gallivm: fix rgtc2 format
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_format_s3tc.c
1 /**************************************************************************
2 *
3 * Copyright 2010-2018 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
18 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
19 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
20 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * The above copyright notice and this permission notice (including the
23 * next paragraph) shall be included in all copies or substantial portions
24 * of the Software.
25 *
26 **************************************************************************/
27
28
29 /**
30 * @file
31 * s3tc pixel format manipulation.
32 *
33 * @author Roland Scheidegger <sroland@vmware.com>
34 */
35
36
37 #include <llvm/Config/llvm-config.h>
38
39 #include "util/format/u_format.h"
40 #include "util/u_math.h"
41 #include "util/u_string.h"
42 #include "util/u_cpu_detect.h"
43 #include "util/u_debug.h"
44
45 #include "lp_bld_arit.h"
46 #include "lp_bld_type.h"
47 #include "lp_bld_const.h"
48 #include "lp_bld_conv.h"
49 #include "lp_bld_gather.h"
50 #include "lp_bld_format.h"
51 #include "lp_bld_logic.h"
52 #include "lp_bld_pack.h"
53 #include "lp_bld_flow.h"
54 #include "lp_bld_printf.h"
55 #include "lp_bld_struct.h"
56 #include "lp_bld_swizzle.h"
57 #include "lp_bld_init.h"
58 #include "lp_bld_debug.h"
59 #include "lp_bld_intr.h"
60
61
62 /**
63 * Reverse an interleave2_half
64 * (ie. pick every second element, independent lower/upper halfs)
65 * sse2 can only do that with 32bit (shufps) or larger elements
66 * natively. (Otherwise, and/pack (even) or shift/pack (odd)
67 * could be used, ideally llvm would do that for us.)
68 * XXX: Unfortunately, this does NOT translate to a shufps if those
69 * are int vectors (and casting will not help, llvm needs to recognize it
70 * as "real" float). Instead, llvm will use a pshufd/pshufd/punpcklqdq
71 * sequence which I'm pretty sure is a lot worse despite domain transition
72 * penalties with shufps (except maybe on Nehalem).
73 */
74 static LLVMValueRef
75 lp_build_uninterleave2_half(struct gallivm_state *gallivm,
76 struct lp_type type,
77 LLVMValueRef a,
78 LLVMValueRef b,
79 unsigned lo_hi)
80 {
81 LLVMValueRef shuffle, elems[LP_MAX_VECTOR_LENGTH];
82 unsigned i;
83
84 assert(type.length <= LP_MAX_VECTOR_LENGTH);
85 assert(lo_hi < 2);
86
87 if (type.length * type.width == 256) {
88 assert(type.length == 8);
89 assert(type.width == 32);
90 static const unsigned shufvals[8] = {0, 2, 8, 10, 4, 6, 12, 14};
91 for (i = 0; i < type.length; ++i) {
92 elems[i] = lp_build_const_int32(gallivm, shufvals[i] + lo_hi);
93 }
94 } else {
95 for (i = 0; i < type.length; ++i) {
96 elems[i] = lp_build_const_int32(gallivm, 2*i + lo_hi);
97 }
98 }
99
100 shuffle = LLVMConstVector(elems, type.length);
101
102 return LLVMBuildShuffleVector(gallivm->builder, a, b, shuffle, "");
103
104 }
105
106
107 /**
108 * Build shuffle for extending vectors.
109 */
110 static LLVMValueRef
111 lp_build_const_extend_shuffle(struct gallivm_state *gallivm,
112 unsigned n, unsigned length)
113 {
114 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
115 unsigned i;
116
117 assert(n <= length);
118 assert(length <= LP_MAX_VECTOR_LENGTH);
119
120 /* TODO: cache results in a static table */
121
122 for(i = 0; i < n; i++) {
123 elems[i] = lp_build_const_int32(gallivm, i);
124 }
125 for (i = n; i < length; i++) {
126 elems[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
127 }
128
129 return LLVMConstVector(elems, length);
130 }
131
132 static LLVMValueRef
133 lp_build_const_unpackx2_shuffle(struct gallivm_state *gallivm, unsigned n)
134 {
135 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
136 unsigned i, j;
137
138 assert(n <= LP_MAX_VECTOR_LENGTH);
139
140 /* TODO: cache results in a static table */
141
142 for(i = 0, j = 0; i < n; i += 2, ++j) {
143 elems[i + 0] = lp_build_const_int32(gallivm, 0 + j);
144 elems[i + 1] = lp_build_const_int32(gallivm, n + j);
145 elems[n + i + 0] = lp_build_const_int32(gallivm, 0 + n/2 + j);
146 elems[n + i + 1] = lp_build_const_int32(gallivm, n + n/2 + j);
147 }
148
149 return LLVMConstVector(elems, n * 2);
150 }
151
152 /*
153 * broadcast 1 element to all elements
154 */
155 static LLVMValueRef
156 lp_build_const_shuffle1(struct gallivm_state *gallivm,
157 unsigned index, unsigned n)
158 {
159 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
160 unsigned i;
161
162 assert(n <= LP_MAX_VECTOR_LENGTH);
163
164 /* TODO: cache results in a static table */
165
166 for (i = 0; i < n; i++) {
167 elems[i] = lp_build_const_int32(gallivm, index);
168 }
169
170 return LLVMConstVector(elems, n);
171 }
172
173 /*
174 * move 1 element to pos 0, rest undef
175 */
176 static LLVMValueRef
177 lp_build_shuffle1undef(struct gallivm_state *gallivm,
178 LLVMValueRef a, unsigned index, unsigned n)
179 {
180 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH], shuf;
181 unsigned i;
182
183 assert(n <= LP_MAX_VECTOR_LENGTH);
184
185 elems[0] = lp_build_const_int32(gallivm, index);
186
187 for (i = 1; i < n; i++) {
188 elems[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
189 }
190 shuf = LLVMConstVector(elems, n);
191
192 return LLVMBuildShuffleVector(gallivm->builder, a, a, shuf, "");
193 }
194
195 static boolean
196 format_dxt1_variant(enum pipe_format format)
197 {
198 return format == PIPE_FORMAT_DXT1_RGB ||
199 format == PIPE_FORMAT_DXT1_RGBA ||
200 format == PIPE_FORMAT_DXT1_SRGB ||
201 format == PIPE_FORMAT_DXT1_SRGBA;
202
203 }
204
205 /**
206 * Gather elements from scatter positions in memory into vectors.
207 * This is customised for fetching texels from s3tc textures.
208 * For SSE, typical value is length=4.
209 *
210 * @param length length of the offsets
211 * @param colors the stored colors of the blocks will be extracted into this.
212 * @param codewords the codewords of the blocks will be extracted into this.
213 * @param alpha_lo used for storing lower 32bit of alpha components for dxt3/5
214 * @param alpha_hi used for storing higher 32bit of alpha components for dxt3/5
215 * @param base_ptr base pointer, should be a i8 pointer type.
216 * @param offsets vector with offsets
217 */
218 static void
219 lp_build_gather_s3tc(struct gallivm_state *gallivm,
220 unsigned length,
221 const struct util_format_description *format_desc,
222 LLVMValueRef *colors,
223 LLVMValueRef *codewords,
224 LLVMValueRef *alpha_lo,
225 LLVMValueRef *alpha_hi,
226 LLVMValueRef base_ptr,
227 LLVMValueRef offsets)
228 {
229 LLVMBuilderRef builder = gallivm->builder;
230 unsigned block_bits = format_desc->block.bits;
231 unsigned i;
232 LLVMValueRef elems[8];
233 LLVMTypeRef type32 = LLVMInt32TypeInContext(gallivm->context);
234 LLVMTypeRef type64 = LLVMInt64TypeInContext(gallivm->context);
235 LLVMTypeRef type32dxt;
236 struct lp_type lp_type32dxt;
237
238 memset(&lp_type32dxt, 0, sizeof lp_type32dxt);
239 lp_type32dxt.width = 32;
240 lp_type32dxt.length = block_bits / 32;
241 type32dxt = lp_build_vec_type(gallivm, lp_type32dxt);
242
243 assert(block_bits == 64 || block_bits == 128);
244 assert(length == 1 || length == 4 || length == 8);
245
246 for (i = 0; i < length; ++i) {
247 elems[i] = lp_build_gather_elem(gallivm, length,
248 block_bits, block_bits, TRUE,
249 base_ptr, offsets, i, FALSE);
250 elems[i] = LLVMBuildBitCast(builder, elems[i], type32dxt, "");
251 }
252 if (length == 1) {
253 LLVMValueRef elem = elems[0];
254 if (block_bits == 128) {
255 *alpha_lo = LLVMBuildExtractElement(builder, elem,
256 lp_build_const_int32(gallivm, 0), "");
257 *alpha_hi = LLVMBuildExtractElement(builder, elem,
258 lp_build_const_int32(gallivm, 1), "");
259 *colors = LLVMBuildExtractElement(builder, elem,
260 lp_build_const_int32(gallivm, 2), "");
261 *codewords = LLVMBuildExtractElement(builder, elem,
262 lp_build_const_int32(gallivm, 3), "");
263 }
264 else {
265 *alpha_lo = LLVMGetUndef(type32);
266 *alpha_hi = LLVMGetUndef(type32);
267 *colors = LLVMBuildExtractElement(builder, elem,
268 lp_build_const_int32(gallivm, 0), "");
269 *codewords = LLVMBuildExtractElement(builder, elem,
270 lp_build_const_int32(gallivm, 1), "");
271 }
272 }
273 else {
274 LLVMValueRef tmp[4], cc01, cc23;
275 struct lp_type lp_type32, lp_type64;
276 memset(&lp_type32, 0, sizeof lp_type32);
277 lp_type32.width = 32;
278 lp_type32.length = length;
279 memset(&lp_type64, 0, sizeof lp_type64);
280 lp_type64.width = 64;
281 lp_type64.length = length/2;
282
283 if (block_bits == 128) {
284 if (length == 8) {
285 for (i = 0; i < 4; ++i) {
286 tmp[0] = elems[i];
287 tmp[1] = elems[i+4];
288 elems[i] = lp_build_concat(gallivm, tmp, lp_type32dxt, 2);
289 }
290 }
291 lp_build_transpose_aos(gallivm, lp_type32, elems, tmp);
292 *colors = tmp[2];
293 *codewords = tmp[3];
294 *alpha_lo = tmp[0];
295 *alpha_hi = tmp[1];
296 } else {
297 LLVMTypeRef type64_vec = LLVMVectorType(type64, length/2);
298 LLVMTypeRef type32_vec = LLVMVectorType(type32, length);
299
300 for (i = 0; i < length; ++i) {
301 /* no-op shuffle */
302 elems[i] = LLVMBuildShuffleVector(builder, elems[i],
303 LLVMGetUndef(type32dxt),
304 lp_build_const_extend_shuffle(gallivm, 2, 4), "");
305 }
306 if (length == 8) {
307 struct lp_type lp_type32_4 = {0};
308 lp_type32_4.width = 32;
309 lp_type32_4.length = 4;
310 for (i = 0; i < 4; ++i) {
311 tmp[0] = elems[i];
312 tmp[1] = elems[i+4];
313 elems[i] = lp_build_concat(gallivm, tmp, lp_type32_4, 2);
314 }
315 }
316 cc01 = lp_build_interleave2_half(gallivm, lp_type32, elems[0], elems[1], 0);
317 cc23 = lp_build_interleave2_half(gallivm, lp_type32, elems[2], elems[3], 0);
318 cc01 = LLVMBuildBitCast(builder, cc01, type64_vec, "");
319 cc23 = LLVMBuildBitCast(builder, cc23, type64_vec, "");
320 *colors = lp_build_interleave2_half(gallivm, lp_type64, cc01, cc23, 0);
321 *codewords = lp_build_interleave2_half(gallivm, lp_type64, cc01, cc23, 1);
322 *colors = LLVMBuildBitCast(builder, *colors, type32_vec, "");
323 *codewords = LLVMBuildBitCast(builder, *codewords, type32_vec, "");
324 }
325 }
326 }
327
328 /** Convert from <n x i32> containing 2 x n rgb565 colors
329 * to 2 <n x i32> rgba8888 colors
330 * This is the most optimized version I can think of
331 * should be nearly as fast as decoding only one color
332 * NOTE: alpha channel will be set to 0
333 * @param colors is a <n x i32> vector containing the rgb565 colors
334 */
335 static void
336 color_expand2_565_to_8888(struct gallivm_state *gallivm,
337 unsigned n,
338 LLVMValueRef colors,
339 LLVMValueRef *color0,
340 LLVMValueRef *color1)
341 {
342 LLVMBuilderRef builder = gallivm->builder;
343 LLVMValueRef r, g, b, rblo, glo;
344 LLVMValueRef rgblomask, rb, rgb0, rgb1;
345 struct lp_type type, type16, type8;
346
347 assert(n > 1);
348
349 memset(&type, 0, sizeof type);
350 type.width = 32;
351 type.length = n;
352
353 memset(&type16, 0, sizeof type16);
354 type16.width = 16;
355 type16.length = 2 * n;
356
357 memset(&type8, 0, sizeof type8);
358 type8.width = 8;
359 type8.length = 4 * n;
360
361 rgblomask = lp_build_const_int_vec(gallivm, type16, 0x0707);
362 colors = LLVMBuildBitCast(builder, colors,
363 lp_build_vec_type(gallivm, type16), "");
364 /* move r into low 8 bits, b into high 8 bits, g into another reg (low bits)
365 * make sure low bits of r are zero - could use AND but requires constant */
366 r = LLVMBuildLShr(builder, colors, lp_build_const_int_vec(gallivm, type16, 11), "");
367 r = LLVMBuildShl(builder, r, lp_build_const_int_vec(gallivm, type16, 3), "");
368 b = LLVMBuildShl(builder, colors, lp_build_const_int_vec(gallivm, type16, 11), "");
369 rb = LLVMBuildOr(builder, r, b, "");
370 rblo = LLVMBuildLShr(builder, rb, lp_build_const_int_vec(gallivm, type16, 5), "");
371 /* don't have byte shift hence need mask */
372 rblo = LLVMBuildAnd(builder, rblo, rgblomask, "");
373 rb = LLVMBuildOr(builder, rb, rblo, "");
374
375 /* make sure low bits of g are zero */
376 g = LLVMBuildAnd(builder, colors, lp_build_const_int_vec(gallivm, type16, 0x07e0), "");
377 g = LLVMBuildLShr(builder, g, lp_build_const_int_vec(gallivm, type16, 3), "");
378 glo = LLVMBuildLShr(builder, g, lp_build_const_int_vec(gallivm, type16, 6), "");
379 g = LLVMBuildOr(builder, g, glo, "");
380
381 rb = LLVMBuildBitCast(builder, rb, lp_build_vec_type(gallivm, type8), "");
382 g = LLVMBuildBitCast(builder, g, lp_build_vec_type(gallivm, type8), "");
383 rgb0 = lp_build_interleave2_half(gallivm, type8, rb, g, 0);
384 rgb1 = lp_build_interleave2_half(gallivm, type8, rb, g, 1);
385
386 rgb0 = LLVMBuildBitCast(builder, rgb0, lp_build_vec_type(gallivm, type), "");
387 rgb1 = LLVMBuildBitCast(builder, rgb1, lp_build_vec_type(gallivm, type), "");
388
389 /* rgb0 is rgb00, rgb01, rgb10, rgb11
390 * instead of rgb00, rgb10, rgb20, rgb30 hence need reshuffle
391 * on x86 this _should_ just generate one shufps...
392 */
393 *color0 = lp_build_uninterleave2_half(gallivm, type, rgb0, rgb1, 0);
394 *color1 = lp_build_uninterleave2_half(gallivm, type, rgb0, rgb1, 1);
395 }
396
397
398 /** Convert from <n x i32> containing rgb565 colors
399 * (in first 16 bits) to <n x i32> rgba8888 colors
400 * bits 16-31 MBZ
401 * NOTE: alpha channel will be set to 0
402 * @param colors is a <n x i32> vector containing the rgb565 colors
403 */
404 static LLVMValueRef
405 color_expand_565_to_8888(struct gallivm_state *gallivm,
406 unsigned n,
407 LLVMValueRef colors)
408 {
409 LLVMBuilderRef builder = gallivm->builder;
410 LLVMValueRef rgba, r, g, b, rgblo, glo;
411 LLVMValueRef rbhimask, g6mask, rgblomask;
412 struct lp_type type;
413 memset(&type, 0, sizeof type);
414 type.width = 32;
415 type.length = n;
416
417 /* color expansion:
418 * first extract and shift colors into their final locations
419 * (high bits - low bits zero at this point)
420 * then replicate highest bits to the lowest bits
421 * note rb replication can be done in parallel but not g
422 * (different shift)
423 * r5mask = 0xf800, g6mask = 0x07e0, b5mask = 0x001f
424 * rhigh = 8, ghigh = 5, bhigh = 19
425 * rblow = 5, glow = 6
426 * rgblowmask = 0x00070307
427 * r = colors >> rhigh
428 * b = colors << bhigh
429 * g = (colors & g6mask) << ghigh
430 * rb = (r | b) rbhimask
431 * rbtmp = rb >> rblow
432 * gtmp = rb >> glow
433 * rbtmp = rbtmp | gtmp
434 * rbtmp = rbtmp & rgblowmask
435 * rgb = rb | g | rbtmp
436 */
437 g6mask = lp_build_const_int_vec(gallivm, type, 0x07e0);
438 rbhimask = lp_build_const_int_vec(gallivm, type, 0x00f800f8);
439 rgblomask = lp_build_const_int_vec(gallivm, type, 0x00070307);
440
441 r = LLVMBuildLShr(builder, colors, lp_build_const_int_vec(gallivm, type, 8), "");
442 b = LLVMBuildShl(builder, colors, lp_build_const_int_vec(gallivm, type, 19), "");
443 g = LLVMBuildAnd(builder, colors, g6mask, "");
444 g = LLVMBuildShl(builder, g, lp_build_const_int_vec(gallivm, type, 5), "");
445 rgba = LLVMBuildOr(builder, r, b, "");
446 rgba = LLVMBuildAnd(builder, rgba, rbhimask, "");
447 rgblo = LLVMBuildLShr(builder, rgba, lp_build_const_int_vec(gallivm, type, 5), "");
448 glo = LLVMBuildLShr(builder, g, lp_build_const_int_vec(gallivm, type, 6), "");
449 rgblo = LLVMBuildOr(builder, rgblo, glo, "");
450 rgblo = LLVMBuildAnd(builder, rgblo, rgblomask, "");
451 rgba = LLVMBuildOr(builder, rgba, g, "");
452 rgba = LLVMBuildOr(builder, rgba, rgblo, "");
453
454 return rgba;
455 }
456
457
458 /*
459 * Average two byte vectors. (Will always round up.)
460 */
461 static LLVMValueRef
462 lp_build_pavgb(struct lp_build_context *bld8,
463 LLVMValueRef v0,
464 LLVMValueRef v1)
465 {
466 struct gallivm_state *gallivm = bld8->gallivm;
467 LLVMBuilderRef builder = gallivm->builder;
468 assert(bld8->type.width == 8);
469 assert(bld8->type.length == 16 || bld8->type.length == 32);
470 if (LLVM_VERSION_MAJOR < 6) {
471 LLVMValueRef intrargs[2];
472 char *intr_name = bld8->type.length == 32 ? "llvm.x86.avx2.pavg.b" :
473 "llvm.x86.sse2.pavg.b";
474 intrargs[0] = v0;
475 intrargs[1] = v1;
476 return lp_build_intrinsic(builder, intr_name,
477 bld8->vec_type, intrargs, 2, 0);
478 } else {
479 /*
480 * Must match llvm's autoupgrade of pavg.b intrinsic to be useful.
481 * You better hope the backend code manages to detect the pattern, and
482 * the pattern doesn't change there...
483 */
484 struct lp_type type_ext = bld8->type;
485 LLVMTypeRef vec_type_ext;
486 LLVMValueRef res;
487 LLVMValueRef ext_one;
488 type_ext.width = 16;
489 vec_type_ext = lp_build_vec_type(gallivm, type_ext);
490 ext_one = lp_build_const_vec(gallivm, type_ext, 1);
491
492 v0 = LLVMBuildZExt(builder, v0, vec_type_ext, "");
493 v1 = LLVMBuildZExt(builder, v1, vec_type_ext, "");
494 res = LLVMBuildAdd(builder, v0, v1, "");
495 res = LLVMBuildAdd(builder, res, ext_one, "");
496 res = LLVMBuildLShr(builder, res, ext_one, "");
497 res = LLVMBuildTrunc(builder, res, bld8->vec_type, "");
498 return res;
499 }
500 }
501
502 /**
503 * Calculate 1/3(v1-v0) + v0
504 * and 2*1/3(v1-v0) + v0
505 */
506 static void
507 lp_build_lerp23(struct lp_build_context *bld,
508 LLVMValueRef v0,
509 LLVMValueRef v1,
510 LLVMValueRef *res0,
511 LLVMValueRef *res1)
512 {
513 struct gallivm_state *gallivm = bld->gallivm;
514 LLVMValueRef x, x_lo, x_hi, delta_lo, delta_hi;
515 LLVMValueRef mul_lo, mul_hi, v0_lo, v0_hi, v1_lo, v1_hi, tmp;
516 const struct lp_type type = bld->type;
517 LLVMBuilderRef builder = bld->gallivm->builder;
518 struct lp_type i16_type = lp_wider_type(type);
519 struct lp_build_context bld2;
520
521 assert(lp_check_value(type, v0));
522 assert(lp_check_value(type, v1));
523 assert(!type.floating && !type.fixed && !type.norm && type.width == 8);
524
525 lp_build_context_init(&bld2, gallivm, i16_type);
526 bld2.type.sign = TRUE;
527 x = lp_build_const_int_vec(gallivm, bld->type, 255*1/3);
528
529 /* FIXME: use native avx256 unpack/pack */
530 lp_build_unpack2(gallivm, type, i16_type, x, &x_lo, &x_hi);
531 lp_build_unpack2(gallivm, type, i16_type, v0, &v0_lo, &v0_hi);
532 lp_build_unpack2(gallivm, type, i16_type, v1, &v1_lo, &v1_hi);
533 delta_lo = lp_build_sub(&bld2, v1_lo, v0_lo);
534 delta_hi = lp_build_sub(&bld2, v1_hi, v0_hi);
535
536 mul_lo = LLVMBuildMul(builder, x_lo, delta_lo, "");
537 mul_hi = LLVMBuildMul(builder, x_hi, delta_hi, "");
538
539 x_lo = LLVMBuildLShr(builder, mul_lo, lp_build_const_int_vec(gallivm, i16_type, 8), "");
540 x_hi = LLVMBuildLShr(builder, mul_hi, lp_build_const_int_vec(gallivm, i16_type, 8), "");
541 /* lerp optimization: pack now, do add afterwards */
542 tmp = lp_build_pack2(gallivm, i16_type, type, x_lo, x_hi);
543 *res0 = lp_build_add(bld, tmp, v0);
544
545 x_lo = LLVMBuildLShr(builder, mul_lo, lp_build_const_int_vec(gallivm, i16_type, 7), "");
546 x_hi = LLVMBuildLShr(builder, mul_hi, lp_build_const_int_vec(gallivm, i16_type, 7), "");
547 /* unlike above still need mask (but add still afterwards). */
548 x_lo = LLVMBuildAnd(builder, x_lo, lp_build_const_int_vec(gallivm, i16_type, 0xff), "");
549 x_hi = LLVMBuildAnd(builder, x_hi, lp_build_const_int_vec(gallivm, i16_type, 0xff), "");
550 tmp = lp_build_pack2(gallivm, i16_type, type, x_lo, x_hi);
551 *res1 = lp_build_add(bld, tmp, v0);
552 }
553
554 /**
555 * Convert from <n x i64> s3tc dxt1 to <4n x i8> RGBA AoS
556 * @param colors is a <n x i32> vector with n x 2x16bit colors
557 * @param codewords is a <n x i32> vector containing the codewords
558 * @param i is a <n x i32> vector with the x pixel coordinate (0 to 3)
559 * @param j is a <n x i32> vector with the y pixel coordinate (0 to 3)
560 */
561 static LLVMValueRef
562 s3tc_dxt1_full_to_rgba_aos(struct gallivm_state *gallivm,
563 unsigned n,
564 enum pipe_format format,
565 LLVMValueRef colors,
566 LLVMValueRef codewords,
567 LLVMValueRef i,
568 LLVMValueRef j)
569 {
570 LLVMBuilderRef builder = gallivm->builder;
571 LLVMValueRef color0, color1, color2, color3, color2_2, color3_2;
572 LLVMValueRef rgba, a, colors0, colors1, col0, col1, const2;
573 LLVMValueRef bit_pos, sel_mask, sel_lo, sel_hi, indices;
574 struct lp_type type, type8;
575 struct lp_build_context bld8, bld32;
576 boolean is_dxt1_variant = format_dxt1_variant(format);
577
578 memset(&type, 0, sizeof type);
579 type.width = 32;
580 type.length = n;
581
582 memset(&type8, 0, sizeof type8);
583 type8.width = 8;
584 type8.length = 4*n;
585
586 assert(lp_check_value(type, i));
587 assert(lp_check_value(type, j));
588
589 a = lp_build_const_int_vec(gallivm, type, 0xff000000);
590
591 lp_build_context_init(&bld32, gallivm, type);
592 lp_build_context_init(&bld8, gallivm, type8);
593
594 /*
595 * works as follows:
596 * - expand color0/color1 to rgba8888
597 * - calculate color2/3 (interpolation) according to color0 < color1 rules
598 * - calculate color2/3 according to color0 >= color1 rules
599 * - do selection of color2/3 according to comparison of color0/1
600 * - extract indices (vector shift).
601 * - use compare/select to select the correct color. Since we have 2bit
602 * indices (and 4 colors), needs at least three compare/selects.
603 */
604 /*
605 * expand the two colors
606 */
607 col0 = LLVMBuildAnd(builder, colors, lp_build_const_int_vec(gallivm, type, 0x0000ffff), "");
608 col1 = LLVMBuildLShr(builder, colors, lp_build_const_int_vec(gallivm, type, 16), "");
609 if (n > 1) {
610 color_expand2_565_to_8888(gallivm, n, colors, &color0, &color1);
611 }
612 else {
613 color0 = color_expand_565_to_8888(gallivm, n, col0);
614 color1 = color_expand_565_to_8888(gallivm, n, col1);
615 }
616
617 /*
618 * interpolate colors
619 * color2_1 is 2/3 color0 + 1/3 color1
620 * color3_1 is 1/3 color0 + 2/3 color1
621 * color2_2 is 1/2 color0 + 1/2 color1
622 * color3_2 is 0
623 */
624
625 colors0 = LLVMBuildBitCast(builder, color0, bld8.vec_type, "");
626 colors1 = LLVMBuildBitCast(builder, color1, bld8.vec_type, "");
627 /* can combine 2 lerps into one mostly - still looks expensive enough. */
628 lp_build_lerp23(&bld8, colors0, colors1, &color2, &color3);
629 color2 = LLVMBuildBitCast(builder, color2, bld32.vec_type, "");
630 color3 = LLVMBuildBitCast(builder, color3, bld32.vec_type, "");
631
632 /* dxt3/5 always use 4-color encoding */
633 if (is_dxt1_variant) {
634 /* fix up alpha */
635 if (format == PIPE_FORMAT_DXT1_RGBA ||
636 format == PIPE_FORMAT_DXT1_SRGBA) {
637 color0 = LLVMBuildOr(builder, color0, a, "");
638 color1 = LLVMBuildOr(builder, color1, a, "");
639 color3 = LLVMBuildOr(builder, color3, a, "");
640 }
641 /*
642 * XXX with sse2 and 16x8 vectors, should use pavgb even when n == 1.
643 * Much cheaper (but we don't care that much if n == 1).
644 */
645 if ((util_cpu_caps.has_sse2 && n == 4) ||
646 (util_cpu_caps.has_avx2 && n == 8)) {
647 color2_2 = lp_build_pavgb(&bld8, colors0, colors1);
648 color2_2 = LLVMBuildBitCast(builder, color2_2, bld32.vec_type, "");
649 }
650 else {
651 struct lp_type i16_type = lp_wider_type(type8);
652 struct lp_build_context bld2;
653 LLVMValueRef v0_lo, v0_hi, v1_lo, v1_hi, addlo, addhi;
654
655 lp_build_context_init(&bld2, gallivm, i16_type);
656 bld2.type.sign = TRUE;
657
658 /*
659 * This isn't as expensive as it looks (the unpack is the same as
660 * for lerp23), with correct rounding.
661 * (Note that while rounding is correct, this will always round down,
662 * whereas pavgb will always round up.)
663 */
664 /* FIXME: use native avx256 unpack/pack */
665 lp_build_unpack2(gallivm, type8, i16_type, colors0, &v0_lo, &v0_hi);
666 lp_build_unpack2(gallivm, type8, i16_type, colors1, &v1_lo, &v1_hi);
667
668 addlo = lp_build_add(&bld2, v0_lo, v1_lo);
669 addhi = lp_build_add(&bld2, v0_hi, v1_hi);
670 addlo = LLVMBuildLShr(builder, addlo,
671 lp_build_const_int_vec(gallivm, i16_type, 1), "");
672 addhi = LLVMBuildLShr(builder, addhi,
673 lp_build_const_int_vec(gallivm, i16_type, 1), "");
674 color2_2 = lp_build_pack2(gallivm, i16_type, type8, addlo, addhi);
675 color2_2 = LLVMBuildBitCast(builder, color2_2, bld32.vec_type, "");
676 }
677 color3_2 = lp_build_const_int_vec(gallivm, type, 0);
678
679 /* select between colors2/3 */
680 /* signed compare is faster saves some xors */
681 type.sign = TRUE;
682 sel_mask = lp_build_compare(gallivm, type, PIPE_FUNC_GREATER, col0, col1);
683 color2 = lp_build_select(&bld32, sel_mask, color2, color2_2);
684 color3 = lp_build_select(&bld32, sel_mask, color3, color3_2);
685 type.sign = FALSE;
686
687 if (format == PIPE_FORMAT_DXT1_RGBA ||
688 format == PIPE_FORMAT_DXT1_SRGBA) {
689 color2 = LLVMBuildOr(builder, color2, a, "");
690 }
691 }
692
693 const2 = lp_build_const_int_vec(gallivm, type, 2);
694 /* extract 2-bit index values */
695 bit_pos = LLVMBuildShl(builder, j, const2, "");
696 bit_pos = LLVMBuildAdd(builder, bit_pos, i, "");
697 bit_pos = LLVMBuildAdd(builder, bit_pos, bit_pos, "");
698 /*
699 * NOTE: This innocent looking shift is very expensive with x86/ssex.
700 * Shifts with per-elemnent shift count get roughly translated to
701 * extract (count), extract (value), shift, move (back to xmm), unpack
702 * per element!
703 * So about 20 instructions here for 4xi32.
704 * Newer llvm versions (3.7+) will not do extract/insert but use a
705 * a couple constant count vector shifts plus shuffles. About same
706 * amount of instructions unfortunately...
707 * Would get much worse with 8xi16 even...
708 * We could actually do better here:
709 * - subtract bit_pos from 128+30, shl 23, convert float to int...
710 * - now do mul with codewords followed by shr 30...
711 * But requires 32bit->32bit mul, sse41 only (well that's emulatable
712 * with 2 32bit->64bit muls...) and not exactly cheap
713 * AVX2, of course, fixes this nonsense.
714 */
715 indices = LLVMBuildLShr(builder, codewords, bit_pos, "");
716
717 /* finally select the colors */
718 sel_lo = LLVMBuildAnd(builder, indices, bld32.one, "");
719 sel_lo = lp_build_compare(gallivm, type, PIPE_FUNC_EQUAL, sel_lo, bld32.one);
720 color0 = lp_build_select(&bld32, sel_lo, color1, color0);
721 color2 = lp_build_select(&bld32, sel_lo, color3, color2);
722 sel_hi = LLVMBuildAnd(builder, indices, const2, "");
723 sel_hi = lp_build_compare(gallivm, type, PIPE_FUNC_EQUAL, sel_hi, const2);
724 rgba = lp_build_select(&bld32, sel_hi, color2, color0);
725
726 /* fix up alpha */
727 if (format == PIPE_FORMAT_DXT1_RGB ||
728 format == PIPE_FORMAT_DXT1_SRGB) {
729 rgba = LLVMBuildOr(builder, rgba, a, "");
730 }
731 return LLVMBuildBitCast(builder, rgba, bld8.vec_type, "");
732 }
733
734
735 static LLVMValueRef
736 s3tc_dxt1_to_rgba_aos(struct gallivm_state *gallivm,
737 unsigned n,
738 enum pipe_format format,
739 LLVMValueRef colors,
740 LLVMValueRef codewords,
741 LLVMValueRef i,
742 LLVMValueRef j)
743 {
744 return s3tc_dxt1_full_to_rgba_aos(gallivm, n, format,
745 colors, codewords, i, j);
746 }
747
748
749 /**
750 * Convert from <n x i128> s3tc dxt3 to <4n x i8> RGBA AoS
751 * @param colors is a <n x i32> vector with n x 2x16bit colors
752 * @param codewords is a <n x i32> vector containing the codewords
753 * @param alphas is a <n x i64> vector containing the alpha values
754 * @param i is a <n x i32> vector with the x pixel coordinate (0 to 3)
755 * @param j is a <n x i32> vector with the y pixel coordinate (0 to 3)
756 */
757 static LLVMValueRef
758 s3tc_dxt3_to_rgba_aos(struct gallivm_state *gallivm,
759 unsigned n,
760 enum pipe_format format,
761 LLVMValueRef colors,
762 LLVMValueRef codewords,
763 LLVMValueRef alpha_low,
764 LLVMValueRef alpha_hi,
765 LLVMValueRef i,
766 LLVMValueRef j)
767 {
768 LLVMBuilderRef builder = gallivm->builder;
769 LLVMValueRef rgba, tmp, tmp2;
770 LLVMValueRef bit_pos, sel_mask;
771 struct lp_type type, type8;
772 struct lp_build_context bld;
773
774 memset(&type, 0, sizeof type);
775 type.width = 32;
776 type.length = n;
777
778 memset(&type8, 0, sizeof type8);
779 type8.width = 8;
780 type8.length = n*4;
781
782 assert(lp_check_value(type, i));
783 assert(lp_check_value(type, j));
784
785 lp_build_context_init(&bld, gallivm, type);
786
787 rgba = s3tc_dxt1_to_rgba_aos(gallivm, n, format,
788 colors, codewords, i, j);
789
790 rgba = LLVMBuildBitCast(builder, rgba, bld.vec_type, "");
791
792 /*
793 * Extract alpha values. Since we now need to select from
794 * which 32bit vector values are fetched, construct selection
795 * mask from highest bit of bit_pos, and use select, then shift
796 * according to the bit_pos (without the highest bit).
797 * Note this is pointless for n == 1 case. Could just
798 * directly use 64bit arithmetic if we'd extract 64bit
799 * alpha value instead of 2x32...
800 */
801 /* pos = 4*(4j+i) */
802 bit_pos = LLVMBuildShl(builder, j, lp_build_const_int_vec(gallivm, type, 2), "");
803 bit_pos = LLVMBuildAdd(builder, bit_pos, i, "");
804 bit_pos = LLVMBuildShl(builder, bit_pos,
805 lp_build_const_int_vec(gallivm, type, 2), "");
806 sel_mask = LLVMBuildLShr(builder, bit_pos,
807 lp_build_const_int_vec(gallivm, type, 5), "");
808 sel_mask = LLVMBuildSub(builder, sel_mask, bld.one, "");
809 tmp = lp_build_select(&bld, sel_mask, alpha_low, alpha_hi);
810 bit_pos = LLVMBuildAnd(builder, bit_pos,
811 lp_build_const_int_vec(gallivm, type, 0xffffffdf), "");
812 /* Warning: slow shift with per element count (without avx2) */
813 /*
814 * Could do pshufb here as well - just use appropriate 2 bits in bit_pos
815 * to select the right byte with pshufb. Then for the remaining one bit
816 * just do shift/select.
817 */
818 tmp = LLVMBuildLShr(builder, tmp, bit_pos, "");
819
820 /* combined expand from a4 to a8 and shift into position */
821 tmp = LLVMBuildShl(builder, tmp, lp_build_const_int_vec(gallivm, type, 28), "");
822 tmp2 = LLVMBuildLShr(builder, tmp, lp_build_const_int_vec(gallivm, type, 4), "");
823 tmp = LLVMBuildOr(builder, tmp, tmp2, "");
824
825 rgba = LLVMBuildOr(builder, tmp, rgba, "");
826
827 return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
828 }
829
830 static LLVMValueRef
831 lp_build_lerpdxta(struct gallivm_state *gallivm,
832 LLVMValueRef alpha0,
833 LLVMValueRef alpha1,
834 LLVMValueRef code,
835 LLVMValueRef sel_mask,
836 unsigned n)
837 {
838 /*
839 * note we're doing lerp in 16bit since 32bit pmulld is only available in sse41
840 * (plus pmullw is actually faster...)
841 * we just pretend our 32bit values (which are really only 8bit) are 16bits.
842 * Note that this is obviously a disaster for the scalar case.
843 */
844 LLVMBuilderRef builder = gallivm->builder;
845 LLVMValueRef delta, ainterp;
846 LLVMValueRef weight5, weight7, weight;
847 struct lp_type type32, type16, type8;
848 struct lp_build_context bld16;
849
850 memset(&type32, 0, sizeof type32);
851 type32.width = 32;
852 type32.length = n;
853 memset(&type16, 0, sizeof type16);
854 type16.width = 16;
855 type16.length = 2*n;
856 type16.sign = TRUE;
857 memset(&type8, 0, sizeof type8);
858 type8.width = 8;
859 type8.length = 4*n;
860
861 lp_build_context_init(&bld16, gallivm, type16);
862 /* 255/7 is a bit off - increase accuracy at the expense of shift later */
863 sel_mask = LLVMBuildBitCast(builder, sel_mask, bld16.vec_type, "");
864 weight5 = lp_build_const_int_vec(gallivm, type16, 255*64/5);
865 weight7 = lp_build_const_int_vec(gallivm, type16, 255*64/7);
866 weight = lp_build_select(&bld16, sel_mask, weight7, weight5);
867
868 alpha0 = LLVMBuildBitCast(builder, alpha0, bld16.vec_type, "");
869 alpha1 = LLVMBuildBitCast(builder, alpha1, bld16.vec_type, "");
870 code = LLVMBuildBitCast(builder, code, bld16.vec_type, "");
871 /* we'll get garbage in the elements which had code 0 (or larger than 5 or 7)
872 but we don't care */
873 code = LLVMBuildSub(builder, code, bld16.one, "");
874
875 weight = LLVMBuildMul(builder, weight, code, "");
876 weight = LLVMBuildLShr(builder, weight,
877 lp_build_const_int_vec(gallivm, type16, 6), "");
878
879 delta = LLVMBuildSub(builder, alpha1, alpha0, "");
880
881 ainterp = LLVMBuildMul(builder, delta, weight, "");
882 ainterp = LLVMBuildLShr(builder, ainterp,
883 lp_build_const_int_vec(gallivm, type16, 8), "");
884
885 ainterp = LLVMBuildBitCast(builder, ainterp, lp_build_vec_type(gallivm, type8), "");
886 alpha0 = LLVMBuildBitCast(builder, alpha0, lp_build_vec_type(gallivm, type8), "");
887 ainterp = LLVMBuildAdd(builder, alpha0, ainterp, "");
888 ainterp = LLVMBuildBitCast(builder, ainterp, lp_build_vec_type(gallivm, type32), "");
889
890 return ainterp;
891 }
892
893 static LLVMValueRef
894 s3tc_dxt5_alpha_channel(struct gallivm_state *gallivm,
895 bool is_signed,
896 unsigned n,
897 LLVMValueRef alpha_hi, LLVMValueRef alpha_lo,
898 LLVMValueRef i, LLVMValueRef j)
899 {
900 LLVMBuilderRef builder = gallivm->builder;
901 struct lp_type type;
902 LLVMValueRef tmp, alpha0, alpha1, alphac, alphac0, bit_pos, shift;
903 LLVMValueRef sel_mask, tmp_mask, alpha, alpha64, code_s;
904 LLVMValueRef mask6, mask7, ainterp;
905 LLVMTypeRef i64t = LLVMInt64TypeInContext(gallivm->context);
906 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
907 LLVMTypeRef i8t = LLVMInt32TypeInContext(gallivm->context);
908 struct lp_build_context bld32;
909
910 memset(&type, 0, sizeof type);
911 type.width = 32;
912 type.length = n;
913
914 lp_build_context_init(&bld32, gallivm, type);
915 /* this looks pretty complex for vectorization:
916 * extract a0/a1 values
917 * extract code
918 * select weights for interpolation depending on a0 > a1
919 * mul weights by code - 1
920 * lerp a0/a1/weights
921 * use selects for getting either a0, a1, interp a, interp a/0.0, interp a/1.0
922 */
923
924 alpha0 = LLVMBuildAnd(builder, alpha_lo,
925 lp_build_const_int_vec(gallivm, type, 0xff), "");
926 if (is_signed) {
927 alpha0 = LLVMBuildTrunc(builder, alpha0, i8t, "");
928 alpha0 = LLVMBuildSExt(builder, alpha0, i32t, "");
929 }
930
931 alpha1 = LLVMBuildLShr(builder, alpha_lo,
932 lp_build_const_int_vec(gallivm, type, 8), "");
933 alpha1 = LLVMBuildAnd(builder, alpha1,
934 lp_build_const_int_vec(gallivm, type, 0xff), "");
935 if (is_signed) {
936 alpha1 = LLVMBuildTrunc(builder, alpha1, i8t, "");
937 alpha1 = LLVMBuildSExt(builder, alpha1, i32t, "");
938 }
939
940 /* pos = 3*(4j+i) */
941 bit_pos = LLVMBuildShl(builder, j, lp_build_const_int_vec(gallivm, type, 2), "");
942 bit_pos = LLVMBuildAdd(builder, bit_pos, i, "");
943 tmp = LLVMBuildAdd(builder, bit_pos, bit_pos, "");
944 bit_pos = LLVMBuildAdd(builder, bit_pos, tmp, "");
945 /* get rid of first 2 bytes - saves shifts of alpha_lo/hi */
946 bit_pos = LLVMBuildAdd(builder, bit_pos,
947 lp_build_const_int_vec(gallivm, type, 16), "");
948
949 if (n == 1) {
950 struct lp_type type64;
951 memset(&type64, 0, sizeof type64);
952 type64.width = 64;
953 type64.length = 1;
954 /* This is pretty pointless could avoid by just directly extracting
955 64bit in the first place but makes it more complicated elsewhere */
956 alpha_lo = LLVMBuildZExt(builder, alpha_lo, i64t, "");
957 alpha_hi = LLVMBuildZExt(builder, alpha_hi, i64t, "");
958 alphac0 = LLVMBuildShl(builder, alpha_hi,
959 lp_build_const_int_vec(gallivm, type64, 32), "");
960 alphac0 = LLVMBuildOr(builder, alpha_lo, alphac0, "");
961
962 shift = LLVMBuildZExt(builder, bit_pos, i64t, "");
963 alphac0 = LLVMBuildLShr(builder, alphac0, shift, "");
964 alphac0 = LLVMBuildTrunc(builder, alphac0, i32t, "");
965 alphac = LLVMBuildAnd(builder, alphac0,
966 lp_build_const_int_vec(gallivm, type, 0x7), "");
967 }
968 else {
969 /*
970 * Using non-native vector length here (actually, with avx2 and
971 * n == 4 llvm will indeed expand to ymm regs...)
972 * At least newer llvm versions handle that ok.
973 * llvm 3.7+ will even handle the emulated 64bit shift with variable
974 * shift count without extraction (and it's actually easier to
975 * emulate than the 32bit one).
976 */
977 alpha64 = LLVMBuildShuffleVector(builder, alpha_lo, alpha_hi,
978 lp_build_const_unpackx2_shuffle(gallivm, n), "");
979
980 alpha64 = LLVMBuildBitCast(builder, alpha64, LLVMVectorType(i64t, n), "");
981 shift = LLVMBuildZExt(builder, bit_pos, LLVMVectorType(i64t, n), "");
982 alphac = LLVMBuildLShr(builder, alpha64, shift, "");
983 alphac = LLVMBuildTrunc(builder, alphac, bld32.vec_type, "");
984
985 alphac = LLVMBuildAnd(builder, alphac,
986 lp_build_const_int_vec(gallivm, type, 0x7), "");
987 }
988
989 /* signed compare is faster saves some xors */
990 type.sign = TRUE;
991 /* alpha0 > alpha1 selection */
992 sel_mask = lp_build_compare(gallivm, type, PIPE_FUNC_GREATER,
993 alpha0, alpha1);
994 ainterp = lp_build_lerpdxta(gallivm, alpha0, alpha1, alphac, sel_mask, n);
995
996 /*
997 * if a0 > a1 then we select a0 for case 0, a1 for case 1, interp otherwise.
998 * else we select a0 for case 0, a1 for case 1,
999 * interp for case 2-5, 00 for 6 and 0xff(ffffff) for 7
1000 * a = (c == 0) ? a0 : a1
1001 * a = (c > 1) ? ainterp : a
1002 * Finally handle case 6/7 for !(a0 > a1)
1003 * a = (!(a0 > a1) && c == 6) ? 0 : a (andnot with mask)
1004 * a = (!(a0 > a1) && c == 7) ? 0xffffffff : a (or with mask)
1005 */
1006 tmp_mask = lp_build_compare(gallivm, type, PIPE_FUNC_EQUAL,
1007 alphac, bld32.zero);
1008 alpha = lp_build_select(&bld32, tmp_mask, alpha0, alpha1);
1009 tmp_mask = lp_build_compare(gallivm, type, PIPE_FUNC_GREATER,
1010 alphac, bld32.one);
1011 alpha = lp_build_select(&bld32, tmp_mask, ainterp, alpha);
1012
1013 code_s = LLVMBuildAnd(builder, alphac,
1014 LLVMBuildNot(builder, sel_mask, ""), "");
1015 mask6 = lp_build_compare(gallivm, type, PIPE_FUNC_EQUAL,
1016 code_s, lp_build_const_int_vec(gallivm, type, 6));
1017 mask7 = lp_build_compare(gallivm, type, PIPE_FUNC_EQUAL,
1018 code_s, lp_build_const_int_vec(gallivm, type, 7));
1019 if (is_signed) {
1020 alpha = lp_build_select(&bld32, mask6, lp_build_const_int_vec(gallivm, type, 127), alpha);
1021 alpha = lp_build_select(&bld32, mask7, lp_build_const_int_vec(gallivm, type, -127), alpha);
1022 } else {
1023 alpha = LLVMBuildAnd(builder, alpha, LLVMBuildNot(builder, mask6, ""), "");
1024 alpha = LLVMBuildOr(builder, alpha, mask7, "");
1025 }
1026 /* There can be garbage in upper bits, mask them off for rgtc formats */
1027 alpha = LLVMBuildAnd(builder, alpha, lp_build_const_int_vec(gallivm, type, 0xff), "");
1028
1029 return alpha;
1030 }
1031
1032 /**
1033 * Convert from <n x i128> s3tc dxt5 to <4n x i8> RGBA AoS
1034 * @param colors is a <n x i32> vector with n x 2x16bit colors
1035 * @param codewords is a <n x i32> vector containing the codewords
1036 * @param alphas is a <n x i64> vector containing the alpha values
1037 * @param i is a <n x i32> vector with the x pixel coordinate (0 to 3)
1038 * @param j is a <n x i32> vector with the y pixel coordinate (0 to 3)
1039 */
1040 static LLVMValueRef
1041 s3tc_dxt5_full_to_rgba_aos(struct gallivm_state *gallivm,
1042 unsigned n,
1043 enum pipe_format format,
1044 LLVMValueRef colors,
1045 LLVMValueRef codewords,
1046 LLVMValueRef alpha_lo,
1047 LLVMValueRef alpha_hi,
1048 LLVMValueRef i,
1049 LLVMValueRef j)
1050 {
1051 LLVMBuilderRef builder = gallivm->builder;
1052 LLVMValueRef rgba, alpha;
1053 struct lp_type type, type8;
1054 struct lp_build_context bld32;
1055
1056 memset(&type, 0, sizeof type);
1057 type.width = 32;
1058 type.length = n;
1059
1060 memset(&type8, 0, sizeof type8);
1061 type8.width = 8;
1062 type8.length = n*4;
1063
1064 assert(lp_check_value(type, i));
1065 assert(lp_check_value(type, j));
1066
1067 lp_build_context_init(&bld32, gallivm, type);
1068
1069 assert(lp_check_value(type, i));
1070 assert(lp_check_value(type, j));
1071
1072 rgba = s3tc_dxt1_to_rgba_aos(gallivm, n, format,
1073 colors, codewords, i, j);
1074
1075 rgba = LLVMBuildBitCast(builder, rgba, bld32.vec_type, "");
1076
1077 alpha = s3tc_dxt5_alpha_channel(gallivm, false, n, alpha_hi, alpha_lo, i, j);
1078 alpha = LLVMBuildShl(builder, alpha, lp_build_const_int_vec(gallivm, type, 24), "");
1079 rgba = LLVMBuildOr(builder, alpha, rgba, "");
1080
1081 return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
1082 }
1083
1084
1085 static void
1086 lp_build_gather_s3tc_simple_scalar(struct gallivm_state *gallivm,
1087 const struct util_format_description *format_desc,
1088 LLVMValueRef *dxt_block,
1089 LLVMValueRef ptr)
1090 {
1091 LLVMBuilderRef builder = gallivm->builder;
1092 unsigned block_bits = format_desc->block.bits;
1093 LLVMValueRef elem, shuf;
1094 LLVMTypeRef type32 = LLVMIntTypeInContext(gallivm->context, 32);
1095 LLVMTypeRef src_type = LLVMIntTypeInContext(gallivm->context, block_bits);
1096 LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
1097 LLVMTypeRef type32_4 = LLVMVectorType(type32, 4);
1098
1099 assert(block_bits == 64 || block_bits == 128);
1100
1101 ptr = LLVMBuildBitCast(builder, ptr, src_ptr_type, "");
1102 elem = LLVMBuildLoad(builder, ptr, "");
1103
1104 if (block_bits == 128) {
1105 /* just return block as is */
1106 *dxt_block = LLVMBuildBitCast(builder, elem, type32_4, "");
1107 }
1108 else {
1109 LLVMTypeRef type32_2 = LLVMVectorType(type32, 2);
1110 shuf = lp_build_const_extend_shuffle(gallivm, 2, 4);
1111 elem = LLVMBuildBitCast(builder, elem, type32_2, "");
1112 *dxt_block = LLVMBuildShuffleVector(builder, elem,
1113 LLVMGetUndef(type32_2), shuf, "");
1114 }
1115 }
1116
1117
1118 static void
1119 s3tc_store_cached_block(struct gallivm_state *gallivm,
1120 LLVMValueRef *col,
1121 LLVMValueRef tag_value,
1122 LLVMValueRef hash_index,
1123 LLVMValueRef cache)
1124 {
1125 LLVMBuilderRef builder = gallivm->builder;
1126 LLVMValueRef ptr, indices[3];
1127 LLVMTypeRef type_ptr4x32;
1128 unsigned count;
1129
1130 type_ptr4x32 = LLVMPointerType(LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4), 0);
1131 indices[0] = lp_build_const_int32(gallivm, 0);
1132 indices[1] = lp_build_const_int32(gallivm, LP_BUILD_FORMAT_CACHE_MEMBER_TAGS);
1133 indices[2] = hash_index;
1134 ptr = LLVMBuildGEP(builder, cache, indices, ARRAY_SIZE(indices), "");
1135 LLVMBuildStore(builder, tag_value, ptr);
1136
1137 indices[1] = lp_build_const_int32(gallivm, LP_BUILD_FORMAT_CACHE_MEMBER_DATA);
1138 hash_index = LLVMBuildMul(builder, hash_index,
1139 lp_build_const_int32(gallivm, 16), "");
1140 for (count = 0; count < 4; count++) {
1141 indices[2] = hash_index;
1142 ptr = LLVMBuildGEP(builder, cache, indices, ARRAY_SIZE(indices), "");
1143 ptr = LLVMBuildBitCast(builder, ptr, type_ptr4x32, "");
1144 LLVMBuildStore(builder, col[count], ptr);
1145 hash_index = LLVMBuildAdd(builder, hash_index,
1146 lp_build_const_int32(gallivm, 4), "");
1147 }
1148 }
1149
1150 static LLVMValueRef
1151 s3tc_lookup_cached_pixel(struct gallivm_state *gallivm,
1152 LLVMValueRef ptr,
1153 LLVMValueRef index)
1154 {
1155 LLVMBuilderRef builder = gallivm->builder;
1156 LLVMValueRef member_ptr, indices[3];
1157
1158 indices[0] = lp_build_const_int32(gallivm, 0);
1159 indices[1] = lp_build_const_int32(gallivm, LP_BUILD_FORMAT_CACHE_MEMBER_DATA);
1160 indices[2] = index;
1161 member_ptr = LLVMBuildGEP(builder, ptr, indices, ARRAY_SIZE(indices), "");
1162 return LLVMBuildLoad(builder, member_ptr, "cache_data");
1163 }
1164
1165 static LLVMValueRef
1166 s3tc_lookup_tag_data(struct gallivm_state *gallivm,
1167 LLVMValueRef ptr,
1168 LLVMValueRef index)
1169 {
1170 LLVMBuilderRef builder = gallivm->builder;
1171 LLVMValueRef member_ptr, indices[3];
1172
1173 indices[0] = lp_build_const_int32(gallivm, 0);
1174 indices[1] = lp_build_const_int32(gallivm, LP_BUILD_FORMAT_CACHE_MEMBER_TAGS);
1175 indices[2] = index;
1176 member_ptr = LLVMBuildGEP(builder, ptr, indices, ARRAY_SIZE(indices), "");
1177 return LLVMBuildLoad(builder, member_ptr, "tag_data");
1178 }
1179
1180 #if LP_BUILD_FORMAT_CACHE_DEBUG
1181 static void
1182 s3tc_update_cache_access(struct gallivm_state *gallivm,
1183 LLVMValueRef ptr,
1184 unsigned count,
1185 unsigned index)
1186 {
1187 LLVMBuilderRef builder = gallivm->builder;
1188 LLVMValueRef member_ptr, cache_access;
1189
1190 assert(index == LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_TOTAL ||
1191 index == LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_MISS);
1192
1193 member_ptr = lp_build_struct_get_ptr(gallivm, ptr, index, "");
1194 cache_access = LLVMBuildLoad(builder, member_ptr, "cache_access");
1195 cache_access = LLVMBuildAdd(builder, cache_access,
1196 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context),
1197 count, 0), "");
1198 LLVMBuildStore(builder, cache_access, member_ptr);
1199 }
1200 #endif
1201
1202 /**
1203 * Calculate 1/3(v1-v0) + v0 and 2*1/3(v1-v0) + v0.
1204 * The lerp is performed between the first 2 32bit colors
1205 * in the source vector, both results are returned packed in result vector.
1206 */
1207 static LLVMValueRef
1208 lp_build_lerp23_single(struct lp_build_context *bld,
1209 LLVMValueRef v01)
1210 {
1211 struct gallivm_state *gallivm = bld->gallivm;
1212 LLVMValueRef x, mul, delta, res, v0, v1, elems[8];
1213 const struct lp_type type = bld->type;
1214 LLVMBuilderRef builder = bld->gallivm->builder;
1215 struct lp_type i16_type = lp_wider_type(type);
1216 struct lp_type i32_type = lp_wider_type(i16_type);
1217 struct lp_build_context bld2;
1218
1219 assert(!type.floating && !type.fixed && !type.norm && type.width == 8);
1220
1221 lp_build_context_init(&bld2, gallivm, i16_type);
1222 bld2.type.sign = TRUE;
1223
1224 /* weights 256/3, 256*2/3, with correct rounding */
1225 elems[0] = elems[1] = elems[2] = elems[3] =
1226 lp_build_const_elem(gallivm, i16_type, 255*1/3);
1227 elems[4] = elems[5] = elems[6] = elems[7] =
1228 lp_build_const_elem(gallivm, i16_type, 171);
1229 x = LLVMConstVector(elems, 8);
1230
1231 /*
1232 * v01 has col0 in 32bit elem 0, col1 in elem 1.
1233 * Interleave/unpack will give us separate v0/v1 vectors.
1234 */
1235 v01 = lp_build_interleave2(gallivm, i32_type, v01, v01, 0);
1236 v01 = LLVMBuildBitCast(builder, v01, bld->vec_type, "");
1237
1238 lp_build_unpack2(gallivm, type, i16_type, v01, &v0, &v1);
1239 delta = lp_build_sub(&bld2, v1, v0);
1240
1241 mul = LLVMBuildMul(builder, x, delta, "");
1242
1243 mul = LLVMBuildLShr(builder, mul, lp_build_const_int_vec(gallivm, i16_type, 8), "");
1244 /* lerp optimization: pack now, do add afterwards */
1245 res = lp_build_pack2(gallivm, i16_type, type, mul, bld2.undef);
1246 /* only lower 2 elems are valid - for these v0 is really v0 */
1247 return lp_build_add(bld, res, v01);
1248 }
1249
1250 /*
1251 * decode one dxt1 block.
1252 */
1253 static void
1254 s3tc_decode_block_dxt1(struct gallivm_state *gallivm,
1255 enum pipe_format format,
1256 LLVMValueRef dxt_block,
1257 LLVMValueRef *col)
1258 {
1259 LLVMBuilderRef builder = gallivm->builder;
1260 LLVMValueRef color01, color23, color01_16, color0123;
1261 LLVMValueRef rgba, tmp, a, sel_mask, indices, code, const2;
1262 struct lp_type type8, type32, type16, type64;
1263 struct lp_build_context bld8, bld32, bld16, bld64;
1264 unsigned i;
1265 boolean is_dxt1_variant = format_dxt1_variant(format);
1266
1267 memset(&type32, 0, sizeof type32);
1268 type32.width = 32;
1269 type32.length = 4;
1270 type32.sign = TRUE;
1271
1272 memset(&type8, 0, sizeof type8);
1273 type8.width = 8;
1274 type8.length = 16;
1275
1276 memset(&type16, 0, sizeof type16);
1277 type16.width = 16;
1278 type16.length = 8;
1279
1280 memset(&type64, 0, sizeof type64);
1281 type64.width = 64;
1282 type64.length = 2;
1283
1284 a = lp_build_const_int_vec(gallivm, type32, 0xff000000);
1285 const2 = lp_build_const_int_vec(gallivm, type32, 2);
1286
1287 lp_build_context_init(&bld32, gallivm, type32);
1288 lp_build_context_init(&bld16, gallivm, type16);
1289 lp_build_context_init(&bld8, gallivm, type8);
1290 lp_build_context_init(&bld64, gallivm, type64);
1291
1292 if (is_dxt1_variant) {
1293 color01 = lp_build_shuffle1undef(gallivm, dxt_block, 0, 4);
1294 code = lp_build_shuffle1undef(gallivm, dxt_block, 1, 4);
1295 } else {
1296 color01 = lp_build_shuffle1undef(gallivm, dxt_block, 2, 4);
1297 code = lp_build_shuffle1undef(gallivm, dxt_block, 3, 4);
1298 }
1299 code = LLVMBuildBitCast(builder, code, bld8.vec_type, "");
1300 /* expand bytes to dwords */
1301 code = lp_build_interleave2(gallivm, type8, code, code, 0);
1302 code = lp_build_interleave2(gallivm, type8, code, code, 0);
1303
1304
1305 /*
1306 * works as follows:
1307 * - expand color0/color1 to rgba8888
1308 * - calculate color2/3 (interpolation) according to color0 < color1 rules
1309 * - calculate color2/3 according to color0 >= color1 rules
1310 * - do selection of color2/3 according to comparison of color0/1
1311 * - extract indices.
1312 * - use compare/select to select the correct color. Since we have 2bit
1313 * indices (and 4 colors), needs at least three compare/selects.
1314 */
1315
1316 /*
1317 * expand the two colors
1318 */
1319 color01 = LLVMBuildBitCast(builder, color01, bld16.vec_type, "");
1320 color01 = lp_build_interleave2(gallivm, type16, color01,
1321 bld16.zero, 0);
1322 color01_16 = LLVMBuildBitCast(builder, color01, bld32.vec_type, "");
1323 color01 = color_expand_565_to_8888(gallivm, 4, color01_16);
1324
1325 /*
1326 * interpolate colors
1327 * color2_1 is 2/3 color0 + 1/3 color1
1328 * color3_1 is 1/3 color0 + 2/3 color1
1329 * color2_2 is 1/2 color0 + 1/2 color1
1330 * color3_2 is 0
1331 */
1332
1333 /* TODO: since this is now always scalar, should
1334 * probably just use control flow here instead of calculating
1335 * both cases and then selection
1336 */
1337 if (format == PIPE_FORMAT_DXT1_RGBA ||
1338 format == PIPE_FORMAT_DXT1_SRGBA) {
1339 color01 = LLVMBuildOr(builder, color01, a, "");
1340 }
1341 /* can combine 2 lerps into one mostly */
1342 color23 = lp_build_lerp23_single(&bld8, color01);
1343 color23 = LLVMBuildBitCast(builder, color23, bld32.vec_type, "");
1344
1345 /* dxt3/5 always use 4-color encoding */
1346 if (is_dxt1_variant) {
1347 LLVMValueRef color23_2, color2_2;
1348
1349 if (util_cpu_caps.has_sse2) {
1350 LLVMValueRef intrargs[2];
1351 intrargs[0] = LLVMBuildBitCast(builder, color01, bld8.vec_type, "");
1352 /* same interleave as for lerp23 - correct result in 2nd element */
1353 intrargs[1] = lp_build_interleave2(gallivm, type32, color01, color01, 0);
1354 intrargs[1] = LLVMBuildBitCast(builder, intrargs[1], bld8.vec_type, "");
1355 color2_2 = lp_build_pavgb(&bld8, intrargs[0], intrargs[1]);
1356 }
1357 else {
1358 LLVMValueRef v01, v0, v1, vhalf;
1359 /*
1360 * This isn't as expensive as it looks (the unpack is the same as
1361 * for lerp23, which is the reason why we do the pointless
1362 * interleave2 too), with correct rounding (the two lower elements
1363 * will be the same).
1364 */
1365 v01 = lp_build_interleave2(gallivm, type32, color01, color01, 0);
1366 v01 = LLVMBuildBitCast(builder, v01, bld8.vec_type, "");
1367 lp_build_unpack2(gallivm, type8, type16, v01, &v0, &v1);
1368 vhalf = lp_build_add(&bld16, v0, v1);
1369 vhalf = LLVMBuildLShr(builder, vhalf, bld16.one, "");
1370 color2_2 = lp_build_pack2(gallivm, type16, type8, vhalf, bld16.undef);
1371 }
1372 /* shuffle in color 3 as elem 2 zero, color 2 elem 1 */
1373 color23_2 = LLVMBuildBitCast(builder, color2_2, bld64.vec_type, "");
1374 color23_2 = LLVMBuildLShr(builder, color23_2,
1375 lp_build_const_int_vec(gallivm, type64, 32), "");
1376 color23_2 = LLVMBuildBitCast(builder, color23_2, bld32.vec_type, "");
1377
1378 tmp = LLVMBuildBitCast(builder, color01_16, bld64.vec_type, "");
1379 tmp = LLVMBuildLShr(builder, tmp,
1380 lp_build_const_int_vec(gallivm, type64, 32), "");
1381 tmp = LLVMBuildBitCast(builder, tmp, bld32.vec_type, "");
1382 sel_mask = lp_build_compare(gallivm, type32, PIPE_FUNC_GREATER,
1383 color01_16, tmp);
1384 sel_mask = lp_build_interleave2(gallivm, type32, sel_mask, sel_mask, 0);
1385 color23 = lp_build_select(&bld32, sel_mask, color23, color23_2);
1386 }
1387
1388 if (util_cpu_caps.has_ssse3) {
1389 /*
1390 * Use pshufb as mini-lut. (Only doable with intrinsics as the
1391 * final shuffles are non-constant. pshufb is awesome!)
1392 */
1393 LLVMValueRef shuf[16], low2mask;
1394 LLVMValueRef intrargs[2], lut_ind, lut_adj;
1395
1396 color01 = LLVMBuildBitCast(builder, color01, bld64.vec_type, "");
1397 color23 = LLVMBuildBitCast(builder, color23, bld64.vec_type, "");
1398 color0123 = lp_build_interleave2(gallivm, type64, color01, color23, 0);
1399 color0123 = LLVMBuildBitCast(builder, color0123, bld32.vec_type, "");
1400
1401 if (format == PIPE_FORMAT_DXT1_RGB ||
1402 format == PIPE_FORMAT_DXT1_SRGB) {
1403 color0123 = LLVMBuildOr(builder, color0123, a, "");
1404 }
1405
1406 /* shuffle as r0r1r2r3g0g1... */
1407 for (i = 0; i < 4; i++) {
1408 shuf[4*i] = lp_build_const_int32(gallivm, 0 + i);
1409 shuf[4*i+1] = lp_build_const_int32(gallivm, 4 + i);
1410 shuf[4*i+2] = lp_build_const_int32(gallivm, 8 + i);
1411 shuf[4*i+3] = lp_build_const_int32(gallivm, 12 + i);
1412 }
1413 color0123 = LLVMBuildBitCast(builder, color0123, bld8.vec_type, "");
1414 color0123 = LLVMBuildShuffleVector(builder, color0123, bld8.undef,
1415 LLVMConstVector(shuf, 16), "");
1416
1417 /* lowest 2 bits of each 8 bit value contain index into "LUT" */
1418 low2mask = lp_build_const_int_vec(gallivm, type8, 3);
1419 /* add 0/4/8/12 for r/g/b/a */
1420 lut_adj = lp_build_const_int_vec(gallivm, type32, 0x0c080400);
1421 lut_adj = LLVMBuildBitCast(builder, lut_adj, bld8.vec_type, "");
1422 intrargs[0] = color0123;
1423 for (i = 0; i < 4; i++) {
1424 lut_ind = LLVMBuildAnd(builder, code, low2mask, "");
1425 lut_ind = LLVMBuildOr(builder, lut_ind, lut_adj, "");
1426 intrargs[1] = lut_ind;
1427 col[i] = lp_build_intrinsic(builder, "llvm.x86.ssse3.pshuf.b.128",
1428 bld8.vec_type, intrargs, 2, 0);
1429 col[i] = LLVMBuildBitCast(builder, col[i], bld32.vec_type, "");
1430 code = LLVMBuildBitCast(builder, code, bld32.vec_type, "");
1431 code = LLVMBuildLShr(builder, code, const2, "");
1432 code = LLVMBuildBitCast(builder, code, bld8.vec_type, "");
1433 }
1434 }
1435 else {
1436 /* Thanks to vectorization can do 4 texels in parallel */
1437 LLVMValueRef color0, color1, color2, color3;
1438 if (format == PIPE_FORMAT_DXT1_RGB ||
1439 format == PIPE_FORMAT_DXT1_SRGB) {
1440 color01 = LLVMBuildOr(builder, color01, a, "");
1441 color23 = LLVMBuildOr(builder, color23, a, "");
1442 }
1443 color0 = LLVMBuildShuffleVector(builder, color01, bld32.undef,
1444 lp_build_const_shuffle1(gallivm, 0, 4), "");
1445 color1 = LLVMBuildShuffleVector(builder, color01, bld32.undef,
1446 lp_build_const_shuffle1(gallivm, 1, 4), "");
1447 color2 = LLVMBuildShuffleVector(builder, color23, bld32.undef,
1448 lp_build_const_shuffle1(gallivm, 0, 4), "");
1449 color3 = LLVMBuildShuffleVector(builder, color23, bld32.undef,
1450 lp_build_const_shuffle1(gallivm, 1, 4), "");
1451 code = LLVMBuildBitCast(builder, code, bld32.vec_type, "");
1452
1453 for (i = 0; i < 4; i++) {
1454 /* select the colors */
1455 LLVMValueRef selmasklo, rgba01, rgba23, bitlo;
1456 bitlo = bld32.one;
1457 indices = LLVMBuildAnd(builder, code, bitlo, "");
1458 selmasklo = lp_build_compare(gallivm, type32, PIPE_FUNC_EQUAL,
1459 indices, bitlo);
1460 rgba01 = lp_build_select(&bld32, selmasklo, color1, color0);
1461
1462 LLVMValueRef selmaskhi;
1463 indices = LLVMBuildAnd(builder, code, const2, "");
1464 selmaskhi = lp_build_compare(gallivm, type32, PIPE_FUNC_EQUAL,
1465 indices, const2);
1466 rgba23 = lp_build_select(&bld32, selmasklo, color3, color2);
1467 rgba = lp_build_select(&bld32, selmaskhi, rgba23, rgba01);
1468
1469 /*
1470 * Note that this will give "wrong" order.
1471 * col0 will be rgba0, rgba4, rgba8, rgba12, col1 rgba1, rgba5, ...
1472 * This would be easily fixable by using different shuffle, bitlo/hi
1473 * vectors above (and different shift), but seems slightly easier to
1474 * deal with for dxt3/dxt5 alpha too. So instead change lookup.
1475 */
1476 col[i] = rgba;
1477 code = LLVMBuildLShr(builder, code, const2, "");
1478 }
1479 }
1480 }
1481
1482 /*
1483 * decode one dxt3 block.
1484 */
1485 static void
1486 s3tc_decode_block_dxt3(struct gallivm_state *gallivm,
1487 enum pipe_format format,
1488 LLVMValueRef dxt_block,
1489 LLVMValueRef *col)
1490 {
1491 LLVMBuilderRef builder = gallivm->builder;
1492 LLVMValueRef alpha, alphas0, alphas1, shift4_16, a[4], mask8hi;
1493 struct lp_type type32, type8, type16;
1494 unsigned i;
1495
1496 memset(&type32, 0, sizeof type32);
1497 type32.width = 32;
1498 type32.length = 4;
1499
1500 memset(&type8, 0, sizeof type8);
1501 type8.width = 8;
1502 type8.length = 16;
1503
1504 memset(&type16, 0, sizeof type16);
1505 type16.width = 16;
1506 type16.length = 8;
1507
1508 s3tc_decode_block_dxt1(gallivm, format, dxt_block, col);
1509
1510 shift4_16 = lp_build_const_int_vec(gallivm, type16, 4);
1511 mask8hi = lp_build_const_int_vec(gallivm, type32, 0xff000000);
1512
1513 alpha = LLVMBuildBitCast(builder, dxt_block,
1514 lp_build_vec_type(gallivm, type8), "");
1515 alpha = lp_build_interleave2(gallivm, type8, alpha, alpha, 0);
1516 alpha = LLVMBuildBitCast(builder, alpha,
1517 lp_build_vec_type(gallivm, type16), "");
1518 alpha = LLVMBuildAnd(builder, alpha,
1519 lp_build_const_int_vec(gallivm, type16, 0xf00f), "");
1520 alphas0 = LLVMBuildLShr(builder, alpha, shift4_16, "");
1521 alphas1 = LLVMBuildShl(builder, alpha, shift4_16, "");
1522 alpha = LLVMBuildOr(builder, alphas0, alpha, "");
1523 alpha = LLVMBuildOr(builder, alphas1, alpha, "");
1524 alpha = LLVMBuildBitCast(builder, alpha,
1525 lp_build_vec_type(gallivm, type32), "");
1526 /*
1527 * alpha now contains elems 0,1,2,3,... (ubytes)
1528 * we need 0,4,8,12, 1,5,9,13 etc. in dwords to match color (which
1529 * is just as easy as "natural" order - 3 shift/and instead of 6 unpack).
1530 */
1531 a[0] = LLVMBuildShl(builder, alpha,
1532 lp_build_const_int_vec(gallivm, type32, 24), "");
1533 a[1] = LLVMBuildShl(builder, alpha,
1534 lp_build_const_int_vec(gallivm, type32, 16), "");
1535 a[1] = LLVMBuildAnd(builder, a[1], mask8hi, "");
1536 a[2] = LLVMBuildShl(builder, alpha,
1537 lp_build_const_int_vec(gallivm, type32, 8), "");
1538 a[2] = LLVMBuildAnd(builder, a[2], mask8hi, "");
1539 a[3] = LLVMBuildAnd(builder, alpha, mask8hi, "");
1540
1541 for (i = 0; i < 4; i++) {
1542 col[i] = LLVMBuildOr(builder, col[i], a[i], "");
1543 }
1544 }
1545
1546
1547 static LLVMValueRef
1548 lp_build_lerpdxta_block(struct gallivm_state *gallivm,
1549 LLVMValueRef alpha0,
1550 LLVMValueRef alpha1,
1551 LLVMValueRef code,
1552 LLVMValueRef sel_mask)
1553 {
1554 LLVMBuilderRef builder = gallivm->builder;
1555 LLVMValueRef delta, ainterp;
1556 LLVMValueRef weight5, weight7, weight;
1557 struct lp_type type16;
1558 struct lp_build_context bld;
1559
1560 memset(&type16, 0, sizeof type16);
1561 type16.width = 16;
1562 type16.length = 8;
1563 type16.sign = TRUE;
1564
1565 lp_build_context_init(&bld, gallivm, type16);
1566 /*
1567 * 256/7 is only 36.57 so we'd lose quite some precision. Since it would
1568 * actually be desirable to do this here with even higher accuracy than
1569 * even 8 bit (more or less required for rgtc, albeit that's not handled
1570 * here right now), shift the weights after multiplication by code.
1571 */
1572 weight5 = lp_build_const_int_vec(gallivm, type16, 256*64/5);
1573 weight7 = lp_build_const_int_vec(gallivm, type16, 256*64/7);
1574 weight = lp_build_select(&bld, sel_mask, weight7, weight5);
1575
1576 /*
1577 * we'll get garbage in the elements which had code 0 (or larger than
1578 * 5 or 7) but we don't care (or rather, need to fix up anyway).
1579 */
1580 code = LLVMBuildSub(builder, code, bld.one, "");
1581
1582 weight = LLVMBuildMul(builder, weight, code, "");
1583 weight = LLVMBuildLShr(builder, weight,
1584 lp_build_const_int_vec(gallivm, type16, 6), "");
1585
1586 delta = LLVMBuildSub(builder, alpha1, alpha0, "");
1587
1588 ainterp = LLVMBuildMul(builder, delta, weight, "");
1589 ainterp = LLVMBuildLShr(builder, ainterp,
1590 lp_build_const_int_vec(gallivm, type16, 8), "");
1591
1592 /* lerp is done later (with packed values) */
1593
1594 return ainterp;
1595 }
1596
1597
1598 /*
1599 * decode one dxt5 block.
1600 */
1601 static void
1602 s3tc_decode_block_dxt5(struct gallivm_state *gallivm,
1603 enum pipe_format format,
1604 LLVMValueRef dxt_block,
1605 LLVMValueRef *col)
1606 {
1607 LLVMBuilderRef builder = gallivm->builder;
1608 LLVMValueRef alpha, alpha0, alpha1, ares;
1609 LLVMValueRef ainterp, ainterp0, ainterp1, shuffle1, sel_mask, sel_mask2;
1610 LLVMValueRef a[4], acode, tmp0, tmp1;
1611 LLVMTypeRef i64t, i32t;
1612 struct lp_type type32, type64, type8, type16;
1613 struct lp_build_context bld16, bld8;
1614 unsigned i;
1615
1616 memset(&type32, 0, sizeof type32);
1617 type32.width = 32;
1618 type32.length = 4;
1619
1620 memset(&type64, 0, sizeof type64);
1621 type64.width = 64;
1622 type64.length = 2;
1623
1624 memset(&type8, 0, sizeof type8);
1625 type8.width = 8;
1626 type8.length = 16;
1627
1628 memset(&type16, 0, sizeof type16);
1629 type16.width = 16;
1630 type16.length = 8;
1631
1632 lp_build_context_init(&bld16, gallivm, type16);
1633 lp_build_context_init(&bld8, gallivm, type8);
1634
1635 i64t = lp_build_vec_type(gallivm, type64);
1636 i32t = lp_build_vec_type(gallivm, type32);
1637
1638 s3tc_decode_block_dxt1(gallivm, format, dxt_block, col);
1639
1640 /*
1641 * three possible strategies for vectorizing alpha:
1642 * 1) compute all 8 values then use scalar extraction
1643 * (i.e. have all 8 alpha values packed in one 64bit scalar
1644 * and do something like ax = vals >> (codex * 8) followed
1645 * by inserting these values back into color)
1646 * 2) same as 8 but just use pshufb as a mini-LUT for selection.
1647 * (without pshufb would need boatloads of cmp/selects trying to
1648 * keep things vectorized for essentially scalar selection).
1649 * 3) do something similar to the uncached case
1650 * needs more calculations (need to calc 16 values instead of 8 though
1651 * that's only an issue for the lerp which we need to do twice otherwise
1652 * everything still fits into 128bit) but keeps things vectorized mostly.
1653 * Trying 3) here though not sure it's really faster...
1654 * With pshufb, we try 2) (cheaper and more accurate)
1655 */
1656
1657 /*
1658 * Ideally, we'd use 2 variable 16bit shifts here (byte shifts wouldn't
1659 * help since code crosses 8bit boundaries). But variable shifts are
1660 * AVX2 only, and even then only dword/quadword (intel _really_ hates
1661 * shifts!). Instead, emulate by 16bit muls.
1662 * Also, the required byte shuffles are essentially non-emulatable, so
1663 * require ssse3 (albeit other archs might do them fine).
1664 * This is not directly tied to ssse3 - just need sane byte shuffles.
1665 * But ordering is going to be different below so use same condition.
1666 */
1667
1668
1669 /* vectorize alpha */
1670 alpha = LLVMBuildBitCast(builder, dxt_block, i64t, "");
1671 alpha0 = LLVMBuildAnd(builder, alpha,
1672 lp_build_const_int_vec(gallivm, type64, 0xff), "");
1673 alpha0 = LLVMBuildBitCast(builder, alpha0, bld16.vec_type, "");
1674 alpha = LLVMBuildBitCast(builder, alpha, bld16.vec_type, "");
1675 alpha1 = LLVMBuildLShr(builder, alpha,
1676 lp_build_const_int_vec(gallivm, type16, 8), "");
1677 alpha = LLVMBuildBitCast(builder, alpha, i64t, "");
1678 shuffle1 = lp_build_const_shuffle1(gallivm, 0, 8);
1679 alpha0 = LLVMBuildShuffleVector(builder, alpha0, alpha0, shuffle1, "");
1680 alpha1 = LLVMBuildShuffleVector(builder, alpha1, alpha1, shuffle1, "");
1681
1682 type16.sign = TRUE;
1683 sel_mask = lp_build_compare(gallivm, type16, PIPE_FUNC_GREATER,
1684 alpha0, alpha1);
1685 type16.sign = FALSE;
1686 sel_mask = LLVMBuildBitCast(builder, sel_mask, bld8.vec_type, "");
1687
1688 if (!util_cpu_caps.has_ssse3) {
1689 LLVMValueRef acodeg, mask1, acode0, acode1;
1690
1691 /* extraction of the 3 bit values into something more useful is HARD */
1692 /* first steps are actually scalar */
1693 acode = LLVMBuildLShr(builder, alpha,
1694 lp_build_const_int_vec(gallivm, type64, 16), "");
1695 tmp0 = LLVMBuildAnd(builder, acode,
1696 lp_build_const_int_vec(gallivm, type64, 0xffffff), "");
1697 tmp1 = LLVMBuildLShr(builder, acode,
1698 lp_build_const_int_vec(gallivm, type64, 24), "");
1699 tmp0 = LLVMBuildBitCast(builder, tmp0, i32t, "");
1700 tmp1 = LLVMBuildBitCast(builder, tmp1, i32t, "");
1701 acode = lp_build_interleave2(gallivm, type32, tmp0, tmp1, 0);
1702 /* now have 2x24bit in 4x32bit, order 01234567, 89..., undef, undef */
1703 tmp0 = LLVMBuildAnd(builder, acode,
1704 lp_build_const_int_vec(gallivm, type32, 0xfff), "");
1705 tmp1 = LLVMBuildLShr(builder, acode,
1706 lp_build_const_int_vec(gallivm, type32, 12), "");
1707 acode = lp_build_interleave2(gallivm, type32, tmp0, tmp1, 0);
1708 /* now have 4x12bit in 4x32bit, order 0123, 4567, ,,, */
1709 tmp0 = LLVMBuildAnd(builder, acode,
1710 lp_build_const_int_vec(gallivm, type32, 0x3f), "");
1711 tmp1 = LLVMBuildLShr(builder, acode,
1712 lp_build_const_int_vec(gallivm, type32, 6), "");
1713 /* use signed pack doesn't matter and otherwise need sse41 */
1714 type32.sign = type16.sign = TRUE;
1715 acode = lp_build_pack2(gallivm, type32, type16, tmp0, tmp1);
1716 type32.sign = type16.sign = FALSE;
1717 /* now have 8x6bit in 8x16bit, 01, 45, 89, ..., 23, 67, ... */
1718 acode0 = LLVMBuildAnd(builder, acode,
1719 lp_build_const_int_vec(gallivm, type16, 0x7), "");
1720 acode1 = LLVMBuildLShr(builder, acode,
1721 lp_build_const_int_vec(gallivm, type16, 3), "");
1722 acode = lp_build_pack2(gallivm, type16, type8, acode0, acode1);
1723 /* acode0 contains elems 0,4,8,12,2,6,10,14, acode1 1,5,9,... */
1724
1725 acodeg = LLVMBuildAnd(builder, acode,
1726 LLVMBuildNot(builder, sel_mask, ""), "");
1727 mask1 = lp_build_compare(gallivm, type8, PIPE_FUNC_EQUAL,
1728 acode, bld8.one);
1729
1730 sel_mask = LLVMBuildBitCast(builder, sel_mask, bld16.vec_type, "");
1731 ainterp0 = lp_build_lerpdxta_block(gallivm, alpha0, alpha1, acode0, sel_mask);
1732 ainterp1 = lp_build_lerpdxta_block(gallivm, alpha0, alpha1, acode1, sel_mask);
1733 sel_mask = LLVMBuildBitCast(builder, sel_mask, bld8.vec_type, "");
1734 ainterp = lp_build_pack2(gallivm, type16, type8, ainterp0, ainterp1);
1735 alpha0 = lp_build_pack2(gallivm, type16, type8, alpha0, alpha0);
1736 alpha1 = lp_build_pack2(gallivm, type16, type8, alpha1, alpha1);
1737 ainterp = LLVMBuildAdd(builder, ainterp, alpha0, "");
1738 /* Fix up val01 */
1739 sel_mask2 = lp_build_compare(gallivm, type8, PIPE_FUNC_EQUAL,
1740 acode, bld8.zero);
1741 ainterp = lp_build_select(&bld8, sel_mask2, alpha0, ainterp);
1742 ainterp = lp_build_select(&bld8, mask1, alpha1, ainterp);
1743
1744 /* fix up val67 if a0 <= a1 */
1745 sel_mask2 = lp_build_compare(gallivm, type8, PIPE_FUNC_EQUAL,
1746 acodeg, lp_build_const_int_vec(gallivm, type8, 6));
1747 ares = LLVMBuildAnd(builder, ainterp, LLVMBuildNot(builder, sel_mask2, ""), "");
1748 sel_mask2 = lp_build_compare(gallivm, type8, PIPE_FUNC_EQUAL,
1749 acodeg, lp_build_const_int_vec(gallivm, type8, 7));
1750 ares = LLVMBuildOr(builder, ares, sel_mask2, "");
1751
1752 /* unpack in right order (0,4,8,12,1,5,..) */
1753 /* this gives us zero, a0, zero, a4, zero, a8, ... for tmp0 */
1754 tmp0 = lp_build_interleave2(gallivm, type8, bld8.zero, ares, 0);
1755 tmp1 = lp_build_interleave2(gallivm, type8, bld8.zero, ares, 1);
1756 tmp0 = LLVMBuildBitCast(builder, tmp0, bld16.vec_type, "");
1757 tmp1 = LLVMBuildBitCast(builder, tmp1, bld16.vec_type, "");
1758
1759 a[0] = lp_build_interleave2(gallivm, type16, bld16.zero, tmp0, 0);
1760 a[1] = lp_build_interleave2(gallivm, type16, bld16.zero, tmp1, 0);
1761 a[2] = lp_build_interleave2(gallivm, type16, bld16.zero, tmp0, 1);
1762 a[3] = lp_build_interleave2(gallivm, type16, bld16.zero, tmp1, 1);
1763 }
1764 else {
1765 LLVMValueRef elems[16], intrargs[2], shufa, mulclo, mulchi, mask8hi;
1766 LLVMTypeRef type16s = LLVMInt16TypeInContext(gallivm->context);
1767 LLVMTypeRef type8s = LLVMInt8TypeInContext(gallivm->context);
1768 unsigned i, j;
1769 /*
1770 * Ideally, we'd use 2 variable 16bit shifts here (byte shifts wouldn't
1771 * help since code crosses 8bit boundaries). But variable shifts are
1772 * AVX2 only, and even then only dword/quadword (intel _really_ hates
1773 * shifts!). Instead, emulate by 16bit muls.
1774 * Also, the required byte shuffles are essentially non-emulatable, so
1775 * require ssse3 (albeit other archs might do them fine, but the
1776 * complete path is ssse3 only for now).
1777 */
1778 for (i = 0, j = 0; i < 16; i += 8, j += 3) {
1779 elems[i+0] = elems[i+1] = elems[i+2] = lp_build_const_int32(gallivm, j+2);
1780 elems[i+3] = elems[i+4] = lp_build_const_int32(gallivm, j+3);
1781 elems[i+5] = elems[i+6] = elems[i+7] = lp_build_const_int32(gallivm, j+4);
1782 }
1783 shufa = LLVMConstVector(elems, 16);
1784 alpha = LLVMBuildBitCast(builder, alpha, bld8.vec_type, "");
1785 acode = LLVMBuildShuffleVector(builder, alpha, bld8.undef, shufa, "");
1786 acode = LLVMBuildBitCast(builder, acode, bld16.vec_type, "");
1787 /*
1788 * Put 0/2/4/6 into high 3 bits of 16 bits (save AND mask)
1789 * Do the same for 1/3/5/7 (albeit still need mask there - ideally
1790 * we'd place them into bits 4-7 so could save shift but impossible.)
1791 */
1792 for (i = 0; i < 8; i += 4) {
1793 elems[i+0] = LLVMConstInt(type16s, 1 << (13-0), 0);
1794 elems[i+1] = LLVMConstInt(type16s, 1 << (13-6), 0);
1795 elems[i+2] = LLVMConstInt(type16s, 1 << (13-4), 0);
1796 elems[i+3] = LLVMConstInt(type16s, 1 << (13-2), 0);
1797 }
1798 mulclo = LLVMConstVector(elems, 8);
1799 for (i = 0; i < 8; i += 4) {
1800 elems[i+0] = LLVMConstInt(type16s, 1 << (13-3), 0);
1801 elems[i+1] = LLVMConstInt(type16s, 1 << (13-9), 0);
1802 elems[i+2] = LLVMConstInt(type16s, 1 << (13-7), 0);
1803 elems[i+3] = LLVMConstInt(type16s, 1 << (13-5), 0);
1804 }
1805 mulchi = LLVMConstVector(elems, 8);
1806
1807 tmp0 = LLVMBuildMul(builder, acode, mulclo, "");
1808 tmp1 = LLVMBuildMul(builder, acode, mulchi, "");
1809 tmp0 = LLVMBuildLShr(builder, tmp0,
1810 lp_build_const_int_vec(gallivm, type16, 13), "");
1811 tmp1 = LLVMBuildLShr(builder, tmp1,
1812 lp_build_const_int_vec(gallivm, type16, 5), "");
1813 tmp1 = LLVMBuildAnd(builder, tmp1,
1814 lp_build_const_int_vec(gallivm, type16, 0x700), "");
1815 acode = LLVMBuildOr(builder, tmp0, tmp1, "");
1816 acode = LLVMBuildBitCast(builder, acode, bld8.vec_type, "");
1817
1818 /*
1819 * Note that ordering is different here to non-ssse3 path:
1820 * 0/1/2/3/4/5...
1821 */
1822
1823 LLVMValueRef weight0, weight1, weight, delta;
1824 LLVMValueRef constff_elem7, const0_elem6;
1825 /* weights, correctly rounded (round(256*x/7)) */
1826 elems[0] = LLVMConstInt(type16s, 256, 0);
1827 elems[1] = LLVMConstInt(type16s, 0, 0);
1828 elems[2] = LLVMConstInt(type16s, 219, 0);
1829 elems[3] = LLVMConstInt(type16s, 183, 0);
1830 elems[4] = LLVMConstInt(type16s, 146, 0);
1831 elems[5] = LLVMConstInt(type16s, 110, 0);
1832 elems[6] = LLVMConstInt(type16s, 73, 0);
1833 elems[7] = LLVMConstInt(type16s, 37, 0);
1834 weight0 = LLVMConstVector(elems, 8);
1835
1836 elems[0] = LLVMConstInt(type16s, 256, 0);
1837 elems[1] = LLVMConstInt(type16s, 0, 0);
1838 elems[2] = LLVMConstInt(type16s, 205, 0);
1839 elems[3] = LLVMConstInt(type16s, 154, 0);
1840 elems[4] = LLVMConstInt(type16s, 102, 0);
1841 elems[5] = LLVMConstInt(type16s, 51, 0);
1842 elems[6] = LLVMConstInt(type16s, 0, 0);
1843 elems[7] = LLVMConstInt(type16s, 0, 0);
1844 weight1 = LLVMConstVector(elems, 8);
1845
1846 weight0 = LLVMBuildBitCast(builder, weight0, bld8.vec_type, "");
1847 weight1 = LLVMBuildBitCast(builder, weight1, bld8.vec_type, "");
1848 weight = lp_build_select(&bld8, sel_mask, weight0, weight1);
1849 weight = LLVMBuildBitCast(builder, weight, bld16.vec_type, "");
1850
1851 for (i = 0; i < 16; i++) {
1852 elems[i] = LLVMConstNull(type8s);
1853 }
1854 elems[7] = LLVMConstInt(type8s, 255, 0);
1855 constff_elem7 = LLVMConstVector(elems, 16);
1856
1857 for (i = 0; i < 16; i++) {
1858 elems[i] = LLVMConstInt(type8s, 255, 0);
1859 }
1860 elems[6] = LLVMConstInt(type8s, 0, 0);
1861 const0_elem6 = LLVMConstVector(elems, 16);
1862
1863 /* standard simple lerp - but the version we need isn't available */
1864 delta = LLVMBuildSub(builder, alpha0, alpha1, "");
1865 ainterp = LLVMBuildMul(builder, delta, weight, "");
1866 ainterp = LLVMBuildLShr(builder, ainterp,
1867 lp_build_const_int_vec(gallivm, type16, 8), "");
1868 ainterp = LLVMBuildBitCast(builder, ainterp, bld8.vec_type, "");
1869 alpha1 = LLVMBuildBitCast(builder, alpha1, bld8.vec_type, "");
1870 ainterp = LLVMBuildAdd(builder, ainterp, alpha1, "");
1871 ainterp = LLVMBuildBitCast(builder, ainterp, bld16.vec_type, "");
1872 ainterp = lp_build_pack2(gallivm, type16, type8, ainterp, bld16.undef);
1873
1874 /* fixing 0/0xff case is slightly more complex */
1875 constff_elem7 = LLVMBuildAnd(builder, constff_elem7,
1876 LLVMBuildNot(builder, sel_mask, ""), "");
1877 const0_elem6 = LLVMBuildOr(builder, const0_elem6, sel_mask, "");
1878 ainterp = LLVMBuildOr(builder, ainterp, constff_elem7, "");
1879 ainterp = LLVMBuildAnd(builder, ainterp, const0_elem6, "");
1880
1881 /* now pick all 16 elements at once! */
1882 intrargs[0] = ainterp;
1883 intrargs[1] = acode;
1884 ares = lp_build_intrinsic(builder, "llvm.x86.ssse3.pshuf.b.128",
1885 bld8.vec_type, intrargs, 2, 0);
1886
1887 ares = LLVMBuildBitCast(builder, ares, i32t, "");
1888 mask8hi = lp_build_const_int_vec(gallivm, type32, 0xff000000);
1889 a[0] = LLVMBuildShl(builder, ares,
1890 lp_build_const_int_vec(gallivm, type32, 24), "");
1891 a[1] = LLVMBuildShl(builder, ares,
1892 lp_build_const_int_vec(gallivm, type32, 16), "");
1893 a[1] = LLVMBuildAnd(builder, a[1], mask8hi, "");
1894 a[2] = LLVMBuildShl(builder, ares,
1895 lp_build_const_int_vec(gallivm, type32, 8), "");
1896 a[2] = LLVMBuildAnd(builder, a[2], mask8hi, "");
1897 a[3] = LLVMBuildAnd(builder, ares, mask8hi, "");
1898 }
1899
1900 for (i = 0; i < 4; i++) {
1901 a[i] = LLVMBuildBitCast(builder, a[i], i32t, "");
1902 col[i] = LLVMBuildOr(builder, col[i], a[i], "");
1903 }
1904 }
1905
1906
1907 static void
1908 generate_update_cache_one_block(struct gallivm_state *gallivm,
1909 LLVMValueRef function,
1910 const struct util_format_description *format_desc)
1911 {
1912 LLVMBasicBlockRef block;
1913 LLVMBuilderRef old_builder;
1914 LLVMValueRef ptr_addr;
1915 LLVMValueRef hash_index;
1916 LLVMValueRef cache;
1917 LLVMValueRef dxt_block, tag_value;
1918 LLVMValueRef col[LP_MAX_VECTOR_LENGTH];
1919
1920 ptr_addr = LLVMGetParam(function, 0);
1921 hash_index = LLVMGetParam(function, 1);
1922 cache = LLVMGetParam(function, 2);
1923
1924 lp_build_name(ptr_addr, "ptr_addr" );
1925 lp_build_name(hash_index, "hash_index");
1926 lp_build_name(cache, "cache_addr");
1927
1928 /*
1929 * Function body
1930 */
1931
1932 old_builder = gallivm->builder;
1933 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
1934 gallivm->builder = LLVMCreateBuilderInContext(gallivm->context);
1935 LLVMPositionBuilderAtEnd(gallivm->builder, block);
1936
1937 lp_build_gather_s3tc_simple_scalar(gallivm, format_desc, &dxt_block,
1938 ptr_addr);
1939
1940 switch (format_desc->format) {
1941 case PIPE_FORMAT_DXT1_RGB:
1942 case PIPE_FORMAT_DXT1_RGBA:
1943 case PIPE_FORMAT_DXT1_SRGB:
1944 case PIPE_FORMAT_DXT1_SRGBA:
1945 s3tc_decode_block_dxt1(gallivm, format_desc->format, dxt_block, col);
1946 break;
1947 case PIPE_FORMAT_DXT3_RGBA:
1948 case PIPE_FORMAT_DXT3_SRGBA:
1949 s3tc_decode_block_dxt3(gallivm, format_desc->format, dxt_block, col);
1950 break;
1951 case PIPE_FORMAT_DXT5_RGBA:
1952 case PIPE_FORMAT_DXT5_SRGBA:
1953 s3tc_decode_block_dxt5(gallivm, format_desc->format, dxt_block, col);
1954 break;
1955 default:
1956 assert(0);
1957 s3tc_decode_block_dxt1(gallivm, format_desc->format, dxt_block, col);
1958 break;
1959 }
1960
1961 tag_value = LLVMBuildPtrToInt(gallivm->builder, ptr_addr,
1962 LLVMInt64TypeInContext(gallivm->context), "");
1963 s3tc_store_cached_block(gallivm, col, tag_value, hash_index, cache);
1964
1965 LLVMBuildRetVoid(gallivm->builder);
1966
1967 LLVMDisposeBuilder(gallivm->builder);
1968 gallivm->builder = old_builder;
1969
1970 gallivm_verify_function(gallivm, function);
1971 }
1972
1973
1974 static void
1975 update_cached_block(struct gallivm_state *gallivm,
1976 const struct util_format_description *format_desc,
1977 LLVMValueRef ptr_addr,
1978 LLVMValueRef hash_index,
1979 LLVMValueRef cache)
1980
1981 {
1982 LLVMBuilderRef builder = gallivm->builder;
1983 LLVMModuleRef module = gallivm->module;
1984 char name[256];
1985 LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
1986 LLVMTypeRef pi8t = LLVMPointerType(i8t, 0);
1987 LLVMValueRef function, inst;
1988 LLVMBasicBlockRef bb;
1989 LLVMValueRef args[3];
1990
1991 snprintf(name, sizeof name, "%s_update_cache_one_block",
1992 format_desc->short_name);
1993 function = LLVMGetNamedFunction(module, name);
1994
1995 if (!function) {
1996 LLVMTypeRef ret_type;
1997 LLVMTypeRef arg_types[3];
1998 LLVMTypeRef function_type;
1999 unsigned arg;
2000
2001 /*
2002 * Generate the function prototype.
2003 */
2004
2005 ret_type = LLVMVoidTypeInContext(gallivm->context);
2006 arg_types[0] = pi8t;
2007 arg_types[1] = LLVMInt32TypeInContext(gallivm->context);
2008 arg_types[2] = LLVMTypeOf(cache); // XXX: put right type here
2009 function_type = LLVMFunctionType(ret_type, arg_types, ARRAY_SIZE(arg_types), 0);
2010 function = LLVMAddFunction(module, name, function_type);
2011
2012 for (arg = 0; arg < ARRAY_SIZE(arg_types); ++arg)
2013 if (LLVMGetTypeKind(arg_types[arg]) == LLVMPointerTypeKind)
2014 lp_add_function_attr(function, arg + 1, LP_FUNC_ATTR_NOALIAS);
2015
2016 LLVMSetFunctionCallConv(function, LLVMFastCallConv);
2017 LLVMSetVisibility(function, LLVMHiddenVisibility);
2018 generate_update_cache_one_block(gallivm, function, format_desc);
2019 }
2020
2021 args[0] = ptr_addr;
2022 args[1] = hash_index;
2023 args[2] = cache;
2024
2025 LLVMBuildCall(builder, function, args, ARRAY_SIZE(args), "");
2026 bb = LLVMGetInsertBlock(builder);
2027 inst = LLVMGetLastInstruction(bb);
2028 LLVMSetInstructionCallConv(inst, LLVMFastCallConv);
2029 }
2030
2031 /*
2032 * cached lookup
2033 */
2034 static LLVMValueRef
2035 compressed_fetch_cached(struct gallivm_state *gallivm,
2036 const struct util_format_description *format_desc,
2037 unsigned n,
2038 LLVMValueRef base_ptr,
2039 LLVMValueRef offset,
2040 LLVMValueRef i,
2041 LLVMValueRef j,
2042 LLVMValueRef cache)
2043
2044 {
2045 LLVMBuilderRef builder = gallivm->builder;
2046 unsigned count, low_bit, log2size;
2047 LLVMValueRef color, offset_stored, addr, ptr_addrtrunc, tmp;
2048 LLVMValueRef ij_index, hash_index, hash_mask, block_index;
2049 LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
2050 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
2051 LLVMTypeRef i64t = LLVMInt64TypeInContext(gallivm->context);
2052 struct lp_type type;
2053 struct lp_build_context bld32;
2054 memset(&type, 0, sizeof type);
2055 type.width = 32;
2056 type.length = n;
2057
2058 lp_build_context_init(&bld32, gallivm, type);
2059
2060 /*
2061 * compute hash - we use direct mapped cache, the hash function could
2062 * be better but it needs to be simple
2063 * per-element:
2064 * compare offset with offset stored at tag (hash)
2065 * if not equal extract block, store block, update tag
2066 * extract color from cache
2067 * assemble colors
2068 */
2069
2070 low_bit = util_logbase2(format_desc->block.bits / 8);
2071 log2size = util_logbase2(LP_BUILD_FORMAT_CACHE_SIZE);
2072 addr = LLVMBuildPtrToInt(builder, base_ptr, i64t, "");
2073 ptr_addrtrunc = LLVMBuildPtrToInt(builder, base_ptr, i32t, "");
2074 ptr_addrtrunc = lp_build_broadcast_scalar(&bld32, ptr_addrtrunc);
2075 /* For the hash function, first mask off the unused lowest bits. Then just
2076 do some xor with address bits - only use lower 32bits */
2077 ptr_addrtrunc = LLVMBuildAdd(builder, offset, ptr_addrtrunc, "");
2078 ptr_addrtrunc = LLVMBuildLShr(builder, ptr_addrtrunc,
2079 lp_build_const_int_vec(gallivm, type, low_bit), "");
2080 /* This only really makes sense for size 64,128,256 */
2081 hash_index = ptr_addrtrunc;
2082 ptr_addrtrunc = LLVMBuildLShr(builder, ptr_addrtrunc,
2083 lp_build_const_int_vec(gallivm, type, 2*log2size), "");
2084 hash_index = LLVMBuildXor(builder, ptr_addrtrunc, hash_index, "");
2085 tmp = LLVMBuildLShr(builder, hash_index,
2086 lp_build_const_int_vec(gallivm, type, log2size), "");
2087 hash_index = LLVMBuildXor(builder, hash_index, tmp, "");
2088
2089 hash_mask = lp_build_const_int_vec(gallivm, type, LP_BUILD_FORMAT_CACHE_SIZE - 1);
2090 hash_index = LLVMBuildAnd(builder, hash_index, hash_mask, "");
2091 ij_index = LLVMBuildShl(builder, i, lp_build_const_int_vec(gallivm, type, 2), "");
2092 ij_index = LLVMBuildAdd(builder, ij_index, j, "");
2093 block_index = LLVMBuildShl(builder, hash_index,
2094 lp_build_const_int_vec(gallivm, type, 4), "");
2095 block_index = LLVMBuildAdd(builder, ij_index, block_index, "");
2096
2097 if (n > 1) {
2098 color = bld32.undef;
2099 for (count = 0; count < n; count++) {
2100 LLVMValueRef index, cond, colorx;
2101 LLVMValueRef block_indexx, hash_indexx, addrx, offsetx, ptr_addrx;
2102 struct lp_build_if_state if_ctx;
2103
2104 index = lp_build_const_int32(gallivm, count);
2105 offsetx = LLVMBuildExtractElement(builder, offset, index, "");
2106 addrx = LLVMBuildZExt(builder, offsetx, i64t, "");
2107 addrx = LLVMBuildAdd(builder, addrx, addr, "");
2108 block_indexx = LLVMBuildExtractElement(builder, block_index, index, "");
2109 hash_indexx = LLVMBuildLShr(builder, block_indexx,
2110 lp_build_const_int32(gallivm, 4), "");
2111 offset_stored = s3tc_lookup_tag_data(gallivm, cache, hash_indexx);
2112 cond = LLVMBuildICmp(builder, LLVMIntNE, offset_stored, addrx, "");
2113
2114 lp_build_if(&if_ctx, gallivm, cond);
2115 {
2116 ptr_addrx = LLVMBuildIntToPtr(builder, addrx,
2117 LLVMPointerType(i8t, 0), "");
2118 update_cached_block(gallivm, format_desc, ptr_addrx, hash_indexx, cache);
2119 #if LP_BUILD_FORMAT_CACHE_DEBUG
2120 s3tc_update_cache_access(gallivm, cache, 1,
2121 LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_MISS);
2122 #endif
2123 }
2124 lp_build_endif(&if_ctx);
2125
2126 colorx = s3tc_lookup_cached_pixel(gallivm, cache, block_indexx);
2127
2128 color = LLVMBuildInsertElement(builder, color, colorx,
2129 lp_build_const_int32(gallivm, count), "");
2130 }
2131 }
2132 else {
2133 LLVMValueRef cond;
2134 struct lp_build_if_state if_ctx;
2135
2136 tmp = LLVMBuildZExt(builder, offset, i64t, "");
2137 addr = LLVMBuildAdd(builder, tmp, addr, "");
2138 offset_stored = s3tc_lookup_tag_data(gallivm, cache, hash_index);
2139 cond = LLVMBuildICmp(builder, LLVMIntNE, offset_stored, addr, "");
2140
2141 lp_build_if(&if_ctx, gallivm, cond);
2142 {
2143 tmp = LLVMBuildIntToPtr(builder, addr, LLVMPointerType(i8t, 0), "");
2144 update_cached_block(gallivm, format_desc, tmp, hash_index, cache);
2145 #if LP_BUILD_FORMAT_CACHE_DEBUG
2146 s3tc_update_cache_access(gallivm, cache, 1,
2147 LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_MISS);
2148 #endif
2149 }
2150 lp_build_endif(&if_ctx);
2151
2152 color = s3tc_lookup_cached_pixel(gallivm, cache, block_index);
2153 }
2154 #if LP_BUILD_FORMAT_CACHE_DEBUG
2155 s3tc_update_cache_access(gallivm, cache, n,
2156 LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_TOTAL);
2157 #endif
2158 return LLVMBuildBitCast(builder, color, LLVMVectorType(i8t, n * 4), "");
2159 }
2160
2161
2162 static LLVMValueRef
2163 s3tc_dxt5_to_rgba_aos(struct gallivm_state *gallivm,
2164 unsigned n,
2165 enum pipe_format format,
2166 LLVMValueRef colors,
2167 LLVMValueRef codewords,
2168 LLVMValueRef alpha_lo,
2169 LLVMValueRef alpha_hi,
2170 LLVMValueRef i,
2171 LLVMValueRef j)
2172 {
2173 return s3tc_dxt5_full_to_rgba_aos(gallivm, n, format, colors,
2174 codewords, alpha_lo, alpha_hi, i, j);
2175 }
2176
2177
2178 /**
2179 * @param n number of pixels processed (usually n=4, but it should also work with n=1
2180 * and multiples of 4)
2181 * @param base_ptr base pointer (32bit or 64bit pointer depending on the architecture)
2182 * @param offset <n x i32> vector with the relative offsets of the S3TC blocks
2183 * @param i is a <n x i32> vector with the x subpixel coordinate (0..3)
2184 * @param j is a <n x i32> vector with the y subpixel coordinate (0..3)
2185 * @return a <4*n x i8> vector with the pixel RGBA values in AoS
2186 */
2187 LLVMValueRef
2188 lp_build_fetch_s3tc_rgba_aos(struct gallivm_state *gallivm,
2189 const struct util_format_description *format_desc,
2190 unsigned n,
2191 LLVMValueRef base_ptr,
2192 LLVMValueRef offset,
2193 LLVMValueRef i,
2194 LLVMValueRef j,
2195 LLVMValueRef cache)
2196 {
2197 LLVMValueRef rgba;
2198 LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
2199 LLVMBuilderRef builder = gallivm->builder;
2200
2201 assert(format_desc->layout == UTIL_FORMAT_LAYOUT_S3TC);
2202 assert(format_desc->block.width == 4);
2203 assert(format_desc->block.height == 4);
2204
2205 assert((n == 1) || (n % 4 == 0));
2206
2207 /* debug_printf("format = %d\n", format_desc->format);*/
2208 if (cache) {
2209 rgba = compressed_fetch_cached(gallivm, format_desc, n,
2210 base_ptr, offset, i, j, cache);
2211 return rgba;
2212 }
2213
2214 /*
2215 * Could use n > 8 here with avx2, but doesn't seem faster.
2216 */
2217 if (n > 4) {
2218 unsigned count;
2219 LLVMTypeRef i8_vectype = LLVMVectorType(i8t, 4 * n);
2220 LLVMTypeRef i128_type = LLVMIntTypeInContext(gallivm->context, 128);
2221 LLVMTypeRef i128_vectype = LLVMVectorType(i128_type, n / 4);
2222 LLVMTypeRef i324_vectype = LLVMVectorType(LLVMInt32TypeInContext(
2223 gallivm->context), 4);
2224 LLVMValueRef offset4, i4, j4, rgba4[LP_MAX_VECTOR_LENGTH/16];
2225 struct lp_type lp_324_vectype = lp_type_uint_vec(32, 128);
2226
2227 assert(n / 4 <= ARRAY_SIZE(rgba4));
2228
2229 rgba = LLVMGetUndef(i128_vectype);
2230
2231 for (count = 0; count < n / 4; count++) {
2232 LLVMValueRef colors, codewords, alpha_lo = NULL, alpha_hi = NULL;
2233
2234 i4 = lp_build_extract_range(gallivm, i, count * 4, 4);
2235 j4 = lp_build_extract_range(gallivm, j, count * 4, 4);
2236 offset4 = lp_build_extract_range(gallivm, offset, count * 4, 4);
2237
2238 lp_build_gather_s3tc(gallivm, 4, format_desc, &colors, &codewords,
2239 &alpha_lo, &alpha_hi, base_ptr, offset4);
2240
2241 switch (format_desc->format) {
2242 case PIPE_FORMAT_DXT1_RGB:
2243 case PIPE_FORMAT_DXT1_RGBA:
2244 case PIPE_FORMAT_DXT1_SRGB:
2245 case PIPE_FORMAT_DXT1_SRGBA:
2246 rgba4[count] = s3tc_dxt1_to_rgba_aos(gallivm, 4, format_desc->format,
2247 colors, codewords, i4, j4);
2248 break;
2249 case PIPE_FORMAT_DXT3_RGBA:
2250 case PIPE_FORMAT_DXT3_SRGBA:
2251 rgba4[count] = s3tc_dxt3_to_rgba_aos(gallivm, 4, format_desc->format, colors,
2252 codewords, alpha_lo, alpha_hi, i4, j4);
2253 break;
2254 case PIPE_FORMAT_DXT5_RGBA:
2255 case PIPE_FORMAT_DXT5_SRGBA:
2256 rgba4[count] = s3tc_dxt5_to_rgba_aos(gallivm, 4, format_desc->format, colors,
2257 codewords, alpha_lo, alpha_hi, i4, j4);
2258 break;
2259 default:
2260 assert(0);
2261 rgba4[count] = LLVMGetUndef(LLVMVectorType(i8t, 4));
2262 break;
2263 }
2264 /* shuffles typically give best results with dword elements...*/
2265 rgba4[count] = LLVMBuildBitCast(builder, rgba4[count], i324_vectype, "");
2266 }
2267 rgba = lp_build_concat(gallivm, rgba4, lp_324_vectype, n / 4);
2268 rgba = LLVMBuildBitCast(builder, rgba, i8_vectype, "");
2269 }
2270 else {
2271 LLVMValueRef colors, codewords, alpha_lo = NULL, alpha_hi = NULL;
2272
2273 lp_build_gather_s3tc(gallivm, n, format_desc, &colors, &codewords,
2274 &alpha_lo, &alpha_hi, base_ptr, offset);
2275
2276 switch (format_desc->format) {
2277 case PIPE_FORMAT_DXT1_RGB:
2278 case PIPE_FORMAT_DXT1_RGBA:
2279 case PIPE_FORMAT_DXT1_SRGB:
2280 case PIPE_FORMAT_DXT1_SRGBA:
2281 rgba = s3tc_dxt1_to_rgba_aos(gallivm, n, format_desc->format,
2282 colors, codewords, i, j);
2283 break;
2284 case PIPE_FORMAT_DXT3_RGBA:
2285 case PIPE_FORMAT_DXT3_SRGBA:
2286 rgba = s3tc_dxt3_to_rgba_aos(gallivm, n, format_desc->format, colors,
2287 codewords, alpha_lo, alpha_hi, i, j);
2288 break;
2289 case PIPE_FORMAT_DXT5_RGBA:
2290 case PIPE_FORMAT_DXT5_SRGBA:
2291 rgba = s3tc_dxt5_to_rgba_aos(gallivm, n, format_desc->format, colors,
2292 codewords, alpha_lo, alpha_hi, i, j);
2293 break;
2294 default:
2295 assert(0);
2296 rgba = LLVMGetUndef(LLVMVectorType(i8t, 4*n));
2297 break;
2298 }
2299 }
2300
2301 /* always return just decompressed values - srgb conversion is done later */
2302
2303 return rgba;
2304 }
2305
2306 /**
2307 * Gather elements from scatter positions in memory into vectors.
2308 * This is customised for fetching texels from s3tc textures.
2309 * For SSE, typical value is length=4.
2310 *
2311 * @param length length of the offsets
2312 * @param colors the stored colors of the blocks will be extracted into this.
2313 * @param codewords the codewords of the blocks will be extracted into this.
2314 * @param alpha_lo used for storing lower 32bit of alpha components for dxt3/5
2315 * @param alpha_hi used for storing higher 32bit of alpha components for dxt3/5
2316 * @param base_ptr base pointer, should be a i8 pointer type.
2317 * @param offsets vector with offsets
2318 */
2319 static void
2320 lp_build_gather_rgtc(struct gallivm_state *gallivm,
2321 unsigned length,
2322 const struct util_format_description *format_desc,
2323 LLVMValueRef *red_lo, LLVMValueRef *red_hi,
2324 LLVMValueRef *green_lo, LLVMValueRef *green_hi,
2325 LLVMValueRef base_ptr,
2326 LLVMValueRef offsets)
2327 {
2328 LLVMBuilderRef builder = gallivm->builder;
2329 unsigned block_bits = format_desc->block.bits;
2330 unsigned i;
2331 LLVMValueRef elems[8];
2332 LLVMTypeRef type32 = LLVMInt32TypeInContext(gallivm->context);
2333 LLVMTypeRef type64 = LLVMInt64TypeInContext(gallivm->context);
2334 LLVMTypeRef type32dxt;
2335 struct lp_type lp_type32dxt;
2336
2337 memset(&lp_type32dxt, 0, sizeof lp_type32dxt);
2338 lp_type32dxt.width = 32;
2339 lp_type32dxt.length = block_bits / 32;
2340 type32dxt = lp_build_vec_type(gallivm, lp_type32dxt);
2341
2342 assert(block_bits == 64 || block_bits == 128);
2343 assert(length == 1 || length == 4 || length == 8);
2344
2345 for (i = 0; i < length; ++i) {
2346 elems[i] = lp_build_gather_elem(gallivm, length,
2347 block_bits, block_bits, TRUE,
2348 base_ptr, offsets, i, FALSE);
2349 elems[i] = LLVMBuildBitCast(builder, elems[i], type32dxt, "");
2350 }
2351 if (length == 1) {
2352 LLVMValueRef elem = elems[0];
2353
2354 *red_lo = LLVMBuildExtractElement(builder, elem,
2355 lp_build_const_int32(gallivm, 0), "");
2356 *red_hi = LLVMBuildExtractElement(builder, elem,
2357 lp_build_const_int32(gallivm, 1), "");
2358
2359 if (block_bits == 128) {
2360 *green_lo = LLVMBuildExtractElement(builder, elem,
2361 lp_build_const_int32(gallivm, 2), "");
2362 *green_hi = LLVMBuildExtractElement(builder, elem,
2363 lp_build_const_int32(gallivm, 3), "");
2364 }
2365 } else {
2366 LLVMValueRef tmp[4];
2367 struct lp_type lp_type32, lp_type64;
2368 memset(&lp_type32, 0, sizeof lp_type32);
2369 lp_type32.width = 32;
2370 lp_type32.length = length;
2371 lp_type32.sign = lp_type32dxt.sign;
2372 memset(&lp_type64, 0, sizeof lp_type64);
2373 lp_type64.width = 64;
2374 lp_type64.length = length/2;
2375 if (block_bits == 128) {
2376 if (length == 8) {
2377 for (i = 0; i < 4; ++i) {
2378 tmp[0] = elems[i];
2379 tmp[1] = elems[i+4];
2380 elems[i] = lp_build_concat(gallivm, tmp, lp_type32dxt, 2);
2381 }
2382 }
2383 lp_build_transpose_aos(gallivm, lp_type32, elems, tmp);
2384 *green_lo = tmp[2];
2385 *green_hi = tmp[3];
2386 *red_lo = tmp[0];
2387 *red_hi = tmp[1];
2388 } else {
2389 LLVMValueRef red01, red23;
2390 LLVMTypeRef type64_vec = LLVMVectorType(type64, length/2);
2391 LLVMTypeRef type32_vec = LLVMVectorType(type32, length);
2392
2393 for (i = 0; i < length; ++i) {
2394 /* no-op shuffle */
2395 elems[i] = LLVMBuildShuffleVector(builder, elems[i],
2396 LLVMGetUndef(type32dxt),
2397 lp_build_const_extend_shuffle(gallivm, 2, 4), "");
2398 }
2399 if (length == 8) {
2400 struct lp_type lp_type32_4 = {0};
2401 lp_type32_4.width = 32;
2402 lp_type32_4.length = 4;
2403 for (i = 0; i < 4; ++i) {
2404 tmp[0] = elems[i];
2405 tmp[1] = elems[i+4];
2406 elems[i] = lp_build_concat(gallivm, tmp, lp_type32_4, 2);
2407 }
2408 }
2409 red01 = lp_build_interleave2_half(gallivm, lp_type32, elems[0], elems[1], 0);
2410 red23 = lp_build_interleave2_half(gallivm, lp_type32, elems[2], elems[3], 0);
2411 red01 = LLVMBuildBitCast(builder, red01, type64_vec, "");
2412 red23 = LLVMBuildBitCast(builder, red23, type64_vec, "");
2413 *red_lo = lp_build_interleave2_half(gallivm, lp_type64, red01, red23, 0);
2414 *red_hi = lp_build_interleave2_half(gallivm, lp_type64, red01, red23, 1);
2415 *red_lo = LLVMBuildBitCast(builder, *red_lo, type32_vec, "");
2416 *red_hi = LLVMBuildBitCast(builder, *red_hi, type32_vec, "");
2417 *green_lo = NULL;
2418 *green_hi = NULL;
2419 }
2420 }
2421 }
2422
2423 static LLVMValueRef
2424 rgtc1_to_rgba_aos(struct gallivm_state *gallivm,
2425 unsigned n,
2426 enum pipe_format format,
2427 LLVMValueRef red_lo,
2428 LLVMValueRef red_hi,
2429 LLVMValueRef i,
2430 LLVMValueRef j)
2431 {
2432 LLVMBuilderRef builder = gallivm->builder;
2433 bool is_signed = (format == PIPE_FORMAT_RGTC1_SNORM);
2434 LLVMValueRef red = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, red_hi, red_lo, i, j);
2435 LLVMValueRef rgba;
2436 struct lp_type type, type8;
2437 memset(&type, 0, sizeof type);
2438 type.width = 32;
2439 type.length = n;
2440 memset(&type8, 0, sizeof type8);
2441 type8.width = 8;
2442 type8.length = n*4;
2443 rgba = lp_build_const_int_vec(gallivm, type, is_signed ? (0x7f << 24) : (0xff << 24));
2444 rgba = LLVMBuildOr(builder, rgba, red, "");
2445 return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
2446 }
2447
2448 static LLVMValueRef
2449 rgtc2_to_rgba_aos(struct gallivm_state *gallivm,
2450 unsigned n,
2451 enum pipe_format format,
2452 LLVMValueRef red_lo,
2453 LLVMValueRef red_hi,
2454 LLVMValueRef green_lo,
2455 LLVMValueRef green_hi,
2456 LLVMValueRef i,
2457 LLVMValueRef j)
2458 {
2459 LLVMBuilderRef builder = gallivm->builder;
2460 bool is_signed = (format == PIPE_FORMAT_RGTC2_SNORM);
2461 LLVMValueRef red = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, red_hi, red_lo, i, j);
2462 LLVMValueRef green = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, green_hi, green_lo, i, j);
2463 LLVMValueRef rgba;
2464 struct lp_type type, type8;
2465 memset(&type, 0, sizeof type);
2466 type.width = 32;
2467 type.length = n;
2468 memset(&type8, 0, sizeof type8);
2469 type8.width = 8;
2470 type8.length = n*4;
2471 rgba = lp_build_const_int_vec(gallivm, type, is_signed ? (0x7f << 24) : (0xff << 24));
2472 rgba = LLVMBuildOr(builder, rgba, red, "");
2473 green = LLVMBuildShl(builder, green, lp_build_const_int_vec(gallivm, type, 8), "");
2474 rgba = LLVMBuildOr(builder, rgba, green, "");
2475 return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
2476 }
2477
2478 static LLVMValueRef
2479 latc1_to_rgba_aos(struct gallivm_state *gallivm,
2480 unsigned n,
2481 enum pipe_format format,
2482 LLVMValueRef red_lo,
2483 LLVMValueRef red_hi,
2484 LLVMValueRef i,
2485 LLVMValueRef j)
2486 {
2487 LLVMBuilderRef builder = gallivm->builder;
2488 bool is_signed = (format == PIPE_FORMAT_LATC1_SNORM);
2489 LLVMValueRef red = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, red_hi, red_lo, i, j);
2490 LLVMValueRef rgba, temp;
2491 struct lp_type type, type8;
2492 memset(&type, 0, sizeof type);
2493 type.width = 32;
2494 type.length = n;
2495 memset(&type8, 0, sizeof type8);
2496 type8.width = 8;
2497 type8.length = n*4;
2498 rgba = lp_build_const_int_vec(gallivm, type, is_signed ? (0x7f << 24) : (0xff << 24));
2499 rgba = LLVMBuildOr(builder, rgba, red, "");
2500 temp = LLVMBuildShl(builder, red, lp_build_const_int_vec(gallivm, type, 8), "");
2501 rgba = LLVMBuildOr(builder, rgba, temp, "");
2502 temp = LLVMBuildShl(builder, red, lp_build_const_int_vec(gallivm, type, 16), "");
2503 rgba = LLVMBuildOr(builder, rgba, temp, "");
2504 return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
2505 }
2506
2507 static LLVMValueRef
2508 latc2_to_rgba_aos(struct gallivm_state *gallivm,
2509 unsigned n,
2510 enum pipe_format format,
2511 LLVMValueRef red_lo,
2512 LLVMValueRef red_hi,
2513 LLVMValueRef green_lo,
2514 LLVMValueRef green_hi,
2515 LLVMValueRef i,
2516 LLVMValueRef j)
2517 {
2518 LLVMBuilderRef builder = gallivm->builder;
2519 bool is_signed = (format == PIPE_FORMAT_LATC2_SNORM);
2520 LLVMValueRef red = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, red_hi, red_lo, i, j);
2521 LLVMValueRef green = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, green_hi, green_lo, i, j);
2522 LLVMValueRef rgba, temp;
2523 struct lp_type type, type8;
2524 memset(&type, 0, sizeof type);
2525 type.width = 32;
2526 type.length = n;
2527 memset(&type8, 0, sizeof type8);
2528 type8.width = 8;
2529 type8.length = n*4;
2530
2531 temp = LLVMBuildShl(builder, red, lp_build_const_int_vec(gallivm, type, 8), "");
2532 rgba = LLVMBuildOr(builder, red, temp, "");
2533 temp = LLVMBuildShl(builder, red, lp_build_const_int_vec(gallivm, type, 16), "");
2534 rgba = LLVMBuildOr(builder, rgba, temp, "");
2535 temp = LLVMBuildShl(builder, green, lp_build_const_int_vec(gallivm, type, 24), "");
2536 rgba = LLVMBuildOr(builder, rgba, temp, "");
2537 return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
2538 }
2539
2540 /**
2541 * @param n number of pixels processed (usually n=4, but it should also work with n=1
2542 * and multiples of 4)
2543 * @param base_ptr base pointer (32bit or 64bit pointer depending on the architecture)
2544 * @param offset <n x i32> vector with the relative offsets of the S3TC blocks
2545 * @param i is a <n x i32> vector with the x subpixel coordinate (0..3)
2546 * @param j is a <n x i32> vector with the y subpixel coordinate (0..3)
2547 * @return a <4*n x i8> vector with the pixel RGBA values in AoS
2548 */
2549 LLVMValueRef
2550 lp_build_fetch_rgtc_rgba_aos(struct gallivm_state *gallivm,
2551 const struct util_format_description *format_desc,
2552 unsigned n,
2553 LLVMValueRef base_ptr,
2554 LLVMValueRef offset,
2555 LLVMValueRef i,
2556 LLVMValueRef j,
2557 LLVMValueRef cache)
2558 {
2559 LLVMValueRef rgba;
2560 LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
2561 LLVMBuilderRef builder = gallivm->builder;
2562 LLVMValueRef red_lo, red_hi, green_lo, green_hi;
2563 assert(format_desc->layout == UTIL_FORMAT_LAYOUT_RGTC);
2564 assert(format_desc->block.width == 4);
2565 assert(format_desc->block.height == 4);
2566
2567 assert((n == 1) || (n % 4 == 0));
2568
2569 if (n > 4) {
2570 unsigned count;
2571 LLVMTypeRef i128_type = LLVMIntTypeInContext(gallivm->context, 128);
2572 LLVMTypeRef i128_vectype = LLVMVectorType(i128_type, n / 4);
2573 LLVMTypeRef i8_vectype = LLVMVectorType(i8t, 4 * n);
2574 LLVMTypeRef i324_vectype = LLVMVectorType(LLVMInt32TypeInContext(
2575 gallivm->context), 4);
2576 LLVMValueRef offset4, i4, j4, rgba4[LP_MAX_VECTOR_LENGTH/16];
2577 struct lp_type lp_324_vectype = lp_type_uint_vec(32, 128);
2578
2579 rgba = LLVMGetUndef(i128_vectype);
2580
2581 for (count = 0; count < n / 4; count++) {
2582
2583 i4 = lp_build_extract_range(gallivm, i, count * 4, 4);
2584 j4 = lp_build_extract_range(gallivm, j, count * 4, 4);
2585 offset4 = lp_build_extract_range(gallivm, offset, count * 4, 4);
2586
2587 lp_build_gather_rgtc(gallivm, 4, format_desc, &red_lo, &red_hi,
2588 &green_lo, &green_hi, base_ptr, offset4);
2589
2590 switch (format_desc->format) {
2591 case PIPE_FORMAT_RGTC1_UNORM:
2592 case PIPE_FORMAT_RGTC1_SNORM:
2593 rgba4[count] = rgtc1_to_rgba_aos(gallivm, 4, format_desc->format,
2594 red_lo, red_hi, i4, j4);
2595 break;
2596 case PIPE_FORMAT_RGTC2_UNORM:
2597 case PIPE_FORMAT_RGTC2_SNORM:
2598 rgba4[count] = rgtc2_to_rgba_aos(gallivm, 4, format_desc->format,
2599 red_lo, red_hi, green_lo, green_hi, i4, j4);
2600 break;
2601 case PIPE_FORMAT_LATC1_UNORM:
2602 case PIPE_FORMAT_LATC1_SNORM:
2603 rgba4[count] = latc1_to_rgba_aos(gallivm, 4, format_desc->format,
2604 red_lo, red_hi, i4, j4);
2605 break;
2606 case PIPE_FORMAT_LATC2_UNORM:
2607 case PIPE_FORMAT_LATC2_SNORM:
2608 rgba4[count] = latc2_to_rgba_aos(gallivm, 4, format_desc->format,
2609 red_lo, red_hi, green_lo, green_hi, i4, j4);
2610 break;
2611 default:
2612 assert(0);
2613 rgba4[count] = LLVMGetUndef(LLVMVectorType(i8t, 4));
2614 break;
2615 }
2616 /* shuffles typically give best results with dword elements...*/
2617 rgba4[count] = LLVMBuildBitCast(builder, rgba4[count], i324_vectype, "");
2618 }
2619 rgba = lp_build_concat(gallivm, rgba4, lp_324_vectype, n / 4);
2620 rgba = LLVMBuildBitCast(builder, rgba, i8_vectype, "");
2621 } else {
2622 LLVMValueRef red_lo, red_hi, green_lo, green_hi;
2623
2624 lp_build_gather_rgtc(gallivm, n, format_desc, &red_lo, &red_hi,
2625 &green_lo, &green_hi, base_ptr, offset);
2626
2627 switch (format_desc->format) {
2628 case PIPE_FORMAT_RGTC1_UNORM:
2629 case PIPE_FORMAT_RGTC1_SNORM:
2630 rgba = rgtc1_to_rgba_aos(gallivm, n, format_desc->format,
2631 red_lo, red_hi, i, j);
2632 break;
2633 case PIPE_FORMAT_RGTC2_UNORM:
2634 case PIPE_FORMAT_RGTC2_SNORM:
2635 rgba = rgtc2_to_rgba_aos(gallivm, n, format_desc->format,
2636 red_lo, red_hi, green_lo, green_hi, i, j);
2637 break;
2638 case PIPE_FORMAT_LATC1_UNORM:
2639 case PIPE_FORMAT_LATC1_SNORM:
2640 rgba = latc1_to_rgba_aos(gallivm, n, format_desc->format,
2641 red_lo, red_hi, i, j);
2642 break;
2643 case PIPE_FORMAT_LATC2_UNORM:
2644 case PIPE_FORMAT_LATC2_SNORM:
2645 rgba = latc2_to_rgba_aos(gallivm, n, format_desc->format,
2646 red_lo, red_hi, green_lo, green_hi, i, j);
2647 break;
2648 default:
2649 assert(0);
2650 rgba = LLVMGetUndef(LLVMVectorType(i8t, 4*n));
2651 break;
2652 }
2653 }
2654 return rgba;
2655 }