Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_arit.c
1 /**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 /**
30 * @file
31 * Helper
32 *
33 * LLVM IR doesn't support all basic arithmetic operations we care about (most
34 * notably min/max and saturated operations), and it is often necessary to
35 * resort machine-specific intrinsics directly. The functions here hide all
36 * these implementation details from the other modules.
37 *
38 * We also do simple expressions simplification here. Reasons are:
39 * - it is very easy given we have all necessary information readily available
40 * - LLVM optimization passes fail to simplify several vector expressions
41 * - We often know value constraints which the optimization passes have no way
42 * of knowing, such as when source arguments are known to be in [0, 1] range.
43 *
44 * @author Jose Fonseca <jfonseca@vmware.com>
45 */
46
47
48 #include <float.h>
49
50 #include "util/u_memory.h"
51 #include "util/u_debug.h"
52 #include "util/u_math.h"
53 #include "util/u_string.h"
54 #include "util/u_cpu_detect.h"
55
56 #include "lp_bld_type.h"
57 #include "lp_bld_const.h"
58 #include "lp_bld_init.h"
59 #include "lp_bld_intr.h"
60 #include "lp_bld_logic.h"
61 #include "lp_bld_pack.h"
62 #include "lp_bld_debug.h"
63 #include "lp_bld_bitarit.h"
64 #include "lp_bld_arit.h"
65 #include "lp_bld_flow.h"
66
67 #if defined(PIPE_ARCH_SSE)
68 #include <xmmintrin.h>
69 #endif
70
71 #ifndef _MM_DENORMALS_ZERO_MASK
72 #define _MM_DENORMALS_ZERO_MASK 0x0040
73 #endif
74
75 #ifndef _MM_FLUSH_ZERO_MASK
76 #define _MM_FLUSH_ZERO_MASK 0x8000
77 #endif
78
79 #define EXP_POLY_DEGREE 5
80
81 #define LOG_POLY_DEGREE 4
82
83
84 /**
85 * Generate min(a, b)
86 * No checks for special case values of a or b = 1 or 0 are done.
87 * NaN's are handled according to the behavior specified by the
88 * nan_behavior argument.
89 */
90 static LLVMValueRef
91 lp_build_min_simple(struct lp_build_context *bld,
92 LLVMValueRef a,
93 LLVMValueRef b,
94 enum gallivm_nan_behavior nan_behavior)
95 {
96 const struct lp_type type = bld->type;
97 const char *intrinsic = NULL;
98 unsigned intr_size = 0;
99 LLVMValueRef cond;
100
101 assert(lp_check_value(type, a));
102 assert(lp_check_value(type, b));
103
104 /* TODO: optimize the constant case */
105
106 if (type.floating && util_cpu_caps.has_sse) {
107 if (type.width == 32) {
108 if (type.length == 1) {
109 intrinsic = "llvm.x86.sse.min.ss";
110 intr_size = 128;
111 }
112 else if (type.length <= 4 || !util_cpu_caps.has_avx) {
113 intrinsic = "llvm.x86.sse.min.ps";
114 intr_size = 128;
115 }
116 else {
117 intrinsic = "llvm.x86.avx.min.ps.256";
118 intr_size = 256;
119 }
120 }
121 if (type.width == 64 && util_cpu_caps.has_sse2) {
122 if (type.length == 1) {
123 intrinsic = "llvm.x86.sse2.min.sd";
124 intr_size = 128;
125 }
126 else if (type.length == 2 || !util_cpu_caps.has_avx) {
127 intrinsic = "llvm.x86.sse2.min.pd";
128 intr_size = 128;
129 }
130 else {
131 intrinsic = "llvm.x86.avx.min.pd.256";
132 intr_size = 256;
133 }
134 }
135 }
136 else if (type.floating && util_cpu_caps.has_altivec) {
137 if (nan_behavior == GALLIVM_NAN_RETURN_NAN ||
138 nan_behavior == GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
139 debug_printf("%s: altivec doesn't support nan return nan behavior\n",
140 __FUNCTION__);
141 }
142 if (type.width == 32 && type.length == 4) {
143 intrinsic = "llvm.ppc.altivec.vminfp";
144 intr_size = 128;
145 }
146 } else if (util_cpu_caps.has_sse2 && type.length >= 2) {
147 intr_size = 128;
148 if ((type.width == 8 || type.width == 16) &&
149 (type.width * type.length <= 64) &&
150 (gallivm_debug & GALLIVM_DEBUG_PERF)) {
151 debug_printf("%s: inefficient code, bogus shuffle due to packing\n",
152 __FUNCTION__);
153 }
154 if (type.width == 8 && !type.sign) {
155 intrinsic = "llvm.x86.sse2.pminu.b";
156 }
157 else if (type.width == 16 && type.sign) {
158 intrinsic = "llvm.x86.sse2.pmins.w";
159 }
160 if (util_cpu_caps.has_sse4_1) {
161 if (type.width == 8 && type.sign) {
162 intrinsic = "llvm.x86.sse41.pminsb";
163 }
164 if (type.width == 16 && !type.sign) {
165 intrinsic = "llvm.x86.sse41.pminuw";
166 }
167 if (type.width == 32 && !type.sign) {
168 intrinsic = "llvm.x86.sse41.pminud";
169 }
170 if (type.width == 32 && type.sign) {
171 intrinsic = "llvm.x86.sse41.pminsd";
172 }
173 }
174 } else if (util_cpu_caps.has_altivec) {
175 intr_size = 128;
176 if (type.width == 8) {
177 if (!type.sign) {
178 intrinsic = "llvm.ppc.altivec.vminub";
179 } else {
180 intrinsic = "llvm.ppc.altivec.vminsb";
181 }
182 } else if (type.width == 16) {
183 if (!type.sign) {
184 intrinsic = "llvm.ppc.altivec.vminuh";
185 } else {
186 intrinsic = "llvm.ppc.altivec.vminsh";
187 }
188 } else if (type.width == 32) {
189 if (!type.sign) {
190 intrinsic = "llvm.ppc.altivec.vminuw";
191 } else {
192 intrinsic = "llvm.ppc.altivec.vminsw";
193 }
194 }
195 }
196
197 if (intrinsic) {
198 /* We need to handle nan's for floating point numbers. If one of the
199 * inputs is nan the other should be returned (required by both D3D10+
200 * and OpenCL).
201 * The sse intrinsics return the second operator in case of nan by
202 * default so we need to special code to handle those.
203 */
204 if (util_cpu_caps.has_sse && type.floating &&
205 nan_behavior != GALLIVM_NAN_BEHAVIOR_UNDEFINED &&
206 nan_behavior != GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN &&
207 nan_behavior != GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
208 LLVMValueRef isnan, min;
209 min = lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
210 type,
211 intr_size, a, b);
212 if (nan_behavior == GALLIVM_NAN_RETURN_OTHER) {
213 isnan = lp_build_isnan(bld, b);
214 return lp_build_select(bld, isnan, a, min);
215 } else {
216 assert(nan_behavior == GALLIVM_NAN_RETURN_NAN);
217 isnan = lp_build_isnan(bld, a);
218 return lp_build_select(bld, isnan, a, min);
219 }
220 } else {
221 return lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
222 type,
223 intr_size, a, b);
224 }
225 }
226
227 if (type.floating) {
228 switch (nan_behavior) {
229 case GALLIVM_NAN_RETURN_NAN: {
230 LLVMValueRef isnan = lp_build_isnan(bld, b);
231 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
232 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
233 return lp_build_select(bld, cond, a, b);
234 }
235 break;
236 case GALLIVM_NAN_RETURN_OTHER: {
237 LLVMValueRef isnan = lp_build_isnan(bld, a);
238 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
239 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
240 return lp_build_select(bld, cond, a, b);
241 }
242 break;
243 case GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN:
244 cond = lp_build_cmp_ordered(bld, PIPE_FUNC_LESS, a, b);
245 return lp_build_select(bld, cond, a, b);
246 case GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN:
247 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, b, a);
248 return lp_build_select(bld, cond, b, a);
249 case GALLIVM_NAN_BEHAVIOR_UNDEFINED:
250 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
251 return lp_build_select(bld, cond, a, b);
252 break;
253 default:
254 assert(0);
255 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
256 return lp_build_select(bld, cond, a, b);
257 }
258 } else {
259 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
260 return lp_build_select(bld, cond, a, b);
261 }
262 }
263
264
265 /**
266 * Generate max(a, b)
267 * No checks for special case values of a or b = 1 or 0 are done.
268 * NaN's are handled according to the behavior specified by the
269 * nan_behavior argument.
270 */
271 static LLVMValueRef
272 lp_build_max_simple(struct lp_build_context *bld,
273 LLVMValueRef a,
274 LLVMValueRef b,
275 enum gallivm_nan_behavior nan_behavior)
276 {
277 const struct lp_type type = bld->type;
278 const char *intrinsic = NULL;
279 unsigned intr_size = 0;
280 LLVMValueRef cond;
281
282 assert(lp_check_value(type, a));
283 assert(lp_check_value(type, b));
284
285 /* TODO: optimize the constant case */
286
287 if (type.floating && util_cpu_caps.has_sse) {
288 if (type.width == 32) {
289 if (type.length == 1) {
290 intrinsic = "llvm.x86.sse.max.ss";
291 intr_size = 128;
292 }
293 else if (type.length <= 4 || !util_cpu_caps.has_avx) {
294 intrinsic = "llvm.x86.sse.max.ps";
295 intr_size = 128;
296 }
297 else {
298 intrinsic = "llvm.x86.avx.max.ps.256";
299 intr_size = 256;
300 }
301 }
302 if (type.width == 64 && util_cpu_caps.has_sse2) {
303 if (type.length == 1) {
304 intrinsic = "llvm.x86.sse2.max.sd";
305 intr_size = 128;
306 }
307 else if (type.length == 2 || !util_cpu_caps.has_avx) {
308 intrinsic = "llvm.x86.sse2.max.pd";
309 intr_size = 128;
310 }
311 else {
312 intrinsic = "llvm.x86.avx.max.pd.256";
313 intr_size = 256;
314 }
315 }
316 }
317 else if (type.floating && util_cpu_caps.has_altivec) {
318 if (nan_behavior == GALLIVM_NAN_RETURN_NAN ||
319 nan_behavior == GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
320 debug_printf("%s: altivec doesn't support nan return nan behavior\n",
321 __FUNCTION__);
322 }
323 if (type.width == 32 || type.length == 4) {
324 intrinsic = "llvm.ppc.altivec.vmaxfp";
325 intr_size = 128;
326 }
327 } else if (util_cpu_caps.has_sse2 && type.length >= 2) {
328 intr_size = 128;
329 if ((type.width == 8 || type.width == 16) &&
330 (type.width * type.length <= 64) &&
331 (gallivm_debug & GALLIVM_DEBUG_PERF)) {
332 debug_printf("%s: inefficient code, bogus shuffle due to packing\n",
333 __FUNCTION__);
334 }
335 if (type.width == 8 && !type.sign) {
336 intrinsic = "llvm.x86.sse2.pmaxu.b";
337 intr_size = 128;
338 }
339 else if (type.width == 16 && type.sign) {
340 intrinsic = "llvm.x86.sse2.pmaxs.w";
341 }
342 if (util_cpu_caps.has_sse4_1) {
343 if (type.width == 8 && type.sign) {
344 intrinsic = "llvm.x86.sse41.pmaxsb";
345 }
346 if (type.width == 16 && !type.sign) {
347 intrinsic = "llvm.x86.sse41.pmaxuw";
348 }
349 if (type.width == 32 && !type.sign) {
350 intrinsic = "llvm.x86.sse41.pmaxud";
351 }
352 if (type.width == 32 && type.sign) {
353 intrinsic = "llvm.x86.sse41.pmaxsd";
354 }
355 }
356 } else if (util_cpu_caps.has_altivec) {
357 intr_size = 128;
358 if (type.width == 8) {
359 if (!type.sign) {
360 intrinsic = "llvm.ppc.altivec.vmaxub";
361 } else {
362 intrinsic = "llvm.ppc.altivec.vmaxsb";
363 }
364 } else if (type.width == 16) {
365 if (!type.sign) {
366 intrinsic = "llvm.ppc.altivec.vmaxuh";
367 } else {
368 intrinsic = "llvm.ppc.altivec.vmaxsh";
369 }
370 } else if (type.width == 32) {
371 if (!type.sign) {
372 intrinsic = "llvm.ppc.altivec.vmaxuw";
373 } else {
374 intrinsic = "llvm.ppc.altivec.vmaxsw";
375 }
376 }
377 }
378
379 if (intrinsic) {
380 if (util_cpu_caps.has_sse && type.floating &&
381 nan_behavior != GALLIVM_NAN_BEHAVIOR_UNDEFINED &&
382 nan_behavior != GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN &&
383 nan_behavior != GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
384 LLVMValueRef isnan, max;
385 max = lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
386 type,
387 intr_size, a, b);
388 if (nan_behavior == GALLIVM_NAN_RETURN_OTHER) {
389 isnan = lp_build_isnan(bld, b);
390 return lp_build_select(bld, isnan, a, max);
391 } else {
392 assert(nan_behavior == GALLIVM_NAN_RETURN_NAN);
393 isnan = lp_build_isnan(bld, a);
394 return lp_build_select(bld, isnan, a, max);
395 }
396 } else {
397 return lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
398 type,
399 intr_size, a, b);
400 }
401 }
402
403 if (type.floating) {
404 switch (nan_behavior) {
405 case GALLIVM_NAN_RETURN_NAN: {
406 LLVMValueRef isnan = lp_build_isnan(bld, b);
407 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
408 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
409 return lp_build_select(bld, cond, a, b);
410 }
411 break;
412 case GALLIVM_NAN_RETURN_OTHER: {
413 LLVMValueRef isnan = lp_build_isnan(bld, a);
414 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
415 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
416 return lp_build_select(bld, cond, a, b);
417 }
418 break;
419 case GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN:
420 cond = lp_build_cmp_ordered(bld, PIPE_FUNC_GREATER, a, b);
421 return lp_build_select(bld, cond, a, b);
422 case GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN:
423 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, b, a);
424 return lp_build_select(bld, cond, b, a);
425 case GALLIVM_NAN_BEHAVIOR_UNDEFINED:
426 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
427 return lp_build_select(bld, cond, a, b);
428 break;
429 default:
430 assert(0);
431 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
432 return lp_build_select(bld, cond, a, b);
433 }
434 } else {
435 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
436 return lp_build_select(bld, cond, a, b);
437 }
438 }
439
440
441 /**
442 * Generate 1 - a, or ~a depending on bld->type.
443 */
444 LLVMValueRef
445 lp_build_comp(struct lp_build_context *bld,
446 LLVMValueRef a)
447 {
448 LLVMBuilderRef builder = bld->gallivm->builder;
449 const struct lp_type type = bld->type;
450
451 assert(lp_check_value(type, a));
452
453 if(a == bld->one)
454 return bld->zero;
455 if(a == bld->zero)
456 return bld->one;
457
458 if(type.norm && !type.floating && !type.fixed && !type.sign) {
459 if(LLVMIsConstant(a))
460 return LLVMConstNot(a);
461 else
462 return LLVMBuildNot(builder, a, "");
463 }
464
465 if(LLVMIsConstant(a))
466 if (type.floating)
467 return LLVMConstFSub(bld->one, a);
468 else
469 return LLVMConstSub(bld->one, a);
470 else
471 if (type.floating)
472 return LLVMBuildFSub(builder, bld->one, a, "");
473 else
474 return LLVMBuildSub(builder, bld->one, a, "");
475 }
476
477
478 /**
479 * Generate a + b
480 */
481 LLVMValueRef
482 lp_build_add(struct lp_build_context *bld,
483 LLVMValueRef a,
484 LLVMValueRef b)
485 {
486 LLVMBuilderRef builder = bld->gallivm->builder;
487 const struct lp_type type = bld->type;
488 LLVMValueRef res;
489
490 assert(lp_check_value(type, a));
491 assert(lp_check_value(type, b));
492
493 if(a == bld->zero)
494 return b;
495 if(b == bld->zero)
496 return a;
497 if(a == bld->undef || b == bld->undef)
498 return bld->undef;
499
500 if(bld->type.norm) {
501 const char *intrinsic = NULL;
502
503 if(a == bld->one || b == bld->one)
504 return bld->one;
505
506 if (type.width * type.length == 128 &&
507 !type.floating && !type.fixed) {
508 if(util_cpu_caps.has_sse2) {
509 if(type.width == 8)
510 intrinsic = type.sign ? "llvm.x86.sse2.padds.b" : "llvm.x86.sse2.paddus.b";
511 if(type.width == 16)
512 intrinsic = type.sign ? "llvm.x86.sse2.padds.w" : "llvm.x86.sse2.paddus.w";
513 } else if (util_cpu_caps.has_altivec) {
514 if(type.width == 8)
515 intrinsic = type.sign ? "llvm.ppc.altivec.vaddsbs" : "llvm.ppc.altivec.vaddubs";
516 if(type.width == 16)
517 intrinsic = type.sign ? "llvm.ppc.altivec.vaddshs" : "llvm.ppc.altivec.vadduhs";
518 }
519 }
520
521 if (intrinsic)
522 return lp_build_intrinsic_binary(builder, intrinsic, lp_build_vec_type(bld->gallivm, bld->type), a, b);
523 }
524
525 if(type.norm && !type.floating && !type.fixed) {
526 if (type.sign) {
527 uint64_t sign = (uint64_t)1 << (type.width - 1);
528 LLVMValueRef max_val = lp_build_const_int_vec(bld->gallivm, type, sign - 1);
529 LLVMValueRef min_val = lp_build_const_int_vec(bld->gallivm, type, sign);
530 /* a_clamp_max is the maximum a for positive b,
531 a_clamp_min is the minimum a for negative b. */
532 LLVMValueRef a_clamp_max = lp_build_min_simple(bld, a, LLVMBuildSub(builder, max_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
533 LLVMValueRef a_clamp_min = lp_build_max_simple(bld, a, LLVMBuildSub(builder, min_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
534 a = lp_build_select(bld, lp_build_cmp(bld, PIPE_FUNC_GREATER, b, bld->zero), a_clamp_max, a_clamp_min);
535 } else {
536 a = lp_build_min_simple(bld, a, lp_build_comp(bld, b), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
537 }
538 }
539
540 if(LLVMIsConstant(a) && LLVMIsConstant(b))
541 if (type.floating)
542 res = LLVMConstFAdd(a, b);
543 else
544 res = LLVMConstAdd(a, b);
545 else
546 if (type.floating)
547 res = LLVMBuildFAdd(builder, a, b, "");
548 else
549 res = LLVMBuildAdd(builder, a, b, "");
550
551 /* clamp to ceiling of 1.0 */
552 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
553 res = lp_build_min_simple(bld, res, bld->one, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
554
555 /* XXX clamp to floor of -1 or 0??? */
556
557 return res;
558 }
559
560
561 /** Return the scalar sum of the elements of a.
562 * Should avoid this operation whenever possible.
563 */
564 LLVMValueRef
565 lp_build_horizontal_add(struct lp_build_context *bld,
566 LLVMValueRef a)
567 {
568 LLVMBuilderRef builder = bld->gallivm->builder;
569 const struct lp_type type = bld->type;
570 LLVMValueRef index, res;
571 unsigned i, length;
572 LLVMValueRef shuffles1[LP_MAX_VECTOR_LENGTH / 2];
573 LLVMValueRef shuffles2[LP_MAX_VECTOR_LENGTH / 2];
574 LLVMValueRef vecres, elem2;
575
576 assert(lp_check_value(type, a));
577
578 if (type.length == 1) {
579 return a;
580 }
581
582 assert(!bld->type.norm);
583
584 /*
585 * for byte vectors can do much better with psadbw.
586 * Using repeated shuffle/adds here. Note with multiple vectors
587 * this can be done more efficiently as outlined in the intel
588 * optimization manual.
589 * Note: could cause data rearrangement if used with smaller element
590 * sizes.
591 */
592
593 vecres = a;
594 length = type.length / 2;
595 while (length > 1) {
596 LLVMValueRef vec1, vec2;
597 for (i = 0; i < length; i++) {
598 shuffles1[i] = lp_build_const_int32(bld->gallivm, i);
599 shuffles2[i] = lp_build_const_int32(bld->gallivm, i + length);
600 }
601 vec1 = LLVMBuildShuffleVector(builder, vecres, vecres,
602 LLVMConstVector(shuffles1, length), "");
603 vec2 = LLVMBuildShuffleVector(builder, vecres, vecres,
604 LLVMConstVector(shuffles2, length), "");
605 if (type.floating) {
606 vecres = LLVMBuildFAdd(builder, vec1, vec2, "");
607 }
608 else {
609 vecres = LLVMBuildAdd(builder, vec1, vec2, "");
610 }
611 length = length >> 1;
612 }
613
614 /* always have vector of size 2 here */
615 assert(length == 1);
616
617 index = lp_build_const_int32(bld->gallivm, 0);
618 res = LLVMBuildExtractElement(builder, vecres, index, "");
619 index = lp_build_const_int32(bld->gallivm, 1);
620 elem2 = LLVMBuildExtractElement(builder, vecres, index, "");
621
622 if (type.floating)
623 res = LLVMBuildFAdd(builder, res, elem2, "");
624 else
625 res = LLVMBuildAdd(builder, res, elem2, "");
626
627 return res;
628 }
629
630 /**
631 * Return the horizontal sums of 4 float vectors as a float4 vector.
632 * This uses the technique as outlined in Intel Optimization Manual.
633 */
634 static LLVMValueRef
635 lp_build_horizontal_add4x4f(struct lp_build_context *bld,
636 LLVMValueRef src[4])
637 {
638 struct gallivm_state *gallivm = bld->gallivm;
639 LLVMBuilderRef builder = gallivm->builder;
640 LLVMValueRef shuffles[4];
641 LLVMValueRef tmp[4];
642 LLVMValueRef sumtmp[2], shuftmp[2];
643
644 /* lower half of regs */
645 shuffles[0] = lp_build_const_int32(gallivm, 0);
646 shuffles[1] = lp_build_const_int32(gallivm, 1);
647 shuffles[2] = lp_build_const_int32(gallivm, 4);
648 shuffles[3] = lp_build_const_int32(gallivm, 5);
649 tmp[0] = LLVMBuildShuffleVector(builder, src[0], src[1],
650 LLVMConstVector(shuffles, 4), "");
651 tmp[2] = LLVMBuildShuffleVector(builder, src[2], src[3],
652 LLVMConstVector(shuffles, 4), "");
653
654 /* upper half of regs */
655 shuffles[0] = lp_build_const_int32(gallivm, 2);
656 shuffles[1] = lp_build_const_int32(gallivm, 3);
657 shuffles[2] = lp_build_const_int32(gallivm, 6);
658 shuffles[3] = lp_build_const_int32(gallivm, 7);
659 tmp[1] = LLVMBuildShuffleVector(builder, src[0], src[1],
660 LLVMConstVector(shuffles, 4), "");
661 tmp[3] = LLVMBuildShuffleVector(builder, src[2], src[3],
662 LLVMConstVector(shuffles, 4), "");
663
664 sumtmp[0] = LLVMBuildFAdd(builder, tmp[0], tmp[1], "");
665 sumtmp[1] = LLVMBuildFAdd(builder, tmp[2], tmp[3], "");
666
667 shuffles[0] = lp_build_const_int32(gallivm, 0);
668 shuffles[1] = lp_build_const_int32(gallivm, 2);
669 shuffles[2] = lp_build_const_int32(gallivm, 4);
670 shuffles[3] = lp_build_const_int32(gallivm, 6);
671 shuftmp[0] = LLVMBuildShuffleVector(builder, sumtmp[0], sumtmp[1],
672 LLVMConstVector(shuffles, 4), "");
673
674 shuffles[0] = lp_build_const_int32(gallivm, 1);
675 shuffles[1] = lp_build_const_int32(gallivm, 3);
676 shuffles[2] = lp_build_const_int32(gallivm, 5);
677 shuffles[3] = lp_build_const_int32(gallivm, 7);
678 shuftmp[1] = LLVMBuildShuffleVector(builder, sumtmp[0], sumtmp[1],
679 LLVMConstVector(shuffles, 4), "");
680
681 return LLVMBuildFAdd(builder, shuftmp[0], shuftmp[1], "");
682 }
683
684
685 /*
686 * partially horizontally add 2-4 float vectors with length nx4,
687 * i.e. only four adjacent values in each vector will be added,
688 * assuming values are really grouped in 4 which also determines
689 * output order.
690 *
691 * Return a vector of the same length as the initial vectors,
692 * with the excess elements (if any) being undefined.
693 * The element order is independent of number of input vectors.
694 * For 3 vectors x0x1x2x3x4x5x6x7, y0y1y2y3y4y5y6y7, z0z1z2z3z4z5z6z7
695 * the output order thus will be
696 * sumx0-x3,sumy0-y3,sumz0-z3,undef,sumx4-x7,sumy4-y7,sumz4z7,undef
697 */
698 LLVMValueRef
699 lp_build_hadd_partial4(struct lp_build_context *bld,
700 LLVMValueRef vectors[],
701 unsigned num_vecs)
702 {
703 struct gallivm_state *gallivm = bld->gallivm;
704 LLVMBuilderRef builder = gallivm->builder;
705 LLVMValueRef ret_vec;
706 LLVMValueRef tmp[4];
707 const char *intrinsic = NULL;
708
709 assert(num_vecs >= 2 && num_vecs <= 4);
710 assert(bld->type.floating);
711
712 /* only use this with at least 2 vectors, as it is sort of expensive
713 * (depending on cpu) and we always need two horizontal adds anyway,
714 * so a shuffle/add approach might be better.
715 */
716
717 tmp[0] = vectors[0];
718 tmp[1] = vectors[1];
719
720 tmp[2] = num_vecs > 2 ? vectors[2] : vectors[0];
721 tmp[3] = num_vecs > 3 ? vectors[3] : vectors[0];
722
723 if (util_cpu_caps.has_sse3 && bld->type.width == 32 &&
724 bld->type.length == 4) {
725 intrinsic = "llvm.x86.sse3.hadd.ps";
726 }
727 else if (util_cpu_caps.has_avx && bld->type.width == 32 &&
728 bld->type.length == 8) {
729 intrinsic = "llvm.x86.avx.hadd.ps.256";
730 }
731 if (intrinsic) {
732 tmp[0] = lp_build_intrinsic_binary(builder, intrinsic,
733 lp_build_vec_type(gallivm, bld->type),
734 tmp[0], tmp[1]);
735 if (num_vecs > 2) {
736 tmp[1] = lp_build_intrinsic_binary(builder, intrinsic,
737 lp_build_vec_type(gallivm, bld->type),
738 tmp[2], tmp[3]);
739 }
740 else {
741 tmp[1] = tmp[0];
742 }
743 return lp_build_intrinsic_binary(builder, intrinsic,
744 lp_build_vec_type(gallivm, bld->type),
745 tmp[0], tmp[1]);
746 }
747
748 if (bld->type.length == 4) {
749 ret_vec = lp_build_horizontal_add4x4f(bld, tmp);
750 }
751 else {
752 LLVMValueRef partres[LP_MAX_VECTOR_LENGTH/4];
753 unsigned j;
754 unsigned num_iter = bld->type.length / 4;
755 struct lp_type parttype = bld->type;
756 parttype.length = 4;
757 for (j = 0; j < num_iter; j++) {
758 LLVMValueRef partsrc[4];
759 unsigned i;
760 for (i = 0; i < 4; i++) {
761 partsrc[i] = lp_build_extract_range(gallivm, tmp[i], j*4, 4);
762 }
763 partres[j] = lp_build_horizontal_add4x4f(bld, partsrc);
764 }
765 ret_vec = lp_build_concat(gallivm, partres, parttype, num_iter);
766 }
767 return ret_vec;
768 }
769
770 /**
771 * Generate a - b
772 */
773 LLVMValueRef
774 lp_build_sub(struct lp_build_context *bld,
775 LLVMValueRef a,
776 LLVMValueRef b)
777 {
778 LLVMBuilderRef builder = bld->gallivm->builder;
779 const struct lp_type type = bld->type;
780 LLVMValueRef res;
781
782 assert(lp_check_value(type, a));
783 assert(lp_check_value(type, b));
784
785 if(b == bld->zero)
786 return a;
787 if(a == bld->undef || b == bld->undef)
788 return bld->undef;
789 if(a == b)
790 return bld->zero;
791
792 if(bld->type.norm) {
793 const char *intrinsic = NULL;
794
795 if(b == bld->one)
796 return bld->zero;
797
798 if (type.width * type.length == 128 &&
799 !type.floating && !type.fixed) {
800 if (util_cpu_caps.has_sse2) {
801 if(type.width == 8)
802 intrinsic = type.sign ? "llvm.x86.sse2.psubs.b" : "llvm.x86.sse2.psubus.b";
803 if(type.width == 16)
804 intrinsic = type.sign ? "llvm.x86.sse2.psubs.w" : "llvm.x86.sse2.psubus.w";
805 } else if (util_cpu_caps.has_altivec) {
806 if(type.width == 8)
807 intrinsic = type.sign ? "llvm.ppc.altivec.vsubsbs" : "llvm.ppc.altivec.vsububs";
808 if(type.width == 16)
809 intrinsic = type.sign ? "llvm.ppc.altivec.vsubshs" : "llvm.ppc.altivec.vsubuhs";
810 }
811 }
812
813 if (intrinsic)
814 return lp_build_intrinsic_binary(builder, intrinsic, lp_build_vec_type(bld->gallivm, bld->type), a, b);
815 }
816
817 if(type.norm && !type.floating && !type.fixed) {
818 if (type.sign) {
819 uint64_t sign = (uint64_t)1 << (type.width - 1);
820 LLVMValueRef max_val = lp_build_const_int_vec(bld->gallivm, type, sign - 1);
821 LLVMValueRef min_val = lp_build_const_int_vec(bld->gallivm, type, sign);
822 /* a_clamp_max is the maximum a for negative b,
823 a_clamp_min is the minimum a for positive b. */
824 LLVMValueRef a_clamp_max = lp_build_min_simple(bld, a, LLVMBuildAdd(builder, max_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
825 LLVMValueRef a_clamp_min = lp_build_max_simple(bld, a, LLVMBuildAdd(builder, min_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
826 a = lp_build_select(bld, lp_build_cmp(bld, PIPE_FUNC_GREATER, b, bld->zero), a_clamp_min, a_clamp_max);
827 } else {
828 a = lp_build_max_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
829 }
830 }
831
832 if(LLVMIsConstant(a) && LLVMIsConstant(b))
833 if (type.floating)
834 res = LLVMConstFSub(a, b);
835 else
836 res = LLVMConstSub(a, b);
837 else
838 if (type.floating)
839 res = LLVMBuildFSub(builder, a, b, "");
840 else
841 res = LLVMBuildSub(builder, a, b, "");
842
843 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
844 res = lp_build_max_simple(bld, res, bld->zero, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
845
846 return res;
847 }
848
849
850
851 /**
852 * Normalized multiplication.
853 *
854 * There are several approaches for (using 8-bit normalized multiplication as
855 * an example):
856 *
857 * - alpha plus one
858 *
859 * makes the following approximation to the division (Sree)
860 *
861 * a*b/255 ~= (a*(b + 1)) >> 256
862 *
863 * which is the fastest method that satisfies the following OpenGL criteria of
864 *
865 * 0*0 = 0 and 255*255 = 255
866 *
867 * - geometric series
868 *
869 * takes the geometric series approximation to the division
870 *
871 * t/255 = (t >> 8) + (t >> 16) + (t >> 24) ..
872 *
873 * in this case just the first two terms to fit in 16bit arithmetic
874 *
875 * t/255 ~= (t + (t >> 8)) >> 8
876 *
877 * note that just by itself it doesn't satisfies the OpenGL criteria, as
878 * 255*255 = 254, so the special case b = 255 must be accounted or roundoff
879 * must be used.
880 *
881 * - geometric series plus rounding
882 *
883 * when using a geometric series division instead of truncating the result
884 * use roundoff in the approximation (Jim Blinn)
885 *
886 * t/255 ~= (t + (t >> 8) + 0x80) >> 8
887 *
888 * achieving the exact results.
889 *
890 *
891 *
892 * @sa Alvy Ray Smith, Image Compositing Fundamentals, Tech Memo 4, Aug 15, 1995,
893 * ftp://ftp.alvyray.com/Acrobat/4_Comp.pdf
894 * @sa Michael Herf, The "double blend trick", May 2000,
895 * http://www.stereopsis.com/doubleblend.html
896 */
897 static LLVMValueRef
898 lp_build_mul_norm(struct gallivm_state *gallivm,
899 struct lp_type wide_type,
900 LLVMValueRef a, LLVMValueRef b)
901 {
902 LLVMBuilderRef builder = gallivm->builder;
903 struct lp_build_context bld;
904 unsigned n;
905 LLVMValueRef half;
906 LLVMValueRef ab;
907
908 assert(!wide_type.floating);
909 assert(lp_check_value(wide_type, a));
910 assert(lp_check_value(wide_type, b));
911
912 lp_build_context_init(&bld, gallivm, wide_type);
913
914 n = wide_type.width / 2;
915 if (wide_type.sign) {
916 --n;
917 }
918
919 /*
920 * TODO: for 16bits normalized SSE2 vectors we could consider using PMULHUW
921 * http://ssp.impulsetrain.com/2011/07/03/multiplying-normalized-16-bit-numbers-with-sse2/
922 */
923
924 /*
925 * a*b / (2**n - 1) ~= (a*b + (a*b >> n) + half) >> n
926 */
927
928 ab = LLVMBuildMul(builder, a, b, "");
929 ab = LLVMBuildAdd(builder, ab, lp_build_shr_imm(&bld, ab, n), "");
930
931 /*
932 * half = sgn(ab) * 0.5 * (2 ** n) = sgn(ab) * (1 << (n - 1))
933 */
934
935 half = lp_build_const_int_vec(gallivm, wide_type, 1LL << (n - 1));
936 if (wide_type.sign) {
937 LLVMValueRef minus_half = LLVMBuildNeg(builder, half, "");
938 LLVMValueRef sign = lp_build_shr_imm(&bld, ab, wide_type.width - 1);
939 half = lp_build_select(&bld, sign, minus_half, half);
940 }
941 ab = LLVMBuildAdd(builder, ab, half, "");
942
943 /* Final division */
944 ab = lp_build_shr_imm(&bld, ab, n);
945
946 return ab;
947 }
948
949 /**
950 * Generate a * b
951 */
952 LLVMValueRef
953 lp_build_mul(struct lp_build_context *bld,
954 LLVMValueRef a,
955 LLVMValueRef b)
956 {
957 LLVMBuilderRef builder = bld->gallivm->builder;
958 const struct lp_type type = bld->type;
959 LLVMValueRef shift;
960 LLVMValueRef res;
961
962 assert(lp_check_value(type, a));
963 assert(lp_check_value(type, b));
964
965 if(a == bld->zero)
966 return bld->zero;
967 if(a == bld->one)
968 return b;
969 if(b == bld->zero)
970 return bld->zero;
971 if(b == bld->one)
972 return a;
973 if(a == bld->undef || b == bld->undef)
974 return bld->undef;
975
976 if (!type.floating && !type.fixed && type.norm) {
977 struct lp_type wide_type = lp_wider_type(type);
978 LLVMValueRef al, ah, bl, bh, abl, abh, ab;
979
980 lp_build_unpack2(bld->gallivm, type, wide_type, a, &al, &ah);
981 lp_build_unpack2(bld->gallivm, type, wide_type, b, &bl, &bh);
982
983 /* PMULLW, PSRLW, PADDW */
984 abl = lp_build_mul_norm(bld->gallivm, wide_type, al, bl);
985 abh = lp_build_mul_norm(bld->gallivm, wide_type, ah, bh);
986
987 ab = lp_build_pack2(bld->gallivm, wide_type, type, abl, abh);
988
989 return ab;
990 }
991
992 if(type.fixed)
993 shift = lp_build_const_int_vec(bld->gallivm, type, type.width/2);
994 else
995 shift = NULL;
996
997 if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
998 if (type.floating)
999 res = LLVMConstFMul(a, b);
1000 else
1001 res = LLVMConstMul(a, b);
1002 if(shift) {
1003 if(type.sign)
1004 res = LLVMConstAShr(res, shift);
1005 else
1006 res = LLVMConstLShr(res, shift);
1007 }
1008 }
1009 else {
1010 if (type.floating)
1011 res = LLVMBuildFMul(builder, a, b, "");
1012 else
1013 res = LLVMBuildMul(builder, a, b, "");
1014 if(shift) {
1015 if(type.sign)
1016 res = LLVMBuildAShr(builder, res, shift, "");
1017 else
1018 res = LLVMBuildLShr(builder, res, shift, "");
1019 }
1020 }
1021
1022 return res;
1023 }
1024
1025
1026 /**
1027 * Small vector x scale multiplication optimization.
1028 */
1029 LLVMValueRef
1030 lp_build_mul_imm(struct lp_build_context *bld,
1031 LLVMValueRef a,
1032 int b)
1033 {
1034 LLVMBuilderRef builder = bld->gallivm->builder;
1035 LLVMValueRef factor;
1036
1037 assert(lp_check_value(bld->type, a));
1038
1039 if(b == 0)
1040 return bld->zero;
1041
1042 if(b == 1)
1043 return a;
1044
1045 if(b == -1)
1046 return lp_build_negate(bld, a);
1047
1048 if(b == 2 && bld->type.floating)
1049 return lp_build_add(bld, a, a);
1050
1051 if(util_is_power_of_two(b)) {
1052 unsigned shift = ffs(b) - 1;
1053
1054 if(bld->type.floating) {
1055 #if 0
1056 /*
1057 * Power of two multiplication by directly manipulating the exponent.
1058 *
1059 * XXX: This might not be always faster, it will introduce a small error
1060 * for multiplication by zero, and it will produce wrong results
1061 * for Inf and NaN.
1062 */
1063 unsigned mantissa = lp_mantissa(bld->type);
1064 factor = lp_build_const_int_vec(bld->gallivm, bld->type, (unsigned long long)shift << mantissa);
1065 a = LLVMBuildBitCast(builder, a, lp_build_int_vec_type(bld->type), "");
1066 a = LLVMBuildAdd(builder, a, factor, "");
1067 a = LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, bld->type), "");
1068 return a;
1069 #endif
1070 }
1071 else {
1072 factor = lp_build_const_vec(bld->gallivm, bld->type, shift);
1073 return LLVMBuildShl(builder, a, factor, "");
1074 }
1075 }
1076
1077 factor = lp_build_const_vec(bld->gallivm, bld->type, (double)b);
1078 return lp_build_mul(bld, a, factor);
1079 }
1080
1081
1082 /**
1083 * Generate a / b
1084 */
1085 LLVMValueRef
1086 lp_build_div(struct lp_build_context *bld,
1087 LLVMValueRef a,
1088 LLVMValueRef b)
1089 {
1090 LLVMBuilderRef builder = bld->gallivm->builder;
1091 const struct lp_type type = bld->type;
1092
1093 assert(lp_check_value(type, a));
1094 assert(lp_check_value(type, b));
1095
1096 if(a == bld->zero)
1097 return bld->zero;
1098 if(a == bld->one && type.floating)
1099 return lp_build_rcp(bld, b);
1100 if(b == bld->zero)
1101 return bld->undef;
1102 if(b == bld->one)
1103 return a;
1104 if(a == bld->undef || b == bld->undef)
1105 return bld->undef;
1106
1107 if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
1108 if (type.floating)
1109 return LLVMConstFDiv(a, b);
1110 else if (type.sign)
1111 return LLVMConstSDiv(a, b);
1112 else
1113 return LLVMConstUDiv(a, b);
1114 }
1115
1116 if(((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
1117 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) &&
1118 type.floating)
1119 return lp_build_mul(bld, a, lp_build_rcp(bld, b));
1120
1121 if (type.floating)
1122 return LLVMBuildFDiv(builder, a, b, "");
1123 else if (type.sign)
1124 return LLVMBuildSDiv(builder, a, b, "");
1125 else
1126 return LLVMBuildUDiv(builder, a, b, "");
1127 }
1128
1129
1130 /**
1131 * Linear interpolation helper.
1132 *
1133 * @param normalized whether we are interpolating normalized values,
1134 * encoded in normalized integers, twice as wide.
1135 *
1136 * @sa http://www.stereopsis.com/doubleblend.html
1137 */
1138 static inline LLVMValueRef
1139 lp_build_lerp_simple(struct lp_build_context *bld,
1140 LLVMValueRef x,
1141 LLVMValueRef v0,
1142 LLVMValueRef v1,
1143 unsigned flags)
1144 {
1145 unsigned half_width = bld->type.width/2;
1146 LLVMBuilderRef builder = bld->gallivm->builder;
1147 LLVMValueRef delta;
1148 LLVMValueRef res;
1149
1150 assert(lp_check_value(bld->type, x));
1151 assert(lp_check_value(bld->type, v0));
1152 assert(lp_check_value(bld->type, v1));
1153
1154 delta = lp_build_sub(bld, v1, v0);
1155
1156 if (flags & LP_BLD_LERP_WIDE_NORMALIZED) {
1157 if (!bld->type.sign) {
1158 if (!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS)) {
1159 /*
1160 * Scale x from [0, 2**n - 1] to [0, 2**n] by adding the
1161 * most-significant-bit to the lowest-significant-bit, so that
1162 * later we can just divide by 2**n instead of 2**n - 1.
1163 */
1164
1165 x = lp_build_add(bld, x, lp_build_shr_imm(bld, x, half_width - 1));
1166 }
1167
1168 /* (x * delta) >> n */
1169 res = lp_build_mul(bld, x, delta);
1170 res = lp_build_shr_imm(bld, res, half_width);
1171 } else {
1172 /*
1173 * The rescaling trick above doesn't work for signed numbers, so
1174 * use the 2**n - 1 divison approximation in lp_build_mul_norm
1175 * instead.
1176 */
1177 assert(!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS));
1178 res = lp_build_mul_norm(bld->gallivm, bld->type, x, delta);
1179 }
1180 } else {
1181 assert(!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS));
1182 res = lp_build_mul(bld, x, delta);
1183 }
1184
1185 res = lp_build_add(bld, v0, res);
1186
1187 if (((flags & LP_BLD_LERP_WIDE_NORMALIZED) && !bld->type.sign) ||
1188 bld->type.fixed) {
1189 /* We need to mask out the high order bits when lerping 8bit normalized colors stored on 16bits */
1190 /* XXX: This step is necessary for lerping 8bit colors stored on 16bits,
1191 * but it will be wrong for true fixed point use cases. Basically we need
1192 * a more powerful lp_type, capable of further distinguishing the values
1193 * interpretation from the value storage. */
1194 res = LLVMBuildAnd(builder, res, lp_build_const_int_vec(bld->gallivm, bld->type, (1 << half_width) - 1), "");
1195 }
1196
1197 return res;
1198 }
1199
1200
1201 /**
1202 * Linear interpolation.
1203 */
1204 LLVMValueRef
1205 lp_build_lerp(struct lp_build_context *bld,
1206 LLVMValueRef x,
1207 LLVMValueRef v0,
1208 LLVMValueRef v1,
1209 unsigned flags)
1210 {
1211 const struct lp_type type = bld->type;
1212 LLVMValueRef res;
1213
1214 assert(lp_check_value(type, x));
1215 assert(lp_check_value(type, v0));
1216 assert(lp_check_value(type, v1));
1217
1218 assert(!(flags & LP_BLD_LERP_WIDE_NORMALIZED));
1219
1220 if (type.norm) {
1221 struct lp_type wide_type;
1222 struct lp_build_context wide_bld;
1223 LLVMValueRef xl, xh, v0l, v0h, v1l, v1h, resl, resh;
1224
1225 assert(type.length >= 2);
1226
1227 /*
1228 * Create a wider integer type, enough to hold the
1229 * intermediate result of the multiplication.
1230 */
1231 memset(&wide_type, 0, sizeof wide_type);
1232 wide_type.sign = type.sign;
1233 wide_type.width = type.width*2;
1234 wide_type.length = type.length/2;
1235
1236 lp_build_context_init(&wide_bld, bld->gallivm, wide_type);
1237
1238 lp_build_unpack2(bld->gallivm, type, wide_type, x, &xl, &xh);
1239 lp_build_unpack2(bld->gallivm, type, wide_type, v0, &v0l, &v0h);
1240 lp_build_unpack2(bld->gallivm, type, wide_type, v1, &v1l, &v1h);
1241
1242 /*
1243 * Lerp both halves.
1244 */
1245
1246 flags |= LP_BLD_LERP_WIDE_NORMALIZED;
1247
1248 resl = lp_build_lerp_simple(&wide_bld, xl, v0l, v1l, flags);
1249 resh = lp_build_lerp_simple(&wide_bld, xh, v0h, v1h, flags);
1250
1251 res = lp_build_pack2(bld->gallivm, wide_type, type, resl, resh);
1252 } else {
1253 res = lp_build_lerp_simple(bld, x, v0, v1, flags);
1254 }
1255
1256 return res;
1257 }
1258
1259
1260 /**
1261 * Bilinear interpolation.
1262 *
1263 * Values indices are in v_{yx}.
1264 */
1265 LLVMValueRef
1266 lp_build_lerp_2d(struct lp_build_context *bld,
1267 LLVMValueRef x,
1268 LLVMValueRef y,
1269 LLVMValueRef v00,
1270 LLVMValueRef v01,
1271 LLVMValueRef v10,
1272 LLVMValueRef v11,
1273 unsigned flags)
1274 {
1275 LLVMValueRef v0 = lp_build_lerp(bld, x, v00, v01, flags);
1276 LLVMValueRef v1 = lp_build_lerp(bld, x, v10, v11, flags);
1277 return lp_build_lerp(bld, y, v0, v1, flags);
1278 }
1279
1280
1281 LLVMValueRef
1282 lp_build_lerp_3d(struct lp_build_context *bld,
1283 LLVMValueRef x,
1284 LLVMValueRef y,
1285 LLVMValueRef z,
1286 LLVMValueRef v000,
1287 LLVMValueRef v001,
1288 LLVMValueRef v010,
1289 LLVMValueRef v011,
1290 LLVMValueRef v100,
1291 LLVMValueRef v101,
1292 LLVMValueRef v110,
1293 LLVMValueRef v111,
1294 unsigned flags)
1295 {
1296 LLVMValueRef v0 = lp_build_lerp_2d(bld, x, y, v000, v001, v010, v011, flags);
1297 LLVMValueRef v1 = lp_build_lerp_2d(bld, x, y, v100, v101, v110, v111, flags);
1298 return lp_build_lerp(bld, z, v0, v1, flags);
1299 }
1300
1301
1302 /**
1303 * Generate min(a, b)
1304 * Do checks for special cases but not for nans.
1305 */
1306 LLVMValueRef
1307 lp_build_min(struct lp_build_context *bld,
1308 LLVMValueRef a,
1309 LLVMValueRef b)
1310 {
1311 assert(lp_check_value(bld->type, a));
1312 assert(lp_check_value(bld->type, b));
1313
1314 if(a == bld->undef || b == bld->undef)
1315 return bld->undef;
1316
1317 if(a == b)
1318 return a;
1319
1320 if (bld->type.norm) {
1321 if (!bld->type.sign) {
1322 if (a == bld->zero || b == bld->zero) {
1323 return bld->zero;
1324 }
1325 }
1326 if(a == bld->one)
1327 return b;
1328 if(b == bld->one)
1329 return a;
1330 }
1331
1332 return lp_build_min_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
1333 }
1334
1335
1336 /**
1337 * Generate min(a, b)
1338 * NaN's are handled according to the behavior specified by the
1339 * nan_behavior argument.
1340 */
1341 LLVMValueRef
1342 lp_build_min_ext(struct lp_build_context *bld,
1343 LLVMValueRef a,
1344 LLVMValueRef b,
1345 enum gallivm_nan_behavior nan_behavior)
1346 {
1347 assert(lp_check_value(bld->type, a));
1348 assert(lp_check_value(bld->type, b));
1349
1350 if(a == bld->undef || b == bld->undef)
1351 return bld->undef;
1352
1353 if(a == b)
1354 return a;
1355
1356 if (bld->type.norm) {
1357 if (!bld->type.sign) {
1358 if (a == bld->zero || b == bld->zero) {
1359 return bld->zero;
1360 }
1361 }
1362 if(a == bld->one)
1363 return b;
1364 if(b == bld->one)
1365 return a;
1366 }
1367
1368 return lp_build_min_simple(bld, a, b, nan_behavior);
1369 }
1370
1371 /**
1372 * Generate max(a, b)
1373 * Do checks for special cases, but NaN behavior is undefined.
1374 */
1375 LLVMValueRef
1376 lp_build_max(struct lp_build_context *bld,
1377 LLVMValueRef a,
1378 LLVMValueRef b)
1379 {
1380 assert(lp_check_value(bld->type, a));
1381 assert(lp_check_value(bld->type, b));
1382
1383 if(a == bld->undef || b == bld->undef)
1384 return bld->undef;
1385
1386 if(a == b)
1387 return a;
1388
1389 if(bld->type.norm) {
1390 if(a == bld->one || b == bld->one)
1391 return bld->one;
1392 if (!bld->type.sign) {
1393 if (a == bld->zero) {
1394 return b;
1395 }
1396 if (b == bld->zero) {
1397 return a;
1398 }
1399 }
1400 }
1401
1402 return lp_build_max_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
1403 }
1404
1405
1406 /**
1407 * Generate max(a, b)
1408 * Checks for special cases.
1409 * NaN's are handled according to the behavior specified by the
1410 * nan_behavior argument.
1411 */
1412 LLVMValueRef
1413 lp_build_max_ext(struct lp_build_context *bld,
1414 LLVMValueRef a,
1415 LLVMValueRef b,
1416 enum gallivm_nan_behavior nan_behavior)
1417 {
1418 assert(lp_check_value(bld->type, a));
1419 assert(lp_check_value(bld->type, b));
1420
1421 if(a == bld->undef || b == bld->undef)
1422 return bld->undef;
1423
1424 if(a == b)
1425 return a;
1426
1427 if(bld->type.norm) {
1428 if(a == bld->one || b == bld->one)
1429 return bld->one;
1430 if (!bld->type.sign) {
1431 if (a == bld->zero) {
1432 return b;
1433 }
1434 if (b == bld->zero) {
1435 return a;
1436 }
1437 }
1438 }
1439
1440 return lp_build_max_simple(bld, a, b, nan_behavior);
1441 }
1442
1443 /**
1444 * Generate clamp(a, min, max)
1445 * NaN behavior (for any of a, min, max) is undefined.
1446 * Do checks for special cases.
1447 */
1448 LLVMValueRef
1449 lp_build_clamp(struct lp_build_context *bld,
1450 LLVMValueRef a,
1451 LLVMValueRef min,
1452 LLVMValueRef max)
1453 {
1454 assert(lp_check_value(bld->type, a));
1455 assert(lp_check_value(bld->type, min));
1456 assert(lp_check_value(bld->type, max));
1457
1458 a = lp_build_min(bld, a, max);
1459 a = lp_build_max(bld, a, min);
1460 return a;
1461 }
1462
1463
1464 /**
1465 * Generate clamp(a, 0, 1)
1466 * A NaN will get converted to zero.
1467 */
1468 LLVMValueRef
1469 lp_build_clamp_zero_one_nanzero(struct lp_build_context *bld,
1470 LLVMValueRef a)
1471 {
1472 a = lp_build_max_ext(bld, a, bld->zero, GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN);
1473 a = lp_build_min(bld, a, bld->one);
1474 return a;
1475 }
1476
1477
1478 /**
1479 * Generate abs(a)
1480 */
1481 LLVMValueRef
1482 lp_build_abs(struct lp_build_context *bld,
1483 LLVMValueRef a)
1484 {
1485 LLVMBuilderRef builder = bld->gallivm->builder;
1486 const struct lp_type type = bld->type;
1487 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1488
1489 assert(lp_check_value(type, a));
1490
1491 if(!type.sign)
1492 return a;
1493
1494 if(type.floating) {
1495 char intrinsic[32];
1496 lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.fabs", vec_type);
1497 return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
1498 }
1499
1500 if(type.width*type.length == 128 && util_cpu_caps.has_ssse3) {
1501 switch(type.width) {
1502 case 8:
1503 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.b.128", vec_type, a);
1504 case 16:
1505 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.w.128", vec_type, a);
1506 case 32:
1507 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.d.128", vec_type, a);
1508 }
1509 }
1510 else if (type.width*type.length == 256 && util_cpu_caps.has_ssse3 &&
1511 (gallivm_debug & GALLIVM_DEBUG_PERF) &&
1512 (type.width == 8 || type.width == 16 || type.width == 32)) {
1513 debug_printf("%s: inefficient code, should split vectors manually\n",
1514 __FUNCTION__);
1515 }
1516
1517 return lp_build_max(bld, a, LLVMBuildNeg(builder, a, ""));
1518 }
1519
1520
1521 LLVMValueRef
1522 lp_build_negate(struct lp_build_context *bld,
1523 LLVMValueRef a)
1524 {
1525 LLVMBuilderRef builder = bld->gallivm->builder;
1526
1527 assert(lp_check_value(bld->type, a));
1528
1529 if (bld->type.floating)
1530 a = LLVMBuildFNeg(builder, a, "");
1531 else
1532 a = LLVMBuildNeg(builder, a, "");
1533
1534 return a;
1535 }
1536
1537
1538 /** Return -1, 0 or +1 depending on the sign of a */
1539 LLVMValueRef
1540 lp_build_sgn(struct lp_build_context *bld,
1541 LLVMValueRef a)
1542 {
1543 LLVMBuilderRef builder = bld->gallivm->builder;
1544 const struct lp_type type = bld->type;
1545 LLVMValueRef cond;
1546 LLVMValueRef res;
1547
1548 assert(lp_check_value(type, a));
1549
1550 /* Handle non-zero case */
1551 if(!type.sign) {
1552 /* if not zero then sign must be positive */
1553 res = bld->one;
1554 }
1555 else if(type.floating) {
1556 LLVMTypeRef vec_type;
1557 LLVMTypeRef int_type;
1558 LLVMValueRef mask;
1559 LLVMValueRef sign;
1560 LLVMValueRef one;
1561 unsigned long long maskBit = (unsigned long long)1 << (type.width - 1);
1562
1563 int_type = lp_build_int_vec_type(bld->gallivm, type);
1564 vec_type = lp_build_vec_type(bld->gallivm, type);
1565 mask = lp_build_const_int_vec(bld->gallivm, type, maskBit);
1566
1567 /* Take the sign bit and add it to 1 constant */
1568 sign = LLVMBuildBitCast(builder, a, int_type, "");
1569 sign = LLVMBuildAnd(builder, sign, mask, "");
1570 one = LLVMConstBitCast(bld->one, int_type);
1571 res = LLVMBuildOr(builder, sign, one, "");
1572 res = LLVMBuildBitCast(builder, res, vec_type, "");
1573 }
1574 else
1575 {
1576 /* signed int/norm/fixed point */
1577 /* could use psign with sse3 and appropriate vectors here */
1578 LLVMValueRef minus_one = lp_build_const_vec(bld->gallivm, type, -1.0);
1579 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, bld->zero);
1580 res = lp_build_select(bld, cond, bld->one, minus_one);
1581 }
1582
1583 /* Handle zero */
1584 cond = lp_build_cmp(bld, PIPE_FUNC_EQUAL, a, bld->zero);
1585 res = lp_build_select(bld, cond, bld->zero, res);
1586
1587 return res;
1588 }
1589
1590
1591 /**
1592 * Set the sign of float vector 'a' according to 'sign'.
1593 * If sign==0, return abs(a).
1594 * If sign==1, return -abs(a);
1595 * Other values for sign produce undefined results.
1596 */
1597 LLVMValueRef
1598 lp_build_set_sign(struct lp_build_context *bld,
1599 LLVMValueRef a, LLVMValueRef sign)
1600 {
1601 LLVMBuilderRef builder = bld->gallivm->builder;
1602 const struct lp_type type = bld->type;
1603 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
1604 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1605 LLVMValueRef shift = lp_build_const_int_vec(bld->gallivm, type, type.width - 1);
1606 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
1607 ~((unsigned long long) 1 << (type.width - 1)));
1608 LLVMValueRef val, res;
1609
1610 assert(type.floating);
1611 assert(lp_check_value(type, a));
1612
1613 /* val = reinterpret_cast<int>(a) */
1614 val = LLVMBuildBitCast(builder, a, int_vec_type, "");
1615 /* val = val & mask */
1616 val = LLVMBuildAnd(builder, val, mask, "");
1617 /* sign = sign << shift */
1618 sign = LLVMBuildShl(builder, sign, shift, "");
1619 /* res = val | sign */
1620 res = LLVMBuildOr(builder, val, sign, "");
1621 /* res = reinterpret_cast<float>(res) */
1622 res = LLVMBuildBitCast(builder, res, vec_type, "");
1623
1624 return res;
1625 }
1626
1627
1628 /**
1629 * Convert vector of (or scalar) int to vector of (or scalar) float.
1630 */
1631 LLVMValueRef
1632 lp_build_int_to_float(struct lp_build_context *bld,
1633 LLVMValueRef a)
1634 {
1635 LLVMBuilderRef builder = bld->gallivm->builder;
1636 const struct lp_type type = bld->type;
1637 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1638
1639 assert(type.floating);
1640
1641 return LLVMBuildSIToFP(builder, a, vec_type, "");
1642 }
1643
1644 static boolean
1645 arch_rounding_available(const struct lp_type type)
1646 {
1647 if ((util_cpu_caps.has_sse4_1 &&
1648 (type.length == 1 || type.width*type.length == 128)) ||
1649 (util_cpu_caps.has_avx && type.width*type.length == 256))
1650 return TRUE;
1651 else if ((util_cpu_caps.has_altivec &&
1652 (type.width == 32 && type.length == 4)))
1653 return TRUE;
1654
1655 return FALSE;
1656 }
1657
1658 enum lp_build_round_mode
1659 {
1660 LP_BUILD_ROUND_NEAREST = 0,
1661 LP_BUILD_ROUND_FLOOR = 1,
1662 LP_BUILD_ROUND_CEIL = 2,
1663 LP_BUILD_ROUND_TRUNCATE = 3
1664 };
1665
1666 /**
1667 * Helper for SSE4.1's ROUNDxx instructions.
1668 *
1669 * NOTE: In the SSE4.1's nearest mode, if two values are equally close, the
1670 * result is the even value. That is, rounding 2.5 will be 2.0, and not 3.0.
1671 */
1672 static inline LLVMValueRef
1673 lp_build_nearest_sse41(struct lp_build_context *bld,
1674 LLVMValueRef a)
1675 {
1676 LLVMBuilderRef builder = bld->gallivm->builder;
1677 const struct lp_type type = bld->type;
1678 LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
1679 LLVMValueRef mode = LLVMConstNull(i32t);
1680 const char *intrinsic;
1681 LLVMValueRef res;
1682
1683 assert(type.floating);
1684
1685 assert(lp_check_value(type, a));
1686 assert(util_cpu_caps.has_sse4_1);
1687
1688 if (type.length == 1) {
1689 LLVMTypeRef vec_type;
1690 LLVMValueRef undef;
1691 LLVMValueRef args[3];
1692 LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
1693
1694 switch(type.width) {
1695 case 32:
1696 intrinsic = "llvm.x86.sse41.round.ss";
1697 break;
1698 case 64:
1699 intrinsic = "llvm.x86.sse41.round.sd";
1700 break;
1701 default:
1702 assert(0);
1703 return bld->undef;
1704 }
1705
1706 vec_type = LLVMVectorType(bld->elem_type, 4);
1707
1708 undef = LLVMGetUndef(vec_type);
1709
1710 args[0] = undef;
1711 args[1] = LLVMBuildInsertElement(builder, undef, a, index0, "");
1712 args[2] = mode;
1713
1714 res = lp_build_intrinsic(builder, intrinsic,
1715 vec_type, args, Elements(args), 0);
1716
1717 res = LLVMBuildExtractElement(builder, res, index0, "");
1718 }
1719 else {
1720 if (type.width * type.length == 128) {
1721 switch(type.width) {
1722 case 32:
1723 intrinsic = "llvm.x86.sse41.round.ps";
1724 break;
1725 case 64:
1726 intrinsic = "llvm.x86.sse41.round.pd";
1727 break;
1728 default:
1729 assert(0);
1730 return bld->undef;
1731 }
1732 }
1733 else {
1734 assert(type.width * type.length == 256);
1735 assert(util_cpu_caps.has_avx);
1736
1737 switch(type.width) {
1738 case 32:
1739 intrinsic = "llvm.x86.avx.round.ps.256";
1740 break;
1741 case 64:
1742 intrinsic = "llvm.x86.avx.round.pd.256";
1743 break;
1744 default:
1745 assert(0);
1746 return bld->undef;
1747 }
1748 }
1749
1750 res = lp_build_intrinsic_binary(builder, intrinsic,
1751 bld->vec_type, a,
1752 mode);
1753 }
1754
1755 return res;
1756 }
1757
1758
1759 static inline LLVMValueRef
1760 lp_build_iround_nearest_sse2(struct lp_build_context *bld,
1761 LLVMValueRef a)
1762 {
1763 LLVMBuilderRef builder = bld->gallivm->builder;
1764 const struct lp_type type = bld->type;
1765 LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
1766 LLVMTypeRef ret_type = lp_build_int_vec_type(bld->gallivm, type);
1767 const char *intrinsic;
1768 LLVMValueRef res;
1769
1770 assert(type.floating);
1771 /* using the double precision conversions is a bit more complicated */
1772 assert(type.width == 32);
1773
1774 assert(lp_check_value(type, a));
1775 assert(util_cpu_caps.has_sse2);
1776
1777 /* This is relying on MXCSR rounding mode, which should always be nearest. */
1778 if (type.length == 1) {
1779 LLVMTypeRef vec_type;
1780 LLVMValueRef undef;
1781 LLVMValueRef arg;
1782 LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
1783
1784 vec_type = LLVMVectorType(bld->elem_type, 4);
1785
1786 intrinsic = "llvm.x86.sse.cvtss2si";
1787
1788 undef = LLVMGetUndef(vec_type);
1789
1790 arg = LLVMBuildInsertElement(builder, undef, a, index0, "");
1791
1792 res = lp_build_intrinsic_unary(builder, intrinsic,
1793 ret_type, arg);
1794 }
1795 else {
1796 if (type.width* type.length == 128) {
1797 intrinsic = "llvm.x86.sse2.cvtps2dq";
1798 }
1799 else {
1800 assert(type.width*type.length == 256);
1801 assert(util_cpu_caps.has_avx);
1802
1803 intrinsic = "llvm.x86.avx.cvt.ps2dq.256";
1804 }
1805 res = lp_build_intrinsic_unary(builder, intrinsic,
1806 ret_type, a);
1807 }
1808
1809 return res;
1810 }
1811
1812
1813 /*
1814 */
1815 static inline LLVMValueRef
1816 lp_build_round_altivec(struct lp_build_context *bld,
1817 LLVMValueRef a,
1818 enum lp_build_round_mode mode)
1819 {
1820 LLVMBuilderRef builder = bld->gallivm->builder;
1821 const struct lp_type type = bld->type;
1822 const char *intrinsic = NULL;
1823
1824 assert(type.floating);
1825
1826 assert(lp_check_value(type, a));
1827 assert(util_cpu_caps.has_altivec);
1828
1829 (void)type;
1830
1831 switch (mode) {
1832 case LP_BUILD_ROUND_NEAREST:
1833 intrinsic = "llvm.ppc.altivec.vrfin";
1834 break;
1835 case LP_BUILD_ROUND_FLOOR:
1836 intrinsic = "llvm.ppc.altivec.vrfim";
1837 break;
1838 case LP_BUILD_ROUND_CEIL:
1839 intrinsic = "llvm.ppc.altivec.vrfip";
1840 break;
1841 case LP_BUILD_ROUND_TRUNCATE:
1842 intrinsic = "llvm.ppc.altivec.vrfiz";
1843 break;
1844 }
1845
1846 return lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
1847 }
1848
1849 static inline LLVMValueRef
1850 lp_build_round_arch(struct lp_build_context *bld,
1851 LLVMValueRef a,
1852 enum lp_build_round_mode mode)
1853 {
1854 if (util_cpu_caps.has_sse4_1) {
1855 LLVMBuilderRef builder = bld->gallivm->builder;
1856 const struct lp_type type = bld->type;
1857 const char *intrinsic_root;
1858 char intrinsic[32];
1859
1860 assert(type.floating);
1861 assert(lp_check_value(type, a));
1862 (void)type;
1863
1864 switch (mode) {
1865 case LP_BUILD_ROUND_NEAREST:
1866 if (HAVE_LLVM >= 0x0304) {
1867 intrinsic_root = "llvm.round";
1868 } else {
1869 return lp_build_nearest_sse41(bld, a);
1870 }
1871 break;
1872 case LP_BUILD_ROUND_FLOOR:
1873 intrinsic_root = "llvm.floor";
1874 break;
1875 case LP_BUILD_ROUND_CEIL:
1876 intrinsic_root = "llvm.ceil";
1877 break;
1878 case LP_BUILD_ROUND_TRUNCATE:
1879 intrinsic_root = "llvm.trunc";
1880 break;
1881 }
1882
1883 lp_format_intrinsic(intrinsic, sizeof intrinsic, intrinsic_root, bld->vec_type);
1884 return lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
1885 }
1886 else /* (util_cpu_caps.has_altivec) */
1887 return lp_build_round_altivec(bld, a, mode);
1888 }
1889
1890 /**
1891 * Return the integer part of a float (vector) value (== round toward zero).
1892 * The returned value is a float (vector).
1893 * Ex: trunc(-1.5) = -1.0
1894 */
1895 LLVMValueRef
1896 lp_build_trunc(struct lp_build_context *bld,
1897 LLVMValueRef a)
1898 {
1899 LLVMBuilderRef builder = bld->gallivm->builder;
1900 const struct lp_type type = bld->type;
1901
1902 assert(type.floating);
1903 assert(lp_check_value(type, a));
1904
1905 if (arch_rounding_available(type)) {
1906 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_TRUNCATE);
1907 }
1908 else {
1909 const struct lp_type type = bld->type;
1910 struct lp_type inttype;
1911 struct lp_build_context intbld;
1912 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
1913 LLVMValueRef trunc, res, anosign, mask;
1914 LLVMTypeRef int_vec_type = bld->int_vec_type;
1915 LLVMTypeRef vec_type = bld->vec_type;
1916
1917 assert(type.width == 32); /* might want to handle doubles at some point */
1918
1919 inttype = type;
1920 inttype.floating = 0;
1921 lp_build_context_init(&intbld, bld->gallivm, inttype);
1922
1923 /* round by truncation */
1924 trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
1925 res = LLVMBuildSIToFP(builder, trunc, vec_type, "floor.trunc");
1926
1927 /* mask out sign bit */
1928 anosign = lp_build_abs(bld, a);
1929 /*
1930 * mask out all values if anosign > 2^24
1931 * This should work both for large ints (all rounding is no-op for them
1932 * because such floats are always exact) as well as special cases like
1933 * NaNs, Infs (taking advantage of the fact they use max exponent).
1934 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
1935 */
1936 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
1937 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
1938 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
1939 return lp_build_select(bld, mask, a, res);
1940 }
1941 }
1942
1943
1944 /**
1945 * Return float (vector) rounded to nearest integer (vector). The returned
1946 * value is a float (vector).
1947 * Ex: round(0.9) = 1.0
1948 * Ex: round(-1.5) = -2.0
1949 */
1950 LLVMValueRef
1951 lp_build_round(struct lp_build_context *bld,
1952 LLVMValueRef a)
1953 {
1954 LLVMBuilderRef builder = bld->gallivm->builder;
1955 const struct lp_type type = bld->type;
1956
1957 assert(type.floating);
1958 assert(lp_check_value(type, a));
1959
1960 if (arch_rounding_available(type)) {
1961 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_NEAREST);
1962 }
1963 else {
1964 const struct lp_type type = bld->type;
1965 struct lp_type inttype;
1966 struct lp_build_context intbld;
1967 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
1968 LLVMValueRef res, anosign, mask;
1969 LLVMTypeRef int_vec_type = bld->int_vec_type;
1970 LLVMTypeRef vec_type = bld->vec_type;
1971
1972 assert(type.width == 32); /* might want to handle doubles at some point */
1973
1974 inttype = type;
1975 inttype.floating = 0;
1976 lp_build_context_init(&intbld, bld->gallivm, inttype);
1977
1978 res = lp_build_iround(bld, a);
1979 res = LLVMBuildSIToFP(builder, res, vec_type, "");
1980
1981 /* mask out sign bit */
1982 anosign = lp_build_abs(bld, a);
1983 /*
1984 * mask out all values if anosign > 2^24
1985 * This should work both for large ints (all rounding is no-op for them
1986 * because such floats are always exact) as well as special cases like
1987 * NaNs, Infs (taking advantage of the fact they use max exponent).
1988 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
1989 */
1990 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
1991 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
1992 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
1993 return lp_build_select(bld, mask, a, res);
1994 }
1995 }
1996
1997
1998 /**
1999 * Return floor of float (vector), result is a float (vector)
2000 * Ex: floor(1.1) = 1.0
2001 * Ex: floor(-1.1) = -2.0
2002 */
2003 LLVMValueRef
2004 lp_build_floor(struct lp_build_context *bld,
2005 LLVMValueRef a)
2006 {
2007 LLVMBuilderRef builder = bld->gallivm->builder;
2008 const struct lp_type type = bld->type;
2009
2010 assert(type.floating);
2011 assert(lp_check_value(type, a));
2012
2013 if (arch_rounding_available(type)) {
2014 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_FLOOR);
2015 }
2016 else {
2017 const struct lp_type type = bld->type;
2018 struct lp_type inttype;
2019 struct lp_build_context intbld;
2020 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
2021 LLVMValueRef trunc, res, anosign, mask;
2022 LLVMTypeRef int_vec_type = bld->int_vec_type;
2023 LLVMTypeRef vec_type = bld->vec_type;
2024
2025 if (type.width != 32) {
2026 char intrinsic[32];
2027 lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.floor", vec_type);
2028 return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
2029 }
2030
2031 assert(type.width == 32); /* might want to handle doubles at some point */
2032
2033 inttype = type;
2034 inttype.floating = 0;
2035 lp_build_context_init(&intbld, bld->gallivm, inttype);
2036
2037 /* round by truncation */
2038 trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
2039 res = LLVMBuildSIToFP(builder, trunc, vec_type, "floor.trunc");
2040
2041 if (type.sign) {
2042 LLVMValueRef tmp;
2043
2044 /*
2045 * fix values if rounding is wrong (for non-special cases)
2046 * - this is the case if trunc > a
2047 */
2048 mask = lp_build_cmp(bld, PIPE_FUNC_GREATER, res, a);
2049 /* tmp = trunc > a ? 1.0 : 0.0 */
2050 tmp = LLVMBuildBitCast(builder, bld->one, int_vec_type, "");
2051 tmp = lp_build_and(&intbld, mask, tmp);
2052 tmp = LLVMBuildBitCast(builder, tmp, vec_type, "");
2053 res = lp_build_sub(bld, res, tmp);
2054 }
2055
2056 /* mask out sign bit */
2057 anosign = lp_build_abs(bld, a);
2058 /*
2059 * mask out all values if anosign > 2^24
2060 * This should work both for large ints (all rounding is no-op for them
2061 * because such floats are always exact) as well as special cases like
2062 * NaNs, Infs (taking advantage of the fact they use max exponent).
2063 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
2064 */
2065 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
2066 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
2067 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
2068 return lp_build_select(bld, mask, a, res);
2069 }
2070 }
2071
2072
2073 /**
2074 * Return ceiling of float (vector), returning float (vector).
2075 * Ex: ceil( 1.1) = 2.0
2076 * Ex: ceil(-1.1) = -1.0
2077 */
2078 LLVMValueRef
2079 lp_build_ceil(struct lp_build_context *bld,
2080 LLVMValueRef a)
2081 {
2082 LLVMBuilderRef builder = bld->gallivm->builder;
2083 const struct lp_type type = bld->type;
2084
2085 assert(type.floating);
2086 assert(lp_check_value(type, a));
2087
2088 if (arch_rounding_available(type)) {
2089 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_CEIL);
2090 }
2091 else {
2092 const struct lp_type type = bld->type;
2093 struct lp_type inttype;
2094 struct lp_build_context intbld;
2095 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
2096 LLVMValueRef trunc, res, anosign, mask, tmp;
2097 LLVMTypeRef int_vec_type = bld->int_vec_type;
2098 LLVMTypeRef vec_type = bld->vec_type;
2099
2100 if (type.width != 32) {
2101 char intrinsic[32];
2102 lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.ceil", vec_type);
2103 return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
2104 }
2105
2106 assert(type.width == 32); /* might want to handle doubles at some point */
2107
2108 inttype = type;
2109 inttype.floating = 0;
2110 lp_build_context_init(&intbld, bld->gallivm, inttype);
2111
2112 /* round by truncation */
2113 trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
2114 trunc = LLVMBuildSIToFP(builder, trunc, vec_type, "ceil.trunc");
2115
2116 /*
2117 * fix values if rounding is wrong (for non-special cases)
2118 * - this is the case if trunc < a
2119 */
2120 mask = lp_build_cmp(bld, PIPE_FUNC_LESS, trunc, a);
2121 /* tmp = trunc < a ? 1.0 : 0.0 */
2122 tmp = LLVMBuildBitCast(builder, bld->one, int_vec_type, "");
2123 tmp = lp_build_and(&intbld, mask, tmp);
2124 tmp = LLVMBuildBitCast(builder, tmp, vec_type, "");
2125 res = lp_build_add(bld, trunc, tmp);
2126
2127 /* mask out sign bit */
2128 anosign = lp_build_abs(bld, a);
2129 /*
2130 * mask out all values if anosign > 2^24
2131 * This should work both for large ints (all rounding is no-op for them
2132 * because such floats are always exact) as well as special cases like
2133 * NaNs, Infs (taking advantage of the fact they use max exponent).
2134 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
2135 */
2136 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
2137 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
2138 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
2139 return lp_build_select(bld, mask, a, res);
2140 }
2141 }
2142
2143
2144 /**
2145 * Return fractional part of 'a' computed as a - floor(a)
2146 * Typically used in texture coord arithmetic.
2147 */
2148 LLVMValueRef
2149 lp_build_fract(struct lp_build_context *bld,
2150 LLVMValueRef a)
2151 {
2152 assert(bld->type.floating);
2153 return lp_build_sub(bld, a, lp_build_floor(bld, a));
2154 }
2155
2156
2157 /**
2158 * Prevent returning a fractional part of 1.0 for very small negative values of
2159 * 'a' by clamping against 0.99999(9).
2160 */
2161 static inline LLVMValueRef
2162 clamp_fract(struct lp_build_context *bld, LLVMValueRef fract)
2163 {
2164 LLVMValueRef max;
2165
2166 /* this is the largest number smaller than 1.0 representable as float */
2167 max = lp_build_const_vec(bld->gallivm, bld->type,
2168 1.0 - 1.0/(1LL << (lp_mantissa(bld->type) + 1)));
2169 return lp_build_min(bld, fract, max);
2170 }
2171
2172
2173 /**
2174 * Same as lp_build_fract, but guarantees that the result is always smaller
2175 * than one.
2176 */
2177 LLVMValueRef
2178 lp_build_fract_safe(struct lp_build_context *bld,
2179 LLVMValueRef a)
2180 {
2181 return clamp_fract(bld, lp_build_fract(bld, a));
2182 }
2183
2184
2185 /**
2186 * Return the integer part of a float (vector) value (== round toward zero).
2187 * The returned value is an integer (vector).
2188 * Ex: itrunc(-1.5) = -1
2189 */
2190 LLVMValueRef
2191 lp_build_itrunc(struct lp_build_context *bld,
2192 LLVMValueRef a)
2193 {
2194 LLVMBuilderRef builder = bld->gallivm->builder;
2195 const struct lp_type type = bld->type;
2196 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
2197
2198 assert(type.floating);
2199 assert(lp_check_value(type, a));
2200
2201 return LLVMBuildFPToSI(builder, a, int_vec_type, "");
2202 }
2203
2204
2205 /**
2206 * Return float (vector) rounded to nearest integer (vector). The returned
2207 * value is an integer (vector).
2208 * Ex: iround(0.9) = 1
2209 * Ex: iround(-1.5) = -2
2210 */
2211 LLVMValueRef
2212 lp_build_iround(struct lp_build_context *bld,
2213 LLVMValueRef a)
2214 {
2215 LLVMBuilderRef builder = bld->gallivm->builder;
2216 const struct lp_type type = bld->type;
2217 LLVMTypeRef int_vec_type = bld->int_vec_type;
2218 LLVMValueRef res;
2219
2220 assert(type.floating);
2221
2222 assert(lp_check_value(type, a));
2223
2224 if ((util_cpu_caps.has_sse2 &&
2225 ((type.width == 32) && (type.length == 1 || type.length == 4))) ||
2226 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) {
2227 return lp_build_iround_nearest_sse2(bld, a);
2228 }
2229 if (arch_rounding_available(type)) {
2230 res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_NEAREST);
2231 }
2232 else {
2233 LLVMValueRef half;
2234
2235 half = lp_build_const_vec(bld->gallivm, type, 0.5);
2236
2237 if (type.sign) {
2238 LLVMTypeRef vec_type = bld->vec_type;
2239 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
2240 (unsigned long long)1 << (type.width - 1));
2241 LLVMValueRef sign;
2242
2243 /* get sign bit */
2244 sign = LLVMBuildBitCast(builder, a, int_vec_type, "");
2245 sign = LLVMBuildAnd(builder, sign, mask, "");
2246
2247 /* sign * 0.5 */
2248 half = LLVMBuildBitCast(builder, half, int_vec_type, "");
2249 half = LLVMBuildOr(builder, sign, half, "");
2250 half = LLVMBuildBitCast(builder, half, vec_type, "");
2251 }
2252
2253 res = LLVMBuildFAdd(builder, a, half, "");
2254 }
2255
2256 res = LLVMBuildFPToSI(builder, res, int_vec_type, "");
2257
2258 return res;
2259 }
2260
2261
2262 /**
2263 * Return floor of float (vector), result is an int (vector)
2264 * Ex: ifloor(1.1) = 1.0
2265 * Ex: ifloor(-1.1) = -2.0
2266 */
2267 LLVMValueRef
2268 lp_build_ifloor(struct lp_build_context *bld,
2269 LLVMValueRef a)
2270 {
2271 LLVMBuilderRef builder = bld->gallivm->builder;
2272 const struct lp_type type = bld->type;
2273 LLVMTypeRef int_vec_type = bld->int_vec_type;
2274 LLVMValueRef res;
2275
2276 assert(type.floating);
2277 assert(lp_check_value(type, a));
2278
2279 res = a;
2280 if (type.sign) {
2281 if (arch_rounding_available(type)) {
2282 res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_FLOOR);
2283 }
2284 else {
2285 struct lp_type inttype;
2286 struct lp_build_context intbld;
2287 LLVMValueRef trunc, itrunc, mask;
2288
2289 assert(type.floating);
2290 assert(lp_check_value(type, a));
2291
2292 inttype = type;
2293 inttype.floating = 0;
2294 lp_build_context_init(&intbld, bld->gallivm, inttype);
2295
2296 /* round by truncation */
2297 itrunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
2298 trunc = LLVMBuildSIToFP(builder, itrunc, bld->vec_type, "ifloor.trunc");
2299
2300 /*
2301 * fix values if rounding is wrong (for non-special cases)
2302 * - this is the case if trunc > a
2303 * The results of doing this with NaNs, very large values etc.
2304 * are undefined but this seems to be the case anyway.
2305 */
2306 mask = lp_build_cmp(bld, PIPE_FUNC_GREATER, trunc, a);
2307 /* cheapie minus one with mask since the mask is minus one / zero */
2308 return lp_build_add(&intbld, itrunc, mask);
2309 }
2310 }
2311
2312 /* round to nearest (toward zero) */
2313 res = LLVMBuildFPToSI(builder, res, int_vec_type, "ifloor.res");
2314
2315 return res;
2316 }
2317
2318
2319 /**
2320 * Return ceiling of float (vector), returning int (vector).
2321 * Ex: iceil( 1.1) = 2
2322 * Ex: iceil(-1.1) = -1
2323 */
2324 LLVMValueRef
2325 lp_build_iceil(struct lp_build_context *bld,
2326 LLVMValueRef a)
2327 {
2328 LLVMBuilderRef builder = bld->gallivm->builder;
2329 const struct lp_type type = bld->type;
2330 LLVMTypeRef int_vec_type = bld->int_vec_type;
2331 LLVMValueRef res;
2332
2333 assert(type.floating);
2334 assert(lp_check_value(type, a));
2335
2336 if (arch_rounding_available(type)) {
2337 res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_CEIL);
2338 }
2339 else {
2340 struct lp_type inttype;
2341 struct lp_build_context intbld;
2342 LLVMValueRef trunc, itrunc, mask;
2343
2344 assert(type.floating);
2345 assert(lp_check_value(type, a));
2346
2347 inttype = type;
2348 inttype.floating = 0;
2349 lp_build_context_init(&intbld, bld->gallivm, inttype);
2350
2351 /* round by truncation */
2352 itrunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
2353 trunc = LLVMBuildSIToFP(builder, itrunc, bld->vec_type, "iceil.trunc");
2354
2355 /*
2356 * fix values if rounding is wrong (for non-special cases)
2357 * - this is the case if trunc < a
2358 * The results of doing this with NaNs, very large values etc.
2359 * are undefined but this seems to be the case anyway.
2360 */
2361 mask = lp_build_cmp(bld, PIPE_FUNC_LESS, trunc, a);
2362 /* cheapie plus one with mask since the mask is minus one / zero */
2363 return lp_build_sub(&intbld, itrunc, mask);
2364 }
2365
2366 /* round to nearest (toward zero) */
2367 res = LLVMBuildFPToSI(builder, res, int_vec_type, "iceil.res");
2368
2369 return res;
2370 }
2371
2372
2373 /**
2374 * Combined ifloor() & fract().
2375 *
2376 * Preferred to calling the functions separately, as it will ensure that the
2377 * strategy (floor() vs ifloor()) that results in less redundant work is used.
2378 */
2379 void
2380 lp_build_ifloor_fract(struct lp_build_context *bld,
2381 LLVMValueRef a,
2382 LLVMValueRef *out_ipart,
2383 LLVMValueRef *out_fpart)
2384 {
2385 LLVMBuilderRef builder = bld->gallivm->builder;
2386 const struct lp_type type = bld->type;
2387 LLVMValueRef ipart;
2388
2389 assert(type.floating);
2390 assert(lp_check_value(type, a));
2391
2392 if (arch_rounding_available(type)) {
2393 /*
2394 * floor() is easier.
2395 */
2396
2397 ipart = lp_build_floor(bld, a);
2398 *out_fpart = LLVMBuildFSub(builder, a, ipart, "fpart");
2399 *out_ipart = LLVMBuildFPToSI(builder, ipart, bld->int_vec_type, "ipart");
2400 }
2401 else {
2402 /*
2403 * ifloor() is easier.
2404 */
2405
2406 *out_ipart = lp_build_ifloor(bld, a);
2407 ipart = LLVMBuildSIToFP(builder, *out_ipart, bld->vec_type, "ipart");
2408 *out_fpart = LLVMBuildFSub(builder, a, ipart, "fpart");
2409 }
2410 }
2411
2412
2413 /**
2414 * Same as lp_build_ifloor_fract, but guarantees that the fractional part is
2415 * always smaller than one.
2416 */
2417 void
2418 lp_build_ifloor_fract_safe(struct lp_build_context *bld,
2419 LLVMValueRef a,
2420 LLVMValueRef *out_ipart,
2421 LLVMValueRef *out_fpart)
2422 {
2423 lp_build_ifloor_fract(bld, a, out_ipart, out_fpart);
2424 *out_fpart = clamp_fract(bld, *out_fpart);
2425 }
2426
2427
2428 LLVMValueRef
2429 lp_build_sqrt(struct lp_build_context *bld,
2430 LLVMValueRef a)
2431 {
2432 LLVMBuilderRef builder = bld->gallivm->builder;
2433 const struct lp_type type = bld->type;
2434 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
2435 char intrinsic[32];
2436
2437 assert(lp_check_value(type, a));
2438
2439 assert(type.floating);
2440 lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.sqrt", vec_type);
2441
2442 return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
2443 }
2444
2445
2446 /**
2447 * Do one Newton-Raphson step to improve reciprocate precision:
2448 *
2449 * x_{i+1} = x_i * (2 - a * x_i)
2450 *
2451 * XXX: Unfortunately this won't give IEEE-754 conformant results for 0 or
2452 * +/-Inf, giving NaN instead. Certain applications rely on this behavior,
2453 * such as Google Earth, which does RCP(RSQRT(0.0) when drawing the Earth's
2454 * halo. It would be necessary to clamp the argument to prevent this.
2455 *
2456 * See also:
2457 * - http://en.wikipedia.org/wiki/Division_(digital)#Newton.E2.80.93Raphson_division
2458 * - http://softwarecommunity.intel.com/articles/eng/1818.htm
2459 */
2460 static inline LLVMValueRef
2461 lp_build_rcp_refine(struct lp_build_context *bld,
2462 LLVMValueRef a,
2463 LLVMValueRef rcp_a)
2464 {
2465 LLVMBuilderRef builder = bld->gallivm->builder;
2466 LLVMValueRef two = lp_build_const_vec(bld->gallivm, bld->type, 2.0);
2467 LLVMValueRef res;
2468
2469 res = LLVMBuildFMul(builder, a, rcp_a, "");
2470 res = LLVMBuildFSub(builder, two, res, "");
2471 res = LLVMBuildFMul(builder, rcp_a, res, "");
2472
2473 return res;
2474 }
2475
2476
2477 LLVMValueRef
2478 lp_build_rcp(struct lp_build_context *bld,
2479 LLVMValueRef a)
2480 {
2481 LLVMBuilderRef builder = bld->gallivm->builder;
2482 const struct lp_type type = bld->type;
2483
2484 assert(lp_check_value(type, a));
2485
2486 if(a == bld->zero)
2487 return bld->undef;
2488 if(a == bld->one)
2489 return bld->one;
2490 if(a == bld->undef)
2491 return bld->undef;
2492
2493 assert(type.floating);
2494
2495 if(LLVMIsConstant(a))
2496 return LLVMConstFDiv(bld->one, a);
2497
2498 /*
2499 * We don't use RCPPS because:
2500 * - it only has 10bits of precision
2501 * - it doesn't even get the reciprocate of 1.0 exactly
2502 * - doing Newton-Rapshon steps yields wrong (NaN) values for 0.0 or Inf
2503 * - for recent processors the benefit over DIVPS is marginal, a case
2504 * dependent
2505 *
2506 * We could still use it on certain processors if benchmarks show that the
2507 * RCPPS plus necessary workarounds are still preferrable to DIVPS; or for
2508 * particular uses that require less workarounds.
2509 */
2510
2511 if (FALSE && ((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
2512 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8))){
2513 const unsigned num_iterations = 0;
2514 LLVMValueRef res;
2515 unsigned i;
2516 const char *intrinsic = NULL;
2517
2518 if (type.length == 4) {
2519 intrinsic = "llvm.x86.sse.rcp.ps";
2520 }
2521 else {
2522 intrinsic = "llvm.x86.avx.rcp.ps.256";
2523 }
2524
2525 res = lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
2526
2527 for (i = 0; i < num_iterations; ++i) {
2528 res = lp_build_rcp_refine(bld, a, res);
2529 }
2530
2531 return res;
2532 }
2533
2534 return LLVMBuildFDiv(builder, bld->one, a, "");
2535 }
2536
2537
2538 /**
2539 * Do one Newton-Raphson step to improve rsqrt precision:
2540 *
2541 * x_{i+1} = 0.5 * x_i * (3.0 - a * x_i * x_i)
2542 *
2543 * See also Intel 64 and IA-32 Architectures Optimization Manual.
2544 */
2545 static inline LLVMValueRef
2546 lp_build_rsqrt_refine(struct lp_build_context *bld,
2547 LLVMValueRef a,
2548 LLVMValueRef rsqrt_a)
2549 {
2550 LLVMBuilderRef builder = bld->gallivm->builder;
2551 LLVMValueRef half = lp_build_const_vec(bld->gallivm, bld->type, 0.5);
2552 LLVMValueRef three = lp_build_const_vec(bld->gallivm, bld->type, 3.0);
2553 LLVMValueRef res;
2554
2555 res = LLVMBuildFMul(builder, rsqrt_a, rsqrt_a, "");
2556 res = LLVMBuildFMul(builder, a, res, "");
2557 res = LLVMBuildFSub(builder, three, res, "");
2558 res = LLVMBuildFMul(builder, rsqrt_a, res, "");
2559 res = LLVMBuildFMul(builder, half, res, "");
2560
2561 return res;
2562 }
2563
2564
2565 /**
2566 * Generate 1/sqrt(a).
2567 * Result is undefined for values < 0, infinity for +0.
2568 */
2569 LLVMValueRef
2570 lp_build_rsqrt(struct lp_build_context *bld,
2571 LLVMValueRef a)
2572 {
2573 const struct lp_type type = bld->type;
2574
2575 assert(lp_check_value(type, a));
2576
2577 assert(type.floating);
2578
2579 /*
2580 * This should be faster but all denormals will end up as infinity.
2581 */
2582 if (0 && lp_build_fast_rsqrt_available(type)) {
2583 const unsigned num_iterations = 1;
2584 LLVMValueRef res;
2585 unsigned i;
2586
2587 /* rsqrt(1.0) != 1.0 here */
2588 res = lp_build_fast_rsqrt(bld, a);
2589
2590 if (num_iterations) {
2591 /*
2592 * Newton-Raphson will result in NaN instead of infinity for zero,
2593 * and NaN instead of zero for infinity.
2594 * Also, need to ensure rsqrt(1.0) == 1.0.
2595 * All numbers smaller than FLT_MIN will result in +infinity
2596 * (rsqrtps treats all denormals as zero).
2597 */
2598 LLVMValueRef cmp;
2599 LLVMValueRef flt_min = lp_build_const_vec(bld->gallivm, type, FLT_MIN);
2600 LLVMValueRef inf = lp_build_const_vec(bld->gallivm, type, INFINITY);
2601
2602 for (i = 0; i < num_iterations; ++i) {
2603 res = lp_build_rsqrt_refine(bld, a, res);
2604 }
2605 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_LESS, a, flt_min);
2606 res = lp_build_select(bld, cmp, inf, res);
2607 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_EQUAL, a, inf);
2608 res = lp_build_select(bld, cmp, bld->zero, res);
2609 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_EQUAL, a, bld->one);
2610 res = lp_build_select(bld, cmp, bld->one, res);
2611 }
2612
2613 return res;
2614 }
2615
2616 return lp_build_rcp(bld, lp_build_sqrt(bld, a));
2617 }
2618
2619 /**
2620 * If there's a fast (inaccurate) rsqrt instruction available
2621 * (caller may want to avoid to call rsqrt_fast if it's not available,
2622 * i.e. for calculating x^0.5 it may do rsqrt_fast(x) * x but if
2623 * unavailable it would result in sqrt/div/mul so obviously
2624 * much better to just call sqrt, skipping both div and mul).
2625 */
2626 boolean
2627 lp_build_fast_rsqrt_available(struct lp_type type)
2628 {
2629 assert(type.floating);
2630
2631 if ((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
2632 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) {
2633 return true;
2634 }
2635 return false;
2636 }
2637
2638
2639 /**
2640 * Generate 1/sqrt(a).
2641 * Result is undefined for values < 0, infinity for +0.
2642 * Precision is limited, only ~10 bits guaranteed
2643 * (rsqrt 1.0 may not be 1.0, denorms may be flushed to 0).
2644 */
2645 LLVMValueRef
2646 lp_build_fast_rsqrt(struct lp_build_context *bld,
2647 LLVMValueRef a)
2648 {
2649 LLVMBuilderRef builder = bld->gallivm->builder;
2650 const struct lp_type type = bld->type;
2651
2652 assert(lp_check_value(type, a));
2653
2654 if (lp_build_fast_rsqrt_available(type)) {
2655 const char *intrinsic = NULL;
2656
2657 if (type.length == 4) {
2658 intrinsic = "llvm.x86.sse.rsqrt.ps";
2659 }
2660 else {
2661 intrinsic = "llvm.x86.avx.rsqrt.ps.256";
2662 }
2663 return lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
2664 }
2665 else {
2666 debug_printf("%s: emulating fast rsqrt with rcp/sqrt\n", __FUNCTION__);
2667 }
2668 return lp_build_rcp(bld, lp_build_sqrt(bld, a));
2669 }
2670
2671
2672 /**
2673 * Generate sin(a) or cos(a) using polynomial approximation.
2674 * TODO: it might be worth recognizing sin and cos using same source
2675 * (i.e. d3d10 sincos opcode). Obviously doing both at the same time
2676 * would be way cheaper than calculating (nearly) everything twice...
2677 * Not sure it's common enough to be worth bothering however, scs
2678 * opcode could also benefit from calculating both though.
2679 */
2680 static LLVMValueRef
2681 lp_build_sin_or_cos(struct lp_build_context *bld,
2682 LLVMValueRef a,
2683 boolean cos)
2684 {
2685 struct gallivm_state *gallivm = bld->gallivm;
2686 LLVMBuilderRef b = gallivm->builder;
2687 struct lp_type int_type = lp_int_type(bld->type);
2688
2689 /*
2690 * take the absolute value,
2691 * x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
2692 */
2693
2694 LLVMValueRef inv_sig_mask = lp_build_const_int_vec(gallivm, bld->type, ~0x80000000);
2695 LLVMValueRef a_v4si = LLVMBuildBitCast(b, a, bld->int_vec_type, "a_v4si");
2696
2697 LLVMValueRef absi = LLVMBuildAnd(b, a_v4si, inv_sig_mask, "absi");
2698 LLVMValueRef x_abs = LLVMBuildBitCast(b, absi, bld->vec_type, "x_abs");
2699
2700 /*
2701 * scale by 4/Pi
2702 * y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
2703 */
2704
2705 LLVMValueRef FOPi = lp_build_const_vec(gallivm, bld->type, 1.27323954473516);
2706 LLVMValueRef scale_y = LLVMBuildFMul(b, x_abs, FOPi, "scale_y");
2707
2708 /*
2709 * store the integer part of y in mm0
2710 * emm2 = _mm_cvttps_epi32(y);
2711 */
2712
2713 LLVMValueRef emm2_i = LLVMBuildFPToSI(b, scale_y, bld->int_vec_type, "emm2_i");
2714
2715 /*
2716 * j=(j+1) & (~1) (see the cephes sources)
2717 * emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
2718 */
2719
2720 LLVMValueRef all_one = lp_build_const_int_vec(gallivm, bld->type, 1);
2721 LLVMValueRef emm2_add = LLVMBuildAdd(b, emm2_i, all_one, "emm2_add");
2722 /*
2723 * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
2724 */
2725 LLVMValueRef inv_one = lp_build_const_int_vec(gallivm, bld->type, ~1);
2726 LLVMValueRef emm2_and = LLVMBuildAnd(b, emm2_add, inv_one, "emm2_and");
2727
2728 /*
2729 * y = _mm_cvtepi32_ps(emm2);
2730 */
2731 LLVMValueRef y_2 = LLVMBuildSIToFP(b, emm2_and, bld->vec_type, "y_2");
2732
2733 LLVMValueRef const_2 = lp_build_const_int_vec(gallivm, bld->type, 2);
2734 LLVMValueRef const_4 = lp_build_const_int_vec(gallivm, bld->type, 4);
2735 LLVMValueRef const_29 = lp_build_const_int_vec(gallivm, bld->type, 29);
2736 LLVMValueRef sign_mask = lp_build_const_int_vec(gallivm, bld->type, 0x80000000);
2737
2738 /*
2739 * Argument used for poly selection and sign bit determination
2740 * is different for sin vs. cos.
2741 */
2742 LLVMValueRef emm2_2 = cos ? LLVMBuildSub(b, emm2_and, const_2, "emm2_2") :
2743 emm2_and;
2744
2745 LLVMValueRef sign_bit = cos ? LLVMBuildShl(b, LLVMBuildAnd(b, const_4,
2746 LLVMBuildNot(b, emm2_2, ""), ""),
2747 const_29, "sign_bit") :
2748 LLVMBuildAnd(b, LLVMBuildXor(b, a_v4si,
2749 LLVMBuildShl(b, emm2_add,
2750 const_29, ""), ""),
2751 sign_mask, "sign_bit");
2752
2753 /*
2754 * get the polynom selection mask
2755 * there is one polynom for 0 <= x <= Pi/4
2756 * and another one for Pi/4<x<=Pi/2
2757 * Both branches will be computed.
2758 *
2759 * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
2760 * emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
2761 */
2762
2763 LLVMValueRef emm2_3 = LLVMBuildAnd(b, emm2_2, const_2, "emm2_3");
2764 LLVMValueRef poly_mask = lp_build_compare(gallivm,
2765 int_type, PIPE_FUNC_EQUAL,
2766 emm2_3, lp_build_const_int_vec(gallivm, bld->type, 0));
2767
2768 /*
2769 * _PS_CONST(minus_cephes_DP1, -0.78515625);
2770 * _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
2771 * _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
2772 */
2773 LLVMValueRef DP1 = lp_build_const_vec(gallivm, bld->type, -0.78515625);
2774 LLVMValueRef DP2 = lp_build_const_vec(gallivm, bld->type, -2.4187564849853515625e-4);
2775 LLVMValueRef DP3 = lp_build_const_vec(gallivm, bld->type, -3.77489497744594108e-8);
2776
2777 /*
2778 * The magic pass: "Extended precision modular arithmetic"
2779 * x = ((x - y * DP1) - y * DP2) - y * DP3;
2780 * xmm1 = _mm_mul_ps(y, xmm1);
2781 * xmm2 = _mm_mul_ps(y, xmm2);
2782 * xmm3 = _mm_mul_ps(y, xmm3);
2783 */
2784 LLVMValueRef xmm1 = LLVMBuildFMul(b, y_2, DP1, "xmm1");
2785 LLVMValueRef xmm2 = LLVMBuildFMul(b, y_2, DP2, "xmm2");
2786 LLVMValueRef xmm3 = LLVMBuildFMul(b, y_2, DP3, "xmm3");
2787
2788 /*
2789 * x = _mm_add_ps(x, xmm1);
2790 * x = _mm_add_ps(x, xmm2);
2791 * x = _mm_add_ps(x, xmm3);
2792 */
2793
2794 LLVMValueRef x_1 = LLVMBuildFAdd(b, x_abs, xmm1, "x_1");
2795 LLVMValueRef x_2 = LLVMBuildFAdd(b, x_1, xmm2, "x_2");
2796 LLVMValueRef x_3 = LLVMBuildFAdd(b, x_2, xmm3, "x_3");
2797
2798 /*
2799 * Evaluate the first polynom (0 <= x <= Pi/4)
2800 *
2801 * z = _mm_mul_ps(x,x);
2802 */
2803 LLVMValueRef z = LLVMBuildFMul(b, x_3, x_3, "z");
2804
2805 /*
2806 * _PS_CONST(coscof_p0, 2.443315711809948E-005);
2807 * _PS_CONST(coscof_p1, -1.388731625493765E-003);
2808 * _PS_CONST(coscof_p2, 4.166664568298827E-002);
2809 */
2810 LLVMValueRef coscof_p0 = lp_build_const_vec(gallivm, bld->type, 2.443315711809948E-005);
2811 LLVMValueRef coscof_p1 = lp_build_const_vec(gallivm, bld->type, -1.388731625493765E-003);
2812 LLVMValueRef coscof_p2 = lp_build_const_vec(gallivm, bld->type, 4.166664568298827E-002);
2813
2814 /*
2815 * y = *(v4sf*)_ps_coscof_p0;
2816 * y = _mm_mul_ps(y, z);
2817 */
2818 LLVMValueRef y_3 = LLVMBuildFMul(b, z, coscof_p0, "y_3");
2819 LLVMValueRef y_4 = LLVMBuildFAdd(b, y_3, coscof_p1, "y_4");
2820 LLVMValueRef y_5 = LLVMBuildFMul(b, y_4, z, "y_5");
2821 LLVMValueRef y_6 = LLVMBuildFAdd(b, y_5, coscof_p2, "y_6");
2822 LLVMValueRef y_7 = LLVMBuildFMul(b, y_6, z, "y_7");
2823 LLVMValueRef y_8 = LLVMBuildFMul(b, y_7, z, "y_8");
2824
2825
2826 /*
2827 * tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
2828 * y = _mm_sub_ps(y, tmp);
2829 * y = _mm_add_ps(y, *(v4sf*)_ps_1);
2830 */
2831 LLVMValueRef half = lp_build_const_vec(gallivm, bld->type, 0.5);
2832 LLVMValueRef tmp = LLVMBuildFMul(b, z, half, "tmp");
2833 LLVMValueRef y_9 = LLVMBuildFSub(b, y_8, tmp, "y_8");
2834 LLVMValueRef one = lp_build_const_vec(gallivm, bld->type, 1.0);
2835 LLVMValueRef y_10 = LLVMBuildFAdd(b, y_9, one, "y_9");
2836
2837 /*
2838 * _PS_CONST(sincof_p0, -1.9515295891E-4);
2839 * _PS_CONST(sincof_p1, 8.3321608736E-3);
2840 * _PS_CONST(sincof_p2, -1.6666654611E-1);
2841 */
2842 LLVMValueRef sincof_p0 = lp_build_const_vec(gallivm, bld->type, -1.9515295891E-4);
2843 LLVMValueRef sincof_p1 = lp_build_const_vec(gallivm, bld->type, 8.3321608736E-3);
2844 LLVMValueRef sincof_p2 = lp_build_const_vec(gallivm, bld->type, -1.6666654611E-1);
2845
2846 /*
2847 * Evaluate the second polynom (Pi/4 <= x <= 0)
2848 *
2849 * y2 = *(v4sf*)_ps_sincof_p0;
2850 * y2 = _mm_mul_ps(y2, z);
2851 * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
2852 * y2 = _mm_mul_ps(y2, z);
2853 * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
2854 * y2 = _mm_mul_ps(y2, z);
2855 * y2 = _mm_mul_ps(y2, x);
2856 * y2 = _mm_add_ps(y2, x);
2857 */
2858
2859 LLVMValueRef y2_3 = LLVMBuildFMul(b, z, sincof_p0, "y2_3");
2860 LLVMValueRef y2_4 = LLVMBuildFAdd(b, y2_3, sincof_p1, "y2_4");
2861 LLVMValueRef y2_5 = LLVMBuildFMul(b, y2_4, z, "y2_5");
2862 LLVMValueRef y2_6 = LLVMBuildFAdd(b, y2_5, sincof_p2, "y2_6");
2863 LLVMValueRef y2_7 = LLVMBuildFMul(b, y2_6, z, "y2_7");
2864 LLVMValueRef y2_8 = LLVMBuildFMul(b, y2_7, x_3, "y2_8");
2865 LLVMValueRef y2_9 = LLVMBuildFAdd(b, y2_8, x_3, "y2_9");
2866
2867 /*
2868 * select the correct result from the two polynoms
2869 * xmm3 = poly_mask;
2870 * y2 = _mm_and_ps(xmm3, y2); //, xmm3);
2871 * y = _mm_andnot_ps(xmm3, y);
2872 * y = _mm_or_ps(y,y2);
2873 */
2874 LLVMValueRef y2_i = LLVMBuildBitCast(b, y2_9, bld->int_vec_type, "y2_i");
2875 LLVMValueRef y_i = LLVMBuildBitCast(b, y_10, bld->int_vec_type, "y_i");
2876 LLVMValueRef y2_and = LLVMBuildAnd(b, y2_i, poly_mask, "y2_and");
2877 LLVMValueRef poly_mask_inv = LLVMBuildNot(b, poly_mask, "poly_mask_inv");
2878 LLVMValueRef y_and = LLVMBuildAnd(b, y_i, poly_mask_inv, "y_and");
2879 LLVMValueRef y_combine = LLVMBuildOr(b, y_and, y2_and, "y_combine");
2880
2881 /*
2882 * update the sign
2883 * y = _mm_xor_ps(y, sign_bit);
2884 */
2885 LLVMValueRef y_sign = LLVMBuildXor(b, y_combine, sign_bit, "y_sign");
2886 LLVMValueRef y_result = LLVMBuildBitCast(b, y_sign, bld->vec_type, "y_result");
2887
2888 LLVMValueRef isfinite = lp_build_isfinite(bld, a);
2889
2890 /* clamp output to be within [-1, 1] */
2891 y_result = lp_build_clamp(bld, y_result,
2892 lp_build_const_vec(bld->gallivm, bld->type, -1.f),
2893 lp_build_const_vec(bld->gallivm, bld->type, 1.f));
2894 /* If a is -inf, inf or NaN then return NaN */
2895 y_result = lp_build_select(bld, isfinite, y_result,
2896 lp_build_const_vec(bld->gallivm, bld->type, NAN));
2897 return y_result;
2898 }
2899
2900
2901 /**
2902 * Generate sin(a)
2903 */
2904 LLVMValueRef
2905 lp_build_sin(struct lp_build_context *bld,
2906 LLVMValueRef a)
2907 {
2908 return lp_build_sin_or_cos(bld, a, FALSE);
2909 }
2910
2911
2912 /**
2913 * Generate cos(a)
2914 */
2915 LLVMValueRef
2916 lp_build_cos(struct lp_build_context *bld,
2917 LLVMValueRef a)
2918 {
2919 return lp_build_sin_or_cos(bld, a, TRUE);
2920 }
2921
2922
2923 /**
2924 * Generate pow(x, y)
2925 */
2926 LLVMValueRef
2927 lp_build_pow(struct lp_build_context *bld,
2928 LLVMValueRef x,
2929 LLVMValueRef y)
2930 {
2931 /* TODO: optimize the constant case */
2932 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
2933 LLVMIsConstant(x) && LLVMIsConstant(y)) {
2934 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
2935 __FUNCTION__);
2936 }
2937
2938 return lp_build_exp2(bld, lp_build_mul(bld, lp_build_log2(bld, x), y));
2939 }
2940
2941
2942 /**
2943 * Generate exp(x)
2944 */
2945 LLVMValueRef
2946 lp_build_exp(struct lp_build_context *bld,
2947 LLVMValueRef x)
2948 {
2949 /* log2(e) = 1/log(2) */
2950 LLVMValueRef log2e = lp_build_const_vec(bld->gallivm, bld->type,
2951 1.4426950408889634);
2952
2953 assert(lp_check_value(bld->type, x));
2954
2955 return lp_build_exp2(bld, lp_build_mul(bld, log2e, x));
2956 }
2957
2958
2959 /**
2960 * Generate log(x)
2961 * Behavior is undefined with infs, 0s and nans
2962 */
2963 LLVMValueRef
2964 lp_build_log(struct lp_build_context *bld,
2965 LLVMValueRef x)
2966 {
2967 /* log(2) */
2968 LLVMValueRef log2 = lp_build_const_vec(bld->gallivm, bld->type,
2969 0.69314718055994529);
2970
2971 assert(lp_check_value(bld->type, x));
2972
2973 return lp_build_mul(bld, log2, lp_build_log2(bld, x));
2974 }
2975
2976 /**
2977 * Generate log(x) that handles edge cases (infs, 0s and nans)
2978 */
2979 LLVMValueRef
2980 lp_build_log_safe(struct lp_build_context *bld,
2981 LLVMValueRef x)
2982 {
2983 /* log(2) */
2984 LLVMValueRef log2 = lp_build_const_vec(bld->gallivm, bld->type,
2985 0.69314718055994529);
2986
2987 assert(lp_check_value(bld->type, x));
2988
2989 return lp_build_mul(bld, log2, lp_build_log2_safe(bld, x));
2990 }
2991
2992
2993 /**
2994 * Generate polynomial.
2995 * Ex: coeffs[0] + x * coeffs[1] + x^2 * coeffs[2].
2996 */
2997 LLVMValueRef
2998 lp_build_polynomial(struct lp_build_context *bld,
2999 LLVMValueRef x,
3000 const double *coeffs,
3001 unsigned num_coeffs)
3002 {
3003 const struct lp_type type = bld->type;
3004 LLVMValueRef even = NULL, odd = NULL;
3005 LLVMValueRef x2;
3006 unsigned i;
3007
3008 assert(lp_check_value(bld->type, x));
3009
3010 /* TODO: optimize the constant case */
3011 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
3012 LLVMIsConstant(x)) {
3013 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
3014 __FUNCTION__);
3015 }
3016
3017 /*
3018 * Calculate odd and even terms seperately to decrease data dependency
3019 * Ex:
3020 * c[0] + x^2 * c[2] + x^4 * c[4] ...
3021 * + x * (c[1] + x^2 * c[3] + x^4 * c[5]) ...
3022 */
3023 x2 = lp_build_mul(bld, x, x);
3024
3025 for (i = num_coeffs; i--; ) {
3026 LLVMValueRef coeff;
3027
3028 coeff = lp_build_const_vec(bld->gallivm, type, coeffs[i]);
3029
3030 if (i % 2 == 0) {
3031 if (even)
3032 even = lp_build_add(bld, coeff, lp_build_mul(bld, x2, even));
3033 else
3034 even = coeff;
3035 } else {
3036 if (odd)
3037 odd = lp_build_add(bld, coeff, lp_build_mul(bld, x2, odd));
3038 else
3039 odd = coeff;
3040 }
3041 }
3042
3043 if (odd)
3044 return lp_build_add(bld, lp_build_mul(bld, odd, x), even);
3045 else if (even)
3046 return even;
3047 else
3048 return bld->undef;
3049 }
3050
3051
3052 /**
3053 * Minimax polynomial fit of 2**x, in range [0, 1[
3054 */
3055 const double lp_build_exp2_polynomial[] = {
3056 #if EXP_POLY_DEGREE == 5
3057 1.000000000000000000000, /*XXX: was 0.999999925063526176901, recompute others */
3058 0.693153073200168932794,
3059 0.240153617044375388211,
3060 0.0558263180532956664775,
3061 0.00898934009049466391101,
3062 0.00187757667519147912699
3063 #elif EXP_POLY_DEGREE == 4
3064 1.00000259337069434683,
3065 0.693003834469974940458,
3066 0.24144275689150793076,
3067 0.0520114606103070150235,
3068 0.0135341679161270268764
3069 #elif EXP_POLY_DEGREE == 3
3070 0.999925218562710312959,
3071 0.695833540494823811697,
3072 0.226067155427249155588,
3073 0.0780245226406372992967
3074 #elif EXP_POLY_DEGREE == 2
3075 1.00172476321474503578,
3076 0.657636275736077639316,
3077 0.33718943461968720704
3078 #else
3079 #error
3080 #endif
3081 };
3082
3083
3084 LLVMValueRef
3085 lp_build_exp2(struct lp_build_context *bld,
3086 LLVMValueRef x)
3087 {
3088 LLVMBuilderRef builder = bld->gallivm->builder;
3089 const struct lp_type type = bld->type;
3090 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
3091 LLVMValueRef ipart = NULL;
3092 LLVMValueRef fpart = NULL;
3093 LLVMValueRef expipart = NULL;
3094 LLVMValueRef expfpart = NULL;
3095 LLVMValueRef res = NULL;
3096
3097 assert(lp_check_value(bld->type, x));
3098
3099 /* TODO: optimize the constant case */
3100 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
3101 LLVMIsConstant(x)) {
3102 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
3103 __FUNCTION__);
3104 }
3105
3106 assert(type.floating && type.width == 32);
3107
3108 /* We want to preserve NaN and make sure than for exp2 if x > 128,
3109 * the result is INF and if it's smaller than -126.9 the result is 0 */
3110 x = lp_build_min_ext(bld, lp_build_const_vec(bld->gallivm, type, 128.0), x,
3111 GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN);
3112 x = lp_build_max_ext(bld, lp_build_const_vec(bld->gallivm, type, -126.99999),
3113 x, GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN);
3114
3115 /* ipart = floor(x) */
3116 /* fpart = x - ipart */
3117 lp_build_ifloor_fract(bld, x, &ipart, &fpart);
3118
3119 /* expipart = (float) (1 << ipart) */
3120 expipart = LLVMBuildAdd(builder, ipart,
3121 lp_build_const_int_vec(bld->gallivm, type, 127), "");
3122 expipart = LLVMBuildShl(builder, expipart,
3123 lp_build_const_int_vec(bld->gallivm, type, 23), "");
3124 expipart = LLVMBuildBitCast(builder, expipart, vec_type, "");
3125
3126 expfpart = lp_build_polynomial(bld, fpart, lp_build_exp2_polynomial,
3127 Elements(lp_build_exp2_polynomial));
3128
3129 res = LLVMBuildFMul(builder, expipart, expfpart, "");
3130
3131 return res;
3132 }
3133
3134
3135
3136 /**
3137 * Extract the exponent of a IEEE-754 floating point value.
3138 *
3139 * Optionally apply an integer bias.
3140 *
3141 * Result is an integer value with
3142 *
3143 * ifloor(log2(x)) + bias
3144 */
3145 LLVMValueRef
3146 lp_build_extract_exponent(struct lp_build_context *bld,
3147 LLVMValueRef x,
3148 int bias)
3149 {
3150 LLVMBuilderRef builder = bld->gallivm->builder;
3151 const struct lp_type type = bld->type;
3152 unsigned mantissa = lp_mantissa(type);
3153 LLVMValueRef res;
3154
3155 assert(type.floating);
3156
3157 assert(lp_check_value(bld->type, x));
3158
3159 x = LLVMBuildBitCast(builder, x, bld->int_vec_type, "");
3160
3161 res = LLVMBuildLShr(builder, x,
3162 lp_build_const_int_vec(bld->gallivm, type, mantissa), "");
3163 res = LLVMBuildAnd(builder, res,
3164 lp_build_const_int_vec(bld->gallivm, type, 255), "");
3165 res = LLVMBuildSub(builder, res,
3166 lp_build_const_int_vec(bld->gallivm, type, 127 - bias), "");
3167
3168 return res;
3169 }
3170
3171
3172 /**
3173 * Extract the mantissa of the a floating.
3174 *
3175 * Result is a floating point value with
3176 *
3177 * x / floor(log2(x))
3178 */
3179 LLVMValueRef
3180 lp_build_extract_mantissa(struct lp_build_context *bld,
3181 LLVMValueRef x)
3182 {
3183 LLVMBuilderRef builder = bld->gallivm->builder;
3184 const struct lp_type type = bld->type;
3185 unsigned mantissa = lp_mantissa(type);
3186 LLVMValueRef mantmask = lp_build_const_int_vec(bld->gallivm, type,
3187 (1ULL << mantissa) - 1);
3188 LLVMValueRef one = LLVMConstBitCast(bld->one, bld->int_vec_type);
3189 LLVMValueRef res;
3190
3191 assert(lp_check_value(bld->type, x));
3192
3193 assert(type.floating);
3194
3195 x = LLVMBuildBitCast(builder, x, bld->int_vec_type, "");
3196
3197 /* res = x / 2**ipart */
3198 res = LLVMBuildAnd(builder, x, mantmask, "");
3199 res = LLVMBuildOr(builder, res, one, "");
3200 res = LLVMBuildBitCast(builder, res, bld->vec_type, "");
3201
3202 return res;
3203 }
3204
3205
3206
3207 /**
3208 * Minimax polynomial fit of log2((1.0 + sqrt(x))/(1.0 - sqrt(x)))/sqrt(x) ,for x in range of [0, 1/9[
3209 * These coefficients can be generate with
3210 * http://www.boost.org/doc/libs/1_36_0/libs/math/doc/sf_and_dist/html/math_toolkit/toolkit/internals2/minimax.html
3211 */
3212 const double lp_build_log2_polynomial[] = {
3213 #if LOG_POLY_DEGREE == 5
3214 2.88539008148777786488L,
3215 0.961796878841293367824L,
3216 0.577058946784739859012L,
3217 0.412914355135828735411L,
3218 0.308591899232910175289L,
3219 0.352376952300281371868L,
3220 #elif LOG_POLY_DEGREE == 4
3221 2.88539009343309178325L,
3222 0.961791550404184197881L,
3223 0.577440339438736392009L,
3224 0.403343858251329912514L,
3225 0.406718052498846252698L,
3226 #elif LOG_POLY_DEGREE == 3
3227 2.88538959748872753838L,
3228 0.961932915889597772928L,
3229 0.571118517972136195241L,
3230 0.493997535084709500285L,
3231 #else
3232 #error
3233 #endif
3234 };
3235
3236 /**
3237 * See http://www.devmaster.net/forums/showthread.php?p=43580
3238 * http://en.wikipedia.org/wiki/Logarithm#Calculation
3239 * http://www.nezumi.demon.co.uk/consult/logx.htm
3240 *
3241 * If handle_edge_cases is true the function will perform computations
3242 * to match the required D3D10+ behavior for each of the edge cases.
3243 * That means that if input is:
3244 * - less than zero (to and including -inf) then NaN will be returned
3245 * - equal to zero (-denorm, -0, +0 or +denorm), then -inf will be returned
3246 * - +infinity, then +infinity will be returned
3247 * - NaN, then NaN will be returned
3248 *
3249 * Those checks are fairly expensive so if you don't need them make sure
3250 * handle_edge_cases is false.
3251 */
3252 void
3253 lp_build_log2_approx(struct lp_build_context *bld,
3254 LLVMValueRef x,
3255 LLVMValueRef *p_exp,
3256 LLVMValueRef *p_floor_log2,
3257 LLVMValueRef *p_log2,
3258 boolean handle_edge_cases)
3259 {
3260 LLVMBuilderRef builder = bld->gallivm->builder;
3261 const struct lp_type type = bld->type;
3262 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
3263 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
3264
3265 LLVMValueRef expmask = lp_build_const_int_vec(bld->gallivm, type, 0x7f800000);
3266 LLVMValueRef mantmask = lp_build_const_int_vec(bld->gallivm, type, 0x007fffff);
3267 LLVMValueRef one = LLVMConstBitCast(bld->one, int_vec_type);
3268
3269 LLVMValueRef i = NULL;
3270 LLVMValueRef y = NULL;
3271 LLVMValueRef z = NULL;
3272 LLVMValueRef exp = NULL;
3273 LLVMValueRef mant = NULL;
3274 LLVMValueRef logexp = NULL;
3275 LLVMValueRef logmant = NULL;
3276 LLVMValueRef res = NULL;
3277
3278 assert(lp_check_value(bld->type, x));
3279
3280 if(p_exp || p_floor_log2 || p_log2) {
3281 /* TODO: optimize the constant case */
3282 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
3283 LLVMIsConstant(x)) {
3284 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
3285 __FUNCTION__);
3286 }
3287
3288 assert(type.floating && type.width == 32);
3289
3290 /*
3291 * We don't explicitly handle denormalized numbers. They will yield a
3292 * result in the neighbourhood of -127, which appears to be adequate
3293 * enough.
3294 */
3295
3296 i = LLVMBuildBitCast(builder, x, int_vec_type, "");
3297
3298 /* exp = (float) exponent(x) */
3299 exp = LLVMBuildAnd(builder, i, expmask, "");
3300 }
3301
3302 if(p_floor_log2 || p_log2) {
3303 logexp = LLVMBuildLShr(builder, exp, lp_build_const_int_vec(bld->gallivm, type, 23), "");
3304 logexp = LLVMBuildSub(builder, logexp, lp_build_const_int_vec(bld->gallivm, type, 127), "");
3305 logexp = LLVMBuildSIToFP(builder, logexp, vec_type, "");
3306 }
3307
3308 if (p_log2) {
3309 /* mant = 1 + (float) mantissa(x) */
3310 mant = LLVMBuildAnd(builder, i, mantmask, "");
3311 mant = LLVMBuildOr(builder, mant, one, "");
3312 mant = LLVMBuildBitCast(builder, mant, vec_type, "");
3313
3314 /* y = (mant - 1) / (mant + 1) */
3315 y = lp_build_div(bld,
3316 lp_build_sub(bld, mant, bld->one),
3317 lp_build_add(bld, mant, bld->one)
3318 );
3319
3320 /* z = y^2 */
3321 z = lp_build_mul(bld, y, y);
3322
3323 /* compute P(z) */
3324 logmant = lp_build_polynomial(bld, z, lp_build_log2_polynomial,
3325 Elements(lp_build_log2_polynomial));
3326
3327 /* logmant = y * P(z) */
3328 logmant = lp_build_mul(bld, y, logmant);
3329
3330 res = lp_build_add(bld, logmant, logexp);
3331
3332 if (type.floating && handle_edge_cases) {
3333 LLVMValueRef negmask, infmask, zmask;
3334 negmask = lp_build_cmp(bld, PIPE_FUNC_LESS, x,
3335 lp_build_const_vec(bld->gallivm, type, 0.0f));
3336 zmask = lp_build_cmp(bld, PIPE_FUNC_EQUAL, x,
3337 lp_build_const_vec(bld->gallivm, type, 0.0f));
3338 infmask = lp_build_cmp(bld, PIPE_FUNC_GEQUAL, x,
3339 lp_build_const_vec(bld->gallivm, type, INFINITY));
3340
3341 /* If x is qual to inf make sure we return inf */
3342 res = lp_build_select(bld, infmask,
3343 lp_build_const_vec(bld->gallivm, type, INFINITY),
3344 res);
3345 /* If x is qual to 0, return -inf */
3346 res = lp_build_select(bld, zmask,
3347 lp_build_const_vec(bld->gallivm, type, -INFINITY),
3348 res);
3349 /* If x is nan or less than 0, return nan */
3350 res = lp_build_select(bld, negmask,
3351 lp_build_const_vec(bld->gallivm, type, NAN),
3352 res);
3353 }
3354 }
3355
3356 if (p_exp) {
3357 exp = LLVMBuildBitCast(builder, exp, vec_type, "");
3358 *p_exp = exp;
3359 }
3360
3361 if (p_floor_log2)
3362 *p_floor_log2 = logexp;
3363
3364 if (p_log2)
3365 *p_log2 = res;
3366 }
3367
3368
3369 /*
3370 * log2 implementation which doesn't have special code to
3371 * handle edge cases (-inf, 0, inf, NaN). It's faster but
3372 * the results for those cases are undefined.
3373 */
3374 LLVMValueRef
3375 lp_build_log2(struct lp_build_context *bld,
3376 LLVMValueRef x)
3377 {
3378 LLVMValueRef res;
3379 lp_build_log2_approx(bld, x, NULL, NULL, &res, FALSE);
3380 return res;
3381 }
3382
3383 /*
3384 * Version of log2 which handles all edge cases.
3385 * Look at documentation of lp_build_log2_approx for
3386 * description of the behavior for each of the edge cases.
3387 */
3388 LLVMValueRef
3389 lp_build_log2_safe(struct lp_build_context *bld,
3390 LLVMValueRef x)
3391 {
3392 LLVMValueRef res;
3393 lp_build_log2_approx(bld, x, NULL, NULL, &res, TRUE);
3394 return res;
3395 }
3396
3397
3398 /**
3399 * Faster (and less accurate) log2.
3400 *
3401 * log2(x) = floor(log2(x)) - 1 + x / 2**floor(log2(x))
3402 *
3403 * Piece-wise linear approximation, with exact results when x is a
3404 * power of two.
3405 *
3406 * See http://www.flipcode.com/archives/Fast_log_Function.shtml
3407 */
3408 LLVMValueRef
3409 lp_build_fast_log2(struct lp_build_context *bld,
3410 LLVMValueRef x)
3411 {
3412 LLVMBuilderRef builder = bld->gallivm->builder;
3413 LLVMValueRef ipart;
3414 LLVMValueRef fpart;
3415
3416 assert(lp_check_value(bld->type, x));
3417
3418 assert(bld->type.floating);
3419
3420 /* ipart = floor(log2(x)) - 1 */
3421 ipart = lp_build_extract_exponent(bld, x, -1);
3422 ipart = LLVMBuildSIToFP(builder, ipart, bld->vec_type, "");
3423
3424 /* fpart = x / 2**ipart */
3425 fpart = lp_build_extract_mantissa(bld, x);
3426
3427 /* ipart + fpart */
3428 return LLVMBuildFAdd(builder, ipart, fpart, "");
3429 }
3430
3431
3432 /**
3433 * Fast implementation of iround(log2(x)).
3434 *
3435 * Not an approximation -- it should give accurate results all the time.
3436 */
3437 LLVMValueRef
3438 lp_build_ilog2(struct lp_build_context *bld,
3439 LLVMValueRef x)
3440 {
3441 LLVMBuilderRef builder = bld->gallivm->builder;
3442 LLVMValueRef sqrt2 = lp_build_const_vec(bld->gallivm, bld->type, M_SQRT2);
3443 LLVMValueRef ipart;
3444
3445 assert(bld->type.floating);
3446
3447 assert(lp_check_value(bld->type, x));
3448
3449 /* x * 2^(0.5) i.e., add 0.5 to the log2(x) */
3450 x = LLVMBuildFMul(builder, x, sqrt2, "");
3451
3452 /* ipart = floor(log2(x) + 0.5) */
3453 ipart = lp_build_extract_exponent(bld, x, 0);
3454
3455 return ipart;
3456 }
3457
3458 LLVMValueRef
3459 lp_build_mod(struct lp_build_context *bld,
3460 LLVMValueRef x,
3461 LLVMValueRef y)
3462 {
3463 LLVMBuilderRef builder = bld->gallivm->builder;
3464 LLVMValueRef res;
3465 const struct lp_type type = bld->type;
3466
3467 assert(lp_check_value(type, x));
3468 assert(lp_check_value(type, y));
3469
3470 if (type.floating)
3471 res = LLVMBuildFRem(builder, x, y, "");
3472 else if (type.sign)
3473 res = LLVMBuildSRem(builder, x, y, "");
3474 else
3475 res = LLVMBuildURem(builder, x, y, "");
3476 return res;
3477 }
3478
3479
3480 /*
3481 * For floating inputs it creates and returns a mask
3482 * which is all 1's for channels which are NaN.
3483 * Channels inside x which are not NaN will be 0.
3484 */
3485 LLVMValueRef
3486 lp_build_isnan(struct lp_build_context *bld,
3487 LLVMValueRef x)
3488 {
3489 LLVMValueRef mask;
3490 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, bld->type);
3491
3492 assert(bld->type.floating);
3493 assert(lp_check_value(bld->type, x));
3494
3495 mask = LLVMBuildFCmp(bld->gallivm->builder, LLVMRealOEQ, x, x,
3496 "isnotnan");
3497 mask = LLVMBuildNot(bld->gallivm->builder, mask, "");
3498 mask = LLVMBuildSExt(bld->gallivm->builder, mask, int_vec_type, "isnan");
3499 return mask;
3500 }
3501
3502 /* Returns all 1's for floating point numbers that are
3503 * finite numbers and returns all zeros for -inf,
3504 * inf and nan's */
3505 LLVMValueRef
3506 lp_build_isfinite(struct lp_build_context *bld,
3507 LLVMValueRef x)
3508 {
3509 LLVMBuilderRef builder = bld->gallivm->builder;
3510 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, bld->type);
3511 struct lp_type int_type = lp_int_type(bld->type);
3512 LLVMValueRef intx = LLVMBuildBitCast(builder, x, int_vec_type, "");
3513 LLVMValueRef infornan32 = lp_build_const_int_vec(bld->gallivm, bld->type,
3514 0x7f800000);
3515
3516 if (!bld->type.floating) {
3517 return lp_build_const_int_vec(bld->gallivm, bld->type, 0);
3518 }
3519 assert(bld->type.floating);
3520 assert(lp_check_value(bld->type, x));
3521 assert(bld->type.width == 32);
3522
3523 intx = LLVMBuildAnd(builder, intx, infornan32, "");
3524 return lp_build_compare(bld->gallivm, int_type, PIPE_FUNC_NOTEQUAL,
3525 intx, infornan32);
3526 }
3527
3528 /*
3529 * Returns true if the number is nan or inf and false otherwise.
3530 * The input has to be a floating point vector.
3531 */
3532 LLVMValueRef
3533 lp_build_is_inf_or_nan(struct gallivm_state *gallivm,
3534 const struct lp_type type,
3535 LLVMValueRef x)
3536 {
3537 LLVMBuilderRef builder = gallivm->builder;
3538 struct lp_type int_type = lp_int_type(type);
3539 LLVMValueRef const0 = lp_build_const_int_vec(gallivm, int_type,
3540 0x7f800000);
3541 LLVMValueRef ret;
3542
3543 assert(type.floating);
3544
3545 ret = LLVMBuildBitCast(builder, x, lp_build_vec_type(gallivm, int_type), "");
3546 ret = LLVMBuildAnd(builder, ret, const0, "");
3547 ret = lp_build_compare(gallivm, int_type, PIPE_FUNC_EQUAL,
3548 ret, const0);
3549
3550 return ret;
3551 }
3552
3553
3554 LLVMValueRef
3555 lp_build_fpstate_get(struct gallivm_state *gallivm)
3556 {
3557 if (util_cpu_caps.has_sse) {
3558 LLVMBuilderRef builder = gallivm->builder;
3559 LLVMValueRef mxcsr_ptr = lp_build_alloca(
3560 gallivm,
3561 LLVMInt32TypeInContext(gallivm->context),
3562 "mxcsr_ptr");
3563 LLVMValueRef mxcsr_ptr8 = LLVMBuildPointerCast(builder, mxcsr_ptr,
3564 LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0), "");
3565 lp_build_intrinsic(builder,
3566 "llvm.x86.sse.stmxcsr",
3567 LLVMVoidTypeInContext(gallivm->context),
3568 &mxcsr_ptr8, 1, 0);
3569 return mxcsr_ptr;
3570 }
3571 return 0;
3572 }
3573
3574 void
3575 lp_build_fpstate_set_denorms_zero(struct gallivm_state *gallivm,
3576 boolean zero)
3577 {
3578 if (util_cpu_caps.has_sse) {
3579 /* turn on DAZ (64) | FTZ (32768) = 32832 if available */
3580 int daz_ftz = _MM_FLUSH_ZERO_MASK;
3581
3582 LLVMBuilderRef builder = gallivm->builder;
3583 LLVMValueRef mxcsr_ptr = lp_build_fpstate_get(gallivm);
3584 LLVMValueRef mxcsr =
3585 LLVMBuildLoad(builder, mxcsr_ptr, "mxcsr");
3586
3587 if (util_cpu_caps.has_daz) {
3588 /* Enable denormals are zero mode */
3589 daz_ftz |= _MM_DENORMALS_ZERO_MASK;
3590 }
3591 if (zero) {
3592 mxcsr = LLVMBuildOr(builder, mxcsr,
3593 LLVMConstInt(LLVMTypeOf(mxcsr), daz_ftz, 0), "");
3594 } else {
3595 mxcsr = LLVMBuildAnd(builder, mxcsr,
3596 LLVMConstInt(LLVMTypeOf(mxcsr), ~daz_ftz, 0), "");
3597 }
3598
3599 LLVMBuildStore(builder, mxcsr, mxcsr_ptr);
3600 lp_build_fpstate_set(gallivm, mxcsr_ptr);
3601 }
3602 }
3603
3604 void
3605 lp_build_fpstate_set(struct gallivm_state *gallivm,
3606 LLVMValueRef mxcsr_ptr)
3607 {
3608 if (util_cpu_caps.has_sse) {
3609 LLVMBuilderRef builder = gallivm->builder;
3610 mxcsr_ptr = LLVMBuildPointerCast(builder, mxcsr_ptr,
3611 LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0), "");
3612 lp_build_intrinsic(builder,
3613 "llvm.x86.sse.ldmxcsr",
3614 LLVMVoidTypeInContext(gallivm->context),
3615 &mxcsr_ptr, 1, 0);
3616 }
3617 }