ir3: use empirical size for params as used by the shader
[mesa.git] / src / freedreno / ir3 / ir3_ra.c
1 /*
2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "util/u_math.h"
28 #include "util/register_allocate.h"
29 #include "util/ralloc.h"
30 #include "util/bitset.h"
31
32 #include "ir3.h"
33 #include "ir3_shader.h"
34 #include "ir3_ra.h"
35
36
37 #ifdef DEBUG
38 #define RA_DEBUG (ir3_shader_debug & IR3_DBG_RAMSGS)
39 #else
40 #define RA_DEBUG 0
41 #endif
42 #define d(fmt, ...) do { if (RA_DEBUG) { \
43 printf("RA: "fmt"\n", ##__VA_ARGS__); \
44 } } while (0)
45
46 #define di(instr, fmt, ...) do { if (RA_DEBUG) { \
47 printf("RA: "fmt": ", ##__VA_ARGS__); \
48 ir3_print_instr(instr); \
49 } } while (0)
50
51 /*
52 * Register Assignment:
53 *
54 * Uses the register_allocate util, which implements graph coloring
55 * algo with interference classes. To handle the cases where we need
56 * consecutive registers (for example, texture sample instructions),
57 * we model these as larger (double/quad/etc) registers which conflict
58 * with the corresponding registers in other classes.
59 *
60 * Additionally we create additional classes for half-regs, which
61 * do not conflict with the full-reg classes. We do need at least
62 * sizes 1-4 (to deal w/ texture sample instructions output to half-
63 * reg). At the moment we don't create the higher order half-reg
64 * classes as half-reg frequently does not have enough precision
65 * for texture coords at higher resolutions.
66 *
67 * There are some additional cases that we need to handle specially,
68 * as the graph coloring algo doesn't understand "partial writes".
69 * For example, a sequence like:
70 *
71 * add r0.z, ...
72 * sam (f32)(xy)r0.x, ...
73 * ...
74 * sam (f32)(xyzw)r0.w, r0.x, ... ; 3d texture, so r0.xyz are coord
75 *
76 * In this scenario, we treat r0.xyz as class size 3, which is written
77 * (from a use/def perspective) at the 'add' instruction and ignore the
78 * subsequent partial writes to r0.xy. So the 'add r0.z, ...' is the
79 * defining instruction, as it is the first to partially write r0.xyz.
80 *
81 * To address the fragmentation that this can potentially cause, a
82 * two pass register allocation is used. After the first pass the
83 * assignment of scalars is discarded, but the assignment of vecN (for
84 * N > 1) is used to pre-color in the second pass, which considers
85 * only scalars.
86 *
87 * Arrays of arbitrary size are handled via pre-coloring a consecutive
88 * sequence of registers. Additional scalar (single component) reg
89 * names are allocated starting at ctx->class_base[total_class_count]
90 * (see arr->base), which are pre-colored. In the use/def graph direct
91 * access is treated as a single element use/def, and indirect access
92 * is treated as use or def of all array elements. (Only the first
93 * def is tracked, in case of multiple indirect writes, etc.)
94 *
95 * TODO arrays that fit in one of the pre-defined class sizes should
96 * not need to be pre-colored, but instead could be given a normal
97 * vreg name. (Ignoring this for now since it is a good way to work
98 * out the kinks with arbitrary sized arrays.)
99 *
100 * TODO might be easier for debugging to split this into two passes,
101 * the first assigning vreg names in a way that we could ir3_print()
102 * the result.
103 */
104
105
106 static struct ir3_instruction * name_to_instr(struct ir3_ra_ctx *ctx, unsigned name);
107
108 static bool name_is_array(struct ir3_ra_ctx *ctx, unsigned name);
109 static struct ir3_array * name_to_array(struct ir3_ra_ctx *ctx, unsigned name);
110
111 /* does it conflict? */
112 static inline bool
113 intersects(unsigned a_start, unsigned a_end, unsigned b_start, unsigned b_end)
114 {
115 return !((a_start >= b_end) || (b_start >= a_end));
116 }
117
118 static unsigned
119 reg_size_for_array(struct ir3_array *arr)
120 {
121 if (arr->half)
122 return DIV_ROUND_UP(arr->length, 2);
123
124 return arr->length;
125 }
126
127 static bool
128 instr_before(struct ir3_instruction *a, struct ir3_instruction *b)
129 {
130 if (a->flags & IR3_INSTR_UNUSED)
131 return false;
132 return (a->ip < b->ip);
133 }
134
135 static struct ir3_instruction *
136 get_definer(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr,
137 int *sz, int *off)
138 {
139 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
140 struct ir3_instruction *d = NULL;
141
142 if (ctx->scalar_pass) {
143 id->defn = instr;
144 id->off = 0;
145 id->sz = 1; /* considering things as N scalar regs now */
146 }
147
148 if (id->defn) {
149 *sz = id->sz;
150 *off = id->off;
151 return id->defn;
152 }
153
154 if (instr->opc == OPC_META_COLLECT) {
155 /* What about the case where collect is subset of array, we
156 * need to find the distance between where actual array starts
157 * and collect.. that probably doesn't happen currently.
158 */
159 int dsz, doff;
160
161 /* note: don't use foreach_ssa_src as this gets called once
162 * while assigning regs (which clears SSA flag)
163 */
164 foreach_src_n (src, n, instr) {
165 struct ir3_instruction *dd;
166 if (!src->instr)
167 continue;
168
169 dd = get_definer(ctx, src->instr, &dsz, &doff);
170
171 if ((!d) || instr_before(dd, d)) {
172 d = dd;
173 *sz = dsz;
174 *off = doff - n;
175 }
176 }
177
178 } else if (instr->cp.right || instr->cp.left) {
179 /* covers also the meta:fo case, which ends up w/ single
180 * scalar instructions for each component:
181 */
182 struct ir3_instruction *f = ir3_neighbor_first(instr);
183
184 /* by definition, the entire sequence forms one linked list
185 * of single scalar register nodes (even if some of them may
186 * be splits from a texture sample (for example) instr. We
187 * just need to walk the list finding the first element of
188 * the group defined (lowest ip)
189 */
190 int cnt = 0;
191
192 /* need to skip over unused in the group: */
193 while (f && (f->flags & IR3_INSTR_UNUSED)) {
194 f = f->cp.right;
195 cnt++;
196 }
197
198 while (f) {
199 if ((!d) || instr_before(f, d))
200 d = f;
201 if (f == instr)
202 *off = cnt;
203 f = f->cp.right;
204 cnt++;
205 }
206
207 *sz = cnt;
208
209 } else {
210 /* second case is looking directly at the instruction which
211 * produces multiple values (eg, texture sample), rather
212 * than the split nodes that point back to that instruction.
213 * This isn't quite right, because it may be part of a larger
214 * group, such as:
215 *
216 * sam (f32)(xyzw)r0.x, ...
217 * add r1.x, ...
218 * add r1.y, ...
219 * sam (f32)(xyzw)r2.x, r0.w <-- (r0.w, r1.x, r1.y)
220 *
221 * need to come up with a better way to handle that case.
222 */
223 if (instr->address) {
224 *sz = instr->regs[0]->size;
225 } else {
226 *sz = util_last_bit(instr->regs[0]->wrmask);
227 }
228 *off = 0;
229 d = instr;
230 }
231
232 if (d->opc == OPC_META_SPLIT) {
233 struct ir3_instruction *dd;
234 int dsz, doff;
235
236 dd = get_definer(ctx, d->regs[1]->instr, &dsz, &doff);
237
238 /* by definition, should come before: */
239 debug_assert(instr_before(dd, d));
240
241 *sz = MAX2(*sz, dsz);
242
243 if (instr->opc == OPC_META_SPLIT)
244 *off = MAX2(*off, instr->split.off);
245
246 d = dd;
247 }
248
249 debug_assert(d->opc != OPC_META_SPLIT);
250
251 id->defn = d;
252 id->sz = *sz;
253 id->off = *off;
254
255 return d;
256 }
257
258 static void
259 ra_block_find_definers(struct ir3_ra_ctx *ctx, struct ir3_block *block)
260 {
261 foreach_instr (instr, &block->instr_list) {
262 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
263 if (instr->regs_count == 0)
264 continue;
265 /* couple special cases: */
266 if (writes_addr0(instr) || writes_addr1(instr) || writes_pred(instr)) {
267 id->cls = -1;
268 } else if (instr->regs[0]->flags & IR3_REG_ARRAY) {
269 id->cls = total_class_count;
270 } else {
271 /* and the normal case: */
272 id->defn = get_definer(ctx, instr, &id->sz, &id->off);
273 id->cls = ra_size_to_class(id->sz, is_half(id->defn), is_high(id->defn));
274
275 /* this is a bit of duct-tape.. if we have a scenario like:
276 *
277 * sam (f32)(x) out.x, ...
278 * sam (f32)(x) out.y, ...
279 *
280 * Then the fanout/split meta instructions for the two different
281 * tex instructions end up grouped as left/right neighbors. The
282 * upshot is that in when you get_definer() on one of the meta:fo's
283 * you get definer as the first sam with sz=2, but when you call
284 * get_definer() on the either of the sam's you get itself as the
285 * definer with sz=1.
286 *
287 * (We actually avoid this scenario exactly, the neighbor links
288 * prevent one of the output mov's from being eliminated, so this
289 * hack should be enough. But probably we need to rethink how we
290 * find the "defining" instruction.)
291 *
292 * TODO how do we figure out offset properly...
293 */
294 if (id->defn != instr) {
295 struct ir3_ra_instr_data *did = &ctx->instrd[id->defn->ip];
296 if (did->sz < id->sz) {
297 did->sz = id->sz;
298 did->cls = id->cls;
299 }
300 }
301 }
302 }
303 }
304
305 /* give each instruction a name (and ip), and count up the # of names
306 * of each class
307 */
308 static void
309 ra_block_name_instructions(struct ir3_ra_ctx *ctx, struct ir3_block *block)
310 {
311 foreach_instr (instr, &block->instr_list) {
312 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
313
314 #ifdef DEBUG
315 instr->name = ~0;
316 #endif
317
318 ctx->instr_cnt++;
319
320 if (!writes_gpr(instr))
321 continue;
322
323 if (id->defn != instr)
324 continue;
325
326 /* In scalar pass, collect/split don't get their own names,
327 * but instead inherit them from their src(s):
328 *
329 * Possibly we don't need this because of scalar_name(), but
330 * it does make the ir3_print() dumps easier to read.
331 */
332 if (ctx->scalar_pass) {
333 if (instr->opc == OPC_META_SPLIT) {
334 instr->name = instr->regs[1]->instr->name + instr->split.off;
335 continue;
336 }
337
338 if (instr->opc == OPC_META_COLLECT) {
339 instr->name = instr->regs[1]->instr->name;
340 continue;
341 }
342 }
343
344 /* arrays which don't fit in one of the pre-defined class
345 * sizes are pre-colored:
346 */
347 if ((id->cls >= 0) && (id->cls < total_class_count)) {
348 /* in the scalar pass, we generate a name for each
349 * scalar component, instr->name is the name of the
350 * first component.
351 */
352 unsigned n = ctx->scalar_pass ? dest_regs(instr) : 1;
353 instr->name = ctx->class_alloc_count[id->cls];
354 ctx->class_alloc_count[id->cls] += n;
355 ctx->alloc_count += n;
356 }
357 }
358 }
359
360 /**
361 * Set a value for max register target.
362 *
363 * Currently this just rounds up to a multiple of full-vec4 (ie. the
364 * granularity that we configure the hw for.. there is no point to
365 * using r3.x if you aren't going to make r3.yzw available). But
366 * in reality there seems to be multiple thresholds that affect the
367 * number of waves.. and we should round up the target to the next
368 * threshold when we round-robin registers, to give postsched more
369 * options. When we understand that better, this is where we'd
370 * implement that.
371 */
372 static void
373 ra_set_register_target(struct ir3_ra_ctx *ctx, unsigned max_target)
374 {
375 const unsigned hvec4 = 4;
376 const unsigned vec4 = 2 * hvec4;
377
378 ctx->max_target = align(max_target, vec4);
379
380 d("New max_target=%u", ctx->max_target);
381 }
382
383 static int
384 pick_in_range(BITSET_WORD *regs, unsigned min, unsigned max)
385 {
386 for (unsigned i = min; i <= max; i++) {
387 if (BITSET_TEST(regs, i)) {
388 return i;
389 }
390 }
391 return -1;
392 }
393
394 static int
395 pick_in_range_rev(BITSET_WORD *regs, int min, int max)
396 {
397 for (int i = max; i >= min; i--) {
398 if (BITSET_TEST(regs, i)) {
399 return i;
400 }
401 }
402 return -1;
403 }
404
405 /* register selector for the a6xx+ merged register file: */
406 static unsigned int
407 ra_select_reg_merged(unsigned int n, BITSET_WORD *regs, void *data)
408 {
409 struct ir3_ra_ctx *ctx = data;
410 unsigned int class = ra_get_node_class(ctx->g, n);
411 bool half, high;
412 int sz = ra_class_to_size(class, &half, &high);
413
414 assert (sz > 0);
415
416 /* dimensions within the register class: */
417 unsigned max_target, start;
418
419 /* the regs bitset will include *all* of the virtual regs, but we lay
420 * out the different classes consecutively in the virtual register
421 * space. So we just need to think about the base offset of a given
422 * class within the virtual register space, and offset the register
423 * space we search within by that base offset.
424 */
425 unsigned base;
426
427 /* TODO I think eventually we want to round-robin in vector pass
428 * as well, but needs some more work to calculate # of live vals
429 * for this. (Maybe with some work, we could just figure out
430 * the scalar target and use that, since that is what we care
431 * about in the end.. but that would mean setting up use-def/
432 * liveranges for scalar pass before doing vector pass.)
433 *
434 * For now, in the vector class, just move assignments for scalar
435 * vals higher to hopefully prevent them from limiting where vecN
436 * values can be placed. Since the scalar values are re-assigned
437 * in the 2nd pass, we don't really care where they end up in the
438 * vector pass.
439 */
440 if (!ctx->scalar_pass) {
441 base = ctx->set->gpr_to_ra_reg[class][0];
442 if (high) {
443 max_target = HIGH_CLASS_REGS(class - HIGH_OFFSET);
444 } else if (half) {
445 max_target = HALF_CLASS_REGS(class - HALF_OFFSET);
446 } else {
447 max_target = CLASS_REGS(class);
448 }
449
450 if ((sz == 1) && !high) {
451 return pick_in_range_rev(regs, base, base + max_target);
452 } else {
453 return pick_in_range(regs, base, base + max_target);
454 }
455 } else {
456 assert(sz == 1);
457 }
458
459 /* NOTE: this is only used in scalar pass, so the register
460 * class will be one of the scalar classes (ie. idx==0):
461 */
462 base = ctx->set->gpr_to_ra_reg[class][0];
463 if (high) {
464 max_target = HIGH_CLASS_REGS(0);
465 start = 0;
466 } else if (half) {
467 max_target = ctx->max_target;
468 start = ctx->start_search_reg;
469 } else {
470 max_target = ctx->max_target / 2;
471 start = ctx->start_search_reg;
472 }
473
474 /* For cat4 instructions, if the src reg is already assigned, and
475 * avail to pick, use it. Because this doesn't introduce unnecessary
476 * dependencies, and it potentially avoids needing (ss) syncs to
477 * for write after read hazards:
478 */
479 struct ir3_instruction *instr = name_to_instr(ctx, n);
480 if (is_sfu(instr)) {
481 struct ir3_register *src = instr->regs[1];
482 int src_n;
483
484 if ((src->flags & IR3_REG_ARRAY) && !(src->flags & IR3_REG_RELATIV)) {
485 struct ir3_array *arr = ir3_lookup_array(ctx->ir, src->array.id);
486 src_n = arr->base + src->array.offset;
487 } else {
488 src_n = scalar_name(ctx, src->instr, 0);
489 }
490
491 unsigned reg = ra_get_node_reg(ctx->g, src_n);
492
493 /* Check if the src register has been assigned yet: */
494 if (reg != NO_REG) {
495 if (BITSET_TEST(regs, reg)) {
496 return reg;
497 }
498 }
499 }
500
501 int r = pick_in_range(regs, base + start, base + max_target);
502 if (r < 0) {
503 /* wrap-around: */
504 r = pick_in_range(regs, base, base + start);
505 }
506
507 if (r < 0) {
508 /* overflow, we need to increase max_target: */
509 ra_set_register_target(ctx, ctx->max_target + 1);
510 return ra_select_reg_merged(n, regs, data);
511 }
512
513 if (class == ctx->set->half_classes[0]) {
514 int n = r - base;
515 ctx->start_search_reg = (n + 1) % ctx->max_target;
516 } else if (class == ctx->set->classes[0]) {
517 int n = (r - base) * 2;
518 ctx->start_search_reg = (n + 1) % ctx->max_target;
519 }
520
521 return r;
522 }
523
524 static void
525 ra_init(struct ir3_ra_ctx *ctx)
526 {
527 unsigned n, base;
528
529 ir3_clear_mark(ctx->ir);
530 n = ir3_count_instructions_ra(ctx->ir);
531
532 ctx->instrd = rzalloc_array(NULL, struct ir3_ra_instr_data, n);
533
534 foreach_block (block, &ctx->ir->block_list) {
535 ra_block_find_definers(ctx, block);
536 }
537
538 foreach_block (block, &ctx->ir->block_list) {
539 ra_block_name_instructions(ctx, block);
540 }
541
542 /* figure out the base register name for each class. The
543 * actual ra name is class_base[cls] + instr->name;
544 */
545 ctx->class_base[0] = 0;
546 for (unsigned i = 1; i <= total_class_count; i++) {
547 ctx->class_base[i] = ctx->class_base[i-1] +
548 ctx->class_alloc_count[i-1];
549 }
550
551 /* and vreg names for array elements: */
552 base = ctx->class_base[total_class_count];
553 foreach_array (arr, &ctx->ir->array_list) {
554 arr->base = base;
555 ctx->class_alloc_count[total_class_count] += reg_size_for_array(arr);
556 base += reg_size_for_array(arr);
557 }
558 ctx->alloc_count += ctx->class_alloc_count[total_class_count];
559
560 /* Add vreg names for r0.xyz */
561 ctx->r0_xyz_nodes = ctx->alloc_count;
562 ctx->alloc_count += 3;
563 ctx->hr0_xyz_nodes = ctx->alloc_count;
564 ctx->alloc_count += 3;
565
566 /* Add vreg name for prefetch-exclusion range: */
567 ctx->prefetch_exclude_node = ctx->alloc_count++;
568
569 ctx->g = ra_alloc_interference_graph(ctx->set->regs, ctx->alloc_count);
570 ralloc_steal(ctx->g, ctx->instrd);
571 ctx->def = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
572 ctx->use = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
573
574 /* TODO add selector callback for split (pre-a6xx) register file: */
575 if (ctx->v->mergedregs) {
576 ra_set_select_reg_callback(ctx->g, ra_select_reg_merged, ctx);
577
578 if (ctx->scalar_pass) {
579 ctx->name_to_instr = _mesa_hash_table_create(ctx->g,
580 _mesa_hash_int, _mesa_key_int_equal);
581 }
582 }
583 }
584
585 /* Map the name back to instruction: */
586 static struct ir3_instruction *
587 name_to_instr(struct ir3_ra_ctx *ctx, unsigned name)
588 {
589 assert(!name_is_array(ctx, name));
590 struct hash_entry *entry = _mesa_hash_table_search(ctx->name_to_instr, &name);
591 if (entry)
592 return entry->data;
593 unreachable("invalid instr name");
594 return NULL;
595 }
596
597 static bool
598 name_is_array(struct ir3_ra_ctx *ctx, unsigned name)
599 {
600 return name >= ctx->class_base[total_class_count];
601 }
602
603 static struct ir3_array *
604 name_to_array(struct ir3_ra_ctx *ctx, unsigned name)
605 {
606 assert(name_is_array(ctx, name));
607 foreach_array (arr, &ctx->ir->array_list) {
608 unsigned sz = reg_size_for_array(arr);
609 if (name < (arr->base + sz))
610 return arr;
611 }
612 unreachable("invalid array name");
613 return NULL;
614 }
615
616 static void
617 ra_destroy(struct ir3_ra_ctx *ctx)
618 {
619 ralloc_free(ctx->g);
620 }
621
622 static void
623 __def(struct ir3_ra_ctx *ctx, struct ir3_ra_block_data *bd, unsigned name,
624 struct ir3_instruction *instr)
625 {
626 debug_assert(name < ctx->alloc_count);
627
628 /* split/collect do not actually define any real value */
629 if ((instr->opc == OPC_META_SPLIT) || (instr->opc == OPC_META_COLLECT))
630 return;
631
632 /* defined on first write: */
633 if (!ctx->def[name])
634 ctx->def[name] = instr->ip;
635 ctx->use[name] = MAX2(ctx->use[name], instr->ip);
636 BITSET_SET(bd->def, name);
637 }
638
639 static void
640 __use(struct ir3_ra_ctx *ctx, struct ir3_ra_block_data *bd, unsigned name,
641 struct ir3_instruction *instr)
642 {
643 debug_assert(name < ctx->alloc_count);
644 ctx->use[name] = MAX2(ctx->use[name], instr->ip);
645 if (!BITSET_TEST(bd->def, name))
646 BITSET_SET(bd->use, name);
647 }
648
649 static void
650 ra_block_compute_live_ranges(struct ir3_ra_ctx *ctx, struct ir3_block *block)
651 {
652 struct ir3_ra_block_data *bd;
653 unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
654
655 #define def(name, instr) __def(ctx, bd, name, instr)
656 #define use(name, instr) __use(ctx, bd, name, instr)
657
658 bd = rzalloc(ctx->g, struct ir3_ra_block_data);
659
660 bd->def = rzalloc_array(bd, BITSET_WORD, bitset_words);
661 bd->use = rzalloc_array(bd, BITSET_WORD, bitset_words);
662 bd->livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
663 bd->liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
664
665 block->data = bd;
666
667 struct ir3_instruction *first_non_input = NULL;
668 foreach_instr (instr, &block->instr_list) {
669 if (instr->opc != OPC_META_INPUT) {
670 first_non_input = instr;
671 break;
672 }
673 }
674
675 foreach_instr (instr, &block->instr_list) {
676 foreach_def (name, ctx, instr) {
677 if (name_is_array(ctx, name)) {
678 struct ir3_array *arr = name_to_array(ctx, name);
679
680 arr->start_ip = MIN2(arr->start_ip, instr->ip);
681 arr->end_ip = MAX2(arr->end_ip, instr->ip);
682
683 for (unsigned i = 0; i < arr->length; i++) {
684 unsigned name = arr->base + i;
685 if(arr->half)
686 ra_set_node_class(ctx->g, name, ctx->set->half_classes[0]);
687 else
688 ra_set_node_class(ctx->g, name, ctx->set->classes[0]);
689 }
690 } else {
691 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
692 if (is_high(instr)) {
693 ra_set_node_class(ctx->g, name,
694 ctx->set->high_classes[id->cls - HIGH_OFFSET]);
695 } else if (is_half(instr)) {
696 ra_set_node_class(ctx->g, name,
697 ctx->set->half_classes[id->cls - HALF_OFFSET]);
698 } else {
699 ra_set_node_class(ctx->g, name,
700 ctx->set->classes[id->cls]);
701 }
702 }
703
704 def(name, instr);
705
706 if ((instr->opc == OPC_META_INPUT) && first_non_input)
707 use(name, first_non_input);
708
709 /* Texture instructions with writemasks can be treated as smaller
710 * vectors (or just scalars!) to allocate knowing that the
711 * masked-out regs won't be written, but we need to make sure that
712 * the start of the vector doesn't come before the first register
713 * or we'll wrap.
714 */
715 if (is_tex_or_prefetch(instr)) {
716 int writemask_skipped_regs = ffs(instr->regs[0]->wrmask) - 1;
717 int r0_xyz = is_half(instr) ?
718 ctx->hr0_xyz_nodes : ctx->r0_xyz_nodes;
719 for (int i = 0; i < writemask_skipped_regs; i++)
720 ra_add_node_interference(ctx->g, name, r0_xyz + i);
721 }
722
723 /* Pre-fetched textures have a lower limit for bits to encode dst
724 * register, so add additional interference with registers above
725 * that limit.
726 */
727 if (instr->opc == OPC_META_TEX_PREFETCH) {
728 ra_add_node_interference(ctx->g, name,
729 ctx->prefetch_exclude_node);
730 }
731 }
732
733 foreach_use (name, ctx, instr) {
734 if (name_is_array(ctx, name)) {
735 struct ir3_array *arr = name_to_array(ctx, name);
736
737 arr->start_ip = MIN2(arr->start_ip, instr->ip);
738 arr->end_ip = MAX2(arr->end_ip, instr->ip);
739
740 /* NOTE: arrays are not SSA so unconditionally
741 * set use bit:
742 */
743 BITSET_SET(bd->use, name);
744 }
745
746 use(name, instr);
747 }
748
749 foreach_name (name, ctx, instr) {
750 /* split/collect instructions have duplicate names
751 * as real instructions, so they skip the hashtable:
752 */
753 if (ctx->name_to_instr && !((instr->opc == OPC_META_SPLIT) ||
754 (instr->opc == OPC_META_COLLECT))) {
755 /* this is slightly annoying, we can't just use an
756 * integer on the stack
757 */
758 unsigned *key = ralloc(ctx->name_to_instr, unsigned);
759 *key = name;
760 debug_assert(!_mesa_hash_table_search(ctx->name_to_instr, key));
761 _mesa_hash_table_insert(ctx->name_to_instr, key, instr);
762 }
763 }
764 }
765 }
766
767 static bool
768 ra_compute_livein_liveout(struct ir3_ra_ctx *ctx)
769 {
770 unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
771 bool progress = false;
772
773 foreach_block (block, &ctx->ir->block_list) {
774 struct ir3_ra_block_data *bd = block->data;
775
776 /* update livein: */
777 for (unsigned i = 0; i < bitset_words; i++) {
778 /* anything used but not def'd within a block is
779 * by definition a live value coming into the block:
780 */
781 BITSET_WORD new_livein =
782 (bd->use[i] | (bd->liveout[i] & ~bd->def[i]));
783
784 if (new_livein & ~bd->livein[i]) {
785 bd->livein[i] |= new_livein;
786 progress = true;
787 }
788 }
789
790 /* update liveout: */
791 for (unsigned j = 0; j < ARRAY_SIZE(block->successors); j++) {
792 struct ir3_block *succ = block->successors[j];
793 struct ir3_ra_block_data *succ_bd;
794
795 if (!succ)
796 continue;
797
798 succ_bd = succ->data;
799
800 for (unsigned i = 0; i < bitset_words; i++) {
801 /* add anything that is livein in a successor block
802 * to our liveout:
803 */
804 BITSET_WORD new_liveout =
805 (succ_bd->livein[i] & ~bd->liveout[i]);
806
807 if (new_liveout) {
808 bd->liveout[i] |= new_liveout;
809 progress = true;
810 }
811 }
812 }
813 }
814
815 return progress;
816 }
817
818 static void
819 print_bitset(const char *name, BITSET_WORD *bs, unsigned cnt)
820 {
821 bool first = true;
822 debug_printf("RA: %s:", name);
823 for (unsigned i = 0; i < cnt; i++) {
824 if (BITSET_TEST(bs, i)) {
825 if (!first)
826 debug_printf(",");
827 debug_printf(" %04u", i);
828 first = false;
829 }
830 }
831 debug_printf("\n");
832 }
833
834 /* size of one component of instruction result, ie. half vs full: */
835 static unsigned
836 live_size(struct ir3_instruction *instr)
837 {
838 if (is_half(instr)) {
839 return 1;
840 } else if (is_high(instr)) {
841 /* doesn't count towards footprint */
842 return 0;
843 } else {
844 return 2;
845 }
846 }
847
848 static unsigned
849 name_size(struct ir3_ra_ctx *ctx, unsigned name)
850 {
851 if (name_is_array(ctx, name)) {
852 struct ir3_array *arr = name_to_array(ctx, name);
853 return arr->half ? 1 : 2;
854 } else {
855 struct ir3_instruction *instr = name_to_instr(ctx, name);
856 /* in scalar pass, each name represents on scalar value,
857 * half or full precision
858 */
859 return live_size(instr);
860 }
861 }
862
863 static unsigned
864 ra_calc_block_live_values(struct ir3_ra_ctx *ctx, struct ir3_block *block)
865 {
866 struct ir3_ra_block_data *bd = block->data;
867 unsigned name;
868
869 assert(ctx->name_to_instr);
870
871 /* TODO this gets a bit more complicated in non-scalar pass.. but
872 * possibly a lowball estimate is fine to start with if we do
873 * round-robin in non-scalar pass? Maybe we just want to handle
874 * that in a different fxn?
875 */
876 assert(ctx->scalar_pass);
877
878 BITSET_WORD *live =
879 rzalloc_array(bd, BITSET_WORD, BITSET_WORDS(ctx->alloc_count));
880
881 /* Add the live input values: */
882 unsigned livein = 0;
883 BITSET_FOREACH_SET (name, bd->livein, ctx->alloc_count) {
884 livein += name_size(ctx, name);
885 BITSET_SET(live, name);
886 }
887
888 d("---------------------");
889 d("block%u: LIVEIN: %u", block_id(block), livein);
890
891 unsigned max = livein;
892 int cur_live = max;
893
894 /* Now that we know the live inputs to the block, iterate the
895 * instructions adjusting the current # of live values as we
896 * see their last use:
897 */
898 foreach_instr (instr, &block->instr_list) {
899 if (RA_DEBUG)
900 print_bitset("LIVE", live, ctx->alloc_count);
901 di(instr, "CALC");
902
903 unsigned new_live = 0; /* newly live values */
904 unsigned new_dead = 0; /* newly no-longer live values */
905 unsigned next_dead = 0; /* newly dead following this instr */
906
907 foreach_def (name, ctx, instr) {
908 /* NOTE: checking ctx->def filters out things like split/
909 * collect which are just redefining existing live names
910 * or array writes to already live array elements:
911 */
912 if (ctx->def[name] != instr->ip)
913 continue;
914 new_live += live_size(instr);
915 d("NEW_LIVE: %u (new_live=%u, use=%u)", name, new_live, ctx->use[name]);
916 BITSET_SET(live, name);
917 /* There can be cases where this is *also* the last use
918 * of a value, for example instructions that write multiple
919 * values, only some of which are used. These values are
920 * dead *after* (rather than during) this instruction.
921 */
922 if (ctx->use[name] != instr->ip)
923 continue;
924 next_dead += live_size(instr);
925 d("NEXT_DEAD: %u (next_dead=%u)", name, next_dead);
926 BITSET_CLEAR(live, name);
927 }
928
929 /* To be more resilient against special cases where liverange
930 * is extended (like first_non_input), rather than using the
931 * foreach_use() iterator, we iterate the current live values
932 * instead:
933 */
934 BITSET_FOREACH_SET (name, live, ctx->alloc_count) {
935 /* Is this the last use? */
936 if (ctx->use[name] != instr->ip)
937 continue;
938 new_dead += name_size(ctx, name);
939 d("NEW_DEAD: %u (new_dead=%u)", name, new_dead);
940 BITSET_CLEAR(live, name);
941 }
942
943 cur_live += new_live;
944 cur_live -= new_dead;
945
946 assert(cur_live >= 0);
947 d("CUR_LIVE: %u", cur_live);
948
949 max = MAX2(max, cur_live);
950
951 /* account for written values which are not used later,
952 * but after updating max (since they are for one cycle
953 * live)
954 */
955 cur_live -= next_dead;
956 assert(cur_live >= 0);
957
958 if (RA_DEBUG) {
959 unsigned cnt = 0;
960 BITSET_FOREACH_SET (name, live, ctx->alloc_count) {
961 cnt += name_size(ctx, name);
962 }
963 assert(cur_live == cnt);
964 }
965 }
966
967 d("block%u max=%u", block_id(block), max);
968
969 /* the remaining live should match liveout (for extra sanity testing): */
970 if (RA_DEBUG) {
971 unsigned new_dead = 0;
972 BITSET_FOREACH_SET (name, live, ctx->alloc_count) {
973 /* Is this the last use? */
974 if (ctx->use[name] != block->end_ip)
975 continue;
976 new_dead += name_size(ctx, name);
977 d("NEW_DEAD: %u (new_dead=%u)", name, new_dead);
978 BITSET_CLEAR(live, name);
979 }
980 unsigned liveout = 0;
981 BITSET_FOREACH_SET (name, bd->liveout, ctx->alloc_count) {
982 liveout += name_size(ctx, name);
983 BITSET_CLEAR(live, name);
984 }
985
986 if (cur_live != liveout) {
987 print_bitset("LEAKED", live, ctx->alloc_count);
988 /* TODO there are a few edge cases where live-range extension
989 * tells us a value is livein. But not used by the block or
990 * liveout for the block. Possibly a bug in the liverange
991 * extension. But for now leave the assert disabled:
992 assert(cur_live == liveout);
993 */
994 }
995 }
996
997 ralloc_free(live);
998
999 return max;
1000 }
1001
1002 static unsigned
1003 ra_calc_max_live_values(struct ir3_ra_ctx *ctx)
1004 {
1005 unsigned max = 0;
1006
1007 foreach_block (block, &ctx->ir->block_list) {
1008 unsigned block_live = ra_calc_block_live_values(ctx, block);
1009 max = MAX2(max, block_live);
1010 }
1011
1012 return max;
1013 }
1014
1015 static void
1016 ra_add_interference(struct ir3_ra_ctx *ctx)
1017 {
1018 struct ir3 *ir = ctx->ir;
1019
1020 /* initialize array live ranges: */
1021 foreach_array (arr, &ir->array_list) {
1022 arr->start_ip = ~0;
1023 arr->end_ip = 0;
1024 }
1025
1026 /* set up the r0.xyz precolor regs. */
1027 for (int i = 0; i < 3; i++) {
1028 ra_set_node_reg(ctx->g, ctx->r0_xyz_nodes + i, i);
1029 ra_set_node_reg(ctx->g, ctx->hr0_xyz_nodes + i,
1030 ctx->set->first_half_reg + i);
1031 }
1032
1033 /* pre-color node that conflict with half/full regs higher than what
1034 * can be encoded for tex-prefetch:
1035 */
1036 ra_set_node_reg(ctx->g, ctx->prefetch_exclude_node,
1037 ctx->set->prefetch_exclude_reg);
1038
1039 /* compute live ranges (use/def) on a block level, also updating
1040 * block's def/use bitmasks (used below to calculate per-block
1041 * livein/liveout):
1042 */
1043 foreach_block (block, &ir->block_list) {
1044 ra_block_compute_live_ranges(ctx, block);
1045 }
1046
1047 /* update per-block livein/liveout: */
1048 while (ra_compute_livein_liveout(ctx)) {}
1049
1050 if (RA_DEBUG) {
1051 d("AFTER LIVEIN/OUT:");
1052 foreach_block (block, &ir->block_list) {
1053 struct ir3_ra_block_data *bd = block->data;
1054 d("block%u:", block_id(block));
1055 print_bitset(" def", bd->def, ctx->alloc_count);
1056 print_bitset(" use", bd->use, ctx->alloc_count);
1057 print_bitset(" l/i", bd->livein, ctx->alloc_count);
1058 print_bitset(" l/o", bd->liveout, ctx->alloc_count);
1059 }
1060 foreach_array (arr, &ir->array_list) {
1061 d("array%u:", arr->id);
1062 d(" length: %u", arr->length);
1063 d(" start_ip: %u", arr->start_ip);
1064 d(" end_ip: %u", arr->end_ip);
1065 }
1066 d("INSTRUCTION VREG NAMES:");
1067 foreach_block (block, &ctx->ir->block_list) {
1068 foreach_instr (instr, &block->instr_list) {
1069 if (!ctx->instrd[instr->ip].defn)
1070 continue;
1071 if (!writes_gpr(instr))
1072 continue;
1073 di(instr, "%04u", scalar_name(ctx, instr, 0));
1074 }
1075 }
1076 d("ARRAY VREG NAMES:");
1077 foreach_array (arr, &ctx->ir->array_list) {
1078 d("%04u: arr%u", arr->base, arr->id);
1079 }
1080 }
1081
1082 /* extend start/end ranges based on livein/liveout info from cfg: */
1083 foreach_block (block, &ir->block_list) {
1084 struct ir3_ra_block_data *bd = block->data;
1085
1086 for (unsigned i = 0; i < ctx->alloc_count; i++) {
1087 if (BITSET_TEST(bd->livein, i)) {
1088 ctx->def[i] = MIN2(ctx->def[i], block->start_ip);
1089 ctx->use[i] = MAX2(ctx->use[i], block->start_ip);
1090 }
1091
1092 if (BITSET_TEST(bd->liveout, i)) {
1093 ctx->def[i] = MIN2(ctx->def[i], block->end_ip);
1094 ctx->use[i] = MAX2(ctx->use[i], block->end_ip);
1095 }
1096 }
1097
1098 foreach_array (arr, &ctx->ir->array_list) {
1099 for (unsigned i = 0; i < arr->length; i++) {
1100 if (BITSET_TEST(bd->livein, i + arr->base)) {
1101 arr->start_ip = MIN2(arr->start_ip, block->start_ip);
1102 }
1103 if (BITSET_TEST(bd->liveout, i + arr->base)) {
1104 arr->end_ip = MAX2(arr->end_ip, block->end_ip);
1105 }
1106 }
1107 }
1108 }
1109
1110 if (ctx->name_to_instr) {
1111 unsigned max = ra_calc_max_live_values(ctx);
1112 ra_set_register_target(ctx, max);
1113 }
1114
1115 for (unsigned i = 0; i < ctx->alloc_count; i++) {
1116 for (unsigned j = 0; j < ctx->alloc_count; j++) {
1117 if (intersects(ctx->def[i], ctx->use[i],
1118 ctx->def[j], ctx->use[j])) {
1119 ra_add_node_interference(ctx->g, i, j);
1120 }
1121 }
1122 }
1123 }
1124
1125 /* NOTE: instr could be NULL for IR3_REG_ARRAY case, for the first
1126 * array access(es) which do not have any previous access to depend
1127 * on from scheduling point of view
1128 */
1129 static void
1130 reg_assign(struct ir3_ra_ctx *ctx, struct ir3_register *reg,
1131 struct ir3_instruction *instr)
1132 {
1133 struct ir3_ra_instr_data *id;
1134
1135 if (reg->flags & IR3_REG_ARRAY) {
1136 struct ir3_array *arr =
1137 ir3_lookup_array(ctx->ir, reg->array.id);
1138 unsigned name = arr->base + reg->array.offset;
1139 unsigned r = ra_get_node_reg(ctx->g, name);
1140 unsigned num = ctx->set->ra_reg_to_gpr[r];
1141
1142 if (reg->flags & IR3_REG_RELATIV) {
1143 reg->array.offset = num;
1144 } else {
1145 reg->num = num;
1146 reg->flags &= ~IR3_REG_SSA;
1147 }
1148
1149 reg->flags &= ~IR3_REG_ARRAY;
1150 } else if ((id = &ctx->instrd[instr->ip]) && id->defn) {
1151 unsigned first_component = 0;
1152
1153 /* Special case for tex instructions, which may use the wrmask
1154 * to mask off the first component(s). In the scalar pass,
1155 * this means the masked off component(s) are not def'd/use'd,
1156 * so we get a bogus value when we ask the register_allocate
1157 * algo to get the assigned reg for the unused/untouched
1158 * component. So we need to consider the first used component:
1159 */
1160 if (ctx->scalar_pass && is_tex_or_prefetch(id->defn)) {
1161 unsigned n = ffs(id->defn->regs[0]->wrmask);
1162 debug_assert(n > 0);
1163 first_component = n - 1;
1164 }
1165
1166 unsigned name = scalar_name(ctx, id->defn, first_component);
1167 unsigned r = ra_get_node_reg(ctx->g, name);
1168 unsigned num = ctx->set->ra_reg_to_gpr[r] + id->off;
1169
1170 debug_assert(!(reg->flags & IR3_REG_RELATIV));
1171
1172 debug_assert(num >= first_component);
1173
1174 if (is_high(id->defn))
1175 num += FIRST_HIGH_REG;
1176
1177 reg->num = num - first_component;
1178
1179 reg->flags &= ~IR3_REG_SSA;
1180
1181 if (is_half(id->defn))
1182 reg->flags |= IR3_REG_HALF;
1183 }
1184 }
1185
1186 /* helper to determine which regs to assign in which pass: */
1187 static bool
1188 should_assign(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr)
1189 {
1190 if ((instr->opc == OPC_META_SPLIT) &&
1191 (util_bitcount(instr->regs[1]->wrmask) > 1))
1192 return !ctx->scalar_pass;
1193 if ((instr->opc == OPC_META_COLLECT) &&
1194 (util_bitcount(instr->regs[0]->wrmask) > 1))
1195 return !ctx->scalar_pass;
1196 return ctx->scalar_pass;
1197 }
1198
1199 static void
1200 ra_block_alloc(struct ir3_ra_ctx *ctx, struct ir3_block *block)
1201 {
1202 foreach_instr (instr, &block->instr_list) {
1203
1204 if (writes_gpr(instr)) {
1205 if (should_assign(ctx, instr)) {
1206 reg_assign(ctx, instr->regs[0], instr);
1207 }
1208 }
1209
1210 foreach_src_n (reg, n, instr) {
1211 struct ir3_instruction *src = reg->instr;
1212
1213 if (src && !should_assign(ctx, src) && !should_assign(ctx, instr))
1214 continue;
1215
1216 if (src && should_assign(ctx, instr))
1217 reg_assign(ctx, src->regs[0], src);
1218
1219 /* Note: reg->instr could be null for IR3_REG_ARRAY */
1220 if (src || (reg->flags & IR3_REG_ARRAY))
1221 reg_assign(ctx, instr->regs[n+1], src);
1222 }
1223 }
1224
1225 /* We need to pre-color outputs for the scalar pass in
1226 * ra_precolor_assigned(), so we need to actually assign
1227 * them in the first pass:
1228 */
1229 if (!ctx->scalar_pass) {
1230 foreach_input (in, ctx->ir) {
1231 reg_assign(ctx, in->regs[0], in);
1232 }
1233 foreach_output (out, ctx->ir) {
1234 reg_assign(ctx, out->regs[0], out);
1235 }
1236 }
1237 }
1238
1239 static void
1240 assign_arr_base(struct ir3_ra_ctx *ctx, struct ir3_array *arr,
1241 struct ir3_instruction **precolor, unsigned nprecolor)
1242 {
1243 unsigned base = 0;
1244
1245 /* figure out what else we conflict with which has already
1246 * been assigned:
1247 */
1248 retry:
1249 foreach_array (arr2, &ctx->ir->array_list) {
1250 if (arr2 == arr)
1251 break;
1252 if (arr2->end_ip == 0)
1253 continue;
1254 /* if it intersects with liverange AND register range.. */
1255 if (intersects(arr->start_ip, arr->end_ip,
1256 arr2->start_ip, arr2->end_ip) &&
1257 intersects(base, base + reg_size_for_array(arr),
1258 arr2->reg, arr2->reg + reg_size_for_array(arr2))) {
1259 base = MAX2(base, arr2->reg + reg_size_for_array(arr2));
1260 goto retry;
1261 }
1262 }
1263
1264 /* also need to not conflict with any pre-assigned inputs: */
1265 for (unsigned i = 0; i < nprecolor; i++) {
1266 struct ir3_instruction *instr = precolor[i];
1267
1268 if (!instr || (instr->flags & IR3_INSTR_UNUSED))
1269 continue;
1270
1271 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
1272
1273 /* only consider the first component: */
1274 if (id->off > 0)
1275 continue;
1276
1277 unsigned name = ra_name(ctx, id);
1278 unsigned regid = instr->regs[0]->num;
1279
1280 /* Check if array intersects with liverange AND register
1281 * range of the input:
1282 */
1283 if (intersects(arr->start_ip, arr->end_ip,
1284 ctx->def[name], ctx->use[name]) &&
1285 intersects(base, base + reg_size_for_array(arr),
1286 regid, regid + class_sizes[id->cls])) {
1287 base = MAX2(base, regid + class_sizes[id->cls]);
1288 goto retry;
1289 }
1290 }
1291
1292 arr->reg = base;
1293 }
1294
1295 /* handle pre-colored registers. This includes "arrays" (which could be of
1296 * length 1, used for phi webs lowered to registers in nir), as well as
1297 * special shader input values that need to be pinned to certain registers.
1298 */
1299 static void
1300 ra_precolor(struct ir3_ra_ctx *ctx, struct ir3_instruction **precolor, unsigned nprecolor)
1301 {
1302 for (unsigned i = 0; i < nprecolor; i++) {
1303 if (precolor[i] && !(precolor[i]->flags & IR3_INSTR_UNUSED)) {
1304 struct ir3_instruction *instr = precolor[i];
1305
1306 if (instr->regs[0]->num == INVALID_REG)
1307 continue;
1308
1309 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
1310
1311 debug_assert(!(instr->regs[0]->flags & (IR3_REG_HALF | IR3_REG_HIGH)));
1312
1313 /* 'base' is in scalar (class 0) but we need to map that
1314 * the conflicting register of the appropriate class (ie.
1315 * input could be vec2/vec3/etc)
1316 *
1317 * Note that the higher class (larger than scalar) regs
1318 * are setup to conflict with others in the same class,
1319 * so for example, R1 (scalar) is also the first component
1320 * of D1 (vec2/double):
1321 *
1322 * Single (base) | Double
1323 * --------------+---------------
1324 * R0 | D0
1325 * R1 | D0 D1
1326 * R2 | D1 D2
1327 * R3 | D2
1328 * .. and so on..
1329 */
1330 unsigned regid = instr->regs[0]->num;
1331 assert(regid >= id->off);
1332 regid -= id->off;
1333
1334 unsigned reg = ctx->set->gpr_to_ra_reg[id->cls][regid];
1335 unsigned name = ra_name(ctx, id);
1336 ra_set_node_reg(ctx->g, name, reg);
1337 }
1338 }
1339
1340 /* pre-assign array elements:
1341 *
1342 * TODO this is going to need some work for half-precision.. possibly
1343 * this is easier on a6xx, where we can just divide array size by two?
1344 * But on a5xx and earlier it will need to track two bases.
1345 */
1346 foreach_array (arr, &ctx->ir->array_list) {
1347
1348 if (arr->end_ip == 0)
1349 continue;
1350
1351 if (!ctx->scalar_pass)
1352 assign_arr_base(ctx, arr, precolor, nprecolor);
1353
1354 unsigned base = arr->reg;
1355
1356 for (unsigned i = 0; i < arr->length; i++) {
1357 unsigned name, reg;
1358
1359 if (arr->half) {
1360 /* Doesn't need to do this on older generations than a6xx,
1361 * since there's no conflict between full regs and half regs
1362 * on them.
1363 *
1364 * TODO Presumably "base" could start from 0 respectively
1365 * for half regs of arrays on older generations.
1366 */
1367 unsigned base_half = base * 2 + i;
1368 reg = ctx->set->gpr_to_ra_reg[0+HALF_OFFSET][base_half];
1369 base = base_half / 2 + 1;
1370 } else {
1371 reg = ctx->set->gpr_to_ra_reg[0][base++];
1372 }
1373
1374 name = arr->base + i;
1375 ra_set_node_reg(ctx->g, name, reg);
1376 }
1377 }
1378
1379 if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
1380 foreach_array (arr, &ctx->ir->array_list) {
1381 unsigned first = arr->reg;
1382 unsigned last = arr->reg + arr->length - 1;
1383 debug_printf("arr[%d] at r%d.%c->r%d.%c\n", arr->id,
1384 (first >> 2), "xyzw"[first & 0x3],
1385 (last >> 2), "xyzw"[last & 0x3]);
1386 }
1387 }
1388 }
1389
1390 static void
1391 precolor(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr)
1392 {
1393 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
1394 unsigned n = dest_regs(instr);
1395 for (unsigned i = 0; i < n; i++) {
1396 /* tex instructions actually have a wrmask, and
1397 * don't touch masked out components. So we
1398 * shouldn't precolor them::
1399 */
1400 if (is_tex_or_prefetch(instr) &&
1401 !(instr->regs[0]->wrmask & (1 << i)))
1402 continue;
1403
1404 unsigned name = scalar_name(ctx, instr, i);
1405 unsigned regid = instr->regs[0]->num + i;
1406
1407 if (instr->regs[0]->flags & IR3_REG_HIGH)
1408 regid -= FIRST_HIGH_REG;
1409
1410 unsigned vreg = ctx->set->gpr_to_ra_reg[id->cls][regid];
1411 ra_set_node_reg(ctx->g, name, vreg);
1412 }
1413 }
1414
1415 /* pre-color non-scalar registers based on the registers assigned in previous
1416 * pass. Do this by looking actually at the fanout instructions.
1417 */
1418 static void
1419 ra_precolor_assigned(struct ir3_ra_ctx *ctx)
1420 {
1421 debug_assert(ctx->scalar_pass);
1422
1423 foreach_block (block, &ctx->ir->block_list) {
1424 foreach_instr (instr, &block->instr_list) {
1425
1426 if (!writes_gpr(instr))
1427 continue;
1428
1429 if (should_assign(ctx, instr))
1430 continue;
1431
1432 precolor(ctx, instr);
1433
1434 foreach_src (src, instr) {
1435 if (!src->instr)
1436 continue;
1437 precolor(ctx, src->instr);
1438 }
1439 }
1440 }
1441 }
1442
1443 static int
1444 ra_alloc(struct ir3_ra_ctx *ctx)
1445 {
1446 if (!ra_allocate(ctx->g))
1447 return -1;
1448
1449 foreach_block (block, &ctx->ir->block_list) {
1450 ra_block_alloc(ctx, block);
1451 }
1452
1453 return 0;
1454 }
1455
1456 /* if we end up with split/collect instructions with non-matching src
1457 * and dest regs, that means something has gone wrong. Which makes it
1458 * a pretty good sanity check.
1459 */
1460 static void
1461 ra_sanity_check(struct ir3 *ir)
1462 {
1463 foreach_block (block, &ir->block_list) {
1464 foreach_instr (instr, &block->instr_list) {
1465 if (instr->opc == OPC_META_SPLIT) {
1466 struct ir3_register *dst = instr->regs[0];
1467 struct ir3_register *src = instr->regs[1];
1468 debug_assert(dst->num == (src->num + instr->split.off));
1469 } else if (instr->opc == OPC_META_COLLECT) {
1470 struct ir3_register *dst = instr->regs[0];
1471
1472 foreach_src_n (src, n, instr) {
1473 debug_assert(dst->num == (src->num - n));
1474 }
1475 }
1476 }
1477 }
1478 }
1479
1480 static int
1481 ir3_ra_pass(struct ir3_shader_variant *v, struct ir3_instruction **precolor,
1482 unsigned nprecolor, bool scalar_pass)
1483 {
1484 struct ir3_ra_ctx ctx = {
1485 .v = v,
1486 .ir = v->ir,
1487 .set = v->mergedregs ?
1488 v->ir->compiler->mergedregs_set : v->ir->compiler->set,
1489 .scalar_pass = scalar_pass,
1490 };
1491 int ret;
1492
1493 ra_init(&ctx);
1494 ra_add_interference(&ctx);
1495 ra_precolor(&ctx, precolor, nprecolor);
1496 if (scalar_pass)
1497 ra_precolor_assigned(&ctx);
1498 ret = ra_alloc(&ctx);
1499 ra_destroy(&ctx);
1500
1501 return ret;
1502 }
1503
1504 int
1505 ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor,
1506 unsigned nprecolor)
1507 {
1508 int ret;
1509
1510 /* First pass, assign the vecN (non-scalar) registers: */
1511 ret = ir3_ra_pass(v, precolor, nprecolor, false);
1512 if (ret)
1513 return ret;
1514
1515 ir3_debug_print(v->ir, "AFTER: ir3_ra (1st pass)");
1516
1517 /* Second pass, assign the scalar registers: */
1518 ret = ir3_ra_pass(v, precolor, nprecolor, true);
1519 if (ret)
1520 return ret;
1521
1522 ir3_debug_print(v->ir, "AFTER: ir3_ra (2st pass)");
1523
1524 #ifdef DEBUG
1525 # define SANITY_CHECK DEBUG
1526 #else
1527 # define SANITY_CHECK 0
1528 #endif
1529 if (SANITY_CHECK)
1530 ra_sanity_check(v->ir);
1531
1532 return ret;
1533 }