freedreno/registers: a6xx depth bounds test registers
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "registers/adreno_pm4.xml.h"
31 #include "registers/adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 static void
112 tu_tiling_config_update_tile_layout(struct tu_tiling_config *tiling,
113 const struct tu_device *dev,
114 const struct tu_render_pass *pass)
115 {
116 const uint32_t tile_align_w = pass->tile_align_w;
117 const uint32_t max_tile_width = 1024;
118
119 /* note: don't offset the tiling config by render_area.offset,
120 * because binning pass can't deal with it
121 * this means we might end up with more tiles than necessary,
122 * but load/store/etc are still scissored to the render_area
123 */
124 tiling->tile0.offset = (VkOffset2D) {};
125
126 const uint32_t ra_width =
127 tiling->render_area.extent.width +
128 (tiling->render_area.offset.x - tiling->tile0.offset.x);
129 const uint32_t ra_height =
130 tiling->render_area.extent.height +
131 (tiling->render_area.offset.y - tiling->tile0.offset.y);
132
133 /* start from 1 tile */
134 tiling->tile_count = (VkExtent2D) {
135 .width = 1,
136 .height = 1,
137 };
138 tiling->tile0.extent = (VkExtent2D) {
139 .width = util_align_npot(ra_width, tile_align_w),
140 .height = align(ra_height, TILE_ALIGN_H),
141 };
142
143 if (unlikely(dev->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN)) {
144 /* start with 2x2 tiles */
145 tiling->tile_count.width = 2;
146 tiling->tile_count.height = 2;
147 tiling->tile0.extent.width = util_align_npot(DIV_ROUND_UP(ra_width, 2), tile_align_w);
148 tiling->tile0.extent.height = align(DIV_ROUND_UP(ra_height, 2), TILE_ALIGN_H);
149 }
150
151 /* do not exceed max tile width */
152 while (tiling->tile0.extent.width > max_tile_width) {
153 tiling->tile_count.width++;
154 tiling->tile0.extent.width =
155 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
156 }
157
158 /* will force to sysmem, don't bother trying to have a valid tile config
159 * TODO: just skip all GMEM stuff when sysmem is forced?
160 */
161 if (!pass->gmem_pixels)
162 return;
163
164 /* do not exceed gmem size */
165 while (tiling->tile0.extent.width * tiling->tile0.extent.height > pass->gmem_pixels) {
166 if (tiling->tile0.extent.width > MAX2(tile_align_w, tiling->tile0.extent.height)) {
167 tiling->tile_count.width++;
168 tiling->tile0.extent.width =
169 util_align_npot(DIV_ROUND_UP(ra_width, tiling->tile_count.width), tile_align_w);
170 } else {
171 /* if this assert fails then layout is impossible.. */
172 assert(tiling->tile0.extent.height > TILE_ALIGN_H);
173 tiling->tile_count.height++;
174 tiling->tile0.extent.height =
175 align(DIV_ROUND_UP(ra_height, tiling->tile_count.height), TILE_ALIGN_H);
176 }
177 }
178 }
179
180 static void
181 tu_tiling_config_update_pipe_layout(struct tu_tiling_config *tiling,
182 const struct tu_device *dev)
183 {
184 const uint32_t max_pipe_count = 32; /* A6xx */
185
186 /* start from 1 tile per pipe */
187 tiling->pipe0 = (VkExtent2D) {
188 .width = 1,
189 .height = 1,
190 };
191 tiling->pipe_count = tiling->tile_count;
192
193 while (tiling->pipe_count.width * tiling->pipe_count.height > max_pipe_count) {
194 if (tiling->pipe0.width < tiling->pipe0.height) {
195 tiling->pipe0.width += 1;
196 tiling->pipe_count.width =
197 DIV_ROUND_UP(tiling->tile_count.width, tiling->pipe0.width);
198 } else {
199 tiling->pipe0.height += 1;
200 tiling->pipe_count.height =
201 DIV_ROUND_UP(tiling->tile_count.height, tiling->pipe0.height);
202 }
203 }
204 }
205
206 static void
207 tu_tiling_config_update_pipes(struct tu_tiling_config *tiling,
208 const struct tu_device *dev)
209 {
210 const uint32_t max_pipe_count = 32; /* A6xx */
211 const uint32_t used_pipe_count =
212 tiling->pipe_count.width * tiling->pipe_count.height;
213 const VkExtent2D last_pipe = {
214 .width = (tiling->tile_count.width - 1) % tiling->pipe0.width + 1,
215 .height = (tiling->tile_count.height - 1) % tiling->pipe0.height + 1,
216 };
217
218 assert(used_pipe_count <= max_pipe_count);
219 assert(max_pipe_count <= ARRAY_SIZE(tiling->pipe_config));
220
221 for (uint32_t y = 0; y < tiling->pipe_count.height; y++) {
222 for (uint32_t x = 0; x < tiling->pipe_count.width; x++) {
223 const uint32_t pipe_x = tiling->pipe0.width * x;
224 const uint32_t pipe_y = tiling->pipe0.height * y;
225 const uint32_t pipe_w = (x == tiling->pipe_count.width - 1)
226 ? last_pipe.width
227 : tiling->pipe0.width;
228 const uint32_t pipe_h = (y == tiling->pipe_count.height - 1)
229 ? last_pipe.height
230 : tiling->pipe0.height;
231 const uint32_t n = tiling->pipe_count.width * y + x;
232
233 tiling->pipe_config[n] = A6XX_VSC_PIPE_CONFIG_REG_X(pipe_x) |
234 A6XX_VSC_PIPE_CONFIG_REG_Y(pipe_y) |
235 A6XX_VSC_PIPE_CONFIG_REG_W(pipe_w) |
236 A6XX_VSC_PIPE_CONFIG_REG_H(pipe_h);
237 tiling->pipe_sizes[n] = CP_SET_BIN_DATA5_0_VSC_SIZE(pipe_w * pipe_h);
238 }
239 }
240
241 memset(tiling->pipe_config + used_pipe_count, 0,
242 sizeof(uint32_t) * (max_pipe_count - used_pipe_count));
243 }
244
245 static void
246 tu_tiling_config_get_tile(const struct tu_tiling_config *tiling,
247 const struct tu_device *dev,
248 uint32_t tx,
249 uint32_t ty,
250 struct tu_tile *tile)
251 {
252 /* find the pipe and the slot for tile (tx, ty) */
253 const uint32_t px = tx / tiling->pipe0.width;
254 const uint32_t py = ty / tiling->pipe0.height;
255 const uint32_t sx = tx - tiling->pipe0.width * px;
256 const uint32_t sy = ty - tiling->pipe0.height * py;
257 /* last pipe has different width */
258 const uint32_t pipe_width =
259 MIN2(tiling->pipe0.width,
260 tiling->tile_count.width - px * tiling->pipe0.width);
261
262 assert(tx < tiling->tile_count.width && ty < tiling->tile_count.height);
263 assert(px < tiling->pipe_count.width && py < tiling->pipe_count.height);
264 assert(sx < tiling->pipe0.width && sy < tiling->pipe0.height);
265
266 /* convert to 1D indices */
267 tile->pipe = tiling->pipe_count.width * py + px;
268 tile->slot = pipe_width * sy + sx;
269
270 /* get the blit area for the tile */
271 tile->begin = (VkOffset2D) {
272 .x = tiling->tile0.offset.x + tiling->tile0.extent.width * tx,
273 .y = tiling->tile0.offset.y + tiling->tile0.extent.height * ty,
274 };
275 tile->end.x =
276 (tx == tiling->tile_count.width - 1)
277 ? tiling->render_area.offset.x + tiling->render_area.extent.width
278 : tile->begin.x + tiling->tile0.extent.width;
279 tile->end.y =
280 (ty == tiling->tile_count.height - 1)
281 ? tiling->render_area.offset.y + tiling->render_area.extent.height
282 : tile->begin.y + tiling->tile0.extent.height;
283 }
284
285 void
286 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
287 struct tu_cs *cs,
288 enum vgt_event_type event)
289 {
290 bool need_seqno = false;
291 switch (event) {
292 case CACHE_FLUSH_TS:
293 case WT_DONE_TS:
294 case RB_DONE_TS:
295 case PC_CCU_FLUSH_DEPTH_TS:
296 case PC_CCU_FLUSH_COLOR_TS:
297 case PC_CCU_RESOLVE_TS:
298 need_seqno = true;
299 break;
300 default:
301 break;
302 }
303
304 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
305 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
306 if (need_seqno) {
307 tu_cs_emit_qw(cs, cmd->scratch_bo.iova);
308 tu_cs_emit(cs, 0);
309 }
310 }
311
312 static void
313 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
314 struct tu_cs *cs,
315 enum tu_cmd_flush_bits flushes)
316 {
317 /* Experiments show that invalidating CCU while it still has data in it
318 * doesn't work, so make sure to always flush before invalidating in case
319 * any data remains that hasn't yet been made available through a barrier.
320 * However it does seem to work for UCHE.
321 */
322 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
323 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
324 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
325 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
326 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
327 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
328 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
329 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
330 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
331 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
332 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
333 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
334 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
335 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
336 if (flushes & TU_CMD_FLAG_WFI)
337 tu_cs_emit_wfi(cs);
338 }
339
340 /* "Normal" cache flushes, that don't require any special handling */
341
342 static void
343 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
344 struct tu_cs *cs)
345 {
346 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
347 cmd_buffer->state.cache.flush_bits = 0;
348 }
349
350 /* Renderpass cache flushes */
351
352 void
353 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
354 struct tu_cs *cs)
355 {
356 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
357 cmd_buffer->state.renderpass_cache.flush_bits = 0;
358 }
359
360 /* Cache flushes for things that use the color/depth read/write path (i.e.
361 * blits and draws). This deals with changing CCU state as well as the usual
362 * cache flushing.
363 */
364
365 void
366 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
367 struct tu_cs *cs,
368 enum tu_cmd_ccu_state ccu_state)
369 {
370 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
371
372 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
373
374 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
375 * the CCU may also contain data that we haven't flushed out yet, so we
376 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
377 * emit a WFI as it isn't pipelined.
378 */
379 if (ccu_state != cmd_buffer->state.ccu_state) {
380 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
381 flushes |=
382 TU_CMD_FLAG_CCU_FLUSH_COLOR |
383 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
384 cmd_buffer->state.cache.pending_flush_bits &= ~(
385 TU_CMD_FLAG_CCU_FLUSH_COLOR |
386 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
387 }
388 flushes |=
389 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
390 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
391 TU_CMD_FLAG_WFI;
392 cmd_buffer->state.cache.pending_flush_bits &= ~(
393 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
394 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
395 }
396
397 tu6_emit_flushes(cmd_buffer, cs, flushes);
398 cmd_buffer->state.cache.flush_bits = 0;
399
400 if (ccu_state != cmd_buffer->state.ccu_state) {
401 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
402 tu_cs_emit_regs(cs,
403 A6XX_RB_CCU_CNTL(.offset =
404 ccu_state == TU_CMD_CCU_GMEM ?
405 phys_dev->ccu_offset_gmem :
406 phys_dev->ccu_offset_bypass,
407 .gmem = ccu_state == TU_CMD_CCU_GMEM));
408 cmd_buffer->state.ccu_state = ccu_state;
409 }
410 }
411
412 static void
413 tu6_emit_zs(struct tu_cmd_buffer *cmd,
414 const struct tu_subpass *subpass,
415 struct tu_cs *cs)
416 {
417 const struct tu_framebuffer *fb = cmd->state.framebuffer;
418
419 const uint32_t a = subpass->depth_stencil_attachment.attachment;
420 if (a == VK_ATTACHMENT_UNUSED) {
421 tu_cs_emit_regs(cs,
422 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
423 A6XX_RB_DEPTH_BUFFER_PITCH(0),
424 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
425 A6XX_RB_DEPTH_BUFFER_BASE(0),
426 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
427
428 tu_cs_emit_regs(cs,
429 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
430
431 tu_cs_emit_regs(cs,
432 A6XX_GRAS_LRZ_BUFFER_BASE(0),
433 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
434 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
435
436 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
437
438 return;
439 }
440
441 const struct tu_image_view *iview = fb->attachments[a].attachment;
442 const struct tu_render_pass_attachment *attachment =
443 &cmd->state.pass->attachments[a];
444 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
445
446 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
447 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
448 tu_cs_image_ref(cs, iview, 0);
449 tu_cs_emit(cs, attachment->gmem_offset);
450
451 tu_cs_emit_regs(cs,
452 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
453
454 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
455 tu_cs_image_flag_ref(cs, iview, 0);
456
457 tu_cs_emit_regs(cs,
458 A6XX_GRAS_LRZ_BUFFER_BASE(0),
459 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
460 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
461
462 if (attachment->format == VK_FORMAT_S8_UINT) {
463 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
464 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
465 tu_cs_image_ref(cs, iview, 0);
466 tu_cs_emit(cs, attachment->gmem_offset);
467 } else {
468 tu_cs_emit_regs(cs,
469 A6XX_RB_STENCIL_INFO(0));
470 }
471 }
472
473 static void
474 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
475 const struct tu_subpass *subpass,
476 struct tu_cs *cs)
477 {
478 const struct tu_framebuffer *fb = cmd->state.framebuffer;
479
480 for (uint32_t i = 0; i < subpass->color_count; ++i) {
481 uint32_t a = subpass->color_attachments[i].attachment;
482 if (a == VK_ATTACHMENT_UNUSED)
483 continue;
484
485 const struct tu_image_view *iview = fb->attachments[a].attachment;
486
487 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
488 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
489 tu_cs_image_ref(cs, iview, 0);
490 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
491
492 tu_cs_emit_regs(cs,
493 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
494
495 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
496 tu_cs_image_flag_ref(cs, iview, 0);
497 }
498
499 tu_cs_emit_regs(cs,
500 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
501 tu_cs_emit_regs(cs,
502 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
503
504 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
505 }
506
507 void
508 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
509 {
510 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
511 bool msaa_disable = samples == MSAA_ONE;
512
513 tu_cs_emit_regs(cs,
514 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
515 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
516 .msaa_disable = msaa_disable));
517
518 tu_cs_emit_regs(cs,
519 A6XX_GRAS_RAS_MSAA_CNTL(samples),
520 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
521 .msaa_disable = msaa_disable));
522
523 tu_cs_emit_regs(cs,
524 A6XX_RB_RAS_MSAA_CNTL(samples),
525 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
526 .msaa_disable = msaa_disable));
527
528 tu_cs_emit_regs(cs,
529 A6XX_RB_MSAA_CNTL(samples));
530 }
531
532 static void
533 tu6_emit_bin_size(struct tu_cs *cs,
534 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
535 {
536 tu_cs_emit_regs(cs,
537 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
538 .binh = bin_h,
539 .dword = flags));
540
541 tu_cs_emit_regs(cs,
542 A6XX_RB_BIN_CONTROL(.binw = bin_w,
543 .binh = bin_h,
544 .dword = flags));
545
546 /* no flag for RB_BIN_CONTROL2... */
547 tu_cs_emit_regs(cs,
548 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
549 .binh = bin_h));
550 }
551
552 static void
553 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
554 const struct tu_subpass *subpass,
555 struct tu_cs *cs,
556 bool binning)
557 {
558 const struct tu_framebuffer *fb = cmd->state.framebuffer;
559 uint32_t cntl = 0;
560 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
561 if (binning) {
562 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
563 } else {
564 uint32_t mrts_ubwc_enable = 0;
565 for (uint32_t i = 0; i < subpass->color_count; ++i) {
566 uint32_t a = subpass->color_attachments[i].attachment;
567 if (a == VK_ATTACHMENT_UNUSED)
568 continue;
569
570 const struct tu_image_view *iview = fb->attachments[a].attachment;
571 if (iview->ubwc_enabled)
572 mrts_ubwc_enable |= 1 << i;
573 }
574
575 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
576
577 const uint32_t a = subpass->depth_stencil_attachment.attachment;
578 if (a != VK_ATTACHMENT_UNUSED) {
579 const struct tu_image_view *iview = fb->attachments[a].attachment;
580 if (iview->ubwc_enabled)
581 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
582 }
583
584 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
585 * in order to set it correctly for the different subpasses. However,
586 * that means the packets we're emitting also happen during binning. So
587 * we need to guard the write on !BINNING at CP execution time.
588 */
589 tu_cs_reserve(cs, 3 + 4);
590 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
591 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
592 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
593 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
594 }
595
596 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
597 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
598 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
599 tu_cs_emit(cs, cntl);
600 }
601
602 static void
603 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
604 {
605 const VkRect2D *render_area = &cmd->state.tiling_config.render_area;
606 uint32_t x1 = render_area->offset.x;
607 uint32_t y1 = render_area->offset.y;
608 uint32_t x2 = x1 + render_area->extent.width - 1;
609 uint32_t y2 = y1 + render_area->extent.height - 1;
610
611 if (align) {
612 x1 = x1 & ~(GMEM_ALIGN_W - 1);
613 y1 = y1 & ~(GMEM_ALIGN_H - 1);
614 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
615 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
616 }
617
618 tu_cs_emit_regs(cs,
619 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
620 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
621 }
622
623 void
624 tu6_emit_window_scissor(struct tu_cs *cs,
625 uint32_t x1,
626 uint32_t y1,
627 uint32_t x2,
628 uint32_t y2)
629 {
630 tu_cs_emit_regs(cs,
631 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
632 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
633
634 tu_cs_emit_regs(cs,
635 A6XX_GRAS_RESOLVE_CNTL_1(.x = x1, .y = y1),
636 A6XX_GRAS_RESOLVE_CNTL_2(.x = x2, .y = y2));
637 }
638
639 void
640 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
641 {
642 tu_cs_emit_regs(cs,
643 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
644
645 tu_cs_emit_regs(cs,
646 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
647
648 tu_cs_emit_regs(cs,
649 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
650
651 tu_cs_emit_regs(cs,
652 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
653 }
654
655 static void
656 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
657 {
658 uint32_t enable_mask;
659 switch (id) {
660 case TU_DRAW_STATE_PROGRAM:
661 case TU_DRAW_STATE_VI:
662 case TU_DRAW_STATE_FS_CONST:
663 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
664 * when resources would actually be used in the binning shader.
665 * Presumably the overhead of prefetching the resources isn't
666 * worth it.
667 */
668 case TU_DRAW_STATE_DESC_SETS_LOAD:
669 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
670 CP_SET_DRAW_STATE__0_SYSMEM;
671 break;
672 case TU_DRAW_STATE_PROGRAM_BINNING:
673 case TU_DRAW_STATE_VI_BINNING:
674 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
675 break;
676 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
677 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
678 break;
679 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
680 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
681 break;
682 default:
683 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
684 CP_SET_DRAW_STATE__0_SYSMEM |
685 CP_SET_DRAW_STATE__0_BINNING;
686 break;
687 }
688
689 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
690 enable_mask |
691 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
692 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
693 tu_cs_emit_qw(cs, state.iova);
694 }
695
696 /* note: get rid of this eventually */
697 static void
698 tu_cs_emit_sds_ib(struct tu_cs *cs, uint32_t id, struct tu_cs_entry entry)
699 {
700 tu_cs_emit_draw_state(cs, id, (struct tu_draw_state) {
701 .iova = entry.size ? entry.bo->iova + entry.offset : 0,
702 .size = entry.size / 4,
703 });
704 }
705
706 static bool
707 use_hw_binning(struct tu_cmd_buffer *cmd)
708 {
709 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
710
711 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
712 * with non-hw binning GMEM rendering. this is required because some of the
713 * XFB commands need to only be executed once
714 */
715 if (cmd->state.xfb_used)
716 return true;
717
718 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
719 return false;
720
721 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
722 return true;
723
724 return (tiling->tile_count.width * tiling->tile_count.height) > 2;
725 }
726
727 static bool
728 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
729 {
730 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
731 return true;
732
733 /* can't fit attachments into gmem */
734 if (!cmd->state.pass->gmem_pixels)
735 return true;
736
737 if (cmd->state.framebuffer->layers > 1)
738 return true;
739
740 if (cmd->has_tess)
741 return true;
742
743 return cmd->state.tiling_config.force_sysmem;
744 }
745
746 static void
747 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
748 struct tu_cs *cs,
749 const struct tu_tile *tile)
750 {
751 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
752 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
753
754 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
755 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
756
757 const uint32_t x1 = tile->begin.x;
758 const uint32_t y1 = tile->begin.y;
759 const uint32_t x2 = tile->end.x - 1;
760 const uint32_t y2 = tile->end.y - 1;
761 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
762 tu6_emit_window_offset(cs, x1, y1);
763
764 tu_cs_emit_regs(cs,
765 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
766
767 if (use_hw_binning(cmd)) {
768 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
769
770 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
771 tu_cs_emit(cs, 0x0);
772
773 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5, 7);
774 tu_cs_emit(cs, cmd->state.tiling_config.pipe_sizes[tile->pipe] |
775 CP_SET_BIN_DATA5_0_VSC_N(tile->slot));
776 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + tile->pipe * cmd->vsc_draw_strm_pitch);
777 tu_cs_emit_qw(cs, cmd->vsc_draw_strm.iova + (tile->pipe * 4) + (32 * cmd->vsc_draw_strm_pitch));
778 tu_cs_emit_qw(cs, cmd->vsc_prim_strm.iova + (tile->pipe * cmd->vsc_prim_strm_pitch));
779
780 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
781 tu_cs_emit(cs, 0x0);
782
783 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
784 tu_cs_emit(cs, 0x0);
785 } else {
786 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
787 tu_cs_emit(cs, 0x1);
788
789 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
790 tu_cs_emit(cs, 0x0);
791 }
792 }
793
794 static void
795 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
796 struct tu_cs *cs,
797 uint32_t a,
798 uint32_t gmem_a)
799 {
800 const struct tu_framebuffer *fb = cmd->state.framebuffer;
801 struct tu_image_view *dst = fb->attachments[a].attachment;
802 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
803
804 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.tiling_config.render_area);
805 }
806
807 static void
808 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
809 struct tu_cs *cs,
810 const struct tu_subpass *subpass)
811 {
812 if (subpass->resolve_attachments) {
813 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
814 * Commands":
815 *
816 * End-of-subpass multisample resolves are treated as color
817 * attachment writes for the purposes of synchronization. That is,
818 * they are considered to execute in the
819 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
820 * their writes are synchronized with
821 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
822 * rendering within a subpass and any resolve operations at the end
823 * of the subpass occurs automatically, without need for explicit
824 * dependencies or pipeline barriers. However, if the resolve
825 * attachment is also used in a different subpass, an explicit
826 * dependency is needed.
827 *
828 * We use the CP_BLIT path for sysmem resolves, which is really a
829 * transfer command, so we have to manually flush similar to the gmem
830 * resolve case. However, a flush afterwards isn't needed because of the
831 * last sentence and the fact that we're in sysmem mode.
832 */
833 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
834 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
835
836 /* Wait for the flushes to land before using the 2D engine */
837 tu_cs_emit_wfi(cs);
838
839 for (unsigned i = 0; i < subpass->color_count; i++) {
840 uint32_t a = subpass->resolve_attachments[i].attachment;
841 if (a == VK_ATTACHMENT_UNUSED)
842 continue;
843
844 tu6_emit_sysmem_resolve(cmd, cs, a,
845 subpass->color_attachments[i].attachment);
846 }
847 }
848 }
849
850 static void
851 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
852 {
853 const struct tu_render_pass *pass = cmd->state.pass;
854 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
855
856 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
857 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
858 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
859 CP_SET_DRAW_STATE__0_GROUP_ID(0));
860 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
861 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
862
863 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
864 tu_cs_emit(cs, 0x0);
865
866 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
867 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
868
869 tu6_emit_blit_scissor(cmd, cs, true);
870
871 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
872 if (pass->attachments[a].gmem_offset >= 0)
873 tu_store_gmem_attachment(cmd, cs, a, a);
874 }
875
876 if (subpass->resolve_attachments) {
877 for (unsigned i = 0; i < subpass->color_count; i++) {
878 uint32_t a = subpass->resolve_attachments[i].attachment;
879 if (a != VK_ATTACHMENT_UNUSED)
880 tu_store_gmem_attachment(cmd, cs, a,
881 subpass->color_attachments[i].attachment);
882 }
883 }
884 }
885
886 static void
887 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
888 {
889 const struct tu_physical_device *phys_dev = cmd->device->physical_device;
890
891 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
892
893 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 0xfffff);
894
895 tu_cs_emit_regs(cs,
896 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
897 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
898 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
899 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
900 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
901 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
902 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
903 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
904 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
905 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
906
907 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
908 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
909 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
910 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
911 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
912 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
913 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BB11, 0);
914 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
915 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
916 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
917 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
918 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
919 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
920 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_GS_SIV_CNTL, 0x0000ffff);
921
922 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
923 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
924 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
925
926 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
927
928 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
929
930 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
931 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
932 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
933 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
934 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
935 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
936 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
937 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
938 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
939 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
940 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
941
942 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9101, 0xffff00);
943 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
944
945 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9236,
946 A6XX_VPC_UNKNOWN_9236_POINT_COORD_INVERT(0));
947 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
948
949 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_SO_OVERRIDE,
950 A6XX_VPC_SO_OVERRIDE_SO_DISABLE);
951
952 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
953 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
954 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9990, 0);
955
956 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
957 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
958
959 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
960
961 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
962
963 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
964 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_809B, 0);
965 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
966 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
967 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
968 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
969 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
970 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9981, 0x3);
971 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
972 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9108, 0x3);
973 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
974 tu_cs_emit_write_reg(cs, REG_A6XX_RB_Z_BOUNDS_MIN, 0);
975 tu_cs_emit_write_reg(cs, REG_A6XX_RB_Z_BOUNDS_MAX, 0);
976 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
977
978 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
979
980 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
981
982 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
983
984 /* we don't use this yet.. probably best to disable.. */
985 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
986 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
987 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
988 CP_SET_DRAW_STATE__0_GROUP_ID(0));
989 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
990 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
991
992 tu_cs_emit_regs(cs,
993 A6XX_SP_HS_CTRL_REG0(0));
994
995 tu_cs_emit_regs(cs,
996 A6XX_SP_GS_CTRL_REG0(0));
997
998 tu_cs_emit_regs(cs,
999 A6XX_GRAS_LRZ_CNTL(0));
1000
1001 tu_cs_emit_regs(cs,
1002 A6XX_RB_LRZ_CNTL(0));
1003
1004 tu_cs_emit_regs(cs,
1005 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1006 tu_cs_emit_regs(cs,
1007 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &cmd->device->border_color));
1008
1009 tu_cs_sanity_check(cs);
1010 }
1011
1012 static void
1013 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1014 {
1015 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1016
1017 tu_cs_emit_regs(cs,
1018 A6XX_VSC_BIN_SIZE(.width = tiling->tile0.extent.width,
1019 .height = tiling->tile0.extent.height),
1020 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = &cmd->vsc_draw_strm,
1021 .bo_offset = 32 * cmd->vsc_draw_strm_pitch));
1022
1023 tu_cs_emit_regs(cs,
1024 A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1025 .ny = tiling->tile_count.height));
1026
1027 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
1028 for (unsigned i = 0; i < 32; i++)
1029 tu_cs_emit(cs, tiling->pipe_config[i]);
1030
1031 tu_cs_emit_regs(cs,
1032 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = &cmd->vsc_prim_strm),
1033 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1034 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - 64));
1035
1036 tu_cs_emit_regs(cs,
1037 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = &cmd->vsc_draw_strm),
1038 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1039 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - 64));
1040 }
1041
1042 static void
1043 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1044 {
1045 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1046 const uint32_t used_pipe_count =
1047 tiling->pipe_count.width * tiling->pipe_count.height;
1048
1049 /* Clear vsc_scratch: */
1050 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
1051 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1052 tu_cs_emit(cs, 0x0);
1053
1054 /* Check for overflow, write vsc_scratch if detected: */
1055 for (int i = 0; i < used_pipe_count; i++) {
1056 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1057 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1058 CP_COND_WRITE5_0_WRITE_MEMORY);
1059 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1060 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1061 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - 64));
1062 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1063 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1064 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(1 + cmd->vsc_draw_strm_pitch));
1065
1066 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1067 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1068 CP_COND_WRITE5_0_WRITE_MEMORY);
1069 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1070 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1071 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - 64));
1072 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1073 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(vsc_scratch));
1074 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(3 + cmd->vsc_prim_strm_pitch));
1075 }
1076
1077 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1078 }
1079
1080 static void
1081 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1082 {
1083 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1084 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1085
1086 uint32_t x1 = tiling->tile0.offset.x;
1087 uint32_t y1 = tiling->tile0.offset.y;
1088 uint32_t x2 = tiling->render_area.offset.x + tiling->render_area.extent.width - 1;
1089 uint32_t y2 = tiling->render_area.offset.y + tiling->render_area.extent.height - 1;
1090
1091 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
1092
1093 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1094 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
1095
1096 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1097 tu_cs_emit(cs, 0x1);
1098
1099 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1100 tu_cs_emit(cs, 0x1);
1101
1102 tu_cs_emit_wfi(cs);
1103
1104 tu_cs_emit_regs(cs,
1105 A6XX_VFD_MODE_CNTL(.binning_pass = true));
1106
1107 update_vsc_pipe(cmd, cs);
1108
1109 tu_cs_emit_regs(cs,
1110 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1111
1112 tu_cs_emit_regs(cs,
1113 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1114
1115 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1116 tu_cs_emit(cs, UNK_2C);
1117
1118 tu_cs_emit_regs(cs,
1119 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1120
1121 tu_cs_emit_regs(cs,
1122 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1123
1124 /* emit IB to binning drawcmds: */
1125 tu_cs_emit_call(cs, &cmd->draw_cs);
1126
1127 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1128 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1129 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1130 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1131 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1132 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1133
1134 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1135 tu_cs_emit(cs, UNK_2D);
1136
1137 /* This flush is probably required because the VSC, which produces the
1138 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1139 * visibility stream (without caching) to do draw skipping. The
1140 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1141 * submitted are finished before reading the VSC regs (in
1142 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1143 * part of draws).
1144 */
1145 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1146
1147 tu_cs_emit_wfi(cs);
1148
1149 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1150
1151 emit_vsc_overflow_test(cmd, cs);
1152
1153 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1154 tu_cs_emit(cs, 0x0);
1155
1156 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1157 tu_cs_emit(cs, 0x0);
1158 }
1159
1160 static void
1161 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1162 const struct tu_subpass *subpass,
1163 struct tu_cs_entry *ib,
1164 bool gmem)
1165 {
1166 /* note: we can probably emit input attachments just once for the whole
1167 * renderpass, this would avoid emitting both sysmem/gmem versions
1168 *
1169 * emit two texture descriptors for each input, as a workaround for
1170 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1171 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1172 * in the pair
1173 * TODO: a smarter workaround
1174 */
1175
1176 if (!subpass->input_count)
1177 return;
1178
1179 struct tu_cs_memory texture;
1180 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1181 A6XX_TEX_CONST_DWORDS, &texture);
1182 assert(result == VK_SUCCESS);
1183
1184 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1185 uint32_t a = subpass->input_attachments[i / 2].attachment;
1186 if (a == VK_ATTACHMENT_UNUSED)
1187 continue;
1188
1189 struct tu_image_view *iview =
1190 cmd->state.framebuffer->attachments[a].attachment;
1191 const struct tu_render_pass_attachment *att =
1192 &cmd->state.pass->attachments[a];
1193 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1194
1195 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1196
1197 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1198 /* note this works because spec says fb and input attachments
1199 * must use identity swizzle
1200 */
1201 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1202 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1203 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1204 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1205 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1206 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1207 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1208 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1209 }
1210
1211 if (!gmem)
1212 continue;
1213
1214 /* patched for gmem */
1215 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1216 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1217 dst[2] =
1218 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1219 A6XX_TEX_CONST_2_PITCH(cmd->state.tiling_config.tile0.extent.width * att->cpp);
1220 dst[3] = 0;
1221 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1222 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1223 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1224 dst[i] = 0;
1225 }
1226
1227 struct tu_cs cs;
1228 tu_cs_begin_sub_stream(&cmd->sub_cs, 9, &cs);
1229
1230 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1231 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1232 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1233 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1234 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1235 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1236 tu_cs_emit_qw(&cs, texture.iova);
1237
1238 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1239 tu_cs_emit_qw(&cs, texture.iova);
1240
1241 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1242
1243 *ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1244 }
1245
1246 static void
1247 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1248 {
1249 struct tu_cs *cs = &cmd->draw_cs;
1250
1251 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_gmem_ib, true);
1252 tu_emit_input_attachments(cmd, subpass, &cmd->state.ia_sysmem_ib, false);
1253
1254 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1255 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM, cmd->state.ia_gmem_ib);
1256 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM, cmd->state.ia_sysmem_ib);
1257 }
1258
1259 static void
1260 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1261 const VkRenderPassBeginInfo *info)
1262 {
1263 struct tu_cs *cs = &cmd->draw_cs;
1264
1265 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1266
1267 tu6_emit_blit_scissor(cmd, cs, true);
1268
1269 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1270 tu_load_gmem_attachment(cmd, cs, i, false);
1271
1272 tu6_emit_blit_scissor(cmd, cs, false);
1273
1274 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1275 tu_clear_gmem_attachment(cmd, cs, i, info);
1276
1277 tu_cond_exec_end(cs);
1278
1279 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1280
1281 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1282 tu_clear_sysmem_attachment(cmd, cs, i, info);
1283
1284 tu_cond_exec_end(cs);
1285 }
1286
1287 static void
1288 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1289 const struct VkRect2D *renderArea)
1290 {
1291 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1292
1293 assert(fb->width > 0 && fb->height > 0);
1294 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1295 tu6_emit_window_offset(cs, 0, 0);
1296
1297 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1298
1299 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1300
1301 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1302 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1303
1304 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1305 tu_cs_emit(cs, 0x0);
1306
1307 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1308
1309 /* enable stream-out, with sysmem there is only one pass: */
1310 tu_cs_emit_regs(cs,
1311 A6XX_VPC_SO_OVERRIDE(.so_disable = false));
1312
1313 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1314 tu_cs_emit(cs, 0x1);
1315
1316 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1317 tu_cs_emit(cs, 0x0);
1318
1319 tu_cs_sanity_check(cs);
1320 }
1321
1322 static void
1323 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1324 {
1325 /* Do any resolves of the last subpass. These are handled in the
1326 * tile_store_ib in the gmem path.
1327 */
1328 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1329
1330 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1331
1332 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1333 tu_cs_emit(cs, 0x0);
1334
1335 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1336
1337 tu_cs_sanity_check(cs);
1338 }
1339
1340 static void
1341 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1342 {
1343 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1344
1345 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1346
1347 /* lrz clear? */
1348
1349 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1350 tu_cs_emit(cs, 0x0);
1351
1352 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1353
1354 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1355 if (use_hw_binning(cmd)) {
1356 /* enable stream-out during binning pass: */
1357 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1358
1359 tu6_emit_bin_size(cs,
1360 tiling->tile0.extent.width,
1361 tiling->tile0.extent.height,
1362 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1363
1364 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1365
1366 tu6_emit_binning_pass(cmd, cs);
1367
1368 /* and disable stream-out for draw pass: */
1369 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=true));
1370
1371 tu6_emit_bin_size(cs,
1372 tiling->tile0.extent.width,
1373 tiling->tile0.extent.height,
1374 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1375
1376 tu_cs_emit_regs(cs,
1377 A6XX_VFD_MODE_CNTL(0));
1378
1379 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1380
1381 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1382
1383 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1384 tu_cs_emit(cs, 0x1);
1385 } else {
1386 /* no binning pass, so enable stream-out for draw pass:: */
1387 tu_cs_emit_regs(cs, A6XX_VPC_SO_OVERRIDE(.so_disable=false));
1388
1389 tu6_emit_bin_size(cs,
1390 tiling->tile0.extent.width,
1391 tiling->tile0.extent.height,
1392 0x6000000);
1393 }
1394
1395 tu_cs_sanity_check(cs);
1396 }
1397
1398 static void
1399 tu6_render_tile(struct tu_cmd_buffer *cmd,
1400 struct tu_cs *cs,
1401 const struct tu_tile *tile)
1402 {
1403 tu6_emit_tile_select(cmd, cs, tile);
1404
1405 tu_cs_emit_call(cs, &cmd->draw_cs);
1406
1407 if (use_hw_binning(cmd)) {
1408 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1409 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1410 }
1411
1412 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1413
1414 tu_cs_sanity_check(cs);
1415 }
1416
1417 static void
1418 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1419 {
1420 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1421
1422 tu_cs_emit_regs(cs,
1423 A6XX_GRAS_LRZ_CNTL(0));
1424
1425 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1426
1427 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1428
1429 tu_cs_sanity_check(cs);
1430 }
1431
1432 static void
1433 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1434 {
1435 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1436
1437 if (use_hw_binning(cmd))
1438 cmd->use_vsc_data = true;
1439
1440 tu6_tile_render_begin(cmd, &cmd->cs);
1441
1442 for (uint32_t y = 0; y < tiling->tile_count.height; y++) {
1443 for (uint32_t x = 0; x < tiling->tile_count.width; x++) {
1444 struct tu_tile tile;
1445 tu_tiling_config_get_tile(tiling, cmd->device, x, y, &tile);
1446 tu6_render_tile(cmd, &cmd->cs, &tile);
1447 }
1448 }
1449
1450 tu6_tile_render_end(cmd, &cmd->cs);
1451 }
1452
1453 static void
1454 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1455 {
1456 const struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1457
1458 tu6_sysmem_render_begin(cmd, &cmd->cs, &tiling->render_area);
1459
1460 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1461
1462 tu6_sysmem_render_end(cmd, &cmd->cs);
1463 }
1464
1465 static void
1466 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1467 {
1468 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1469 struct tu_cs sub_cs;
1470
1471 VkResult result =
1472 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1473 if (result != VK_SUCCESS) {
1474 cmd->record_result = result;
1475 return;
1476 }
1477
1478 /* emit to tile-store sub_cs */
1479 tu6_emit_tile_store(cmd, &sub_cs);
1480
1481 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1482 }
1483
1484 static void
1485 tu_cmd_update_tiling_config(struct tu_cmd_buffer *cmd,
1486 const VkRect2D *render_area)
1487 {
1488 const struct tu_device *dev = cmd->device;
1489 struct tu_tiling_config *tiling = &cmd->state.tiling_config;
1490
1491 tiling->render_area = *render_area;
1492 tiling->force_sysmem = false;
1493
1494 tu_tiling_config_update_tile_layout(tiling, dev, cmd->state.pass);
1495 tu_tiling_config_update_pipe_layout(tiling, dev);
1496 tu_tiling_config_update_pipes(tiling, dev);
1497 }
1498
1499 static VkResult
1500 tu_create_cmd_buffer(struct tu_device *device,
1501 struct tu_cmd_pool *pool,
1502 VkCommandBufferLevel level,
1503 VkCommandBuffer *pCommandBuffer)
1504 {
1505 struct tu_cmd_buffer *cmd_buffer;
1506 cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
1507 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1508 if (cmd_buffer == NULL)
1509 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1510
1511 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1512 cmd_buffer->device = device;
1513 cmd_buffer->pool = pool;
1514 cmd_buffer->level = level;
1515
1516 if (pool) {
1517 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1518 cmd_buffer->queue_family_index = pool->queue_family_index;
1519
1520 } else {
1521 /* Init the pool_link so we can safely call list_del when we destroy
1522 * the command buffer
1523 */
1524 list_inithead(&cmd_buffer->pool_link);
1525 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1526 }
1527
1528 tu_bo_list_init(&cmd_buffer->bo_list);
1529 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1530 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1531 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1532 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1533
1534 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1535
1536 list_inithead(&cmd_buffer->upload.list);
1537
1538 VkResult result = tu_bo_init_new(device, &cmd_buffer->scratch_bo, 0x1000);
1539 if (result != VK_SUCCESS)
1540 goto fail_scratch_bo;
1541
1542 /* TODO: resize on overflow */
1543 cmd_buffer->vsc_draw_strm_pitch = device->vsc_draw_strm_pitch;
1544 cmd_buffer->vsc_prim_strm_pitch = device->vsc_prim_strm_pitch;
1545 cmd_buffer->vsc_draw_strm = device->vsc_draw_strm;
1546 cmd_buffer->vsc_prim_strm = device->vsc_prim_strm;
1547
1548 return VK_SUCCESS;
1549
1550 fail_scratch_bo:
1551 list_del(&cmd_buffer->pool_link);
1552 return result;
1553 }
1554
1555 static void
1556 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1557 {
1558 tu_bo_finish(cmd_buffer->device, &cmd_buffer->scratch_bo);
1559
1560 list_del(&cmd_buffer->pool_link);
1561
1562 tu_cs_finish(&cmd_buffer->cs);
1563 tu_cs_finish(&cmd_buffer->draw_cs);
1564 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1565 tu_cs_finish(&cmd_buffer->sub_cs);
1566
1567 tu_bo_list_destroy(&cmd_buffer->bo_list);
1568 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
1569 }
1570
1571 static VkResult
1572 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1573 {
1574 cmd_buffer->record_result = VK_SUCCESS;
1575
1576 tu_bo_list_reset(&cmd_buffer->bo_list);
1577 tu_cs_reset(&cmd_buffer->cs);
1578 tu_cs_reset(&cmd_buffer->draw_cs);
1579 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1580 tu_cs_reset(&cmd_buffer->sub_cs);
1581
1582 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1583 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1584
1585 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1586
1587 return cmd_buffer->record_result;
1588 }
1589
1590 VkResult
1591 tu_AllocateCommandBuffers(VkDevice _device,
1592 const VkCommandBufferAllocateInfo *pAllocateInfo,
1593 VkCommandBuffer *pCommandBuffers)
1594 {
1595 TU_FROM_HANDLE(tu_device, device, _device);
1596 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1597
1598 VkResult result = VK_SUCCESS;
1599 uint32_t i;
1600
1601 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1602
1603 if (!list_is_empty(&pool->free_cmd_buffers)) {
1604 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1605 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1606
1607 list_del(&cmd_buffer->pool_link);
1608 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1609
1610 result = tu_reset_cmd_buffer(cmd_buffer);
1611 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1612 cmd_buffer->level = pAllocateInfo->level;
1613
1614 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1615 } else {
1616 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1617 &pCommandBuffers[i]);
1618 }
1619 if (result != VK_SUCCESS)
1620 break;
1621 }
1622
1623 if (result != VK_SUCCESS) {
1624 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1625 pCommandBuffers);
1626
1627 /* From the Vulkan 1.0.66 spec:
1628 *
1629 * "vkAllocateCommandBuffers can be used to create multiple
1630 * command buffers. If the creation of any of those command
1631 * buffers fails, the implementation must destroy all
1632 * successfully created command buffer objects from this
1633 * command, set all entries of the pCommandBuffers array to
1634 * NULL and return the error."
1635 */
1636 memset(pCommandBuffers, 0,
1637 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1638 }
1639
1640 return result;
1641 }
1642
1643 void
1644 tu_FreeCommandBuffers(VkDevice device,
1645 VkCommandPool commandPool,
1646 uint32_t commandBufferCount,
1647 const VkCommandBuffer *pCommandBuffers)
1648 {
1649 for (uint32_t i = 0; i < commandBufferCount; i++) {
1650 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1651
1652 if (cmd_buffer) {
1653 if (cmd_buffer->pool) {
1654 list_del(&cmd_buffer->pool_link);
1655 list_addtail(&cmd_buffer->pool_link,
1656 &cmd_buffer->pool->free_cmd_buffers);
1657 } else
1658 tu_cmd_buffer_destroy(cmd_buffer);
1659 }
1660 }
1661 }
1662
1663 VkResult
1664 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1665 VkCommandBufferResetFlags flags)
1666 {
1667 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1668 return tu_reset_cmd_buffer(cmd_buffer);
1669 }
1670
1671 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1672 * invalidations.
1673 */
1674 static void
1675 tu_cache_init(struct tu_cache_state *cache)
1676 {
1677 cache->flush_bits = 0;
1678 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1679 }
1680
1681 VkResult
1682 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1683 const VkCommandBufferBeginInfo *pBeginInfo)
1684 {
1685 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1686 VkResult result = VK_SUCCESS;
1687
1688 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1689 /* If the command buffer has already been resetted with
1690 * vkResetCommandBuffer, no need to do it again.
1691 */
1692 result = tu_reset_cmd_buffer(cmd_buffer);
1693 if (result != VK_SUCCESS)
1694 return result;
1695 }
1696
1697 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1698 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1699
1700 tu_cache_init(&cmd_buffer->state.cache);
1701 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1702 cmd_buffer->usage_flags = pBeginInfo->flags;
1703
1704 tu_cs_begin(&cmd_buffer->cs);
1705 tu_cs_begin(&cmd_buffer->draw_cs);
1706 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1707
1708 /* setup initial configuration into command buffer */
1709 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1710 switch (cmd_buffer->queue_family_index) {
1711 case TU_QUEUE_GENERAL:
1712 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1713 break;
1714 default:
1715 break;
1716 }
1717 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1718 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1719 assert(pBeginInfo->pInheritanceInfo);
1720 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1721 cmd_buffer->state.subpass =
1722 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1723 } else {
1724 /* When executing in the middle of another command buffer, the CCU
1725 * state is unknown.
1726 */
1727 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1728 }
1729 }
1730
1731 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1732
1733 return VK_SUCCESS;
1734 }
1735
1736 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1737 * rendering can skip over unused state), so we need to collect all the
1738 * bindings together into a single state emit at draw time.
1739 */
1740 void
1741 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1742 uint32_t firstBinding,
1743 uint32_t bindingCount,
1744 const VkBuffer *pBuffers,
1745 const VkDeviceSize *pOffsets)
1746 {
1747 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1748
1749 assert(firstBinding + bindingCount <= MAX_VBS);
1750
1751 for (uint32_t i = 0; i < bindingCount; i++) {
1752 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1753
1754 cmd->state.vb.buffers[firstBinding + i] = buf;
1755 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1756
1757 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1758 }
1759
1760 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1761 }
1762
1763 void
1764 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1765 VkBuffer buffer,
1766 VkDeviceSize offset,
1767 VkIndexType indexType)
1768 {
1769 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1770 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1771
1772
1773
1774 uint32_t index_size, index_shift, restart_index;
1775
1776 switch (indexType) {
1777 case VK_INDEX_TYPE_UINT16:
1778 index_size = INDEX4_SIZE_16_BIT;
1779 index_shift = 1;
1780 restart_index = 0xffff;
1781 break;
1782 case VK_INDEX_TYPE_UINT32:
1783 index_size = INDEX4_SIZE_32_BIT;
1784 index_shift = 2;
1785 restart_index = 0xffffffff;
1786 break;
1787 case VK_INDEX_TYPE_UINT8_EXT:
1788 index_size = INDEX4_SIZE_8_BIT;
1789 index_shift = 0;
1790 restart_index = 0xff;
1791 break;
1792 default:
1793 unreachable("invalid VkIndexType");
1794 }
1795
1796 /* initialize/update the restart index */
1797 if (cmd->state.index_size != index_size)
1798 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1799
1800 assert(buf->size >= offset);
1801
1802 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1803 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1804 cmd->state.index_size = index_size;
1805 cmd->state.index_shift = index_shift;
1806
1807 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1808 }
1809
1810 void
1811 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1812 VkPipelineBindPoint pipelineBindPoint,
1813 VkPipelineLayout _layout,
1814 uint32_t firstSet,
1815 uint32_t descriptorSetCount,
1816 const VkDescriptorSet *pDescriptorSets,
1817 uint32_t dynamicOffsetCount,
1818 const uint32_t *pDynamicOffsets)
1819 {
1820 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1821 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1822 unsigned dyn_idx = 0;
1823
1824 struct tu_descriptor_state *descriptors_state =
1825 tu_get_descriptors_state(cmd, pipelineBindPoint);
1826
1827 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1828 unsigned idx = i + firstSet;
1829 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1830
1831 descriptors_state->sets[idx] = set;
1832
1833 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1834 /* update the contents of the dynamic descriptor set */
1835 unsigned src_idx = j;
1836 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1837 assert(dyn_idx < dynamicOffsetCount);
1838
1839 uint32_t *dst =
1840 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1841 uint32_t *src =
1842 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1843 uint32_t offset = pDynamicOffsets[dyn_idx];
1844
1845 /* Patch the storage/uniform descriptors right away. */
1846 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1847 /* Note: we can assume here that the addition won't roll over and
1848 * change the SIZE field.
1849 */
1850 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1851 va += offset;
1852 dst[0] = va;
1853 dst[1] = va >> 32;
1854 } else {
1855 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1856 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1857 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1858 va += offset;
1859 dst[4] = va;
1860 dst[5] = va >> 32;
1861 }
1862 }
1863
1864 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1865 if (set->buffers[j]) {
1866 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1867 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1868 }
1869 }
1870
1871 if (set->size > 0) {
1872 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1873 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1874 }
1875 }
1876 assert(dyn_idx == dynamicOffsetCount);
1877
1878 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_update_value;
1879 uint64_t addr[MAX_SETS + 1] = {};
1880 struct tu_cs cs;
1881
1882 for (uint32_t i = 0; i < MAX_SETS; i++) {
1883 struct tu_descriptor_set *set = descriptors_state->sets[i];
1884 if (set)
1885 addr[i] = set->va | 3;
1886 }
1887
1888 if (layout->dynamic_offset_count) {
1889 /* allocate and fill out dynamic descriptor set */
1890 struct tu_cs_memory dynamic_desc_set;
1891 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1892 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1893 assert(result == VK_SUCCESS);
1894
1895 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1896 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1897 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1898 }
1899
1900 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1901 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1902 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1903 hlsq_update_value = 0x7c000;
1904
1905 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS | TU_CMD_DIRTY_SHADER_CONSTS;
1906 } else {
1907 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1908
1909 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1910 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1911 hlsq_update_value = 0x3e00;
1912
1913 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS;
1914 }
1915
1916 tu_cs_begin_sub_stream(&cmd->sub_cs, 24, &cs);
1917
1918 tu_cs_emit_pkt4(&cs, sp_bindless_base_reg, 10);
1919 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1920 tu_cs_emit_pkt4(&cs, hlsq_bindless_base_reg, 10);
1921 tu_cs_emit_array(&cs, (const uint32_t*) addr, 10);
1922 tu_cs_emit_regs(&cs, A6XX_HLSQ_UPDATE_CNTL(.dword = hlsq_update_value));
1923
1924 struct tu_cs_entry ib = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
1925 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1926 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1927 tu_cs_emit_sds_ib(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, ib);
1928 cmd->state.desc_sets_ib = ib;
1929 } else {
1930 /* note: for compute we could emit directly, instead of a CP_INDIRECT
1931 * however, the blob uses draw states for compute
1932 */
1933 tu_cs_emit_ib(&cmd->cs, &ib);
1934 }
1935 }
1936
1937 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1938 uint32_t firstBinding,
1939 uint32_t bindingCount,
1940 const VkBuffer *pBuffers,
1941 const VkDeviceSize *pOffsets,
1942 const VkDeviceSize *pSizes)
1943 {
1944 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1945 struct tu_cs *cs = &cmd->draw_cs;
1946
1947 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1948 * presumably there isn't any benefit using a draw state when the
1949 * condition is (SYSMEM | BINNING)
1950 */
1951 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1952 CP_COND_REG_EXEC_0_SYSMEM |
1953 CP_COND_REG_EXEC_0_BINNING);
1954
1955 for (uint32_t i = 0; i < bindingCount; i++) {
1956 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1957 uint64_t iova = buf->bo->iova + pOffsets[i];
1958 uint32_t size = buf->bo->size - pOffsets[i];
1959 uint32_t idx = i + firstBinding;
1960
1961 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1962 size = pSizes[i];
1963
1964 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1965 uint32_t offset = iova & 0x1f;
1966 iova &= ~(uint64_t) 0x1f;
1967
1968 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1969 tu_cs_emit_qw(cs, iova);
1970 tu_cs_emit(cs, size + offset);
1971
1972 cmd->state.streamout_offset[idx] = offset;
1973
1974 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1975 }
1976
1977 tu_cond_exec_end(cs);
1978 }
1979
1980 void
1981 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1982 uint32_t firstCounterBuffer,
1983 uint32_t counterBufferCount,
1984 const VkBuffer *pCounterBuffers,
1985 const VkDeviceSize *pCounterBufferOffsets)
1986 {
1987 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1988 struct tu_cs *cs = &cmd->draw_cs;
1989
1990 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1991 CP_COND_REG_EXEC_0_SYSMEM |
1992 CP_COND_REG_EXEC_0_BINNING);
1993
1994 /* TODO: only update offset for active buffers */
1995 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1996 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1997
1998 for (uint32_t i = 0; i < counterBufferCount; i++) {
1999 uint32_t idx = firstCounterBuffer + i;
2000 uint32_t offset = cmd->state.streamout_offset[idx];
2001
2002 if (!pCounterBuffers[i])
2003 continue;
2004
2005 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2006
2007 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
2008
2009 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2010 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2011 CP_MEM_TO_REG_0_UNK31 |
2012 CP_MEM_TO_REG_0_CNT(1));
2013 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
2014
2015 if (offset) {
2016 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2017 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
2018 CP_REG_RMW_0_SRC1_ADD);
2019 tu_cs_emit_qw(cs, 0xffffffff);
2020 tu_cs_emit_qw(cs, offset);
2021 }
2022 }
2023
2024 tu_cond_exec_end(cs);
2025 }
2026
2027 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
2028 uint32_t firstCounterBuffer,
2029 uint32_t counterBufferCount,
2030 const VkBuffer *pCounterBuffers,
2031 const VkDeviceSize *pCounterBufferOffsets)
2032 {
2033 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2034 struct tu_cs *cs = &cmd->draw_cs;
2035
2036 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
2037 CP_COND_REG_EXEC_0_SYSMEM |
2038 CP_COND_REG_EXEC_0_BINNING);
2039
2040 /* TODO: only flush buffers that need to be flushed */
2041 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2042 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
2043 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
2044 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(flush_base[i]));
2045 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
2046 }
2047
2048 for (uint32_t i = 0; i < counterBufferCount; i++) {
2049 uint32_t idx = firstCounterBuffer + i;
2050 uint32_t offset = cmd->state.streamout_offset[idx];
2051
2052 if (!pCounterBuffers[i])
2053 continue;
2054
2055 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
2056
2057 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
2058
2059 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
2060 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
2061 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2062 CP_MEM_TO_REG_0_SHIFT_BY_2 |
2063 0x40000 | /* ??? */
2064 CP_MEM_TO_REG_0_UNK31 |
2065 CP_MEM_TO_REG_0_CNT(1));
2066 tu_cs_emit_qw(cs, cmd->scratch_bo.iova + ctrl_offset(flush_base[idx]));
2067
2068 if (offset) {
2069 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
2070 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2071 CP_REG_RMW_0_SRC1_ADD);
2072 tu_cs_emit_qw(cs, 0xffffffff);
2073 tu_cs_emit_qw(cs, -offset);
2074 }
2075
2076 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
2077 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
2078 CP_REG_TO_MEM_0_CNT(1));
2079 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
2080 }
2081
2082 tu_cond_exec_end(cs);
2083
2084 cmd->state.xfb_used = true;
2085 }
2086
2087 void
2088 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
2089 VkPipelineLayout layout,
2090 VkShaderStageFlags stageFlags,
2091 uint32_t offset,
2092 uint32_t size,
2093 const void *pValues)
2094 {
2095 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2096 memcpy((void*) cmd->push_constants + offset, pValues, size);
2097 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2098 }
2099
2100 /* Flush everything which has been made available but we haven't actually
2101 * flushed yet.
2102 */
2103 static void
2104 tu_flush_all_pending(struct tu_cache_state *cache)
2105 {
2106 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2107 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
2108 }
2109
2110 VkResult
2111 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
2112 {
2113 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
2114
2115 /* We currently flush CCU at the end of the command buffer, like
2116 * what the blob does. There's implicit synchronization around every
2117 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
2118 * know yet if this command buffer will be the last in the submit so we
2119 * have to defensively flush everything else.
2120 *
2121 * TODO: We could definitely do better than this, since these flushes
2122 * aren't required by Vulkan, but we'd need kernel support to do that.
2123 * Ideally, we'd like the kernel to flush everything afterwards, so that we
2124 * wouldn't have to do any flushes here, and when submitting multiple
2125 * command buffers there wouldn't be any unnecessary flushes in between.
2126 */
2127 if (cmd_buffer->state.pass) {
2128 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
2129 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
2130 } else {
2131 tu_flush_all_pending(&cmd_buffer->state.cache);
2132 cmd_buffer->state.cache.flush_bits |=
2133 TU_CMD_FLAG_CCU_FLUSH_COLOR |
2134 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
2135 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
2136 }
2137
2138 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->scratch_bo,
2139 MSM_SUBMIT_BO_WRITE);
2140
2141 if (cmd_buffer->use_vsc_data) {
2142 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_draw_strm,
2143 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2144 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->vsc_prim_strm,
2145 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2146 }
2147
2148 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->border_color,
2149 MSM_SUBMIT_BO_READ);
2150
2151 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
2152 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
2153 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2154 }
2155
2156 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
2157 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
2158 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2159 }
2160
2161 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
2162 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
2163 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2164 }
2165
2166 tu_cs_end(&cmd_buffer->cs);
2167 tu_cs_end(&cmd_buffer->draw_cs);
2168 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2169
2170 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2171
2172 return cmd_buffer->record_result;
2173 }
2174
2175 static struct tu_cs
2176 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2177 {
2178 struct tu_cs_memory memory;
2179 struct tu_cs cs;
2180
2181 /* TODO: share this logic with tu_pipeline_static_state */
2182 tu_cs_alloc(&cmd->sub_cs, size, 1, &memory);
2183 tu_cs_init_external(&cs, memory.map, memory.map + size);
2184 tu_cs_begin(&cs);
2185 tu_cs_reserve_space(&cs, size);
2186
2187 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2188 cmd->state.dynamic_state[id].iova = memory.iova;
2189 cmd->state.dynamic_state[id].size = size;
2190
2191 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2192 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2193
2194 return cs;
2195 }
2196
2197 void
2198 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2199 VkPipelineBindPoint pipelineBindPoint,
2200 VkPipeline _pipeline)
2201 {
2202 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2203 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2204
2205 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2206 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2207 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2208 }
2209
2210 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2211 cmd->state.compute_pipeline = pipeline;
2212 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_PIPELINE;
2213 return;
2214 }
2215
2216 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2217
2218 cmd->state.pipeline = pipeline;
2219 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2220
2221 struct tu_cs *cs = &cmd->draw_cs;
2222 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2223 uint32_t i;
2224
2225 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2226 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
2227 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
2228 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
2229 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
2230 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
2231 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
2232 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
2233
2234 for_each_bit(i, mask)
2235 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2236
2237 /* If the new pipeline requires more VBs than we had previously set up, we
2238 * need to re-emit them in SDS. If it requires the same set or fewer, we
2239 * can just re-use the old SDS.
2240 */
2241 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2242 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2243
2244 /* If the pipeline needs a dynamic descriptor, re-emit descriptor sets */
2245 if (pipeline->layout->dynamic_offset_count)
2246 cmd->state.dirty |= TU_CMD_DIRTY_DESCRIPTOR_SETS;
2247
2248 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2249 * so the dynamic state ib must be updated when pipeline changes
2250 */
2251 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2252 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2253
2254 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2255 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2256
2257 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2258 }
2259 }
2260
2261 void
2262 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2263 uint32_t firstViewport,
2264 uint32_t viewportCount,
2265 const VkViewport *pViewports)
2266 {
2267 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2268 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2269
2270 assert(firstViewport == 0 && viewportCount == 1);
2271
2272 tu6_emit_viewport(&cs, pViewports);
2273 }
2274
2275 void
2276 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2277 uint32_t firstScissor,
2278 uint32_t scissorCount,
2279 const VkRect2D *pScissors)
2280 {
2281 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2282 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2283
2284 assert(firstScissor == 0 && scissorCount == 1);
2285
2286 tu6_emit_scissor(&cs, pScissors);
2287 }
2288
2289 void
2290 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2291 {
2292 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2293 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2294
2295 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2296 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2297
2298 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2299 }
2300
2301 void
2302 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2303 float depthBiasConstantFactor,
2304 float depthBiasClamp,
2305 float depthBiasSlopeFactor)
2306 {
2307 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2308 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2309
2310 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2311 }
2312
2313 void
2314 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2315 const float blendConstants[4])
2316 {
2317 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2318 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2319
2320 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2321 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2322 }
2323
2324 void
2325 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2326 float minDepthBounds,
2327 float maxDepthBounds)
2328 {
2329 }
2330
2331 static void
2332 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2333 {
2334 if (face & VK_STENCIL_FACE_FRONT_BIT)
2335 *value |= A6XX_RB_STENCILMASK_MASK(mask);
2336 if (face & VK_STENCIL_FACE_BACK_BIT)
2337 *value |= A6XX_RB_STENCILMASK_BFMASK(mask);
2338 }
2339
2340 void
2341 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2342 VkStencilFaceFlags faceMask,
2343 uint32_t compareMask)
2344 {
2345 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2346 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2347
2348 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2349
2350 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2351 }
2352
2353 void
2354 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2355 VkStencilFaceFlags faceMask,
2356 uint32_t writeMask)
2357 {
2358 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2359 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2360
2361 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2362
2363 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2364 }
2365
2366 void
2367 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2368 VkStencilFaceFlags faceMask,
2369 uint32_t reference)
2370 {
2371 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2372 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2373
2374 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2375
2376 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2377 }
2378
2379 void
2380 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2381 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2382 {
2383 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2384 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2385
2386 assert(pSampleLocationsInfo);
2387
2388 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2389 }
2390
2391 static void
2392 tu_flush_for_access(struct tu_cache_state *cache,
2393 enum tu_cmd_access_mask src_mask,
2394 enum tu_cmd_access_mask dst_mask)
2395 {
2396 enum tu_cmd_flush_bits flush_bits = 0;
2397
2398 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2399 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2400 }
2401
2402 #define SRC_FLUSH(domain, flush, invalidate) \
2403 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2404 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2405 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2406 }
2407
2408 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2409 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2410 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2411
2412 #undef SRC_FLUSH
2413
2414 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2415 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2416 flush_bits |= TU_CMD_FLAG_##flush; \
2417 cache->pending_flush_bits |= \
2418 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2419 }
2420
2421 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2422 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2423
2424 #undef SRC_INCOHERENT_FLUSH
2425
2426 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
2427 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2428 }
2429
2430 #define DST_FLUSH(domain, flush, invalidate) \
2431 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2432 TU_ACCESS_##domain##_WRITE)) { \
2433 flush_bits |= cache->pending_flush_bits & \
2434 (TU_CMD_FLAG_##invalidate | \
2435 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2436 }
2437
2438 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2439 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2440 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2441
2442 #undef DST_FLUSH
2443
2444 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2445 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2446 TU_ACCESS_##domain##_WRITE)) { \
2447 flush_bits |= TU_CMD_FLAG_##invalidate | \
2448 (cache->pending_flush_bits & \
2449 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2450 }
2451
2452 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2453 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2454
2455 #undef DST_INCOHERENT_FLUSH
2456
2457 if (dst_mask & TU_ACCESS_WFI_READ) {
2458 flush_bits |= TU_CMD_FLAG_WFI;
2459 }
2460
2461 cache->flush_bits |= flush_bits;
2462 cache->pending_flush_bits &= ~flush_bits;
2463 }
2464
2465 static enum tu_cmd_access_mask
2466 vk2tu_access(VkAccessFlags flags, bool gmem)
2467 {
2468 enum tu_cmd_access_mask mask = 0;
2469
2470 /* If the GPU writes a buffer that is then read by an indirect draw
2471 * command, we theoretically need a WFI + WAIT_FOR_ME combination to
2472 * wait for the writes to complete. The WAIT_FOR_ME is performed as part
2473 * of the draw by the firmware, so we just need to execute a WFI.
2474 */
2475 if (flags &
2476 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2477 VK_ACCESS_MEMORY_READ_BIT)) {
2478 mask |= TU_ACCESS_WFI_READ;
2479 }
2480
2481 if (flags &
2482 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2483 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
2484 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2485 VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
2486 VK_ACCESS_MEMORY_READ_BIT)) {
2487 mask |= TU_ACCESS_SYSMEM_READ;
2488 }
2489
2490 if (flags &
2491 (VK_ACCESS_HOST_WRITE_BIT |
2492 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
2493 VK_ACCESS_MEMORY_WRITE_BIT)) {
2494 mask |= TU_ACCESS_SYSMEM_WRITE;
2495 }
2496
2497 if (flags &
2498 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2499 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2500 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2501 /* TODO: Is there a no-cache bit for textures so that we can ignore
2502 * these?
2503 */
2504 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2505 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2506 VK_ACCESS_MEMORY_READ_BIT)) {
2507 mask |= TU_ACCESS_UCHE_READ;
2508 }
2509
2510 if (flags &
2511 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2512 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2513 VK_ACCESS_MEMORY_WRITE_BIT)) {
2514 mask |= TU_ACCESS_UCHE_WRITE;
2515 }
2516
2517 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2518 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2519 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2520 * can ignore CCU and pretend that color attachments and transfers use
2521 * sysmem directly.
2522 */
2523
2524 if (flags &
2525 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2526 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2527 VK_ACCESS_MEMORY_READ_BIT)) {
2528 if (gmem)
2529 mask |= TU_ACCESS_SYSMEM_READ;
2530 else
2531 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2532 }
2533
2534 if (flags &
2535 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2536 VK_ACCESS_MEMORY_READ_BIT)) {
2537 if (gmem)
2538 mask |= TU_ACCESS_SYSMEM_READ;
2539 else
2540 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2541 }
2542
2543 if (flags &
2544 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2545 VK_ACCESS_MEMORY_WRITE_BIT)) {
2546 if (gmem) {
2547 mask |= TU_ACCESS_SYSMEM_WRITE;
2548 } else {
2549 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2550 }
2551 }
2552
2553 if (flags &
2554 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2555 VK_ACCESS_MEMORY_WRITE_BIT)) {
2556 if (gmem) {
2557 mask |= TU_ACCESS_SYSMEM_WRITE;
2558 } else {
2559 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2560 }
2561 }
2562
2563 /* When the dst access is a transfer read/write, it seems we sometimes need
2564 * to insert a WFI after any flushes, to guarantee that the flushes finish
2565 * before the 2D engine starts. However the opposite (i.e. a WFI after
2566 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2567 * the blob doesn't emit such a WFI.
2568 */
2569
2570 if (flags &
2571 (VK_ACCESS_TRANSFER_WRITE_BIT |
2572 VK_ACCESS_MEMORY_WRITE_BIT)) {
2573 if (gmem) {
2574 mask |= TU_ACCESS_SYSMEM_WRITE;
2575 } else {
2576 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2577 }
2578 mask |= TU_ACCESS_WFI_READ;
2579 }
2580
2581 if (flags &
2582 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2583 VK_ACCESS_MEMORY_READ_BIT)) {
2584 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2585 }
2586
2587 return mask;
2588 }
2589
2590
2591 void
2592 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2593 uint32_t commandBufferCount,
2594 const VkCommandBuffer *pCmdBuffers)
2595 {
2596 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2597 VkResult result;
2598
2599 assert(commandBufferCount > 0);
2600
2601 /* Emit any pending flushes. */
2602 if (cmd->state.pass) {
2603 tu_flush_all_pending(&cmd->state.renderpass_cache);
2604 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2605 } else {
2606 tu_flush_all_pending(&cmd->state.cache);
2607 tu_emit_cache_flush(cmd, &cmd->cs);
2608 }
2609
2610 for (uint32_t i = 0; i < commandBufferCount; i++) {
2611 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2612
2613 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2614 if (result != VK_SUCCESS) {
2615 cmd->record_result = result;
2616 break;
2617 }
2618
2619 if (secondary->usage_flags &
2620 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2621 assert(tu_cs_is_empty(&secondary->cs));
2622
2623 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2624 if (result != VK_SUCCESS) {
2625 cmd->record_result = result;
2626 break;
2627 }
2628
2629 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2630 &secondary->draw_epilogue_cs);
2631 if (result != VK_SUCCESS) {
2632 cmd->record_result = result;
2633 break;
2634 }
2635
2636 if (secondary->has_tess)
2637 cmd->has_tess = true;
2638 } else {
2639 assert(tu_cs_is_empty(&secondary->draw_cs));
2640 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2641
2642 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2643 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2644 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2645 }
2646
2647 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2648 }
2649
2650 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2651 }
2652 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2653
2654 /* After executing secondary command buffers, there may have been arbitrary
2655 * flushes executed, so when we encounter a pipeline barrier with a
2656 * srcMask, we have to assume that we need to invalidate. Therefore we need
2657 * to re-initialize the cache with all pending invalidate bits set.
2658 */
2659 if (cmd->state.pass) {
2660 tu_cache_init(&cmd->state.renderpass_cache);
2661 } else {
2662 tu_cache_init(&cmd->state.cache);
2663 }
2664 }
2665
2666 VkResult
2667 tu_CreateCommandPool(VkDevice _device,
2668 const VkCommandPoolCreateInfo *pCreateInfo,
2669 const VkAllocationCallbacks *pAllocator,
2670 VkCommandPool *pCmdPool)
2671 {
2672 TU_FROM_HANDLE(tu_device, device, _device);
2673 struct tu_cmd_pool *pool;
2674
2675 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
2676 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2677 if (pool == NULL)
2678 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2679
2680 if (pAllocator)
2681 pool->alloc = *pAllocator;
2682 else
2683 pool->alloc = device->alloc;
2684
2685 list_inithead(&pool->cmd_buffers);
2686 list_inithead(&pool->free_cmd_buffers);
2687
2688 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2689
2690 *pCmdPool = tu_cmd_pool_to_handle(pool);
2691
2692 return VK_SUCCESS;
2693 }
2694
2695 void
2696 tu_DestroyCommandPool(VkDevice _device,
2697 VkCommandPool commandPool,
2698 const VkAllocationCallbacks *pAllocator)
2699 {
2700 TU_FROM_HANDLE(tu_device, device, _device);
2701 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2702
2703 if (!pool)
2704 return;
2705
2706 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2707 &pool->cmd_buffers, pool_link)
2708 {
2709 tu_cmd_buffer_destroy(cmd_buffer);
2710 }
2711
2712 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2713 &pool->free_cmd_buffers, pool_link)
2714 {
2715 tu_cmd_buffer_destroy(cmd_buffer);
2716 }
2717
2718 vk_free2(&device->alloc, pAllocator, pool);
2719 }
2720
2721 VkResult
2722 tu_ResetCommandPool(VkDevice device,
2723 VkCommandPool commandPool,
2724 VkCommandPoolResetFlags flags)
2725 {
2726 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2727 VkResult result;
2728
2729 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2730 pool_link)
2731 {
2732 result = tu_reset_cmd_buffer(cmd_buffer);
2733 if (result != VK_SUCCESS)
2734 return result;
2735 }
2736
2737 return VK_SUCCESS;
2738 }
2739
2740 void
2741 tu_TrimCommandPool(VkDevice device,
2742 VkCommandPool commandPool,
2743 VkCommandPoolTrimFlags flags)
2744 {
2745 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2746
2747 if (!pool)
2748 return;
2749
2750 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2751 &pool->free_cmd_buffers, pool_link)
2752 {
2753 tu_cmd_buffer_destroy(cmd_buffer);
2754 }
2755 }
2756
2757 static void
2758 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2759 const struct tu_subpass_barrier *barrier,
2760 bool external)
2761 {
2762 /* Note: we don't know until the end of the subpass whether we'll use
2763 * sysmem, so assume sysmem here to be safe.
2764 */
2765 struct tu_cache_state *cache =
2766 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2767 enum tu_cmd_access_mask src_flags =
2768 vk2tu_access(barrier->src_access_mask, false);
2769 enum tu_cmd_access_mask dst_flags =
2770 vk2tu_access(barrier->dst_access_mask, false);
2771
2772 if (barrier->incoherent_ccu_color)
2773 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2774 if (barrier->incoherent_ccu_depth)
2775 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2776
2777 tu_flush_for_access(cache, src_flags, dst_flags);
2778 }
2779
2780 void
2781 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2782 const VkRenderPassBeginInfo *pRenderPassBegin,
2783 VkSubpassContents contents)
2784 {
2785 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2786 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2787 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2788
2789 cmd->state.pass = pass;
2790 cmd->state.subpass = pass->subpasses;
2791 cmd->state.framebuffer = fb;
2792
2793 tu_cmd_update_tiling_config(cmd, &pRenderPassBegin->renderArea);
2794 tu_cmd_prepare_tile_store_ib(cmd);
2795
2796 /* Note: because this is external, any flushes will happen before draw_cs
2797 * gets called. However deferred flushes could have to happen later as part
2798 * of the subpass.
2799 */
2800 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2801 cmd->state.renderpass_cache.pending_flush_bits =
2802 cmd->state.cache.pending_flush_bits;
2803 cmd->state.renderpass_cache.flush_bits = 0;
2804
2805 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2806
2807 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2808 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2809 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2810 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2811
2812 tu_set_input_attachments(cmd, cmd->state.subpass);
2813
2814 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2815 const struct tu_image_view *iview = fb->attachments[i].attachment;
2816 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2817 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2818 }
2819
2820 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2821 }
2822
2823 void
2824 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2825 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2826 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2827 {
2828 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2829 pSubpassBeginInfo->contents);
2830 }
2831
2832 void
2833 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2834 {
2835 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2836 const struct tu_render_pass *pass = cmd->state.pass;
2837 struct tu_cs *cs = &cmd->draw_cs;
2838
2839 const struct tu_subpass *subpass = cmd->state.subpass++;
2840
2841 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2842
2843 if (subpass->resolve_attachments) {
2844 tu6_emit_blit_scissor(cmd, cs, true);
2845
2846 for (unsigned i = 0; i < subpass->color_count; i++) {
2847 uint32_t a = subpass->resolve_attachments[i].attachment;
2848 if (a == VK_ATTACHMENT_UNUSED)
2849 continue;
2850
2851 tu_store_gmem_attachment(cmd, cs, a,
2852 subpass->color_attachments[i].attachment);
2853
2854 if (pass->attachments[a].gmem_offset < 0)
2855 continue;
2856
2857 /* TODO:
2858 * check if the resolved attachment is needed by later subpasses,
2859 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2860 */
2861 tu_finishme("missing GMEM->GMEM resolve path\n");
2862 tu_load_gmem_attachment(cmd, cs, a, true);
2863 }
2864 }
2865
2866 tu_cond_exec_end(cs);
2867
2868 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2869
2870 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2871
2872 tu_cond_exec_end(cs);
2873
2874 /* Handle dependencies for the next subpass */
2875 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2876
2877 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2878 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2879 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2880 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2881 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2882
2883 tu_set_input_attachments(cmd, cmd->state.subpass);
2884 }
2885
2886 void
2887 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2888 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2889 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2890 {
2891 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2892 }
2893
2894 static void
2895 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2896 struct tu_descriptor_state *descriptors_state,
2897 gl_shader_stage type,
2898 uint32_t *push_constants)
2899 {
2900 const struct tu_program_descriptor_linkage *link =
2901 &pipeline->program.link[type];
2902 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2903
2904 if (link->push_consts.count > 0) {
2905 unsigned num_units = link->push_consts.count;
2906 unsigned offset = link->push_consts.lo;
2907 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2908 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2909 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2910 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2911 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2912 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2913 tu_cs_emit(cs, 0);
2914 tu_cs_emit(cs, 0);
2915 for (unsigned i = 0; i < num_units * 4; i++)
2916 tu_cs_emit(cs, push_constants[i + offset * 4]);
2917 }
2918
2919 for (uint32_t i = 0; i < state->num_enabled; i++) {
2920 uint32_t size = state->range[i].end - state->range[i].start;
2921 uint32_t offset = state->range[i].start;
2922
2923 /* and even if the start of the const buffer is before
2924 * first_immediate, the end may not be:
2925 */
2926 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2927
2928 if (size == 0)
2929 continue;
2930
2931 /* things should be aligned to vec4: */
2932 debug_assert((state->range[i].offset % 16) == 0);
2933 debug_assert((size % 16) == 0);
2934 debug_assert((offset % 16) == 0);
2935
2936 /* Dig out the descriptor from the descriptor state and read the VA from
2937 * it.
2938 */
2939 assert(state->range[i].ubo.bindless);
2940 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2941 descriptors_state->dynamic_descriptors :
2942 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2943 unsigned block = state->range[i].ubo.block;
2944 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2945 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2946 assert(va);
2947
2948 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2949 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2950 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2951 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2952 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2953 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2954 tu_cs_emit_qw(cs, va + offset);
2955 }
2956 }
2957
2958 static struct tu_cs_entry
2959 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2960 const struct tu_pipeline *pipeline,
2961 struct tu_descriptor_state *descriptors_state,
2962 gl_shader_stage type)
2963 {
2964 struct tu_cs cs;
2965 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2966
2967 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2968
2969 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
2970 }
2971
2972 static VkResult
2973 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
2974 uint32_t first_instance,
2975 struct tu_cs_entry *entry)
2976 {
2977 /* TODO: fill out more than just base instance */
2978 const struct tu_program_descriptor_linkage *link =
2979 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
2980 const struct ir3_const_state *const_state = &link->const_state;
2981 struct tu_cs cs;
2982
2983 if (const_state->offsets.driver_param >= link->constlen) {
2984 *entry = (struct tu_cs_entry) {};
2985 return VK_SUCCESS;
2986 }
2987
2988 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 8, &cs);
2989 if (result != VK_SUCCESS)
2990 return result;
2991
2992 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2993 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(const_state->offsets.driver_param) |
2994 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2995 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2996 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
2997 CP_LOAD_STATE6_0_NUM_UNIT(1));
2998 tu_cs_emit(&cs, 0);
2999 tu_cs_emit(&cs, 0);
3000
3001 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3002
3003 tu_cs_emit(&cs, 0);
3004 tu_cs_emit(&cs, 0);
3005 tu_cs_emit(&cs, first_instance);
3006 tu_cs_emit(&cs, 0);
3007
3008 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3009 return VK_SUCCESS;
3010 }
3011
3012 static struct tu_cs_entry
3013 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
3014 const struct tu_pipeline *pipeline)
3015 {
3016 struct tu_cs cs;
3017 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
3018
3019 int binding;
3020 for_each_bit(binding, pipeline->vi.bindings_used) {
3021 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
3022 const VkDeviceSize offset = buf->bo_offset +
3023 cmd->state.vb.offsets[binding];
3024
3025 tu_cs_emit_regs(&cs,
3026 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
3027 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
3028
3029 }
3030
3031 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
3032
3033 return tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3034 }
3035
3036 static uint64_t
3037 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
3038 uint32_t draw_count)
3039 {
3040 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
3041 * Still not sure what to do here, so just allocate a reasonably large
3042 * BO and hope for the best for now.
3043 * (maxTessellationControlPerVertexOutputComponents * 2048 vertices +
3044 * maxTessellationControlPerPatchOutputComponents * 512 patches) */
3045 if (!draw_count) {
3046 return ((128 * 2048) + (128 * 512)) * 4;
3047 }
3048
3049 /* For each patch, adreno lays out the tess param BO in memory as:
3050 * (v_input[0][0])...(v_input[i][j])(p_input[0])...(p_input[k]).
3051 * where i = # vertices per patch, j = # per-vertex outputs, and
3052 * k = # per-patch outputs.*/
3053 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
3054 uint32_t num_patches = draw_count / verts_per_patch;
3055 return draw_count * pipeline->tess.per_vertex_output_size +
3056 pipeline->tess.per_patch_output_size * num_patches;
3057 }
3058
3059 static uint64_t
3060 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
3061 uint32_t draw_count)
3062 {
3063 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
3064 * Still not sure what to do here, so just allocate a reasonably large
3065 * BO and hope for the best for now.
3066 * (quad factor stride * 512 patches) */
3067 if (!draw_count) {
3068 return (28 * 512) * 4;
3069 }
3070
3071 /* Each distinct patch gets its own tess factor output. */
3072 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
3073 uint32_t num_patches = draw_count / verts_per_patch;
3074 uint32_t factor_stride;
3075 switch (pipeline->tess.patch_type) {
3076 case IR3_TESS_ISOLINES:
3077 factor_stride = 12;
3078 break;
3079 case IR3_TESS_TRIANGLES:
3080 factor_stride = 20;
3081 break;
3082 case IR3_TESS_QUADS:
3083 factor_stride = 28;
3084 break;
3085 default:
3086 unreachable("bad tessmode");
3087 }
3088 return factor_stride * num_patches;
3089 }
3090
3091 static VkResult
3092 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
3093 uint32_t draw_count,
3094 const struct tu_pipeline *pipeline,
3095 struct tu_cs_entry *entry)
3096 {
3097 struct tu_cs cs;
3098 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
3099 if (result != VK_SUCCESS)
3100 return result;
3101
3102 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
3103 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
3104 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
3105 if (tess_bo_size > 0) {
3106 struct tu_bo *tess_bo;
3107 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
3108 if (result != VK_SUCCESS)
3109 return result;
3110
3111 tu_bo_list_add(&cmd->bo_list, tess_bo,
3112 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3113 uint64_t tess_factor_iova = tess_bo->iova;
3114 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
3115
3116 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3117 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
3118 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3119 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3120 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
3121 CP_LOAD_STATE6_0_NUM_UNIT(1));
3122 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3123 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3124 tu_cs_emit_qw(&cs, tess_param_iova);
3125 tu_cs_emit_qw(&cs, tess_factor_iova);
3126
3127 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3128 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
3129 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3130 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3131 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
3132 CP_LOAD_STATE6_0_NUM_UNIT(1));
3133 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
3134 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
3135 tu_cs_emit_qw(&cs, tess_param_iova);
3136 tu_cs_emit_qw(&cs, tess_factor_iova);
3137
3138 tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
3139 tu_cs_emit_qw(&cs, tess_factor_iova);
3140
3141 /* TODO: Without this WFI here, the hardware seems unable to read these
3142 * addresses we just emitted. Freedreno emits these consts as part of
3143 * IB1 instead of in a draw state which might make this WFI unnecessary,
3144 * but it requires a bit more indirection (SS6_INDIRECT for consts). */
3145 tu_cs_emit_wfi(&cs);
3146 }
3147 *entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3148 return VK_SUCCESS;
3149 }
3150
3151 static VkResult
3152 tu6_draw_common(struct tu_cmd_buffer *cmd,
3153 struct tu_cs *cs,
3154 bool indexed,
3155 uint32_t vertex_offset,
3156 uint32_t first_instance,
3157 /* note: draw_count count is 0 for indirect */
3158 uint32_t draw_count)
3159 {
3160 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3161 VkResult result;
3162
3163 struct tu_descriptor_state *descriptors_state =
3164 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
3165
3166 tu_emit_cache_flush_renderpass(cmd, cs);
3167
3168 /* TODO lrz */
3169
3170 tu_cs_emit_regs(cs,
3171 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3172 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3173
3174 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
3175 .primitive_restart =
3176 pipeline->ia.primitive_restart && indexed,
3177 .tess_upper_left_domain_origin =
3178 pipeline->tess.upper_left_domain_origin));
3179
3180 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3181 cmd->state.shader_const_ib[MESA_SHADER_VERTEX] =
3182 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
3183 cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL] =
3184 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
3185 cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL] =
3186 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
3187 cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY] =
3188 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
3189 cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT] =
3190 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3191 }
3192
3193 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) {
3194 /* We need to reload the descriptors every time the descriptor sets
3195 * change. However, the commands we send only depend on the pipeline
3196 * because the whole point is to cache descriptors which are used by the
3197 * pipeline. There's a problem here, in that the firmware has an
3198 * "optimization" which skips executing groups that are set to the same
3199 * value as the last draw. This means that if the descriptor sets change
3200 * but not the pipeline, we'd try to re-execute the same buffer which
3201 * the firmware would ignore and we wouldn't pre-load the new
3202 * descriptors. The blob seems to re-emit the LOAD_STATE group whenever
3203 * the descriptor sets change, which we emulate here by copying the
3204 * pre-prepared buffer.
3205 */
3206 const struct tu_cs_entry *load_entry = &pipeline->load_state.state_ib;
3207 if (load_entry->size > 0) {
3208 struct tu_cs load_cs;
3209 result = tu_cs_begin_sub_stream(&cmd->sub_cs, load_entry->size, &load_cs);
3210 if (result != VK_SUCCESS)
3211 return result;
3212 tu_cs_emit_array(&load_cs,
3213 (uint32_t *)((char *)load_entry->bo->map + load_entry->offset),
3214 load_entry->size / 4);
3215 cmd->state.desc_sets_load_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &load_cs);
3216 } else {
3217 cmd->state.desc_sets_load_ib.size = 0;
3218 }
3219 }
3220
3221 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3222 cmd->state.vertex_buffers_ib = tu6_emit_vertex_buffers(cmd, pipeline);
3223
3224 struct tu_cs_entry vs_params;
3225 result = tu6_emit_vs_params(cmd, first_instance, &vs_params);
3226 if (result != VK_SUCCESS)
3227 return result;
3228
3229 bool has_tess =
3230 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3231 struct tu_cs_entry tess_consts = {};
3232 if (has_tess) {
3233 cmd->has_tess = true;
3234 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts);
3235 if (result != VK_SUCCESS)
3236 return result;
3237 }
3238
3239 /* for the first draw in a renderpass, re-emit all the draw states
3240 *
3241 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3242 * used, then draw states must be re-emitted. note however this only happens
3243 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3244 *
3245 * the two input attachment states are excluded because secondary command
3246 * buffer doesn't have a state ib to restore it, and not re-emitting them
3247 * is OK since CmdClearAttachments won't disable/overwrite them
3248 */
3249 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3250 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3251
3252 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state_ib);
3253 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state_ib);
3254 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3255 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI, pipeline->vi.state_ib);
3256 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state_ib);
3257 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_RAST, pipeline->rast.state_ib);
3258 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS, pipeline->ds.state_ib);
3259 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_BLEND, pipeline->blend.state_ib);
3260 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3261 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3262 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3263 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3264 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3265 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets_ib);
3266 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3267 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3268 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3269
3270 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3271 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3272 ((pipeline->dynamic_state_mask & BIT(i)) ?
3273 cmd->state.dynamic_state[i] :
3274 pipeline->dynamic_state[i]));
3275 }
3276 } else {
3277
3278 /* emit draw states that were just updated
3279 * note we eventually don't want to have to emit anything here
3280 */
3281 uint32_t draw_state_count =
3282 has_tess +
3283 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3284 ((cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS) ? 1 : 0) +
3285 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3286 1; /* vs_params */
3287
3288 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3289
3290 /* We may need to re-emit tess consts if the current draw call is
3291 * sufficiently larger than the last draw call. */
3292 if (has_tess)
3293 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_TESS, tess_consts);
3294 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3295 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const_ib[MESA_SHADER_VERTEX]);
3296 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_CTRL]);
3297 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const_ib[MESA_SHADER_TESS_EVAL]);
3298 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const_ib[MESA_SHADER_GEOMETRY]);
3299 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const_ib[MESA_SHADER_FRAGMENT]);
3300 }
3301 if (cmd->state.dirty & TU_CMD_DIRTY_DESCRIPTOR_SETS)
3302 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.desc_sets_load_ib);
3303 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3304 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers_ib);
3305 tu_cs_emit_sds_ib(cs, TU_DRAW_STATE_VS_PARAMS, vs_params);
3306 }
3307
3308 tu_cs_sanity_check(cs);
3309
3310 /* There are too many graphics dirty bits to list here, so just list the
3311 * bits to preserve instead. The only things not emitted here are
3312 * compute-related state.
3313 */
3314 cmd->state.dirty &= (TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3315 return VK_SUCCESS;
3316 }
3317
3318 static uint32_t
3319 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3320 {
3321 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3322 uint32_t initiator =
3323 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3324 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3325 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3326 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3327
3328 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3329 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3330
3331 switch (pipeline->tess.patch_type) {
3332 case IR3_TESS_TRIANGLES:
3333 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3334 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3335 break;
3336 case IR3_TESS_ISOLINES:
3337 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3338 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3339 break;
3340 case IR3_TESS_NONE:
3341 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3342 break;
3343 case IR3_TESS_QUADS:
3344 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3345 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3346 break;
3347 }
3348 return initiator;
3349 }
3350
3351 void
3352 tu_CmdDraw(VkCommandBuffer commandBuffer,
3353 uint32_t vertexCount,
3354 uint32_t instanceCount,
3355 uint32_t firstVertex,
3356 uint32_t firstInstance)
3357 {
3358 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3359 struct tu_cs *cs = &cmd->draw_cs;
3360
3361 tu6_draw_common(cmd, cs, false, firstVertex, firstInstance, vertexCount);
3362
3363 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3364 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3365 tu_cs_emit(cs, instanceCount);
3366 tu_cs_emit(cs, vertexCount);
3367 }
3368
3369 void
3370 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3371 uint32_t indexCount,
3372 uint32_t instanceCount,
3373 uint32_t firstIndex,
3374 int32_t vertexOffset,
3375 uint32_t firstInstance)
3376 {
3377 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3378 struct tu_cs *cs = &cmd->draw_cs;
3379
3380 tu6_draw_common(cmd, cs, true, vertexOffset, firstInstance, indexCount);
3381
3382 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3383 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3384 tu_cs_emit(cs, instanceCount);
3385 tu_cs_emit(cs, indexCount);
3386 tu_cs_emit(cs, 0x0); /* XXX */
3387 tu_cs_emit_qw(cs, cmd->state.index_va + (firstIndex << cmd->state.index_shift));
3388 tu_cs_emit(cs, indexCount << cmd->state.index_shift);
3389 }
3390
3391 void
3392 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3393 VkBuffer _buffer,
3394 VkDeviceSize offset,
3395 uint32_t drawCount,
3396 uint32_t stride)
3397 {
3398 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3399 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3400 struct tu_cs *cs = &cmd->draw_cs;
3401
3402 tu6_draw_common(cmd, cs, false, 0, 0, 0);
3403
3404 for (uint32_t i = 0; i < drawCount; i++) {
3405 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT, 3);
3406 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3407 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset + stride * i);
3408 }
3409
3410 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3411 }
3412
3413 void
3414 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3415 VkBuffer _buffer,
3416 VkDeviceSize offset,
3417 uint32_t drawCount,
3418 uint32_t stride)
3419 {
3420 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3421 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3422 struct tu_cs *cs = &cmd->draw_cs;
3423
3424 tu6_draw_common(cmd, cs, true, 0, 0, 0);
3425
3426 for (uint32_t i = 0; i < drawCount; i++) {
3427 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_INDIRECT, 6);
3428 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3429 tu_cs_emit_qw(cs, cmd->state.index_va);
3430 tu_cs_emit(cs, A5XX_CP_DRAW_INDX_INDIRECT_3_MAX_INDICES(cmd->state.max_index_count));
3431 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset + stride * i);
3432 }
3433
3434 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3435 }
3436
3437 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3438 uint32_t instanceCount,
3439 uint32_t firstInstance,
3440 VkBuffer _counterBuffer,
3441 VkDeviceSize counterBufferOffset,
3442 uint32_t counterOffset,
3443 uint32_t vertexStride)
3444 {
3445 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3446 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3447 struct tu_cs *cs = &cmd->draw_cs;
3448
3449 tu6_draw_common(cmd, cs, false, 0, firstInstance, 0);
3450
3451 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3452 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3453 tu_cs_emit(cs, instanceCount);
3454 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3455 tu_cs_emit(cs, counterOffset);
3456 tu_cs_emit(cs, vertexStride);
3457
3458 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3459 }
3460
3461 struct tu_dispatch_info
3462 {
3463 /**
3464 * Determine the layout of the grid (in block units) to be used.
3465 */
3466 uint32_t blocks[3];
3467
3468 /**
3469 * A starting offset for the grid. If unaligned is set, the offset
3470 * must still be aligned.
3471 */
3472 uint32_t offsets[3];
3473 /**
3474 * Whether it's an unaligned compute dispatch.
3475 */
3476 bool unaligned;
3477
3478 /**
3479 * Indirect compute parameters resource.
3480 */
3481 struct tu_buffer *indirect;
3482 uint64_t indirect_offset;
3483 };
3484
3485 static void
3486 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3487 const struct tu_dispatch_info *info)
3488 {
3489 gl_shader_stage type = MESA_SHADER_COMPUTE;
3490 const struct tu_program_descriptor_linkage *link =
3491 &pipeline->program.link[type];
3492 const struct ir3_const_state *const_state = &link->const_state;
3493 uint32_t offset = const_state->offsets.driver_param;
3494
3495 if (link->constlen <= offset)
3496 return;
3497
3498 if (!info->indirect) {
3499 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3500 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3501 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3502 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3503 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3504 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3505 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3506 };
3507
3508 uint32_t num_consts = MIN2(const_state->num_driver_params,
3509 (link->constlen - offset) * 4);
3510 /* push constants */
3511 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3512 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3513 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3514 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3515 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3516 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3517 tu_cs_emit(cs, 0);
3518 tu_cs_emit(cs, 0);
3519 uint32_t i;
3520 for (i = 0; i < num_consts; i++)
3521 tu_cs_emit(cs, driver_params[i]);
3522 } else {
3523 tu_finishme("Indirect driver params");
3524 }
3525 }
3526
3527 static void
3528 tu_dispatch(struct tu_cmd_buffer *cmd,
3529 const struct tu_dispatch_info *info)
3530 {
3531 struct tu_cs *cs = &cmd->cs;
3532 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3533 struct tu_descriptor_state *descriptors_state =
3534 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3535
3536 /* TODO: We could probably flush less if we add a compute_flush_bits
3537 * bitfield.
3538 */
3539 tu_emit_cache_flush(cmd, cs);
3540
3541 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_PIPELINE)
3542 tu_cs_emit_ib(cs, &pipeline->program.state_ib);
3543
3544 struct tu_cs_entry ib;
3545
3546 ib = tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
3547 if (ib.size)
3548 tu_cs_emit_ib(cs, &ib);
3549
3550 tu_emit_compute_driver_params(cs, pipeline, info);
3551
3552 if ((cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS) &&
3553 pipeline->load_state.state_ib.size > 0) {
3554 tu_cs_emit_ib(cs, &pipeline->load_state.state_ib);
3555 }
3556
3557 cmd->state.dirty &=
3558 ~(TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS | TU_CMD_DIRTY_COMPUTE_PIPELINE);
3559
3560 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3561 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3562
3563 const uint32_t *local_size = pipeline->compute.local_size;
3564 const uint32_t *num_groups = info->blocks;
3565 tu_cs_emit_regs(cs,
3566 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3567 .localsizex = local_size[0] - 1,
3568 .localsizey = local_size[1] - 1,
3569 .localsizez = local_size[2] - 1),
3570 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3571 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3572 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3573 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3574 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3575 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3576
3577 tu_cs_emit_regs(cs,
3578 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3579 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3580 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3581
3582 if (info->indirect) {
3583 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3584
3585 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3586 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3587
3588 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3589 tu_cs_emit(cs, 0x00000000);
3590 tu_cs_emit_qw(cs, iova);
3591 tu_cs_emit(cs,
3592 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3593 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3594 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3595 } else {
3596 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3597 tu_cs_emit(cs, 0x00000000);
3598 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3599 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3600 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3601 }
3602
3603 tu_cs_emit_wfi(cs);
3604 }
3605
3606 void
3607 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3608 uint32_t base_x,
3609 uint32_t base_y,
3610 uint32_t base_z,
3611 uint32_t x,
3612 uint32_t y,
3613 uint32_t z)
3614 {
3615 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3616 struct tu_dispatch_info info = {};
3617
3618 info.blocks[0] = x;
3619 info.blocks[1] = y;
3620 info.blocks[2] = z;
3621
3622 info.offsets[0] = base_x;
3623 info.offsets[1] = base_y;
3624 info.offsets[2] = base_z;
3625 tu_dispatch(cmd_buffer, &info);
3626 }
3627
3628 void
3629 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3630 uint32_t x,
3631 uint32_t y,
3632 uint32_t z)
3633 {
3634 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3635 }
3636
3637 void
3638 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3639 VkBuffer _buffer,
3640 VkDeviceSize offset)
3641 {
3642 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3643 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3644 struct tu_dispatch_info info = {};
3645
3646 info.indirect = buffer;
3647 info.indirect_offset = offset;
3648
3649 tu_dispatch(cmd_buffer, &info);
3650 }
3651
3652 void
3653 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3654 {
3655 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3656
3657 tu_cs_end(&cmd_buffer->draw_cs);
3658 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3659
3660 if (use_sysmem_rendering(cmd_buffer))
3661 tu_cmd_render_sysmem(cmd_buffer);
3662 else
3663 tu_cmd_render_tiles(cmd_buffer);
3664
3665 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3666 rendered */
3667 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3668 tu_cs_begin(&cmd_buffer->draw_cs);
3669 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3670 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3671
3672 cmd_buffer->state.cache.pending_flush_bits |=
3673 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3674 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3675
3676 cmd_buffer->state.pass = NULL;
3677 cmd_buffer->state.subpass = NULL;
3678 cmd_buffer->state.framebuffer = NULL;
3679 }
3680
3681 void
3682 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3683 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3684 {
3685 tu_CmdEndRenderPass(commandBuffer);
3686 }
3687
3688 struct tu_barrier_info
3689 {
3690 uint32_t eventCount;
3691 const VkEvent *pEvents;
3692 VkPipelineStageFlags srcStageMask;
3693 };
3694
3695 static void
3696 tu_barrier(struct tu_cmd_buffer *cmd,
3697 uint32_t memoryBarrierCount,
3698 const VkMemoryBarrier *pMemoryBarriers,
3699 uint32_t bufferMemoryBarrierCount,
3700 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3701 uint32_t imageMemoryBarrierCount,
3702 const VkImageMemoryBarrier *pImageMemoryBarriers,
3703 const struct tu_barrier_info *info)
3704 {
3705 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3706 VkAccessFlags srcAccessMask = 0;
3707 VkAccessFlags dstAccessMask = 0;
3708
3709 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3710 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3711 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3712 }
3713
3714 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3715 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3716 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3717 }
3718
3719 enum tu_cmd_access_mask src_flags = 0;
3720 enum tu_cmd_access_mask dst_flags = 0;
3721
3722 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3723 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3724 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3725 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3726 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3727 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3728 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3729 /* The underlying memory for this image may have been used earlier
3730 * within the same queue submission for a different image, which
3731 * means that there may be old, stale cache entries which are in the
3732 * "wrong" location, which could cause problems later after writing
3733 * to the image. We don't want these entries being flushed later and
3734 * overwriting the actual image, so we need to flush the CCU.
3735 */
3736 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3737 }
3738 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3739 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3740 }
3741
3742 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3743 * so we have to use the sysmem flushes.
3744 */
3745 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3746 !cmd->state.pass;
3747 src_flags |= vk2tu_access(srcAccessMask, gmem);
3748 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3749
3750 struct tu_cache_state *cache =
3751 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3752 tu_flush_for_access(cache, src_flags, dst_flags);
3753
3754 for (uint32_t i = 0; i < info->eventCount; i++) {
3755 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3756
3757 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3758
3759 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3760 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3761 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3762 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3763 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3764 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3765 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3766 }
3767 }
3768
3769 void
3770 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3771 VkPipelineStageFlags srcStageMask,
3772 VkPipelineStageFlags dstStageMask,
3773 VkDependencyFlags dependencyFlags,
3774 uint32_t memoryBarrierCount,
3775 const VkMemoryBarrier *pMemoryBarriers,
3776 uint32_t bufferMemoryBarrierCount,
3777 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3778 uint32_t imageMemoryBarrierCount,
3779 const VkImageMemoryBarrier *pImageMemoryBarriers)
3780 {
3781 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3782 struct tu_barrier_info info;
3783
3784 info.eventCount = 0;
3785 info.pEvents = NULL;
3786 info.srcStageMask = srcStageMask;
3787
3788 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3789 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3790 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3791 }
3792
3793 static void
3794 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3795 VkPipelineStageFlags stageMask, unsigned value)
3796 {
3797 struct tu_cs *cs = &cmd->cs;
3798
3799 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3800 assert(!cmd->state.pass);
3801
3802 tu_emit_cache_flush(cmd, cs);
3803
3804 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3805
3806 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3807 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3808 */
3809 VkPipelineStageFlags top_of_pipe_flags =
3810 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3811 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3812
3813 if (!(stageMask & ~top_of_pipe_flags)) {
3814 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3815 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3816 tu_cs_emit(cs, value);
3817 } else {
3818 /* Use a RB_DONE_TS event to wait for everything to complete. */
3819 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3820 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3821 tu_cs_emit_qw(cs, event->bo.iova);
3822 tu_cs_emit(cs, value);
3823 }
3824 }
3825
3826 void
3827 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3828 VkEvent _event,
3829 VkPipelineStageFlags stageMask)
3830 {
3831 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3832 TU_FROM_HANDLE(tu_event, event, _event);
3833
3834 write_event(cmd, event, stageMask, 1);
3835 }
3836
3837 void
3838 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3839 VkEvent _event,
3840 VkPipelineStageFlags stageMask)
3841 {
3842 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3843 TU_FROM_HANDLE(tu_event, event, _event);
3844
3845 write_event(cmd, event, stageMask, 0);
3846 }
3847
3848 void
3849 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3850 uint32_t eventCount,
3851 const VkEvent *pEvents,
3852 VkPipelineStageFlags srcStageMask,
3853 VkPipelineStageFlags dstStageMask,
3854 uint32_t memoryBarrierCount,
3855 const VkMemoryBarrier *pMemoryBarriers,
3856 uint32_t bufferMemoryBarrierCount,
3857 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3858 uint32_t imageMemoryBarrierCount,
3859 const VkImageMemoryBarrier *pImageMemoryBarriers)
3860 {
3861 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3862 struct tu_barrier_info info;
3863
3864 info.eventCount = eventCount;
3865 info.pEvents = pEvents;
3866 info.srcStageMask = 0;
3867
3868 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3869 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3870 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3871 }
3872
3873 void
3874 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3875 {
3876 /* No-op */
3877 }