turnip: make tiling config part of framebuffer state
[mesa.git] / src / freedreno / vulkan / tu_private.h
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #ifndef TU_PRIVATE_H
29 #define TU_PRIVATE_H
30
31 #include <assert.h>
32 #include <pthread.h>
33 #include <stdbool.h>
34 #include <stdint.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #ifdef HAVE_VALGRIND
39 #include <memcheck.h>
40 #include <valgrind.h>
41 #define VG(x) x
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "c11/threads.h"
47 #include "main/macros.h"
48 #include "util/list.h"
49 #include "util/macros.h"
50 #include "util/u_atomic.h"
51 #include "vk_alloc.h"
52 #include "vk_debug_report.h"
53 #include "wsi_common.h"
54
55 #include "drm-uapi/msm_drm.h"
56 #include "ir3/ir3_compiler.h"
57 #include "ir3/ir3_shader.h"
58
59 #include "adreno_common.xml.h"
60 #include "adreno_pm4.xml.h"
61 #include "a6xx.xml.h"
62 #include "fdl/freedreno_layout.h"
63
64 #include "tu_descriptor_set.h"
65 #include "tu_extensions.h"
66 #include "tu_util.h"
67
68 /* Pre-declarations needed for WSI entrypoints */
69 struct wl_surface;
70 struct wl_display;
71 typedef struct xcb_connection_t xcb_connection_t;
72 typedef uint32_t xcb_visualid_t;
73 typedef uint32_t xcb_window_t;
74
75 #include <vulkan/vk_android_native_buffer.h>
76 #include <vulkan/vk_icd.h>
77 #include <vulkan/vulkan.h>
78 #include <vulkan/vulkan_intel.h>
79
80 #include "tu_entrypoints.h"
81
82 #include "vk_format.h"
83
84 #define MAX_VBS 32
85 #define MAX_VERTEX_ATTRIBS 32
86 #define MAX_RTS 8
87 #define MAX_VSC_PIPES 32
88 #define MAX_VIEWPORTS 1
89 #define MAX_SCISSORS 16
90 #define MAX_DISCARD_RECTANGLES 4
91 #define MAX_PUSH_CONSTANTS_SIZE 128
92 #define MAX_PUSH_DESCRIPTORS 32
93 #define MAX_DYNAMIC_UNIFORM_BUFFERS 16
94 #define MAX_DYNAMIC_STORAGE_BUFFERS 8
95 #define MAX_DYNAMIC_BUFFERS \
96 (MAX_DYNAMIC_UNIFORM_BUFFERS + MAX_DYNAMIC_STORAGE_BUFFERS)
97 #define TU_MAX_DRM_DEVICES 8
98 #define MAX_VIEWS 8
99 #define MAX_BIND_POINTS 2 /* compute + graphics */
100 /* The Qualcomm driver exposes 0x20000058 */
101 #define MAX_STORAGE_BUFFER_RANGE 0x20000000
102 /* We use ldc for uniform buffer loads, just like the Qualcomm driver, so
103 * expose the same maximum range.
104 * TODO: The SIZE bitfield is 15 bits, and in 4-dword units, so the actual
105 * range might be higher.
106 */
107 #define MAX_UNIFORM_BUFFER_RANGE 0x10000
108
109 #define A6XX_TEX_CONST_DWORDS 16
110 #define A6XX_TEX_SAMP_DWORDS 4
111
112 #define tu_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
113
114 static inline uint32_t
115 tu_minify(uint32_t n, uint32_t levels)
116 {
117 if (unlikely(n == 0))
118 return 0;
119 else
120 return MAX2(n >> levels, 1);
121 }
122
123 #define for_each_bit(b, dword) \
124 for (uint32_t __dword = (dword); \
125 (b) = __builtin_ffs(__dword) - 1, __dword; __dword &= ~(1 << (b)))
126
127 #define typed_memcpy(dest, src, count) \
128 ({ \
129 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
130 memcpy((dest), (src), (count) * sizeof(*(src))); \
131 })
132
133 #define COND(bool, val) ((bool) ? (val) : 0)
134 #define BIT(bit) (1u << (bit))
135
136 /* Whenever we generate an error, pass it through this function. Useful for
137 * debugging, where we can break on it. Only call at error site, not when
138 * propagating errors. Might be useful to plug in a stack trace here.
139 */
140
141 struct tu_instance;
142
143 VkResult
144 __vk_errorf(struct tu_instance *instance,
145 VkResult error,
146 const char *file,
147 int line,
148 const char *format,
149 ...);
150
151 #define vk_error(instance, error) \
152 __vk_errorf(instance, error, __FILE__, __LINE__, NULL);
153 #define vk_errorf(instance, error, format, ...) \
154 __vk_errorf(instance, error, __FILE__, __LINE__, format, ##__VA_ARGS__);
155
156 void
157 __tu_finishme(const char *file, int line, const char *format, ...)
158 tu_printflike(3, 4);
159 void
160 tu_loge(const char *format, ...) tu_printflike(1, 2);
161 void
162 tu_logi(const char *format, ...) tu_printflike(1, 2);
163
164 /**
165 * Print a FINISHME message, including its source location.
166 */
167 #define tu_finishme(format, ...) \
168 do { \
169 static bool reported = false; \
170 if (!reported) { \
171 __tu_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
172 reported = true; \
173 } \
174 } while (0)
175
176 #define tu_stub() \
177 do { \
178 tu_finishme("stub %s", __func__); \
179 } while (0)
180
181 void *
182 tu_lookup_entrypoint_unchecked(const char *name);
183 void *
184 tu_lookup_entrypoint_checked(
185 const char *name,
186 uint32_t core_version,
187 const struct tu_instance_extension_table *instance,
188 const struct tu_device_extension_table *device);
189
190 struct tu_physical_device
191 {
192 VK_LOADER_DATA _loader_data;
193
194 struct tu_instance *instance;
195
196 char path[20];
197 char name[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
198 uint8_t driver_uuid[VK_UUID_SIZE];
199 uint8_t device_uuid[VK_UUID_SIZE];
200 uint8_t cache_uuid[VK_UUID_SIZE];
201
202 struct wsi_device wsi_device;
203
204 int local_fd;
205 int master_fd;
206
207 unsigned gpu_id;
208 uint32_t gmem_size;
209 uint64_t gmem_base;
210 uint32_t ccu_offset_gmem;
211 uint32_t ccu_offset_bypass;
212 /* alignment for size of tiles */
213 uint32_t tile_align_w;
214 #define TILE_ALIGN_H 16
215 /* gmem store/load granularity */
216 #define GMEM_ALIGN_W 16
217 #define GMEM_ALIGN_H 4
218
219 struct {
220 uint32_t PC_UNKNOWN_9805;
221 uint32_t SP_UNKNOWN_A0F8;
222 } magic;
223
224 int msm_major_version;
225 int msm_minor_version;
226
227 /* This is the drivers on-disk cache used as a fallback as opposed to
228 * the pipeline cache defined by apps.
229 */
230 struct disk_cache *disk_cache;
231
232 struct tu_device_extension_table supported_extensions;
233 };
234
235 enum tu_debug_flags
236 {
237 TU_DEBUG_STARTUP = 1 << 0,
238 TU_DEBUG_NIR = 1 << 1,
239 TU_DEBUG_IR3 = 1 << 2,
240 TU_DEBUG_NOBIN = 1 << 3,
241 TU_DEBUG_SYSMEM = 1 << 4,
242 TU_DEBUG_FORCEBIN = 1 << 5,
243 TU_DEBUG_NOUBWC = 1 << 6,
244 };
245
246 struct tu_instance
247 {
248 VK_LOADER_DATA _loader_data;
249
250 VkAllocationCallbacks alloc;
251
252 uint32_t api_version;
253 int physical_device_count;
254 struct tu_physical_device physical_devices[TU_MAX_DRM_DEVICES];
255
256 enum tu_debug_flags debug_flags;
257
258 struct vk_debug_report_instance debug_report_callbacks;
259
260 struct tu_instance_extension_table enabled_extensions;
261 };
262
263 VkResult
264 tu_wsi_init(struct tu_physical_device *physical_device);
265 void
266 tu_wsi_finish(struct tu_physical_device *physical_device);
267
268 bool
269 tu_instance_extension_supported(const char *name);
270 uint32_t
271 tu_physical_device_api_version(struct tu_physical_device *dev);
272 bool
273 tu_physical_device_extension_supported(struct tu_physical_device *dev,
274 const char *name);
275
276 struct cache_entry;
277
278 struct tu_pipeline_cache
279 {
280 struct tu_device *device;
281 pthread_mutex_t mutex;
282
283 uint32_t total_size;
284 uint32_t table_size;
285 uint32_t kernel_count;
286 struct cache_entry **hash_table;
287 bool modified;
288
289 VkAllocationCallbacks alloc;
290 };
291
292 struct tu_pipeline_key
293 {
294 };
295
296
297 /* queue types */
298 #define TU_QUEUE_GENERAL 0
299
300 #define TU_MAX_QUEUE_FAMILIES 1
301
302 struct tu_fence
303 {
304 struct wsi_fence *fence_wsi;
305 bool signaled;
306 int fd;
307 };
308
309 void
310 tu_fence_init(struct tu_fence *fence, bool signaled);
311 void
312 tu_fence_finish(struct tu_fence *fence);
313 void
314 tu_fence_update_fd(struct tu_fence *fence, int fd);
315 void
316 tu_fence_copy(struct tu_fence *fence, const struct tu_fence *src);
317 void
318 tu_fence_signal(struct tu_fence *fence);
319 void
320 tu_fence_wait_idle(struct tu_fence *fence);
321
322 struct tu_queue
323 {
324 VK_LOADER_DATA _loader_data;
325 struct tu_device *device;
326 uint32_t queue_family_index;
327 int queue_idx;
328 VkDeviceQueueCreateFlags flags;
329
330 uint32_t msm_queue_id;
331 struct tu_fence submit_fence;
332 };
333
334 struct tu_bo
335 {
336 uint32_t gem_handle;
337 uint64_t size;
338 uint64_t iova;
339 void *map;
340 };
341
342 struct tu_device
343 {
344 VK_LOADER_DATA _loader_data;
345
346 VkAllocationCallbacks alloc;
347
348 struct tu_instance *instance;
349
350 struct tu_queue *queues[TU_MAX_QUEUE_FAMILIES];
351 int queue_count[TU_MAX_QUEUE_FAMILIES];
352
353 struct tu_physical_device *physical_device;
354 int _lost;
355
356 struct ir3_compiler *compiler;
357
358 /* Backup in-memory cache to be used if the app doesn't provide one */
359 struct tu_pipeline_cache *mem_cache;
360
361 struct tu_bo vsc_draw_strm;
362 struct tu_bo vsc_prim_strm;
363 uint32_t vsc_draw_strm_pitch;
364 uint32_t vsc_prim_strm_pitch;
365
366 #define MIN_SCRATCH_BO_SIZE_LOG2 12 /* A page */
367
368 /* Currently the kernel driver uses a 32-bit GPU address space, but it
369 * should be impossible to go beyond 48 bits.
370 */
371 struct {
372 struct tu_bo bo;
373 mtx_t construct_mtx;
374 bool initialized;
375 } scratch_bos[48 - MIN_SCRATCH_BO_SIZE_LOG2];
376
377 struct tu_bo border_color;
378
379 struct tu_device_extension_table enabled_extensions;
380 };
381
382 VkResult _tu_device_set_lost(struct tu_device *device,
383 const char *file, int line,
384 const char *msg, ...) PRINTFLIKE(4, 5);
385 #define tu_device_set_lost(dev, ...) \
386 _tu_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
387
388 static inline bool
389 tu_device_is_lost(struct tu_device *device)
390 {
391 return unlikely(p_atomic_read(&device->_lost));
392 }
393
394 VkResult
395 tu_bo_init_new(struct tu_device *dev, struct tu_bo *bo, uint64_t size);
396 VkResult
397 tu_bo_init_dmabuf(struct tu_device *dev,
398 struct tu_bo *bo,
399 uint64_t size,
400 int fd);
401 int
402 tu_bo_export_dmabuf(struct tu_device *dev, struct tu_bo *bo);
403 void
404 tu_bo_finish(struct tu_device *dev, struct tu_bo *bo);
405 VkResult
406 tu_bo_map(struct tu_device *dev, struct tu_bo *bo);
407
408 /* Get a scratch bo for use inside a command buffer. This will always return
409 * the same bo given the same size or similar sizes, so only one scratch bo
410 * can be used at the same time. It's meant for short-lived things where we
411 * need to write to some piece of memory, read from it, and then immediately
412 * discard it.
413 */
414 VkResult
415 tu_get_scratch_bo(struct tu_device *dev, uint64_t size, struct tu_bo **bo);
416
417 struct tu_cs_entry
418 {
419 /* No ownership */
420 const struct tu_bo *bo;
421
422 uint32_t size;
423 uint32_t offset;
424 };
425
426 struct tu_cs_memory {
427 uint32_t *map;
428 uint64_t iova;
429 };
430
431 struct tu_draw_state {
432 uint64_t iova : 48;
433 uint32_t size : 16;
434 };
435
436 enum tu_dynamic_state
437 {
438 /* re-use VK_DYNAMIC_STATE_ enums for non-extended dynamic states */
439 TU_DYNAMIC_STATE_SAMPLE_LOCATIONS = VK_DYNAMIC_STATE_STENCIL_REFERENCE + 1,
440 TU_DYNAMIC_STATE_COUNT,
441 };
442
443 enum tu_draw_state_group_id
444 {
445 TU_DRAW_STATE_PROGRAM,
446 TU_DRAW_STATE_PROGRAM_BINNING,
447 TU_DRAW_STATE_TESS,
448 TU_DRAW_STATE_VB,
449 TU_DRAW_STATE_VI,
450 TU_DRAW_STATE_VI_BINNING,
451 TU_DRAW_STATE_RAST,
452 TU_DRAW_STATE_DS,
453 TU_DRAW_STATE_BLEND,
454 TU_DRAW_STATE_VS_CONST,
455 TU_DRAW_STATE_HS_CONST,
456 TU_DRAW_STATE_DS_CONST,
457 TU_DRAW_STATE_GS_CONST,
458 TU_DRAW_STATE_FS_CONST,
459 TU_DRAW_STATE_DESC_SETS,
460 TU_DRAW_STATE_DESC_SETS_LOAD,
461 TU_DRAW_STATE_VS_PARAMS,
462 TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
463 TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
464
465 /* dynamic state related draw states */
466 TU_DRAW_STATE_DYNAMIC,
467 TU_DRAW_STATE_COUNT = TU_DRAW_STATE_DYNAMIC + TU_DYNAMIC_STATE_COUNT,
468 };
469
470 enum tu_cs_mode
471 {
472
473 /*
474 * A command stream in TU_CS_MODE_GROW mode grows automatically whenever it
475 * is full. tu_cs_begin must be called before command packet emission and
476 * tu_cs_end must be called after.
477 *
478 * This mode may create multiple entries internally. The entries must be
479 * submitted together.
480 */
481 TU_CS_MODE_GROW,
482
483 /*
484 * A command stream in TU_CS_MODE_EXTERNAL mode wraps an external,
485 * fixed-size buffer. tu_cs_begin and tu_cs_end are optional and have no
486 * effect on it.
487 *
488 * This mode does not create any entry or any BO.
489 */
490 TU_CS_MODE_EXTERNAL,
491
492 /*
493 * A command stream in TU_CS_MODE_SUB_STREAM mode does not support direct
494 * command packet emission. tu_cs_begin_sub_stream must be called to get a
495 * sub-stream to emit comamnd packets to. When done with the sub-stream,
496 * tu_cs_end_sub_stream must be called.
497 *
498 * This mode does not create any entry internally.
499 */
500 TU_CS_MODE_SUB_STREAM,
501 };
502
503 struct tu_cs
504 {
505 uint32_t *start;
506 uint32_t *cur;
507 uint32_t *reserved_end;
508 uint32_t *end;
509
510 struct tu_device *device;
511 enum tu_cs_mode mode;
512 uint32_t next_bo_size;
513
514 struct tu_cs_entry *entries;
515 uint32_t entry_count;
516 uint32_t entry_capacity;
517
518 struct tu_bo **bos;
519 uint32_t bo_count;
520 uint32_t bo_capacity;
521
522 /* state for cond_exec_start/cond_exec_end */
523 uint32_t cond_flags;
524 uint32_t *cond_dwords;
525 };
526
527 struct tu_device_memory
528 {
529 struct tu_bo bo;
530 VkDeviceSize size;
531
532 /* for dedicated allocations */
533 struct tu_image *image;
534 struct tu_buffer *buffer;
535
536 uint32_t type_index;
537 void *map;
538 void *user_ptr;
539 };
540
541 struct tu_descriptor_range
542 {
543 uint64_t va;
544 uint32_t size;
545 };
546
547 struct tu_descriptor_set
548 {
549 const struct tu_descriptor_set_layout *layout;
550 struct tu_descriptor_pool *pool;
551 uint32_t size;
552
553 uint64_t va;
554 uint32_t *mapped_ptr;
555
556 uint32_t *dynamic_descriptors;
557
558 struct tu_bo *buffers[0];
559 };
560
561 struct tu_push_descriptor_set
562 {
563 struct tu_descriptor_set set;
564 uint32_t capacity;
565 };
566
567 struct tu_descriptor_pool_entry
568 {
569 uint32_t offset;
570 uint32_t size;
571 struct tu_descriptor_set *set;
572 };
573
574 struct tu_descriptor_pool
575 {
576 struct tu_bo bo;
577 uint64_t current_offset;
578 uint64_t size;
579
580 uint8_t *host_memory_base;
581 uint8_t *host_memory_ptr;
582 uint8_t *host_memory_end;
583
584 uint32_t entry_count;
585 uint32_t max_entry_count;
586 struct tu_descriptor_pool_entry entries[0];
587 };
588
589 struct tu_descriptor_update_template_entry
590 {
591 VkDescriptorType descriptor_type;
592
593 /* The number of descriptors to update */
594 uint32_t descriptor_count;
595
596 /* Into mapped_ptr or dynamic_descriptors, in units of the respective array
597 */
598 uint32_t dst_offset;
599
600 /* In dwords. Not valid/used for dynamic descriptors */
601 uint32_t dst_stride;
602
603 uint32_t buffer_offset;
604
605 /* Only valid for combined image samplers and samplers */
606 uint16_t has_sampler;
607
608 /* In bytes */
609 size_t src_offset;
610 size_t src_stride;
611
612 /* For push descriptors */
613 const uint32_t *immutable_samplers;
614 };
615
616 struct tu_descriptor_update_template
617 {
618 uint32_t entry_count;
619 struct tu_descriptor_update_template_entry entry[0];
620 };
621
622 struct tu_buffer
623 {
624 VkDeviceSize size;
625
626 VkBufferUsageFlags usage;
627 VkBufferCreateFlags flags;
628
629 struct tu_bo *bo;
630 VkDeviceSize bo_offset;
631 };
632
633 static inline uint64_t
634 tu_buffer_iova(struct tu_buffer *buffer)
635 {
636 return buffer->bo->iova + buffer->bo_offset;
637 }
638
639 struct tu_vertex_binding
640 {
641 struct tu_buffer *buffer;
642 VkDeviceSize offset;
643 };
644
645 const char *
646 tu_get_debug_option_name(int id);
647
648 const char *
649 tu_get_perftest_option_name(int id);
650
651 struct tu_descriptor_state
652 {
653 struct tu_descriptor_set *sets[MAX_SETS];
654 uint32_t dynamic_descriptors[MAX_DYNAMIC_BUFFERS * A6XX_TEX_CONST_DWORDS];
655 };
656
657 enum tu_cmd_dirty_bits
658 {
659 TU_CMD_DIRTY_COMPUTE_PIPELINE = 1 << 1,
660 TU_CMD_DIRTY_VERTEX_BUFFERS = 1 << 2,
661 TU_CMD_DIRTY_DESCRIPTOR_SETS = 1 << 3,
662 TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS = 1 << 4,
663 TU_CMD_DIRTY_SHADER_CONSTS = 1 << 5,
664 /* all draw states were disabled and need to be re-enabled: */
665 TU_CMD_DIRTY_DRAW_STATE = 1 << 7,
666 };
667
668 /* There are only three cache domains we have to care about: the CCU, or
669 * color cache unit, which is used for color and depth/stencil attachments
670 * and copy/blit destinations, and is split conceptually into color and depth,
671 * and the universal cache or UCHE which is used for pretty much everything
672 * else, except for the CP (uncached) and host. We need to flush whenever data
673 * crosses these boundaries.
674 */
675
676 enum tu_cmd_access_mask {
677 TU_ACCESS_UCHE_READ = 1 << 0,
678 TU_ACCESS_UCHE_WRITE = 1 << 1,
679 TU_ACCESS_CCU_COLOR_READ = 1 << 2,
680 TU_ACCESS_CCU_COLOR_WRITE = 1 << 3,
681 TU_ACCESS_CCU_DEPTH_READ = 1 << 4,
682 TU_ACCESS_CCU_DEPTH_WRITE = 1 << 5,
683
684 /* Experiments have shown that while it's safe to avoid flushing the CCU
685 * after each blit/renderpass, it's not safe to assume that subsequent
686 * lookups with a different attachment state will hit unflushed cache
687 * entries. That is, the CCU needs to be flushed and possibly invalidated
688 * when accessing memory with a different attachment state. Writing to an
689 * attachment under the following conditions after clearing using the
690 * normal 2d engine path is known to have issues:
691 *
692 * - It isn't the 0'th layer.
693 * - There are more than one attachment, and this isn't the 0'th attachment
694 * (this seems to also depend on the cpp of the attachments).
695 *
696 * Our best guess is that the layer/MRT state is used when computing
697 * the location of a cache entry in CCU, to avoid conflicts. We assume that
698 * any access in a renderpass after or before an access by a transfer needs
699 * a flush/invalidate, and use the _INCOHERENT variants to represent access
700 * by a transfer.
701 */
702 TU_ACCESS_CCU_COLOR_INCOHERENT_READ = 1 << 6,
703 TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE = 1 << 7,
704 TU_ACCESS_CCU_DEPTH_INCOHERENT_READ = 1 << 8,
705 TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE = 1 << 9,
706
707 TU_ACCESS_SYSMEM_READ = 1 << 10,
708 TU_ACCESS_SYSMEM_WRITE = 1 << 11,
709
710 /* Set if a WFI is required due to data being read by the CP or the 2D
711 * engine.
712 */
713 TU_ACCESS_WFI_READ = 1 << 12,
714
715 TU_ACCESS_READ =
716 TU_ACCESS_UCHE_READ |
717 TU_ACCESS_CCU_COLOR_READ |
718 TU_ACCESS_CCU_DEPTH_READ |
719 TU_ACCESS_CCU_COLOR_INCOHERENT_READ |
720 TU_ACCESS_CCU_DEPTH_INCOHERENT_READ |
721 TU_ACCESS_SYSMEM_READ,
722
723 TU_ACCESS_WRITE =
724 TU_ACCESS_UCHE_WRITE |
725 TU_ACCESS_CCU_COLOR_WRITE |
726 TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE |
727 TU_ACCESS_CCU_DEPTH_WRITE |
728 TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE |
729 TU_ACCESS_SYSMEM_WRITE,
730
731 TU_ACCESS_ALL =
732 TU_ACCESS_READ |
733 TU_ACCESS_WRITE,
734 };
735
736 enum tu_cmd_flush_bits {
737 TU_CMD_FLAG_CCU_FLUSH_DEPTH = 1 << 0,
738 TU_CMD_FLAG_CCU_FLUSH_COLOR = 1 << 1,
739 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH = 1 << 2,
740 TU_CMD_FLAG_CCU_INVALIDATE_COLOR = 1 << 3,
741 TU_CMD_FLAG_CACHE_FLUSH = 1 << 4,
742 TU_CMD_FLAG_CACHE_INVALIDATE = 1 << 5,
743
744 TU_CMD_FLAG_ALL_FLUSH =
745 TU_CMD_FLAG_CCU_FLUSH_DEPTH |
746 TU_CMD_FLAG_CCU_FLUSH_COLOR |
747 TU_CMD_FLAG_CACHE_FLUSH,
748
749 TU_CMD_FLAG_ALL_INVALIDATE =
750 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
751 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
752 TU_CMD_FLAG_CACHE_INVALIDATE,
753
754 TU_CMD_FLAG_WFI = 1 << 6,
755 };
756
757 /* Changing the CCU from sysmem mode to gmem mode or vice-versa is pretty
758 * heavy, involving a CCU cache flush/invalidate and a WFI in order to change
759 * which part of the gmem is used by the CCU. Here we keep track of what the
760 * state of the CCU.
761 */
762 enum tu_cmd_ccu_state {
763 TU_CMD_CCU_SYSMEM,
764 TU_CMD_CCU_GMEM,
765 TU_CMD_CCU_UNKNOWN,
766 };
767
768 struct tu_cache_state {
769 /* Caches which must be made available (flushed) eventually if there are
770 * any users outside that cache domain, and caches which must be
771 * invalidated eventually if there are any reads.
772 */
773 enum tu_cmd_flush_bits pending_flush_bits;
774 /* Pending flushes */
775 enum tu_cmd_flush_bits flush_bits;
776 };
777
778 struct tu_cmd_state
779 {
780 uint32_t dirty;
781
782 struct tu_pipeline *pipeline;
783 struct tu_pipeline *compute_pipeline;
784
785 /* Vertex buffers */
786 struct
787 {
788 struct tu_buffer *buffers[MAX_VBS];
789 VkDeviceSize offsets[MAX_VBS];
790 } vb;
791
792 /* for dynamic states that can't be emitted directly */
793 uint32_t dynamic_stencil_mask;
794 uint32_t dynamic_stencil_wrmask;
795 uint32_t dynamic_stencil_ref;
796 uint32_t dynamic_gras_su_cntl;
797
798 /* saved states to re-emit in TU_CMD_DIRTY_DRAW_STATE case */
799 struct tu_draw_state dynamic_state[TU_DYNAMIC_STATE_COUNT];
800 struct tu_cs_entry vertex_buffers_ib;
801 struct tu_cs_entry shader_const_ib[MESA_SHADER_STAGES];
802 struct tu_cs_entry desc_sets_ib, desc_sets_load_ib;
803 struct tu_cs_entry ia_gmem_ib, ia_sysmem_ib;
804
805 struct tu_draw_state vs_params;
806
807 /* Index buffer */
808 uint64_t index_va;
809 uint32_t max_index_count;
810 uint8_t index_size;
811
812 /* because streamout base has to be 32-byte aligned
813 * there is an extra offset to deal with when it is
814 * unaligned
815 */
816 uint8_t streamout_offset[IR3_MAX_SO_BUFFERS];
817
818 /* Renderpasses are tricky, because we may need to flush differently if
819 * using sysmem vs. gmem and therefore we have to delay any flushing that
820 * happens before a renderpass. So we have to have two copies of the flush
821 * state, one for intra-renderpass flushes (i.e. renderpass dependencies)
822 * and one for outside a renderpass.
823 */
824 struct tu_cache_state cache;
825 struct tu_cache_state renderpass_cache;
826
827 enum tu_cmd_ccu_state ccu_state;
828
829 const struct tu_render_pass *pass;
830 const struct tu_subpass *subpass;
831 const struct tu_framebuffer *framebuffer;
832 VkRect2D render_area;
833
834 struct tu_cs_entry tile_store_ib;
835
836 bool xfb_used;
837 };
838
839 struct tu_cmd_pool
840 {
841 VkAllocationCallbacks alloc;
842 struct list_head cmd_buffers;
843 struct list_head free_cmd_buffers;
844 uint32_t queue_family_index;
845 };
846
847 struct tu_cmd_buffer_upload
848 {
849 uint8_t *map;
850 unsigned offset;
851 uint64_t size;
852 struct list_head list;
853 };
854
855 enum tu_cmd_buffer_status
856 {
857 TU_CMD_BUFFER_STATUS_INVALID,
858 TU_CMD_BUFFER_STATUS_INITIAL,
859 TU_CMD_BUFFER_STATUS_RECORDING,
860 TU_CMD_BUFFER_STATUS_EXECUTABLE,
861 TU_CMD_BUFFER_STATUS_PENDING,
862 };
863
864 struct tu_bo_list
865 {
866 uint32_t count;
867 uint32_t capacity;
868 struct drm_msm_gem_submit_bo *bo_infos;
869 };
870
871 #define TU_BO_LIST_FAILED (~0)
872
873 void
874 tu_bo_list_init(struct tu_bo_list *list);
875 void
876 tu_bo_list_destroy(struct tu_bo_list *list);
877 void
878 tu_bo_list_reset(struct tu_bo_list *list);
879 uint32_t
880 tu_bo_list_add(struct tu_bo_list *list,
881 const struct tu_bo *bo,
882 uint32_t flags);
883 VkResult
884 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other);
885
886 /* This struct defines the layout of the scratch_bo */
887 struct tu6_control
888 {
889 uint32_t seqno_dummy; /* dummy seqno for CP_EVENT_WRITE */
890 uint32_t _pad0;
891 volatile uint32_t vsc_overflow;
892 uint32_t _pad1;
893 /* flag set from cmdstream when VSC overflow detected: */
894 uint32_t vsc_scratch;
895 uint32_t _pad2;
896 uint32_t _pad3;
897 uint32_t _pad4;
898
899 /* scratch space for VPC_SO[i].FLUSH_BASE_LO/HI, start on 32 byte boundary. */
900 struct {
901 uint32_t offset;
902 uint32_t pad[7];
903 } flush_base[4];
904 };
905
906 #define ctrl_offset(member) offsetof(struct tu6_control, member)
907
908 struct tu_cmd_buffer
909 {
910 VK_LOADER_DATA _loader_data;
911
912 struct tu_device *device;
913
914 struct tu_cmd_pool *pool;
915 struct list_head pool_link;
916
917 VkCommandBufferUsageFlags usage_flags;
918 VkCommandBufferLevel level;
919 enum tu_cmd_buffer_status status;
920
921 struct tu_cmd_state state;
922 struct tu_vertex_binding vertex_bindings[MAX_VBS];
923 uint32_t vertex_bindings_set;
924 uint32_t queue_family_index;
925
926 uint32_t push_constants[MAX_PUSH_CONSTANTS_SIZE / 4];
927 VkShaderStageFlags push_constant_stages;
928 struct tu_descriptor_set meta_push_descriptors;
929
930 struct tu_descriptor_state descriptors[MAX_BIND_POINTS];
931
932 struct tu_cmd_buffer_upload upload;
933
934 VkResult record_result;
935
936 struct tu_bo_list bo_list;
937 struct tu_cs cs;
938 struct tu_cs draw_cs;
939 struct tu_cs draw_epilogue_cs;
940 struct tu_cs sub_cs;
941
942 struct tu_bo scratch_bo;
943
944 bool has_tess;
945
946 struct tu_bo vsc_draw_strm;
947 struct tu_bo vsc_prim_strm;
948 uint32_t vsc_draw_strm_pitch;
949 uint32_t vsc_prim_strm_pitch;
950 bool use_vsc_data;
951 };
952
953 /* Temporary struct for tracking a register state to be written, used by
954 * a6xx-pack.h and tu_cs_emit_regs()
955 */
956 struct tu_reg_value {
957 uint32_t reg;
958 uint64_t value;
959 bool is_address;
960 struct tu_bo *bo;
961 bool bo_write;
962 uint32_t bo_offset;
963 uint32_t bo_shift;
964 };
965
966
967 void tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
968 struct tu_cs *cs);
969
970 void tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
971 struct tu_cs *cs,
972 enum tu_cmd_ccu_state ccu_state);
973
974 void
975 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
976 struct tu_cs *cs,
977 enum vgt_event_type event);
978
979 static inline struct tu_descriptor_state *
980 tu_get_descriptors_state(struct tu_cmd_buffer *cmd_buffer,
981 VkPipelineBindPoint bind_point)
982 {
983 return &cmd_buffer->descriptors[bind_point];
984 }
985
986 struct tu_event
987 {
988 struct tu_bo bo;
989 };
990
991 struct tu_shader_module
992 {
993 unsigned char sha1[20];
994
995 uint32_t code_size;
996 const uint32_t *code[0];
997 };
998
999 struct tu_push_constant_range
1000 {
1001 uint32_t lo;
1002 uint32_t count;
1003 };
1004
1005 struct tu_shader
1006 {
1007 struct ir3_shader *ir3_shader;
1008
1009 struct tu_push_constant_range push_consts;
1010 uint8_t active_desc_sets;
1011 };
1012
1013 struct tu_shader *
1014 tu_shader_create(struct tu_device *dev,
1015 gl_shader_stage stage,
1016 const VkPipelineShaderStageCreateInfo *stage_info,
1017 struct tu_pipeline_layout *layout,
1018 const VkAllocationCallbacks *alloc);
1019
1020 void
1021 tu_shader_destroy(struct tu_device *dev,
1022 struct tu_shader *shader,
1023 const VkAllocationCallbacks *alloc);
1024
1025 struct tu_program_descriptor_linkage
1026 {
1027 struct ir3_const_state const_state;
1028
1029 uint32_t constlen;
1030
1031 struct tu_push_constant_range push_consts;
1032 };
1033
1034 struct tu_pipeline
1035 {
1036 struct tu_cs cs;
1037
1038 struct tu_pipeline_layout *layout;
1039
1040 bool need_indirect_descriptor_sets;
1041 VkShaderStageFlags active_stages;
1042 uint32_t active_desc_sets;
1043
1044 /* mask of enabled dynamic states
1045 * if BIT(i) is set, pipeline->dynamic_state[i] is *NOT* used
1046 */
1047 uint32_t dynamic_state_mask;
1048 struct tu_draw_state dynamic_state[TU_DYNAMIC_STATE_COUNT];
1049
1050 /* gras_su_cntl without line width, used for dynamic line width state */
1051 uint32_t gras_su_cntl;
1052
1053 struct
1054 {
1055 struct tu_cs_entry state_ib;
1056 struct tu_cs_entry binning_state_ib;
1057
1058 struct tu_program_descriptor_linkage link[MESA_SHADER_STAGES];
1059 } program;
1060
1061 struct
1062 {
1063 struct tu_cs_entry state_ib;
1064 } load_state;
1065
1066 struct
1067 {
1068 struct tu_cs_entry state_ib;
1069 struct tu_cs_entry binning_state_ib;
1070 uint32_t bindings_used;
1071 } vi;
1072
1073 struct
1074 {
1075 enum pc_di_primtype primtype;
1076 bool primitive_restart;
1077 } ia;
1078
1079 struct
1080 {
1081 uint32_t patch_type;
1082 uint32_t per_vertex_output_size;
1083 uint32_t per_patch_output_size;
1084 uint32_t hs_bo_regid;
1085 uint32_t ds_bo_regid;
1086 bool upper_left_domain_origin;
1087 } tess;
1088
1089 struct
1090 {
1091 struct tu_cs_entry state_ib;
1092 } rast;
1093
1094 struct
1095 {
1096 struct tu_cs_entry state_ib;
1097 } ds;
1098
1099 struct
1100 {
1101 struct tu_cs_entry state_ib;
1102 } blend;
1103
1104 struct
1105 {
1106 uint32_t local_size[3];
1107 } compute;
1108 };
1109
1110 void
1111 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport);
1112
1113 void
1114 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor);
1115
1116 void
1117 tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc);
1118
1119 void
1120 tu6_emit_depth_bias(struct tu_cs *cs,
1121 float constant_factor,
1122 float clamp,
1123 float slope_factor);
1124
1125 void tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits samples);
1126
1127 void tu6_emit_window_scissor(struct tu_cs *cs, uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2);
1128
1129 void tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1);
1130
1131 void
1132 tu6_emit_xs_config(struct tu_cs *cs,
1133 gl_shader_stage stage,
1134 const struct ir3_shader_variant *xs,
1135 uint64_t binary_iova);
1136
1137 void
1138 tu6_emit_vpc(struct tu_cs *cs,
1139 const struct ir3_shader_variant *vs,
1140 const struct ir3_shader_variant *hs,
1141 const struct ir3_shader_variant *ds,
1142 const struct ir3_shader_variant *gs,
1143 const struct ir3_shader_variant *fs);
1144
1145 void
1146 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs);
1147
1148 struct tu_image_view;
1149
1150 void
1151 tu_resolve_sysmem(struct tu_cmd_buffer *cmd,
1152 struct tu_cs *cs,
1153 struct tu_image_view *src,
1154 struct tu_image_view *dst,
1155 uint32_t layers,
1156 const VkRect2D *rect);
1157
1158 void
1159 tu_clear_sysmem_attachment(struct tu_cmd_buffer *cmd,
1160 struct tu_cs *cs,
1161 uint32_t a,
1162 const VkRenderPassBeginInfo *info);
1163
1164 void
1165 tu_clear_gmem_attachment(struct tu_cmd_buffer *cmd,
1166 struct tu_cs *cs,
1167 uint32_t a,
1168 const VkRenderPassBeginInfo *info);
1169
1170 void
1171 tu_load_gmem_attachment(struct tu_cmd_buffer *cmd,
1172 struct tu_cs *cs,
1173 uint32_t a,
1174 bool force_load);
1175
1176 /* expose this function to be able to emit load without checking LOAD_OP */
1177 void
1178 tu_emit_load_gmem_attachment(struct tu_cmd_buffer *cmd, struct tu_cs *cs, uint32_t a);
1179
1180 /* note: gmem store can also resolve */
1181 void
1182 tu_store_gmem_attachment(struct tu_cmd_buffer *cmd,
1183 struct tu_cs *cs,
1184 uint32_t a,
1185 uint32_t gmem_a);
1186
1187 enum tu_supported_formats {
1188 FMT_VERTEX = 1,
1189 FMT_TEXTURE = 2,
1190 FMT_COLOR = 4,
1191 };
1192
1193 struct tu_native_format
1194 {
1195 enum a6xx_format fmt : 8;
1196 enum a3xx_color_swap swap : 8;
1197 enum a6xx_tile_mode tile_mode : 8;
1198 enum tu_supported_formats supported : 8;
1199 };
1200
1201 struct tu_native_format tu6_format_vtx(VkFormat format);
1202 struct tu_native_format tu6_format_color(VkFormat format, enum a6xx_tile_mode tile_mode);
1203 struct tu_native_format tu6_format_texture(VkFormat format, enum a6xx_tile_mode tile_mode);
1204
1205 static inline enum a6xx_format
1206 tu6_base_format(VkFormat format)
1207 {
1208 /* note: tu6_format_color doesn't care about tiling for .fmt field */
1209 return tu6_format_color(format, TILE6_LINEAR).fmt;
1210 }
1211
1212 struct tu_image
1213 {
1214 VkImageType type;
1215 /* The original VkFormat provided by the client. This may not match any
1216 * of the actual surface formats.
1217 */
1218 VkFormat vk_format;
1219 VkImageAspectFlags aspects;
1220 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1221 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1222 VkImageCreateFlags flags; /** VkImageCreateInfo::flags */
1223 VkExtent3D extent;
1224 uint32_t level_count;
1225 uint32_t layer_count;
1226 VkSampleCountFlagBits samples;
1227
1228 struct fdl_layout layout;
1229
1230 unsigned queue_family_mask;
1231 bool exclusive;
1232 bool shareable;
1233
1234 /* For VK_ANDROID_native_buffer, the WSI image owns the memory, */
1235 VkDeviceMemory owned_memory;
1236
1237 /* Set when bound */
1238 struct tu_bo *bo;
1239 VkDeviceSize bo_offset;
1240 };
1241
1242 static inline uint32_t
1243 tu_get_layerCount(const struct tu_image *image,
1244 const VkImageSubresourceRange *range)
1245 {
1246 return range->layerCount == VK_REMAINING_ARRAY_LAYERS
1247 ? image->layer_count - range->baseArrayLayer
1248 : range->layerCount;
1249 }
1250
1251 static inline uint32_t
1252 tu_get_levelCount(const struct tu_image *image,
1253 const VkImageSubresourceRange *range)
1254 {
1255 return range->levelCount == VK_REMAINING_MIP_LEVELS
1256 ? image->level_count - range->baseMipLevel
1257 : range->levelCount;
1258 }
1259
1260 struct tu_image_view
1261 {
1262 struct tu_image *image; /**< VkImageViewCreateInfo::image */
1263
1264 uint64_t base_addr;
1265 uint64_t ubwc_addr;
1266 uint32_t layer_size;
1267 uint32_t ubwc_layer_size;
1268
1269 /* used to determine if fast gmem store path can be used */
1270 VkExtent2D extent;
1271 bool need_y2_align;
1272
1273 bool ubwc_enabled;
1274
1275 uint32_t descriptor[A6XX_TEX_CONST_DWORDS];
1276
1277 /* Descriptor for use as a storage image as opposed to a sampled image.
1278 * This has a few differences for cube maps (e.g. type).
1279 */
1280 uint32_t storage_descriptor[A6XX_TEX_CONST_DWORDS];
1281
1282 /* pre-filled register values */
1283 uint32_t PITCH;
1284 uint32_t FLAG_BUFFER_PITCH;
1285
1286 uint32_t RB_MRT_BUF_INFO;
1287 uint32_t SP_FS_MRT_REG;
1288
1289 uint32_t SP_PS_2D_SRC_INFO;
1290 uint32_t SP_PS_2D_SRC_SIZE;
1291
1292 uint32_t RB_2D_DST_INFO;
1293
1294 uint32_t RB_BLIT_DST_INFO;
1295 };
1296
1297 struct tu_sampler_ycbcr_conversion {
1298 VkFormat format;
1299 VkSamplerYcbcrModelConversion ycbcr_model;
1300 VkSamplerYcbcrRange ycbcr_range;
1301 VkComponentMapping components;
1302 VkChromaLocation chroma_offsets[2];
1303 VkFilter chroma_filter;
1304 };
1305
1306 struct tu_sampler {
1307 uint32_t descriptor[A6XX_TEX_SAMP_DWORDS];
1308 struct tu_sampler_ycbcr_conversion *ycbcr_sampler;
1309 };
1310
1311 void
1312 tu_cs_image_ref(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer);
1313
1314 void
1315 tu_cs_image_ref_2d(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer, bool src);
1316
1317 void
1318 tu_cs_image_flag_ref(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer);
1319
1320 VkResult
1321 tu_image_create(VkDevice _device,
1322 const VkImageCreateInfo *pCreateInfo,
1323 const VkAllocationCallbacks *alloc,
1324 VkImage *pImage,
1325 uint64_t modifier,
1326 const VkSubresourceLayout *plane_layouts);
1327
1328 VkResult
1329 tu_image_from_gralloc(VkDevice device_h,
1330 const VkImageCreateInfo *base_info,
1331 const VkNativeBufferANDROID *gralloc_info,
1332 const VkAllocationCallbacks *alloc,
1333 VkImage *out_image_h);
1334
1335 void
1336 tu_image_view_init(struct tu_image_view *view,
1337 const VkImageViewCreateInfo *pCreateInfo);
1338
1339 struct tu_buffer_view
1340 {
1341 uint32_t descriptor[A6XX_TEX_CONST_DWORDS];
1342
1343 struct tu_buffer *buffer;
1344 };
1345 void
1346 tu_buffer_view_init(struct tu_buffer_view *view,
1347 struct tu_device *device,
1348 const VkBufferViewCreateInfo *pCreateInfo);
1349
1350 struct tu_attachment_info
1351 {
1352 struct tu_image_view *attachment;
1353 };
1354
1355 struct tu_framebuffer
1356 {
1357 uint32_t width;
1358 uint32_t height;
1359 uint32_t layers;
1360
1361 /* size of the first tile */
1362 VkExtent2D tile0;
1363 /* number of tiles */
1364 VkExtent2D tile_count;
1365
1366 /* size of the first VSC pipe */
1367 VkExtent2D pipe0;
1368 /* number of VSC pipes */
1369 VkExtent2D pipe_count;
1370
1371 /* pipe register values */
1372 uint32_t pipe_config[MAX_VSC_PIPES];
1373 uint32_t pipe_sizes[MAX_VSC_PIPES];
1374
1375 uint32_t attachment_count;
1376 struct tu_attachment_info attachments[0];
1377 };
1378
1379 void
1380 tu_framebuffer_tiling_config(struct tu_framebuffer *fb,
1381 const struct tu_device *device,
1382 const struct tu_render_pass *pass);
1383
1384 struct tu_subpass_barrier {
1385 VkPipelineStageFlags src_stage_mask;
1386 VkAccessFlags src_access_mask;
1387 VkAccessFlags dst_access_mask;
1388 bool incoherent_ccu_color, incoherent_ccu_depth;
1389 };
1390
1391 struct tu_subpass_attachment
1392 {
1393 uint32_t attachment;
1394 };
1395
1396 struct tu_subpass
1397 {
1398 uint32_t input_count;
1399 uint32_t color_count;
1400 struct tu_subpass_attachment *input_attachments;
1401 struct tu_subpass_attachment *color_attachments;
1402 struct tu_subpass_attachment *resolve_attachments;
1403 struct tu_subpass_attachment depth_stencil_attachment;
1404
1405 VkSampleCountFlagBits samples;
1406
1407 uint32_t srgb_cntl;
1408
1409 struct tu_subpass_barrier start_barrier;
1410 };
1411
1412 struct tu_render_pass_attachment
1413 {
1414 VkFormat format;
1415 uint32_t samples;
1416 uint32_t cpp;
1417 VkImageAspectFlags clear_mask;
1418 bool load;
1419 bool store;
1420 int32_t gmem_offset;
1421 };
1422
1423 struct tu_render_pass
1424 {
1425 uint32_t attachment_count;
1426 uint32_t subpass_count;
1427 uint32_t gmem_pixels;
1428 uint32_t tile_align_w;
1429 struct tu_subpass_attachment *subpass_attachments;
1430 struct tu_render_pass_attachment *attachments;
1431 struct tu_subpass_barrier end_barrier;
1432 struct tu_subpass subpasses[0];
1433 };
1434
1435 struct tu_query_pool
1436 {
1437 VkQueryType type;
1438 uint32_t stride;
1439 uint64_t size;
1440 uint32_t pipeline_statistics;
1441 struct tu_bo bo;
1442 };
1443
1444 enum tu_semaphore_kind
1445 {
1446 TU_SEMAPHORE_NONE,
1447 TU_SEMAPHORE_SYNCOBJ,
1448 };
1449
1450 struct tu_semaphore_part
1451 {
1452 enum tu_semaphore_kind kind;
1453 union {
1454 uint32_t syncobj;
1455 };
1456 };
1457
1458 struct tu_semaphore
1459 {
1460 struct tu_semaphore_part permanent;
1461 struct tu_semaphore_part temporary;
1462 };
1463
1464 void
1465 tu_set_descriptor_set(struct tu_cmd_buffer *cmd_buffer,
1466 VkPipelineBindPoint bind_point,
1467 struct tu_descriptor_set *set,
1468 unsigned idx);
1469
1470 void
1471 tu_update_descriptor_sets(struct tu_device *device,
1472 struct tu_cmd_buffer *cmd_buffer,
1473 VkDescriptorSet overrideSet,
1474 uint32_t descriptorWriteCount,
1475 const VkWriteDescriptorSet *pDescriptorWrites,
1476 uint32_t descriptorCopyCount,
1477 const VkCopyDescriptorSet *pDescriptorCopies);
1478
1479 void
1480 tu_update_descriptor_set_with_template(
1481 struct tu_device *device,
1482 struct tu_cmd_buffer *cmd_buffer,
1483 struct tu_descriptor_set *set,
1484 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1485 const void *pData);
1486
1487 int
1488 tu_drm_get_gpu_id(const struct tu_physical_device *dev, uint32_t *id);
1489
1490 int
1491 tu_drm_get_gmem_size(const struct tu_physical_device *dev, uint32_t *size);
1492
1493 int
1494 tu_drm_get_gmem_base(const struct tu_physical_device *dev, uint64_t *base);
1495
1496 int
1497 tu_drm_submitqueue_new(const struct tu_device *dev,
1498 int priority,
1499 uint32_t *queue_id);
1500
1501 void
1502 tu_drm_submitqueue_close(const struct tu_device *dev, uint32_t queue_id);
1503
1504 uint32_t
1505 tu_gem_new(const struct tu_device *dev, uint64_t size, uint32_t flags);
1506 uint32_t
1507 tu_gem_import_dmabuf(const struct tu_device *dev,
1508 int prime_fd,
1509 uint64_t size);
1510 int
1511 tu_gem_export_dmabuf(const struct tu_device *dev, uint32_t gem_handle);
1512 void
1513 tu_gem_close(const struct tu_device *dev, uint32_t gem_handle);
1514 uint64_t
1515 tu_gem_info_offset(const struct tu_device *dev, uint32_t gem_handle);
1516 uint64_t
1517 tu_gem_info_iova(const struct tu_device *dev, uint32_t gem_handle);
1518
1519 #define TU_DEFINE_HANDLE_CASTS(__tu_type, __VkType) \
1520 \
1521 static inline struct __tu_type *__tu_type##_from_handle(__VkType _handle) \
1522 { \
1523 return (struct __tu_type *) _handle; \
1524 } \
1525 \
1526 static inline __VkType __tu_type##_to_handle(struct __tu_type *_obj) \
1527 { \
1528 return (__VkType) _obj; \
1529 }
1530
1531 #define TU_DEFINE_NONDISP_HANDLE_CASTS(__tu_type, __VkType) \
1532 \
1533 static inline struct __tu_type *__tu_type##_from_handle(__VkType _handle) \
1534 { \
1535 return (struct __tu_type *) (uintptr_t) _handle; \
1536 } \
1537 \
1538 static inline __VkType __tu_type##_to_handle(struct __tu_type *_obj) \
1539 { \
1540 return (__VkType)(uintptr_t) _obj; \
1541 }
1542
1543 #define TU_FROM_HANDLE(__tu_type, __name, __handle) \
1544 struct __tu_type *__name = __tu_type##_from_handle(__handle)
1545
1546 TU_DEFINE_HANDLE_CASTS(tu_cmd_buffer, VkCommandBuffer)
1547 TU_DEFINE_HANDLE_CASTS(tu_device, VkDevice)
1548 TU_DEFINE_HANDLE_CASTS(tu_instance, VkInstance)
1549 TU_DEFINE_HANDLE_CASTS(tu_physical_device, VkPhysicalDevice)
1550 TU_DEFINE_HANDLE_CASTS(tu_queue, VkQueue)
1551
1552 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_cmd_pool, VkCommandPool)
1553 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_buffer, VkBuffer)
1554 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_buffer_view, VkBufferView)
1555 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_pool, VkDescriptorPool)
1556 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_set, VkDescriptorSet)
1557 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_set_layout,
1558 VkDescriptorSetLayout)
1559 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_update_template,
1560 VkDescriptorUpdateTemplate)
1561 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_device_memory, VkDeviceMemory)
1562 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_fence, VkFence)
1563 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_event, VkEvent)
1564 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_framebuffer, VkFramebuffer)
1565 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_image, VkImage)
1566 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_image_view, VkImageView);
1567 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline_cache, VkPipelineCache)
1568 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline, VkPipeline)
1569 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline_layout, VkPipelineLayout)
1570 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_query_pool, VkQueryPool)
1571 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_render_pass, VkRenderPass)
1572 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_sampler, VkSampler)
1573 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_sampler_ycbcr_conversion, VkSamplerYcbcrConversion)
1574 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_shader_module, VkShaderModule)
1575 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_semaphore, VkSemaphore)
1576
1577 #endif /* TU_PRIVATE_H */