freedreno/ir3: Extend RA with mechanism for pre-coloring registers
[mesa.git] / src / freedreno / ir3 / ir3_ra.c
1 /*
2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "util/u_math.h"
28 #include "util/register_allocate.h"
29 #include "util/ralloc.h"
30 #include "util/bitset.h"
31
32 #include "ir3.h"
33 #include "ir3_compiler.h"
34
35 /*
36 * Register Assignment:
37 *
38 * Uses the register_allocate util, which implements graph coloring
39 * algo with interference classes. To handle the cases where we need
40 * consecutive registers (for example, texture sample instructions),
41 * we model these as larger (double/quad/etc) registers which conflict
42 * with the corresponding registers in other classes.
43 *
44 * Additionally we create additional classes for half-regs, which
45 * do not conflict with the full-reg classes. We do need at least
46 * sizes 1-4 (to deal w/ texture sample instructions output to half-
47 * reg). At the moment we don't create the higher order half-reg
48 * classes as half-reg frequently does not have enough precision
49 * for texture coords at higher resolutions.
50 *
51 * There are some additional cases that we need to handle specially,
52 * as the graph coloring algo doesn't understand "partial writes".
53 * For example, a sequence like:
54 *
55 * add r0.z, ...
56 * sam (f32)(xy)r0.x, ...
57 * ...
58 * sam (f32)(xyzw)r0.w, r0.x, ... ; 3d texture, so r0.xyz are coord
59 *
60 * In this scenario, we treat r0.xyz as class size 3, which is written
61 * (from a use/def perspective) at the 'add' instruction and ignore the
62 * subsequent partial writes to r0.xy. So the 'add r0.z, ...' is the
63 * defining instruction, as it is the first to partially write r0.xyz.
64 *
65 * Note i965 has a similar scenario, which they solve with a virtual
66 * LOAD_PAYLOAD instruction which gets turned into multiple MOV's after
67 * register assignment. But for us that is horrible from a scheduling
68 * standpoint. Instead what we do is use idea of 'definer' instruction.
69 * Ie. the first instruction (lowest ip) to write to the variable is the
70 * one we consider from use/def perspective when building interference
71 * graph. (Other instructions which write other variable components
72 * just define the variable some more.)
73 *
74 * Arrays of arbitrary size are handled via pre-coloring a consecutive
75 * sequence of registers. Additional scalar (single component) reg
76 * names are allocated starting at ctx->class_base[total_class_count]
77 * (see arr->base), which are pre-colored. In the use/def graph direct
78 * access is treated as a single element use/def, and indirect access
79 * is treated as use or def of all array elements. (Only the first
80 * def is tracked, in case of multiple indirect writes, etc.)
81 *
82 * TODO arrays that fit in one of the pre-defined class sizes should
83 * not need to be pre-colored, but instead could be given a normal
84 * vreg name. (Ignoring this for now since it is a good way to work
85 * out the kinks with arbitrary sized arrays.)
86 *
87 * TODO might be easier for debugging to split this into two passes,
88 * the first assigning vreg names in a way that we could ir3_print()
89 * the result.
90 */
91
92 static const unsigned class_sizes[] = {
93 1, 2, 3, 4,
94 4 + 4, /* txd + 1d/2d */
95 4 + 6, /* txd + 3d */
96 };
97 #define class_count ARRAY_SIZE(class_sizes)
98
99 static const unsigned half_class_sizes[] = {
100 1, 2, 3, 4,
101 };
102 #define half_class_count ARRAY_SIZE(half_class_sizes)
103
104 /* seems to just be used for compute shaders? Seems like vec1 and vec3
105 * are sufficient (for now?)
106 */
107 static const unsigned high_class_sizes[] = {
108 1, 3,
109 };
110 #define high_class_count ARRAY_SIZE(high_class_sizes)
111
112 #define total_class_count (class_count + half_class_count + high_class_count)
113
114 /* Below a0.x are normal regs. RA doesn't need to assign a0.x/p0.x. */
115 #define NUM_REGS (4 * 48) /* r0 to r47 */
116 #define NUM_HIGH_REGS (4 * 8) /* r48 to r55 */
117 #define FIRST_HIGH_REG (4 * 48)
118 /* Number of virtual regs in a given class: */
119 #define CLASS_REGS(i) (NUM_REGS - (class_sizes[i] - 1))
120 #define HALF_CLASS_REGS(i) (NUM_REGS - (half_class_sizes[i] - 1))
121 #define HIGH_CLASS_REGS(i) (NUM_HIGH_REGS - (high_class_sizes[i] - 1))
122
123 #define HALF_OFFSET (class_count)
124 #define HIGH_OFFSET (class_count + half_class_count)
125
126 /* register-set, created one time, used for all shaders: */
127 struct ir3_ra_reg_set {
128 struct ra_regs *regs;
129 unsigned int classes[class_count];
130 unsigned int half_classes[half_class_count];
131 unsigned int high_classes[high_class_count];
132 /* maps flat virtual register space to base gpr: */
133 uint16_t *ra_reg_to_gpr;
134 /* maps cls,gpr to flat virtual register space: */
135 uint16_t **gpr_to_ra_reg;
136 };
137
138 static void
139 build_q_values(unsigned int **q_values, unsigned off,
140 const unsigned *sizes, unsigned count)
141 {
142 for (unsigned i = 0; i < count; i++) {
143 q_values[i + off] = rzalloc_array(q_values, unsigned, total_class_count);
144
145 /* From register_allocate.c:
146 *
147 * q(B,C) (indexed by C, B is this register class) in
148 * Runeson/Nyström paper. This is "how many registers of B could
149 * the worst choice register from C conflict with".
150 *
151 * If we just let the register allocation algorithm compute these
152 * values, is extremely expensive. However, since all of our
153 * registers are laid out, we can very easily compute them
154 * ourselves. View the register from C as fixed starting at GRF n
155 * somewhere in the middle, and the register from B as sliding back
156 * and forth. Then the first register to conflict from B is the
157 * one starting at n - class_size[B] + 1 and the last register to
158 * conflict will start at n + class_size[B] - 1. Therefore, the
159 * number of conflicts from B is class_size[B] + class_size[C] - 1.
160 *
161 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
162 * B | | | | | |n| --> | | | | | | |
163 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
164 * +-+-+-+-+-+
165 * C |n| | | | |
166 * +-+-+-+-+-+
167 *
168 * (Idea copied from brw_fs_reg_allocate.cpp)
169 */
170 for (unsigned j = 0; j < count; j++)
171 q_values[i + off][j + off] = sizes[i] + sizes[j] - 1;
172 }
173 }
174
175 /* One-time setup of RA register-set, which describes all the possible
176 * "virtual" registers and their interferences. Ie. double register
177 * occupies (and conflicts with) two single registers, and so forth.
178 * Since registers do not need to be aligned to their class size, they
179 * can conflict with other registers in the same class too. Ie:
180 *
181 * Single (base) | Double
182 * --------------+---------------
183 * R0 | D0
184 * R1 | D0 D1
185 * R2 | D1 D2
186 * R3 | D2
187 * .. and so on..
188 *
189 * (NOTE the disassembler uses notation like r0.x/y/z/w but those are
190 * really just four scalar registers. Don't let that confuse you.)
191 */
192 struct ir3_ra_reg_set *
193 ir3_ra_alloc_reg_set(struct ir3_compiler *compiler)
194 {
195 struct ir3_ra_reg_set *set = rzalloc(compiler, struct ir3_ra_reg_set);
196 unsigned ra_reg_count, reg, first_half_reg, first_high_reg, base;
197 unsigned int **q_values;
198
199 /* calculate # of regs across all classes: */
200 ra_reg_count = 0;
201 for (unsigned i = 0; i < class_count; i++)
202 ra_reg_count += CLASS_REGS(i);
203 for (unsigned i = 0; i < half_class_count; i++)
204 ra_reg_count += HALF_CLASS_REGS(i);
205 for (unsigned i = 0; i < high_class_count; i++)
206 ra_reg_count += HIGH_CLASS_REGS(i);
207
208 /* allocate and populate q_values: */
209 q_values = ralloc_array(set, unsigned *, total_class_count);
210
211 build_q_values(q_values, 0, class_sizes, class_count);
212 build_q_values(q_values, HALF_OFFSET, half_class_sizes, half_class_count);
213 build_q_values(q_values, HIGH_OFFSET, high_class_sizes, high_class_count);
214
215 /* allocate the reg-set.. */
216 set->regs = ra_alloc_reg_set(set, ra_reg_count, true);
217 set->ra_reg_to_gpr = ralloc_array(set, uint16_t, ra_reg_count);
218 set->gpr_to_ra_reg = ralloc_array(set, uint16_t *, total_class_count);
219
220 /* .. and classes */
221 reg = 0;
222 for (unsigned i = 0; i < class_count; i++) {
223 set->classes[i] = ra_alloc_reg_class(set->regs);
224
225 set->gpr_to_ra_reg[i] = ralloc_array(set, uint16_t, CLASS_REGS(i));
226
227 for (unsigned j = 0; j < CLASS_REGS(i); j++) {
228 ra_class_add_reg(set->regs, set->classes[i], reg);
229
230 set->ra_reg_to_gpr[reg] = j;
231 set->gpr_to_ra_reg[i][j] = reg;
232
233 for (unsigned br = j; br < j + class_sizes[i]; br++)
234 ra_add_transitive_reg_conflict(set->regs, br, reg);
235
236 reg++;
237 }
238 }
239
240 first_half_reg = reg;
241 base = HALF_OFFSET;
242
243 for (unsigned i = 0; i < half_class_count; i++) {
244 set->half_classes[i] = ra_alloc_reg_class(set->regs);
245
246 set->gpr_to_ra_reg[base + i] =
247 ralloc_array(set, uint16_t, HALF_CLASS_REGS(i));
248
249 for (unsigned j = 0; j < HALF_CLASS_REGS(i); j++) {
250 ra_class_add_reg(set->regs, set->half_classes[i], reg);
251
252 set->ra_reg_to_gpr[reg] = j;
253 set->gpr_to_ra_reg[base + i][j] = reg;
254
255 for (unsigned br = j; br < j + half_class_sizes[i]; br++)
256 ra_add_transitive_reg_conflict(set->regs, br + first_half_reg, reg);
257
258 reg++;
259 }
260 }
261
262 first_high_reg = reg;
263 base = HIGH_OFFSET;
264
265 for (unsigned i = 0; i < high_class_count; i++) {
266 set->high_classes[i] = ra_alloc_reg_class(set->regs);
267
268 set->gpr_to_ra_reg[base + i] =
269 ralloc_array(set, uint16_t, HIGH_CLASS_REGS(i));
270
271 for (unsigned j = 0; j < HIGH_CLASS_REGS(i); j++) {
272 ra_class_add_reg(set->regs, set->high_classes[i], reg);
273
274 set->ra_reg_to_gpr[reg] = j;
275 set->gpr_to_ra_reg[base + i][j] = reg;
276
277 for (unsigned br = j; br < j + high_class_sizes[i]; br++)
278 ra_add_transitive_reg_conflict(set->regs, br + first_high_reg, reg);
279
280 reg++;
281 }
282 }
283
284 /* starting a6xx, half precision regs conflict w/ full precision regs: */
285 if (compiler->gpu_id >= 600) {
286 /* because of transitivity, we can get away with just setting up
287 * conflicts between the first class of full and half regs:
288 */
289 for (unsigned i = 0; i < half_class_count; i++) {
290 /* NOTE there are fewer half class sizes, but they match the
291 * first N full class sizes.. but assert in case that ever
292 * accidentially changes:
293 */
294 debug_assert(class_sizes[i] == half_class_sizes[i]);
295 for (unsigned j = 0; j < CLASS_REGS(i) / 2; j++) {
296 unsigned freg = set->gpr_to_ra_reg[i][j];
297 unsigned hreg0 = set->gpr_to_ra_reg[i + HALF_OFFSET][(j * 2) + 0];
298 unsigned hreg1 = set->gpr_to_ra_reg[i + HALF_OFFSET][(j * 2) + 1];
299
300 ra_add_transitive_reg_conflict(set->regs, freg, hreg0);
301 ra_add_transitive_reg_conflict(set->regs, freg, hreg1);
302 }
303 }
304
305 // TODO also need to update q_values, but for now:
306 ra_set_finalize(set->regs, NULL);
307 } else {
308 ra_set_finalize(set->regs, q_values);
309 }
310
311 ralloc_free(q_values);
312
313 return set;
314 }
315
316 /* additional block-data (per-block) */
317 struct ir3_ra_block_data {
318 BITSET_WORD *def; /* variables defined before used in block */
319 BITSET_WORD *use; /* variables used before defined in block */
320 BITSET_WORD *livein; /* which defs reach entry point of block */
321 BITSET_WORD *liveout; /* which defs reach exit point of block */
322 };
323
324 /* additional instruction-data (per-instruction) */
325 struct ir3_ra_instr_data {
326 /* cached instruction 'definer' info: */
327 struct ir3_instruction *defn;
328 int off, sz, cls;
329 };
330
331 /* register-assign context, per-shader */
332 struct ir3_ra_ctx {
333 struct ir3_shader_variant *v;
334 struct ir3 *ir;
335
336 struct ir3_ra_reg_set *set;
337 struct ra_graph *g;
338 unsigned alloc_count;
339 /* one per class, plus one slot for arrays: */
340 unsigned class_alloc_count[total_class_count + 1];
341 unsigned class_base[total_class_count + 1];
342 unsigned instr_cnt;
343 unsigned *def, *use; /* def/use table */
344 struct ir3_ra_instr_data *instrd;
345 };
346
347 /* does it conflict? */
348 static inline bool
349 intersects(unsigned a_start, unsigned a_end, unsigned b_start, unsigned b_end)
350 {
351 return !((a_start >= b_end) || (b_start >= a_end));
352 }
353
354 static bool
355 is_half(struct ir3_instruction *instr)
356 {
357 return !!(instr->regs[0]->flags & IR3_REG_HALF);
358 }
359
360 static bool
361 is_high(struct ir3_instruction *instr)
362 {
363 return !!(instr->regs[0]->flags & IR3_REG_HIGH);
364 }
365
366 static int
367 size_to_class(unsigned sz, bool half, bool high)
368 {
369 if (high) {
370 for (unsigned i = 0; i < high_class_count; i++)
371 if (high_class_sizes[i] >= sz)
372 return i + HIGH_OFFSET;
373 } else if (half) {
374 for (unsigned i = 0; i < half_class_count; i++)
375 if (half_class_sizes[i] >= sz)
376 return i + HALF_OFFSET;
377 } else {
378 for (unsigned i = 0; i < class_count; i++)
379 if (class_sizes[i] >= sz)
380 return i;
381 }
382 debug_assert(0);
383 return -1;
384 }
385
386 static bool
387 writes_gpr(struct ir3_instruction *instr)
388 {
389 if (is_store(instr))
390 return false;
391 /* is dest a normal temp register: */
392 struct ir3_register *reg = instr->regs[0];
393 if (reg->flags & (IR3_REG_CONST | IR3_REG_IMMED))
394 return false;
395 if ((reg->num == regid(REG_A0, 0)) ||
396 (reg->num == regid(REG_P0, 0)))
397 return false;
398 return true;
399 }
400
401 static bool
402 instr_before(struct ir3_instruction *a, struct ir3_instruction *b)
403 {
404 if (a->flags & IR3_INSTR_UNUSED)
405 return false;
406 return (a->ip < b->ip);
407 }
408
409 static struct ir3_instruction *
410 get_definer(struct ir3_ra_ctx *ctx, struct ir3_instruction *instr,
411 int *sz, int *off)
412 {
413 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
414 struct ir3_instruction *d = NULL;
415
416 if (id->defn) {
417 *sz = id->sz;
418 *off = id->off;
419 return id->defn;
420 }
421
422 if (instr->opc == OPC_META_FI) {
423 /* What about the case where collect is subset of array, we
424 * need to find the distance between where actual array starts
425 * and fanin.. that probably doesn't happen currently.
426 */
427 struct ir3_register *src;
428 int dsz, doff;
429
430 /* note: don't use foreach_ssa_src as this gets called once
431 * while assigning regs (which clears SSA flag)
432 */
433 foreach_src_n(src, n, instr) {
434 struct ir3_instruction *dd;
435 if (!src->instr)
436 continue;
437
438 dd = get_definer(ctx, src->instr, &dsz, &doff);
439
440 if ((!d) || instr_before(dd, d)) {
441 d = dd;
442 *sz = dsz;
443 *off = doff - n;
444 }
445 }
446
447 } else if (instr->cp.right || instr->cp.left) {
448 /* covers also the meta:fo case, which ends up w/ single
449 * scalar instructions for each component:
450 */
451 struct ir3_instruction *f = ir3_neighbor_first(instr);
452
453 /* by definition, the entire sequence forms one linked list
454 * of single scalar register nodes (even if some of them may
455 * be fanouts from a texture sample (for example) instr. We
456 * just need to walk the list finding the first element of
457 * the group defined (lowest ip)
458 */
459 int cnt = 0;
460
461 /* need to skip over unused in the group: */
462 while (f && (f->flags & IR3_INSTR_UNUSED)) {
463 f = f->cp.right;
464 cnt++;
465 }
466
467 while (f) {
468 if ((!d) || instr_before(f, d))
469 d = f;
470 if (f == instr)
471 *off = cnt;
472 f = f->cp.right;
473 cnt++;
474 }
475
476 *sz = cnt;
477
478 } else {
479 /* second case is looking directly at the instruction which
480 * produces multiple values (eg, texture sample), rather
481 * than the fanout nodes that point back to that instruction.
482 * This isn't quite right, because it may be part of a larger
483 * group, such as:
484 *
485 * sam (f32)(xyzw)r0.x, ...
486 * add r1.x, ...
487 * add r1.y, ...
488 * sam (f32)(xyzw)r2.x, r0.w <-- (r0.w, r1.x, r1.y)
489 *
490 * need to come up with a better way to handle that case.
491 */
492 if (instr->address) {
493 *sz = instr->regs[0]->size;
494 } else {
495 *sz = util_last_bit(instr->regs[0]->wrmask);
496 }
497 *off = 0;
498 d = instr;
499 }
500
501 if (d->opc == OPC_META_FO) {
502 struct ir3_instruction *dd;
503 int dsz, doff;
504
505 dd = get_definer(ctx, d->regs[1]->instr, &dsz, &doff);
506
507 /* by definition, should come before: */
508 debug_assert(instr_before(dd, d));
509
510 *sz = MAX2(*sz, dsz);
511
512 if (instr->opc == OPC_META_FO)
513 *off = MAX2(*off, instr->fo.off);
514
515 d = dd;
516 }
517
518 debug_assert(d->opc != OPC_META_FO);
519
520 id->defn = d;
521 id->sz = *sz;
522 id->off = *off;
523
524 return d;
525 }
526
527 static void
528 ra_block_find_definers(struct ir3_ra_ctx *ctx, struct ir3_block *block)
529 {
530 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
531 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
532 if (instr->regs_count == 0)
533 continue;
534 /* couple special cases: */
535 if (writes_addr(instr) || writes_pred(instr)) {
536 id->cls = -1;
537 } else if (instr->regs[0]->flags & IR3_REG_ARRAY) {
538 id->cls = total_class_count;
539 } else {
540 /* and the normal case: */
541 id->defn = get_definer(ctx, instr, &id->sz, &id->off);
542 id->cls = size_to_class(id->sz, is_half(id->defn), is_high(id->defn));
543
544 /* this is a bit of duct-tape.. if we have a scenario like:
545 *
546 * sam (f32)(x) out.x, ...
547 * sam (f32)(x) out.y, ...
548 *
549 * Then the fanout/split meta instructions for the two different
550 * tex instructions end up grouped as left/right neighbors. The
551 * upshot is that in when you get_definer() on one of the meta:fo's
552 * you get definer as the first sam with sz=2, but when you call
553 * get_definer() on the either of the sam's you get itself as the
554 * definer with sz=1.
555 *
556 * (We actually avoid this scenario exactly, the neighbor links
557 * prevent one of the output mov's from being eliminated, so this
558 * hack should be enough. But probably we need to rethink how we
559 * find the "defining" instruction.)
560 *
561 * TODO how do we figure out offset properly...
562 */
563 if (id->defn != instr) {
564 struct ir3_ra_instr_data *did = &ctx->instrd[id->defn->ip];
565 if (did->sz < id->sz) {
566 did->sz = id->sz;
567 did->cls = id->cls;
568 }
569 }
570 }
571 }
572 }
573
574 /* give each instruction a name (and ip), and count up the # of names
575 * of each class
576 */
577 static void
578 ra_block_name_instructions(struct ir3_ra_ctx *ctx, struct ir3_block *block)
579 {
580 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
581 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
582
583 #ifdef DEBUG
584 instr->name = ~0;
585 #endif
586
587 ctx->instr_cnt++;
588
589 if (instr->regs_count == 0)
590 continue;
591
592 if (!writes_gpr(instr))
593 continue;
594
595 if (id->defn != instr)
596 continue;
597
598 /* arrays which don't fit in one of the pre-defined class
599 * sizes are pre-colored:
600 */
601 if ((id->cls >= 0) && (id->cls < total_class_count)) {
602 instr->name = ctx->class_alloc_count[id->cls]++;
603 ctx->alloc_count++;
604 }
605 }
606 }
607
608 static void
609 ra_init(struct ir3_ra_ctx *ctx)
610 {
611 unsigned n, base;
612
613 ir3_clear_mark(ctx->ir);
614 n = ir3_count_instructions(ctx->ir);
615
616 ctx->instrd = rzalloc_array(NULL, struct ir3_ra_instr_data, n);
617
618 list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
619 ra_block_find_definers(ctx, block);
620 }
621
622 list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
623 ra_block_name_instructions(ctx, block);
624 }
625
626 /* figure out the base register name for each class. The
627 * actual ra name is class_base[cls] + instr->name;
628 */
629 ctx->class_base[0] = 0;
630 for (unsigned i = 1; i <= total_class_count; i++) {
631 ctx->class_base[i] = ctx->class_base[i-1] +
632 ctx->class_alloc_count[i-1];
633 }
634
635 /* and vreg names for array elements: */
636 base = ctx->class_base[total_class_count];
637 list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
638 arr->base = base;
639 ctx->class_alloc_count[total_class_count] += arr->length;
640 base += arr->length;
641 }
642 ctx->alloc_count += ctx->class_alloc_count[total_class_count];
643
644 ctx->g = ra_alloc_interference_graph(ctx->set->regs, ctx->alloc_count);
645 ralloc_steal(ctx->g, ctx->instrd);
646 ctx->def = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
647 ctx->use = rzalloc_array(ctx->g, unsigned, ctx->alloc_count);
648 }
649
650 static unsigned
651 __ra_name(struct ir3_ra_ctx *ctx, int cls, struct ir3_instruction *defn)
652 {
653 unsigned name;
654 debug_assert(cls >= 0);
655 debug_assert(cls < total_class_count); /* we shouldn't get arrays here.. */
656 name = ctx->class_base[cls] + defn->name;
657 debug_assert(name < ctx->alloc_count);
658 return name;
659 }
660
661 static int
662 ra_name(struct ir3_ra_ctx *ctx, struct ir3_ra_instr_data *id)
663 {
664 /* TODO handle name mapping for arrays */
665 return __ra_name(ctx, id->cls, id->defn);
666 }
667
668 static void
669 ra_destroy(struct ir3_ra_ctx *ctx)
670 {
671 ralloc_free(ctx->g);
672 }
673
674 static void
675 ra_block_compute_live_ranges(struct ir3_ra_ctx *ctx, struct ir3_block *block)
676 {
677 struct ir3_ra_block_data *bd;
678 unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
679
680 #define def(name, instr) \
681 do { \
682 /* defined on first write: */ \
683 if (!ctx->def[name]) \
684 ctx->def[name] = instr->ip; \
685 ctx->use[name] = instr->ip; \
686 BITSET_SET(bd->def, name); \
687 } while(0);
688
689 #define use(name, instr) \
690 do { \
691 ctx->use[name] = MAX2(ctx->use[name], instr->ip); \
692 if (!BITSET_TEST(bd->def, name)) \
693 BITSET_SET(bd->use, name); \
694 } while(0);
695
696 bd = rzalloc(ctx->g, struct ir3_ra_block_data);
697
698 bd->def = rzalloc_array(bd, BITSET_WORD, bitset_words);
699 bd->use = rzalloc_array(bd, BITSET_WORD, bitset_words);
700 bd->livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
701 bd->liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
702
703 block->data = bd;
704
705 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
706 struct ir3_instruction *src;
707 struct ir3_register *reg;
708
709 if (instr->regs_count == 0)
710 continue;
711
712 /* There are a couple special cases to deal with here:
713 *
714 * fanout: used to split values from a higher class to a lower
715 * class, for example split the results of a texture fetch
716 * into individual scalar values; We skip over these from
717 * a 'def' perspective, and for a 'use' we walk the chain
718 * up to the defining instruction.
719 *
720 * fanin: used to collect values from lower class and assemble
721 * them together into a higher class, for example arguments
722 * to texture sample instructions; We consider these to be
723 * defined at the earliest fanin source.
724 *
725 * Most of this is handled in the get_definer() helper.
726 *
727 * In either case, we trace the instruction back to the original
728 * definer and consider that as the def/use ip.
729 */
730
731 if (writes_gpr(instr)) {
732 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
733 struct ir3_register *dst = instr->regs[0];
734
735 if (dst->flags & IR3_REG_ARRAY) {
736 struct ir3_array *arr =
737 ir3_lookup_array(ctx->ir, dst->array.id);
738 unsigned i;
739
740 arr->start_ip = MIN2(arr->start_ip, instr->ip);
741 arr->end_ip = MAX2(arr->end_ip, instr->ip);
742
743 /* set the node class now.. in case we don't encounter
744 * this array dst again. From register_alloc algo's
745 * perspective, these are all single/scalar regs:
746 */
747 for (i = 0; i < arr->length; i++) {
748 unsigned name = arr->base + i;
749 ra_set_node_class(ctx->g, name, ctx->set->classes[0]);
750 }
751
752 /* indirect write is treated like a write to all array
753 * elements, since we don't know which one is actually
754 * written:
755 */
756 if (dst->flags & IR3_REG_RELATIV) {
757 for (i = 0; i < arr->length; i++) {
758 unsigned name = arr->base + i;
759 def(name, instr);
760 }
761 } else {
762 unsigned name = arr->base + dst->array.offset;
763 def(name, instr);
764 }
765
766 } else if (id->defn == instr) {
767 unsigned name = ra_name(ctx, id);
768
769 /* since we are in SSA at this point: */
770 debug_assert(!BITSET_TEST(bd->use, name));
771
772 def(name, id->defn);
773
774 if (is_high(id->defn)) {
775 ra_set_node_class(ctx->g, name,
776 ctx->set->high_classes[id->cls - HIGH_OFFSET]);
777 } else if (is_half(id->defn)) {
778 ra_set_node_class(ctx->g, name,
779 ctx->set->half_classes[id->cls - HALF_OFFSET]);
780 } else {
781 ra_set_node_class(ctx->g, name,
782 ctx->set->classes[id->cls]);
783 }
784 }
785 }
786
787 foreach_src(reg, instr) {
788 if (reg->flags & IR3_REG_ARRAY) {
789 struct ir3_array *arr =
790 ir3_lookup_array(ctx->ir, reg->array.id);
791 arr->start_ip = MIN2(arr->start_ip, instr->ip);
792 arr->end_ip = MAX2(arr->end_ip, instr->ip);
793
794 /* indirect read is treated like a read fromall array
795 * elements, since we don't know which one is actually
796 * read:
797 */
798 if (reg->flags & IR3_REG_RELATIV) {
799 unsigned i;
800 for (i = 0; i < arr->length; i++) {
801 unsigned name = arr->base + i;
802 use(name, instr);
803 }
804 } else {
805 unsigned name = arr->base + reg->array.offset;
806 use(name, instr);
807 /* NOTE: arrays are not SSA so unconditionally
808 * set use bit:
809 */
810 BITSET_SET(bd->use, name);
811 debug_assert(reg->array.offset < arr->length);
812 }
813 } else if ((src = ssa(reg)) && writes_gpr(src)) {
814 unsigned name = ra_name(ctx, &ctx->instrd[src->ip]);
815 use(name, instr);
816 }
817 }
818 }
819 }
820
821 static bool
822 ra_compute_livein_liveout(struct ir3_ra_ctx *ctx)
823 {
824 unsigned bitset_words = BITSET_WORDS(ctx->alloc_count);
825 bool progress = false;
826
827 list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
828 struct ir3_ra_block_data *bd = block->data;
829
830 /* update livein: */
831 for (unsigned i = 0; i < bitset_words; i++) {
832 BITSET_WORD new_livein =
833 (bd->use[i] | (bd->liveout[i] & ~bd->def[i]));
834
835 if (new_livein & ~bd->livein[i]) {
836 bd->livein[i] |= new_livein;
837 progress = true;
838 }
839 }
840
841 /* update liveout: */
842 for (unsigned j = 0; j < ARRAY_SIZE(block->successors); j++) {
843 struct ir3_block *succ = block->successors[j];
844 struct ir3_ra_block_data *succ_bd;
845
846 if (!succ)
847 continue;
848
849 succ_bd = succ->data;
850
851 for (unsigned i = 0; i < bitset_words; i++) {
852 BITSET_WORD new_liveout =
853 (succ_bd->livein[i] & ~bd->liveout[i]);
854
855 if (new_liveout) {
856 bd->liveout[i] |= new_liveout;
857 progress = true;
858 }
859 }
860 }
861 }
862
863 return progress;
864 }
865
866 static void
867 print_bitset(const char *name, BITSET_WORD *bs, unsigned cnt)
868 {
869 bool first = true;
870 debug_printf(" %s:", name);
871 for (unsigned i = 0; i < cnt; i++) {
872 if (BITSET_TEST(bs, i)) {
873 if (!first)
874 debug_printf(",");
875 debug_printf(" %04u", i);
876 first = false;
877 }
878 }
879 debug_printf("\n");
880 }
881
882 static void
883 ra_add_interference(struct ir3_ra_ctx *ctx)
884 {
885 struct ir3 *ir = ctx->ir;
886
887 /* initialize array live ranges: */
888 list_for_each_entry (struct ir3_array, arr, &ir->array_list, node) {
889 arr->start_ip = ~0;
890 arr->end_ip = 0;
891 }
892
893 /* compute live ranges (use/def) on a block level, also updating
894 * block's def/use bitmasks (used below to calculate per-block
895 * livein/liveout):
896 */
897 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
898 ra_block_compute_live_ranges(ctx, block);
899 }
900
901 /* update per-block livein/liveout: */
902 while (ra_compute_livein_liveout(ctx)) {}
903
904 if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
905 debug_printf("AFTER LIVEIN/OUT:\n");
906 ir3_print(ir);
907 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
908 struct ir3_ra_block_data *bd = block->data;
909 debug_printf("block%u:\n", block_id(block));
910 print_bitset(" def", bd->def, ctx->alloc_count);
911 print_bitset(" use", bd->use, ctx->alloc_count);
912 print_bitset(" l/i", bd->livein, ctx->alloc_count);
913 print_bitset(" l/o", bd->liveout, ctx->alloc_count);
914 }
915 list_for_each_entry (struct ir3_array, arr, &ir->array_list, node) {
916 debug_printf("array%u:\n", arr->id);
917 debug_printf(" length: %u\n", arr->length);
918 debug_printf(" start_ip: %u\n", arr->start_ip);
919 debug_printf(" end_ip: %u\n", arr->end_ip);
920 }
921 }
922
923 /* extend start/end ranges based on livein/liveout info from cfg: */
924 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
925 struct ir3_ra_block_data *bd = block->data;
926
927 for (unsigned i = 0; i < ctx->alloc_count; i++) {
928 if (BITSET_TEST(bd->livein, i)) {
929 ctx->def[i] = MIN2(ctx->def[i], block->start_ip);
930 ctx->use[i] = MAX2(ctx->use[i], block->start_ip);
931 }
932
933 if (BITSET_TEST(bd->liveout, i)) {
934 ctx->def[i] = MIN2(ctx->def[i], block->end_ip);
935 ctx->use[i] = MAX2(ctx->use[i], block->end_ip);
936 }
937 }
938
939 list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
940 for (unsigned i = 0; i < arr->length; i++) {
941 if (BITSET_TEST(bd->livein, i + arr->base)) {
942 arr->start_ip = MIN2(arr->start_ip, block->start_ip);
943 }
944 if (BITSET_TEST(bd->livein, i + arr->base)) {
945 arr->end_ip = MAX2(arr->end_ip, block->end_ip);
946 }
947 }
948 }
949 }
950
951 /* need to fix things up to keep outputs live: */
952 for (unsigned i = 0; i < ir->noutputs; i++) {
953 struct ir3_instruction *instr = ir->outputs[i];
954 if (!instr)
955 continue;
956 unsigned name = ra_name(ctx, &ctx->instrd[instr->ip]);
957 ctx->use[name] = ctx->instr_cnt;
958 }
959
960 for (unsigned i = 0; i < ctx->alloc_count; i++) {
961 for (unsigned j = 0; j < ctx->alloc_count; j++) {
962 if (intersects(ctx->def[i], ctx->use[i],
963 ctx->def[j], ctx->use[j])) {
964 ra_add_node_interference(ctx->g, i, j);
965 }
966 }
967 }
968 }
969
970 /* some instructions need fix-up if dst register is half precision: */
971 static void fixup_half_instr_dst(struct ir3_instruction *instr)
972 {
973 switch (opc_cat(instr->opc)) {
974 case 1: /* move instructions */
975 instr->cat1.dst_type = half_type(instr->cat1.dst_type);
976 break;
977 case 3:
978 switch (instr->opc) {
979 case OPC_MAD_F32:
980 instr->opc = OPC_MAD_F16;
981 break;
982 case OPC_SEL_B32:
983 instr->opc = OPC_SEL_B16;
984 break;
985 case OPC_SEL_S32:
986 instr->opc = OPC_SEL_S16;
987 break;
988 case OPC_SEL_F32:
989 instr->opc = OPC_SEL_F16;
990 break;
991 case OPC_SAD_S32:
992 instr->opc = OPC_SAD_S16;
993 break;
994 /* instructions may already be fixed up: */
995 case OPC_MAD_F16:
996 case OPC_SEL_B16:
997 case OPC_SEL_S16:
998 case OPC_SEL_F16:
999 case OPC_SAD_S16:
1000 break;
1001 default:
1002 assert(0);
1003 break;
1004 }
1005 break;
1006 case 5:
1007 instr->cat5.type = half_type(instr->cat5.type);
1008 break;
1009 }
1010 }
1011 /* some instructions need fix-up if src register is half precision: */
1012 static void fixup_half_instr_src(struct ir3_instruction *instr)
1013 {
1014 switch (instr->opc) {
1015 case OPC_MOV:
1016 instr->cat1.src_type = half_type(instr->cat1.src_type);
1017 break;
1018 default:
1019 break;
1020 }
1021 }
1022
1023 /* NOTE: instr could be NULL for IR3_REG_ARRAY case, for the first
1024 * array access(es) which do not have any previous access to depend
1025 * on from scheduling point of view
1026 */
1027 static void
1028 reg_assign(struct ir3_ra_ctx *ctx, struct ir3_register *reg,
1029 struct ir3_instruction *instr)
1030 {
1031 struct ir3_ra_instr_data *id;
1032
1033 if (reg->flags & IR3_REG_ARRAY) {
1034 struct ir3_array *arr =
1035 ir3_lookup_array(ctx->ir, reg->array.id);
1036 unsigned name = arr->base + reg->array.offset;
1037 unsigned r = ra_get_node_reg(ctx->g, name);
1038 unsigned num = ctx->set->ra_reg_to_gpr[r];
1039
1040 if (reg->flags & IR3_REG_RELATIV) {
1041 reg->array.offset = num;
1042 } else {
1043 reg->num = num;
1044 reg->flags &= ~IR3_REG_SSA;
1045 }
1046
1047 reg->flags &= ~IR3_REG_ARRAY;
1048 } else if ((id = &ctx->instrd[instr->ip]) && id->defn) {
1049 unsigned name = ra_name(ctx, id);
1050 unsigned r = ra_get_node_reg(ctx->g, name);
1051 unsigned num = ctx->set->ra_reg_to_gpr[r] + id->off;
1052
1053 debug_assert(!(reg->flags & IR3_REG_RELATIV));
1054
1055 if (is_high(id->defn))
1056 num += FIRST_HIGH_REG;
1057
1058 reg->num = num;
1059 reg->flags &= ~IR3_REG_SSA;
1060
1061 if (is_half(id->defn))
1062 reg->flags |= IR3_REG_HALF;
1063 }
1064 }
1065
1066 static void
1067 ra_block_alloc(struct ir3_ra_ctx *ctx, struct ir3_block *block)
1068 {
1069 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
1070 struct ir3_register *reg;
1071
1072 if (instr->regs_count == 0)
1073 continue;
1074
1075 if (writes_gpr(instr)) {
1076 reg_assign(ctx, instr->regs[0], instr);
1077 if (instr->regs[0]->flags & IR3_REG_HALF)
1078 fixup_half_instr_dst(instr);
1079 }
1080
1081 foreach_src_n(reg, n, instr) {
1082 struct ir3_instruction *src = reg->instr;
1083 /* Note: reg->instr could be null for IR3_REG_ARRAY */
1084 if (src || (reg->flags & IR3_REG_ARRAY))
1085 reg_assign(ctx, instr->regs[n+1], src);
1086 if (instr->regs[n+1]->flags & IR3_REG_HALF)
1087 fixup_half_instr_src(instr);
1088 }
1089 }
1090 }
1091
1092 static int
1093 ra_alloc(struct ir3_ra_ctx *ctx, struct ir3_instruction **precolor, unsigned nprecolor)
1094 {
1095 unsigned num_precolor = 0;
1096 for (unsigned i = 0; i < nprecolor; i++) {
1097 if (precolor[i] && !(precolor[i]->flags & IR3_INSTR_UNUSED)) {
1098 struct ir3_instruction *instr = precolor[i];
1099 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
1100
1101 debug_assert(!(instr->regs[0]->flags & (IR3_REG_HALF | IR3_REG_HIGH)));
1102
1103 /* only consider the first component: */
1104 if (id->off > 0)
1105 continue;
1106
1107 /* 'base' is in scalar (class 0) but we need to map that
1108 * the conflicting register of the appropriate class (ie.
1109 * input could be vec2/vec3/etc)
1110 *
1111 * Note that the higher class (larger than scalar) regs
1112 * are setup to conflict with others in the same class,
1113 * so for example, R1 (scalar) is also the first component
1114 * of D1 (vec2/double):
1115 *
1116 * Single (base) | Double
1117 * --------------+---------------
1118 * R0 | D0
1119 * R1 | D0 D1
1120 * R2 | D1 D2
1121 * R3 | D2
1122 * .. and so on..
1123 */
1124 unsigned regid = instr->regs[0]->num;
1125 unsigned reg = ctx->set->gpr_to_ra_reg[id->cls][regid];
1126 unsigned name = ra_name(ctx, id);
1127 ra_set_node_reg(ctx->g, name, reg);
1128 num_precolor = MAX2(regid, num_precolor);
1129 }
1130 }
1131
1132 /* pre-assign array elements:
1133 */
1134 list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
1135 unsigned base = 0;
1136
1137 if (arr->end_ip == 0)
1138 continue;
1139
1140 /* figure out what else we conflict with which has already
1141 * been assigned:
1142 */
1143 retry:
1144 list_for_each_entry (struct ir3_array, arr2, &ctx->ir->array_list, node) {
1145 if (arr2 == arr)
1146 break;
1147 if (arr2->end_ip == 0)
1148 continue;
1149 /* if it intersects with liverange AND register range.. */
1150 if (intersects(arr->start_ip, arr->end_ip,
1151 arr2->start_ip, arr2->end_ip) &&
1152 intersects(base, base + arr->length,
1153 arr2->reg, arr2->reg + arr2->length)) {
1154 base = MAX2(base, arr2->reg + arr2->length);
1155 goto retry;
1156 }
1157 }
1158
1159 /* also need to not conflict with any pre-assigned inputs: */
1160 for (unsigned i = 0; i < nprecolor; i++) {
1161 struct ir3_instruction *instr = precolor[i];
1162
1163 if (!instr)
1164 continue;
1165
1166 struct ir3_ra_instr_data *id = &ctx->instrd[instr->ip];
1167
1168 /* only consider the first component: */
1169 if (id->off > 0)
1170 continue;
1171
1172 unsigned name = ra_name(ctx, id);
1173 unsigned regid = instr->regs[0]->num;
1174
1175 /* Check if array intersects with liverange AND register
1176 * range of the input:
1177 */
1178 if (intersects(arr->start_ip, arr->end_ip,
1179 ctx->def[name], ctx->use[name]) &&
1180 intersects(base, base + arr->length,
1181 regid, regid + class_sizes[id->cls])) {
1182 base = MAX2(base, regid + class_sizes[id->cls]);
1183 goto retry;
1184 }
1185 }
1186
1187 arr->reg = base;
1188
1189 for (unsigned i = 0; i < arr->length; i++) {
1190 unsigned name, reg;
1191
1192 name = arr->base + i;
1193 reg = ctx->set->gpr_to_ra_reg[0][base++];
1194
1195 ra_set_node_reg(ctx->g, name, reg);
1196 }
1197 }
1198
1199 if (!ra_allocate(ctx->g))
1200 return -1;
1201
1202 list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
1203 ra_block_alloc(ctx, block);
1204 }
1205
1206 return 0;
1207 }
1208
1209 int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor)
1210 {
1211 struct ir3_ra_ctx ctx = {
1212 .v = v,
1213 .ir = v->ir,
1214 .set = v->ir->compiler->set,
1215 };
1216 int ret;
1217
1218 ra_init(&ctx);
1219 ra_add_interference(&ctx);
1220 ret = ra_alloc(&ctx, precolor, nprecolor);
1221 ra_destroy(&ctx);
1222
1223 return ret;
1224 }