b7b43ba485f4f4ca8fe5978d4e07c098daab1da0
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "adreno_pm4.xml.h"
31 #include "adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 void
112 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
113 struct tu_cs *cs,
114 enum vgt_event_type event)
115 {
116 bool need_seqno = false;
117 switch (event) {
118 case CACHE_FLUSH_TS:
119 case WT_DONE_TS:
120 case RB_DONE_TS:
121 case PC_CCU_FLUSH_DEPTH_TS:
122 case PC_CCU_FLUSH_COLOR_TS:
123 case PC_CCU_RESOLVE_TS:
124 need_seqno = true;
125 break;
126 default:
127 break;
128 }
129
130 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
131 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
132 if (need_seqno) {
133 tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
134 tu_cs_emit(cs, 0);
135 }
136 }
137
138 static void
139 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
140 struct tu_cs *cs,
141 enum tu_cmd_flush_bits flushes)
142 {
143 /* Experiments show that invalidating CCU while it still has data in it
144 * doesn't work, so make sure to always flush before invalidating in case
145 * any data remains that hasn't yet been made available through a barrier.
146 * However it does seem to work for UCHE.
147 */
148 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
149 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
150 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
151 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
152 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
153 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
154 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
155 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
156 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
157 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
158 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
159 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
160 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
161 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
162 if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
163 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
164 if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
165 tu_cs_emit_wfi(cs);
166 if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
167 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
168 }
169
170 /* "Normal" cache flushes, that don't require any special handling */
171
172 static void
173 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
174 struct tu_cs *cs)
175 {
176 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
177 cmd_buffer->state.cache.flush_bits = 0;
178 }
179
180 /* Renderpass cache flushes */
181
182 void
183 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
184 struct tu_cs *cs)
185 {
186 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
187 cmd_buffer->state.renderpass_cache.flush_bits = 0;
188 }
189
190 /* Cache flushes for things that use the color/depth read/write path (i.e.
191 * blits and draws). This deals with changing CCU state as well as the usual
192 * cache flushing.
193 */
194
195 void
196 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
197 struct tu_cs *cs,
198 enum tu_cmd_ccu_state ccu_state)
199 {
200 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
201
202 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
203
204 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
205 * the CCU may also contain data that we haven't flushed out yet, so we
206 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
207 * emit a WFI as it isn't pipelined.
208 */
209 if (ccu_state != cmd_buffer->state.ccu_state) {
210 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
211 flushes |=
212 TU_CMD_FLAG_CCU_FLUSH_COLOR |
213 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
214 cmd_buffer->state.cache.pending_flush_bits &= ~(
215 TU_CMD_FLAG_CCU_FLUSH_COLOR |
216 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
217 }
218 flushes |=
219 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
220 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
221 TU_CMD_FLAG_WAIT_FOR_IDLE;
222 cmd_buffer->state.cache.pending_flush_bits &= ~(
223 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
224 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
225 TU_CMD_FLAG_WAIT_FOR_IDLE);
226 }
227
228 tu6_emit_flushes(cmd_buffer, cs, flushes);
229 cmd_buffer->state.cache.flush_bits = 0;
230
231 if (ccu_state != cmd_buffer->state.ccu_state) {
232 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
233 tu_cs_emit_regs(cs,
234 A6XX_RB_CCU_CNTL(.offset =
235 ccu_state == TU_CMD_CCU_GMEM ?
236 phys_dev->ccu_offset_gmem :
237 phys_dev->ccu_offset_bypass,
238 .gmem = ccu_state == TU_CMD_CCU_GMEM));
239 cmd_buffer->state.ccu_state = ccu_state;
240 }
241 }
242
243 static void
244 tu6_emit_zs(struct tu_cmd_buffer *cmd,
245 const struct tu_subpass *subpass,
246 struct tu_cs *cs)
247 {
248 const struct tu_framebuffer *fb = cmd->state.framebuffer;
249
250 const uint32_t a = subpass->depth_stencil_attachment.attachment;
251 if (a == VK_ATTACHMENT_UNUSED) {
252 tu_cs_emit_regs(cs,
253 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
254 A6XX_RB_DEPTH_BUFFER_PITCH(0),
255 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
256 A6XX_RB_DEPTH_BUFFER_BASE(0),
257 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
258
259 tu_cs_emit_regs(cs,
260 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
261
262 tu_cs_emit_regs(cs,
263 A6XX_GRAS_LRZ_BUFFER_BASE(0),
264 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
265 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
266
267 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
268
269 return;
270 }
271
272 const struct tu_image_view *iview = fb->attachments[a].attachment;
273 const struct tu_render_pass_attachment *attachment =
274 &cmd->state.pass->attachments[a];
275 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
276
277 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
278 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
279 tu_cs_image_ref(cs, iview, 0);
280 tu_cs_emit(cs, attachment->gmem_offset);
281
282 tu_cs_emit_regs(cs,
283 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
284
285 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
286 tu_cs_image_flag_ref(cs, iview, 0);
287
288 tu_cs_emit_regs(cs,
289 A6XX_GRAS_LRZ_BUFFER_BASE(0),
290 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
291 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
292
293 if (attachment->format == VK_FORMAT_S8_UINT) {
294 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
295 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
296 tu_cs_image_ref(cs, iview, 0);
297 tu_cs_emit(cs, attachment->gmem_offset);
298 } else {
299 tu_cs_emit_regs(cs,
300 A6XX_RB_STENCIL_INFO(0));
301 }
302 }
303
304 static void
305 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
306 const struct tu_subpass *subpass,
307 struct tu_cs *cs)
308 {
309 const struct tu_framebuffer *fb = cmd->state.framebuffer;
310
311 for (uint32_t i = 0; i < subpass->color_count; ++i) {
312 uint32_t a = subpass->color_attachments[i].attachment;
313 if (a == VK_ATTACHMENT_UNUSED)
314 continue;
315
316 const struct tu_image_view *iview = fb->attachments[a].attachment;
317
318 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
319 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
320 tu_cs_image_ref(cs, iview, 0);
321 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
322
323 tu_cs_emit_regs(cs,
324 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
325
326 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
327 tu_cs_image_flag_ref(cs, iview, 0);
328 }
329
330 tu_cs_emit_regs(cs,
331 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
332 tu_cs_emit_regs(cs,
333 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
334
335 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
336 }
337
338 void
339 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
340 {
341 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
342 bool msaa_disable = samples == MSAA_ONE;
343
344 tu_cs_emit_regs(cs,
345 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
346 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
347 .msaa_disable = msaa_disable));
348
349 tu_cs_emit_regs(cs,
350 A6XX_GRAS_RAS_MSAA_CNTL(samples),
351 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
352 .msaa_disable = msaa_disable));
353
354 tu_cs_emit_regs(cs,
355 A6XX_RB_RAS_MSAA_CNTL(samples),
356 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
357 .msaa_disable = msaa_disable));
358
359 tu_cs_emit_regs(cs,
360 A6XX_RB_MSAA_CNTL(samples));
361 }
362
363 static void
364 tu6_emit_bin_size(struct tu_cs *cs,
365 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
366 {
367 tu_cs_emit_regs(cs,
368 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
369 .binh = bin_h,
370 .dword = flags));
371
372 tu_cs_emit_regs(cs,
373 A6XX_RB_BIN_CONTROL(.binw = bin_w,
374 .binh = bin_h,
375 .dword = flags));
376
377 /* no flag for RB_BIN_CONTROL2... */
378 tu_cs_emit_regs(cs,
379 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
380 .binh = bin_h));
381 }
382
383 static void
384 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
385 const struct tu_subpass *subpass,
386 struct tu_cs *cs,
387 bool binning)
388 {
389 const struct tu_framebuffer *fb = cmd->state.framebuffer;
390 uint32_t cntl = 0;
391 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
392 if (binning) {
393 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
394 } else {
395 uint32_t mrts_ubwc_enable = 0;
396 for (uint32_t i = 0; i < subpass->color_count; ++i) {
397 uint32_t a = subpass->color_attachments[i].attachment;
398 if (a == VK_ATTACHMENT_UNUSED)
399 continue;
400
401 const struct tu_image_view *iview = fb->attachments[a].attachment;
402 if (iview->ubwc_enabled)
403 mrts_ubwc_enable |= 1 << i;
404 }
405
406 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
407
408 const uint32_t a = subpass->depth_stencil_attachment.attachment;
409 if (a != VK_ATTACHMENT_UNUSED) {
410 const struct tu_image_view *iview = fb->attachments[a].attachment;
411 if (iview->ubwc_enabled)
412 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
413 }
414
415 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
416 * in order to set it correctly for the different subpasses. However,
417 * that means the packets we're emitting also happen during binning. So
418 * we need to guard the write on !BINNING at CP execution time.
419 */
420 tu_cs_reserve(cs, 3 + 4);
421 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
422 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
423 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
424 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
425 }
426
427 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
428 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
429 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
430 tu_cs_emit(cs, cntl);
431 }
432
433 static void
434 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
435 {
436
437 const VkRect2D *render_area = &cmd->state.render_area;
438
439 /* Avoid assertion fails with an empty render area at (0, 0) where the
440 * subtraction below wraps around. Empty render areas should be forced to
441 * the sysmem path by use_sysmem_rendering(). It's not even clear whether
442 * an empty scissor here works, and the blob seems to force sysmem too as
443 * it sets something wrong (non-empty) for the scissor.
444 */
445 if (render_area->extent.width == 0 ||
446 render_area->extent.height == 0)
447 return;
448
449 uint32_t x1 = render_area->offset.x;
450 uint32_t y1 = render_area->offset.y;
451 uint32_t x2 = x1 + render_area->extent.width - 1;
452 uint32_t y2 = y1 + render_area->extent.height - 1;
453
454 if (align) {
455 x1 = x1 & ~(GMEM_ALIGN_W - 1);
456 y1 = y1 & ~(GMEM_ALIGN_H - 1);
457 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
458 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
459 }
460
461 tu_cs_emit_regs(cs,
462 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
463 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
464 }
465
466 void
467 tu6_emit_window_scissor(struct tu_cs *cs,
468 uint32_t x1,
469 uint32_t y1,
470 uint32_t x2,
471 uint32_t y2)
472 {
473 tu_cs_emit_regs(cs,
474 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
475 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
476
477 tu_cs_emit_regs(cs,
478 A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
479 A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
480 }
481
482 void
483 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
484 {
485 tu_cs_emit_regs(cs,
486 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
487
488 tu_cs_emit_regs(cs,
489 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
490
491 tu_cs_emit_regs(cs,
492 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
493
494 tu_cs_emit_regs(cs,
495 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
496 }
497
498 static void
499 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
500 {
501 uint32_t enable_mask;
502 switch (id) {
503 case TU_DRAW_STATE_PROGRAM:
504 case TU_DRAW_STATE_VI:
505 case TU_DRAW_STATE_FS_CONST:
506 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
507 * when resources would actually be used in the binning shader.
508 * Presumably the overhead of prefetching the resources isn't
509 * worth it.
510 */
511 case TU_DRAW_STATE_DESC_SETS_LOAD:
512 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
513 CP_SET_DRAW_STATE__0_SYSMEM;
514 break;
515 case TU_DRAW_STATE_PROGRAM_BINNING:
516 case TU_DRAW_STATE_VI_BINNING:
517 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
518 break;
519 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
520 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
521 break;
522 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
523 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
524 break;
525 default:
526 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
527 CP_SET_DRAW_STATE__0_SYSMEM |
528 CP_SET_DRAW_STATE__0_BINNING;
529 break;
530 }
531
532 /* We need to reload the descriptors every time the descriptor sets
533 * change. However, the commands we send only depend on the pipeline
534 * because the whole point is to cache descriptors which are used by the
535 * pipeline. There's a problem here, in that the firmware has an
536 * "optimization" which skips executing groups that are set to the same
537 * value as the last draw. This means that if the descriptor sets change
538 * but not the pipeline, we'd try to re-execute the same buffer which
539 * the firmware would ignore and we wouldn't pre-load the new
540 * descriptors. Set the DIRTY bit to avoid this optimization
541 */
542 if (id == TU_DRAW_STATE_DESC_SETS_LOAD)
543 enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
544
545 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
546 enable_mask |
547 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
548 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
549 tu_cs_emit_qw(cs, state.iova);
550 }
551
552 static bool
553 use_hw_binning(struct tu_cmd_buffer *cmd)
554 {
555 const struct tu_framebuffer *fb = cmd->state.framebuffer;
556
557 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
558 * with non-hw binning GMEM rendering. this is required because some of the
559 * XFB commands need to only be executed once
560 */
561 if (cmd->state.xfb_used)
562 return true;
563
564 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
565 return false;
566
567 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
568 return true;
569
570 return (fb->tile_count.width * fb->tile_count.height) > 2;
571 }
572
573 static bool
574 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
575 {
576 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
577 return true;
578
579 /* can't fit attachments into gmem */
580 if (!cmd->state.pass->gmem_pixels)
581 return true;
582
583 if (cmd->state.framebuffer->layers > 1)
584 return true;
585
586 /* Use sysmem for empty render areas */
587 if (cmd->state.render_area.extent.width == 0 ||
588 cmd->state.render_area.extent.height == 0)
589 return true;
590
591 if (cmd->has_tess)
592 return true;
593
594 return false;
595 }
596
597 static void
598 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
599 struct tu_cs *cs,
600 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
601 {
602 const struct tu_framebuffer *fb = cmd->state.framebuffer;
603
604 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
605 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
606
607 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
608 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
609
610 const uint32_t x1 = fb->tile0.width * tx;
611 const uint32_t y1 = fb->tile0.height * ty;
612 const uint32_t x2 = x1 + fb->tile0.width - 1;
613 const uint32_t y2 = y1 + fb->tile0.height - 1;
614 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
615 tu6_emit_window_offset(cs, x1, y1);
616
617 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
618
619 if (use_hw_binning(cmd)) {
620 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
621
622 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
623 tu_cs_emit(cs, 0x0);
624
625 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
626 tu_cs_emit(cs, fb->pipe_sizes[pipe] |
627 CP_SET_BIN_DATA5_0_VSC_N(slot));
628 tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
629 tu_cs_emit(cs, pipe * 4);
630 tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
631
632 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
633 tu_cs_emit(cs, 0x0);
634
635 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
636 tu_cs_emit(cs, 0x0);
637 } else {
638 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
639 tu_cs_emit(cs, 0x1);
640
641 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
642 tu_cs_emit(cs, 0x0);
643 }
644 }
645
646 static void
647 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
648 struct tu_cs *cs,
649 uint32_t a,
650 uint32_t gmem_a)
651 {
652 const struct tu_framebuffer *fb = cmd->state.framebuffer;
653 struct tu_image_view *dst = fb->attachments[a].attachment;
654 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
655
656 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.render_area);
657 }
658
659 static void
660 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
661 struct tu_cs *cs,
662 const struct tu_subpass *subpass)
663 {
664 if (subpass->resolve_attachments) {
665 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
666 * Commands":
667 *
668 * End-of-subpass multisample resolves are treated as color
669 * attachment writes for the purposes of synchronization. That is,
670 * they are considered to execute in the
671 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
672 * their writes are synchronized with
673 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
674 * rendering within a subpass and any resolve operations at the end
675 * of the subpass occurs automatically, without need for explicit
676 * dependencies or pipeline barriers. However, if the resolve
677 * attachment is also used in a different subpass, an explicit
678 * dependency is needed.
679 *
680 * We use the CP_BLIT path for sysmem resolves, which is really a
681 * transfer command, so we have to manually flush similar to the gmem
682 * resolve case. However, a flush afterwards isn't needed because of the
683 * last sentence and the fact that we're in sysmem mode.
684 */
685 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
686 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
687
688 /* Wait for the flushes to land before using the 2D engine */
689 tu_cs_emit_wfi(cs);
690
691 for (unsigned i = 0; i < subpass->color_count; i++) {
692 uint32_t a = subpass->resolve_attachments[i].attachment;
693 if (a == VK_ATTACHMENT_UNUSED)
694 continue;
695
696 tu6_emit_sysmem_resolve(cmd, cs, a,
697 subpass->color_attachments[i].attachment);
698 }
699 }
700 }
701
702 static void
703 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
704 {
705 const struct tu_render_pass *pass = cmd->state.pass;
706 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
707
708 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
709 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
710 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
711 CP_SET_DRAW_STATE__0_GROUP_ID(0));
712 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
713 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
714
715 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
716 tu_cs_emit(cs, 0x0);
717
718 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
719 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
720
721 tu6_emit_blit_scissor(cmd, cs, true);
722
723 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
724 if (pass->attachments[a].gmem_offset >= 0)
725 tu_store_gmem_attachment(cmd, cs, a, a);
726 }
727
728 if (subpass->resolve_attachments) {
729 for (unsigned i = 0; i < subpass->color_count; i++) {
730 uint32_t a = subpass->resolve_attachments[i].attachment;
731 if (a != VK_ATTACHMENT_UNUSED)
732 tu_store_gmem_attachment(cmd, cs, a,
733 subpass->color_attachments[i].attachment);
734 }
735 }
736 }
737
738 static void
739 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
740 {
741 struct tu_device *dev = cmd->device;
742 const struct tu_physical_device *phys_dev = dev->physical_device;
743
744 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
745
746 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
747 .vs_state = true,
748 .hs_state = true,
749 .ds_state = true,
750 .gs_state = true,
751 .fs_state = true,
752 .cs_state = true,
753 .gfx_ibo = true,
754 .cs_ibo = true,
755 .gfx_shared_const = true,
756 .cs_shared_const = true,
757 .gfx_bindless = 0x1f,
758 .cs_bindless = 0x1f));
759
760 tu_cs_emit_wfi(cs);
761
762 cmd->state.cache.pending_flush_bits &=
763 ~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
764
765 tu_cs_emit_regs(cs,
766 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
767 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
768 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
769 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
770 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
771 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
772 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
773 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
774 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
775 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
776
777 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
778 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
779 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
780 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
781 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
782 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
783 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_SHARED_CONSTS, 0);
784 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
785 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
786 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
787 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
788 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
789 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
790
791 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
792 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
793 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
794 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
795
796 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
797
798 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
799
800 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
801 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
802 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
803 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
804 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
805 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
806 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
807 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
808 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
809 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
810 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
811
812 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
813
814 tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
815 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
816
817 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
818
819 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
820
821 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
822 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
823
824 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
825
826 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
827
828 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
829 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
830 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
831 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
832 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
833 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
834 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
835 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
836 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
837
838 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
839
840 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
841
842 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
843
844 /* we don't use this yet.. probably best to disable.. */
845 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
846 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
847 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
848 CP_SET_DRAW_STATE__0_GROUP_ID(0));
849 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
850 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
851
852 tu_cs_emit_regs(cs,
853 A6XX_SP_HS_CTRL_REG0(0));
854
855 tu_cs_emit_regs(cs,
856 A6XX_SP_GS_CTRL_REG0(0));
857
858 tu_cs_emit_regs(cs,
859 A6XX_GRAS_LRZ_CNTL(0));
860
861 tu_cs_emit_regs(cs,
862 A6XX_RB_LRZ_CNTL(0));
863
864 tu_cs_emit_regs(cs,
865 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
866 .bo_offset = gb_offset(border_color)));
867 tu_cs_emit_regs(cs,
868 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
869 .bo_offset = gb_offset(border_color)));
870
871 /* VSC buffers:
872 * use vsc pitches from the largest values used so far with this device
873 * if there hasn't been overflow, there will already be a scratch bo
874 * allocated for these sizes
875 *
876 * if overflow is detected, the stream size is increased by 2x
877 */
878 mtx_lock(&dev->vsc_pitch_mtx);
879
880 struct tu6_global *global = dev->global_bo.map;
881
882 uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
883 uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
884
885 if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
886 dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
887
888 if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
889 dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
890
891 cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
892 cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
893
894 mtx_unlock(&dev->vsc_pitch_mtx);
895
896 struct tu_bo *vsc_bo;
897 uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
898 cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
899
900 tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
901
902 tu_cs_emit_regs(cs,
903 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
904 tu_cs_emit_regs(cs,
905 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
906 tu_cs_emit_regs(cs,
907 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
908 .bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
909
910 tu_bo_list_add(&cmd->bo_list, vsc_bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
911
912 tu_cs_sanity_check(cs);
913 }
914
915 static void
916 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
917 {
918 const struct tu_framebuffer *fb = cmd->state.framebuffer;
919
920 tu_cs_emit_regs(cs,
921 A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
922 .height = fb->tile0.height));
923
924 tu_cs_emit_regs(cs,
925 A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
926 .ny = fb->tile_count.height));
927
928 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
929 tu_cs_emit_array(cs, fb->pipe_config, 32);
930
931 tu_cs_emit_regs(cs,
932 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
933 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
934
935 tu_cs_emit_regs(cs,
936 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
937 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
938 }
939
940 static void
941 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
942 {
943 const struct tu_framebuffer *fb = cmd->state.framebuffer;
944 const uint32_t used_pipe_count =
945 fb->pipe_count.width * fb->pipe_count.height;
946
947 for (int i = 0; i < used_pipe_count; i++) {
948 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
949 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
950 CP_COND_WRITE5_0_WRITE_MEMORY);
951 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
952 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
953 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
954 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
955 tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
956 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
957
958 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
959 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
960 CP_COND_WRITE5_0_WRITE_MEMORY);
961 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
962 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
963 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
964 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
965 tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
966 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
967 }
968
969 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
970 }
971
972 static void
973 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
974 {
975 struct tu_physical_device *phys_dev = cmd->device->physical_device;
976 const struct tu_framebuffer *fb = cmd->state.framebuffer;
977
978 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
979
980 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
981 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
982
983 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
984 tu_cs_emit(cs, 0x1);
985
986 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
987 tu_cs_emit(cs, 0x1);
988
989 tu_cs_emit_wfi(cs);
990
991 tu_cs_emit_regs(cs,
992 A6XX_VFD_MODE_CNTL(.binning_pass = true));
993
994 update_vsc_pipe(cmd, cs);
995
996 tu_cs_emit_regs(cs,
997 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
998
999 tu_cs_emit_regs(cs,
1000 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1001
1002 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1003 tu_cs_emit(cs, UNK_2C);
1004
1005 tu_cs_emit_regs(cs,
1006 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1007
1008 tu_cs_emit_regs(cs,
1009 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1010
1011 /* emit IB to binning drawcmds: */
1012 tu_cs_emit_call(cs, &cmd->draw_cs);
1013
1014 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1015 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1016 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1017 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1018 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1019 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1020
1021 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1022 tu_cs_emit(cs, UNK_2D);
1023
1024 /* This flush is probably required because the VSC, which produces the
1025 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1026 * visibility stream (without caching) to do draw skipping. The
1027 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1028 * submitted are finished before reading the VSC regs (in
1029 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1030 * part of draws).
1031 */
1032 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1033
1034 tu_cs_emit_wfi(cs);
1035
1036 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1037
1038 emit_vsc_overflow_test(cmd, cs);
1039
1040 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1041 tu_cs_emit(cs, 0x0);
1042
1043 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1044 tu_cs_emit(cs, 0x0);
1045 }
1046
1047 static struct tu_draw_state
1048 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1049 const struct tu_subpass *subpass,
1050 bool gmem)
1051 {
1052 /* note: we can probably emit input attachments just once for the whole
1053 * renderpass, this would avoid emitting both sysmem/gmem versions
1054 *
1055 * emit two texture descriptors for each input, as a workaround for
1056 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1057 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1058 * in the pair
1059 * TODO: a smarter workaround
1060 */
1061
1062 if (!subpass->input_count)
1063 return (struct tu_draw_state) {};
1064
1065 struct tu_cs_memory texture;
1066 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1067 A6XX_TEX_CONST_DWORDS, &texture);
1068 assert(result == VK_SUCCESS);
1069
1070 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1071 uint32_t a = subpass->input_attachments[i / 2].attachment;
1072 if (a == VK_ATTACHMENT_UNUSED)
1073 continue;
1074
1075 struct tu_image_view *iview =
1076 cmd->state.framebuffer->attachments[a].attachment;
1077 const struct tu_render_pass_attachment *att =
1078 &cmd->state.pass->attachments[a];
1079 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1080
1081 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1082
1083 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1084 /* note this works because spec says fb and input attachments
1085 * must use identity swizzle
1086 */
1087 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1088 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1089 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1090 if (cmd->device->physical_device->limited_z24s8) {
1091 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_8_8_8_UINT) |
1092 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_W) |
1093 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1094 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1095 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1096 } else {
1097 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_Z24_UINT_S8_UINT) |
1098 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1099 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1100 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1101 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1102 }
1103 }
1104
1105 if (!gmem)
1106 continue;
1107
1108 /* patched for gmem */
1109 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1110 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1111 dst[2] =
1112 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1113 A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * att->cpp);
1114 dst[3] = 0;
1115 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1116 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1117 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1118 dst[i] = 0;
1119 }
1120
1121 struct tu_cs cs;
1122 struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1123
1124 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1125 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1126 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1127 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1128 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1129 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1130 tu_cs_emit_qw(&cs, texture.iova);
1131
1132 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1133 tu_cs_emit_qw(&cs, texture.iova);
1134
1135 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1136
1137 assert(cs.cur == cs.end); /* validate draw state size */
1138
1139 return ds;
1140 }
1141
1142 static void
1143 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1144 {
1145 struct tu_cs *cs = &cmd->draw_cs;
1146
1147 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1148 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1149 tu_emit_input_attachments(cmd, subpass, true));
1150 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1151 tu_emit_input_attachments(cmd, subpass, false));
1152 }
1153
1154 static void
1155 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1156 const VkRenderPassBeginInfo *info)
1157 {
1158 struct tu_cs *cs = &cmd->draw_cs;
1159
1160 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1161
1162 tu6_emit_blit_scissor(cmd, cs, true);
1163
1164 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1165 tu_load_gmem_attachment(cmd, cs, i, false);
1166
1167 tu6_emit_blit_scissor(cmd, cs, false);
1168
1169 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1170 tu_clear_gmem_attachment(cmd, cs, i, info);
1171
1172 tu_cond_exec_end(cs);
1173
1174 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1175
1176 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1177 tu_clear_sysmem_attachment(cmd, cs, i, info);
1178
1179 tu_cond_exec_end(cs);
1180 }
1181
1182 static void
1183 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1184 {
1185 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1186
1187 assert(fb->width > 0 && fb->height > 0);
1188 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1189 tu6_emit_window_offset(cs, 0, 0);
1190
1191 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1192
1193 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1194
1195 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1196 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1197
1198 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1199 tu_cs_emit(cs, 0x0);
1200
1201 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1202
1203 /* enable stream-out, with sysmem there is only one pass: */
1204 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1205
1206 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1207 tu_cs_emit(cs, 0x1);
1208
1209 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1210 tu_cs_emit(cs, 0x0);
1211
1212 tu_cs_sanity_check(cs);
1213 }
1214
1215 static void
1216 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1217 {
1218 /* Do any resolves of the last subpass. These are handled in the
1219 * tile_store_ib in the gmem path.
1220 */
1221 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1222
1223 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1224
1225 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1226 tu_cs_emit(cs, 0x0);
1227
1228 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1229
1230 tu_cs_sanity_check(cs);
1231 }
1232
1233 static void
1234 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1235 {
1236 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1237
1238 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1239
1240 /* lrz clear? */
1241
1242 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1243 tu_cs_emit(cs, 0x0);
1244
1245 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1246
1247 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1248 if (use_hw_binning(cmd)) {
1249 /* enable stream-out during binning pass: */
1250 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1251
1252 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1253 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1254
1255 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1256
1257 tu6_emit_binning_pass(cmd, cs);
1258
1259 /* and disable stream-out for draw pass: */
1260 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1261
1262 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1263 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1264
1265 tu_cs_emit_regs(cs,
1266 A6XX_VFD_MODE_CNTL(0));
1267
1268 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1269
1270 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1271
1272 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1273 tu_cs_emit(cs, 0x1);
1274 } else {
1275 /* no binning pass, so enable stream-out for draw pass:: */
1276 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1277
1278 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
1279 }
1280
1281 tu_cs_sanity_check(cs);
1282 }
1283
1284 static void
1285 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1286 {
1287 tu_cs_emit_call(cs, &cmd->draw_cs);
1288
1289 if (use_hw_binning(cmd)) {
1290 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1291 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1292 }
1293
1294 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1295
1296 tu_cs_sanity_check(cs);
1297 }
1298
1299 static void
1300 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1301 {
1302 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1303
1304 tu_cs_emit_regs(cs,
1305 A6XX_GRAS_LRZ_CNTL(0));
1306
1307 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1308
1309 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1310
1311 tu_cs_sanity_check(cs);
1312 }
1313
1314 static void
1315 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1316 {
1317 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1318
1319 tu6_tile_render_begin(cmd, &cmd->cs);
1320
1321 uint32_t pipe = 0;
1322 for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
1323 for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
1324 uint32_t tx1 = px * fb->pipe0.width;
1325 uint32_t ty1 = py * fb->pipe0.height;
1326 uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
1327 uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
1328 uint32_t slot = 0;
1329 for (uint32_t ty = ty1; ty < ty2; ty++) {
1330 for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
1331 tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
1332 tu6_render_tile(cmd, &cmd->cs);
1333 }
1334 }
1335 }
1336 }
1337
1338 tu6_tile_render_end(cmd, &cmd->cs);
1339 }
1340
1341 static void
1342 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1343 {
1344 tu6_sysmem_render_begin(cmd, &cmd->cs);
1345
1346 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1347
1348 tu6_sysmem_render_end(cmd, &cmd->cs);
1349 }
1350
1351 static void
1352 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1353 {
1354 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1355 struct tu_cs sub_cs;
1356
1357 VkResult result =
1358 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1359 if (result != VK_SUCCESS) {
1360 cmd->record_result = result;
1361 return;
1362 }
1363
1364 /* emit to tile-store sub_cs */
1365 tu6_emit_tile_store(cmd, &sub_cs);
1366
1367 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1368 }
1369
1370 static VkResult
1371 tu_create_cmd_buffer(struct tu_device *device,
1372 struct tu_cmd_pool *pool,
1373 VkCommandBufferLevel level,
1374 VkCommandBuffer *pCommandBuffer)
1375 {
1376 struct tu_cmd_buffer *cmd_buffer;
1377
1378 cmd_buffer = vk_object_zalloc(&device->vk, NULL, sizeof(*cmd_buffer),
1379 VK_OBJECT_TYPE_COMMAND_BUFFER);
1380 if (cmd_buffer == NULL)
1381 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1382
1383 cmd_buffer->device = device;
1384 cmd_buffer->pool = pool;
1385 cmd_buffer->level = level;
1386
1387 if (pool) {
1388 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1389 cmd_buffer->queue_family_index = pool->queue_family_index;
1390
1391 } else {
1392 /* Init the pool_link so we can safely call list_del when we destroy
1393 * the command buffer
1394 */
1395 list_inithead(&cmd_buffer->pool_link);
1396 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1397 }
1398
1399 tu_bo_list_init(&cmd_buffer->bo_list);
1400 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1401 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1402 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1403 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1404
1405 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1406
1407 list_inithead(&cmd_buffer->upload.list);
1408
1409 return VK_SUCCESS;
1410 }
1411
1412 static void
1413 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1414 {
1415 list_del(&cmd_buffer->pool_link);
1416
1417 tu_cs_finish(&cmd_buffer->cs);
1418 tu_cs_finish(&cmd_buffer->draw_cs);
1419 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1420 tu_cs_finish(&cmd_buffer->sub_cs);
1421
1422 tu_bo_list_destroy(&cmd_buffer->bo_list);
1423 vk_object_free(&cmd_buffer->device->vk, &cmd_buffer->pool->alloc, cmd_buffer);
1424 }
1425
1426 static VkResult
1427 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1428 {
1429 cmd_buffer->record_result = VK_SUCCESS;
1430
1431 tu_bo_list_reset(&cmd_buffer->bo_list);
1432 tu_cs_reset(&cmd_buffer->cs);
1433 tu_cs_reset(&cmd_buffer->draw_cs);
1434 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1435 tu_cs_reset(&cmd_buffer->sub_cs);
1436
1437 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1438 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1439
1440 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1441
1442 return cmd_buffer->record_result;
1443 }
1444
1445 VkResult
1446 tu_AllocateCommandBuffers(VkDevice _device,
1447 const VkCommandBufferAllocateInfo *pAllocateInfo,
1448 VkCommandBuffer *pCommandBuffers)
1449 {
1450 TU_FROM_HANDLE(tu_device, device, _device);
1451 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1452
1453 VkResult result = VK_SUCCESS;
1454 uint32_t i;
1455
1456 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1457
1458 if (!list_is_empty(&pool->free_cmd_buffers)) {
1459 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1460 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1461
1462 list_del(&cmd_buffer->pool_link);
1463 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1464
1465 result = tu_reset_cmd_buffer(cmd_buffer);
1466 cmd_buffer->level = pAllocateInfo->level;
1467
1468 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1469 } else {
1470 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1471 &pCommandBuffers[i]);
1472 }
1473 if (result != VK_SUCCESS)
1474 break;
1475 }
1476
1477 if (result != VK_SUCCESS) {
1478 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1479 pCommandBuffers);
1480
1481 /* From the Vulkan 1.0.66 spec:
1482 *
1483 * "vkAllocateCommandBuffers can be used to create multiple
1484 * command buffers. If the creation of any of those command
1485 * buffers fails, the implementation must destroy all
1486 * successfully created command buffer objects from this
1487 * command, set all entries of the pCommandBuffers array to
1488 * NULL and return the error."
1489 */
1490 memset(pCommandBuffers, 0,
1491 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1492 }
1493
1494 return result;
1495 }
1496
1497 void
1498 tu_FreeCommandBuffers(VkDevice device,
1499 VkCommandPool commandPool,
1500 uint32_t commandBufferCount,
1501 const VkCommandBuffer *pCommandBuffers)
1502 {
1503 for (uint32_t i = 0; i < commandBufferCount; i++) {
1504 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1505
1506 if (cmd_buffer) {
1507 if (cmd_buffer->pool) {
1508 list_del(&cmd_buffer->pool_link);
1509 list_addtail(&cmd_buffer->pool_link,
1510 &cmd_buffer->pool->free_cmd_buffers);
1511 } else
1512 tu_cmd_buffer_destroy(cmd_buffer);
1513 }
1514 }
1515 }
1516
1517 VkResult
1518 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1519 VkCommandBufferResetFlags flags)
1520 {
1521 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1522 return tu_reset_cmd_buffer(cmd_buffer);
1523 }
1524
1525 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1526 * invalidations.
1527 */
1528 static void
1529 tu_cache_init(struct tu_cache_state *cache)
1530 {
1531 cache->flush_bits = 0;
1532 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1533 }
1534
1535 VkResult
1536 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1537 const VkCommandBufferBeginInfo *pBeginInfo)
1538 {
1539 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1540 VkResult result = VK_SUCCESS;
1541
1542 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1543 /* If the command buffer has already been resetted with
1544 * vkResetCommandBuffer, no need to do it again.
1545 */
1546 result = tu_reset_cmd_buffer(cmd_buffer);
1547 if (result != VK_SUCCESS)
1548 return result;
1549 }
1550
1551 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1552 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1553
1554 tu_cache_init(&cmd_buffer->state.cache);
1555 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1556 cmd_buffer->usage_flags = pBeginInfo->flags;
1557
1558 tu_cs_begin(&cmd_buffer->cs);
1559 tu_cs_begin(&cmd_buffer->draw_cs);
1560 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1561
1562 /* setup initial configuration into command buffer */
1563 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1564 switch (cmd_buffer->queue_family_index) {
1565 case TU_QUEUE_GENERAL:
1566 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1567 break;
1568 default:
1569 break;
1570 }
1571 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1572 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1573 assert(pBeginInfo->pInheritanceInfo);
1574 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1575 cmd_buffer->state.subpass =
1576 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1577 } else {
1578 /* When executing in the middle of another command buffer, the CCU
1579 * state is unknown.
1580 */
1581 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1582 }
1583 }
1584
1585 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1586
1587 return VK_SUCCESS;
1588 }
1589
1590 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1591 * rendering can skip over unused state), so we need to collect all the
1592 * bindings together into a single state emit at draw time.
1593 */
1594 void
1595 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1596 uint32_t firstBinding,
1597 uint32_t bindingCount,
1598 const VkBuffer *pBuffers,
1599 const VkDeviceSize *pOffsets)
1600 {
1601 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1602
1603 assert(firstBinding + bindingCount <= MAX_VBS);
1604
1605 for (uint32_t i = 0; i < bindingCount; i++) {
1606 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1607
1608 cmd->state.vb.buffers[firstBinding + i] = buf;
1609 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1610
1611 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1612 }
1613
1614 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1615 }
1616
1617 void
1618 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1619 VkBuffer buffer,
1620 VkDeviceSize offset,
1621 VkIndexType indexType)
1622 {
1623 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1624 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1625
1626
1627
1628 uint32_t index_size, index_shift, restart_index;
1629
1630 switch (indexType) {
1631 case VK_INDEX_TYPE_UINT16:
1632 index_size = INDEX4_SIZE_16_BIT;
1633 index_shift = 1;
1634 restart_index = 0xffff;
1635 break;
1636 case VK_INDEX_TYPE_UINT32:
1637 index_size = INDEX4_SIZE_32_BIT;
1638 index_shift = 2;
1639 restart_index = 0xffffffff;
1640 break;
1641 case VK_INDEX_TYPE_UINT8_EXT:
1642 index_size = INDEX4_SIZE_8_BIT;
1643 index_shift = 0;
1644 restart_index = 0xff;
1645 break;
1646 default:
1647 unreachable("invalid VkIndexType");
1648 }
1649
1650 /* initialize/update the restart index */
1651 if (cmd->state.index_size != index_size)
1652 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1653
1654 assert(buf->size >= offset);
1655
1656 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1657 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1658 cmd->state.index_size = index_size;
1659
1660 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1661 }
1662
1663 void
1664 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1665 VkPipelineBindPoint pipelineBindPoint,
1666 VkPipelineLayout _layout,
1667 uint32_t firstSet,
1668 uint32_t descriptorSetCount,
1669 const VkDescriptorSet *pDescriptorSets,
1670 uint32_t dynamicOffsetCount,
1671 const uint32_t *pDynamicOffsets)
1672 {
1673 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1674 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1675 unsigned dyn_idx = 0;
1676
1677 struct tu_descriptor_state *descriptors_state =
1678 tu_get_descriptors_state(cmd, pipelineBindPoint);
1679
1680 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1681 unsigned idx = i + firstSet;
1682 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1683
1684 descriptors_state->sets[idx] = set;
1685
1686 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1687 /* update the contents of the dynamic descriptor set */
1688 unsigned src_idx = j;
1689 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1690 assert(dyn_idx < dynamicOffsetCount);
1691
1692 uint32_t *dst =
1693 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1694 uint32_t *src =
1695 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1696 uint32_t offset = pDynamicOffsets[dyn_idx];
1697
1698 /* Patch the storage/uniform descriptors right away. */
1699 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1700 /* Note: we can assume here that the addition won't roll over and
1701 * change the SIZE field.
1702 */
1703 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1704 va += offset;
1705 dst[0] = va;
1706 dst[1] = va >> 32;
1707 } else {
1708 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1709 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1710 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1711 va += offset;
1712 dst[4] = va;
1713 dst[5] = va >> 32;
1714 }
1715 }
1716
1717 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1718 if (set->buffers[j]) {
1719 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1720 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1721 }
1722 }
1723
1724 if (set->size > 0) {
1725 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1726 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1727 }
1728 }
1729 assert(dyn_idx == dynamicOffsetCount);
1730
1731 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_invalidate_value;
1732 uint64_t addr[MAX_SETS + 1] = {};
1733 struct tu_cs *cs, state_cs;
1734
1735 for (uint32_t i = 0; i < MAX_SETS; i++) {
1736 struct tu_descriptor_set *set = descriptors_state->sets[i];
1737 if (set)
1738 addr[i] = set->va | 3;
1739 }
1740
1741 if (layout->dynamic_offset_count) {
1742 /* allocate and fill out dynamic descriptor set */
1743 struct tu_cs_memory dynamic_desc_set;
1744 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1745 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1746 assert(result == VK_SUCCESS);
1747
1748 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1749 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1750 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1751 }
1752
1753 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1754 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1755 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1756 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_GFX_BINDLESS(0x1f);
1757
1758 cmd->state.desc_sets = tu_cs_draw_state(&cmd->sub_cs, &state_cs, 24);
1759 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
1760 cs = &state_cs;
1761 } else {
1762 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1763
1764 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1765 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1766 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_CS_BINDLESS(0x1f);
1767
1768 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
1769 cs = &cmd->cs;
1770 }
1771
1772 tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 10);
1773 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1774 tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 10);
1775 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1776 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(.dword = hlsq_invalidate_value));
1777
1778 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1779 assert(cs->cur == cs->end); /* validate draw state size */
1780 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1781 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
1782 }
1783 }
1784
1785 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1786 uint32_t firstBinding,
1787 uint32_t bindingCount,
1788 const VkBuffer *pBuffers,
1789 const VkDeviceSize *pOffsets,
1790 const VkDeviceSize *pSizes)
1791 {
1792 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1793 struct tu_cs *cs = &cmd->draw_cs;
1794
1795 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1796 * presumably there isn't any benefit using a draw state when the
1797 * condition is (SYSMEM | BINNING)
1798 */
1799 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1800 CP_COND_REG_EXEC_0_SYSMEM |
1801 CP_COND_REG_EXEC_0_BINNING);
1802
1803 for (uint32_t i = 0; i < bindingCount; i++) {
1804 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1805 uint64_t iova = buf->bo->iova + pOffsets[i];
1806 uint32_t size = buf->bo->size - pOffsets[i];
1807 uint32_t idx = i + firstBinding;
1808
1809 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1810 size = pSizes[i];
1811
1812 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1813 uint32_t offset = iova & 0x1f;
1814 iova &= ~(uint64_t) 0x1f;
1815
1816 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1817 tu_cs_emit_qw(cs, iova);
1818 tu_cs_emit(cs, size + offset);
1819
1820 cmd->state.streamout_offset[idx] = offset;
1821
1822 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1823 }
1824
1825 tu_cond_exec_end(cs);
1826 }
1827
1828 void
1829 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1830 uint32_t firstCounterBuffer,
1831 uint32_t counterBufferCount,
1832 const VkBuffer *pCounterBuffers,
1833 const VkDeviceSize *pCounterBufferOffsets)
1834 {
1835 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1836 struct tu_cs *cs = &cmd->draw_cs;
1837
1838 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1839 CP_COND_REG_EXEC_0_SYSMEM |
1840 CP_COND_REG_EXEC_0_BINNING);
1841
1842 /* TODO: only update offset for active buffers */
1843 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1844 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1845
1846 for (uint32_t i = 0; i < counterBufferCount; i++) {
1847 uint32_t idx = firstCounterBuffer + i;
1848 uint32_t offset = cmd->state.streamout_offset[idx];
1849
1850 if (!pCounterBuffers[i])
1851 continue;
1852
1853 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1854
1855 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1856
1857 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1858 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1859 CP_MEM_TO_REG_0_UNK31 |
1860 CP_MEM_TO_REG_0_CNT(1));
1861 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1862
1863 if (offset) {
1864 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1865 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1866 CP_REG_RMW_0_SRC1_ADD);
1867 tu_cs_emit_qw(cs, 0xffffffff);
1868 tu_cs_emit_qw(cs, offset);
1869 }
1870 }
1871
1872 tu_cond_exec_end(cs);
1873 }
1874
1875 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1876 uint32_t firstCounterBuffer,
1877 uint32_t counterBufferCount,
1878 const VkBuffer *pCounterBuffers,
1879 const VkDeviceSize *pCounterBufferOffsets)
1880 {
1881 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1882 struct tu_cs *cs = &cmd->draw_cs;
1883
1884 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1885 CP_COND_REG_EXEC_0_SYSMEM |
1886 CP_COND_REG_EXEC_0_BINNING);
1887
1888 /* TODO: only flush buffers that need to be flushed */
1889 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
1890 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
1891 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
1892 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
1893 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
1894 }
1895
1896 for (uint32_t i = 0; i < counterBufferCount; i++) {
1897 uint32_t idx = firstCounterBuffer + i;
1898 uint32_t offset = cmd->state.streamout_offset[idx];
1899
1900 if (!pCounterBuffers[i])
1901 continue;
1902
1903 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1904
1905 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1906
1907 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
1908 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1909 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1910 CP_MEM_TO_REG_0_SHIFT_BY_2 |
1911 0x40000 | /* ??? */
1912 CP_MEM_TO_REG_0_UNK31 |
1913 CP_MEM_TO_REG_0_CNT(1));
1914 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
1915
1916 if (offset) {
1917 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1918 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1919 CP_REG_RMW_0_SRC1_ADD);
1920 tu_cs_emit_qw(cs, 0xffffffff);
1921 tu_cs_emit_qw(cs, -offset);
1922 }
1923
1924 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1925 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1926 CP_REG_TO_MEM_0_CNT(1));
1927 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1928 }
1929
1930 tu_cond_exec_end(cs);
1931
1932 cmd->state.xfb_used = true;
1933 }
1934
1935 void
1936 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1937 VkPipelineLayout layout,
1938 VkShaderStageFlags stageFlags,
1939 uint32_t offset,
1940 uint32_t size,
1941 const void *pValues)
1942 {
1943 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1944 memcpy((void*) cmd->push_constants + offset, pValues, size);
1945 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1946 }
1947
1948 /* Flush everything which has been made available but we haven't actually
1949 * flushed yet.
1950 */
1951 static void
1952 tu_flush_all_pending(struct tu_cache_state *cache)
1953 {
1954 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1955 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1956 }
1957
1958 VkResult
1959 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1960 {
1961 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1962
1963 /* We currently flush CCU at the end of the command buffer, like
1964 * what the blob does. There's implicit synchronization around every
1965 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
1966 * know yet if this command buffer will be the last in the submit so we
1967 * have to defensively flush everything else.
1968 *
1969 * TODO: We could definitely do better than this, since these flushes
1970 * aren't required by Vulkan, but we'd need kernel support to do that.
1971 * Ideally, we'd like the kernel to flush everything afterwards, so that we
1972 * wouldn't have to do any flushes here, and when submitting multiple
1973 * command buffers there wouldn't be any unnecessary flushes in between.
1974 */
1975 if (cmd_buffer->state.pass) {
1976 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
1977 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
1978 } else {
1979 tu_flush_all_pending(&cmd_buffer->state.cache);
1980 cmd_buffer->state.cache.flush_bits |=
1981 TU_CMD_FLAG_CCU_FLUSH_COLOR |
1982 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
1983 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
1984 }
1985
1986 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->global_bo,
1987 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1988
1989 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
1990 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
1991 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1992 }
1993
1994 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
1995 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
1996 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1997 }
1998
1999 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
2000 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
2001 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2002 }
2003
2004 tu_cs_end(&cmd_buffer->cs);
2005 tu_cs_end(&cmd_buffer->draw_cs);
2006 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2007
2008 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2009
2010 return cmd_buffer->record_result;
2011 }
2012
2013 static struct tu_cs
2014 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2015 {
2016 struct tu_cs cs;
2017
2018 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2019 cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
2020
2021 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2022 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2023
2024 return cs;
2025 }
2026
2027 void
2028 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2029 VkPipelineBindPoint pipelineBindPoint,
2030 VkPipeline _pipeline)
2031 {
2032 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2033 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2034
2035 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2036 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2037 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2038 }
2039
2040 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2041 cmd->state.compute_pipeline = pipeline;
2042 tu_cs_emit_state_ib(&cmd->cs, pipeline->program.state);
2043 return;
2044 }
2045
2046 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2047
2048 cmd->state.pipeline = pipeline;
2049 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
2050
2051 struct tu_cs *cs = &cmd->draw_cs;
2052 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2053 uint32_t i;
2054
2055 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2056 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
2057 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
2058 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
2059 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
2060 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
2061 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
2062 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
2063 for_each_bit(i, mask)
2064 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2065
2066 /* If the new pipeline requires more VBs than we had previously set up, we
2067 * need to re-emit them in SDS. If it requires the same set or fewer, we
2068 * can just re-use the old SDS.
2069 */
2070 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2071 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2072
2073 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2074 * so the dynamic state ib must be updated when pipeline changes
2075 */
2076 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2077 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2078
2079 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2080 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2081
2082 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2083 }
2084 }
2085
2086 void
2087 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2088 uint32_t firstViewport,
2089 uint32_t viewportCount,
2090 const VkViewport *pViewports)
2091 {
2092 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2093 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2094
2095 assert(firstViewport == 0 && viewportCount == 1);
2096
2097 tu6_emit_viewport(&cs, pViewports);
2098 }
2099
2100 void
2101 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2102 uint32_t firstScissor,
2103 uint32_t scissorCount,
2104 const VkRect2D *pScissors)
2105 {
2106 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2107 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2108
2109 assert(firstScissor == 0 && scissorCount == 1);
2110
2111 tu6_emit_scissor(&cs, pScissors);
2112 }
2113
2114 void
2115 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2116 {
2117 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2118 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2119
2120 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2121 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2122
2123 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2124 }
2125
2126 void
2127 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2128 float depthBiasConstantFactor,
2129 float depthBiasClamp,
2130 float depthBiasSlopeFactor)
2131 {
2132 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2133 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2134
2135 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2136 }
2137
2138 void
2139 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2140 const float blendConstants[4])
2141 {
2142 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2143 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2144
2145 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2146 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2147 }
2148
2149 void
2150 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2151 float minDepthBounds,
2152 float maxDepthBounds)
2153 {
2154 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2155 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2156
2157 tu_cs_emit_regs(&cs,
2158 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2159 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2160 }
2161
2162 static void
2163 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2164 {
2165 if (face & VK_STENCIL_FACE_FRONT_BIT)
2166 *value = (*value & 0xff00) | (mask & 0xff);
2167 if (face & VK_STENCIL_FACE_BACK_BIT)
2168 *value = (*value & 0xff) | (mask & 0xff) << 8;
2169 }
2170
2171 void
2172 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2173 VkStencilFaceFlags faceMask,
2174 uint32_t compareMask)
2175 {
2176 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2177 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2178
2179 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2180
2181 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2182 }
2183
2184 void
2185 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2186 VkStencilFaceFlags faceMask,
2187 uint32_t writeMask)
2188 {
2189 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2190 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2191
2192 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2193
2194 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2195 }
2196
2197 void
2198 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2199 VkStencilFaceFlags faceMask,
2200 uint32_t reference)
2201 {
2202 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2203 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2204
2205 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2206
2207 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2208 }
2209
2210 void
2211 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2212 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2213 {
2214 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2215 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2216
2217 assert(pSampleLocationsInfo);
2218
2219 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2220 }
2221
2222 static void
2223 tu_flush_for_access(struct tu_cache_state *cache,
2224 enum tu_cmd_access_mask src_mask,
2225 enum tu_cmd_access_mask dst_mask)
2226 {
2227 enum tu_cmd_flush_bits flush_bits = 0;
2228
2229 if (src_mask & TU_ACCESS_HOST_WRITE) {
2230 /* Host writes are always visible to CP, so only invalidate GPU caches */
2231 cache->pending_flush_bits |= TU_CMD_FLAG_GPU_INVALIDATE;
2232 }
2233
2234 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2235 /* Invalidate CP and 2D engine (make it do WFI + WFM if necessary) as
2236 * well.
2237 */
2238 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2239 }
2240
2241 if (src_mask & TU_ACCESS_CP_WRITE) {
2242 /* Flush the CP write queue. However a WFI shouldn't be necessary as
2243 * WAIT_MEM_WRITES should cover it.
2244 */
2245 cache->pending_flush_bits |=
2246 TU_CMD_FLAG_WAIT_MEM_WRITES |
2247 TU_CMD_FLAG_GPU_INVALIDATE |
2248 TU_CMD_FLAG_WAIT_FOR_ME;
2249 }
2250
2251 #define SRC_FLUSH(domain, flush, invalidate) \
2252 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2253 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2254 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2255 }
2256
2257 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2258 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2259 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2260
2261 #undef SRC_FLUSH
2262
2263 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2264 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2265 flush_bits |= TU_CMD_FLAG_##flush; \
2266 cache->pending_flush_bits |= \
2267 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2268 }
2269
2270 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2271 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2272
2273 #undef SRC_INCOHERENT_FLUSH
2274
2275 /* Treat host & sysmem write accesses the same, since the kernel implicitly
2276 * drains the queue before signalling completion to the host.
2277 */
2278 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE |
2279 TU_ACCESS_HOST_READ | TU_ACCESS_HOST_WRITE)) {
2280 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2281 }
2282
2283 #define DST_FLUSH(domain, flush, invalidate) \
2284 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2285 TU_ACCESS_##domain##_WRITE)) { \
2286 flush_bits |= cache->pending_flush_bits & \
2287 (TU_CMD_FLAG_##invalidate | \
2288 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2289 }
2290
2291 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2292 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2293 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2294
2295 #undef DST_FLUSH
2296
2297 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2298 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2299 TU_ACCESS_##domain##_WRITE)) { \
2300 flush_bits |= TU_CMD_FLAG_##invalidate | \
2301 (cache->pending_flush_bits & \
2302 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2303 }
2304
2305 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2306 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2307
2308 #undef DST_INCOHERENT_FLUSH
2309
2310 if (dst_mask & TU_ACCESS_WFI_READ) {
2311 flush_bits |= cache->pending_flush_bits &
2312 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_IDLE);
2313 }
2314
2315 if (dst_mask & TU_ACCESS_WFM_READ) {
2316 flush_bits |= cache->pending_flush_bits &
2317 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_ME);
2318 }
2319
2320 cache->flush_bits |= flush_bits;
2321 cache->pending_flush_bits &= ~flush_bits;
2322 }
2323
2324 static enum tu_cmd_access_mask
2325 vk2tu_access(VkAccessFlags flags, bool gmem)
2326 {
2327 enum tu_cmd_access_mask mask = 0;
2328
2329 /* If the GPU writes a buffer that is then read by an indirect draw
2330 * command, we theoretically need to emit a WFI to wait for any cache
2331 * flushes, and then a WAIT_FOR_ME to wait on the CP for the WFI to
2332 * complete. Waiting for the WFI to complete is performed as part of the
2333 * draw by the firmware, so we just need to execute the WFI.
2334 *
2335 * Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
2336 * does CP_WAIT_FOR_ME, but we still need a WFI if the GPU writes it.
2337 */
2338 if (flags &
2339 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2340 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
2341 VK_ACCESS_MEMORY_READ_BIT)) {
2342 mask |= TU_ACCESS_WFI_READ;
2343 }
2344
2345 if (flags &
2346 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2347 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2348 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP */
2349 VK_ACCESS_MEMORY_READ_BIT)) {
2350 mask |= TU_ACCESS_SYSMEM_READ;
2351 }
2352
2353 if (flags &
2354 (VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT |
2355 VK_ACCESS_MEMORY_WRITE_BIT)) {
2356 mask |= TU_ACCESS_CP_WRITE;
2357 }
2358
2359 if (flags &
2360 (VK_ACCESS_HOST_READ_BIT |
2361 VK_ACCESS_MEMORY_WRITE_BIT)) {
2362 mask |= TU_ACCESS_HOST_READ;
2363 }
2364
2365 if (flags &
2366 (VK_ACCESS_HOST_WRITE_BIT |
2367 VK_ACCESS_MEMORY_WRITE_BIT)) {
2368 mask |= TU_ACCESS_HOST_WRITE;
2369 }
2370
2371 if (flags &
2372 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2373 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2374 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2375 /* TODO: Is there a no-cache bit for textures so that we can ignore
2376 * these?
2377 */
2378 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2379 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2380 VK_ACCESS_MEMORY_READ_BIT)) {
2381 mask |= TU_ACCESS_UCHE_READ;
2382 }
2383
2384 if (flags &
2385 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2386 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2387 VK_ACCESS_MEMORY_WRITE_BIT)) {
2388 mask |= TU_ACCESS_UCHE_WRITE;
2389 }
2390
2391 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2392 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2393 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2394 * can ignore CCU and pretend that color attachments and transfers use
2395 * sysmem directly.
2396 */
2397
2398 if (flags &
2399 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2400 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2401 VK_ACCESS_MEMORY_READ_BIT)) {
2402 if (gmem)
2403 mask |= TU_ACCESS_SYSMEM_READ;
2404 else
2405 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2406 }
2407
2408 if (flags &
2409 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2410 VK_ACCESS_MEMORY_READ_BIT)) {
2411 if (gmem)
2412 mask |= TU_ACCESS_SYSMEM_READ;
2413 else
2414 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2415 }
2416
2417 if (flags &
2418 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2419 VK_ACCESS_MEMORY_WRITE_BIT)) {
2420 if (gmem) {
2421 mask |= TU_ACCESS_SYSMEM_WRITE;
2422 } else {
2423 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2424 }
2425 }
2426
2427 if (flags &
2428 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2429 VK_ACCESS_MEMORY_WRITE_BIT)) {
2430 if (gmem) {
2431 mask |= TU_ACCESS_SYSMEM_WRITE;
2432 } else {
2433 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2434 }
2435 }
2436
2437 /* When the dst access is a transfer read/write, it seems we sometimes need
2438 * to insert a WFI after any flushes, to guarantee that the flushes finish
2439 * before the 2D engine starts. However the opposite (i.e. a WFI after
2440 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2441 * the blob doesn't emit such a WFI.
2442 */
2443
2444 if (flags &
2445 (VK_ACCESS_TRANSFER_WRITE_BIT |
2446 VK_ACCESS_MEMORY_WRITE_BIT)) {
2447 if (gmem) {
2448 mask |= TU_ACCESS_SYSMEM_WRITE;
2449 } else {
2450 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2451 }
2452 mask |= TU_ACCESS_WFI_READ;
2453 }
2454
2455 if (flags &
2456 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2457 VK_ACCESS_MEMORY_READ_BIT)) {
2458 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2459 }
2460
2461 return mask;
2462 }
2463
2464
2465 void
2466 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2467 uint32_t commandBufferCount,
2468 const VkCommandBuffer *pCmdBuffers)
2469 {
2470 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2471 VkResult result;
2472
2473 assert(commandBufferCount > 0);
2474
2475 /* Emit any pending flushes. */
2476 if (cmd->state.pass) {
2477 tu_flush_all_pending(&cmd->state.renderpass_cache);
2478 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2479 } else {
2480 tu_flush_all_pending(&cmd->state.cache);
2481 tu_emit_cache_flush(cmd, &cmd->cs);
2482 }
2483
2484 for (uint32_t i = 0; i < commandBufferCount; i++) {
2485 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2486
2487 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2488 if (result != VK_SUCCESS) {
2489 cmd->record_result = result;
2490 break;
2491 }
2492
2493 if (secondary->usage_flags &
2494 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2495 assert(tu_cs_is_empty(&secondary->cs));
2496
2497 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2498 if (result != VK_SUCCESS) {
2499 cmd->record_result = result;
2500 break;
2501 }
2502
2503 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2504 &secondary->draw_epilogue_cs);
2505 if (result != VK_SUCCESS) {
2506 cmd->record_result = result;
2507 break;
2508 }
2509
2510 if (secondary->has_tess)
2511 cmd->has_tess = true;
2512 } else {
2513 assert(tu_cs_is_empty(&secondary->draw_cs));
2514 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2515
2516 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2517 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2518 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2519 }
2520
2521 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2522 }
2523
2524 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2525 }
2526 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2527
2528 /* After executing secondary command buffers, there may have been arbitrary
2529 * flushes executed, so when we encounter a pipeline barrier with a
2530 * srcMask, we have to assume that we need to invalidate. Therefore we need
2531 * to re-initialize the cache with all pending invalidate bits set.
2532 */
2533 if (cmd->state.pass) {
2534 tu_cache_init(&cmd->state.renderpass_cache);
2535 } else {
2536 tu_cache_init(&cmd->state.cache);
2537 }
2538 }
2539
2540 VkResult
2541 tu_CreateCommandPool(VkDevice _device,
2542 const VkCommandPoolCreateInfo *pCreateInfo,
2543 const VkAllocationCallbacks *pAllocator,
2544 VkCommandPool *pCmdPool)
2545 {
2546 TU_FROM_HANDLE(tu_device, device, _device);
2547 struct tu_cmd_pool *pool;
2548
2549 pool = vk_object_alloc(&device->vk, pAllocator, sizeof(*pool),
2550 VK_OBJECT_TYPE_COMMAND_POOL);
2551 if (pool == NULL)
2552 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2553
2554 if (pAllocator)
2555 pool->alloc = *pAllocator;
2556 else
2557 pool->alloc = device->vk.alloc;
2558
2559 list_inithead(&pool->cmd_buffers);
2560 list_inithead(&pool->free_cmd_buffers);
2561
2562 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2563
2564 *pCmdPool = tu_cmd_pool_to_handle(pool);
2565
2566 return VK_SUCCESS;
2567 }
2568
2569 void
2570 tu_DestroyCommandPool(VkDevice _device,
2571 VkCommandPool commandPool,
2572 const VkAllocationCallbacks *pAllocator)
2573 {
2574 TU_FROM_HANDLE(tu_device, device, _device);
2575 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2576
2577 if (!pool)
2578 return;
2579
2580 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2581 &pool->cmd_buffers, pool_link)
2582 {
2583 tu_cmd_buffer_destroy(cmd_buffer);
2584 }
2585
2586 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2587 &pool->free_cmd_buffers, pool_link)
2588 {
2589 tu_cmd_buffer_destroy(cmd_buffer);
2590 }
2591
2592 vk_object_free(&device->vk, pAllocator, pool);
2593 }
2594
2595 VkResult
2596 tu_ResetCommandPool(VkDevice device,
2597 VkCommandPool commandPool,
2598 VkCommandPoolResetFlags flags)
2599 {
2600 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2601 VkResult result;
2602
2603 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2604 pool_link)
2605 {
2606 result = tu_reset_cmd_buffer(cmd_buffer);
2607 if (result != VK_SUCCESS)
2608 return result;
2609 }
2610
2611 return VK_SUCCESS;
2612 }
2613
2614 void
2615 tu_TrimCommandPool(VkDevice device,
2616 VkCommandPool commandPool,
2617 VkCommandPoolTrimFlags flags)
2618 {
2619 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2620
2621 if (!pool)
2622 return;
2623
2624 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2625 &pool->free_cmd_buffers, pool_link)
2626 {
2627 tu_cmd_buffer_destroy(cmd_buffer);
2628 }
2629 }
2630
2631 static void
2632 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2633 const struct tu_subpass_barrier *barrier,
2634 bool external)
2635 {
2636 /* Note: we don't know until the end of the subpass whether we'll use
2637 * sysmem, so assume sysmem here to be safe.
2638 */
2639 struct tu_cache_state *cache =
2640 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2641 enum tu_cmd_access_mask src_flags =
2642 vk2tu_access(barrier->src_access_mask, false);
2643 enum tu_cmd_access_mask dst_flags =
2644 vk2tu_access(barrier->dst_access_mask, false);
2645
2646 if (barrier->incoherent_ccu_color)
2647 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2648 if (barrier->incoherent_ccu_depth)
2649 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2650
2651 tu_flush_for_access(cache, src_flags, dst_flags);
2652 }
2653
2654 void
2655 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2656 const VkRenderPassBeginInfo *pRenderPassBegin,
2657 VkSubpassContents contents)
2658 {
2659 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2660 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2661 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2662
2663 cmd->state.pass = pass;
2664 cmd->state.subpass = pass->subpasses;
2665 cmd->state.framebuffer = fb;
2666 cmd->state.render_area = pRenderPassBegin->renderArea;
2667
2668 tu_cmd_prepare_tile_store_ib(cmd);
2669
2670 /* Note: because this is external, any flushes will happen before draw_cs
2671 * gets called. However deferred flushes could have to happen later as part
2672 * of the subpass.
2673 */
2674 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2675 cmd->state.renderpass_cache.pending_flush_bits =
2676 cmd->state.cache.pending_flush_bits;
2677 cmd->state.renderpass_cache.flush_bits = 0;
2678
2679 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2680
2681 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2682 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2683 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2684 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2685
2686 tu_set_input_attachments(cmd, cmd->state.subpass);
2687
2688 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2689 const struct tu_image_view *iview = fb->attachments[i].attachment;
2690 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2691 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2692 }
2693
2694 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2695 }
2696
2697 void
2698 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2699 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2700 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2701 {
2702 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2703 pSubpassBeginInfo->contents);
2704 }
2705
2706 void
2707 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2708 {
2709 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2710 const struct tu_render_pass *pass = cmd->state.pass;
2711 struct tu_cs *cs = &cmd->draw_cs;
2712
2713 const struct tu_subpass *subpass = cmd->state.subpass++;
2714
2715 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2716
2717 if (subpass->resolve_attachments) {
2718 tu6_emit_blit_scissor(cmd, cs, true);
2719
2720 for (unsigned i = 0; i < subpass->color_count; i++) {
2721 uint32_t a = subpass->resolve_attachments[i].attachment;
2722 if (a == VK_ATTACHMENT_UNUSED)
2723 continue;
2724
2725 tu_store_gmem_attachment(cmd, cs, a,
2726 subpass->color_attachments[i].attachment);
2727
2728 if (pass->attachments[a].gmem_offset < 0)
2729 continue;
2730
2731 /* TODO:
2732 * check if the resolved attachment is needed by later subpasses,
2733 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2734 */
2735 tu_finishme("missing GMEM->GMEM resolve path\n");
2736 tu_load_gmem_attachment(cmd, cs, a, true);
2737 }
2738 }
2739
2740 tu_cond_exec_end(cs);
2741
2742 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2743
2744 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2745
2746 tu_cond_exec_end(cs);
2747
2748 /* Handle dependencies for the next subpass */
2749 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2750
2751 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2752 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2753 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2754 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2755 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2756
2757 tu_set_input_attachments(cmd, cmd->state.subpass);
2758 }
2759
2760 void
2761 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2762 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2763 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2764 {
2765 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2766 }
2767
2768 static void
2769 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2770 struct tu_descriptor_state *descriptors_state,
2771 gl_shader_stage type,
2772 uint32_t *push_constants)
2773 {
2774 const struct tu_program_descriptor_linkage *link =
2775 &pipeline->program.link[type];
2776 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2777
2778 if (link->push_consts.count > 0) {
2779 unsigned num_units = link->push_consts.count;
2780 unsigned offset = link->push_consts.lo;
2781 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2782 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2783 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2784 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2785 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2786 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2787 tu_cs_emit(cs, 0);
2788 tu_cs_emit(cs, 0);
2789 for (unsigned i = 0; i < num_units * 4; i++)
2790 tu_cs_emit(cs, push_constants[i + offset * 4]);
2791 }
2792
2793 for (uint32_t i = 0; i < state->num_enabled; i++) {
2794 uint32_t size = state->range[i].end - state->range[i].start;
2795 uint32_t offset = state->range[i].start;
2796
2797 /* and even if the start of the const buffer is before
2798 * first_immediate, the end may not be:
2799 */
2800 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2801
2802 if (size == 0)
2803 continue;
2804
2805 /* things should be aligned to vec4: */
2806 debug_assert((state->range[i].offset % 16) == 0);
2807 debug_assert((size % 16) == 0);
2808 debug_assert((offset % 16) == 0);
2809
2810 /* Dig out the descriptor from the descriptor state and read the VA from
2811 * it.
2812 */
2813 assert(state->range[i].ubo.bindless);
2814 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2815 descriptors_state->dynamic_descriptors :
2816 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2817 unsigned block = state->range[i].ubo.block;
2818 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2819 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2820 assert(va);
2821
2822 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2823 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2824 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2825 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2826 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2827 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2828 tu_cs_emit_qw(cs, va + offset);
2829 }
2830 }
2831
2832 static struct tu_draw_state
2833 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2834 const struct tu_pipeline *pipeline,
2835 struct tu_descriptor_state *descriptors_state,
2836 gl_shader_stage type)
2837 {
2838 struct tu_cs cs;
2839 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2840
2841 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2842
2843 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2844 }
2845
2846 static struct tu_draw_state
2847 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2848 const struct tu_pipeline *pipeline)
2849 {
2850 struct tu_cs cs;
2851 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2852
2853 int binding;
2854 for_each_bit(binding, pipeline->vi.bindings_used) {
2855 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2856 const VkDeviceSize offset = buf->bo_offset +
2857 cmd->state.vb.offsets[binding];
2858
2859 tu_cs_emit_regs(&cs,
2860 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2861 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2862
2863 }
2864
2865 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2866
2867 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2868 }
2869
2870 static uint64_t
2871 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
2872 uint32_t draw_count)
2873 {
2874 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2875 * Still not sure what to do here, so just allocate a reasonably large
2876 * BO and hope for the best for now. */
2877 if (!draw_count)
2878 draw_count = 2048;
2879
2880 /* the tess param BO is pipeline->tess.param_stride bytes per patch,
2881 * which includes both the per-vertex outputs and per-patch outputs
2882 * build_primitive_map in ir3 calculates this stride
2883 */
2884 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2885 uint32_t num_patches = draw_count / verts_per_patch;
2886 return num_patches * pipeline->tess.param_stride;
2887 }
2888
2889 static uint64_t
2890 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
2891 uint32_t draw_count)
2892 {
2893 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2894 * Still not sure what to do here, so just allocate a reasonably large
2895 * BO and hope for the best for now. */
2896 if (!draw_count)
2897 draw_count = 2048;
2898
2899 /* Each distinct patch gets its own tess factor output. */
2900 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2901 uint32_t num_patches = draw_count / verts_per_patch;
2902 uint32_t factor_stride;
2903 switch (pipeline->tess.patch_type) {
2904 case IR3_TESS_ISOLINES:
2905 factor_stride = 12;
2906 break;
2907 case IR3_TESS_TRIANGLES:
2908 factor_stride = 20;
2909 break;
2910 case IR3_TESS_QUADS:
2911 factor_stride = 28;
2912 break;
2913 default:
2914 unreachable("bad tessmode");
2915 }
2916 return factor_stride * num_patches;
2917 }
2918
2919 static VkResult
2920 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
2921 uint32_t draw_count,
2922 const struct tu_pipeline *pipeline,
2923 struct tu_draw_state *state,
2924 uint64_t *factor_iova)
2925 {
2926 struct tu_cs cs;
2927 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 16, &cs);
2928 if (result != VK_SUCCESS)
2929 return result;
2930
2931 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
2932 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
2933 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
2934 if (tess_bo_size > 0) {
2935 struct tu_bo *tess_bo;
2936 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
2937 if (result != VK_SUCCESS)
2938 return result;
2939
2940 tu_bo_list_add(&cmd->bo_list, tess_bo,
2941 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2942 uint64_t tess_factor_iova = tess_bo->iova;
2943 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
2944
2945 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2946 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
2947 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2948 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2949 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
2950 CP_LOAD_STATE6_0_NUM_UNIT(1));
2951 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2952 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2953 tu_cs_emit_qw(&cs, tess_param_iova);
2954 tu_cs_emit_qw(&cs, tess_factor_iova);
2955
2956 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2957 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
2958 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2959 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2960 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
2961 CP_LOAD_STATE6_0_NUM_UNIT(1));
2962 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2963 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2964 tu_cs_emit_qw(&cs, tess_param_iova);
2965 tu_cs_emit_qw(&cs, tess_factor_iova);
2966
2967 *factor_iova = tess_factor_iova;
2968 }
2969 *state = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2970 return VK_SUCCESS;
2971 }
2972
2973 static VkResult
2974 tu6_draw_common(struct tu_cmd_buffer *cmd,
2975 struct tu_cs *cs,
2976 bool indexed,
2977 /* note: draw_count is 0 for indirect */
2978 uint32_t draw_count)
2979 {
2980 const struct tu_pipeline *pipeline = cmd->state.pipeline;
2981 VkResult result;
2982
2983 struct tu_descriptor_state *descriptors_state =
2984 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
2985
2986 tu_emit_cache_flush_renderpass(cmd, cs);
2987
2988 /* TODO lrz */
2989
2990 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
2991 .primitive_restart =
2992 pipeline->ia.primitive_restart && indexed,
2993 .tess_upper_left_domain_origin =
2994 pipeline->tess.upper_left_domain_origin));
2995
2996 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
2997 cmd->state.shader_const[MESA_SHADER_VERTEX] =
2998 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
2999 cmd->state.shader_const[MESA_SHADER_TESS_CTRL] =
3000 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
3001 cmd->state.shader_const[MESA_SHADER_TESS_EVAL] =
3002 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
3003 cmd->state.shader_const[MESA_SHADER_GEOMETRY] =
3004 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
3005 cmd->state.shader_const[MESA_SHADER_FRAGMENT] =
3006 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3007 }
3008
3009 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3010 cmd->state.vertex_buffers = tu6_emit_vertex_buffers(cmd, pipeline);
3011
3012 bool has_tess =
3013 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3014 struct tu_draw_state tess_consts = {};
3015 if (has_tess) {
3016 uint64_t tess_factor_iova = 0;
3017
3018 cmd->has_tess = true;
3019 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts, &tess_factor_iova);
3020 if (result != VK_SUCCESS)
3021 return result;
3022
3023 /* this sequence matches what the blob does before every tess draw
3024 * PC_TESSFACTOR_ADDR_LO is a non-context register and needs a wfi
3025 * before writing to it
3026 */
3027 tu_cs_emit_wfi(cs);
3028
3029 tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
3030 tu_cs_emit_qw(cs, tess_factor_iova);
3031
3032 tu_cs_emit_pkt7(cs, CP_SET_SUBDRAW_SIZE, 1);
3033 tu_cs_emit(cs, draw_count);
3034 }
3035
3036 /* for the first draw in a renderpass, re-emit all the draw states
3037 *
3038 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3039 * used, then draw states must be re-emitted. note however this only happens
3040 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3041 *
3042 * the two input attachment states are excluded because secondary command
3043 * buffer doesn't have a state ib to restore it, and not re-emitting them
3044 * is OK since CmdClearAttachments won't disable/overwrite them
3045 */
3046 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3047 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3048
3049 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
3050 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
3051 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3052 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
3053 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
3054 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
3055 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
3056 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
3057 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3058 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3059 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3060 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3061 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3062 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
3063 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3064 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3065 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3066
3067 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3068 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3069 ((pipeline->dynamic_state_mask & BIT(i)) ?
3070 cmd->state.dynamic_state[i] :
3071 pipeline->dynamic_state[i]));
3072 }
3073 } else {
3074
3075 /* emit draw states that were just updated
3076 * note we eventually don't want to have to emit anything here
3077 */
3078 uint32_t draw_state_count =
3079 has_tess +
3080 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3081 ((cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD) ? 1 : 0) +
3082 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3083 1; /* vs_params */
3084
3085 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3086
3087 /* We may need to re-emit tess consts if the current draw call is
3088 * sufficiently larger than the last draw call. */
3089 if (has_tess)
3090 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3091 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3092 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3093 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3094 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3095 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3096 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3097 }
3098 if (cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD)
3099 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3100 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3101 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3102 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3103 }
3104
3105 tu_cs_sanity_check(cs);
3106
3107 /* There are too many graphics dirty bits to list here, so just list the
3108 * bits to preserve instead. The only things not emitted here are
3109 * compute-related state.
3110 */
3111 cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3112 return VK_SUCCESS;
3113 }
3114
3115 static uint32_t
3116 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3117 {
3118 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3119 uint32_t initiator =
3120 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3121 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3122 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3123 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3124
3125 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3126 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3127
3128 switch (pipeline->tess.patch_type) {
3129 case IR3_TESS_TRIANGLES:
3130 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3131 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3132 break;
3133 case IR3_TESS_ISOLINES:
3134 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3135 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3136 break;
3137 case IR3_TESS_NONE:
3138 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3139 break;
3140 case IR3_TESS_QUADS:
3141 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3142 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3143 break;
3144 }
3145 return initiator;
3146 }
3147
3148
3149 static uint32_t
3150 vs_params_offset(struct tu_cmd_buffer *cmd)
3151 {
3152 const struct tu_program_descriptor_linkage *link =
3153 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3154 const struct ir3_const_state *const_state = &link->const_state;
3155
3156 if (const_state->offsets.driver_param >= link->constlen)
3157 return 0;
3158
3159 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3160 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3161 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3162 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3163
3164 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3165 assert(const_state->offsets.driver_param != 0);
3166
3167 return const_state->offsets.driver_param;
3168 }
3169
3170 static struct tu_draw_state
3171 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3172 uint32_t vertex_offset,
3173 uint32_t first_instance)
3174 {
3175 uint32_t offset = vs_params_offset(cmd);
3176
3177 struct tu_cs cs;
3178 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3179 if (result != VK_SUCCESS) {
3180 cmd->record_result = result;
3181 return (struct tu_draw_state) {};
3182 }
3183
3184 /* TODO: don't make a new draw state when it doesn't change */
3185
3186 tu_cs_emit_regs(&cs,
3187 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3188 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3189
3190 if (offset) {
3191 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3192 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3193 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3194 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3195 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3196 CP_LOAD_STATE6_0_NUM_UNIT(1));
3197 tu_cs_emit(&cs, 0);
3198 tu_cs_emit(&cs, 0);
3199
3200 tu_cs_emit(&cs, 0);
3201 tu_cs_emit(&cs, vertex_offset);
3202 tu_cs_emit(&cs, first_instance);
3203 tu_cs_emit(&cs, 0);
3204 }
3205
3206 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3207 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3208 }
3209
3210 void
3211 tu_CmdDraw(VkCommandBuffer commandBuffer,
3212 uint32_t vertexCount,
3213 uint32_t instanceCount,
3214 uint32_t firstVertex,
3215 uint32_t firstInstance)
3216 {
3217 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3218 struct tu_cs *cs = &cmd->draw_cs;
3219
3220 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3221
3222 tu6_draw_common(cmd, cs, false, vertexCount);
3223
3224 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3225 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3226 tu_cs_emit(cs, instanceCount);
3227 tu_cs_emit(cs, vertexCount);
3228 }
3229
3230 void
3231 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3232 uint32_t indexCount,
3233 uint32_t instanceCount,
3234 uint32_t firstIndex,
3235 int32_t vertexOffset,
3236 uint32_t firstInstance)
3237 {
3238 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3239 struct tu_cs *cs = &cmd->draw_cs;
3240
3241 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3242
3243 tu6_draw_common(cmd, cs, true, indexCount);
3244
3245 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3246 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3247 tu_cs_emit(cs, instanceCount);
3248 tu_cs_emit(cs, indexCount);
3249 tu_cs_emit(cs, firstIndex);
3250 tu_cs_emit_qw(cs, cmd->state.index_va);
3251 tu_cs_emit(cs, cmd->state.max_index_count);
3252 }
3253
3254 /* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
3255 * do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
3256 * pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
3257 * with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
3258 * before draw opcodes that don't need it.
3259 */
3260 static void
3261 draw_wfm(struct tu_cmd_buffer *cmd)
3262 {
3263 cmd->state.renderpass_cache.flush_bits |=
3264 cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
3265 cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
3266 }
3267
3268 void
3269 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3270 VkBuffer _buffer,
3271 VkDeviceSize offset,
3272 uint32_t drawCount,
3273 uint32_t stride)
3274 {
3275 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3276 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3277 struct tu_cs *cs = &cmd->draw_cs;
3278
3279 cmd->state.vs_params = (struct tu_draw_state) {};
3280
3281 /* The latest known a630_sqe.fw fails to wait for WFI before reading the
3282 * indirect buffer when using CP_DRAW_INDIRECT_MULTI, so we have to fall
3283 * back to CP_WAIT_FOR_ME except for a650 which has a fixed firmware.
3284 *
3285 * TODO: There may be newer a630_sqe.fw released in the future which fixes
3286 * this, if so we should detect it and avoid this workaround.
3287 */
3288 if (cmd->device->physical_device->gpu_id != 650)
3289 draw_wfm(cmd);
3290
3291 tu6_draw_common(cmd, cs, false, 0);
3292
3293 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3294 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3295 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3296 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3297 tu_cs_emit(cs, drawCount);
3298 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3299 tu_cs_emit(cs, stride);
3300
3301 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3302 }
3303
3304 void
3305 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3306 VkBuffer _buffer,
3307 VkDeviceSize offset,
3308 uint32_t drawCount,
3309 uint32_t stride)
3310 {
3311 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3312 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3313 struct tu_cs *cs = &cmd->draw_cs;
3314
3315 cmd->state.vs_params = (struct tu_draw_state) {};
3316
3317 if (cmd->device->physical_device->gpu_id != 650)
3318 draw_wfm(cmd);
3319
3320 tu6_draw_common(cmd, cs, true, 0);
3321
3322 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3323 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3324 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3325 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3326 tu_cs_emit(cs, drawCount);
3327 tu_cs_emit_qw(cs, cmd->state.index_va);
3328 tu_cs_emit(cs, cmd->state.max_index_count);
3329 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3330 tu_cs_emit(cs, stride);
3331
3332 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3333 }
3334
3335 void
3336 tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
3337 VkBuffer _buffer,
3338 VkDeviceSize offset,
3339 VkBuffer countBuffer,
3340 VkDeviceSize countBufferOffset,
3341 uint32_t drawCount,
3342 uint32_t stride)
3343 {
3344 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3345 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3346 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
3347 struct tu_cs *cs = &cmd->draw_cs;
3348
3349 cmd->state.vs_params = (struct tu_draw_state) {};
3350
3351 /* It turns out that the firmware we have for a650 only partially fixed the
3352 * problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
3353 * before reading indirect parameters. It waits for WFI's before reading
3354 * the draw parameters, but after reading the indirect count :(.
3355 */
3356 draw_wfm(cmd);
3357
3358 tu6_draw_common(cmd, cs, false, 0);
3359
3360 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
3361 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3362 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
3363 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3364 tu_cs_emit(cs, drawCount);
3365 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3366 tu_cs_emit_qw(cs, count_buf->bo->iova + count_buf->bo_offset + countBufferOffset);
3367 tu_cs_emit(cs, stride);
3368
3369 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3370 tu_bo_list_add(&cmd->bo_list, count_buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3371 }
3372
3373 void
3374 tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
3375 VkBuffer _buffer,
3376 VkDeviceSize offset,
3377 VkBuffer countBuffer,
3378 VkDeviceSize countBufferOffset,
3379 uint32_t drawCount,
3380 uint32_t stride)
3381 {
3382 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3383 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3384 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
3385 struct tu_cs *cs = &cmd->draw_cs;
3386
3387 cmd->state.vs_params = (struct tu_draw_state) {};
3388
3389 draw_wfm(cmd);
3390
3391 tu6_draw_common(cmd, cs, true, 0);
3392
3393 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
3394 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3395 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
3396 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3397 tu_cs_emit(cs, drawCount);
3398 tu_cs_emit_qw(cs, cmd->state.index_va);
3399 tu_cs_emit(cs, cmd->state.max_index_count);
3400 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3401 tu_cs_emit_qw(cs, count_buf->bo->iova + count_buf->bo_offset + countBufferOffset);
3402 tu_cs_emit(cs, stride);
3403
3404 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3405 tu_bo_list_add(&cmd->bo_list, count_buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3406 }
3407
3408 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3409 uint32_t instanceCount,
3410 uint32_t firstInstance,
3411 VkBuffer _counterBuffer,
3412 VkDeviceSize counterBufferOffset,
3413 uint32_t counterOffset,
3414 uint32_t vertexStride)
3415 {
3416 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3417 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3418 struct tu_cs *cs = &cmd->draw_cs;
3419
3420 /* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
3421 * Plus, for the common case where the counter buffer is written by
3422 * vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
3423 * complete which means we need a WAIT_FOR_ME anyway.
3424 */
3425 draw_wfm(cmd);
3426
3427 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3428
3429 tu6_draw_common(cmd, cs, false, 0);
3430
3431 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3432 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3433 tu_cs_emit(cs, instanceCount);
3434 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3435 tu_cs_emit(cs, counterOffset);
3436 tu_cs_emit(cs, vertexStride);
3437
3438 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3439 }
3440
3441 struct tu_dispatch_info
3442 {
3443 /**
3444 * Determine the layout of the grid (in block units) to be used.
3445 */
3446 uint32_t blocks[3];
3447
3448 /**
3449 * A starting offset for the grid. If unaligned is set, the offset
3450 * must still be aligned.
3451 */
3452 uint32_t offsets[3];
3453 /**
3454 * Whether it's an unaligned compute dispatch.
3455 */
3456 bool unaligned;
3457
3458 /**
3459 * Indirect compute parameters resource.
3460 */
3461 struct tu_buffer *indirect;
3462 uint64_t indirect_offset;
3463 };
3464
3465 static void
3466 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3467 const struct tu_dispatch_info *info)
3468 {
3469 gl_shader_stage type = MESA_SHADER_COMPUTE;
3470 const struct tu_program_descriptor_linkage *link =
3471 &pipeline->program.link[type];
3472 const struct ir3_const_state *const_state = &link->const_state;
3473 uint32_t offset = const_state->offsets.driver_param;
3474
3475 if (link->constlen <= offset)
3476 return;
3477
3478 if (!info->indirect) {
3479 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3480 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3481 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3482 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3483 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3484 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3485 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3486 };
3487
3488 uint32_t num_consts = MIN2(const_state->num_driver_params,
3489 (link->constlen - offset) * 4);
3490 /* push constants */
3491 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3492 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3493 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3494 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3495 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3496 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3497 tu_cs_emit(cs, 0);
3498 tu_cs_emit(cs, 0);
3499 uint32_t i;
3500 for (i = 0; i < num_consts; i++)
3501 tu_cs_emit(cs, driver_params[i]);
3502 } else {
3503 tu_finishme("Indirect driver params");
3504 }
3505 }
3506
3507 static void
3508 tu_dispatch(struct tu_cmd_buffer *cmd,
3509 const struct tu_dispatch_info *info)
3510 {
3511 struct tu_cs *cs = &cmd->cs;
3512 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3513 struct tu_descriptor_state *descriptors_state =
3514 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3515
3516 /* TODO: We could probably flush less if we add a compute_flush_bits
3517 * bitfield.
3518 */
3519 tu_emit_cache_flush(cmd, cs);
3520
3521 /* note: no reason to have this in a separate IB */
3522 tu_cs_emit_state_ib(cs,
3523 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE));
3524
3525 tu_emit_compute_driver_params(cs, pipeline, info);
3526
3527 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD)
3528 tu_cs_emit_state_ib(cs, pipeline->load_state);
3529
3530 cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3531
3532 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3533 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3534
3535 const uint32_t *local_size = pipeline->compute.local_size;
3536 const uint32_t *num_groups = info->blocks;
3537 tu_cs_emit_regs(cs,
3538 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3539 .localsizex = local_size[0] - 1,
3540 .localsizey = local_size[1] - 1,
3541 .localsizez = local_size[2] - 1),
3542 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3543 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3544 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3545 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3546 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3547 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3548
3549 tu_cs_emit_regs(cs,
3550 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3551 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3552 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3553
3554 if (info->indirect) {
3555 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3556
3557 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3558 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3559
3560 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3561 tu_cs_emit(cs, 0x00000000);
3562 tu_cs_emit_qw(cs, iova);
3563 tu_cs_emit(cs,
3564 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3565 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3566 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3567 } else {
3568 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3569 tu_cs_emit(cs, 0x00000000);
3570 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3571 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3572 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3573 }
3574
3575 tu_cs_emit_wfi(cs);
3576 }
3577
3578 void
3579 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3580 uint32_t base_x,
3581 uint32_t base_y,
3582 uint32_t base_z,
3583 uint32_t x,
3584 uint32_t y,
3585 uint32_t z)
3586 {
3587 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3588 struct tu_dispatch_info info = {};
3589
3590 info.blocks[0] = x;
3591 info.blocks[1] = y;
3592 info.blocks[2] = z;
3593
3594 info.offsets[0] = base_x;
3595 info.offsets[1] = base_y;
3596 info.offsets[2] = base_z;
3597 tu_dispatch(cmd_buffer, &info);
3598 }
3599
3600 void
3601 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3602 uint32_t x,
3603 uint32_t y,
3604 uint32_t z)
3605 {
3606 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3607 }
3608
3609 void
3610 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3611 VkBuffer _buffer,
3612 VkDeviceSize offset)
3613 {
3614 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3615 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3616 struct tu_dispatch_info info = {};
3617
3618 info.indirect = buffer;
3619 info.indirect_offset = offset;
3620
3621 tu_dispatch(cmd_buffer, &info);
3622 }
3623
3624 void
3625 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3626 {
3627 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3628
3629 tu_cs_end(&cmd_buffer->draw_cs);
3630 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3631
3632 if (use_sysmem_rendering(cmd_buffer))
3633 tu_cmd_render_sysmem(cmd_buffer);
3634 else
3635 tu_cmd_render_tiles(cmd_buffer);
3636
3637 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3638 rendered */
3639 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3640 tu_cs_begin(&cmd_buffer->draw_cs);
3641 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3642 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3643
3644 cmd_buffer->state.cache.pending_flush_bits |=
3645 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3646 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3647
3648 cmd_buffer->state.pass = NULL;
3649 cmd_buffer->state.subpass = NULL;
3650 cmd_buffer->state.framebuffer = NULL;
3651 }
3652
3653 void
3654 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3655 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3656 {
3657 tu_CmdEndRenderPass(commandBuffer);
3658 }
3659
3660 struct tu_barrier_info
3661 {
3662 uint32_t eventCount;
3663 const VkEvent *pEvents;
3664 VkPipelineStageFlags srcStageMask;
3665 };
3666
3667 static void
3668 tu_barrier(struct tu_cmd_buffer *cmd,
3669 uint32_t memoryBarrierCount,
3670 const VkMemoryBarrier *pMemoryBarriers,
3671 uint32_t bufferMemoryBarrierCount,
3672 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3673 uint32_t imageMemoryBarrierCount,
3674 const VkImageMemoryBarrier *pImageMemoryBarriers,
3675 const struct tu_barrier_info *info)
3676 {
3677 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3678 VkAccessFlags srcAccessMask = 0;
3679 VkAccessFlags dstAccessMask = 0;
3680
3681 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3682 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3683 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3684 }
3685
3686 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3687 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3688 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3689 }
3690
3691 enum tu_cmd_access_mask src_flags = 0;
3692 enum tu_cmd_access_mask dst_flags = 0;
3693
3694 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3695 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3696 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3697 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3698 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3699 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3700 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3701 /* The underlying memory for this image may have been used earlier
3702 * within the same queue submission for a different image, which
3703 * means that there may be old, stale cache entries which are in the
3704 * "wrong" location, which could cause problems later after writing
3705 * to the image. We don't want these entries being flushed later and
3706 * overwriting the actual image, so we need to flush the CCU.
3707 */
3708 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3709 }
3710 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3711 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3712 }
3713
3714 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3715 * so we have to use the sysmem flushes.
3716 */
3717 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3718 !cmd->state.pass;
3719 src_flags |= vk2tu_access(srcAccessMask, gmem);
3720 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3721
3722 struct tu_cache_state *cache =
3723 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3724 tu_flush_for_access(cache, src_flags, dst_flags);
3725
3726 for (uint32_t i = 0; i < info->eventCount; i++) {
3727 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3728
3729 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3730
3731 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3732 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3733 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3734 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3735 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3736 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3737 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3738 }
3739 }
3740
3741 void
3742 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3743 VkPipelineStageFlags srcStageMask,
3744 VkPipelineStageFlags dstStageMask,
3745 VkDependencyFlags dependencyFlags,
3746 uint32_t memoryBarrierCount,
3747 const VkMemoryBarrier *pMemoryBarriers,
3748 uint32_t bufferMemoryBarrierCount,
3749 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3750 uint32_t imageMemoryBarrierCount,
3751 const VkImageMemoryBarrier *pImageMemoryBarriers)
3752 {
3753 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3754 struct tu_barrier_info info;
3755
3756 info.eventCount = 0;
3757 info.pEvents = NULL;
3758 info.srcStageMask = srcStageMask;
3759
3760 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3761 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3762 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3763 }
3764
3765 static void
3766 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3767 VkPipelineStageFlags stageMask, unsigned value)
3768 {
3769 struct tu_cs *cs = &cmd->cs;
3770
3771 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3772 assert(!cmd->state.pass);
3773
3774 tu_emit_cache_flush(cmd, cs);
3775
3776 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3777
3778 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3779 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3780 */
3781 VkPipelineStageFlags top_of_pipe_flags =
3782 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3783 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3784
3785 if (!(stageMask & ~top_of_pipe_flags)) {
3786 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3787 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3788 tu_cs_emit(cs, value);
3789 } else {
3790 /* Use a RB_DONE_TS event to wait for everything to complete. */
3791 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3792 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3793 tu_cs_emit_qw(cs, event->bo.iova);
3794 tu_cs_emit(cs, value);
3795 }
3796 }
3797
3798 void
3799 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3800 VkEvent _event,
3801 VkPipelineStageFlags stageMask)
3802 {
3803 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3804 TU_FROM_HANDLE(tu_event, event, _event);
3805
3806 write_event(cmd, event, stageMask, 1);
3807 }
3808
3809 void
3810 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3811 VkEvent _event,
3812 VkPipelineStageFlags stageMask)
3813 {
3814 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3815 TU_FROM_HANDLE(tu_event, event, _event);
3816
3817 write_event(cmd, event, stageMask, 0);
3818 }
3819
3820 void
3821 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3822 uint32_t eventCount,
3823 const VkEvent *pEvents,
3824 VkPipelineStageFlags srcStageMask,
3825 VkPipelineStageFlags dstStageMask,
3826 uint32_t memoryBarrierCount,
3827 const VkMemoryBarrier *pMemoryBarriers,
3828 uint32_t bufferMemoryBarrierCount,
3829 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3830 uint32_t imageMemoryBarrierCount,
3831 const VkImageMemoryBarrier *pImageMemoryBarriers)
3832 {
3833 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3834 struct tu_barrier_info info;
3835
3836 info.eventCount = eventCount;
3837 info.pEvents = pEvents;
3838 info.srcStageMask = 0;
3839
3840 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3841 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3842 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3843 }
3844
3845 void
3846 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3847 {
3848 /* No-op */
3849 }