draw/sample: add support for indirect images
[mesa.git] / src / gallium / auxiliary / draw / draw_pipe_clip.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \brief Clipping stage
30 *
31 * \author Keith Whitwell <keithw@vmware.com>
32 */
33
34
35 #include "util/u_bitcast.h"
36 #include "util/u_memory.h"
37 #include "util/u_math.h"
38
39 #include "pipe/p_shader_tokens.h"
40
41 #include "draw_vs.h"
42 #include "draw_pipe.h"
43 #include "draw_fs.h"
44 #include "draw_gs.h"
45
46
47 /** Set to 1 to enable printing of coords before/after clipping */
48 #define DEBUG_CLIP 0
49
50 #define MAX_CLIPPED_VERTICES ((2 * (6 + PIPE_MAX_CLIP_PLANES))+1)
51
52
53
54 struct clip_stage {
55 struct draw_stage stage; /**< base class */
56
57 unsigned pos_attr;
58 boolean have_clipdist;
59 int cv_attr;
60
61 /* List of the attributes to be constant interpolated. */
62 uint num_const_attribs;
63 uint8_t const_attribs[PIPE_MAX_SHADER_OUTPUTS];
64 /* List of the attributes to be linear interpolated. */
65 uint num_linear_attribs;
66 uint8_t linear_attribs[PIPE_MAX_SHADER_OUTPUTS];
67 /* List of the attributes to be perspective interpolated. */
68 uint num_perspect_attribs;
69 uint8_t perspect_attribs[PIPE_MAX_SHADER_OUTPUTS];
70
71 float (*plane)[4];
72 };
73
74
75 /** Cast wrapper */
76 static inline struct clip_stage *clip_stage(struct draw_stage *stage)
77 {
78 return (struct clip_stage *)stage;
79 }
80
81 static inline unsigned
82 draw_viewport_index(struct draw_context *draw,
83 const struct vertex_header *leading_vertex)
84 {
85 if (draw_current_shader_uses_viewport_index(draw)) {
86 unsigned viewport_index_output =
87 draw_current_shader_viewport_index_output(draw);
88 unsigned viewport_index =
89 u_bitcast_f2u(leading_vertex->data[viewport_index_output][0]);
90 return draw_clamp_viewport_idx(viewport_index);
91 } else {
92 return 0;
93 }
94 }
95
96
97 #define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
98
99
100 /* All attributes are float[4], so this is easy:
101 */
102 static void interp_attr(float dst[4],
103 float t,
104 const float in[4],
105 const float out[4])
106 {
107 dst[0] = LINTERP( t, out[0], in[0] );
108 dst[1] = LINTERP( t, out[1], in[1] );
109 dst[2] = LINTERP( t, out[2], in[2] );
110 dst[3] = LINTERP( t, out[3], in[3] );
111 }
112
113
114 /**
115 * Copy flat shaded attributes src vertex to dst vertex.
116 */
117 static void copy_flat(struct draw_stage *stage,
118 struct vertex_header *dst,
119 const struct vertex_header *src)
120 {
121 const struct clip_stage *clipper = clip_stage(stage);
122 uint i;
123 for (i = 0; i < clipper->num_const_attribs; i++) {
124 const uint attr = clipper->const_attribs[i];
125 COPY_4FV(dst->data[attr], src->data[attr]);
126 }
127 }
128
129 /* Interpolate between two vertices to produce a third.
130 */
131 static void interp(const struct clip_stage *clip,
132 struct vertex_header *dst,
133 float t,
134 const struct vertex_header *out,
135 const struct vertex_header *in,
136 unsigned viewport_index)
137 {
138 const unsigned pos_attr = clip->pos_attr;
139 unsigned j;
140 float t_nopersp;
141
142 /* Vertex header.
143 */
144 dst->clipmask = 0;
145 dst->edgeflag = 0; /* will get overwritten later */
146 dst->pad = 0;
147 dst->vertex_id = UNDEFINED_VERTEX_ID;
148
149 /* Interpolate the clip-space coords.
150 */
151 if (clip->cv_attr >= 0) {
152 interp_attr(dst->data[clip->cv_attr], t,
153 in->data[clip->cv_attr], out->data[clip->cv_attr]);
154 }
155 /* interpolate the clip-space position */
156 interp_attr(dst->clip_pos, t, in->clip_pos, out->clip_pos);
157
158 /* Do the projective divide and viewport transformation to get
159 * new window coordinates:
160 */
161 {
162 const float *pos = dst->clip_pos;
163 const float *scale =
164 clip->stage.draw->viewports[viewport_index].scale;
165 const float *trans =
166 clip->stage.draw->viewports[viewport_index].translate;
167 const float oow = 1.0f / pos[3];
168
169 dst->data[pos_attr][0] = pos[0] * oow * scale[0] + trans[0];
170 dst->data[pos_attr][1] = pos[1] * oow * scale[1] + trans[1];
171 dst->data[pos_attr][2] = pos[2] * oow * scale[2] + trans[2];
172 dst->data[pos_attr][3] = oow;
173 }
174
175
176 /* interp perspective attribs */
177 for (j = 0; j < clip->num_perspect_attribs; j++) {
178 const unsigned attr = clip->perspect_attribs[j];
179 interp_attr(dst->data[attr], t, in->data[attr], out->data[attr]);
180 }
181
182 /**
183 * Compute the t in screen-space instead of 3d space to use
184 * for noperspective interpolation.
185 *
186 * The points can be aligned with the X axis, so in that case try
187 * the Y. When both points are at the same screen position, we can
188 * pick whatever value (the interpolated point won't be in front
189 * anyway), so just use the 3d t.
190 */
191 if (clip->num_linear_attribs) {
192 int k;
193 t_nopersp = t;
194 /* find either in.x != out.x or in.y != out.y */
195 for (k = 0; k < 2; k++) {
196 if (in->clip_pos[k] != out->clip_pos[k]) {
197 /* do divide by W, then compute linear interpolation factor */
198 float in_coord = in->clip_pos[k] / in->clip_pos[3];
199 float out_coord = out->clip_pos[k] / out->clip_pos[3];
200 float dst_coord = dst->clip_pos[k] / dst->clip_pos[3];
201 t_nopersp = (dst_coord - out_coord) / (in_coord - out_coord);
202 break;
203 }
204 }
205 for (j = 0; j < clip->num_linear_attribs; j++) {
206 const unsigned attr = clip->linear_attribs[j];
207 interp_attr(dst->data[attr], t_nopersp, in->data[attr], out->data[attr]);
208 }
209 }
210 }
211
212 /**
213 * Emit a post-clip polygon to the next pipeline stage. The polygon
214 * will be convex and the provoking vertex will always be vertex[0].
215 */
216 static void emit_poly(struct draw_stage *stage,
217 struct vertex_header **inlist,
218 const boolean *edgeflags,
219 unsigned n,
220 const struct prim_header *origPrim)
221 {
222 const struct clip_stage *clipper = clip_stage(stage);
223 struct prim_header header;
224 unsigned i;
225 ushort edge_first, edge_middle, edge_last;
226
227 if (stage->draw->rasterizer->flatshade_first) {
228 edge_first = DRAW_PIPE_EDGE_FLAG_0;
229 edge_middle = DRAW_PIPE_EDGE_FLAG_1;
230 edge_last = DRAW_PIPE_EDGE_FLAG_2;
231 }
232 else {
233 edge_first = DRAW_PIPE_EDGE_FLAG_2;
234 edge_middle = DRAW_PIPE_EDGE_FLAG_0;
235 edge_last = DRAW_PIPE_EDGE_FLAG_1;
236 }
237
238 if (!edgeflags[0])
239 edge_first = 0;
240
241 /* later stages may need the determinant, but only the sign matters */
242 header.det = origPrim->det;
243 header.flags = DRAW_PIPE_RESET_STIPPLE | edge_first | edge_middle;
244 header.pad = 0;
245
246 for (i = 2; i < n; i++, header.flags = edge_middle) {
247 /* order the triangle verts to respect the provoking vertex mode */
248 if (stage->draw->rasterizer->flatshade_first) {
249 header.v[0] = inlist[0]; /* the provoking vertex */
250 header.v[1] = inlist[i-1];
251 header.v[2] = inlist[i];
252 }
253 else {
254 header.v[0] = inlist[i-1];
255 header.v[1] = inlist[i];
256 header.v[2] = inlist[0]; /* the provoking vertex */
257 }
258
259 if (!edgeflags[i-1]) {
260 header.flags &= ~edge_middle;
261 }
262
263 if (i == n - 1 && edgeflags[i])
264 header.flags |= edge_last;
265
266 if (DEBUG_CLIP) {
267 uint j, k;
268 debug_printf("Clipped tri: (flat-shade-first = %d)\n",
269 stage->draw->rasterizer->flatshade_first);
270 for (j = 0; j < 3; j++) {
271 debug_printf(" Vert %d: clip pos: %f %f %f %f\n", j,
272 header.v[j]->clip_pos[0],
273 header.v[j]->clip_pos[1],
274 header.v[j]->clip_pos[2],
275 header.v[j]->clip_pos[3]);
276 if (clipper->cv_attr >= 0) {
277 debug_printf(" Vert %d: cv: %f %f %f %f\n", j,
278 header.v[j]->data[clipper->cv_attr][0],
279 header.v[j]->data[clipper->cv_attr][1],
280 header.v[j]->data[clipper->cv_attr][2],
281 header.v[j]->data[clipper->cv_attr][3]);
282 }
283 for (k = 0; k < draw_num_shader_outputs(stage->draw); k++) {
284 debug_printf(" Vert %d: Attr %d: %f %f %f %f\n", j, k,
285 header.v[j]->data[k][0],
286 header.v[j]->data[k][1],
287 header.v[j]->data[k][2],
288 header.v[j]->data[k][3]);
289 }
290 }
291 }
292 stage->next->tri(stage->next, &header);
293 }
294 }
295
296
297 static inline float
298 dot4(const float *a, const float *b)
299 {
300 return (a[0] * b[0] +
301 a[1] * b[1] +
302 a[2] * b[2] +
303 a[3] * b[3]);
304 }
305
306 /*
307 * this function extracts the clip distance for the current plane,
308 * it first checks if the shader provided a clip distance, otherwise
309 * it works out the value using the clipvertex
310 */
311 static inline float getclipdist(const struct clip_stage *clipper,
312 struct vertex_header *vert,
313 int plane_idx)
314 {
315 const float *plane;
316 float dp;
317 if (plane_idx < 6) {
318 /* ordinary xyz view volume clipping uses pos output */
319 plane = clipper->plane[plane_idx];
320 dp = dot4(vert->clip_pos, plane);
321 }
322 else if (clipper->have_clipdist) {
323 /* pick the correct clipdistance element from the output vectors */
324 int _idx = plane_idx - 6;
325 int cdi = _idx >= 4;
326 int vidx = cdi ? _idx - 4 : _idx;
327 dp = vert->data[draw_current_shader_ccdistance_output(clipper->stage.draw, cdi)][vidx];
328 } else {
329 /*
330 * legacy user clip planes or gl_ClipVertex
331 */
332 plane = clipper->plane[plane_idx];
333 if (clipper->cv_attr >= 0) {
334 dp = dot4(vert->data[clipper->cv_attr], plane);
335 }
336 else {
337 dp = dot4(vert->clip_pos, plane);
338 }
339 }
340 return dp;
341 }
342
343 /* Clip a triangle against the viewport and user clip planes.
344 */
345 static void
346 do_clip_tri(struct draw_stage *stage,
347 struct prim_header *header,
348 unsigned clipmask)
349 {
350 struct clip_stage *clipper = clip_stage( stage );
351 struct vertex_header *a[MAX_CLIPPED_VERTICES];
352 struct vertex_header *b[MAX_CLIPPED_VERTICES];
353 struct vertex_header **inlist = a;
354 struct vertex_header **outlist = b;
355 struct vertex_header *prov_vertex;
356 unsigned tmpnr = 0;
357 unsigned n = 3;
358 unsigned i;
359 boolean aEdges[MAX_CLIPPED_VERTICES];
360 boolean bEdges[MAX_CLIPPED_VERTICES];
361 boolean *inEdges = aEdges;
362 boolean *outEdges = bEdges;
363 int viewport_index = 0;
364
365 inlist[0] = header->v[0];
366 inlist[1] = header->v[1];
367 inlist[2] = header->v[2];
368
369 /*
370 * For d3d10, we need to take this from the leading (first) vertex.
371 * For GL, we could do anything (as long as we advertize
372 * GL_UNDEFINED_VERTEX for the VIEWPORT_INDEX_PROVOKING_VERTEX query),
373 * but it needs to be consistent with what other parts (i.e. driver)
374 * will do, and that seems easier with GL_PROVOKING_VERTEX logic.
375 */
376 if (stage->draw->rasterizer->flatshade_first) {
377 prov_vertex = inlist[0];
378 }
379 else {
380 prov_vertex = inlist[2];
381 }
382 viewport_index = draw_viewport_index(clipper->stage.draw, prov_vertex);
383
384 if (DEBUG_CLIP) {
385 const float *v0 = header->v[0]->clip_pos;
386 const float *v1 = header->v[1]->clip_pos;
387 const float *v2 = header->v[2]->clip_pos;
388 debug_printf("Clip triangle pos:\n");
389 debug_printf(" %f, %f, %f, %f\n", v0[0], v0[1], v0[2], v0[3]);
390 debug_printf(" %f, %f, %f, %f\n", v1[0], v1[1], v1[2], v1[3]);
391 debug_printf(" %f, %f, %f, %f\n", v2[0], v2[1], v2[2], v2[3]);
392 if (clipper->cv_attr >= 0) {
393 const float *v0 = header->v[0]->data[clipper->cv_attr];
394 const float *v1 = header->v[1]->data[clipper->cv_attr];
395 const float *v2 = header->v[2]->data[clipper->cv_attr];
396 debug_printf("Clip triangle cv:\n");
397 debug_printf(" %f, %f, %f, %f\n", v0[0], v0[1], v0[2], v0[3]);
398 debug_printf(" %f, %f, %f, %f\n", v1[0], v1[1], v1[2], v1[3]);
399 debug_printf(" %f, %f, %f, %f\n", v2[0], v2[1], v2[2], v2[3]);
400 }
401 }
402
403 /*
404 * Note: at this point we can't just use the per-vertex edge flags.
405 * We have to observe the edge flag bits set in header->flags which
406 * were set during primitive decomposition. Put those flags into
407 * an edge flags array which parallels the vertex array.
408 * Later, in the 'unfilled' pipeline stage we'll draw the edge if both
409 * the header.flags bit is set AND the per-vertex edgeflag field is set.
410 */
411 inEdges[0] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_0);
412 inEdges[1] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_1);
413 inEdges[2] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_2);
414
415 while (clipmask && n >= 3) {
416 const unsigned plane_idx = ffs(clipmask)-1;
417 const boolean is_user_clip_plane = plane_idx >= 6;
418 struct vertex_header *vert_prev = inlist[0];
419 boolean *edge_prev = &inEdges[0];
420 float dp_prev;
421 unsigned outcount = 0;
422
423 dp_prev = getclipdist(clipper, vert_prev, plane_idx);
424 clipmask &= ~(1<<plane_idx);
425
426 if (util_is_inf_or_nan(dp_prev))
427 return; //discard nan
428
429 assert(n < MAX_CLIPPED_VERTICES);
430 if (n >= MAX_CLIPPED_VERTICES)
431 return;
432 inlist[n] = inlist[0]; /* prevent rotation of vertices */
433 inEdges[n] = inEdges[0];
434
435 for (i = 1; i <= n; i++) {
436 struct vertex_header *vert = inlist[i];
437 boolean *edge = &inEdges[i];
438 boolean different_sign;
439
440 float dp = getclipdist(clipper, vert, plane_idx);
441
442 if (util_is_inf_or_nan(dp))
443 return; //discard nan
444
445 if (dp_prev >= 0.0f) {
446 assert(outcount < MAX_CLIPPED_VERTICES);
447 if (outcount >= MAX_CLIPPED_VERTICES)
448 return;
449 outEdges[outcount] = *edge_prev;
450 outlist[outcount++] = vert_prev;
451 different_sign = dp < 0.0f;
452 } else {
453 different_sign = !(dp < 0.0f);
454 }
455
456 if (different_sign) {
457 struct vertex_header *new_vert;
458 boolean *new_edge;
459
460 assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
461 if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
462 return;
463 new_vert = clipper->stage.tmp[tmpnr++];
464
465 assert(outcount < MAX_CLIPPED_VERTICES);
466 if (outcount >= MAX_CLIPPED_VERTICES)
467 return;
468
469 new_edge = &outEdges[outcount];
470 outlist[outcount++] = new_vert;
471
472 if (dp < 0.0f) {
473 /* Going out of bounds. Avoid division by zero as we
474 * know dp != dp_prev from different_sign, above.
475 */
476 float t = dp / (dp - dp_prev);
477 interp( clipper, new_vert, t, vert, vert_prev, viewport_index );
478
479 /* Whether or not to set edge flag for the new vert depends
480 * on whether it's a user-defined clipping plane. We're
481 * copying NVIDIA's behaviour here.
482 */
483 if (is_user_clip_plane) {
484 /* we want to see an edge along the clip plane */
485 *new_edge = TRUE;
486 new_vert->edgeflag = TRUE;
487 }
488 else {
489 /* we don't want to see an edge along the frustum clip plane */
490 *new_edge = *edge_prev;
491 new_vert->edgeflag = FALSE;
492 }
493 }
494 else {
495 /* Coming back in.
496 */
497 float t = dp_prev / (dp_prev - dp);
498 interp( clipper, new_vert, t, vert_prev, vert, viewport_index );
499
500 /* Copy starting vert's edgeflag:
501 */
502 new_vert->edgeflag = vert_prev->edgeflag;
503 *new_edge = *edge_prev;
504 }
505 }
506
507 vert_prev = vert;
508 edge_prev = edge;
509 dp_prev = dp;
510 }
511
512 /* swap in/out lists */
513 {
514 struct vertex_header **tmp = inlist;
515 inlist = outlist;
516 outlist = tmp;
517 n = outcount;
518 }
519 {
520 boolean *tmp = inEdges;
521 inEdges = outEdges;
522 outEdges = tmp;
523 }
524
525 }
526
527 /* If constant interpolated, copy provoking vertex attrib to polygon vertex[0]
528 */
529 if (n >= 3) {
530 if (clipper->num_const_attribs) {
531 if (stage->draw->rasterizer->flatshade_first) {
532 if (inlist[0] != header->v[0]) {
533 assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
534 if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
535 return;
536 inlist[0] = dup_vert(stage, inlist[0], tmpnr++);
537 copy_flat(stage, inlist[0], header->v[0]);
538 }
539 }
540 else {
541 if (inlist[0] != header->v[2]) {
542 assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
543 if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
544 return;
545 inlist[0] = dup_vert(stage, inlist[0], tmpnr++);
546 copy_flat(stage, inlist[0], header->v[2]);
547 }
548 }
549 }
550
551 /* Emit the polygon as triangles to the setup stage:
552 */
553 emit_poly(stage, inlist, inEdges, n, header);
554 }
555 }
556
557
558 /* Clip a line against the viewport and user clip planes.
559 */
560 static void
561 do_clip_line(struct draw_stage *stage,
562 struct prim_header *header,
563 unsigned clipmask)
564 {
565 const struct clip_stage *clipper = clip_stage(stage);
566 struct vertex_header *v0 = header->v[0];
567 struct vertex_header *v1 = header->v[1];
568 struct vertex_header *prov_vertex;
569 float t0 = 0.0F;
570 float t1 = 0.0F;
571 struct prim_header newprim;
572 int viewport_index;
573
574 newprim.flags = header->flags;
575
576 if (stage->draw->rasterizer->flatshade_first) {
577 prov_vertex = v0;
578 }
579 else {
580 prov_vertex = v1;
581 }
582 viewport_index = draw_viewport_index(clipper->stage.draw, prov_vertex);
583
584 while (clipmask) {
585 const unsigned plane_idx = ffs(clipmask)-1;
586 const float dp0 = getclipdist(clipper, v0, plane_idx);
587 const float dp1 = getclipdist(clipper, v1, plane_idx);
588
589 if (util_is_inf_or_nan(dp0) || util_is_inf_or_nan(dp1))
590 return; //discard nan
591
592 if (dp1 < 0.0F) {
593 float t = dp1 / (dp1 - dp0);
594 t1 = MAX2(t1, t);
595 }
596
597 if (dp0 < 0.0F) {
598 float t = dp0 / (dp0 - dp1);
599 t0 = MAX2(t0, t);
600 }
601
602 if (t0 + t1 >= 1.0F)
603 return; /* discard */
604
605 clipmask &= ~(1 << plane_idx); /* turn off this plane's bit */
606 }
607
608 if (v0->clipmask) {
609 interp( clipper, stage->tmp[0], t0, v0, v1, viewport_index );
610 if (stage->draw->rasterizer->flatshade_first) {
611 copy_flat(stage, stage->tmp[0], v0); /* copy v0 color to tmp[0] */
612 }
613 else {
614 copy_flat(stage, stage->tmp[0], v1); /* copy v1 color to tmp[0] */
615 }
616 newprim.v[0] = stage->tmp[0];
617 }
618 else {
619 newprim.v[0] = v0;
620 }
621
622 if (v1->clipmask) {
623 interp( clipper, stage->tmp[1], t1, v1, v0, viewport_index );
624 if (stage->draw->rasterizer->flatshade_first) {
625 copy_flat(stage, stage->tmp[1], v0); /* copy v0 color to tmp[1] */
626 }
627 else {
628 copy_flat(stage, stage->tmp[1], v1); /* copy v1 color to tmp[1] */
629 }
630 newprim.v[1] = stage->tmp[1];
631 }
632 else {
633 newprim.v[1] = v1;
634 }
635
636 stage->next->line( stage->next, &newprim );
637 }
638
639
640 static void
641 clip_point(struct draw_stage *stage, struct prim_header *header)
642 {
643 if (header->v[0]->clipmask == 0)
644 stage->next->point( stage->next, header );
645 }
646
647
648 /*
649 * Clip points but ignore the first 4 (xy) clip planes.
650 * (Because the generated clip mask is completely unaffacted by guard band,
651 * we still need to manually evaluate the x/y planes if they are outside
652 * the guard band and not just outside the vp.)
653 */
654 static void
655 clip_point_guard_xy(struct draw_stage *stage, struct prim_header *header)
656 {
657 unsigned clipmask = header->v[0]->clipmask;
658 if ((clipmask & 0xffffffff) == 0)
659 stage->next->point(stage->next, header);
660 else if ((clipmask & 0xfffffff0) == 0) {
661 while (clipmask) {
662 const unsigned plane_idx = ffs(clipmask)-1;
663 clipmask &= ~(1 << plane_idx); /* turn off this plane's bit */
664 /* TODO: this should really do proper guardband clipping,
665 * currently just throw out infs/nans.
666 * Also note that vertices with negative w values MUST be tossed
667 * out (not sure if proper guardband clipping would do this
668 * automatically). These would usually be captured by depth clip
669 * too but this can be disabled.
670 */
671 if (header->v[0]->clip_pos[3] <= 0.0f ||
672 util_is_inf_or_nan(header->v[0]->clip_pos[0]) ||
673 util_is_inf_or_nan(header->v[0]->clip_pos[1]))
674 return;
675 }
676 stage->next->point(stage->next, header);
677 }
678 }
679
680
681 static void
682 clip_first_point(struct draw_stage *stage, struct prim_header *header)
683 {
684 stage->point = stage->draw->guard_band_points_xy ? clip_point_guard_xy : clip_point;
685 stage->point(stage, header);
686 }
687
688
689 static void
690 clip_line(struct draw_stage *stage, struct prim_header *header)
691 {
692 unsigned clipmask = (header->v[0]->clipmask |
693 header->v[1]->clipmask);
694
695 if (clipmask == 0) {
696 /* no clipping needed */
697 stage->next->line( stage->next, header );
698 }
699 else if ((header->v[0]->clipmask &
700 header->v[1]->clipmask) == 0) {
701 do_clip_line(stage, header, clipmask);
702 }
703 /* else, totally clipped */
704 }
705
706
707 static void
708 clip_tri(struct draw_stage *stage, struct prim_header *header)
709 {
710 unsigned clipmask = (header->v[0]->clipmask |
711 header->v[1]->clipmask |
712 header->v[2]->clipmask);
713
714 if (clipmask == 0) {
715 /* no clipping needed */
716 stage->next->tri( stage->next, header );
717 }
718 else if ((header->v[0]->clipmask &
719 header->v[1]->clipmask &
720 header->v[2]->clipmask) == 0) {
721 do_clip_tri(stage, header, clipmask);
722 }
723 }
724
725
726 static int
727 find_interp(const struct draw_fragment_shader *fs, int *indexed_interp,
728 uint semantic_name, uint semantic_index)
729 {
730 int interp;
731 /* If it's gl_{Front,Back}{,Secondary}Color, pick up the mode
732 * from the array we've filled before. */
733 if ((semantic_name == TGSI_SEMANTIC_COLOR ||
734 semantic_name == TGSI_SEMANTIC_BCOLOR) &&
735 semantic_index < 2) {
736 interp = indexed_interp[semantic_index];
737 } else if (semantic_name == TGSI_SEMANTIC_POSITION ||
738 semantic_name == TGSI_SEMANTIC_CLIPVERTEX) {
739 /* these inputs are handled specially always */
740 return -1;
741 } else {
742 /* Otherwise, search in the FS inputs, with a decent default
743 * if we don't find it.
744 * This probably only matters for layer, vpindex, culldist, maybe
745 * front_face.
746 */
747 uint j;
748 if (semantic_name == TGSI_SEMANTIC_LAYER ||
749 semantic_name == TGSI_SEMANTIC_VIEWPORT_INDEX) {
750 interp = TGSI_INTERPOLATE_CONSTANT;
751 }
752 else {
753 interp = TGSI_INTERPOLATE_PERSPECTIVE;
754 }
755 if (fs) {
756 for (j = 0; j < fs->info.num_inputs; j++) {
757 if (semantic_name == fs->info.input_semantic_name[j] &&
758 semantic_index == fs->info.input_semantic_index[j]) {
759 interp = fs->info.input_interpolate[j];
760 break;
761 }
762 }
763 }
764 }
765 return interp;
766 }
767
768 /* Update state. Could further delay this until we hit the first
769 * primitive that really requires clipping.
770 */
771 static void
772 clip_init_state(struct draw_stage *stage)
773 {
774 struct clip_stage *clipper = clip_stage(stage);
775 const struct draw_context *draw = stage->draw;
776 const struct draw_fragment_shader *fs = draw->fs.fragment_shader;
777 const struct tgsi_shader_info *info = draw_get_shader_info(draw);
778 uint i, j;
779 int indexed_interp[2];
780
781 clipper->pos_attr = draw_current_shader_position_output(draw);
782 clipper->have_clipdist = draw_current_shader_num_written_clipdistances(draw) > 0;
783 if (draw_current_shader_clipvertex_output(draw) != clipper->pos_attr) {
784 clipper->cv_attr = (int)draw_current_shader_clipvertex_output(draw);
785 }
786 else {
787 clipper->cv_attr = -1;
788 }
789
790 /* We need to know for each attribute what kind of interpolation is
791 * done on it (flat, smooth or noperspective). But the information
792 * is not directly accessible for outputs, only for inputs. So we
793 * have to match semantic name and index between the VS (or GS/ES)
794 * outputs and the FS inputs to get to the interpolation mode.
795 *
796 * The only hitch is with gl_FrontColor/gl_BackColor which map to
797 * gl_Color, and their Secondary versions. First there are (up to)
798 * two outputs for one input, so we tuck the information in a
799 * specific array. Second if they don't have qualifiers, the
800 * default value has to be picked from the global shade mode.
801 *
802 * Of course, if we don't have a fragment shader in the first
803 * place, defaults should be used.
804 */
805
806 /* First pick up the interpolation mode for
807 * gl_Color/gl_SecondaryColor, with the correct default.
808 */
809 indexed_interp[0] = indexed_interp[1] = draw->rasterizer->flatshade ?
810 TGSI_INTERPOLATE_CONSTANT : TGSI_INTERPOLATE_PERSPECTIVE;
811
812 if (fs) {
813 for (i = 0; i < fs->info.num_inputs; i++) {
814 if (fs->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR &&
815 fs->info.input_semantic_index[i] < 2) {
816 if (fs->info.input_interpolate[i] != TGSI_INTERPOLATE_COLOR)
817 indexed_interp[fs->info.input_semantic_index[i]] = fs->info.input_interpolate[i];
818 }
819 }
820 }
821
822 /* Then resolve the interpolation mode for every output attribute. */
823
824 clipper->num_const_attribs = 0;
825 clipper->num_linear_attribs = 0;
826 clipper->num_perspect_attribs = 0;
827 for (i = 0; i < info->num_outputs; i++) {
828 /* Find the interpolation mode for a specific attribute */
829 int interp = find_interp(fs, indexed_interp,
830 info->output_semantic_name[i],
831 info->output_semantic_index[i]);
832 switch (interp) {
833 case TGSI_INTERPOLATE_CONSTANT:
834 clipper->const_attribs[clipper->num_const_attribs] = i;
835 clipper->num_const_attribs++;
836 break;
837 case TGSI_INTERPOLATE_LINEAR:
838 clipper->linear_attribs[clipper->num_linear_attribs] = i;
839 clipper->num_linear_attribs++;
840 break;
841 case TGSI_INTERPOLATE_PERSPECTIVE:
842 clipper->perspect_attribs[clipper->num_perspect_attribs] = i;
843 clipper->num_perspect_attribs++;
844 break;
845 case TGSI_INTERPOLATE_COLOR:
846 if (draw->rasterizer->flatshade) {
847 clipper->const_attribs[clipper->num_const_attribs] = i;
848 clipper->num_const_attribs++;
849 } else {
850 clipper->perspect_attribs[clipper->num_perspect_attribs] = i;
851 clipper->num_perspect_attribs++;
852 }
853 break;
854 default:
855 assert(interp == -1);
856 break;
857 }
858 }
859 /* Search the extra vertex attributes */
860 for (j = 0; j < draw->extra_shader_outputs.num; j++) {
861 /* Find the interpolation mode for a specific attribute */
862 int interp = find_interp(fs, indexed_interp,
863 draw->extra_shader_outputs.semantic_name[j],
864 draw->extra_shader_outputs.semantic_index[j]);
865 switch (interp) {
866 case TGSI_INTERPOLATE_CONSTANT:
867 clipper->const_attribs[clipper->num_const_attribs] = i + j;
868 clipper->num_const_attribs++;
869 break;
870 case TGSI_INTERPOLATE_LINEAR:
871 clipper->linear_attribs[clipper->num_linear_attribs] = i + j;
872 clipper->num_linear_attribs++;
873 break;
874 case TGSI_INTERPOLATE_PERSPECTIVE:
875 clipper->perspect_attribs[clipper->num_perspect_attribs] = i + j;
876 clipper->num_perspect_attribs++;
877 break;
878 default:
879 assert(interp == -1);
880 break;
881 }
882 }
883
884 stage->tri = clip_tri;
885 stage->line = clip_line;
886 }
887
888
889
890 static void clip_first_tri(struct draw_stage *stage,
891 struct prim_header *header)
892 {
893 clip_init_state( stage );
894 stage->tri( stage, header );
895 }
896
897 static void clip_first_line(struct draw_stage *stage,
898 struct prim_header *header)
899 {
900 clip_init_state( stage );
901 stage->line( stage, header );
902 }
903
904
905 static void clip_flush(struct draw_stage *stage, unsigned flags)
906 {
907 stage->tri = clip_first_tri;
908 stage->line = clip_first_line;
909 stage->next->flush( stage->next, flags );
910 }
911
912
913 static void clip_reset_stipple_counter(struct draw_stage *stage)
914 {
915 stage->next->reset_stipple_counter( stage->next );
916 }
917
918
919 static void clip_destroy(struct draw_stage *stage)
920 {
921 draw_free_temp_verts( stage );
922 FREE( stage );
923 }
924
925
926 /**
927 * Allocate a new clipper stage.
928 * \return pointer to new stage object
929 */
930 struct draw_stage *draw_clip_stage(struct draw_context *draw)
931 {
932 struct clip_stage *clipper = CALLOC_STRUCT(clip_stage);
933 if (!clipper)
934 goto fail;
935
936 clipper->stage.draw = draw;
937 clipper->stage.name = "clipper";
938 clipper->stage.point = clip_first_point;
939 clipper->stage.line = clip_first_line;
940 clipper->stage.tri = clip_first_tri;
941 clipper->stage.flush = clip_flush;
942 clipper->stage.reset_stipple_counter = clip_reset_stipple_counter;
943 clipper->stage.destroy = clip_destroy;
944
945 clipper->plane = draw->plane;
946
947 if (!draw_alloc_temp_verts( &clipper->stage, MAX_CLIPPED_VERTICES+1 ))
948 goto fail;
949
950 return &clipper->stage;
951
952 fail:
953 if (clipper)
954 clipper->stage.destroy( &clipper->stage );
955
956 return NULL;
957 }