turnip: implement VK_EXT_4444_formats
[mesa.git] / src / freedreno / ir3 / ir3_ra.c
1 /*
2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "util/u_math.h"
28 #include "util/register_allocate.h"
29 #include "util/ralloc.h"
30 #include "util/bitset.h"
31
32 #include "ir3.h"
33 #include "ir3_shader.h"
34 #include "ir3_ra.h"
35
36
37 #ifdef DEBUG
38 #define RA_DEBUG (ir3_shader_debug & IR3_DBG_RAMSGS)
39 #else
40 #define RA_DEBUG 0
41 #endif
42 #define d(fmt, ...) do { if (RA_DEBUG) { \
43 printf("RA: "fmt"\n", ##__VA_ARGS__); \
44 } } while (0)
45
46 #define di(instr, fmt, ...) do { if (RA_DEBUG) { \
47 printf("RA: "fmt": ", ##__VA_ARGS__); \
48 ir3_print_instr(instr); \
49 } } while (0)
50
51 /*
52 * Register Assignment:
53 *
54 * Uses the register_allocate util, which implements graph coloring
55 * algo with interference classes. To handle the cases where we need
56 * consecutive registers (for example, texture sample instructions),
57 * we model these as larger (double/quad/etc) registers which conflict
58 * with the corresponding registers in other classes.
59 *
60 * Additionally we create additional classes for half-regs, which
61 * do not conflict with the full-reg classes. We do need at least
62 * sizes 1-4 (to deal w/ texture sample instructions output to half-
63 * reg). At the moment we don't create the higher order half-reg
64 * classes as half-reg frequently does not have enough precision
65 * for texture coords at higher resolutions.
66 *
67 * There are some additional cases that we need to handle specially,
68 * as the graph coloring algo doesn't understand "partial writes".
69 * For example, a sequence like:
70 *
71 * add r0.z, ...
72 * sam (f32)(xy)r0.x, ...
73 * ...
74 * sam (f32)(xyzw)r0.w, r0.x, ... ; 3d texture, so r0.xyz are coord
75 *
76 * In this scenario, we treat r0.xyz as class size 3, which is written
77 * (from a use/def perspective) at the 'add' instruction and ignore the
78 * subsequent partial writes to r0.xy. So the 'add r0.z, ...' is the
79 * defining instruction, as it is the first to partially write r0.xyz.
80 *
81 * To address the fragmentation that this can potentially cause, a
82 * two pass register allocation is used. After the first pass the
83 * assignment of scalars is discarded, but the assignment of vecN (for
84 * N > 1) is used to pre-color in the second pass, which considers
85 * only scalars.
86 *
87 * Arrays of arbitrary size are handled via pre-coloring a consecutive
88 * sequence of registers. Additional scalar (single component) reg
89 * names are allocated starting at ctx->class_base[total_class_count]
90 * (see arr->base), which are pre-colored. In the use/def graph direct
91 * access is treated as a single element use/def, and indirect access
92 * is treated as use or def of all array elements. (Only the first
93 * def is tracked, in case of multiple indirect writes, etc.)
94 *
95 * TODO arrays that fit in one of the pre-defined class sizes should
96 * not need to be pre-colored, but instead could be given a normal
97 * vreg name. (Ignoring this for now since it is a good way to work
98 * out the kinks with arbitrary sized arrays.)
99 *
100 * TODO might be easier for debugging to split this into two passes,
101 * the first assigning vreg names in a way that we could ir3_print()
102 * the result.
103 */
104
105
106 static struct ir3_instruction * name_to_instr(struct ir3_ra_ctx *ctx, unsigned name);
107
108 static bool name_is_array(struct ir3_ra_ctx *ctx, unsigned name);
109 static struct ir3_array * name_to_array(struct ir3_ra_ctx *ctx, unsigned name);
110
111 /* does it conflict? */
112 static inline bool
113 intersects(unsigned a_start, unsigned a_end, unsigned b_start, unsigned b_end)
114 {
115 return !((a_start >= b_end) || (b_start >= a_end));
116 }
117
118 static bool
119 instr_before(struct ir3_instruction *a, struct ir3_instruction *b)
120 {
121 if (a->flags & IR3_INSTR_UNUSED)
122 return false;
123 return (a->ip < b->ip);
124 }
125
126 static struct ir3_instruction *
127 get_definer(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr,
128 int *sz, int *off)
129 {
130 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
131 struct ir3_instruction *d = NULL;
132
133 if (ctx->scalar_pass) {
134 id->defn = instr;
135 id->off = 0;
136 id->sz = 1; /* considering things as N scalar regs now */
137 }
138
139 if (id->defn) {
140 *sz = id->sz;
141 *off = id->off;
142 return id->defn;
143 }
144
145 if (instr->opc == OPC_META_COLLECT) {
146 /* What about the case where collect is subset of array, we
147 * need to find the distance between where actual array starts
148 * and collect.. that probably doesn't happen currently.
149 */
150 int dsz, doff;
151
152 /* note: don't use foreach_ssa_src as this gets called once
153 * while assigning regs (which clears SSA flag)
154 */
155 foreach_src_n (src, n, instr) {
156 struct ir3_instruction *dd;
157 if (!src->instr)
158 continue;
159
160 dd = get_definer(ctx, src->instr, &dsz, &doff);
161
162 if ((!d) || instr_before(dd, d)) {
163 d = dd;
164 *sz = dsz;
165 *off = doff - n;
166 }
167 }
168
169 } else if (instr->cp.right || instr->cp.left) {
170 /* covers also the meta:fo case, which ends up w/ single
171 * scalar instructions for each component:
172 */
173 struct ir3_instruction *f = ir3_neighbor_first(instr);
174
175 /* by definition, the entire sequence forms one linked list
176 * of single scalar register nodes (even if some of them may
177 * be splits from a texture sample (for example) instr. We
178 * just need to walk the list finding the first element of
179 * the group defined (lowest ip)
180 */
181 int cnt = 0;
182
183 /* need to skip over unused in the group: */
184 while (f && (f->flags & IR3_INSTR_UNUSED)) {
185 f = f->cp.right;
186 cnt++;
187 }
188
189 while (f) {
190 if ((!d) || instr_before(f, d))
191 d = f;
192 if (f == instr)
193 *off = cnt;
194 f = f->cp.right;
195 cnt++;
196 }
197
198 *sz = cnt;
199
200 } else {
201 /* second case is looking directly at the instruction which
202 * produces multiple values (eg, texture sample), rather
203 * than the split nodes that point back to that instruction.
204 * This isn't quite right, because it may be part of a larger
205 * group, such as:
206 *
207 * sam (f32)(xyzw)r0.x, ...
208 * add r1.x, ...
209 * add r1.y, ...
210 * sam (f32)(xyzw)r2.x, r0.w <-- (r0.w, r1.x, r1.y)
211 *
212 * need to come up with a better way to handle that case.
213 */
214 if (instr->address) {
215 *sz = instr->regs[0]->size;
216 } else {
217 *sz = util_last_bit(instr->regs[0]->wrmask);
218 }
219 *off = 0;
220 d = instr;
221 }
222
223 if (d->opc == OPC_META_SPLIT) {
224 struct ir3_instruction *dd;
225 int dsz, doff;
226
227 dd = get_definer(ctx, d->regs[1]->instr, &dsz, &doff);
228
229 /* by definition, should come before: */
230 ra_assert(ctx, instr_before(dd, d));
231
232 *sz = MAX2(*sz, dsz);
233
234 if (instr->opc == OPC_META_SPLIT)
235 *off = MAX2(*off, instr->split.off);
236
237 d = dd;
238 }
239
240 ra_assert(ctx, d->opc != OPC_META_SPLIT);
241
242 id->defn = d;
243 id->sz = *sz;
244 id->off = *off;
245
246 return d;
247 }
248
249 static void
250 ra_block_find_definers(struct ir3_ra_ctx *ctx, struct ir3_block *block)
251 {
252 foreach_instr (instr, &block->instr_list) {
253 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
254 if (instr->regs_count == 0)
255 continue;
256 /* couple special cases: */
257 if (writes_addr0(instr) || writes_addr1(instr) || writes_pred(instr)) {
258 id->cls = -1;
259 } else if (instr->regs[0]->flags & IR3_REG_ARRAY) {
260 id->cls = total_class_count;
261 } else {
262 /* and the normal case: */
263 id->defn = get_definer(ctx, instr, &id->sz, &id->off);
264 id->cls = ra_size_to_class(id->sz, is_half(id->defn), is_high(id->defn));
265
266 /* this is a bit of duct-tape.. if we have a scenario like:
267 *
268 * sam (f32)(x) out.x, ...
269 * sam (f32)(x) out.y, ...
270 *
271 * Then the fanout/split meta instructions for the two different
272 * tex instructions end up grouped as left/right neighbors. The
273 * upshot is that in when you get_definer() on one of the meta:fo's
274 * you get definer as the first sam with sz=2, but when you call
275 * get_definer() on the either of the sam's you get itself as the
276 * definer with sz=1.
277 *
278 * (We actually avoid this scenario exactly, the neighbor links
279 * prevent one of the output mov's from being eliminated, so this
280 * hack should be enough. But probably we need to rethink how we
281 * find the "defining" instruction.)
282 *
283 * TODO how do we figure out offset properly...
284 */
285 if (id->defn != instr) {
286 struct ir3_ra_instr_data *did = &ctx->instrd[id->defn->ip];
287 if (did->sz < id->sz) {
288 did->sz = id->sz;
289 did->cls = id->cls;
290 }
291 }
292 }
293 }
294 }
295
296 /* give each instruction a name (and ip), and count up the # of names
297 * of each class
298 */
299 static void
300 ra_block_name_instructions(struct ir3_ra_ctx *ctx, struct ir3_block *block)
301 {
302 foreach_instr (instr, &block->instr_list) {
303 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
304
305 #ifdef DEBUG
306 instr->name = ~0;
307 #endif
308
309 ctx->instr_cnt++;
310
311 if (!writes_gpr(instr))
312 continue;
313
314 if (id->defn != instr)
315 continue;
316
317 /* In scalar pass, collect/split don't get their own names,
318 * but instead inherit them from their src(s):
319 *
320 * Possibly we don't need this because of scalar_name(), but
321 * it does make the ir3_print() dumps easier to read.
322 */
323 if (ctx->scalar_pass) {
324 if (instr->opc == OPC_META_SPLIT) {
325 instr->name = instr->regs[1]->instr->name + instr->split.off;
326 continue;
327 }
328
329 if (instr->opc == OPC_META_COLLECT) {
330 instr->name = instr->regs[1]->instr->name;
331 continue;
332 }
333 }
334
335 /* arrays which don't fit in one of the pre-defined class
336 * sizes are pre-colored:
337 */
338 if ((id->cls >= 0) && (id->cls < total_class_count)) {
339 /* in the scalar pass, we generate a name for each
340 * scalar component, instr->name is the name of the
341 * first component.
342 */
343 unsigned n = ctx->scalar_pass ? dest_regs(instr) : 1;
344 instr->name = ctx->class_alloc_count[id->cls];
345 ctx->class_alloc_count[id->cls] += n;
346 ctx->alloc_count += n;
347 }
348 }
349 }
350
351 /**
352 * Set a value for max register target.
353 *
354 * Currently this just rounds up to a multiple of full-vec4 (ie. the
355 * granularity that we configure the hw for.. there is no point to
356 * using r3.x if you aren't going to make r3.yzw available). But
357 * in reality there seems to be multiple thresholds that affect the
358 * number of waves.. and we should round up the target to the next
359 * threshold when we round-robin registers, to give postsched more
360 * options. When we understand that better, this is where we'd
361 * implement that.
362 */
363 static void
364 ra_set_register_target(struct ir3_ra_ctx *ctx, unsigned max_target)
365 {
366 const unsigned hvec4 = 4;
367 const unsigned vec4 = 2 * hvec4;
368
369 ctx->max_target = align(max_target, vec4);
370
371 d("New max_target=%u", ctx->max_target);
372 }
373
374 static int
375 pick_in_range(BITSET_WORD *regs, unsigned min, unsigned max)
376 {
377 for (unsigned i = min; i <= max; i++) {
378 if (BITSET_TEST(regs, i)) {
379 return i;
380 }
381 }
382 return -1;
383 }
384
385 static int
386 pick_in_range_rev(BITSET_WORD *regs, int min, int max)
387 {
388 for (int i = max; i >= min; i--) {
389 if (BITSET_TEST(regs, i)) {
390 return i;
391 }
392 }
393 return -1;
394 }
395
396 /* register selector for the a6xx+ merged register file: */
397 static unsigned int
398 ra_select_reg_merged(unsigned int n, BITSET_WORD *regs, void *data)
399 {
400 struct ir3_ra_ctx *ctx = data;
401 unsigned int class = ra_get_node_class(ctx->g, n);
402 bool half, high;
403 int sz = ra_class_to_size(class, &half, &high);
404
405 assert (sz > 0);
406
407 /* dimensions within the register class: */
408 unsigned max_target, start;
409
410 /* the regs bitset will include *all* of the virtual regs, but we lay
411 * out the different classes consecutively in the virtual register
412 * space. So we just need to think about the base offset of a given
413 * class within the virtual register space, and offset the register
414 * space we search within by that base offset.
415 */
416 unsigned base;
417
418 /* TODO I think eventually we want to round-robin in vector pass
419 * as well, but needs some more work to calculate # of live vals
420 * for this. (Maybe with some work, we could just figure out
421 * the scalar target and use that, since that is what we care
422 * about in the end.. but that would mean setting up use-def/
423 * liveranges for scalar pass before doing vector pass.)
424 *
425 * For now, in the vector class, just move assignments for scalar
426 * vals higher to hopefully prevent them from limiting where vecN
427 * values can be placed. Since the scalar values are re-assigned
428 * in the 2nd pass, we don't really care where they end up in the
429 * vector pass.
430 */
431 if (!ctx->scalar_pass) {
432 base = ctx->set->gpr_to_ra_reg[class][0];
433 if (high) {
434 max_target = HIGH_CLASS_REGS(class - HIGH_OFFSET);
435 } else if (half) {
436 max_target = HALF_CLASS_REGS(class - HALF_OFFSET);
437 } else {
438 max_target = CLASS_REGS(class);
439 }
440
441 if ((sz == 1) && !high) {
442 return pick_in_range_rev(regs, base, base + max_target);
443 } else {
444 return pick_in_range(regs, base, base + max_target);
445 }
446 } else {
447 ra_assert(ctx, sz == 1);
448 }
449
450 /* NOTE: this is only used in scalar pass, so the register
451 * class will be one of the scalar classes (ie. idx==0):
452 */
453 base = ctx->set->gpr_to_ra_reg[class][0];
454 if (high) {
455 max_target = HIGH_CLASS_REGS(0);
456 start = 0;
457 } else if (half) {
458 max_target = ctx->max_target;
459 start = ctx->start_search_reg;
460 } else {
461 max_target = ctx->max_target / 2;
462 start = ctx->start_search_reg;
463 }
464
465 /* For cat4 instructions, if the src reg is already assigned, and
466 * avail to pick, use it. Because this doesn't introduce unnecessary
467 * dependencies, and it potentially avoids needing (ss) syncs to
468 * for write after read hazards:
469 */
470 struct ir3_instruction *instr = name_to_instr(ctx, n);
471 if (is_sfu(instr)) {
472 struct ir3_register *src = instr->regs[1];
473 int src_n;
474
475 if ((src->flags & IR3_REG_ARRAY) && !(src->flags & IR3_REG_RELATIV)) {
476 struct ir3_array *arr = ir3_lookup_array(ctx->ir, src->array.id);
477 src_n = arr->base + src->array.offset;
478 } else {
479 src_n = scalar_name(ctx, src->instr, 0);
480 }
481
482 unsigned reg = ra_get_node_reg(ctx->g, src_n);
483
484 /* Check if the src register has been assigned yet: */
485 if (reg != NO_REG) {
486 if (BITSET_TEST(regs, reg)) {
487 return reg;
488 }
489 }
490 }
491
492 int r = pick_in_range(regs, base + start, base + max_target);
493 if (r < 0) {
494 /* wrap-around: */
495 r = pick_in_range(regs, base, base + start);
496 }
497
498 if (r < 0) {
499 /* overflow, we need to increase max_target: */
500 ra_set_register_target(ctx, ctx->max_target + 1);
501 return ra_select_reg_merged(n, regs, data);
502 }
503
504 if (class == ctx->set->half_classes[0]) {
505 int n = r - base;
506 ctx->start_search_reg = (n + 1) % ctx->max_target;
507 } else if (class == ctx->set->classes[0]) {
508 int n = (r - base) * 2;
509 ctx->start_search_reg = (n + 1) % ctx->max_target;
510 }
511
512 return r;
513 }
514
515 static void
516 ra_init(struct ir3_ra_ctx *ctx)
517 {
518 unsigned n, base;
519
520 ir3_clear_mark(ctx->ir);
521 n = ir3_count_instructions_ra(ctx->ir);
522
523 ctx->instrd = rzalloc_array(NULL, struct ir3_ra_instr_data, n);
524
525 foreach_block (block, &ctx->ir->block_list) {
526 ra_block_find_definers(ctx, block);
527 }
528
529 foreach_block (block, &ctx->ir->block_list) {
530 ra_block_name_instructions(ctx, block);
531 }
532
533 /* figure out the base register name for each class. The
534 * actual ra name is class_base[cls] + instr->name;
535 */
536 ctx->class_base[0] = 0;
537 for (unsigned i = 1; i <= total_class_count; i++) {
538 ctx->class_base[i] = ctx->class_base[i-1] +
539 ctx->class_alloc_count[i-1];
540 }
541
542 /* and vreg names for array elements: */
543 base = ctx->class_base[total_class_count];
544 foreach_array (arr, &ctx->ir->array_list) {
545 arr->base = base;
546 ctx->class_alloc_count[total_class_count] += arr->length;
547 base += arr->length;
548 }
549 ctx->alloc_count += ctx->class_alloc_count[total_class_count];
550
551 /* Add vreg names for r0.xyz */
552 ctx->r0_xyz_nodes = ctx->alloc_count;
553 ctx->alloc_count += 3;
554 ctx->hr0_xyz_nodes = ctx->alloc_count;
555 ctx->alloc_count += 3;
556
557 /* Add vreg name for prefetch-exclusion range: */
558 ctx->prefetch_exclude_node = ctx->alloc_count++;
559
560 if (RA_DEBUG) {
561 d("INSTRUCTION VREG NAMES:");
562 foreach_block (block, &ctx->ir->block_list) {
563 foreach_instr (instr, &block->instr_list) {
564 if (!ctx->instrd[instr->ip].defn)
565 continue;
566 if (!writes_gpr(instr))
567 continue;
568 di(instr, "%04u", scalar_name(ctx, instr, 0));
569 }
570 }
571 d("ARRAY VREG NAMES:");
572 foreach_array (arr, &ctx->ir->array_list) {
573 d("%04u: arr%u", arr->base, arr->id);
574 }
575 d("EXTRA VREG NAMES:");
576 d("%04u: r0_xyz_nodes", ctx->r0_xyz_nodes);
577 d("%04u: hr0_xyz_nodes", ctx->hr0_xyz_nodes);
578 d("%04u: prefetch_exclude_node", ctx->prefetch_exclude_node);
579 }
580
581 ctx->g = ra_alloc_interference_graph(ctx->set->regs, ctx->alloc_count);
582 ralloc_steal(ctx->g, ctx->instrd);
583 ctx->def = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
584 ctx->use = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
585
586 /* TODO add selector callback for split (pre-a6xx) register file: */
587 if (ctx->v->mergedregs) {
588 ra_set_select_reg_callback(ctx->g, ra_select_reg_merged, ctx);
589
590 if (ctx->scalar_pass) {
591 ctx->name_to_instr = _mesa_hash_table_create(ctx->g,
592 _mesa_hash_int, _mesa_key_int_equal);
593 }
594 }
595 }
596
597 /* Map the name back to instruction: */
598 static struct ir3_instruction *
599 name_to_instr(struct ir3_ra_ctx *ctx, unsigned name)
600 {
601 ra_assert(ctx, !name_is_array(ctx, name));
602 struct hash_entry *entry = _mesa_hash_table_search(ctx->name_to_instr, &name);
603 if (entry)
604 return entry->data;
605 ra_unreachable(ctx, "invalid instr name");
606 return NULL;
607 }
608
609 static bool
610 name_is_array(struct ir3_ra_ctx *ctx, unsigned name)
611 {
612 return name >= ctx->class_base[total_class_count];
613 }
614
615 static struct ir3_array *
616 name_to_array(struct ir3_ra_ctx *ctx, unsigned name)
617 {
618 ra_assert(ctx, name_is_array(ctx, name));
619 foreach_array (arr, &ctx->ir->array_list) {
620 if (name < (arr->base + arr->length))
621 return arr;
622 }
623 ra_unreachable(ctx, "invalid array name");
624 return NULL;
625 }
626
627 static void
628 ra_destroy(struct ir3_ra_ctx *ctx)
629 {
630 ralloc_free(ctx->g);
631 }
632
633 static void
634 __def(struct ir3_ra_ctx *ctx, struct ir3_ra_block_data *bd, unsigned name,
635 struct ir3_instruction *instr)
636 {
637 ra_assert(ctx, name < ctx->alloc_count);
638
639 /* split/collect do not actually define any real value */
640 if ((instr->opc == OPC_META_SPLIT) || (instr->opc == OPC_META_COLLECT))
641 return;
642
643 /* defined on first write: */
644 if (!ctx->def[name])
645 ctx->def[name] = instr->ip;
646 ctx->use[name] = MAX2(ctx->use[name], instr->ip);
647 BITSET_SET(bd->def, name);
648 }
649
650 static void
651 __use(struct ir3_ra_ctx *ctx, struct ir3_ra_block_data *bd, unsigned name,
652 struct ir3_instruction *instr)
653 {
654 ra_assert(ctx, name < ctx->alloc_count);
655 ctx->use[name] = MAX2(ctx->use[name], instr->ip);
656 if (!BITSET_TEST(bd->def, name))
657 BITSET_SET(bd->use, name);
658 }
659
660 static void
661 ra_block_compute_live_ranges(struct ir3_ra_ctx *ctx, struct ir3_block *block)
662 {
663 struct ir3_ra_block_data *bd;
664 unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
665
666 #define def(name, instr) __def(ctx, bd, name, instr)
667 #define use(name, instr) __use(ctx, bd, name, instr)
668
669 bd = rzalloc(ctx->g, struct ir3_ra_block_data);
670
671 bd->def = rzalloc_array(bd, BITSET_WORD, bitset_words);
672 bd->use = rzalloc_array(bd, BITSET_WORD, bitset_words);
673 bd->livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
674 bd->liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
675
676 block->data = bd;
677
678 struct ir3_instruction *first_non_input = NULL;
679 foreach_instr (instr, &block->instr_list) {
680 if (instr->opc != OPC_META_INPUT) {
681 first_non_input = instr;
682 break;
683 }
684 }
685
686 foreach_instr (instr, &block->instr_list) {
687 foreach_def (name, ctx, instr) {
688 if (name_is_array(ctx, name)) {
689 struct ir3_array *arr = name_to_array(ctx, name);
690
691 arr->start_ip = MIN2(arr->start_ip, instr->ip);
692 arr->end_ip = MAX2(arr->end_ip, instr->ip);
693
694 for (unsigned i = 0; i < arr->length; i++) {
695 unsigned name = arr->base + i;
696 if(arr->half)
697 ra_set_node_class(ctx->g, name, ctx->set->half_classes[0]);
698 else
699 ra_set_node_class(ctx->g, name, ctx->set->classes[0]);
700 }
701 } else {
702 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
703 if (is_high(instr)) {
704 ra_set_node_class(ctx->g, name,
705 ctx->set->high_classes[id->cls - HIGH_OFFSET]);
706 } else if (is_half(instr)) {
707 ra_set_node_class(ctx->g, name,
708 ctx->set->half_classes[id->cls - HALF_OFFSET]);
709 } else {
710 ra_set_node_class(ctx->g, name,
711 ctx->set->classes[id->cls]);
712 }
713 }
714
715 def(name, instr);
716
717 if ((instr->opc == OPC_META_INPUT) && first_non_input)
718 use(name, first_non_input);
719
720 /* Texture instructions with writemasks can be treated as smaller
721 * vectors (or just scalars!) to allocate knowing that the
722 * masked-out regs won't be written, but we need to make sure that
723 * the start of the vector doesn't come before the first register
724 * or we'll wrap.
725 */
726 if (is_tex_or_prefetch(instr)) {
727 int writemask_skipped_regs = ffs(instr->regs[0]->wrmask) - 1;
728 int r0_xyz = is_half(instr) ?
729 ctx->hr0_xyz_nodes : ctx->r0_xyz_nodes;
730 for (int i = 0; i < writemask_skipped_regs; i++)
731 ra_add_node_interference(ctx->g, name, r0_xyz + i);
732 }
733
734 /* Pre-fetched textures have a lower limit for bits to encode dst
735 * register, so add additional interference with registers above
736 * that limit.
737 */
738 if (instr->opc == OPC_META_TEX_PREFETCH) {
739 ra_add_node_interference(ctx->g, name,
740 ctx->prefetch_exclude_node);
741 }
742 }
743
744 foreach_use (name, ctx, instr) {
745 if (name_is_array(ctx, name)) {
746 struct ir3_array *arr = name_to_array(ctx, name);
747
748 arr->start_ip = MIN2(arr->start_ip, instr->ip);
749 arr->end_ip = MAX2(arr->end_ip, instr->ip);
750
751 /* NOTE: arrays are not SSA so unconditionally
752 * set use bit:
753 */
754 BITSET_SET(bd->use, name);
755 }
756
757 use(name, instr);
758 }
759
760 foreach_name (name, ctx, instr) {
761 /* split/collect instructions have duplicate names
762 * as real instructions, so they skip the hashtable:
763 */
764 if (ctx->name_to_instr && !((instr->opc == OPC_META_SPLIT) ||
765 (instr->opc == OPC_META_COLLECT))) {
766 /* this is slightly annoying, we can't just use an
767 * integer on the stack
768 */
769 unsigned *key = ralloc(ctx->name_to_instr, unsigned);
770 *key = name;
771 ra_assert(ctx, !_mesa_hash_table_search(ctx->name_to_instr, key));
772 _mesa_hash_table_insert(ctx->name_to_instr, key, instr);
773 }
774 }
775 }
776 }
777
778 static bool
779 ra_compute_livein_liveout(struct ir3_ra_ctx *ctx)
780 {
781 unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
782 bool progress = false;
783
784 foreach_block (block, &ctx->ir->block_list) {
785 struct ir3_ra_block_data *bd = block->data;
786
787 /* update livein: */
788 for (unsigned i = 0; i < bitset_words; i++) {
789 /* anything used but not def'd within a block is
790 * by definition a live value coming into the block:
791 */
792 BITSET_WORD new_livein =
793 (bd->use[i] | (bd->liveout[i] & ~bd->def[i]));
794
795 if (new_livein & ~bd->livein[i]) {
796 bd->livein[i] |= new_livein;
797 progress = true;
798 }
799 }
800
801 /* update liveout: */
802 for (unsigned j = 0; j < ARRAY_SIZE(block->successors); j++) {
803 struct ir3_block *succ = block->successors[j];
804 struct ir3_ra_block_data *succ_bd;
805
806 if (!succ)
807 continue;
808
809 succ_bd = succ->data;
810
811 for (unsigned i = 0; i < bitset_words; i++) {
812 /* add anything that is livein in a successor block
813 * to our liveout:
814 */
815 BITSET_WORD new_liveout =
816 (succ_bd->livein[i] & ~bd->liveout[i]);
817
818 if (new_liveout) {
819 bd->liveout[i] |= new_liveout;
820 progress = true;
821 }
822 }
823 }
824 }
825
826 return progress;
827 }
828
829 static void
830 print_bitset(const char *name, BITSET_WORD *bs, unsigned cnt)
831 {
832 bool first = true;
833 debug_printf("RA: %s:", name);
834 for (unsigned i = 0; i < cnt; i++) {
835 if (BITSET_TEST(bs, i)) {
836 if (!first)
837 debug_printf(",");
838 debug_printf(" %04u", i);
839 first = false;
840 }
841 }
842 debug_printf("\n");
843 }
844
845 /* size of one component of instruction result, ie. half vs full: */
846 static unsigned
847 live_size(struct ir3_instruction *instr)
848 {
849 if (is_half(instr)) {
850 return 1;
851 } else if (is_high(instr)) {
852 /* doesn't count towards footprint */
853 return 0;
854 } else {
855 return 2;
856 }
857 }
858
859 static unsigned
860 name_size(struct ir3_ra_ctx *ctx, unsigned name)
861 {
862 if (name_is_array(ctx, name)) {
863 struct ir3_array *arr = name_to_array(ctx, name);
864 return arr->half ? 1 : 2;
865 } else {
866 struct ir3_instruction *instr = name_to_instr(ctx, name);
867 /* in scalar pass, each name represents on scalar value,
868 * half or full precision
869 */
870 return live_size(instr);
871 }
872 }
873
874 static unsigned
875 ra_calc_block_live_values(struct ir3_ra_ctx *ctx, struct ir3_block *block)
876 {
877 struct ir3_ra_block_data *bd = block->data;
878 unsigned name;
879
880 ra_assert(ctx, ctx->name_to_instr);
881
882 /* TODO this gets a bit more complicated in non-scalar pass.. but
883 * possibly a lowball estimate is fine to start with if we do
884 * round-robin in non-scalar pass? Maybe we just want to handle
885 * that in a different fxn?
886 */
887 ra_assert(ctx, ctx->scalar_pass);
888
889 BITSET_WORD *live =
890 rzalloc_array(bd, BITSET_WORD, BITSET_WORDS(ctx->alloc_count));
891
892 /* Add the live input values: */
893 unsigned livein = 0;
894 BITSET_FOREACH_SET (name, bd->livein, ctx->alloc_count) {
895 livein += name_size(ctx, name);
896 BITSET_SET(live, name);
897 }
898
899 d("---------------------");
900 d("block%u: LIVEIN: %u", block_id(block), livein);
901
902 unsigned max = livein;
903 int cur_live = max;
904
905 /* Now that we know the live inputs to the block, iterate the
906 * instructions adjusting the current # of live values as we
907 * see their last use:
908 */
909 foreach_instr (instr, &block->instr_list) {
910 if (RA_DEBUG)
911 print_bitset("LIVE", live, ctx->alloc_count);
912 di(instr, "CALC");
913
914 unsigned new_live = 0; /* newly live values */
915 unsigned new_dead = 0; /* newly no-longer live values */
916 unsigned next_dead = 0; /* newly dead following this instr */
917
918 foreach_def (name, ctx, instr) {
919 /* NOTE: checking ctx->def filters out things like split/
920 * collect which are just redefining existing live names
921 * or array writes to already live array elements:
922 */
923 if (ctx->def[name] != instr->ip)
924 continue;
925 new_live += live_size(instr);
926 d("NEW_LIVE: %u (new_live=%u, use=%u)", name, new_live, ctx->use[name]);
927 BITSET_SET(live, name);
928 /* There can be cases where this is *also* the last use
929 * of a value, for example instructions that write multiple
930 * values, only some of which are used. These values are
931 * dead *after* (rather than during) this instruction.
932 */
933 if (ctx->use[name] != instr->ip)
934 continue;
935 next_dead += live_size(instr);
936 d("NEXT_DEAD: %u (next_dead=%u)", name, next_dead);
937 BITSET_CLEAR(live, name);
938 }
939
940 /* To be more resilient against special cases where liverange
941 * is extended (like first_non_input), rather than using the
942 * foreach_use() iterator, we iterate the current live values
943 * instead:
944 */
945 BITSET_FOREACH_SET (name, live, ctx->alloc_count) {
946 /* Is this the last use? */
947 if (ctx->use[name] != instr->ip)
948 continue;
949 new_dead += name_size(ctx, name);
950 d("NEW_DEAD: %u (new_dead=%u)", name, new_dead);
951 BITSET_CLEAR(live, name);
952 }
953
954 cur_live += new_live;
955 cur_live -= new_dead;
956
957 ra_assert(ctx, cur_live >= 0);
958 d("CUR_LIVE: %u", cur_live);
959
960 max = MAX2(max, cur_live);
961
962 /* account for written values which are not used later,
963 * but after updating max (since they are for one cycle
964 * live)
965 */
966 cur_live -= next_dead;
967 ra_assert(ctx, cur_live >= 0);
968
969 if (RA_DEBUG) {
970 unsigned cnt = 0;
971 BITSET_FOREACH_SET (name, live, ctx->alloc_count) {
972 cnt += name_size(ctx, name);
973 }
974 ra_assert(ctx, cur_live == cnt);
975 }
976 }
977
978 d("block%u max=%u", block_id(block), max);
979
980 /* the remaining live should match liveout (for extra sanity testing): */
981 if (RA_DEBUG) {
982 unsigned new_dead = 0;
983 BITSET_FOREACH_SET (name, live, ctx->alloc_count) {
984 /* Is this the last use? */
985 if (ctx->use[name] != block->end_ip)
986 continue;
987 new_dead += name_size(ctx, name);
988 d("NEW_DEAD: %u (new_dead=%u)", name, new_dead);
989 BITSET_CLEAR(live, name);
990 }
991 unsigned liveout = 0;
992 BITSET_FOREACH_SET (name, bd->liveout, ctx->alloc_count) {
993 liveout += name_size(ctx, name);
994 BITSET_CLEAR(live, name);
995 }
996
997 if (cur_live != liveout) {
998 print_bitset("LEAKED", live, ctx->alloc_count);
999 /* TODO there are a few edge cases where live-range extension
1000 * tells us a value is livein. But not used by the block or
1001 * liveout for the block. Possibly a bug in the liverange
1002 * extension. But for now leave the assert disabled:
1003 ra_assert(ctx, cur_live == liveout);
1004 */
1005 }
1006 }
1007
1008 ralloc_free(live);
1009
1010 return max;
1011 }
1012
1013 static unsigned
1014 ra_calc_max_live_values(struct ir3_ra_ctx *ctx)
1015 {
1016 unsigned max = 0;
1017
1018 foreach_block (block, &ctx->ir->block_list) {
1019 unsigned block_live = ra_calc_block_live_values(ctx, block);
1020 max = MAX2(max, block_live);
1021 }
1022
1023 return max;
1024 }
1025
1026 static void
1027 ra_add_interference(struct ir3_ra_ctx *ctx)
1028 {
1029 struct ir3 *ir = ctx->ir;
1030
1031 /* initialize array live ranges: */
1032 foreach_array (arr, &ir->array_list) {
1033 arr->start_ip = ~0;
1034 arr->end_ip = 0;
1035 }
1036
1037 /* set up the r0.xyz precolor regs. */
1038 for (int i = 0; i < 3; i++) {
1039 ra_set_node_reg(ctx->g, ctx->r0_xyz_nodes + i, i);
1040 ra_set_node_reg(ctx->g, ctx->hr0_xyz_nodes + i,
1041 ctx->set->first_half_reg + i);
1042 }
1043
1044 /* pre-color node that conflict with half/full regs higher than what
1045 * can be encoded for tex-prefetch:
1046 */
1047 ra_set_node_reg(ctx->g, ctx->prefetch_exclude_node,
1048 ctx->set->prefetch_exclude_reg);
1049
1050 /* compute live ranges (use/def) on a block level, also updating
1051 * block's def/use bitmasks (used below to calculate per-block
1052 * livein/liveout):
1053 */
1054 foreach_block (block, &ir->block_list) {
1055 ra_block_compute_live_ranges(ctx, block);
1056 }
1057
1058 /* update per-block livein/liveout: */
1059 while (ra_compute_livein_liveout(ctx)) {}
1060
1061 if (RA_DEBUG) {
1062 d("AFTER LIVEIN/OUT:");
1063 foreach_block (block, &ir->block_list) {
1064 struct ir3_ra_block_data *bd = block->data;
1065 d("block%u:", block_id(block));
1066 print_bitset(" def", bd->def, ctx->alloc_count);
1067 print_bitset(" use", bd->use, ctx->alloc_count);
1068 print_bitset(" l/i", bd->livein, ctx->alloc_count);
1069 print_bitset(" l/o", bd->liveout, ctx->alloc_count);
1070 }
1071 foreach_array (arr, &ir->array_list) {
1072 d("array%u:", arr->id);
1073 d(" length: %u", arr->length);
1074 d(" start_ip: %u", arr->start_ip);
1075 d(" end_ip: %u", arr->end_ip);
1076 }
1077 }
1078
1079 /* extend start/end ranges based on livein/liveout info from cfg: */
1080 foreach_block (block, &ir->block_list) {
1081 struct ir3_ra_block_data *bd = block->data;
1082
1083 for (unsigned i = 0; i < ctx->alloc_count; i++) {
1084 if (BITSET_TEST(bd->livein, i)) {
1085 ctx->def[i] = MIN2(ctx->def[i], block->start_ip);
1086 ctx->use[i] = MAX2(ctx->use[i], block->start_ip);
1087 }
1088
1089 if (BITSET_TEST(bd->liveout, i)) {
1090 ctx->def[i] = MIN2(ctx->def[i], block->end_ip);
1091 ctx->use[i] = MAX2(ctx->use[i], block->end_ip);
1092 }
1093 }
1094
1095 foreach_array (arr, &ctx->ir->array_list) {
1096 for (unsigned i = 0; i < arr->length; i++) {
1097 if (BITSET_TEST(bd->livein, i + arr->base)) {
1098 arr->start_ip = MIN2(arr->start_ip, block->start_ip);
1099 }
1100 if (BITSET_TEST(bd->liveout, i + arr->base)) {
1101 arr->end_ip = MAX2(arr->end_ip, block->end_ip);
1102 }
1103 }
1104 }
1105 }
1106
1107 if (ctx->name_to_instr) {
1108 unsigned max = ra_calc_max_live_values(ctx);
1109 ra_set_register_target(ctx, max);
1110 }
1111
1112 for (unsigned i = 0; i < ctx->alloc_count; i++) {
1113 for (unsigned j = 0; j < ctx->alloc_count; j++) {
1114 if (intersects(ctx->def[i], ctx->use[i],
1115 ctx->def[j], ctx->use[j])) {
1116 ra_add_node_interference(ctx->g, i, j);
1117 }
1118 }
1119 }
1120 }
1121
1122 /* NOTE: instr could be NULL for IR3_REG_ARRAY case, for the first
1123 * array access(es) which do not have any previous access to depend
1124 * on from scheduling point of view
1125 */
1126 static void
1127 reg_assign(struct ir3_ra_ctx *ctx, struct ir3_register *reg,
1128 struct ir3_instruction *instr)
1129 {
1130 struct ir3_ra_instr_data *id;
1131
1132 if (reg->flags & IR3_REG_ARRAY) {
1133 struct ir3_array *arr =
1134 ir3_lookup_array(ctx->ir, reg->array.id);
1135 unsigned name = arr->base + reg->array.offset;
1136 unsigned r = ra_get_node_reg(ctx->g, name);
1137 unsigned num = ctx->set->ra_reg_to_gpr[r];
1138
1139 if (reg->flags & IR3_REG_RELATIV) {
1140 reg->array.offset = num;
1141 } else {
1142 reg->num = num;
1143 reg->flags &= ~IR3_REG_SSA;
1144 }
1145
1146 reg->flags &= ~IR3_REG_ARRAY;
1147 } else if ((id = &ctx->instrd[instr->ip]) && id->defn) {
1148 unsigned first_component = 0;
1149
1150 /* Special case for tex instructions, which may use the wrmask
1151 * to mask off the first component(s). In the scalar pass,
1152 * this means the masked off component(s) are not def'd/use'd,
1153 * so we get a bogus value when we ask the register_allocate
1154 * algo to get the assigned reg for the unused/untouched
1155 * component. So we need to consider the first used component:
1156 */
1157 if (ctx->scalar_pass && is_tex_or_prefetch(id->defn)) {
1158 unsigned n = ffs(id->defn->regs[0]->wrmask);
1159 ra_assert(ctx, n > 0);
1160 first_component = n - 1;
1161 }
1162
1163 unsigned name = scalar_name(ctx, id->defn, first_component);
1164 unsigned r = ra_get_node_reg(ctx->g, name);
1165 unsigned num = ctx->set->ra_reg_to_gpr[r] + id->off;
1166
1167 ra_assert(ctx, !(reg->flags & IR3_REG_RELATIV));
1168
1169 ra_assert(ctx, num >= first_component);
1170
1171 if (is_high(id->defn))
1172 num += FIRST_HIGH_REG;
1173
1174 reg->num = num - first_component;
1175
1176 reg->flags &= ~IR3_REG_SSA;
1177
1178 if (is_half(id->defn))
1179 reg->flags |= IR3_REG_HALF;
1180 }
1181 }
1182
1183 /* helper to determine which regs to assign in which pass: */
1184 static bool
1185 should_assign(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr)
1186 {
1187 if ((instr->opc == OPC_META_SPLIT) &&
1188 (util_bitcount(instr->regs[1]->wrmask) > 1))
1189 return !ctx->scalar_pass;
1190 if ((instr->opc == OPC_META_COLLECT) &&
1191 (util_bitcount(instr->regs[0]->wrmask) > 1))
1192 return !ctx->scalar_pass;
1193 return ctx->scalar_pass;
1194 }
1195
1196 static void
1197 ra_block_alloc(struct ir3_ra_ctx *ctx, struct ir3_block *block)
1198 {
1199 foreach_instr (instr, &block->instr_list) {
1200
1201 if (writes_gpr(instr)) {
1202 if (should_assign(ctx, instr)) {
1203 reg_assign(ctx, instr->regs[0], instr);
1204 }
1205 }
1206
1207 foreach_src_n (reg, n, instr) {
1208 struct ir3_instruction *src = reg->instr;
1209
1210 if (src && !should_assign(ctx, src) && !should_assign(ctx, instr))
1211 continue;
1212
1213 if (src && should_assign(ctx, instr))
1214 reg_assign(ctx, src->regs[0], src);
1215
1216 /* Note: reg->instr could be null for IR3_REG_ARRAY */
1217 if (src || (reg->flags & IR3_REG_ARRAY))
1218 reg_assign(ctx, instr->regs[n+1], src);
1219 }
1220 }
1221
1222 /* We need to pre-color outputs for the scalar pass in
1223 * ra_precolor_assigned(), so we need to actually assign
1224 * them in the first pass:
1225 */
1226 if (!ctx->scalar_pass) {
1227 foreach_input (in, ctx->ir) {
1228 reg_assign(ctx, in->regs[0], in);
1229 }
1230 foreach_output (out, ctx->ir) {
1231 reg_assign(ctx, out->regs[0], out);
1232 }
1233 }
1234 }
1235
1236 static void
1237 assign_arr_base(struct ir3_ra_ctx *ctx, struct ir3_array *arr,
1238 struct ir3_instruction **precolor, unsigned nprecolor)
1239 {
1240 /* In the mergedregs case, we convert full precision arrays
1241 * to their effective half-precision base, and find conflicts
1242 * amongst all other arrays/inputs.
1243 *
1244 * In the splitregs case (halfreg file and fullreg file do
1245 * not conflict), we ignore arrays and other pre-colors that
1246 * are not the same precision.
1247 */
1248 bool mergedregs = ctx->v->mergedregs;
1249 unsigned base = 0;
1250
1251 /* figure out what else we conflict with which has already
1252 * been assigned:
1253 */
1254 retry:
1255 foreach_array (arr2, &ctx->ir->array_list) {
1256 if (arr2 == arr)
1257 break;
1258 ra_assert(ctx, arr2->start_ip <= arr2->end_ip);
1259
1260 unsigned base2 = arr2->reg;
1261 unsigned len2 = arr2->length;
1262 unsigned len = arr->length;
1263
1264 if (mergedregs) {
1265 /* convert into half-reg space: */
1266 if (!arr2->half) {
1267 base2 *= 2;
1268 len2 *= 2;
1269 }
1270 if (!arr->half) {
1271 len *= 2;
1272 }
1273 } else if (arr2->half != arr->half) {
1274 /* for split-register-file mode, we only conflict with
1275 * other arrays of same precision:
1276 */
1277 continue;
1278 }
1279
1280 /* if it intersects with liverange AND register range.. */
1281 if (intersects(arr->start_ip, arr->end_ip,
1282 arr2->start_ip, arr2->end_ip) &&
1283 intersects(base, base + len,
1284 base2, base2 + len2)) {
1285 base = MAX2(base, base2 + len2);
1286 goto retry;
1287 }
1288 }
1289
1290 /* also need to not conflict with any pre-assigned inputs: */
1291 for (unsigned i = 0; i < nprecolor; i++) {
1292 struct ir3_instruction *instr = precolor[i];
1293
1294 if (!instr || (instr->flags & IR3_INSTR_UNUSED))
1295 continue;
1296
1297 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
1298
1299 /* only consider the first component: */
1300 if (id->off > 0)
1301 continue;
1302
1303 unsigned name = ra_name(ctx, id);
1304 unsigned regid = instr->regs[0]->num;
1305 unsigned reglen = class_sizes[id->cls];
1306 unsigned len = arr->length;
1307
1308 if (mergedregs) {
1309 /* convert into half-reg space: */
1310 if (!is_half(instr)) {
1311 regid *= 2;
1312 reglen *= 2;
1313 }
1314 if (!arr->half) {
1315 len *= 2;
1316 }
1317 } else if (is_half(instr) != arr->half) {
1318 /* for split-register-file mode, we only conflict with
1319 * other arrays of same precision:
1320 */
1321 continue;
1322 }
1323
1324 /* Check if array intersects with liverange AND register
1325 * range of the input:
1326 */
1327 if (intersects(arr->start_ip, arr->end_ip,
1328 ctx->def[name], ctx->use[name]) &&
1329 intersects(base, base + len,
1330 regid, regid + reglen)) {
1331 base = MAX2(base, regid + reglen);
1332 goto retry;
1333 }
1334 }
1335
1336 /* convert back from half-reg space to fullreg space: */
1337 if (mergedregs && !arr->half) {
1338 base = DIV_ROUND_UP(base, 2);
1339 }
1340
1341 arr->reg = base;
1342 }
1343
1344 /* handle pre-colored registers. This includes "arrays" (which could be of
1345 * length 1, used for phi webs lowered to registers in nir), as well as
1346 * special shader input values that need to be pinned to certain registers.
1347 */
1348 static void
1349 ra_precolor(struct ir3_ra_ctx *ctx, struct ir3_instruction **precolor, unsigned nprecolor)
1350 {
1351 for (unsigned i = 0; i < nprecolor; i++) {
1352 if (precolor[i] && !(precolor[i]->flags & IR3_INSTR_UNUSED)) {
1353 struct ir3_instruction *instr = precolor[i];
1354
1355 if (instr->regs[0]->num == INVALID_REG)
1356 continue;
1357
1358 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
1359
1360 ra_assert(ctx, !(instr->regs[0]->flags & (IR3_REG_HALF | IR3_REG_HIGH)));
1361
1362 /* 'base' is in scalar (class 0) but we need to map that
1363 * the conflicting register of the appropriate class (ie.
1364 * input could be vec2/vec3/etc)
1365 *
1366 * Note that the higher class (larger than scalar) regs
1367 * are setup to conflict with others in the same class,
1368 * so for example, R1 (scalar) is also the first component
1369 * of D1 (vec2/double):
1370 *
1371 * Single (base) | Double
1372 * --------------+---------------
1373 * R0 | D0
1374 * R1 | D0 D1
1375 * R2 | D1 D2
1376 * R3 | D2
1377 * .. and so on..
1378 */
1379 unsigned regid = instr->regs[0]->num;
1380 ra_assert(ctx, regid >= id->off);
1381 regid -= id->off;
1382
1383 unsigned reg = ctx->set->gpr_to_ra_reg[id->cls][regid];
1384 unsigned name = ra_name(ctx, id);
1385 ra_set_node_reg(ctx->g, name, reg);
1386 }
1387 }
1388
1389 /*
1390 * Pre-assign array elements:
1391 */
1392 foreach_array (arr, &ctx->ir->array_list) {
1393
1394 if (arr->end_ip == 0)
1395 continue;
1396
1397 if (!ctx->scalar_pass)
1398 assign_arr_base(ctx, arr, precolor, nprecolor);
1399
1400 for (unsigned i = 0; i < arr->length; i++) {
1401 unsigned cls = arr->half ? HALF_OFFSET : 0;
1402
1403 ra_set_node_reg(ctx->g,
1404 arr->base + i, /* vreg name */
1405 ctx->set->gpr_to_ra_reg[cls][arr->reg + i]);
1406 }
1407 }
1408
1409 if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
1410 foreach_array (arr, &ctx->ir->array_list) {
1411 unsigned first = arr->reg;
1412 unsigned last = arr->reg + arr->length - 1;
1413 debug_printf("arr[%d] at r%d.%c->r%d.%c\n", arr->id,
1414 (first >> 2), "xyzw"[first & 0x3],
1415 (last >> 2), "xyzw"[last & 0x3]);
1416 }
1417 }
1418 }
1419
1420 static void
1421 precolor(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr)
1422 {
1423 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
1424 unsigned n = dest_regs(instr);
1425 for (unsigned i = 0; i < n; i++) {
1426 /* tex instructions actually have a wrmask, and
1427 * don't touch masked out components. So we
1428 * shouldn't precolor them::
1429 */
1430 if (is_tex_or_prefetch(instr) &&
1431 !(instr->regs[0]->wrmask & (1 << i)))
1432 continue;
1433
1434 unsigned name = scalar_name(ctx, instr, i);
1435 unsigned regid = instr->regs[0]->num + i;
1436
1437 if (instr->regs[0]->flags & IR3_REG_HIGH)
1438 regid -= FIRST_HIGH_REG;
1439
1440 unsigned vreg = ctx->set->gpr_to_ra_reg[id->cls][regid];
1441 ra_set_node_reg(ctx->g, name, vreg);
1442 }
1443 }
1444
1445 /* pre-color non-scalar registers based on the registers assigned in previous
1446 * pass. Do this by looking actually at the fanout instructions.
1447 */
1448 static void
1449 ra_precolor_assigned(struct ir3_ra_ctx *ctx)
1450 {
1451 ra_assert(ctx, ctx->scalar_pass);
1452
1453 foreach_block (block, &ctx->ir->block_list) {
1454 foreach_instr (instr, &block->instr_list) {
1455
1456 if (!writes_gpr(instr))
1457 continue;
1458
1459 if (should_assign(ctx, instr))
1460 continue;
1461
1462 precolor(ctx, instr);
1463
1464 foreach_src (src, instr) {
1465 if (!src->instr)
1466 continue;
1467 precolor(ctx, src->instr);
1468 }
1469 }
1470 }
1471 }
1472
1473 static int
1474 ra_alloc(struct ir3_ra_ctx *ctx)
1475 {
1476 if (!ra_allocate(ctx->g))
1477 return -1;
1478
1479 foreach_block (block, &ctx->ir->block_list) {
1480 ra_block_alloc(ctx, block);
1481 }
1482
1483 return 0;
1484 }
1485
1486 /* if we end up with split/collect instructions with non-matching src
1487 * and dest regs, that means something has gone wrong. Which makes it
1488 * a pretty good sanity check.
1489 */
1490 static void
1491 ra_sanity_check(struct ir3 *ir)
1492 {
1493 foreach_block (block, &ir->block_list) {
1494 foreach_instr (instr, &block->instr_list) {
1495 if (instr->opc == OPC_META_SPLIT) {
1496 struct ir3_register *dst = instr->regs[0];
1497 struct ir3_register *src = instr->regs[1];
1498 debug_assert(dst->num == (src->num + instr->split.off));
1499 } else if (instr->opc == OPC_META_COLLECT) {
1500 struct ir3_register *dst = instr->regs[0];
1501
1502 foreach_src_n (src, n, instr) {
1503 debug_assert(dst->num == (src->num - n));
1504 }
1505 }
1506 }
1507 }
1508 }
1509
1510 static int
1511 ir3_ra_pass(struct ir3_shader_variant *v, struct ir3_instruction **precolor,
1512 unsigned nprecolor, bool scalar_pass)
1513 {
1514 struct ir3_ra_ctx ctx = {
1515 .v = v,
1516 .ir = v->ir,
1517 .set = v->mergedregs ?
1518 v->ir->compiler->mergedregs_set : v->ir->compiler->set,
1519 .scalar_pass = scalar_pass,
1520 };
1521 int ret;
1522
1523 ret = setjmp(ctx.jmp_env);
1524 if (ret)
1525 goto fail;
1526
1527 ra_init(&ctx);
1528 ra_add_interference(&ctx);
1529 ra_precolor(&ctx, precolor, nprecolor);
1530 if (scalar_pass)
1531 ra_precolor_assigned(&ctx);
1532 ret = ra_alloc(&ctx);
1533
1534 fail:
1535 ra_destroy(&ctx);
1536
1537 return ret;
1538 }
1539
1540 int
1541 ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor,
1542 unsigned nprecolor)
1543 {
1544 int ret;
1545
1546 /* First pass, assign the vecN (non-scalar) registers: */
1547 ret = ir3_ra_pass(v, precolor, nprecolor, false);
1548 if (ret)
1549 return ret;
1550
1551 ir3_debug_print(v->ir, "AFTER: ir3_ra (1st pass)");
1552
1553 /* Second pass, assign the scalar registers: */
1554 ret = ir3_ra_pass(v, precolor, nprecolor, true);
1555 if (ret)
1556 return ret;
1557
1558 ir3_debug_print(v->ir, "AFTER: ir3_ra (2st pass)");
1559
1560 #ifdef DEBUG
1561 # define SANITY_CHECK DEBUG
1562 #else
1563 # define SANITY_CHECK 0
1564 #endif
1565 if (SANITY_CHECK)
1566 ra_sanity_check(v->ir);
1567
1568 return ret;
1569 }