gallivm: Fix uses of 2^24
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_arit.c
1 /**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 /**
30 * @file
31 * Helper
32 *
33 * LLVM IR doesn't support all basic arithmetic operations we care about (most
34 * notably min/max and saturated operations), and it is often necessary to
35 * resort machine-specific intrinsics directly. The functions here hide all
36 * these implementation details from the other modules.
37 *
38 * We also do simple expressions simplification here. Reasons are:
39 * - it is very easy given we have all necessary information readily available
40 * - LLVM optimization passes fail to simplify several vector expressions
41 * - We often know value constraints which the optimization passes have no way
42 * of knowing, such as when source arguments are known to be in [0, 1] range.
43 *
44 * @author Jose Fonseca <jfonseca@vmware.com>
45 */
46
47
48 #include <float.h>
49
50 #include "util/u_memory.h"
51 #include "util/u_debug.h"
52 #include "util/u_math.h"
53 #include "util/u_string.h"
54 #include "util/u_cpu_detect.h"
55
56 #include "lp_bld_type.h"
57 #include "lp_bld_const.h"
58 #include "lp_bld_init.h"
59 #include "lp_bld_intr.h"
60 #include "lp_bld_logic.h"
61 #include "lp_bld_pack.h"
62 #include "lp_bld_debug.h"
63 #include "lp_bld_bitarit.h"
64 #include "lp_bld_arit.h"
65 #include "lp_bld_flow.h"
66
67 #if defined(PIPE_ARCH_SSE)
68 #include <xmmintrin.h>
69 #endif
70
71 #ifndef _MM_DENORMALS_ZERO_MASK
72 #define _MM_DENORMALS_ZERO_MASK 0x0040
73 #endif
74
75 #ifndef _MM_FLUSH_ZERO_MASK
76 #define _MM_FLUSH_ZERO_MASK 0x8000
77 #endif
78
79 #define EXP_POLY_DEGREE 5
80
81 #define LOG_POLY_DEGREE 4
82
83
84 /**
85 * Generate min(a, b)
86 * No checks for special case values of a or b = 1 or 0 are done.
87 * NaN's are handled according to the behavior specified by the
88 * nan_behavior argument.
89 */
90 static LLVMValueRef
91 lp_build_min_simple(struct lp_build_context *bld,
92 LLVMValueRef a,
93 LLVMValueRef b,
94 enum gallivm_nan_behavior nan_behavior)
95 {
96 const struct lp_type type = bld->type;
97 const char *intrinsic = NULL;
98 unsigned intr_size = 0;
99 LLVMValueRef cond;
100
101 assert(lp_check_value(type, a));
102 assert(lp_check_value(type, b));
103
104 /* TODO: optimize the constant case */
105
106 if (type.floating && util_cpu_caps.has_sse) {
107 if (type.width == 32) {
108 if (type.length == 1) {
109 intrinsic = "llvm.x86.sse.min.ss";
110 intr_size = 128;
111 }
112 else if (type.length <= 4 || !util_cpu_caps.has_avx) {
113 intrinsic = "llvm.x86.sse.min.ps";
114 intr_size = 128;
115 }
116 else {
117 intrinsic = "llvm.x86.avx.min.ps.256";
118 intr_size = 256;
119 }
120 }
121 if (type.width == 64 && util_cpu_caps.has_sse2) {
122 if (type.length == 1) {
123 intrinsic = "llvm.x86.sse2.min.sd";
124 intr_size = 128;
125 }
126 else if (type.length == 2 || !util_cpu_caps.has_avx) {
127 intrinsic = "llvm.x86.sse2.min.pd";
128 intr_size = 128;
129 }
130 else {
131 intrinsic = "llvm.x86.avx.min.pd.256";
132 intr_size = 256;
133 }
134 }
135 }
136 else if (type.floating && util_cpu_caps.has_altivec) {
137 if (nan_behavior == GALLIVM_NAN_RETURN_NAN ||
138 nan_behavior == GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
139 debug_printf("%s: altivec doesn't support nan return nan behavior\n",
140 __FUNCTION__);
141 }
142 if (type.width == 32 && type.length == 4) {
143 intrinsic = "llvm.ppc.altivec.vminfp";
144 intr_size = 128;
145 }
146 } else if (util_cpu_caps.has_sse2 && type.length >= 2) {
147 intr_size = 128;
148 if ((type.width == 8 || type.width == 16) &&
149 (type.width * type.length <= 64) &&
150 (gallivm_debug & GALLIVM_DEBUG_PERF)) {
151 debug_printf("%s: inefficient code, bogus shuffle due to packing\n",
152 __FUNCTION__);
153 }
154 if (type.width == 8 && !type.sign) {
155 intrinsic = "llvm.x86.sse2.pminu.b";
156 }
157 else if (type.width == 16 && type.sign) {
158 intrinsic = "llvm.x86.sse2.pmins.w";
159 }
160 if (util_cpu_caps.has_sse4_1) {
161 if (type.width == 8 && type.sign) {
162 intrinsic = "llvm.x86.sse41.pminsb";
163 }
164 if (type.width == 16 && !type.sign) {
165 intrinsic = "llvm.x86.sse41.pminuw";
166 }
167 if (type.width == 32 && !type.sign) {
168 intrinsic = "llvm.x86.sse41.pminud";
169 }
170 if (type.width == 32 && type.sign) {
171 intrinsic = "llvm.x86.sse41.pminsd";
172 }
173 }
174 } else if (util_cpu_caps.has_altivec) {
175 intr_size = 128;
176 if (type.width == 8) {
177 if (!type.sign) {
178 intrinsic = "llvm.ppc.altivec.vminub";
179 } else {
180 intrinsic = "llvm.ppc.altivec.vminsb";
181 }
182 } else if (type.width == 16) {
183 if (!type.sign) {
184 intrinsic = "llvm.ppc.altivec.vminuh";
185 } else {
186 intrinsic = "llvm.ppc.altivec.vminsh";
187 }
188 } else if (type.width == 32) {
189 if (!type.sign) {
190 intrinsic = "llvm.ppc.altivec.vminuw";
191 } else {
192 intrinsic = "llvm.ppc.altivec.vminsw";
193 }
194 }
195 }
196
197 if(intrinsic) {
198 /* We need to handle nan's for floating point numbers. If one of the
199 * inputs is nan the other should be returned (required by both D3D10+
200 * and OpenCL).
201 * The sse intrinsics return the second operator in case of nan by
202 * default so we need to special code to handle those.
203 */
204 if (util_cpu_caps.has_sse && type.floating &&
205 nan_behavior != GALLIVM_NAN_BEHAVIOR_UNDEFINED &&
206 nan_behavior != GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN &&
207 nan_behavior != GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
208 LLVMValueRef isnan, min;
209 min = lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
210 type,
211 intr_size, a, b);
212 if (nan_behavior == GALLIVM_NAN_RETURN_OTHER) {
213 isnan = lp_build_isnan(bld, b);
214 return lp_build_select(bld, isnan, a, min);
215 } else {
216 assert(nan_behavior == GALLIVM_NAN_RETURN_NAN);
217 isnan = lp_build_isnan(bld, a);
218 return lp_build_select(bld, isnan, a, min);
219 }
220 } else {
221 return lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
222 type,
223 intr_size, a, b);
224 }
225 }
226
227 if (type.floating) {
228 switch (nan_behavior) {
229 case GALLIVM_NAN_RETURN_NAN: {
230 LLVMValueRef isnan = lp_build_isnan(bld, b);
231 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
232 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
233 return lp_build_select(bld, cond, a, b);
234 }
235 break;
236 case GALLIVM_NAN_RETURN_OTHER: {
237 LLVMValueRef isnan = lp_build_isnan(bld, a);
238 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
239 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
240 return lp_build_select(bld, cond, a, b);
241 }
242 break;
243 case GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN:
244 cond = lp_build_cmp_ordered(bld, PIPE_FUNC_LESS, a, b);
245 return lp_build_select(bld, cond, a, b);
246 case GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN:
247 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, b, a);
248 return lp_build_select(bld, cond, b, a);
249 case GALLIVM_NAN_BEHAVIOR_UNDEFINED:
250 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
251 return lp_build_select(bld, cond, a, b);
252 break;
253 default:
254 assert(0);
255 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
256 return lp_build_select(bld, cond, a, b);
257 }
258 } else {
259 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
260 return lp_build_select(bld, cond, a, b);
261 }
262 }
263
264
265 /**
266 * Generate max(a, b)
267 * No checks for special case values of a or b = 1 or 0 are done.
268 * NaN's are handled according to the behavior specified by the
269 * nan_behavior argument.
270 */
271 static LLVMValueRef
272 lp_build_max_simple(struct lp_build_context *bld,
273 LLVMValueRef a,
274 LLVMValueRef b,
275 enum gallivm_nan_behavior nan_behavior)
276 {
277 const struct lp_type type = bld->type;
278 const char *intrinsic = NULL;
279 unsigned intr_size = 0;
280 LLVMValueRef cond;
281
282 assert(lp_check_value(type, a));
283 assert(lp_check_value(type, b));
284
285 /* TODO: optimize the constant case */
286
287 if (type.floating && util_cpu_caps.has_sse) {
288 if (type.width == 32) {
289 if (type.length == 1) {
290 intrinsic = "llvm.x86.sse.max.ss";
291 intr_size = 128;
292 }
293 else if (type.length <= 4 || !util_cpu_caps.has_avx) {
294 intrinsic = "llvm.x86.sse.max.ps";
295 intr_size = 128;
296 }
297 else {
298 intrinsic = "llvm.x86.avx.max.ps.256";
299 intr_size = 256;
300 }
301 }
302 if (type.width == 64 && util_cpu_caps.has_sse2) {
303 if (type.length == 1) {
304 intrinsic = "llvm.x86.sse2.max.sd";
305 intr_size = 128;
306 }
307 else if (type.length == 2 || !util_cpu_caps.has_avx) {
308 intrinsic = "llvm.x86.sse2.max.pd";
309 intr_size = 128;
310 }
311 else {
312 intrinsic = "llvm.x86.avx.max.pd.256";
313 intr_size = 256;
314 }
315 }
316 }
317 else if (type.floating && util_cpu_caps.has_altivec) {
318 if (nan_behavior == GALLIVM_NAN_RETURN_NAN ||
319 nan_behavior == GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
320 debug_printf("%s: altivec doesn't support nan return nan behavior\n",
321 __FUNCTION__);
322 }
323 if (type.width == 32 || type.length == 4) {
324 intrinsic = "llvm.ppc.altivec.vmaxfp";
325 intr_size = 128;
326 }
327 } else if (util_cpu_caps.has_sse2 && type.length >= 2) {
328 intr_size = 128;
329 if ((type.width == 8 || type.width == 16) &&
330 (type.width * type.length <= 64) &&
331 (gallivm_debug & GALLIVM_DEBUG_PERF)) {
332 debug_printf("%s: inefficient code, bogus shuffle due to packing\n",
333 __FUNCTION__);
334 }
335 if (type.width == 8 && !type.sign) {
336 intrinsic = "llvm.x86.sse2.pmaxu.b";
337 intr_size = 128;
338 }
339 else if (type.width == 16 && type.sign) {
340 intrinsic = "llvm.x86.sse2.pmaxs.w";
341 }
342 if (util_cpu_caps.has_sse4_1) {
343 if (type.width == 8 && type.sign) {
344 intrinsic = "llvm.x86.sse41.pmaxsb";
345 }
346 if (type.width == 16 && !type.sign) {
347 intrinsic = "llvm.x86.sse41.pmaxuw";
348 }
349 if (type.width == 32 && !type.sign) {
350 intrinsic = "llvm.x86.sse41.pmaxud";
351 }
352 if (type.width == 32 && type.sign) {
353 intrinsic = "llvm.x86.sse41.pmaxsd";
354 }
355 }
356 } else if (util_cpu_caps.has_altivec) {
357 intr_size = 128;
358 if (type.width == 8) {
359 if (!type.sign) {
360 intrinsic = "llvm.ppc.altivec.vmaxub";
361 } else {
362 intrinsic = "llvm.ppc.altivec.vmaxsb";
363 }
364 } else if (type.width == 16) {
365 if (!type.sign) {
366 intrinsic = "llvm.ppc.altivec.vmaxuh";
367 } else {
368 intrinsic = "llvm.ppc.altivec.vmaxsh";
369 }
370 } else if (type.width == 32) {
371 if (!type.sign) {
372 intrinsic = "llvm.ppc.altivec.vmaxuw";
373 } else {
374 intrinsic = "llvm.ppc.altivec.vmaxsw";
375 }
376 }
377 }
378
379 if(intrinsic) {
380 if (util_cpu_caps.has_sse && type.floating &&
381 nan_behavior != GALLIVM_NAN_BEHAVIOR_UNDEFINED &&
382 nan_behavior != GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN &&
383 nan_behavior != GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
384 LLVMValueRef isnan, max;
385 max = lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
386 type,
387 intr_size, a, b);
388 if (nan_behavior == GALLIVM_NAN_RETURN_OTHER) {
389 isnan = lp_build_isnan(bld, b);
390 return lp_build_select(bld, isnan, a, max);
391 } else {
392 assert(nan_behavior == GALLIVM_NAN_RETURN_NAN);
393 isnan = lp_build_isnan(bld, a);
394 return lp_build_select(bld, isnan, a, max);
395 }
396 } else {
397 return lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
398 type,
399 intr_size, a, b);
400 }
401 }
402
403 if (type.floating) {
404 switch (nan_behavior) {
405 case GALLIVM_NAN_RETURN_NAN: {
406 LLVMValueRef isnan = lp_build_isnan(bld, b);
407 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
408 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
409 return lp_build_select(bld, cond, a, b);
410 }
411 break;
412 case GALLIVM_NAN_RETURN_OTHER: {
413 LLVMValueRef isnan = lp_build_isnan(bld, a);
414 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
415 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
416 return lp_build_select(bld, cond, a, b);
417 }
418 break;
419 case GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN:
420 cond = lp_build_cmp_ordered(bld, PIPE_FUNC_GREATER, a, b);
421 return lp_build_select(bld, cond, a, b);
422 case GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN:
423 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, b, a);
424 return lp_build_select(bld, cond, b, a);
425 case GALLIVM_NAN_BEHAVIOR_UNDEFINED:
426 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
427 return lp_build_select(bld, cond, a, b);
428 break;
429 default:
430 assert(0);
431 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
432 return lp_build_select(bld, cond, a, b);
433 }
434 } else {
435 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
436 return lp_build_select(bld, cond, a, b);
437 }
438 }
439
440
441 /**
442 * Generate 1 - a, or ~a depending on bld->type.
443 */
444 LLVMValueRef
445 lp_build_comp(struct lp_build_context *bld,
446 LLVMValueRef a)
447 {
448 LLVMBuilderRef builder = bld->gallivm->builder;
449 const struct lp_type type = bld->type;
450
451 assert(lp_check_value(type, a));
452
453 if(a == bld->one)
454 return bld->zero;
455 if(a == bld->zero)
456 return bld->one;
457
458 if(type.norm && !type.floating && !type.fixed && !type.sign) {
459 if(LLVMIsConstant(a))
460 return LLVMConstNot(a);
461 else
462 return LLVMBuildNot(builder, a, "");
463 }
464
465 if(LLVMIsConstant(a))
466 if (type.floating)
467 return LLVMConstFSub(bld->one, a);
468 else
469 return LLVMConstSub(bld->one, a);
470 else
471 if (type.floating)
472 return LLVMBuildFSub(builder, bld->one, a, "");
473 else
474 return LLVMBuildSub(builder, bld->one, a, "");
475 }
476
477
478 /**
479 * Generate a + b
480 */
481 LLVMValueRef
482 lp_build_add(struct lp_build_context *bld,
483 LLVMValueRef a,
484 LLVMValueRef b)
485 {
486 LLVMBuilderRef builder = bld->gallivm->builder;
487 const struct lp_type type = bld->type;
488 LLVMValueRef res;
489
490 assert(lp_check_value(type, a));
491 assert(lp_check_value(type, b));
492
493 if(a == bld->zero)
494 return b;
495 if(b == bld->zero)
496 return a;
497 if(a == bld->undef || b == bld->undef)
498 return bld->undef;
499
500 if(bld->type.norm) {
501 const char *intrinsic = NULL;
502
503 if(a == bld->one || b == bld->one)
504 return bld->one;
505
506 if (type.width * type.length == 128 &&
507 !type.floating && !type.fixed) {
508 if(util_cpu_caps.has_sse2) {
509 if(type.width == 8)
510 intrinsic = type.sign ? "llvm.x86.sse2.padds.b" : "llvm.x86.sse2.paddus.b";
511 if(type.width == 16)
512 intrinsic = type.sign ? "llvm.x86.sse2.padds.w" : "llvm.x86.sse2.paddus.w";
513 } else if (util_cpu_caps.has_altivec) {
514 if(type.width == 8)
515 intrinsic = type.sign ? "llvm.ppc.altivec.vaddsbs" : "llvm.ppc.altivec.vaddubs";
516 if(type.width == 16)
517 intrinsic = type.sign ? "llvm.ppc.altivec.vaddshs" : "llvm.ppc.altivec.vadduhs";
518 }
519 }
520
521 if(intrinsic)
522 return lp_build_intrinsic_binary(builder, intrinsic, lp_build_vec_type(bld->gallivm, bld->type), a, b);
523 }
524
525 if(type.norm && !type.floating && !type.fixed) {
526 if (type.sign) {
527 uint64_t sign = (uint64_t)1 << (type.width - 1);
528 LLVMValueRef max_val = lp_build_const_int_vec(bld->gallivm, type, sign - 1);
529 LLVMValueRef min_val = lp_build_const_int_vec(bld->gallivm, type, sign);
530 /* a_clamp_max is the maximum a for positive b,
531 a_clamp_min is the minimum a for negative b. */
532 LLVMValueRef a_clamp_max = lp_build_min_simple(bld, a, LLVMBuildSub(builder, max_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
533 LLVMValueRef a_clamp_min = lp_build_max_simple(bld, a, LLVMBuildSub(builder, min_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
534 a = lp_build_select(bld, lp_build_cmp(bld, PIPE_FUNC_GREATER, b, bld->zero), a_clamp_max, a_clamp_min);
535 } else {
536 a = lp_build_min_simple(bld, a, lp_build_comp(bld, b), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
537 }
538 }
539
540 if(LLVMIsConstant(a) && LLVMIsConstant(b))
541 if (type.floating)
542 res = LLVMConstFAdd(a, b);
543 else
544 res = LLVMConstAdd(a, b);
545 else
546 if (type.floating)
547 res = LLVMBuildFAdd(builder, a, b, "");
548 else
549 res = LLVMBuildAdd(builder, a, b, "");
550
551 /* clamp to ceiling of 1.0 */
552 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
553 res = lp_build_min_simple(bld, res, bld->one, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
554
555 /* XXX clamp to floor of -1 or 0??? */
556
557 return res;
558 }
559
560
561 /** Return the scalar sum of the elements of a.
562 * Should avoid this operation whenever possible.
563 */
564 LLVMValueRef
565 lp_build_horizontal_add(struct lp_build_context *bld,
566 LLVMValueRef a)
567 {
568 LLVMBuilderRef builder = bld->gallivm->builder;
569 const struct lp_type type = bld->type;
570 LLVMValueRef index, res;
571 unsigned i, length;
572 LLVMValueRef shuffles1[LP_MAX_VECTOR_LENGTH / 2];
573 LLVMValueRef shuffles2[LP_MAX_VECTOR_LENGTH / 2];
574 LLVMValueRef vecres, elem2;
575
576 assert(lp_check_value(type, a));
577
578 if (type.length == 1) {
579 return a;
580 }
581
582 assert(!bld->type.norm);
583
584 /*
585 * for byte vectors can do much better with psadbw.
586 * Using repeated shuffle/adds here. Note with multiple vectors
587 * this can be done more efficiently as outlined in the intel
588 * optimization manual.
589 * Note: could cause data rearrangement if used with smaller element
590 * sizes.
591 */
592
593 vecres = a;
594 length = type.length / 2;
595 while (length > 1) {
596 LLVMValueRef vec1, vec2;
597 for (i = 0; i < length; i++) {
598 shuffles1[i] = lp_build_const_int32(bld->gallivm, i);
599 shuffles2[i] = lp_build_const_int32(bld->gallivm, i + length);
600 }
601 vec1 = LLVMBuildShuffleVector(builder, vecres, vecres,
602 LLVMConstVector(shuffles1, length), "");
603 vec2 = LLVMBuildShuffleVector(builder, vecres, vecres,
604 LLVMConstVector(shuffles2, length), "");
605 if (type.floating) {
606 vecres = LLVMBuildFAdd(builder, vec1, vec2, "");
607 }
608 else {
609 vecres = LLVMBuildAdd(builder, vec1, vec2, "");
610 }
611 length = length >> 1;
612 }
613
614 /* always have vector of size 2 here */
615 assert(length == 1);
616
617 index = lp_build_const_int32(bld->gallivm, 0);
618 res = LLVMBuildExtractElement(builder, vecres, index, "");
619 index = lp_build_const_int32(bld->gallivm, 1);
620 elem2 = LLVMBuildExtractElement(builder, vecres, index, "");
621
622 if (type.floating)
623 res = LLVMBuildFAdd(builder, res, elem2, "");
624 else
625 res = LLVMBuildAdd(builder, res, elem2, "");
626
627 return res;
628 }
629
630 /**
631 * Return the horizontal sums of 4 float vectors as a float4 vector.
632 * This uses the technique as outlined in Intel Optimization Manual.
633 */
634 static LLVMValueRef
635 lp_build_horizontal_add4x4f(struct lp_build_context *bld,
636 LLVMValueRef src[4])
637 {
638 struct gallivm_state *gallivm = bld->gallivm;
639 LLVMBuilderRef builder = gallivm->builder;
640 LLVMValueRef shuffles[4];
641 LLVMValueRef tmp[4];
642 LLVMValueRef sumtmp[2], shuftmp[2];
643
644 /* lower half of regs */
645 shuffles[0] = lp_build_const_int32(gallivm, 0);
646 shuffles[1] = lp_build_const_int32(gallivm, 1);
647 shuffles[2] = lp_build_const_int32(gallivm, 4);
648 shuffles[3] = lp_build_const_int32(gallivm, 5);
649 tmp[0] = LLVMBuildShuffleVector(builder, src[0], src[1],
650 LLVMConstVector(shuffles, 4), "");
651 tmp[2] = LLVMBuildShuffleVector(builder, src[2], src[3],
652 LLVMConstVector(shuffles, 4), "");
653
654 /* upper half of regs */
655 shuffles[0] = lp_build_const_int32(gallivm, 2);
656 shuffles[1] = lp_build_const_int32(gallivm, 3);
657 shuffles[2] = lp_build_const_int32(gallivm, 6);
658 shuffles[3] = lp_build_const_int32(gallivm, 7);
659 tmp[1] = LLVMBuildShuffleVector(builder, src[0], src[1],
660 LLVMConstVector(shuffles, 4), "");
661 tmp[3] = LLVMBuildShuffleVector(builder, src[2], src[3],
662 LLVMConstVector(shuffles, 4), "");
663
664 sumtmp[0] = LLVMBuildFAdd(builder, tmp[0], tmp[1], "");
665 sumtmp[1] = LLVMBuildFAdd(builder, tmp[2], tmp[3], "");
666
667 shuffles[0] = lp_build_const_int32(gallivm, 0);
668 shuffles[1] = lp_build_const_int32(gallivm, 2);
669 shuffles[2] = lp_build_const_int32(gallivm, 4);
670 shuffles[3] = lp_build_const_int32(gallivm, 6);
671 shuftmp[0] = LLVMBuildShuffleVector(builder, sumtmp[0], sumtmp[1],
672 LLVMConstVector(shuffles, 4), "");
673
674 shuffles[0] = lp_build_const_int32(gallivm, 1);
675 shuffles[1] = lp_build_const_int32(gallivm, 3);
676 shuffles[2] = lp_build_const_int32(gallivm, 5);
677 shuffles[3] = lp_build_const_int32(gallivm, 7);
678 shuftmp[1] = LLVMBuildShuffleVector(builder, sumtmp[0], sumtmp[1],
679 LLVMConstVector(shuffles, 4), "");
680
681 return LLVMBuildFAdd(builder, shuftmp[0], shuftmp[1], "");
682 }
683
684
685 /*
686 * partially horizontally add 2-4 float vectors with length nx4,
687 * i.e. only four adjacent values in each vector will be added,
688 * assuming values are really grouped in 4 which also determines
689 * output order.
690 *
691 * Return a vector of the same length as the initial vectors,
692 * with the excess elements (if any) being undefined.
693 * The element order is independent of number of input vectors.
694 * For 3 vectors x0x1x2x3x4x5x6x7, y0y1y2y3y4y5y6y7, z0z1z2z3z4z5z6z7
695 * the output order thus will be
696 * sumx0-x3,sumy0-y3,sumz0-z3,undef,sumx4-x7,sumy4-y7,sumz4z7,undef
697 */
698 LLVMValueRef
699 lp_build_hadd_partial4(struct lp_build_context *bld,
700 LLVMValueRef vectors[],
701 unsigned num_vecs)
702 {
703 struct gallivm_state *gallivm = bld->gallivm;
704 LLVMBuilderRef builder = gallivm->builder;
705 LLVMValueRef ret_vec;
706 LLVMValueRef tmp[4];
707 const char *intrinsic = NULL;
708
709 assert(num_vecs >= 2 && num_vecs <= 4);
710 assert(bld->type.floating);
711
712 /* only use this with at least 2 vectors, as it is sort of expensive
713 * (depending on cpu) and we always need two horizontal adds anyway,
714 * so a shuffle/add approach might be better.
715 */
716
717 tmp[0] = vectors[0];
718 tmp[1] = vectors[1];
719
720 tmp[2] = num_vecs > 2 ? vectors[2] : vectors[0];
721 tmp[3] = num_vecs > 3 ? vectors[3] : vectors[0];
722
723 if (util_cpu_caps.has_sse3 && bld->type.width == 32 &&
724 bld->type.length == 4) {
725 intrinsic = "llvm.x86.sse3.hadd.ps";
726 }
727 else if (util_cpu_caps.has_avx && bld->type.width == 32 &&
728 bld->type.length == 8) {
729 intrinsic = "llvm.x86.avx.hadd.ps.256";
730 }
731 if (intrinsic) {
732 tmp[0] = lp_build_intrinsic_binary(builder, intrinsic,
733 lp_build_vec_type(gallivm, bld->type),
734 tmp[0], tmp[1]);
735 if (num_vecs > 2) {
736 tmp[1] = lp_build_intrinsic_binary(builder, intrinsic,
737 lp_build_vec_type(gallivm, bld->type),
738 tmp[2], tmp[3]);
739 }
740 else {
741 tmp[1] = tmp[0];
742 }
743 return lp_build_intrinsic_binary(builder, intrinsic,
744 lp_build_vec_type(gallivm, bld->type),
745 tmp[0], tmp[1]);
746 }
747
748 if (bld->type.length == 4) {
749 ret_vec = lp_build_horizontal_add4x4f(bld, tmp);
750 }
751 else {
752 LLVMValueRef partres[LP_MAX_VECTOR_LENGTH/4];
753 unsigned j;
754 unsigned num_iter = bld->type.length / 4;
755 struct lp_type parttype = bld->type;
756 parttype.length = 4;
757 for (j = 0; j < num_iter; j++) {
758 LLVMValueRef partsrc[4];
759 unsigned i;
760 for (i = 0; i < 4; i++) {
761 partsrc[i] = lp_build_extract_range(gallivm, tmp[i], j*4, 4);
762 }
763 partres[j] = lp_build_horizontal_add4x4f(bld, partsrc);
764 }
765 ret_vec = lp_build_concat(gallivm, partres, parttype, num_iter);
766 }
767 return ret_vec;
768 }
769
770 /**
771 * Generate a - b
772 */
773 LLVMValueRef
774 lp_build_sub(struct lp_build_context *bld,
775 LLVMValueRef a,
776 LLVMValueRef b)
777 {
778 LLVMBuilderRef builder = bld->gallivm->builder;
779 const struct lp_type type = bld->type;
780 LLVMValueRef res;
781
782 assert(lp_check_value(type, a));
783 assert(lp_check_value(type, b));
784
785 if(b == bld->zero)
786 return a;
787 if(a == bld->undef || b == bld->undef)
788 return bld->undef;
789 if(a == b)
790 return bld->zero;
791
792 if(bld->type.norm) {
793 const char *intrinsic = NULL;
794
795 if(b == bld->one)
796 return bld->zero;
797
798 if (type.width * type.length == 128 &&
799 !type.floating && !type.fixed) {
800 if (util_cpu_caps.has_sse2) {
801 if(type.width == 8)
802 intrinsic = type.sign ? "llvm.x86.sse2.psubs.b" : "llvm.x86.sse2.psubus.b";
803 if(type.width == 16)
804 intrinsic = type.sign ? "llvm.x86.sse2.psubs.w" : "llvm.x86.sse2.psubus.w";
805 } else if (util_cpu_caps.has_altivec) {
806 if(type.width == 8)
807 intrinsic = type.sign ? "llvm.ppc.altivec.vsubsbs" : "llvm.ppc.altivec.vsububs";
808 if(type.width == 16)
809 intrinsic = type.sign ? "llvm.ppc.altivec.vsubshs" : "llvm.ppc.altivec.vsubuhs";
810 }
811 }
812
813 if(intrinsic)
814 return lp_build_intrinsic_binary(builder, intrinsic, lp_build_vec_type(bld->gallivm, bld->type), a, b);
815 }
816
817 if(type.norm && !type.floating && !type.fixed) {
818 if (type.sign) {
819 uint64_t sign = (uint64_t)1 << (type.width - 1);
820 LLVMValueRef max_val = lp_build_const_int_vec(bld->gallivm, type, sign - 1);
821 LLVMValueRef min_val = lp_build_const_int_vec(bld->gallivm, type, sign);
822 /* a_clamp_max is the maximum a for negative b,
823 a_clamp_min is the minimum a for positive b. */
824 LLVMValueRef a_clamp_max = lp_build_min_simple(bld, a, LLVMBuildAdd(builder, max_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
825 LLVMValueRef a_clamp_min = lp_build_max_simple(bld, a, LLVMBuildAdd(builder, min_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
826 a = lp_build_select(bld, lp_build_cmp(bld, PIPE_FUNC_GREATER, b, bld->zero), a_clamp_min, a_clamp_max);
827 } else {
828 a = lp_build_max_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
829 }
830 }
831
832 if(LLVMIsConstant(a) && LLVMIsConstant(b))
833 if (type.floating)
834 res = LLVMConstFSub(a, b);
835 else
836 res = LLVMConstSub(a, b);
837 else
838 if (type.floating)
839 res = LLVMBuildFSub(builder, a, b, "");
840 else
841 res = LLVMBuildSub(builder, a, b, "");
842
843 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
844 res = lp_build_max_simple(bld, res, bld->zero, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
845
846 return res;
847 }
848
849
850
851 /**
852 * Normalized multiplication.
853 *
854 * There are several approaches for (using 8-bit normalized multiplication as
855 * an example):
856 *
857 * - alpha plus one
858 *
859 * makes the following approximation to the division (Sree)
860 *
861 * a*b/255 ~= (a*(b + 1)) >> 256
862 *
863 * which is the fastest method that satisfies the following OpenGL criteria of
864 *
865 * 0*0 = 0 and 255*255 = 255
866 *
867 * - geometric series
868 *
869 * takes the geometric series approximation to the division
870 *
871 * t/255 = (t >> 8) + (t >> 16) + (t >> 24) ..
872 *
873 * in this case just the first two terms to fit in 16bit arithmetic
874 *
875 * t/255 ~= (t + (t >> 8)) >> 8
876 *
877 * note that just by itself it doesn't satisfies the OpenGL criteria, as
878 * 255*255 = 254, so the special case b = 255 must be accounted or roundoff
879 * must be used.
880 *
881 * - geometric series plus rounding
882 *
883 * when using a geometric series division instead of truncating the result
884 * use roundoff in the approximation (Jim Blinn)
885 *
886 * t/255 ~= (t + (t >> 8) + 0x80) >> 8
887 *
888 * achieving the exact results.
889 *
890 *
891 *
892 * @sa Alvy Ray Smith, Image Compositing Fundamentals, Tech Memo 4, Aug 15, 1995,
893 * ftp://ftp.alvyray.com/Acrobat/4_Comp.pdf
894 * @sa Michael Herf, The "double blend trick", May 2000,
895 * http://www.stereopsis.com/doubleblend.html
896 */
897 static LLVMValueRef
898 lp_build_mul_norm(struct gallivm_state *gallivm,
899 struct lp_type wide_type,
900 LLVMValueRef a, LLVMValueRef b)
901 {
902 LLVMBuilderRef builder = gallivm->builder;
903 struct lp_build_context bld;
904 unsigned n;
905 LLVMValueRef half;
906 LLVMValueRef ab;
907
908 assert(!wide_type.floating);
909 assert(lp_check_value(wide_type, a));
910 assert(lp_check_value(wide_type, b));
911
912 lp_build_context_init(&bld, gallivm, wide_type);
913
914 n = wide_type.width / 2;
915 if (wide_type.sign) {
916 --n;
917 }
918
919 /*
920 * TODO: for 16bits normalized SSE2 vectors we could consider using PMULHUW
921 * http://ssp.impulsetrain.com/2011/07/03/multiplying-normalized-16-bit-numbers-with-sse2/
922 */
923
924 /*
925 * a*b / (2**n - 1) ~= (a*b + (a*b >> n) + half) >> n
926 */
927
928 ab = LLVMBuildMul(builder, a, b, "");
929 ab = LLVMBuildAdd(builder, ab, lp_build_shr_imm(&bld, ab, n), "");
930
931 /*
932 * half = sgn(ab) * 0.5 * (2 ** n) = sgn(ab) * (1 << (n - 1))
933 */
934
935 half = lp_build_const_int_vec(gallivm, wide_type, 1 << (n - 1));
936 if (wide_type.sign) {
937 LLVMValueRef minus_half = LLVMBuildNeg(builder, half, "");
938 LLVMValueRef sign = lp_build_shr_imm(&bld, ab, wide_type.width - 1);
939 half = lp_build_select(&bld, sign, minus_half, half);
940 }
941 ab = LLVMBuildAdd(builder, ab, half, "");
942
943 /* Final division */
944 ab = lp_build_shr_imm(&bld, ab, n);
945
946 return ab;
947 }
948
949 /**
950 * Generate a * b
951 */
952 LLVMValueRef
953 lp_build_mul(struct lp_build_context *bld,
954 LLVMValueRef a,
955 LLVMValueRef b)
956 {
957 LLVMBuilderRef builder = bld->gallivm->builder;
958 const struct lp_type type = bld->type;
959 LLVMValueRef shift;
960 LLVMValueRef res;
961
962 assert(lp_check_value(type, a));
963 assert(lp_check_value(type, b));
964
965 if(a == bld->zero)
966 return bld->zero;
967 if(a == bld->one)
968 return b;
969 if(b == bld->zero)
970 return bld->zero;
971 if(b == bld->one)
972 return a;
973 if(a == bld->undef || b == bld->undef)
974 return bld->undef;
975
976 if (!type.floating && !type.fixed && type.norm) {
977 struct lp_type wide_type = lp_wider_type(type);
978 LLVMValueRef al, ah, bl, bh, abl, abh, ab;
979
980 lp_build_unpack2(bld->gallivm, type, wide_type, a, &al, &ah);
981 lp_build_unpack2(bld->gallivm, type, wide_type, b, &bl, &bh);
982
983 /* PMULLW, PSRLW, PADDW */
984 abl = lp_build_mul_norm(bld->gallivm, wide_type, al, bl);
985 abh = lp_build_mul_norm(bld->gallivm, wide_type, ah, bh);
986
987 ab = lp_build_pack2(bld->gallivm, wide_type, type, abl, abh);
988
989 return ab;
990 }
991
992 if(type.fixed)
993 shift = lp_build_const_int_vec(bld->gallivm, type, type.width/2);
994 else
995 shift = NULL;
996
997 if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
998 if (type.floating)
999 res = LLVMConstFMul(a, b);
1000 else
1001 res = LLVMConstMul(a, b);
1002 if(shift) {
1003 if(type.sign)
1004 res = LLVMConstAShr(res, shift);
1005 else
1006 res = LLVMConstLShr(res, shift);
1007 }
1008 }
1009 else {
1010 if (type.floating)
1011 res = LLVMBuildFMul(builder, a, b, "");
1012 else
1013 res = LLVMBuildMul(builder, a, b, "");
1014 if(shift) {
1015 if(type.sign)
1016 res = LLVMBuildAShr(builder, res, shift, "");
1017 else
1018 res = LLVMBuildLShr(builder, res, shift, "");
1019 }
1020 }
1021
1022 return res;
1023 }
1024
1025
1026 /**
1027 * Small vector x scale multiplication optimization.
1028 */
1029 LLVMValueRef
1030 lp_build_mul_imm(struct lp_build_context *bld,
1031 LLVMValueRef a,
1032 int b)
1033 {
1034 LLVMBuilderRef builder = bld->gallivm->builder;
1035 LLVMValueRef factor;
1036
1037 assert(lp_check_value(bld->type, a));
1038
1039 if(b == 0)
1040 return bld->zero;
1041
1042 if(b == 1)
1043 return a;
1044
1045 if(b == -1)
1046 return lp_build_negate(bld, a);
1047
1048 if(b == 2 && bld->type.floating)
1049 return lp_build_add(bld, a, a);
1050
1051 if(util_is_power_of_two(b)) {
1052 unsigned shift = ffs(b) - 1;
1053
1054 if(bld->type.floating) {
1055 #if 0
1056 /*
1057 * Power of two multiplication by directly manipulating the exponent.
1058 *
1059 * XXX: This might not be always faster, it will introduce a small error
1060 * for multiplication by zero, and it will produce wrong results
1061 * for Inf and NaN.
1062 */
1063 unsigned mantissa = lp_mantissa(bld->type);
1064 factor = lp_build_const_int_vec(bld->gallivm, bld->type, (unsigned long long)shift << mantissa);
1065 a = LLVMBuildBitCast(builder, a, lp_build_int_vec_type(bld->type), "");
1066 a = LLVMBuildAdd(builder, a, factor, "");
1067 a = LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, bld->type), "");
1068 return a;
1069 #endif
1070 }
1071 else {
1072 factor = lp_build_const_vec(bld->gallivm, bld->type, shift);
1073 return LLVMBuildShl(builder, a, factor, "");
1074 }
1075 }
1076
1077 factor = lp_build_const_vec(bld->gallivm, bld->type, (double)b);
1078 return lp_build_mul(bld, a, factor);
1079 }
1080
1081
1082 /**
1083 * Generate a / b
1084 */
1085 LLVMValueRef
1086 lp_build_div(struct lp_build_context *bld,
1087 LLVMValueRef a,
1088 LLVMValueRef b)
1089 {
1090 LLVMBuilderRef builder = bld->gallivm->builder;
1091 const struct lp_type type = bld->type;
1092
1093 assert(lp_check_value(type, a));
1094 assert(lp_check_value(type, b));
1095
1096 if(a == bld->zero)
1097 return bld->zero;
1098 if(a == bld->one && type.floating)
1099 return lp_build_rcp(bld, b);
1100 if(b == bld->zero)
1101 return bld->undef;
1102 if(b == bld->one)
1103 return a;
1104 if(a == bld->undef || b == bld->undef)
1105 return bld->undef;
1106
1107 if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
1108 if (type.floating)
1109 return LLVMConstFDiv(a, b);
1110 else if (type.sign)
1111 return LLVMConstSDiv(a, b);
1112 else
1113 return LLVMConstUDiv(a, b);
1114 }
1115
1116 if(((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
1117 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) &&
1118 type.floating)
1119 return lp_build_mul(bld, a, lp_build_rcp(bld, b));
1120
1121 if (type.floating)
1122 return LLVMBuildFDiv(builder, a, b, "");
1123 else if (type.sign)
1124 return LLVMBuildSDiv(builder, a, b, "");
1125 else
1126 return LLVMBuildUDiv(builder, a, b, "");
1127 }
1128
1129
1130 /**
1131 * Linear interpolation helper.
1132 *
1133 * @param normalized whether we are interpolating normalized values,
1134 * encoded in normalized integers, twice as wide.
1135 *
1136 * @sa http://www.stereopsis.com/doubleblend.html
1137 */
1138 static INLINE LLVMValueRef
1139 lp_build_lerp_simple(struct lp_build_context *bld,
1140 LLVMValueRef x,
1141 LLVMValueRef v0,
1142 LLVMValueRef v1,
1143 unsigned flags)
1144 {
1145 unsigned half_width = bld->type.width/2;
1146 LLVMBuilderRef builder = bld->gallivm->builder;
1147 LLVMValueRef delta;
1148 LLVMValueRef res;
1149
1150 assert(lp_check_value(bld->type, x));
1151 assert(lp_check_value(bld->type, v0));
1152 assert(lp_check_value(bld->type, v1));
1153
1154 delta = lp_build_sub(bld, v1, v0);
1155
1156 if (flags & LP_BLD_LERP_WIDE_NORMALIZED) {
1157 if (!bld->type.sign) {
1158 if (!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS)) {
1159 /*
1160 * Scale x from [0, 2**n - 1] to [0, 2**n] by adding the
1161 * most-significant-bit to the lowest-significant-bit, so that
1162 * later we can just divide by 2**n instead of 2**n - 1.
1163 */
1164
1165 x = lp_build_add(bld, x, lp_build_shr_imm(bld, x, half_width - 1));
1166 }
1167
1168 /* (x * delta) >> n */
1169 res = lp_build_mul(bld, x, delta);
1170 res = lp_build_shr_imm(bld, res, half_width);
1171 } else {
1172 /*
1173 * The rescaling trick above doesn't work for signed numbers, so
1174 * use the 2**n - 1 divison approximation in lp_build_mul_norm
1175 * instead.
1176 */
1177 assert(!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS));
1178 res = lp_build_mul_norm(bld->gallivm, bld->type, x, delta);
1179 }
1180 } else {
1181 assert(!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS));
1182 res = lp_build_mul(bld, x, delta);
1183 }
1184
1185 res = lp_build_add(bld, v0, res);
1186
1187 if (((flags & LP_BLD_LERP_WIDE_NORMALIZED) && !bld->type.sign) ||
1188 bld->type.fixed) {
1189 /* We need to mask out the high order bits when lerping 8bit normalized colors stored on 16bits */
1190 /* XXX: This step is necessary for lerping 8bit colors stored on 16bits,
1191 * but it will be wrong for true fixed point use cases. Basically we need
1192 * a more powerful lp_type, capable of further distinguishing the values
1193 * interpretation from the value storage. */
1194 res = LLVMBuildAnd(builder, res, lp_build_const_int_vec(bld->gallivm, bld->type, (1 << half_width) - 1), "");
1195 }
1196
1197 return res;
1198 }
1199
1200
1201 /**
1202 * Linear interpolation.
1203 */
1204 LLVMValueRef
1205 lp_build_lerp(struct lp_build_context *bld,
1206 LLVMValueRef x,
1207 LLVMValueRef v0,
1208 LLVMValueRef v1,
1209 unsigned flags)
1210 {
1211 const struct lp_type type = bld->type;
1212 LLVMValueRef res;
1213
1214 assert(lp_check_value(type, x));
1215 assert(lp_check_value(type, v0));
1216 assert(lp_check_value(type, v1));
1217
1218 assert(!(flags & LP_BLD_LERP_WIDE_NORMALIZED));
1219
1220 if (type.norm) {
1221 struct lp_type wide_type;
1222 struct lp_build_context wide_bld;
1223 LLVMValueRef xl, xh, v0l, v0h, v1l, v1h, resl, resh;
1224
1225 assert(type.length >= 2);
1226
1227 /*
1228 * Create a wider integer type, enough to hold the
1229 * intermediate result of the multiplication.
1230 */
1231 memset(&wide_type, 0, sizeof wide_type);
1232 wide_type.sign = type.sign;
1233 wide_type.width = type.width*2;
1234 wide_type.length = type.length/2;
1235
1236 lp_build_context_init(&wide_bld, bld->gallivm, wide_type);
1237
1238 lp_build_unpack2(bld->gallivm, type, wide_type, x, &xl, &xh);
1239 lp_build_unpack2(bld->gallivm, type, wide_type, v0, &v0l, &v0h);
1240 lp_build_unpack2(bld->gallivm, type, wide_type, v1, &v1l, &v1h);
1241
1242 /*
1243 * Lerp both halves.
1244 */
1245
1246 flags |= LP_BLD_LERP_WIDE_NORMALIZED;
1247
1248 resl = lp_build_lerp_simple(&wide_bld, xl, v0l, v1l, flags);
1249 resh = lp_build_lerp_simple(&wide_bld, xh, v0h, v1h, flags);
1250
1251 res = lp_build_pack2(bld->gallivm, wide_type, type, resl, resh);
1252 } else {
1253 res = lp_build_lerp_simple(bld, x, v0, v1, flags);
1254 }
1255
1256 return res;
1257 }
1258
1259
1260 /**
1261 * Bilinear interpolation.
1262 *
1263 * Values indices are in v_{yx}.
1264 */
1265 LLVMValueRef
1266 lp_build_lerp_2d(struct lp_build_context *bld,
1267 LLVMValueRef x,
1268 LLVMValueRef y,
1269 LLVMValueRef v00,
1270 LLVMValueRef v01,
1271 LLVMValueRef v10,
1272 LLVMValueRef v11,
1273 unsigned flags)
1274 {
1275 LLVMValueRef v0 = lp_build_lerp(bld, x, v00, v01, flags);
1276 LLVMValueRef v1 = lp_build_lerp(bld, x, v10, v11, flags);
1277 return lp_build_lerp(bld, y, v0, v1, flags);
1278 }
1279
1280
1281 LLVMValueRef
1282 lp_build_lerp_3d(struct lp_build_context *bld,
1283 LLVMValueRef x,
1284 LLVMValueRef y,
1285 LLVMValueRef z,
1286 LLVMValueRef v000,
1287 LLVMValueRef v001,
1288 LLVMValueRef v010,
1289 LLVMValueRef v011,
1290 LLVMValueRef v100,
1291 LLVMValueRef v101,
1292 LLVMValueRef v110,
1293 LLVMValueRef v111,
1294 unsigned flags)
1295 {
1296 LLVMValueRef v0 = lp_build_lerp_2d(bld, x, y, v000, v001, v010, v011, flags);
1297 LLVMValueRef v1 = lp_build_lerp_2d(bld, x, y, v100, v101, v110, v111, flags);
1298 return lp_build_lerp(bld, z, v0, v1, flags);
1299 }
1300
1301
1302 /**
1303 * Generate min(a, b)
1304 * Do checks for special cases but not for nans.
1305 */
1306 LLVMValueRef
1307 lp_build_min(struct lp_build_context *bld,
1308 LLVMValueRef a,
1309 LLVMValueRef b)
1310 {
1311 assert(lp_check_value(bld->type, a));
1312 assert(lp_check_value(bld->type, b));
1313
1314 if(a == bld->undef || b == bld->undef)
1315 return bld->undef;
1316
1317 if(a == b)
1318 return a;
1319
1320 if (bld->type.norm) {
1321 if (!bld->type.sign) {
1322 if (a == bld->zero || b == bld->zero) {
1323 return bld->zero;
1324 }
1325 }
1326 if(a == bld->one)
1327 return b;
1328 if(b == bld->one)
1329 return a;
1330 }
1331
1332 return lp_build_min_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
1333 }
1334
1335
1336 /**
1337 * Generate min(a, b)
1338 * NaN's are handled according to the behavior specified by the
1339 * nan_behavior argument.
1340 */
1341 LLVMValueRef
1342 lp_build_min_ext(struct lp_build_context *bld,
1343 LLVMValueRef a,
1344 LLVMValueRef b,
1345 enum gallivm_nan_behavior nan_behavior)
1346 {
1347 assert(lp_check_value(bld->type, a));
1348 assert(lp_check_value(bld->type, b));
1349
1350 if(a == bld->undef || b == bld->undef)
1351 return bld->undef;
1352
1353 if(a == b)
1354 return a;
1355
1356 if (bld->type.norm) {
1357 if (!bld->type.sign) {
1358 if (a == bld->zero || b == bld->zero) {
1359 return bld->zero;
1360 }
1361 }
1362 if(a == bld->one)
1363 return b;
1364 if(b == bld->one)
1365 return a;
1366 }
1367
1368 return lp_build_min_simple(bld, a, b, nan_behavior);
1369 }
1370
1371 /**
1372 * Generate max(a, b)
1373 * Do checks for special cases, but NaN behavior is undefined.
1374 */
1375 LLVMValueRef
1376 lp_build_max(struct lp_build_context *bld,
1377 LLVMValueRef a,
1378 LLVMValueRef b)
1379 {
1380 assert(lp_check_value(bld->type, a));
1381 assert(lp_check_value(bld->type, b));
1382
1383 if(a == bld->undef || b == bld->undef)
1384 return bld->undef;
1385
1386 if(a == b)
1387 return a;
1388
1389 if(bld->type.norm) {
1390 if(a == bld->one || b == bld->one)
1391 return bld->one;
1392 if (!bld->type.sign) {
1393 if (a == bld->zero) {
1394 return b;
1395 }
1396 if (b == bld->zero) {
1397 return a;
1398 }
1399 }
1400 }
1401
1402 return lp_build_max_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
1403 }
1404
1405
1406 /**
1407 * Generate max(a, b)
1408 * Checks for special cases.
1409 * NaN's are handled according to the behavior specified by the
1410 * nan_behavior argument.
1411 */
1412 LLVMValueRef
1413 lp_build_max_ext(struct lp_build_context *bld,
1414 LLVMValueRef a,
1415 LLVMValueRef b,
1416 enum gallivm_nan_behavior nan_behavior)
1417 {
1418 assert(lp_check_value(bld->type, a));
1419 assert(lp_check_value(bld->type, b));
1420
1421 if(a == bld->undef || b == bld->undef)
1422 return bld->undef;
1423
1424 if(a == b)
1425 return a;
1426
1427 if(bld->type.norm) {
1428 if(a == bld->one || b == bld->one)
1429 return bld->one;
1430 if (!bld->type.sign) {
1431 if (a == bld->zero) {
1432 return b;
1433 }
1434 if (b == bld->zero) {
1435 return a;
1436 }
1437 }
1438 }
1439
1440 return lp_build_max_simple(bld, a, b, nan_behavior);
1441 }
1442
1443 /**
1444 * Generate clamp(a, min, max)
1445 * NaN behavior (for any of a, min, max) is undefined.
1446 * Do checks for special cases.
1447 */
1448 LLVMValueRef
1449 lp_build_clamp(struct lp_build_context *bld,
1450 LLVMValueRef a,
1451 LLVMValueRef min,
1452 LLVMValueRef max)
1453 {
1454 assert(lp_check_value(bld->type, a));
1455 assert(lp_check_value(bld->type, min));
1456 assert(lp_check_value(bld->type, max));
1457
1458 a = lp_build_min(bld, a, max);
1459 a = lp_build_max(bld, a, min);
1460 return a;
1461 }
1462
1463
1464 /**
1465 * Generate clamp(a, 0, 1)
1466 * A NaN will get converted to zero.
1467 */
1468 LLVMValueRef
1469 lp_build_clamp_zero_one_nanzero(struct lp_build_context *bld,
1470 LLVMValueRef a)
1471 {
1472 a = lp_build_max_ext(bld, a, bld->zero, GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN);
1473 a = lp_build_min(bld, a, bld->one);
1474 return a;
1475 }
1476
1477
1478 /**
1479 * Generate abs(a)
1480 */
1481 LLVMValueRef
1482 lp_build_abs(struct lp_build_context *bld,
1483 LLVMValueRef a)
1484 {
1485 LLVMBuilderRef builder = bld->gallivm->builder;
1486 const struct lp_type type = bld->type;
1487 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1488
1489 assert(lp_check_value(type, a));
1490
1491 if(!type.sign)
1492 return a;
1493
1494 if(type.floating) {
1495 /* Mask out the sign bit */
1496 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
1497 unsigned long long absMask = ~(1ULL << (type.width - 1));
1498 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type, ((unsigned long long) absMask));
1499 a = LLVMBuildBitCast(builder, a, int_vec_type, "");
1500 a = LLVMBuildAnd(builder, a, mask, "");
1501 a = LLVMBuildBitCast(builder, a, vec_type, "");
1502 return a;
1503 }
1504
1505 if(type.width*type.length == 128 && util_cpu_caps.has_ssse3) {
1506 switch(type.width) {
1507 case 8:
1508 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.b.128", vec_type, a);
1509 case 16:
1510 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.w.128", vec_type, a);
1511 case 32:
1512 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.d.128", vec_type, a);
1513 }
1514 }
1515 else if (type.width*type.length == 256 && util_cpu_caps.has_ssse3 &&
1516 (gallivm_debug & GALLIVM_DEBUG_PERF) &&
1517 (type.width == 8 || type.width == 16 || type.width == 32)) {
1518 debug_printf("%s: inefficient code, should split vectors manually\n",
1519 __FUNCTION__);
1520 }
1521
1522 return lp_build_max(bld, a, LLVMBuildNeg(builder, a, ""));
1523 }
1524
1525
1526 LLVMValueRef
1527 lp_build_negate(struct lp_build_context *bld,
1528 LLVMValueRef a)
1529 {
1530 LLVMBuilderRef builder = bld->gallivm->builder;
1531
1532 assert(lp_check_value(bld->type, a));
1533
1534 if (bld->type.floating)
1535 a = LLVMBuildFNeg(builder, a, "");
1536 else
1537 a = LLVMBuildNeg(builder, a, "");
1538
1539 return a;
1540 }
1541
1542
1543 /** Return -1, 0 or +1 depending on the sign of a */
1544 LLVMValueRef
1545 lp_build_sgn(struct lp_build_context *bld,
1546 LLVMValueRef a)
1547 {
1548 LLVMBuilderRef builder = bld->gallivm->builder;
1549 const struct lp_type type = bld->type;
1550 LLVMValueRef cond;
1551 LLVMValueRef res;
1552
1553 assert(lp_check_value(type, a));
1554
1555 /* Handle non-zero case */
1556 if(!type.sign) {
1557 /* if not zero then sign must be positive */
1558 res = bld->one;
1559 }
1560 else if(type.floating) {
1561 LLVMTypeRef vec_type;
1562 LLVMTypeRef int_type;
1563 LLVMValueRef mask;
1564 LLVMValueRef sign;
1565 LLVMValueRef one;
1566 unsigned long long maskBit = (unsigned long long)1 << (type.width - 1);
1567
1568 int_type = lp_build_int_vec_type(bld->gallivm, type);
1569 vec_type = lp_build_vec_type(bld->gallivm, type);
1570 mask = lp_build_const_int_vec(bld->gallivm, type, maskBit);
1571
1572 /* Take the sign bit and add it to 1 constant */
1573 sign = LLVMBuildBitCast(builder, a, int_type, "");
1574 sign = LLVMBuildAnd(builder, sign, mask, "");
1575 one = LLVMConstBitCast(bld->one, int_type);
1576 res = LLVMBuildOr(builder, sign, one, "");
1577 res = LLVMBuildBitCast(builder, res, vec_type, "");
1578 }
1579 else
1580 {
1581 /* signed int/norm/fixed point */
1582 /* could use psign with sse3 and appropriate vectors here */
1583 LLVMValueRef minus_one = lp_build_const_vec(bld->gallivm, type, -1.0);
1584 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, bld->zero);
1585 res = lp_build_select(bld, cond, bld->one, minus_one);
1586 }
1587
1588 /* Handle zero */
1589 cond = lp_build_cmp(bld, PIPE_FUNC_EQUAL, a, bld->zero);
1590 res = lp_build_select(bld, cond, bld->zero, res);
1591
1592 return res;
1593 }
1594
1595
1596 /**
1597 * Set the sign of float vector 'a' according to 'sign'.
1598 * If sign==0, return abs(a).
1599 * If sign==1, return -abs(a);
1600 * Other values for sign produce undefined results.
1601 */
1602 LLVMValueRef
1603 lp_build_set_sign(struct lp_build_context *bld,
1604 LLVMValueRef a, LLVMValueRef sign)
1605 {
1606 LLVMBuilderRef builder = bld->gallivm->builder;
1607 const struct lp_type type = bld->type;
1608 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
1609 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1610 LLVMValueRef shift = lp_build_const_int_vec(bld->gallivm, type, type.width - 1);
1611 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
1612 ~((unsigned long long) 1 << (type.width - 1)));
1613 LLVMValueRef val, res;
1614
1615 assert(type.floating);
1616 assert(lp_check_value(type, a));
1617
1618 /* val = reinterpret_cast<int>(a) */
1619 val = LLVMBuildBitCast(builder, a, int_vec_type, "");
1620 /* val = val & mask */
1621 val = LLVMBuildAnd(builder, val, mask, "");
1622 /* sign = sign << shift */
1623 sign = LLVMBuildShl(builder, sign, shift, "");
1624 /* res = val | sign */
1625 res = LLVMBuildOr(builder, val, sign, "");
1626 /* res = reinterpret_cast<float>(res) */
1627 res = LLVMBuildBitCast(builder, res, vec_type, "");
1628
1629 return res;
1630 }
1631
1632
1633 /**
1634 * Convert vector of (or scalar) int to vector of (or scalar) float.
1635 */
1636 LLVMValueRef
1637 lp_build_int_to_float(struct lp_build_context *bld,
1638 LLVMValueRef a)
1639 {
1640 LLVMBuilderRef builder = bld->gallivm->builder;
1641 const struct lp_type type = bld->type;
1642 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1643
1644 assert(type.floating);
1645
1646 return LLVMBuildSIToFP(builder, a, vec_type, "");
1647 }
1648
1649 static boolean
1650 arch_rounding_available(const struct lp_type type)
1651 {
1652 if ((util_cpu_caps.has_sse4_1 &&
1653 (type.length == 1 || type.width*type.length == 128)) ||
1654 (util_cpu_caps.has_avx && type.width*type.length == 256))
1655 return TRUE;
1656 else if ((util_cpu_caps.has_altivec &&
1657 (type.width == 32 && type.length == 4)))
1658 return TRUE;
1659
1660 return FALSE;
1661 }
1662
1663 enum lp_build_round_mode
1664 {
1665 LP_BUILD_ROUND_NEAREST = 0,
1666 LP_BUILD_ROUND_FLOOR = 1,
1667 LP_BUILD_ROUND_CEIL = 2,
1668 LP_BUILD_ROUND_TRUNCATE = 3
1669 };
1670
1671 /**
1672 * Helper for SSE4.1's ROUNDxx instructions.
1673 *
1674 * NOTE: In the SSE4.1's nearest mode, if two values are equally close, the
1675 * result is the even value. That is, rounding 2.5 will be 2.0, and not 3.0.
1676 */
1677 static INLINE LLVMValueRef
1678 lp_build_round_sse41(struct lp_build_context *bld,
1679 LLVMValueRef a,
1680 enum lp_build_round_mode mode)
1681 {
1682 LLVMBuilderRef builder = bld->gallivm->builder;
1683 const struct lp_type type = bld->type;
1684 LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
1685 const char *intrinsic;
1686 LLVMValueRef res;
1687
1688 assert(type.floating);
1689
1690 assert(lp_check_value(type, a));
1691 assert(util_cpu_caps.has_sse4_1);
1692
1693 if (type.length == 1) {
1694 LLVMTypeRef vec_type;
1695 LLVMValueRef undef;
1696 LLVMValueRef args[3];
1697 LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
1698
1699 switch(type.width) {
1700 case 32:
1701 intrinsic = "llvm.x86.sse41.round.ss";
1702 break;
1703 case 64:
1704 intrinsic = "llvm.x86.sse41.round.sd";
1705 break;
1706 default:
1707 assert(0);
1708 return bld->undef;
1709 }
1710
1711 vec_type = LLVMVectorType(bld->elem_type, 4);
1712
1713 undef = LLVMGetUndef(vec_type);
1714
1715 args[0] = undef;
1716 args[1] = LLVMBuildInsertElement(builder, undef, a, index0, "");
1717 args[2] = LLVMConstInt(i32t, mode, 0);
1718
1719 res = lp_build_intrinsic(builder, intrinsic,
1720 vec_type, args, Elements(args));
1721
1722 res = LLVMBuildExtractElement(builder, res, index0, "");
1723 }
1724 else {
1725 if (type.width * type.length == 128) {
1726 switch(type.width) {
1727 case 32:
1728 intrinsic = "llvm.x86.sse41.round.ps";
1729 break;
1730 case 64:
1731 intrinsic = "llvm.x86.sse41.round.pd";
1732 break;
1733 default:
1734 assert(0);
1735 return bld->undef;
1736 }
1737 }
1738 else {
1739 assert(type.width * type.length == 256);
1740 assert(util_cpu_caps.has_avx);
1741
1742 switch(type.width) {
1743 case 32:
1744 intrinsic = "llvm.x86.avx.round.ps.256";
1745 break;
1746 case 64:
1747 intrinsic = "llvm.x86.avx.round.pd.256";
1748 break;
1749 default:
1750 assert(0);
1751 return bld->undef;
1752 }
1753 }
1754
1755 res = lp_build_intrinsic_binary(builder, intrinsic,
1756 bld->vec_type, a,
1757 LLVMConstInt(i32t, mode, 0));
1758 }
1759
1760 return res;
1761 }
1762
1763
1764 static INLINE LLVMValueRef
1765 lp_build_iround_nearest_sse2(struct lp_build_context *bld,
1766 LLVMValueRef a)
1767 {
1768 LLVMBuilderRef builder = bld->gallivm->builder;
1769 const struct lp_type type = bld->type;
1770 LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
1771 LLVMTypeRef ret_type = lp_build_int_vec_type(bld->gallivm, type);
1772 const char *intrinsic;
1773 LLVMValueRef res;
1774
1775 assert(type.floating);
1776 /* using the double precision conversions is a bit more complicated */
1777 assert(type.width == 32);
1778
1779 assert(lp_check_value(type, a));
1780 assert(util_cpu_caps.has_sse2);
1781
1782 /* This is relying on MXCSR rounding mode, which should always be nearest. */
1783 if (type.length == 1) {
1784 LLVMTypeRef vec_type;
1785 LLVMValueRef undef;
1786 LLVMValueRef arg;
1787 LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
1788
1789 vec_type = LLVMVectorType(bld->elem_type, 4);
1790
1791 intrinsic = "llvm.x86.sse.cvtss2si";
1792
1793 undef = LLVMGetUndef(vec_type);
1794
1795 arg = LLVMBuildInsertElement(builder, undef, a, index0, "");
1796
1797 res = lp_build_intrinsic_unary(builder, intrinsic,
1798 ret_type, arg);
1799 }
1800 else {
1801 if (type.width* type.length == 128) {
1802 intrinsic = "llvm.x86.sse2.cvtps2dq";
1803 }
1804 else {
1805 assert(type.width*type.length == 256);
1806 assert(util_cpu_caps.has_avx);
1807
1808 intrinsic = "llvm.x86.avx.cvt.ps2dq.256";
1809 }
1810 res = lp_build_intrinsic_unary(builder, intrinsic,
1811 ret_type, a);
1812 }
1813
1814 return res;
1815 }
1816
1817
1818 /*
1819 */
1820 static INLINE LLVMValueRef
1821 lp_build_round_altivec(struct lp_build_context *bld,
1822 LLVMValueRef a,
1823 enum lp_build_round_mode mode)
1824 {
1825 LLVMBuilderRef builder = bld->gallivm->builder;
1826 const struct lp_type type = bld->type;
1827 const char *intrinsic = NULL;
1828
1829 assert(type.floating);
1830
1831 assert(lp_check_value(type, a));
1832 assert(util_cpu_caps.has_altivec);
1833
1834 switch (mode) {
1835 case LP_BUILD_ROUND_NEAREST:
1836 intrinsic = "llvm.ppc.altivec.vrfin";
1837 break;
1838 case LP_BUILD_ROUND_FLOOR:
1839 intrinsic = "llvm.ppc.altivec.vrfim";
1840 break;
1841 case LP_BUILD_ROUND_CEIL:
1842 intrinsic = "llvm.ppc.altivec.vrfip";
1843 break;
1844 case LP_BUILD_ROUND_TRUNCATE:
1845 intrinsic = "llvm.ppc.altivec.vrfiz";
1846 break;
1847 }
1848
1849 return lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
1850 }
1851
1852 static INLINE LLVMValueRef
1853 lp_build_round_arch(struct lp_build_context *bld,
1854 LLVMValueRef a,
1855 enum lp_build_round_mode mode)
1856 {
1857 if (util_cpu_caps.has_sse4_1)
1858 return lp_build_round_sse41(bld, a, mode);
1859 else /* (util_cpu_caps.has_altivec) */
1860 return lp_build_round_altivec(bld, a, mode);
1861 }
1862
1863 /**
1864 * Return the integer part of a float (vector) value (== round toward zero).
1865 * The returned value is a float (vector).
1866 * Ex: trunc(-1.5) = -1.0
1867 */
1868 LLVMValueRef
1869 lp_build_trunc(struct lp_build_context *bld,
1870 LLVMValueRef a)
1871 {
1872 LLVMBuilderRef builder = bld->gallivm->builder;
1873 const struct lp_type type = bld->type;
1874
1875 assert(type.floating);
1876 assert(lp_check_value(type, a));
1877
1878 if (arch_rounding_available(type)) {
1879 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_TRUNCATE);
1880 }
1881 else {
1882 const struct lp_type type = bld->type;
1883 struct lp_type inttype;
1884 struct lp_build_context intbld;
1885 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
1886 LLVMValueRef trunc, res, anosign, mask;
1887 LLVMTypeRef int_vec_type = bld->int_vec_type;
1888 LLVMTypeRef vec_type = bld->vec_type;
1889
1890 assert(type.width == 32); /* might want to handle doubles at some point */
1891
1892 inttype = type;
1893 inttype.floating = 0;
1894 lp_build_context_init(&intbld, bld->gallivm, inttype);
1895
1896 /* round by truncation */
1897 trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
1898 res = LLVMBuildSIToFP(builder, trunc, vec_type, "floor.trunc");
1899
1900 /* mask out sign bit */
1901 anosign = lp_build_abs(bld, a);
1902 /*
1903 * mask out all values if anosign > 2^24
1904 * This should work both for large ints (all rounding is no-op for them
1905 * because such floats are always exact) as well as special cases like
1906 * NaNs, Infs (taking advantage of the fact they use max exponent).
1907 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
1908 */
1909 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
1910 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
1911 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
1912 return lp_build_select(bld, mask, a, res);
1913 }
1914 }
1915
1916
1917 /**
1918 * Return float (vector) rounded to nearest integer (vector). The returned
1919 * value is a float (vector).
1920 * Ex: round(0.9) = 1.0
1921 * Ex: round(-1.5) = -2.0
1922 */
1923 LLVMValueRef
1924 lp_build_round(struct lp_build_context *bld,
1925 LLVMValueRef a)
1926 {
1927 LLVMBuilderRef builder = bld->gallivm->builder;
1928 const struct lp_type type = bld->type;
1929
1930 assert(type.floating);
1931 assert(lp_check_value(type, a));
1932
1933 if (arch_rounding_available(type)) {
1934 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_NEAREST);
1935 }
1936 else {
1937 const struct lp_type type = bld->type;
1938 struct lp_type inttype;
1939 struct lp_build_context intbld;
1940 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
1941 LLVMValueRef res, anosign, mask;
1942 LLVMTypeRef int_vec_type = bld->int_vec_type;
1943 LLVMTypeRef vec_type = bld->vec_type;
1944
1945 assert(type.width == 32); /* might want to handle doubles at some point */
1946
1947 inttype = type;
1948 inttype.floating = 0;
1949 lp_build_context_init(&intbld, bld->gallivm, inttype);
1950
1951 res = lp_build_iround(bld, a);
1952 res = LLVMBuildSIToFP(builder, res, vec_type, "");
1953
1954 /* mask out sign bit */
1955 anosign = lp_build_abs(bld, a);
1956 /*
1957 * mask out all values if anosign > 2^24
1958 * This should work both for large ints (all rounding is no-op for them
1959 * because such floats are always exact) as well as special cases like
1960 * NaNs, Infs (taking advantage of the fact they use max exponent).
1961 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
1962 */
1963 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
1964 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
1965 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
1966 return lp_build_select(bld, mask, a, res);
1967 }
1968 }
1969
1970
1971 /**
1972 * Return floor of float (vector), result is a float (vector)
1973 * Ex: floor(1.1) = 1.0
1974 * Ex: floor(-1.1) = -2.0
1975 */
1976 LLVMValueRef
1977 lp_build_floor(struct lp_build_context *bld,
1978 LLVMValueRef a)
1979 {
1980 LLVMBuilderRef builder = bld->gallivm->builder;
1981 const struct lp_type type = bld->type;
1982
1983 assert(type.floating);
1984 assert(lp_check_value(type, a));
1985
1986 if (arch_rounding_available(type)) {
1987 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_FLOOR);
1988 }
1989 else {
1990 const struct lp_type type = bld->type;
1991 struct lp_type inttype;
1992 struct lp_build_context intbld;
1993 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
1994 LLVMValueRef trunc, res, anosign, mask;
1995 LLVMTypeRef int_vec_type = bld->int_vec_type;
1996 LLVMTypeRef vec_type = bld->vec_type;
1997
1998 assert(type.width == 32); /* might want to handle doubles at some point */
1999
2000 inttype = type;
2001 inttype.floating = 0;
2002 lp_build_context_init(&intbld, bld->gallivm, inttype);
2003
2004 /* round by truncation */
2005 trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
2006 res = LLVMBuildSIToFP(builder, trunc, vec_type, "floor.trunc");
2007
2008 if (type.sign) {
2009 LLVMValueRef tmp;
2010
2011 /*
2012 * fix values if rounding is wrong (for non-special cases)
2013 * - this is the case if trunc > a
2014 */
2015 mask = lp_build_cmp(bld, PIPE_FUNC_GREATER, res, a);
2016 /* tmp = trunc > a ? 1.0 : 0.0 */
2017 tmp = LLVMBuildBitCast(builder, bld->one, int_vec_type, "");
2018 tmp = lp_build_and(&intbld, mask, tmp);
2019 tmp = LLVMBuildBitCast(builder, tmp, vec_type, "");
2020 res = lp_build_sub(bld, res, tmp);
2021 }
2022
2023 /* mask out sign bit */
2024 anosign = lp_build_abs(bld, a);
2025 /*
2026 * mask out all values if anosign > 2^24
2027 * This should work both for large ints (all rounding is no-op for them
2028 * because such floats are always exact) as well as special cases like
2029 * NaNs, Infs (taking advantage of the fact they use max exponent).
2030 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
2031 */
2032 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
2033 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
2034 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
2035 return lp_build_select(bld, mask, a, res);
2036 }
2037 }
2038
2039
2040 /**
2041 * Return ceiling of float (vector), returning float (vector).
2042 * Ex: ceil( 1.1) = 2.0
2043 * Ex: ceil(-1.1) = -1.0
2044 */
2045 LLVMValueRef
2046 lp_build_ceil(struct lp_build_context *bld,
2047 LLVMValueRef a)
2048 {
2049 LLVMBuilderRef builder = bld->gallivm->builder;
2050 const struct lp_type type = bld->type;
2051
2052 assert(type.floating);
2053 assert(lp_check_value(type, a));
2054
2055 if (arch_rounding_available(type)) {
2056 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_CEIL);
2057 }
2058 else {
2059 const struct lp_type type = bld->type;
2060 struct lp_type inttype;
2061 struct lp_build_context intbld;
2062 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
2063 LLVMValueRef trunc, res, anosign, mask, tmp;
2064 LLVMTypeRef int_vec_type = bld->int_vec_type;
2065 LLVMTypeRef vec_type = bld->vec_type;
2066
2067 assert(type.width == 32); /* might want to handle doubles at some point */
2068
2069 inttype = type;
2070 inttype.floating = 0;
2071 lp_build_context_init(&intbld, bld->gallivm, inttype);
2072
2073 /* round by truncation */
2074 trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
2075 trunc = LLVMBuildSIToFP(builder, trunc, vec_type, "ceil.trunc");
2076
2077 /*
2078 * fix values if rounding is wrong (for non-special cases)
2079 * - this is the case if trunc < a
2080 */
2081 mask = lp_build_cmp(bld, PIPE_FUNC_LESS, trunc, a);
2082 /* tmp = trunc < a ? 1.0 : 0.0 */
2083 tmp = LLVMBuildBitCast(builder, bld->one, int_vec_type, "");
2084 tmp = lp_build_and(&intbld, mask, tmp);
2085 tmp = LLVMBuildBitCast(builder, tmp, vec_type, "");
2086 res = lp_build_add(bld, trunc, tmp);
2087
2088 /* mask out sign bit */
2089 anosign = lp_build_abs(bld, a);
2090 /*
2091 * mask out all values if anosign > 2^24
2092 * This should work both for large ints (all rounding is no-op for them
2093 * because such floats are always exact) as well as special cases like
2094 * NaNs, Infs (taking advantage of the fact they use max exponent).
2095 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
2096 */
2097 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
2098 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
2099 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
2100 return lp_build_select(bld, mask, a, res);
2101 }
2102 }
2103
2104
2105 /**
2106 * Return fractional part of 'a' computed as a - floor(a)
2107 * Typically used in texture coord arithmetic.
2108 */
2109 LLVMValueRef
2110 lp_build_fract(struct lp_build_context *bld,
2111 LLVMValueRef a)
2112 {
2113 assert(bld->type.floating);
2114 return lp_build_sub(bld, a, lp_build_floor(bld, a));
2115 }
2116
2117
2118 /**
2119 * Prevent returning a fractional part of 1.0 for very small negative values of
2120 * 'a' by clamping against 0.99999(9).
2121 */
2122 static inline LLVMValueRef
2123 clamp_fract(struct lp_build_context *bld, LLVMValueRef fract)
2124 {
2125 LLVMValueRef max;
2126
2127 /* this is the largest number smaller than 1.0 representable as float */
2128 max = lp_build_const_vec(bld->gallivm, bld->type,
2129 1.0 - 1.0/(1LL << (lp_mantissa(bld->type) + 1)));
2130 return lp_build_min(bld, fract, max);
2131 }
2132
2133
2134 /**
2135 * Same as lp_build_fract, but guarantees that the result is always smaller
2136 * than one.
2137 */
2138 LLVMValueRef
2139 lp_build_fract_safe(struct lp_build_context *bld,
2140 LLVMValueRef a)
2141 {
2142 return clamp_fract(bld, lp_build_fract(bld, a));
2143 }
2144
2145
2146 /**
2147 * Return the integer part of a float (vector) value (== round toward zero).
2148 * The returned value is an integer (vector).
2149 * Ex: itrunc(-1.5) = -1
2150 */
2151 LLVMValueRef
2152 lp_build_itrunc(struct lp_build_context *bld,
2153 LLVMValueRef a)
2154 {
2155 LLVMBuilderRef builder = bld->gallivm->builder;
2156 const struct lp_type type = bld->type;
2157 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
2158
2159 assert(type.floating);
2160 assert(lp_check_value(type, a));
2161
2162 return LLVMBuildFPToSI(builder, a, int_vec_type, "");
2163 }
2164
2165
2166 /**
2167 * Return float (vector) rounded to nearest integer (vector). The returned
2168 * value is an integer (vector).
2169 * Ex: iround(0.9) = 1
2170 * Ex: iround(-1.5) = -2
2171 */
2172 LLVMValueRef
2173 lp_build_iround(struct lp_build_context *bld,
2174 LLVMValueRef a)
2175 {
2176 LLVMBuilderRef builder = bld->gallivm->builder;
2177 const struct lp_type type = bld->type;
2178 LLVMTypeRef int_vec_type = bld->int_vec_type;
2179 LLVMValueRef res;
2180
2181 assert(type.floating);
2182
2183 assert(lp_check_value(type, a));
2184
2185 if ((util_cpu_caps.has_sse2 &&
2186 ((type.width == 32) && (type.length == 1 || type.length == 4))) ||
2187 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) {
2188 return lp_build_iround_nearest_sse2(bld, a);
2189 }
2190 if (arch_rounding_available(type)) {
2191 res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_NEAREST);
2192 }
2193 else {
2194 LLVMValueRef half;
2195
2196 half = lp_build_const_vec(bld->gallivm, type, 0.5);
2197
2198 if (type.sign) {
2199 LLVMTypeRef vec_type = bld->vec_type;
2200 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
2201 (unsigned long long)1 << (type.width - 1));
2202 LLVMValueRef sign;
2203
2204 /* get sign bit */
2205 sign = LLVMBuildBitCast(builder, a, int_vec_type, "");
2206 sign = LLVMBuildAnd(builder, sign, mask, "");
2207
2208 /* sign * 0.5 */
2209 half = LLVMBuildBitCast(builder, half, int_vec_type, "");
2210 half = LLVMBuildOr(builder, sign, half, "");
2211 half = LLVMBuildBitCast(builder, half, vec_type, "");
2212 }
2213
2214 res = LLVMBuildFAdd(builder, a, half, "");
2215 }
2216
2217 res = LLVMBuildFPToSI(builder, res, int_vec_type, "");
2218
2219 return res;
2220 }
2221
2222
2223 /**
2224 * Return floor of float (vector), result is an int (vector)
2225 * Ex: ifloor(1.1) = 1.0
2226 * Ex: ifloor(-1.1) = -2.0
2227 */
2228 LLVMValueRef
2229 lp_build_ifloor(struct lp_build_context *bld,
2230 LLVMValueRef a)
2231 {
2232 LLVMBuilderRef builder = bld->gallivm->builder;
2233 const struct lp_type type = bld->type;
2234 LLVMTypeRef int_vec_type = bld->int_vec_type;
2235 LLVMValueRef res;
2236
2237 assert(type.floating);
2238 assert(lp_check_value(type, a));
2239
2240 res = a;
2241 if (type.sign) {
2242 if (arch_rounding_available(type)) {
2243 res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_FLOOR);
2244 }
2245 else {
2246 struct lp_type inttype;
2247 struct lp_build_context intbld;
2248 LLVMValueRef trunc, itrunc, mask;
2249
2250 assert(type.floating);
2251 assert(lp_check_value(type, a));
2252
2253 inttype = type;
2254 inttype.floating = 0;
2255 lp_build_context_init(&intbld, bld->gallivm, inttype);
2256
2257 /* round by truncation */
2258 itrunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
2259 trunc = LLVMBuildSIToFP(builder, itrunc, bld->vec_type, "ifloor.trunc");
2260
2261 /*
2262 * fix values if rounding is wrong (for non-special cases)
2263 * - this is the case if trunc > a
2264 * The results of doing this with NaNs, very large values etc.
2265 * are undefined but this seems to be the case anyway.
2266 */
2267 mask = lp_build_cmp(bld, PIPE_FUNC_GREATER, trunc, a);
2268 /* cheapie minus one with mask since the mask is minus one / zero */
2269 return lp_build_add(&intbld, itrunc, mask);
2270 }
2271 }
2272
2273 /* round to nearest (toward zero) */
2274 res = LLVMBuildFPToSI(builder, res, int_vec_type, "ifloor.res");
2275
2276 return res;
2277 }
2278
2279
2280 /**
2281 * Return ceiling of float (vector), returning int (vector).
2282 * Ex: iceil( 1.1) = 2
2283 * Ex: iceil(-1.1) = -1
2284 */
2285 LLVMValueRef
2286 lp_build_iceil(struct lp_build_context *bld,
2287 LLVMValueRef a)
2288 {
2289 LLVMBuilderRef builder = bld->gallivm->builder;
2290 const struct lp_type type = bld->type;
2291 LLVMTypeRef int_vec_type = bld->int_vec_type;
2292 LLVMValueRef res;
2293
2294 assert(type.floating);
2295 assert(lp_check_value(type, a));
2296
2297 if (arch_rounding_available(type)) {
2298 res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_CEIL);
2299 }
2300 else {
2301 struct lp_type inttype;
2302 struct lp_build_context intbld;
2303 LLVMValueRef trunc, itrunc, mask;
2304
2305 assert(type.floating);
2306 assert(lp_check_value(type, a));
2307
2308 inttype = type;
2309 inttype.floating = 0;
2310 lp_build_context_init(&intbld, bld->gallivm, inttype);
2311
2312 /* round by truncation */
2313 itrunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
2314 trunc = LLVMBuildSIToFP(builder, itrunc, bld->vec_type, "iceil.trunc");
2315
2316 /*
2317 * fix values if rounding is wrong (for non-special cases)
2318 * - this is the case if trunc < a
2319 * The results of doing this with NaNs, very large values etc.
2320 * are undefined but this seems to be the case anyway.
2321 */
2322 mask = lp_build_cmp(bld, PIPE_FUNC_LESS, trunc, a);
2323 /* cheapie plus one with mask since the mask is minus one / zero */
2324 return lp_build_sub(&intbld, itrunc, mask);
2325 }
2326
2327 /* round to nearest (toward zero) */
2328 res = LLVMBuildFPToSI(builder, res, int_vec_type, "iceil.res");
2329
2330 return res;
2331 }
2332
2333
2334 /**
2335 * Combined ifloor() & fract().
2336 *
2337 * Preferred to calling the functions separately, as it will ensure that the
2338 * strategy (floor() vs ifloor()) that results in less redundant work is used.
2339 */
2340 void
2341 lp_build_ifloor_fract(struct lp_build_context *bld,
2342 LLVMValueRef a,
2343 LLVMValueRef *out_ipart,
2344 LLVMValueRef *out_fpart)
2345 {
2346 LLVMBuilderRef builder = bld->gallivm->builder;
2347 const struct lp_type type = bld->type;
2348 LLVMValueRef ipart;
2349
2350 assert(type.floating);
2351 assert(lp_check_value(type, a));
2352
2353 if (arch_rounding_available(type)) {
2354 /*
2355 * floor() is easier.
2356 */
2357
2358 ipart = lp_build_floor(bld, a);
2359 *out_fpart = LLVMBuildFSub(builder, a, ipart, "fpart");
2360 *out_ipart = LLVMBuildFPToSI(builder, ipart, bld->int_vec_type, "ipart");
2361 }
2362 else {
2363 /*
2364 * ifloor() is easier.
2365 */
2366
2367 *out_ipart = lp_build_ifloor(bld, a);
2368 ipart = LLVMBuildSIToFP(builder, *out_ipart, bld->vec_type, "ipart");
2369 *out_fpart = LLVMBuildFSub(builder, a, ipart, "fpart");
2370 }
2371 }
2372
2373
2374 /**
2375 * Same as lp_build_ifloor_fract, but guarantees that the fractional part is
2376 * always smaller than one.
2377 */
2378 void
2379 lp_build_ifloor_fract_safe(struct lp_build_context *bld,
2380 LLVMValueRef a,
2381 LLVMValueRef *out_ipart,
2382 LLVMValueRef *out_fpart)
2383 {
2384 lp_build_ifloor_fract(bld, a, out_ipart, out_fpart);
2385 *out_fpart = clamp_fract(bld, *out_fpart);
2386 }
2387
2388
2389 LLVMValueRef
2390 lp_build_sqrt(struct lp_build_context *bld,
2391 LLVMValueRef a)
2392 {
2393 LLVMBuilderRef builder = bld->gallivm->builder;
2394 const struct lp_type type = bld->type;
2395 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
2396 char intrinsic[32];
2397
2398 assert(lp_check_value(type, a));
2399
2400 /* TODO: optimize the constant case */
2401
2402 assert(type.floating);
2403 if (type.length == 1) {
2404 util_snprintf(intrinsic, sizeof intrinsic, "llvm.sqrt.f%u", type.width);
2405 }
2406 else {
2407 util_snprintf(intrinsic, sizeof intrinsic, "llvm.sqrt.v%uf%u", type.length, type.width);
2408 }
2409
2410 return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
2411 }
2412
2413
2414 /**
2415 * Do one Newton-Raphson step to improve reciprocate precision:
2416 *
2417 * x_{i+1} = x_i * (2 - a * x_i)
2418 *
2419 * XXX: Unfortunately this won't give IEEE-754 conformant results for 0 or
2420 * +/-Inf, giving NaN instead. Certain applications rely on this behavior,
2421 * such as Google Earth, which does RCP(RSQRT(0.0) when drawing the Earth's
2422 * halo. It would be necessary to clamp the argument to prevent this.
2423 *
2424 * See also:
2425 * - http://en.wikipedia.org/wiki/Division_(digital)#Newton.E2.80.93Raphson_division
2426 * - http://softwarecommunity.intel.com/articles/eng/1818.htm
2427 */
2428 static INLINE LLVMValueRef
2429 lp_build_rcp_refine(struct lp_build_context *bld,
2430 LLVMValueRef a,
2431 LLVMValueRef rcp_a)
2432 {
2433 LLVMBuilderRef builder = bld->gallivm->builder;
2434 LLVMValueRef two = lp_build_const_vec(bld->gallivm, bld->type, 2.0);
2435 LLVMValueRef res;
2436
2437 res = LLVMBuildFMul(builder, a, rcp_a, "");
2438 res = LLVMBuildFSub(builder, two, res, "");
2439 res = LLVMBuildFMul(builder, rcp_a, res, "");
2440
2441 return res;
2442 }
2443
2444
2445 LLVMValueRef
2446 lp_build_rcp(struct lp_build_context *bld,
2447 LLVMValueRef a)
2448 {
2449 LLVMBuilderRef builder = bld->gallivm->builder;
2450 const struct lp_type type = bld->type;
2451
2452 assert(lp_check_value(type, a));
2453
2454 if(a == bld->zero)
2455 return bld->undef;
2456 if(a == bld->one)
2457 return bld->one;
2458 if(a == bld->undef)
2459 return bld->undef;
2460
2461 assert(type.floating);
2462
2463 if(LLVMIsConstant(a))
2464 return LLVMConstFDiv(bld->one, a);
2465
2466 /*
2467 * We don't use RCPPS because:
2468 * - it only has 10bits of precision
2469 * - it doesn't even get the reciprocate of 1.0 exactly
2470 * - doing Newton-Rapshon steps yields wrong (NaN) values for 0.0 or Inf
2471 * - for recent processors the benefit over DIVPS is marginal, a case
2472 * dependent
2473 *
2474 * We could still use it on certain processors if benchmarks show that the
2475 * RCPPS plus necessary workarounds are still preferrable to DIVPS; or for
2476 * particular uses that require less workarounds.
2477 */
2478
2479 if (FALSE && ((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
2480 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8))){
2481 const unsigned num_iterations = 0;
2482 LLVMValueRef res;
2483 unsigned i;
2484 const char *intrinsic = NULL;
2485
2486 if (type.length == 4) {
2487 intrinsic = "llvm.x86.sse.rcp.ps";
2488 }
2489 else {
2490 intrinsic = "llvm.x86.avx.rcp.ps.256";
2491 }
2492
2493 res = lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
2494
2495 for (i = 0; i < num_iterations; ++i) {
2496 res = lp_build_rcp_refine(bld, a, res);
2497 }
2498
2499 return res;
2500 }
2501
2502 return LLVMBuildFDiv(builder, bld->one, a, "");
2503 }
2504
2505
2506 /**
2507 * Do one Newton-Raphson step to improve rsqrt precision:
2508 *
2509 * x_{i+1} = 0.5 * x_i * (3.0 - a * x_i * x_i)
2510 *
2511 * See also Intel 64 and IA-32 Architectures Optimization Manual.
2512 */
2513 static INLINE LLVMValueRef
2514 lp_build_rsqrt_refine(struct lp_build_context *bld,
2515 LLVMValueRef a,
2516 LLVMValueRef rsqrt_a)
2517 {
2518 LLVMBuilderRef builder = bld->gallivm->builder;
2519 LLVMValueRef half = lp_build_const_vec(bld->gallivm, bld->type, 0.5);
2520 LLVMValueRef three = lp_build_const_vec(bld->gallivm, bld->type, 3.0);
2521 LLVMValueRef res;
2522
2523 res = LLVMBuildFMul(builder, rsqrt_a, rsqrt_a, "");
2524 res = LLVMBuildFMul(builder, a, res, "");
2525 res = LLVMBuildFSub(builder, three, res, "");
2526 res = LLVMBuildFMul(builder, rsqrt_a, res, "");
2527 res = LLVMBuildFMul(builder, half, res, "");
2528
2529 return res;
2530 }
2531
2532
2533 /**
2534 * Generate 1/sqrt(a).
2535 * Result is undefined for values < 0, infinity for +0.
2536 */
2537 LLVMValueRef
2538 lp_build_rsqrt(struct lp_build_context *bld,
2539 LLVMValueRef a)
2540 {
2541 LLVMBuilderRef builder = bld->gallivm->builder;
2542 const struct lp_type type = bld->type;
2543
2544 assert(lp_check_value(type, a));
2545
2546 assert(type.floating);
2547
2548 /*
2549 * This should be faster but all denormals will end up as infinity.
2550 */
2551 if (0 && lp_build_fast_rsqrt_available(type)) {
2552 const unsigned num_iterations = 1;
2553 LLVMValueRef res;
2554 unsigned i;
2555
2556 /* rsqrt(1.0) != 1.0 here */
2557 res = lp_build_fast_rsqrt(bld, a);
2558
2559 if (num_iterations) {
2560 /*
2561 * Newton-Raphson will result in NaN instead of infinity for zero,
2562 * and NaN instead of zero for infinity.
2563 * Also, need to ensure rsqrt(1.0) == 1.0.
2564 * All numbers smaller than FLT_MIN will result in +infinity
2565 * (rsqrtps treats all denormals as zero).
2566 */
2567 /*
2568 * Certain non-c99 compilers don't know INFINITY and might not support
2569 * hacks to evaluate it at compile time neither.
2570 */
2571 const unsigned posinf_int = 0x7F800000;
2572 LLVMValueRef cmp;
2573 LLVMValueRef flt_min = lp_build_const_vec(bld->gallivm, type, FLT_MIN);
2574 LLVMValueRef inf = lp_build_const_int_vec(bld->gallivm, type, posinf_int);
2575
2576 inf = LLVMBuildBitCast(builder, inf, lp_build_vec_type(bld->gallivm, type), "");
2577
2578 for (i = 0; i < num_iterations; ++i) {
2579 res = lp_build_rsqrt_refine(bld, a, res);
2580 }
2581 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_LESS, a, flt_min);
2582 res = lp_build_select(bld, cmp, inf, res);
2583 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_EQUAL, a, inf);
2584 res = lp_build_select(bld, cmp, bld->zero, res);
2585 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_EQUAL, a, bld->one);
2586 res = lp_build_select(bld, cmp, bld->one, res);
2587 }
2588
2589 return res;
2590 }
2591
2592 return lp_build_rcp(bld, lp_build_sqrt(bld, a));
2593 }
2594
2595 /**
2596 * If there's a fast (inaccurate) rsqrt instruction available
2597 * (caller may want to avoid to call rsqrt_fast if it's not available,
2598 * i.e. for calculating x^0.5 it may do rsqrt_fast(x) * x but if
2599 * unavailable it would result in sqrt/div/mul so obviously
2600 * much better to just call sqrt, skipping both div and mul).
2601 */
2602 boolean
2603 lp_build_fast_rsqrt_available(struct lp_type type)
2604 {
2605 assert(type.floating);
2606
2607 if ((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
2608 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) {
2609 return true;
2610 }
2611 return false;
2612 }
2613
2614
2615 /**
2616 * Generate 1/sqrt(a).
2617 * Result is undefined for values < 0, infinity for +0.
2618 * Precision is limited, only ~10 bits guaranteed
2619 * (rsqrt 1.0 may not be 1.0, denorms may be flushed to 0).
2620 */
2621 LLVMValueRef
2622 lp_build_fast_rsqrt(struct lp_build_context *bld,
2623 LLVMValueRef a)
2624 {
2625 LLVMBuilderRef builder = bld->gallivm->builder;
2626 const struct lp_type type = bld->type;
2627
2628 assert(lp_check_value(type, a));
2629
2630 if (lp_build_fast_rsqrt_available(type)) {
2631 const char *intrinsic = NULL;
2632
2633 if (type.length == 4) {
2634 intrinsic = "llvm.x86.sse.rsqrt.ps";
2635 }
2636 else {
2637 intrinsic = "llvm.x86.avx.rsqrt.ps.256";
2638 }
2639 return lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
2640 }
2641 else {
2642 debug_printf("%s: emulating fast rsqrt with rcp/sqrt\n", __FUNCTION__);
2643 }
2644 return lp_build_rcp(bld, lp_build_sqrt(bld, a));
2645 }
2646
2647
2648 /**
2649 * Generate sin(a) or cos(a) using polynomial approximation.
2650 * TODO: it might be worth recognizing sin and cos using same source
2651 * (i.e. d3d10 sincos opcode). Obviously doing both at the same time
2652 * would be way cheaper than calculating (nearly) everything twice...
2653 * Not sure it's common enough to be worth bothering however, scs
2654 * opcode could also benefit from calculating both though.
2655 */
2656 static LLVMValueRef
2657 lp_build_sin_or_cos(struct lp_build_context *bld,
2658 LLVMValueRef a,
2659 boolean cos)
2660 {
2661 struct gallivm_state *gallivm = bld->gallivm;
2662 LLVMBuilderRef b = gallivm->builder;
2663 struct lp_type int_type = lp_int_type(bld->type);
2664
2665 /*
2666 * take the absolute value,
2667 * x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
2668 */
2669
2670 LLVMValueRef inv_sig_mask = lp_build_const_int_vec(gallivm, bld->type, ~0x80000000);
2671 LLVMValueRef a_v4si = LLVMBuildBitCast(b, a, bld->int_vec_type, "a_v4si");
2672
2673 LLVMValueRef absi = LLVMBuildAnd(b, a_v4si, inv_sig_mask, "absi");
2674 LLVMValueRef x_abs = LLVMBuildBitCast(b, absi, bld->vec_type, "x_abs");
2675
2676 /*
2677 * scale by 4/Pi
2678 * y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
2679 */
2680
2681 LLVMValueRef FOPi = lp_build_const_vec(gallivm, bld->type, 1.27323954473516);
2682 LLVMValueRef scale_y = LLVMBuildFMul(b, x_abs, FOPi, "scale_y");
2683
2684 /*
2685 * store the integer part of y in mm0
2686 * emm2 = _mm_cvttps_epi32(y);
2687 */
2688
2689 LLVMValueRef emm2_i = LLVMBuildFPToSI(b, scale_y, bld->int_vec_type, "emm2_i");
2690
2691 /*
2692 * j=(j+1) & (~1) (see the cephes sources)
2693 * emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
2694 */
2695
2696 LLVMValueRef all_one = lp_build_const_int_vec(gallivm, bld->type, 1);
2697 LLVMValueRef emm2_add = LLVMBuildAdd(b, emm2_i, all_one, "emm2_add");
2698 /*
2699 * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
2700 */
2701 LLVMValueRef inv_one = lp_build_const_int_vec(gallivm, bld->type, ~1);
2702 LLVMValueRef emm2_and = LLVMBuildAnd(b, emm2_add, inv_one, "emm2_and");
2703
2704 /*
2705 * y = _mm_cvtepi32_ps(emm2);
2706 */
2707 LLVMValueRef y_2 = LLVMBuildSIToFP(b, emm2_and, bld->vec_type, "y_2");
2708
2709 LLVMValueRef const_2 = lp_build_const_int_vec(gallivm, bld->type, 2);
2710 LLVMValueRef const_4 = lp_build_const_int_vec(gallivm, bld->type, 4);
2711 LLVMValueRef const_29 = lp_build_const_int_vec(gallivm, bld->type, 29);
2712 LLVMValueRef sign_mask = lp_build_const_int_vec(gallivm, bld->type, 0x80000000);
2713
2714 /*
2715 * Argument used for poly selection and sign bit determination
2716 * is different for sin vs. cos.
2717 */
2718 LLVMValueRef emm2_2 = cos ? LLVMBuildSub(b, emm2_and, const_2, "emm2_2") :
2719 emm2_and;
2720
2721 LLVMValueRef sign_bit = cos ? LLVMBuildShl(b, LLVMBuildAnd(b, const_4,
2722 LLVMBuildNot(b, emm2_2, ""), ""),
2723 const_29, "sign_bit") :
2724 LLVMBuildAnd(b, LLVMBuildXor(b, a_v4si,
2725 LLVMBuildShl(b, emm2_add,
2726 const_29, ""), ""),
2727 sign_mask, "sign_bit");
2728
2729 /*
2730 * get the polynom selection mask
2731 * there is one polynom for 0 <= x <= Pi/4
2732 * and another one for Pi/4<x<=Pi/2
2733 * Both branches will be computed.
2734 *
2735 * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
2736 * emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
2737 */
2738
2739 LLVMValueRef emm2_3 = LLVMBuildAnd(b, emm2_2, const_2, "emm2_3");
2740 LLVMValueRef poly_mask = lp_build_compare(gallivm,
2741 int_type, PIPE_FUNC_EQUAL,
2742 emm2_3, lp_build_const_int_vec(gallivm, bld->type, 0));
2743
2744 /*
2745 * _PS_CONST(minus_cephes_DP1, -0.78515625);
2746 * _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
2747 * _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
2748 */
2749 LLVMValueRef DP1 = lp_build_const_vec(gallivm, bld->type, -0.78515625);
2750 LLVMValueRef DP2 = lp_build_const_vec(gallivm, bld->type, -2.4187564849853515625e-4);
2751 LLVMValueRef DP3 = lp_build_const_vec(gallivm, bld->type, -3.77489497744594108e-8);
2752
2753 /*
2754 * The magic pass: "Extended precision modular arithmetic"
2755 * x = ((x - y * DP1) - y * DP2) - y * DP3;
2756 * xmm1 = _mm_mul_ps(y, xmm1);
2757 * xmm2 = _mm_mul_ps(y, xmm2);
2758 * xmm3 = _mm_mul_ps(y, xmm3);
2759 */
2760 LLVMValueRef xmm1 = LLVMBuildFMul(b, y_2, DP1, "xmm1");
2761 LLVMValueRef xmm2 = LLVMBuildFMul(b, y_2, DP2, "xmm2");
2762 LLVMValueRef xmm3 = LLVMBuildFMul(b, y_2, DP3, "xmm3");
2763
2764 /*
2765 * x = _mm_add_ps(x, xmm1);
2766 * x = _mm_add_ps(x, xmm2);
2767 * x = _mm_add_ps(x, xmm3);
2768 */
2769
2770 LLVMValueRef x_1 = LLVMBuildFAdd(b, x_abs, xmm1, "x_1");
2771 LLVMValueRef x_2 = LLVMBuildFAdd(b, x_1, xmm2, "x_2");
2772 LLVMValueRef x_3 = LLVMBuildFAdd(b, x_2, xmm3, "x_3");
2773
2774 /*
2775 * Evaluate the first polynom (0 <= x <= Pi/4)
2776 *
2777 * z = _mm_mul_ps(x,x);
2778 */
2779 LLVMValueRef z = LLVMBuildFMul(b, x_3, x_3, "z");
2780
2781 /*
2782 * _PS_CONST(coscof_p0, 2.443315711809948E-005);
2783 * _PS_CONST(coscof_p1, -1.388731625493765E-003);
2784 * _PS_CONST(coscof_p2, 4.166664568298827E-002);
2785 */
2786 LLVMValueRef coscof_p0 = lp_build_const_vec(gallivm, bld->type, 2.443315711809948E-005);
2787 LLVMValueRef coscof_p1 = lp_build_const_vec(gallivm, bld->type, -1.388731625493765E-003);
2788 LLVMValueRef coscof_p2 = lp_build_const_vec(gallivm, bld->type, 4.166664568298827E-002);
2789
2790 /*
2791 * y = *(v4sf*)_ps_coscof_p0;
2792 * y = _mm_mul_ps(y, z);
2793 */
2794 LLVMValueRef y_3 = LLVMBuildFMul(b, z, coscof_p0, "y_3");
2795 LLVMValueRef y_4 = LLVMBuildFAdd(b, y_3, coscof_p1, "y_4");
2796 LLVMValueRef y_5 = LLVMBuildFMul(b, y_4, z, "y_5");
2797 LLVMValueRef y_6 = LLVMBuildFAdd(b, y_5, coscof_p2, "y_6");
2798 LLVMValueRef y_7 = LLVMBuildFMul(b, y_6, z, "y_7");
2799 LLVMValueRef y_8 = LLVMBuildFMul(b, y_7, z, "y_8");
2800
2801
2802 /*
2803 * tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
2804 * y = _mm_sub_ps(y, tmp);
2805 * y = _mm_add_ps(y, *(v4sf*)_ps_1);
2806 */
2807 LLVMValueRef half = lp_build_const_vec(gallivm, bld->type, 0.5);
2808 LLVMValueRef tmp = LLVMBuildFMul(b, z, half, "tmp");
2809 LLVMValueRef y_9 = LLVMBuildFSub(b, y_8, tmp, "y_8");
2810 LLVMValueRef one = lp_build_const_vec(gallivm, bld->type, 1.0);
2811 LLVMValueRef y_10 = LLVMBuildFAdd(b, y_9, one, "y_9");
2812
2813 /*
2814 * _PS_CONST(sincof_p0, -1.9515295891E-4);
2815 * _PS_CONST(sincof_p1, 8.3321608736E-3);
2816 * _PS_CONST(sincof_p2, -1.6666654611E-1);
2817 */
2818 LLVMValueRef sincof_p0 = lp_build_const_vec(gallivm, bld->type, -1.9515295891E-4);
2819 LLVMValueRef sincof_p1 = lp_build_const_vec(gallivm, bld->type, 8.3321608736E-3);
2820 LLVMValueRef sincof_p2 = lp_build_const_vec(gallivm, bld->type, -1.6666654611E-1);
2821
2822 /*
2823 * Evaluate the second polynom (Pi/4 <= x <= 0)
2824 *
2825 * y2 = *(v4sf*)_ps_sincof_p0;
2826 * y2 = _mm_mul_ps(y2, z);
2827 * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
2828 * y2 = _mm_mul_ps(y2, z);
2829 * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
2830 * y2 = _mm_mul_ps(y2, z);
2831 * y2 = _mm_mul_ps(y2, x);
2832 * y2 = _mm_add_ps(y2, x);
2833 */
2834
2835 LLVMValueRef y2_3 = LLVMBuildFMul(b, z, sincof_p0, "y2_3");
2836 LLVMValueRef y2_4 = LLVMBuildFAdd(b, y2_3, sincof_p1, "y2_4");
2837 LLVMValueRef y2_5 = LLVMBuildFMul(b, y2_4, z, "y2_5");
2838 LLVMValueRef y2_6 = LLVMBuildFAdd(b, y2_5, sincof_p2, "y2_6");
2839 LLVMValueRef y2_7 = LLVMBuildFMul(b, y2_6, z, "y2_7");
2840 LLVMValueRef y2_8 = LLVMBuildFMul(b, y2_7, x_3, "y2_8");
2841 LLVMValueRef y2_9 = LLVMBuildFAdd(b, y2_8, x_3, "y2_9");
2842
2843 /*
2844 * select the correct result from the two polynoms
2845 * xmm3 = poly_mask;
2846 * y2 = _mm_and_ps(xmm3, y2); //, xmm3);
2847 * y = _mm_andnot_ps(xmm3, y);
2848 * y = _mm_or_ps(y,y2);
2849 */
2850 LLVMValueRef y2_i = LLVMBuildBitCast(b, y2_9, bld->int_vec_type, "y2_i");
2851 LLVMValueRef y_i = LLVMBuildBitCast(b, y_10, bld->int_vec_type, "y_i");
2852 LLVMValueRef y2_and = LLVMBuildAnd(b, y2_i, poly_mask, "y2_and");
2853 LLVMValueRef poly_mask_inv = LLVMBuildNot(b, poly_mask, "poly_mask_inv");
2854 LLVMValueRef y_and = LLVMBuildAnd(b, y_i, poly_mask_inv, "y_and");
2855 LLVMValueRef y_combine = LLVMBuildOr(b, y_and, y2_and, "y_combine");
2856
2857 /*
2858 * update the sign
2859 * y = _mm_xor_ps(y, sign_bit);
2860 */
2861 LLVMValueRef y_sign = LLVMBuildXor(b, y_combine, sign_bit, "y_sign");
2862 LLVMValueRef y_result = LLVMBuildBitCast(b, y_sign, bld->vec_type, "y_result");
2863
2864 LLVMValueRef isfinite = lp_build_isfinite(bld, a);
2865
2866 /* clamp output to be within [-1, 1] */
2867 y_result = lp_build_clamp(bld, y_result,
2868 lp_build_const_vec(bld->gallivm, bld->type, -1.f),
2869 lp_build_const_vec(bld->gallivm, bld->type, 1.f));
2870 /* If a is -inf, inf or NaN then return NaN */
2871 y_result = lp_build_select(bld, isfinite, y_result,
2872 lp_build_const_vec(bld->gallivm, bld->type, NAN));
2873 return y_result;
2874 }
2875
2876
2877 /**
2878 * Generate sin(a)
2879 */
2880 LLVMValueRef
2881 lp_build_sin(struct lp_build_context *bld,
2882 LLVMValueRef a)
2883 {
2884 return lp_build_sin_or_cos(bld, a, FALSE);
2885 }
2886
2887
2888 /**
2889 * Generate cos(a)
2890 */
2891 LLVMValueRef
2892 lp_build_cos(struct lp_build_context *bld,
2893 LLVMValueRef a)
2894 {
2895 return lp_build_sin_or_cos(bld, a, TRUE);
2896 }
2897
2898
2899 /**
2900 * Generate pow(x, y)
2901 */
2902 LLVMValueRef
2903 lp_build_pow(struct lp_build_context *bld,
2904 LLVMValueRef x,
2905 LLVMValueRef y)
2906 {
2907 /* TODO: optimize the constant case */
2908 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
2909 LLVMIsConstant(x) && LLVMIsConstant(y)) {
2910 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
2911 __FUNCTION__);
2912 }
2913
2914 return lp_build_exp2(bld, lp_build_mul(bld, lp_build_log2(bld, x), y));
2915 }
2916
2917
2918 /**
2919 * Generate exp(x)
2920 */
2921 LLVMValueRef
2922 lp_build_exp(struct lp_build_context *bld,
2923 LLVMValueRef x)
2924 {
2925 /* log2(e) = 1/log(2) */
2926 LLVMValueRef log2e = lp_build_const_vec(bld->gallivm, bld->type,
2927 1.4426950408889634);
2928
2929 assert(lp_check_value(bld->type, x));
2930
2931 return lp_build_exp2(bld, lp_build_mul(bld, log2e, x));
2932 }
2933
2934
2935 /**
2936 * Generate log(x)
2937 * Behavior is undefined with infs, 0s and nans
2938 */
2939 LLVMValueRef
2940 lp_build_log(struct lp_build_context *bld,
2941 LLVMValueRef x)
2942 {
2943 /* log(2) */
2944 LLVMValueRef log2 = lp_build_const_vec(bld->gallivm, bld->type,
2945 0.69314718055994529);
2946
2947 assert(lp_check_value(bld->type, x));
2948
2949 return lp_build_mul(bld, log2, lp_build_log2(bld, x));
2950 }
2951
2952 /**
2953 * Generate log(x) that handles edge cases (infs, 0s and nans)
2954 */
2955 LLVMValueRef
2956 lp_build_log_safe(struct lp_build_context *bld,
2957 LLVMValueRef x)
2958 {
2959 /* log(2) */
2960 LLVMValueRef log2 = lp_build_const_vec(bld->gallivm, bld->type,
2961 0.69314718055994529);
2962
2963 assert(lp_check_value(bld->type, x));
2964
2965 return lp_build_mul(bld, log2, lp_build_log2_safe(bld, x));
2966 }
2967
2968
2969 /**
2970 * Generate polynomial.
2971 * Ex: coeffs[0] + x * coeffs[1] + x^2 * coeffs[2].
2972 */
2973 LLVMValueRef
2974 lp_build_polynomial(struct lp_build_context *bld,
2975 LLVMValueRef x,
2976 const double *coeffs,
2977 unsigned num_coeffs)
2978 {
2979 const struct lp_type type = bld->type;
2980 LLVMValueRef even = NULL, odd = NULL;
2981 LLVMValueRef x2;
2982 unsigned i;
2983
2984 assert(lp_check_value(bld->type, x));
2985
2986 /* TODO: optimize the constant case */
2987 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
2988 LLVMIsConstant(x)) {
2989 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
2990 __FUNCTION__);
2991 }
2992
2993 /*
2994 * Calculate odd and even terms seperately to decrease data dependency
2995 * Ex:
2996 * c[0] + x^2 * c[2] + x^4 * c[4] ...
2997 * + x * (c[1] + x^2 * c[3] + x^4 * c[5]) ...
2998 */
2999 x2 = lp_build_mul(bld, x, x);
3000
3001 for (i = num_coeffs; i--; ) {
3002 LLVMValueRef coeff;
3003
3004 coeff = lp_build_const_vec(bld->gallivm, type, coeffs[i]);
3005
3006 if (i % 2 == 0) {
3007 if (even)
3008 even = lp_build_add(bld, coeff, lp_build_mul(bld, x2, even));
3009 else
3010 even = coeff;
3011 } else {
3012 if (odd)
3013 odd = lp_build_add(bld, coeff, lp_build_mul(bld, x2, odd));
3014 else
3015 odd = coeff;
3016 }
3017 }
3018
3019 if (odd)
3020 return lp_build_add(bld, lp_build_mul(bld, odd, x), even);
3021 else if (even)
3022 return even;
3023 else
3024 return bld->undef;
3025 }
3026
3027
3028 /**
3029 * Minimax polynomial fit of 2**x, in range [0, 1[
3030 */
3031 const double lp_build_exp2_polynomial[] = {
3032 #if EXP_POLY_DEGREE == 5
3033 1.000000000000000000000, /*XXX: was 0.999999925063526176901, recompute others */
3034 0.693153073200168932794,
3035 0.240153617044375388211,
3036 0.0558263180532956664775,
3037 0.00898934009049466391101,
3038 0.00187757667519147912699
3039 #elif EXP_POLY_DEGREE == 4
3040 1.00000259337069434683,
3041 0.693003834469974940458,
3042 0.24144275689150793076,
3043 0.0520114606103070150235,
3044 0.0135341679161270268764
3045 #elif EXP_POLY_DEGREE == 3
3046 0.999925218562710312959,
3047 0.695833540494823811697,
3048 0.226067155427249155588,
3049 0.0780245226406372992967
3050 #elif EXP_POLY_DEGREE == 2
3051 1.00172476321474503578,
3052 0.657636275736077639316,
3053 0.33718943461968720704
3054 #else
3055 #error
3056 #endif
3057 };
3058
3059
3060 LLVMValueRef
3061 lp_build_exp2(struct lp_build_context *bld,
3062 LLVMValueRef x)
3063 {
3064 LLVMBuilderRef builder = bld->gallivm->builder;
3065 const struct lp_type type = bld->type;
3066 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
3067 LLVMValueRef ipart = NULL;
3068 LLVMValueRef fpart = NULL;
3069 LLVMValueRef expipart = NULL;
3070 LLVMValueRef expfpart = NULL;
3071 LLVMValueRef res = NULL;
3072
3073 assert(lp_check_value(bld->type, x));
3074
3075 /* TODO: optimize the constant case */
3076 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
3077 LLVMIsConstant(x)) {
3078 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
3079 __FUNCTION__);
3080 }
3081
3082 assert(type.floating && type.width == 32);
3083
3084 /* We want to preserve NaN and make sure than for exp2 if x > 128,
3085 * the result is INF and if it's smaller than -126.9 the result is 0 */
3086 x = lp_build_min_ext(bld, lp_build_const_vec(bld->gallivm, type, 128.0), x,
3087 GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN);
3088 x = lp_build_max_ext(bld, lp_build_const_vec(bld->gallivm, type, -126.99999),
3089 x, GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN);
3090
3091 /* ipart = floor(x) */
3092 /* fpart = x - ipart */
3093 lp_build_ifloor_fract(bld, x, &ipart, &fpart);
3094
3095 /* expipart = (float) (1 << ipart) */
3096 expipart = LLVMBuildAdd(builder, ipart,
3097 lp_build_const_int_vec(bld->gallivm, type, 127), "");
3098 expipart = LLVMBuildShl(builder, expipart,
3099 lp_build_const_int_vec(bld->gallivm, type, 23), "");
3100 expipart = LLVMBuildBitCast(builder, expipart, vec_type, "");
3101
3102 expfpart = lp_build_polynomial(bld, fpart, lp_build_exp2_polynomial,
3103 Elements(lp_build_exp2_polynomial));
3104
3105 res = LLVMBuildFMul(builder, expipart, expfpart, "");
3106
3107 return res;
3108 }
3109
3110
3111
3112 /**
3113 * Extract the exponent of a IEEE-754 floating point value.
3114 *
3115 * Optionally apply an integer bias.
3116 *
3117 * Result is an integer value with
3118 *
3119 * ifloor(log2(x)) + bias
3120 */
3121 LLVMValueRef
3122 lp_build_extract_exponent(struct lp_build_context *bld,
3123 LLVMValueRef x,
3124 int bias)
3125 {
3126 LLVMBuilderRef builder = bld->gallivm->builder;
3127 const struct lp_type type = bld->type;
3128 unsigned mantissa = lp_mantissa(type);
3129 LLVMValueRef res;
3130
3131 assert(type.floating);
3132
3133 assert(lp_check_value(bld->type, x));
3134
3135 x = LLVMBuildBitCast(builder, x, bld->int_vec_type, "");
3136
3137 res = LLVMBuildLShr(builder, x,
3138 lp_build_const_int_vec(bld->gallivm, type, mantissa), "");
3139 res = LLVMBuildAnd(builder, res,
3140 lp_build_const_int_vec(bld->gallivm, type, 255), "");
3141 res = LLVMBuildSub(builder, res,
3142 lp_build_const_int_vec(bld->gallivm, type, 127 - bias), "");
3143
3144 return res;
3145 }
3146
3147
3148 /**
3149 * Extract the mantissa of the a floating.
3150 *
3151 * Result is a floating point value with
3152 *
3153 * x / floor(log2(x))
3154 */
3155 LLVMValueRef
3156 lp_build_extract_mantissa(struct lp_build_context *bld,
3157 LLVMValueRef x)
3158 {
3159 LLVMBuilderRef builder = bld->gallivm->builder;
3160 const struct lp_type type = bld->type;
3161 unsigned mantissa = lp_mantissa(type);
3162 LLVMValueRef mantmask = lp_build_const_int_vec(bld->gallivm, type,
3163 (1ULL << mantissa) - 1);
3164 LLVMValueRef one = LLVMConstBitCast(bld->one, bld->int_vec_type);
3165 LLVMValueRef res;
3166
3167 assert(lp_check_value(bld->type, x));
3168
3169 assert(type.floating);
3170
3171 x = LLVMBuildBitCast(builder, x, bld->int_vec_type, "");
3172
3173 /* res = x / 2**ipart */
3174 res = LLVMBuildAnd(builder, x, mantmask, "");
3175 res = LLVMBuildOr(builder, res, one, "");
3176 res = LLVMBuildBitCast(builder, res, bld->vec_type, "");
3177
3178 return res;
3179 }
3180
3181
3182
3183 /**
3184 * Minimax polynomial fit of log2((1.0 + sqrt(x))/(1.0 - sqrt(x)))/sqrt(x) ,for x in range of [0, 1/9[
3185 * These coefficients can be generate with
3186 * http://www.boost.org/doc/libs/1_36_0/libs/math/doc/sf_and_dist/html/math_toolkit/toolkit/internals2/minimax.html
3187 */
3188 const double lp_build_log2_polynomial[] = {
3189 #if LOG_POLY_DEGREE == 5
3190 2.88539008148777786488L,
3191 0.961796878841293367824L,
3192 0.577058946784739859012L,
3193 0.412914355135828735411L,
3194 0.308591899232910175289L,
3195 0.352376952300281371868L,
3196 #elif LOG_POLY_DEGREE == 4
3197 2.88539009343309178325L,
3198 0.961791550404184197881L,
3199 0.577440339438736392009L,
3200 0.403343858251329912514L,
3201 0.406718052498846252698L,
3202 #elif LOG_POLY_DEGREE == 3
3203 2.88538959748872753838L,
3204 0.961932915889597772928L,
3205 0.571118517972136195241L,
3206 0.493997535084709500285L,
3207 #else
3208 #error
3209 #endif
3210 };
3211
3212 /**
3213 * See http://www.devmaster.net/forums/showthread.php?p=43580
3214 * http://en.wikipedia.org/wiki/Logarithm#Calculation
3215 * http://www.nezumi.demon.co.uk/consult/logx.htm
3216 *
3217 * If handle_edge_cases is true the function will perform computations
3218 * to match the required D3D10+ behavior for each of the edge cases.
3219 * That means that if input is:
3220 * - less than zero (to and including -inf) then NaN will be returned
3221 * - equal to zero (-denorm, -0, +0 or +denorm), then -inf will be returned
3222 * - +infinity, then +infinity will be returned
3223 * - NaN, then NaN will be returned
3224 *
3225 * Those checks are fairly expensive so if you don't need them make sure
3226 * handle_edge_cases is false.
3227 */
3228 void
3229 lp_build_log2_approx(struct lp_build_context *bld,
3230 LLVMValueRef x,
3231 LLVMValueRef *p_exp,
3232 LLVMValueRef *p_floor_log2,
3233 LLVMValueRef *p_log2,
3234 boolean handle_edge_cases)
3235 {
3236 LLVMBuilderRef builder = bld->gallivm->builder;
3237 const struct lp_type type = bld->type;
3238 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
3239 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
3240
3241 LLVMValueRef expmask = lp_build_const_int_vec(bld->gallivm, type, 0x7f800000);
3242 LLVMValueRef mantmask = lp_build_const_int_vec(bld->gallivm, type, 0x007fffff);
3243 LLVMValueRef one = LLVMConstBitCast(bld->one, int_vec_type);
3244
3245 LLVMValueRef i = NULL;
3246 LLVMValueRef y = NULL;
3247 LLVMValueRef z = NULL;
3248 LLVMValueRef exp = NULL;
3249 LLVMValueRef mant = NULL;
3250 LLVMValueRef logexp = NULL;
3251 LLVMValueRef logmant = NULL;
3252 LLVMValueRef res = NULL;
3253
3254 assert(lp_check_value(bld->type, x));
3255
3256 if(p_exp || p_floor_log2 || p_log2) {
3257 /* TODO: optimize the constant case */
3258 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
3259 LLVMIsConstant(x)) {
3260 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
3261 __FUNCTION__);
3262 }
3263
3264 assert(type.floating && type.width == 32);
3265
3266 /*
3267 * We don't explicitly handle denormalized numbers. They will yield a
3268 * result in the neighbourhood of -127, which appears to be adequate
3269 * enough.
3270 */
3271
3272 i = LLVMBuildBitCast(builder, x, int_vec_type, "");
3273
3274 /* exp = (float) exponent(x) */
3275 exp = LLVMBuildAnd(builder, i, expmask, "");
3276 }
3277
3278 if(p_floor_log2 || p_log2) {
3279 logexp = LLVMBuildLShr(builder, exp, lp_build_const_int_vec(bld->gallivm, type, 23), "");
3280 logexp = LLVMBuildSub(builder, logexp, lp_build_const_int_vec(bld->gallivm, type, 127), "");
3281 logexp = LLVMBuildSIToFP(builder, logexp, vec_type, "");
3282 }
3283
3284 if(p_log2) {
3285 /* mant = 1 + (float) mantissa(x) */
3286 mant = LLVMBuildAnd(builder, i, mantmask, "");
3287 mant = LLVMBuildOr(builder, mant, one, "");
3288 mant = LLVMBuildBitCast(builder, mant, vec_type, "");
3289
3290 /* y = (mant - 1) / (mant + 1) */
3291 y = lp_build_div(bld,
3292 lp_build_sub(bld, mant, bld->one),
3293 lp_build_add(bld, mant, bld->one)
3294 );
3295
3296 /* z = y^2 */
3297 z = lp_build_mul(bld, y, y);
3298
3299 /* compute P(z) */
3300 logmant = lp_build_polynomial(bld, z, lp_build_log2_polynomial,
3301 Elements(lp_build_log2_polynomial));
3302
3303 /* logmant = y * P(z) */
3304 logmant = lp_build_mul(bld, y, logmant);
3305
3306 res = lp_build_add(bld, logmant, logexp);
3307
3308 if (type.floating && handle_edge_cases) {
3309 LLVMValueRef negmask, infmask, zmask;
3310 negmask = lp_build_cmp(bld, PIPE_FUNC_LESS, x,
3311 lp_build_const_vec(bld->gallivm, type, 0.0f));
3312 zmask = lp_build_cmp(bld, PIPE_FUNC_EQUAL, x,
3313 lp_build_const_vec(bld->gallivm, type, 0.0f));
3314 infmask = lp_build_cmp(bld, PIPE_FUNC_GEQUAL, x,
3315 lp_build_const_vec(bld->gallivm, type, INFINITY));
3316
3317 /* If x is qual to inf make sure we return inf */
3318 res = lp_build_select(bld, infmask,
3319 lp_build_const_vec(bld->gallivm, type, INFINITY),
3320 res);
3321 /* If x is qual to 0, return -inf */
3322 res = lp_build_select(bld, zmask,
3323 lp_build_const_vec(bld->gallivm, type, -INFINITY),
3324 res);
3325 /* If x is nan or less than 0, return nan */
3326 res = lp_build_select(bld, negmask,
3327 lp_build_const_vec(bld->gallivm, type, NAN),
3328 res);
3329 }
3330 }
3331
3332 if(p_exp) {
3333 exp = LLVMBuildBitCast(builder, exp, vec_type, "");
3334 *p_exp = exp;
3335 }
3336
3337 if(p_floor_log2)
3338 *p_floor_log2 = logexp;
3339
3340 if(p_log2)
3341 *p_log2 = res;
3342 }
3343
3344
3345 /*
3346 * log2 implementation which doesn't have special code to
3347 * handle edge cases (-inf, 0, inf, NaN). It's faster but
3348 * the results for those cases are undefined.
3349 */
3350 LLVMValueRef
3351 lp_build_log2(struct lp_build_context *bld,
3352 LLVMValueRef x)
3353 {
3354 LLVMValueRef res;
3355 lp_build_log2_approx(bld, x, NULL, NULL, &res, FALSE);
3356 return res;
3357 }
3358
3359 /*
3360 * Version of log2 which handles all edge cases.
3361 * Look at documentation of lp_build_log2_approx for
3362 * description of the behavior for each of the edge cases.
3363 */
3364 LLVMValueRef
3365 lp_build_log2_safe(struct lp_build_context *bld,
3366 LLVMValueRef x)
3367 {
3368 LLVMValueRef res;
3369 lp_build_log2_approx(bld, x, NULL, NULL, &res, TRUE);
3370 return res;
3371 }
3372
3373
3374 /**
3375 * Faster (and less accurate) log2.
3376 *
3377 * log2(x) = floor(log2(x)) - 1 + x / 2**floor(log2(x))
3378 *
3379 * Piece-wise linear approximation, with exact results when x is a
3380 * power of two.
3381 *
3382 * See http://www.flipcode.com/archives/Fast_log_Function.shtml
3383 */
3384 LLVMValueRef
3385 lp_build_fast_log2(struct lp_build_context *bld,
3386 LLVMValueRef x)
3387 {
3388 LLVMBuilderRef builder = bld->gallivm->builder;
3389 LLVMValueRef ipart;
3390 LLVMValueRef fpart;
3391
3392 assert(lp_check_value(bld->type, x));
3393
3394 assert(bld->type.floating);
3395
3396 /* ipart = floor(log2(x)) - 1 */
3397 ipart = lp_build_extract_exponent(bld, x, -1);
3398 ipart = LLVMBuildSIToFP(builder, ipart, bld->vec_type, "");
3399
3400 /* fpart = x / 2**ipart */
3401 fpart = lp_build_extract_mantissa(bld, x);
3402
3403 /* ipart + fpart */
3404 return LLVMBuildFAdd(builder, ipart, fpart, "");
3405 }
3406
3407
3408 /**
3409 * Fast implementation of iround(log2(x)).
3410 *
3411 * Not an approximation -- it should give accurate results all the time.
3412 */
3413 LLVMValueRef
3414 lp_build_ilog2(struct lp_build_context *bld,
3415 LLVMValueRef x)
3416 {
3417 LLVMBuilderRef builder = bld->gallivm->builder;
3418 LLVMValueRef sqrt2 = lp_build_const_vec(bld->gallivm, bld->type, M_SQRT2);
3419 LLVMValueRef ipart;
3420
3421 assert(bld->type.floating);
3422
3423 assert(lp_check_value(bld->type, x));
3424
3425 /* x * 2^(0.5) i.e., add 0.5 to the log2(x) */
3426 x = LLVMBuildFMul(builder, x, sqrt2, "");
3427
3428 /* ipart = floor(log2(x) + 0.5) */
3429 ipart = lp_build_extract_exponent(bld, x, 0);
3430
3431 return ipart;
3432 }
3433
3434 LLVMValueRef
3435 lp_build_mod(struct lp_build_context *bld,
3436 LLVMValueRef x,
3437 LLVMValueRef y)
3438 {
3439 LLVMBuilderRef builder = bld->gallivm->builder;
3440 LLVMValueRef res;
3441 const struct lp_type type = bld->type;
3442
3443 assert(lp_check_value(type, x));
3444 assert(lp_check_value(type, y));
3445
3446 if (type.floating)
3447 res = LLVMBuildFRem(builder, x, y, "");
3448 else if (type.sign)
3449 res = LLVMBuildSRem(builder, x, y, "");
3450 else
3451 res = LLVMBuildURem(builder, x, y, "");
3452 return res;
3453 }
3454
3455
3456 /*
3457 * For floating inputs it creates and returns a mask
3458 * which is all 1's for channels which are NaN.
3459 * Channels inside x which are not NaN will be 0.
3460 */
3461 LLVMValueRef
3462 lp_build_isnan(struct lp_build_context *bld,
3463 LLVMValueRef x)
3464 {
3465 LLVMValueRef mask;
3466 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, bld->type);
3467
3468 assert(bld->type.floating);
3469 assert(lp_check_value(bld->type, x));
3470
3471 mask = LLVMBuildFCmp(bld->gallivm->builder, LLVMRealOEQ, x, x,
3472 "isnotnan");
3473 mask = LLVMBuildNot(bld->gallivm->builder, mask, "");
3474 mask = LLVMBuildSExt(bld->gallivm->builder, mask, int_vec_type, "isnan");
3475 return mask;
3476 }
3477
3478 /* Returns all 1's for floating point numbers that are
3479 * finite numbers and returns all zeros for -inf,
3480 * inf and nan's */
3481 LLVMValueRef
3482 lp_build_isfinite(struct lp_build_context *bld,
3483 LLVMValueRef x)
3484 {
3485 LLVMBuilderRef builder = bld->gallivm->builder;
3486 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, bld->type);
3487 struct lp_type int_type = lp_int_type(bld->type);
3488 LLVMValueRef intx = LLVMBuildBitCast(builder, x, int_vec_type, "");
3489 LLVMValueRef infornan32 = lp_build_const_int_vec(bld->gallivm, bld->type,
3490 0x7f800000);
3491
3492 if (!bld->type.floating) {
3493 return lp_build_const_int_vec(bld->gallivm, bld->type, 0);
3494 }
3495 assert(bld->type.floating);
3496 assert(lp_check_value(bld->type, x));
3497 assert(bld->type.width == 32);
3498
3499 intx = LLVMBuildAnd(builder, intx, infornan32, "");
3500 return lp_build_compare(bld->gallivm, int_type, PIPE_FUNC_NOTEQUAL,
3501 intx, infornan32);
3502 }
3503
3504 /*
3505 * Returns true if the number is nan or inf and false otherwise.
3506 * The input has to be a floating point vector.
3507 */
3508 LLVMValueRef
3509 lp_build_is_inf_or_nan(struct gallivm_state *gallivm,
3510 const struct lp_type type,
3511 LLVMValueRef x)
3512 {
3513 LLVMBuilderRef builder = gallivm->builder;
3514 struct lp_type int_type = lp_int_type(type);
3515 LLVMValueRef const0 = lp_build_const_int_vec(gallivm, int_type,
3516 0x7f800000);
3517 LLVMValueRef ret;
3518
3519 assert(type.floating);
3520
3521 ret = LLVMBuildBitCast(builder, x, lp_build_vec_type(gallivm, int_type), "");
3522 ret = LLVMBuildAnd(builder, ret, const0, "");
3523 ret = lp_build_compare(gallivm, int_type, PIPE_FUNC_EQUAL,
3524 ret, const0);
3525
3526 return ret;
3527 }
3528
3529
3530 LLVMValueRef
3531 lp_build_fpstate_get(struct gallivm_state *gallivm)
3532 {
3533 if (util_cpu_caps.has_sse) {
3534 LLVMBuilderRef builder = gallivm->builder;
3535 LLVMValueRef mxcsr_ptr = lp_build_alloca(
3536 gallivm,
3537 LLVMInt32TypeInContext(gallivm->context),
3538 "mxcsr_ptr");
3539 LLVMValueRef mxcsr_ptr8 = LLVMBuildPointerCast(builder, mxcsr_ptr,
3540 LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0), "");
3541 lp_build_intrinsic(builder,
3542 "llvm.x86.sse.stmxcsr",
3543 LLVMVoidTypeInContext(gallivm->context),
3544 &mxcsr_ptr8, 1);
3545 return mxcsr_ptr;
3546 }
3547 return 0;
3548 }
3549
3550 void
3551 lp_build_fpstate_set_denorms_zero(struct gallivm_state *gallivm,
3552 boolean zero)
3553 {
3554 if (util_cpu_caps.has_sse) {
3555 /* turn on DAZ (64) | FTZ (32768) = 32832 if available */
3556 int daz_ftz = _MM_FLUSH_ZERO_MASK;
3557
3558 LLVMBuilderRef builder = gallivm->builder;
3559 LLVMValueRef mxcsr_ptr = lp_build_fpstate_get(gallivm);
3560 LLVMValueRef mxcsr =
3561 LLVMBuildLoad(builder, mxcsr_ptr, "mxcsr");
3562
3563 if (util_cpu_caps.has_daz) {
3564 /* Enable denormals are zero mode */
3565 daz_ftz |= _MM_DENORMALS_ZERO_MASK;
3566 }
3567 if (zero) {
3568 mxcsr = LLVMBuildOr(builder, mxcsr,
3569 LLVMConstInt(LLVMTypeOf(mxcsr), daz_ftz, 0), "");
3570 } else {
3571 mxcsr = LLVMBuildAnd(builder, mxcsr,
3572 LLVMConstInt(LLVMTypeOf(mxcsr), ~daz_ftz, 0), "");
3573 }
3574
3575 LLVMBuildStore(builder, mxcsr, mxcsr_ptr);
3576 lp_build_fpstate_set(gallivm, mxcsr_ptr);
3577 }
3578 }
3579
3580 void
3581 lp_build_fpstate_set(struct gallivm_state *gallivm,
3582 LLVMValueRef mxcsr_ptr)
3583 {
3584 if (util_cpu_caps.has_sse) {
3585 LLVMBuilderRef builder = gallivm->builder;
3586 mxcsr_ptr = LLVMBuildPointerCast(builder, mxcsr_ptr,
3587 LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0), "");
3588 lp_build_intrinsic(builder,
3589 "llvm.x86.sse.ldmxcsr",
3590 LLVMVoidTypeInContext(gallivm->context),
3591 &mxcsr_ptr, 1);
3592 }
3593 }