __ssa_src(instr, b, bflags); \
1301 __ssa_src(instr, c, cflags); \
1302 __ssa_src(instr, d, dflags); \
1303 instr->flags |= flag; \
1304 return instr; \
1305 }
1306 #define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
1307 #define INSTR4(name) __INSTR4(0, name, OPC_##name)
1308
1309 /* cat0 instructions: */
1310 INSTR0(BR)
1311 INSTR0(JUMP)
1312 INSTR1(KILL)
1313 INSTR0(END)
1314 INSTR0(CHSH)
1315 INSTR0(CHMASK)
1316 INSTR1(CONDEND)
1317 INSTR0(ENDPATCH)
1318
1319 /* cat2 instructions, most 2 src but some 1 src: */
1320 INSTR2(ADD_F)
1321 INSTR2(MIN_F)
1322 INSTR2(MAX_F)
1323 INSTR2(MUL_F)
1324 INSTR1(SIGN_F)
1325 INSTR2(CMPS_F)
1326 INSTR1(ABSNEG_F)
1327 INSTR2(CMPV_F)
1328 INSTR1(FLOOR_F)
1329 INSTR1(CEIL_F)
1330 INSTR1(RNDNE_F)
1331 INSTR1(RNDAZ_F)
1332 INSTR1(TRUNC_F)
1333 INSTR2(ADD_U)
1334 INSTR2(ADD_S)
1335 INSTR2(SUB_U)
1336 INSTR2(SUB_S)
1337 INSTR2(CMPS_U)
1338 INSTR2(CMPS_S)
1339 INSTR2(MIN_U)
1340 INSTR2(MIN_S)
1341 INSTR2(MAX_U)
1342 INSTR2(MAX_S)
1343 INSTR1(ABSNEG_S)
1344 INSTR2(AND_B)
1345 INSTR2(OR_B)
1346 INSTR1(NOT_B)
1347 INSTR2(XOR_B)
1348 INSTR2(CMPV_U)
1349 INSTR2(CMPV_S)
1350 INSTR2(MUL_U24)
1351 INSTR2(MUL_S24)
1352 INSTR2(MULL_U)
1353 INSTR1(BFREV_B)
1354 INSTR1(CLZ_S)
1355 INSTR1(CLZ_B)
1356 INSTR2(SHL_B)
1357 INSTR2(SHR_B)
1358 INSTR2(ASHR_B)
1359 INSTR2(BARY_F)
1360 INSTR2(MGEN_B)
1361 INSTR2(GETBIT_B)
1362 INSTR1(SETRM)
1363 INSTR1(CBITS_B)
1364 INSTR2(SHB)
1365 INSTR2(MSAD)
1366
1367 /* cat3 instructions: */
1368 INSTR3(MAD_U16)
1369 INSTR3(MADSH_U16)
1370 INSTR3(MAD_S16)
1371 INSTR3(MADSH_M16)
1372 INSTR3(MAD_U24)
1373 INSTR3(MAD_S24)
1374 INSTR3(MAD_F16)
1375 INSTR3(MAD_F32)
1376 INSTR3(SEL_B16)
1377 INSTR3(SEL_B32)
1378 INSTR3(SEL_S16)
1379 INSTR3(SEL_S32)
1380 INSTR3(SEL_F16)
1381 INSTR3(SEL_F32)
1382 INSTR3(SAD_S16)
1383 INSTR3(SAD_S32)
1384
1385 /* cat4 instructions: */
1386 INSTR1(RCP)
1387 INSTR1(RSQ)
1388 INSTR1(LOG2)
1389 INSTR1(EXP2)
1390 INSTR1(SIN)
1391 INSTR1(COS)
1392 INSTR1(SQRT)
1393
1394 /* cat5 instructions: */
1395 INSTR1(DSX)
1396 INSTR1(DSY)
1397 INSTR1F(3D, DSX)
1398 INSTR1F(3D, DSY)
1399 INSTR1(RGETPOS)
1400
1401 static inline struct ir3_instruction *
1402 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1403 unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
1404 struct ir3_instruction *src0, struct ir3_instruction *src1)
1405 {
1406 struct ir3_instruction *sam;
1407
1408 sam = ir3_instr_create(block, opc);
1409 sam->flags |= flags | IR3_INSTR_S2EN;
1410 __ssa_dst(sam)->wrmask = wrmask;
1411 __ssa_src(sam, samp_tex, IR3_REG_HALF);
1412 if (src0) {
1413 __ssa_src(sam, src0, 0)->wrmask = (1 << (src0->regs_count - 1)) - 1;
1414 }
1415 if (src1) {
1416 __ssa_src(sam, src1, 0)->wrmask =(1 << (src1->regs_count - 1)) - 1;
1417 }
1418 sam->cat5.type = type;
1419
1420 return sam;
1421 }
1422
1423 /* cat6 instructions: */
1424 INSTR2(LDLV)
1425 INSTR3(LDG)
1426 INSTR3(LDL)
1427 INSTR3(LDLW)
1428 INSTR3(STG)
1429 INSTR3(STL)
1430 INSTR3(STLW)
1431 INSTR1(RESINFO)
1432 INSTR1(RESFMT)
1433 INSTR2(ATOMIC_ADD)
1434 INSTR2(ATOMIC_SUB)
1435 INSTR2(ATOMIC_XCHG)
1436 INSTR2(ATOMIC_INC)
1437 INSTR2(ATOMIC_DEC)
1438 INSTR2(ATOMIC_CMPXCHG)
1439 INSTR2(ATOMIC_MIN)
1440 INSTR2(ATOMIC_MAX)
1441 INSTR2(ATOMIC_AND)
1442 INSTR2(ATOMIC_OR)
1443 INSTR2(ATOMIC_XOR)
1444 #if GPU >= 600
1445 INSTR3(STIB);
1446 INSTR2(LDIB);
1447 INSTR3F(G, ATOMIC_ADD)
1448 INSTR3F(G, ATOMIC_SUB)
1449 INSTR3F(G, ATOMIC_XCHG)
1450 INSTR3F(G, ATOMIC_INC)
1451 INSTR3F(G, ATOMIC_DEC)
1452 INSTR3F(G, ATOMIC_CMPXCHG)
1453 INSTR3F(G, ATOMIC_MIN)
1454 INSTR3F(G, ATOMIC_MAX)
1455 INSTR3F(G, ATOMIC_AND)
1456 INSTR3F(G, ATOMIC_OR)
1457 INSTR3F(G, ATOMIC_XOR)
1458 #elif GPU >= 400
1459 INSTR3(LDGB)
1460 INSTR4(STGB)
1461 INSTR4(STIB)
1462 INSTR4F(G, ATOMIC_ADD)
1463 INSTR4F(G, ATOMIC_SUB)
1464 INSTR4F(G, ATOMIC_XCHG)
1465 INSTR4F(G, ATOMIC_INC)
1466 INSTR4F(G, ATOMIC_DEC)
1467 INSTR4F(G, ATOMIC_CMPXCHG)
1468 INSTR4F(G, ATOMIC_MIN)
1469 INSTR4F(G, ATOMIC_MAX)
1470 INSTR4F(G, ATOMIC_AND)
1471 INSTR4F(G, ATOMIC_OR)
1472 INSTR4F(G, ATOMIC_XOR)
1473 #endif
1474
1475 INSTR4F(G, STG)
1476
1477 /* cat7 instructions: */
1478 INSTR0(BAR)
1479 INSTR0(FENCE)
1480
1481 /* meta instructions: */
1482 INSTR0(META_TEX_PREFETCH);
1483
1484 /* ************************************************************************* */
1485 /* split this out or find some helper to use.. like main/bitset.h.. */
1486
1487 #include <string.h>
1488
1489 #define MAX_REG 256
1490
1491 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1492
1493 static inline unsigned regmask_idx(struct ir3_register *reg)
1494 {
1495 unsigned num = (reg->flags & IR3_REG_RELATIV) ? reg->array.offset : reg->num;
1496 debug_assert(num < MAX_REG);
1497 if (reg->flags & IR3_REG_HALF) {
1498 if (reg->merged) {
1499 num /= 2;
1500 } else {
1501 num += MAX_REG;
1502 }
1503 }
1504 return num;
1505 }
1506
1507 static inline void regmask_init(regmask_t *regmask)
1508 {
1509 memset(regmask, 0, sizeof(*regmask));
1510 }
1511
1512 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1513 {
1514 unsigned idx = regmask_idx(reg);
1515 if (reg->flags & IR3_REG_RELATIV) {
1516 unsigned i;
1517 for (i = 0; i < reg->size; i++, idx++)
1518 (*regmask)[idx / 8] |= 1 << (idx % 8);
1519 } else {
1520 unsigned mask;
1521 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1522 if (mask & 1)
1523 (*regmask)[idx / 8] |= 1 << (idx % 8);
1524 }
1525 }
1526
1527 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1528 {
1529 unsigned i;
1530 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1531 (*dst)[i] = (*a)[i] | (*b)[i];
1532 }
1533
1534 /* set bits in a if not set in b, conceptually:
1535 * a |= (reg & ~b)
1536 */
1537 static inline void regmask_set_if_not(regmask_t *a,
1538 struct ir3_register *reg, regmask_t *b)
1539 {
1540 unsigned idx = regmask_idx(reg);
1541 if (reg->flags & IR3_REG_RELATIV) {
1542 unsigned i;
1543 for (i = 0; i < reg->size; i++, idx++)
1544 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1545 (*a)[idx / 8] |= 1 << (idx % 8);
1546 } else {
1547 unsigned mask;
1548 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1549 if (mask & 1)
1550 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1551 (*a)[idx / 8] |= 1 << (idx % 8);
1552 }
1553 }
1554
1555 static inline bool regmask_get(regmask_t *regmask,
1556 struct ir3_register *reg)
1557 {
1558 unsigned idx = regmask_idx(reg);
1559 if (reg->flags & IR3_REG_RELATIV) {
1560 unsigned i;
1561 for (i = 0; i < reg->size; i++, idx++)
1562 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1563 return true;
1564 } else {
1565 unsigned mask;
1566 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1567 if (mask & 1)
1568 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1569 return true;
1570 }
1571 return false;
1572 }
1573
1574 /* ************************************************************************* */
1575
1576 #endif /* IR3_H_ */