freedreno/ir3/cp: extract valid_flags
[mesa.git] / src / freedreno / ir3 / ir3_cp.c
1 /*
2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include <math.h>
28 #include "util/half_float.h"
29 #include "util/u_math.h"
30
31 #include "ir3.h"
32 #include "ir3_compiler.h"
33 #include "ir3_shader.h"
34
35 #define swap(a, b) \
36 do { __typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
37
38 /*
39 * Copy Propagate:
40 */
41
42 struct ir3_cp_ctx {
43 struct ir3 *shader;
44 struct ir3_shader_variant *so;
45 bool progress;
46 };
47
48 /* is it a type preserving mov, with ok flags?
49 *
50 * @instr: the mov to consider removing
51 * @dst_instr: the instruction consuming the mov (instr)
52 *
53 * TODO maybe drop allow_flags since this is only false when dst is
54 * NULL (ie. outputs)
55 */
56 static bool is_eligible_mov(struct ir3_instruction *instr,
57 struct ir3_instruction *dst_instr, bool allow_flags)
58 {
59 if (is_same_type_mov(instr)) {
60 struct ir3_register *dst = instr->regs[0];
61 struct ir3_register *src = instr->regs[1];
62 struct ir3_instruction *src_instr = ssa(src);
63
64 /* only if mov src is SSA (not const/immed): */
65 if (!src_instr)
66 return false;
67
68 /* no indirect: */
69 if (dst->flags & IR3_REG_RELATIV)
70 return false;
71 if (src->flags & IR3_REG_RELATIV)
72 return false;
73
74 if (src->flags & IR3_REG_ARRAY)
75 return false;
76
77 if (!allow_flags)
78 if (src->flags & (IR3_REG_FABS | IR3_REG_FNEG |
79 IR3_REG_SABS | IR3_REG_SNEG | IR3_REG_BNOT))
80 return false;
81
82 /* If src is coming from fanout/split (ie. one component of a
83 * texture fetch, etc) and we have constraints on swizzle of
84 * destination, then skip it.
85 *
86 * We could possibly do a bit better, and copy-propagation if
87 * we can CP all components that are being fanned out.
88 */
89 if (src_instr->opc == OPC_META_SPLIT) {
90 if (!dst_instr)
91 return false;
92 if (dst_instr->opc == OPC_META_COLLECT)
93 return false;
94 if (dst_instr->cp.left || dst_instr->cp.right)
95 return false;
96 }
97
98 return true;
99 }
100 return false;
101 }
102
103 /* propagate register flags from src to dst.. negates need special
104 * handling to cancel each other out.
105 */
106 static void combine_flags(unsigned *dstflags, struct ir3_instruction *src)
107 {
108 unsigned srcflags = src->regs[1]->flags;
109
110 /* if what we are combining into already has (abs) flags,
111 * we can drop (neg) from src:
112 */
113 if (*dstflags & IR3_REG_FABS)
114 srcflags &= ~IR3_REG_FNEG;
115 if (*dstflags & IR3_REG_SABS)
116 srcflags &= ~IR3_REG_SNEG;
117
118 if (srcflags & IR3_REG_FABS)
119 *dstflags |= IR3_REG_FABS;
120 if (srcflags & IR3_REG_SABS)
121 *dstflags |= IR3_REG_SABS;
122 if (srcflags & IR3_REG_FNEG)
123 *dstflags ^= IR3_REG_FNEG;
124 if (srcflags & IR3_REG_SNEG)
125 *dstflags ^= IR3_REG_SNEG;
126 if (srcflags & IR3_REG_BNOT)
127 *dstflags ^= IR3_REG_BNOT;
128
129 *dstflags &= ~IR3_REG_SSA;
130 *dstflags |= srcflags & IR3_REG_SSA;
131 *dstflags |= srcflags & IR3_REG_CONST;
132 *dstflags |= srcflags & IR3_REG_IMMED;
133 *dstflags |= srcflags & IR3_REG_RELATIV;
134 *dstflags |= srcflags & IR3_REG_ARRAY;
135 *dstflags |= srcflags & IR3_REG_HIGH;
136
137 /* if src of the src is boolean we can drop the (abs) since we know
138 * the source value is already a postitive integer. This cleans
139 * up the absnegs that get inserted when converting between nir and
140 * native boolean (see ir3_b2n/n2b)
141 */
142 struct ir3_instruction *srcsrc = ssa(src->regs[1]);
143 if (srcsrc && is_bool(srcsrc))
144 *dstflags &= ~IR3_REG_SABS;
145 }
146
147 /* Tries lowering an immediate register argument to a const buffer access by
148 * adding to the list of immediates to be pushed to the const buffer when
149 * switching to this shader.
150 */
151 static bool
152 lower_immed(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr, unsigned n,
153 struct ir3_register *reg, unsigned new_flags)
154 {
155 if (!(new_flags & IR3_REG_IMMED))
156 return false;
157
158 new_flags &= ~IR3_REG_IMMED;
159 new_flags |= IR3_REG_CONST;
160
161 if (!ir3_valid_flags(instr, n, new_flags))
162 return false;
163
164 unsigned swiz, idx, i;
165
166 reg = ir3_reg_clone(ctx->shader, reg);
167
168 /* Half constant registers seems to handle only 32-bit values
169 * within floating-point opcodes. So convert back to 32-bit values.
170 */
171 bool f_opcode = (is_cat2_float(instr->opc) ||
172 is_cat3_float(instr->opc)) ? true : false;
173 if (f_opcode && (new_flags & IR3_REG_HALF))
174 reg->uim_val = fui(_mesa_half_to_float(reg->uim_val));
175
176 /* in some cases, there are restrictions on (abs)/(neg) plus const..
177 * so just evaluate those and clear the flags:
178 */
179 if (new_flags & IR3_REG_SABS) {
180 reg->iim_val = abs(reg->iim_val);
181 new_flags &= ~IR3_REG_SABS;
182 }
183
184 if (new_flags & IR3_REG_FABS) {
185 reg->fim_val = fabs(reg->fim_val);
186 new_flags &= ~IR3_REG_FABS;
187 }
188
189 if (new_flags & IR3_REG_SNEG) {
190 reg->iim_val = -reg->iim_val;
191 new_flags &= ~IR3_REG_SNEG;
192 }
193
194 if (new_flags & IR3_REG_FNEG) {
195 reg->fim_val = -reg->fim_val;
196 new_flags &= ~IR3_REG_FNEG;
197 }
198
199 /* Reallocate for 4 more elements whenever it's necessary */
200 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
201 if (const_state->immediate_idx == const_state->immediates_size * 4) {
202 const_state->immediates_size += 4;
203 const_state->immediates = realloc (const_state->immediates,
204 const_state->immediates_size * sizeof(const_state->immediates[0]));
205
206 for (int i = const_state->immediate_idx; i < const_state->immediates_size * 4; i++)
207 const_state->immediates[i / 4].val[i % 4] = 0xd0d0d0d0;
208 }
209
210 for (i = 0; i < const_state->immediate_idx; i++) {
211 swiz = i % 4;
212 idx = i / 4;
213
214 if (const_state->immediates[idx].val[swiz] == reg->uim_val) {
215 break;
216 }
217 }
218
219 if (i == const_state->immediate_idx) {
220 struct ir3_compiler *compiler = instr->block->shader->compiler;
221 /* Add on a new immediate to be pushed, if we have space left in the
222 * constbuf.
223 */
224 if (const_state->offsets.immediate + const_state->immediate_idx / 4 >=
225 compiler->max_const)
226 return false;
227
228 swiz = i % 4;
229 idx = i / 4;
230
231 const_state->immediates[idx].val[swiz] = reg->uim_val;
232 const_state->immediates_count = idx + 1;
233 const_state->immediate_idx++;
234 }
235
236 reg->flags = new_flags;
237 reg->num = i + (4 * const_state->offsets.immediate);
238
239 instr->regs[n + 1] = reg;
240
241 return true;
242 }
243
244 static void
245 unuse(struct ir3_instruction *instr)
246 {
247 debug_assert(instr->use_count > 0);
248
249 if (--instr->use_count == 0) {
250 struct ir3_block *block = instr->block;
251
252 instr->barrier_class = 0;
253 instr->barrier_conflict = 0;
254
255 /* we don't want to remove anything in keeps (which could
256 * be things like array store's)
257 */
258 for (unsigned i = 0; i < block->keeps_count; i++) {
259 debug_assert(block->keeps[i] != instr);
260 }
261 }
262 }
263
264 /**
265 * Handles the special case of the 2nd src (n == 1) to "normal" mad
266 * instructions, which cannot reference a constant. See if it is
267 * possible to swap the 1st and 2nd sources.
268 */
269 static bool
270 try_swap_mad_two_srcs(struct ir3_instruction *instr, unsigned new_flags)
271 {
272 if (!is_mad(instr->opc))
273 return false;
274
275 /* NOTE: pre-swap first two src's before valid_flags(),
276 * which might try to dereference the n'th src:
277 */
278 swap(instr->regs[0 + 1], instr->regs[1 + 1]);
279
280 /* cat3 doesn't encode immediate, but we can lower immediate
281 * to const if that helps:
282 */
283 if (new_flags & IR3_REG_IMMED) {
284 new_flags &= ~IR3_REG_IMMED;
285 new_flags |= IR3_REG_CONST;
286 }
287
288 bool valid_swap =
289 /* can we propagate mov if we move 2nd src to first? */
290 ir3_valid_flags(instr, 0, new_flags) &&
291 /* and does first src fit in second slot? */
292 ir3_valid_flags(instr, 1, instr->regs[1 + 1]->flags);
293
294 if (!valid_swap) {
295 /* put things back the way they were: */
296 swap(instr->regs[0 + 1], instr->regs[1 + 1]);
297 } /* otherwise leave things swapped */
298
299 return valid_swap;
300 }
301
302 /**
303 * Handle cp for a given src register. This additionally handles
304 * the cases of collapsing immedate/const (which replace the src
305 * register with a non-ssa src) or collapsing mov's from relative
306 * src (which needs to also fixup the address src reference by the
307 * instruction).
308 */
309 static bool
310 reg_cp(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr,
311 struct ir3_register *reg, unsigned n)
312 {
313 struct ir3_instruction *src = ssa(reg);
314
315 if (is_eligible_mov(src, instr, true)) {
316 /* simple case, no immed/const/relativ, only mov's w/ ssa src: */
317 struct ir3_register *src_reg = src->regs[1];
318 unsigned new_flags = reg->flags;
319
320 combine_flags(&new_flags, src);
321
322 if (ir3_valid_flags(instr, n, new_flags)) {
323 if (new_flags & IR3_REG_ARRAY) {
324 debug_assert(!(reg->flags & IR3_REG_ARRAY));
325 reg->array = src_reg->array;
326 }
327 reg->flags = new_flags;
328 reg->instr = ssa(src_reg);
329
330 instr->barrier_class |= src->barrier_class;
331 instr->barrier_conflict |= src->barrier_conflict;
332
333 unuse(src);
334 reg->instr->use_count++;
335
336 return true;
337 }
338 } else if ((is_same_type_mov(src) || is_const_mov(src)) &&
339 /* cannot collapse const/immed/etc into meta instrs: */
340 !is_meta(instr)) {
341 /* immed/const/etc cases, which require some special handling: */
342 struct ir3_register *src_reg = src->regs[1];
343 unsigned new_flags = reg->flags;
344
345 combine_flags(&new_flags, src);
346
347 if (!ir3_valid_flags(instr, n, new_flags)) {
348 /* See if lowering an immediate to const would help. */
349 if (lower_immed(ctx, instr, n, src_reg, new_flags))
350 return true;
351
352 /* special case for "normal" mad instructions, we can
353 * try swapping the first two args if that fits better.
354 *
355 * the "plain" MAD's (ie. the ones that don't shift first
356 * src prior to multiply) can swap their first two srcs if
357 * src[0] is !CONST and src[1] is CONST:
358 */
359 if ((n == 1) && try_swap_mad_two_srcs(instr, new_flags)) {
360 return true;
361 } else {
362 return false;
363 }
364 }
365
366 /* Here we handle the special case of mov from
367 * CONST and/or RELATIV. These need to be handled
368 * specially, because in the case of move from CONST
369 * there is no src ir3_instruction so we need to
370 * replace the ir3_register. And in the case of
371 * RELATIV we need to handle the address register
372 * dependency.
373 */
374 if (src_reg->flags & IR3_REG_CONST) {
375 /* an instruction cannot reference two different
376 * address registers:
377 */
378 if ((src_reg->flags & IR3_REG_RELATIV) &&
379 conflicts(instr->address, reg->instr->address))
380 return false;
381
382 /* This seems to be a hw bug, or something where the timings
383 * just somehow don't work out. This restriction may only
384 * apply if the first src is also CONST.
385 */
386 if ((opc_cat(instr->opc) == 3) && (n == 2) &&
387 (src_reg->flags & IR3_REG_RELATIV) &&
388 (src_reg->array.offset == 0))
389 return false;
390
391 /* When narrowing constant from 32b to 16b, it seems
392 * to work only for float. So we should do this only with
393 * float opcodes.
394 */
395 if (src->cat1.dst_type == TYPE_F16) {
396 if (instr->opc == OPC_MOV && !type_float(instr->cat1.src_type))
397 return false;
398 if (!is_cat2_float(instr->opc) && !is_cat3_float(instr->opc))
399 return false;
400 }
401
402 src_reg = ir3_reg_clone(instr->block->shader, src_reg);
403 src_reg->flags = new_flags;
404 instr->regs[n+1] = src_reg;
405
406 if (src_reg->flags & IR3_REG_RELATIV)
407 ir3_instr_set_address(instr, reg->instr->address);
408
409 return true;
410 }
411
412 if ((src_reg->flags & IR3_REG_RELATIV) &&
413 !conflicts(instr->address, reg->instr->address)) {
414 src_reg = ir3_reg_clone(instr->block->shader, src_reg);
415 src_reg->flags = new_flags;
416 instr->regs[n+1] = src_reg;
417 ir3_instr_set_address(instr, reg->instr->address);
418
419 return true;
420 }
421
422 /* NOTE: seems we can only do immed integers, so don't
423 * need to care about float. But we do need to handle
424 * abs/neg *before* checking that the immediate requires
425 * few enough bits to encode:
426 *
427 * TODO: do we need to do something to avoid accidentally
428 * catching a float immed?
429 */
430 if (src_reg->flags & IR3_REG_IMMED) {
431 int32_t iim_val = src_reg->iim_val;
432
433 debug_assert((opc_cat(instr->opc) == 1) ||
434 (opc_cat(instr->opc) == 6) ||
435 ir3_cat2_int(instr->opc) ||
436 (is_mad(instr->opc) && (n == 0)));
437
438 if (new_flags & IR3_REG_SABS)
439 iim_val = abs(iim_val);
440
441 if (new_flags & IR3_REG_SNEG)
442 iim_val = -iim_val;
443
444 if (new_flags & IR3_REG_BNOT)
445 iim_val = ~iim_val;
446
447 /* other than category 1 (mov) we can only encode up to 10 bits: */
448 if (ir3_valid_flags(instr, n, new_flags) &&
449 ((instr->opc == OPC_MOV) ||
450 !((iim_val & ~0x3ff) && (-iim_val & ~0x3ff)))) {
451 new_flags &= ~(IR3_REG_SABS | IR3_REG_SNEG | IR3_REG_BNOT);
452 src_reg = ir3_reg_clone(instr->block->shader, src_reg);
453 src_reg->flags = new_flags;
454 src_reg->iim_val = iim_val;
455 instr->regs[n+1] = src_reg;
456
457 return true;
458 } else if (lower_immed(ctx, instr, n, src_reg, new_flags)) {
459 /* Fell back to loading the immediate as a const */
460 return true;
461 }
462 }
463 }
464
465 return false;
466 }
467
468 /* Handle special case of eliminating output mov, and similar cases where
469 * there isn't a normal "consuming" instruction. In this case we cannot
470 * collapse flags (ie. output mov from const, or w/ abs/neg flags, cannot
471 * be eliminated)
472 */
473 static struct ir3_instruction *
474 eliminate_output_mov(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr)
475 {
476 if (is_eligible_mov(instr, NULL, false)) {
477 struct ir3_register *reg = instr->regs[1];
478 if (!(reg->flags & IR3_REG_ARRAY)) {
479 struct ir3_instruction *src_instr = ssa(reg);
480 debug_assert(src_instr);
481 ctx->progress = true;
482 return src_instr;
483 }
484 }
485 return instr;
486 }
487
488 /**
489 * Find instruction src's which are mov's that can be collapsed, replacing
490 * the mov dst with the mov src
491 */
492 static void
493 instr_cp(struct ir3_cp_ctx *ctx, struct ir3_instruction *instr)
494 {
495 if (instr->regs_count == 0)
496 return;
497
498 if (ir3_instr_check_mark(instr))
499 return;
500
501 /* walk down the graph from each src: */
502 bool progress;
503 do {
504 progress = false;
505 foreach_src_n (reg, n, instr) {
506 struct ir3_instruction *src = ssa(reg);
507
508 if (!src)
509 continue;
510
511 instr_cp(ctx, src);
512
513 /* TODO non-indirect access we could figure out which register
514 * we actually want and allow cp..
515 */
516 if (reg->flags & IR3_REG_ARRAY)
517 continue;
518
519 /* Don't CP absneg into meta instructions, that won't end well: */
520 if (is_meta(instr) && (src->opc != OPC_MOV))
521 continue;
522
523 progress |= reg_cp(ctx, instr, reg, n);
524 ctx->progress |= progress;
525 }
526 } while (progress);
527
528 if (instr->regs[0]->flags & IR3_REG_ARRAY) {
529 struct ir3_instruction *src = ssa(instr->regs[0]);
530 if (src)
531 instr_cp(ctx, src);
532 }
533
534 if (instr->address) {
535 instr_cp(ctx, instr->address);
536 ir3_instr_set_address(instr, eliminate_output_mov(ctx, instr->address));
537 }
538
539 /* we can end up with extra cmps.s from frontend, which uses a
540 *
541 * cmps.s p0.x, cond, 0
542 *
543 * as a way to mov into the predicate register. But frequently 'cond'
544 * is itself a cmps.s/cmps.f/cmps.u. So detect this special case and
545 * just re-write the instruction writing predicate register to get rid
546 * of the double cmps.
547 */
548 if ((instr->opc == OPC_CMPS_S) &&
549 (instr->regs[0]->num == regid(REG_P0, 0)) &&
550 ssa(instr->regs[1]) &&
551 (instr->regs[2]->flags & IR3_REG_IMMED) &&
552 (instr->regs[2]->iim_val == 0) &&
553 (instr->cat2.condition == IR3_COND_NE)) {
554 struct ir3_instruction *cond = ssa(instr->regs[1]);
555 switch (cond->opc) {
556 case OPC_CMPS_S:
557 case OPC_CMPS_F:
558 case OPC_CMPS_U:
559 instr->opc = cond->opc;
560 instr->flags = cond->flags;
561 instr->cat2 = cond->cat2;
562 ir3_instr_set_address(instr, cond->address);
563 instr->regs[1] = cond->regs[1];
564 instr->regs[2] = cond->regs[2];
565 instr->barrier_class |= cond->barrier_class;
566 instr->barrier_conflict |= cond->barrier_conflict;
567 unuse(cond);
568 ctx->progress = true;
569 break;
570 default:
571 break;
572 }
573 }
574
575 /* Handle converting a sam.s2en (taking samp/tex idx params via register)
576 * into a normal sam (encoding immediate samp/tex idx) if they are
577 * immediate. This saves some instructions and regs in the common case
578 * where we know samp/tex at compile time. This needs to be done in the
579 * frontend for bindless tex, though, so don't replicate it here.
580 */
581 if (is_tex(instr) && (instr->flags & IR3_INSTR_S2EN) &&
582 !(instr->flags & IR3_INSTR_B) &&
583 !(ir3_shader_debug & IR3_DBG_FORCES2EN)) {
584 /* The first src will be a collect, if both of it's
585 * two sources are mov from imm, then we can
586 */
587 struct ir3_instruction *samp_tex = ssa(instr->regs[1]);
588
589 debug_assert(samp_tex->opc == OPC_META_COLLECT);
590
591 struct ir3_instruction *samp = ssa(samp_tex->regs[1]);
592 struct ir3_instruction *tex = ssa(samp_tex->regs[2]);
593
594 if ((samp->opc == OPC_MOV) &&
595 (samp->regs[1]->flags & IR3_REG_IMMED) &&
596 (tex->opc == OPC_MOV) &&
597 (tex->regs[1]->flags & IR3_REG_IMMED)) {
598 instr->flags &= ~IR3_INSTR_S2EN;
599 instr->cat5.samp = samp->regs[1]->iim_val;
600 instr->cat5.tex = tex->regs[1]->iim_val;
601
602 /* shuffle around the regs to remove the first src: */
603 instr->regs_count--;
604 for (unsigned i = 1; i < instr->regs_count; i++) {
605 instr->regs[i] = instr->regs[i + 1];
606 }
607
608 ctx->progress = true;
609 }
610 }
611 }
612
613 bool
614 ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so)
615 {
616 struct ir3_cp_ctx ctx = {
617 .shader = ir,
618 .so = so,
619 };
620
621 /* This is a bit annoying, and probably wouldn't be necessary if we
622 * tracked a reverse link from producing instruction to consumer.
623 * But we need to know when we've eliminated the last consumer of
624 * a mov, so we need to do a pass to first count consumers of a
625 * mov.
626 */
627 foreach_block (block, &ir->block_list) {
628 foreach_instr (instr, &block->instr_list) {
629
630 /* by the way, we don't account for false-dep's, so the CP
631 * pass should always happen before false-dep's are inserted
632 */
633 debug_assert(instr->deps_count == 0);
634
635 foreach_ssa_src (src, instr) {
636 src->use_count++;
637 }
638 }
639 }
640
641 ir3_clear_mark(ir);
642
643 foreach_output_n (out, n, ir) {
644 instr_cp(&ctx, out);
645 ir->outputs[n] = eliminate_output_mov(&ctx, out);
646 }
647
648 foreach_block (block, &ir->block_list) {
649 if (block->condition) {
650 instr_cp(&ctx, block->condition);
651 block->condition = eliminate_output_mov(&ctx, block->condition);
652 }
653
654 for (unsigned i = 0; i < block->keeps_count; i++) {
655 instr_cp(&ctx, block->keeps[i]);
656 block->keeps[i] = eliminate_output_mov(&ctx, block->keeps[i]);
657 }
658 }
659
660 return ctx.progress;
661 }