tgsi_exec: use defines for max inputs/outputs
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_exec.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009-2010 VMware, Inc. All rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * TGSI interpreter/executor.
31 *
32 * Flow control information:
33 *
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
38 *
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers. This is the ExecMask.
42 * See store_dest().
43 *
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47 *
48 *
49 * Authors:
50 * Michal Krol
51 * Brian Paul
52 */
53
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_memory.h"
62 #include "util/u_math.h"
63
64
65 #define DEBUG_EXECUTION 0
66
67
68 #define FAST_MATH 0
69
70 #define TILE_TOP_LEFT 0
71 #define TILE_TOP_RIGHT 1
72 #define TILE_BOTTOM_LEFT 2
73 #define TILE_BOTTOM_RIGHT 3
74
75 static void
76 micro_abs(union tgsi_exec_channel *dst,
77 const union tgsi_exec_channel *src)
78 {
79 dst->f[0] = fabsf(src->f[0]);
80 dst->f[1] = fabsf(src->f[1]);
81 dst->f[2] = fabsf(src->f[2]);
82 dst->f[3] = fabsf(src->f[3]);
83 }
84
85 static void
86 micro_arl(union tgsi_exec_channel *dst,
87 const union tgsi_exec_channel *src)
88 {
89 dst->i[0] = (int)floorf(src->f[0]);
90 dst->i[1] = (int)floorf(src->f[1]);
91 dst->i[2] = (int)floorf(src->f[2]);
92 dst->i[3] = (int)floorf(src->f[3]);
93 }
94
95 static void
96 micro_arr(union tgsi_exec_channel *dst,
97 const union tgsi_exec_channel *src)
98 {
99 dst->i[0] = (int)floorf(src->f[0] + 0.5f);
100 dst->i[1] = (int)floorf(src->f[1] + 0.5f);
101 dst->i[2] = (int)floorf(src->f[2] + 0.5f);
102 dst->i[3] = (int)floorf(src->f[3] + 0.5f);
103 }
104
105 static void
106 micro_ceil(union tgsi_exec_channel *dst,
107 const union tgsi_exec_channel *src)
108 {
109 dst->f[0] = ceilf(src->f[0]);
110 dst->f[1] = ceilf(src->f[1]);
111 dst->f[2] = ceilf(src->f[2]);
112 dst->f[3] = ceilf(src->f[3]);
113 }
114
115 static void
116 micro_clamp(union tgsi_exec_channel *dst,
117 const union tgsi_exec_channel *src0,
118 const union tgsi_exec_channel *src1,
119 const union tgsi_exec_channel *src2)
120 {
121 dst->f[0] = src0->f[0] < src1->f[0] ? src1->f[0] : src0->f[0] > src2->f[0] ? src2->f[0] : src0->f[0];
122 dst->f[1] = src0->f[1] < src1->f[1] ? src1->f[1] : src0->f[1] > src2->f[1] ? src2->f[1] : src0->f[1];
123 dst->f[2] = src0->f[2] < src1->f[2] ? src1->f[2] : src0->f[2] > src2->f[2] ? src2->f[2] : src0->f[2];
124 dst->f[3] = src0->f[3] < src1->f[3] ? src1->f[3] : src0->f[3] > src2->f[3] ? src2->f[3] : src0->f[3];
125 }
126
127 static void
128 micro_cmp(union tgsi_exec_channel *dst,
129 const union tgsi_exec_channel *src0,
130 const union tgsi_exec_channel *src1,
131 const union tgsi_exec_channel *src2)
132 {
133 dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
134 dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
135 dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
136 dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
137 }
138
139 static void
140 micro_cnd(union tgsi_exec_channel *dst,
141 const union tgsi_exec_channel *src0,
142 const union tgsi_exec_channel *src1,
143 const union tgsi_exec_channel *src2)
144 {
145 dst->f[0] = src2->f[0] > 0.5f ? src0->f[0] : src1->f[0];
146 dst->f[1] = src2->f[1] > 0.5f ? src0->f[1] : src1->f[1];
147 dst->f[2] = src2->f[2] > 0.5f ? src0->f[2] : src1->f[2];
148 dst->f[3] = src2->f[3] > 0.5f ? src0->f[3] : src1->f[3];
149 }
150
151 static void
152 micro_cos(union tgsi_exec_channel *dst,
153 const union tgsi_exec_channel *src)
154 {
155 dst->f[0] = cosf(src->f[0]);
156 dst->f[1] = cosf(src->f[1]);
157 dst->f[2] = cosf(src->f[2]);
158 dst->f[3] = cosf(src->f[3]);
159 }
160
161 static void
162 micro_ddx(union tgsi_exec_channel *dst,
163 const union tgsi_exec_channel *src)
164 {
165 dst->f[0] =
166 dst->f[1] =
167 dst->f[2] =
168 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
169 }
170
171 static void
172 micro_ddy(union tgsi_exec_channel *dst,
173 const union tgsi_exec_channel *src)
174 {
175 dst->f[0] =
176 dst->f[1] =
177 dst->f[2] =
178 dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
179 }
180
181 static void
182 micro_exp2(union tgsi_exec_channel *dst,
183 const union tgsi_exec_channel *src)
184 {
185 #if FAST_MATH
186 dst->f[0] = util_fast_exp2(src->f[0]);
187 dst->f[1] = util_fast_exp2(src->f[1]);
188 dst->f[2] = util_fast_exp2(src->f[2]);
189 dst->f[3] = util_fast_exp2(src->f[3]);
190 #else
191 #if DEBUG
192 /* Inf is okay for this instruction, so clamp it to silence assertions. */
193 uint i;
194 union tgsi_exec_channel clamped;
195
196 for (i = 0; i < 4; i++) {
197 if (src->f[i] > 127.99999f) {
198 clamped.f[i] = 127.99999f;
199 } else if (src->f[i] < -126.99999f) {
200 clamped.f[i] = -126.99999f;
201 } else {
202 clamped.f[i] = src->f[i];
203 }
204 }
205 src = &clamped;
206 #endif /* DEBUG */
207
208 dst->f[0] = powf(2.0f, src->f[0]);
209 dst->f[1] = powf(2.0f, src->f[1]);
210 dst->f[2] = powf(2.0f, src->f[2]);
211 dst->f[3] = powf(2.0f, src->f[3]);
212 #endif /* FAST_MATH */
213 }
214
215 static void
216 micro_flr(union tgsi_exec_channel *dst,
217 const union tgsi_exec_channel *src)
218 {
219 dst->f[0] = floorf(src->f[0]);
220 dst->f[1] = floorf(src->f[1]);
221 dst->f[2] = floorf(src->f[2]);
222 dst->f[3] = floorf(src->f[3]);
223 }
224
225 static void
226 micro_frc(union tgsi_exec_channel *dst,
227 const union tgsi_exec_channel *src)
228 {
229 dst->f[0] = src->f[0] - floorf(src->f[0]);
230 dst->f[1] = src->f[1] - floorf(src->f[1]);
231 dst->f[2] = src->f[2] - floorf(src->f[2]);
232 dst->f[3] = src->f[3] - floorf(src->f[3]);
233 }
234
235 static void
236 micro_iabs(union tgsi_exec_channel *dst,
237 const union tgsi_exec_channel *src)
238 {
239 dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
240 dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
241 dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
242 dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
243 }
244
245 static void
246 micro_ineg(union tgsi_exec_channel *dst,
247 const union tgsi_exec_channel *src)
248 {
249 dst->i[0] = -src->i[0];
250 dst->i[1] = -src->i[1];
251 dst->i[2] = -src->i[2];
252 dst->i[3] = -src->i[3];
253 }
254
255 static void
256 micro_lg2(union tgsi_exec_channel *dst,
257 const union tgsi_exec_channel *src)
258 {
259 #if FAST_MATH
260 dst->f[0] = util_fast_log2(src->f[0]);
261 dst->f[1] = util_fast_log2(src->f[1]);
262 dst->f[2] = util_fast_log2(src->f[2]);
263 dst->f[3] = util_fast_log2(src->f[3]);
264 #else
265 dst->f[0] = logf(src->f[0]) * 1.442695f;
266 dst->f[1] = logf(src->f[1]) * 1.442695f;
267 dst->f[2] = logf(src->f[2]) * 1.442695f;
268 dst->f[3] = logf(src->f[3]) * 1.442695f;
269 #endif
270 }
271
272 static void
273 micro_lrp(union tgsi_exec_channel *dst,
274 const union tgsi_exec_channel *src0,
275 const union tgsi_exec_channel *src1,
276 const union tgsi_exec_channel *src2)
277 {
278 dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
279 dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
280 dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
281 dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
282 }
283
284 static void
285 micro_mad(union tgsi_exec_channel *dst,
286 const union tgsi_exec_channel *src0,
287 const union tgsi_exec_channel *src1,
288 const union tgsi_exec_channel *src2)
289 {
290 dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
291 dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
292 dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
293 dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
294 }
295
296 static void
297 micro_mov(union tgsi_exec_channel *dst,
298 const union tgsi_exec_channel *src)
299 {
300 dst->u[0] = src->u[0];
301 dst->u[1] = src->u[1];
302 dst->u[2] = src->u[2];
303 dst->u[3] = src->u[3];
304 }
305
306 static void
307 micro_rcp(union tgsi_exec_channel *dst,
308 const union tgsi_exec_channel *src)
309 {
310 #if 0 /* for debugging */
311 assert(src->f[0] != 0.0f);
312 assert(src->f[1] != 0.0f);
313 assert(src->f[2] != 0.0f);
314 assert(src->f[3] != 0.0f);
315 #endif
316 dst->f[0] = 1.0f / src->f[0];
317 dst->f[1] = 1.0f / src->f[1];
318 dst->f[2] = 1.0f / src->f[2];
319 dst->f[3] = 1.0f / src->f[3];
320 }
321
322 static void
323 micro_rnd(union tgsi_exec_channel *dst,
324 const union tgsi_exec_channel *src)
325 {
326 dst->f[0] = floorf(src->f[0] + 0.5f);
327 dst->f[1] = floorf(src->f[1] + 0.5f);
328 dst->f[2] = floorf(src->f[2] + 0.5f);
329 dst->f[3] = floorf(src->f[3] + 0.5f);
330 }
331
332 static void
333 micro_rsq(union tgsi_exec_channel *dst,
334 const union tgsi_exec_channel *src)
335 {
336 #if 0 /* for debugging */
337 assert(src->f[0] != 0.0f);
338 assert(src->f[1] != 0.0f);
339 assert(src->f[2] != 0.0f);
340 assert(src->f[3] != 0.0f);
341 #endif
342 dst->f[0] = 1.0f / sqrtf(src->f[0]);
343 dst->f[1] = 1.0f / sqrtf(src->f[1]);
344 dst->f[2] = 1.0f / sqrtf(src->f[2]);
345 dst->f[3] = 1.0f / sqrtf(src->f[3]);
346 }
347
348 static void
349 micro_sqrt(union tgsi_exec_channel *dst,
350 const union tgsi_exec_channel *src)
351 {
352 dst->f[0] = sqrtf(src->f[0]);
353 dst->f[1] = sqrtf(src->f[1]);
354 dst->f[2] = sqrtf(src->f[2]);
355 dst->f[3] = sqrtf(src->f[3]);
356 }
357
358 static void
359 micro_seq(union tgsi_exec_channel *dst,
360 const union tgsi_exec_channel *src0,
361 const union tgsi_exec_channel *src1)
362 {
363 dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
364 dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
365 dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
366 dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
367 }
368
369 static void
370 micro_sge(union tgsi_exec_channel *dst,
371 const union tgsi_exec_channel *src0,
372 const union tgsi_exec_channel *src1)
373 {
374 dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
375 dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
376 dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
377 dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
378 }
379
380 static void
381 micro_sgn(union tgsi_exec_channel *dst,
382 const union tgsi_exec_channel *src)
383 {
384 dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
385 dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
386 dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
387 dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
388 }
389
390 static void
391 micro_isgn(union tgsi_exec_channel *dst,
392 const union tgsi_exec_channel *src)
393 {
394 dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0;
395 dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0;
396 dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0;
397 dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0;
398 }
399
400 static void
401 micro_sgt(union tgsi_exec_channel *dst,
402 const union tgsi_exec_channel *src0,
403 const union tgsi_exec_channel *src1)
404 {
405 dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
406 dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
407 dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
408 dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
409 }
410
411 static void
412 micro_sin(union tgsi_exec_channel *dst,
413 const union tgsi_exec_channel *src)
414 {
415 dst->f[0] = sinf(src->f[0]);
416 dst->f[1] = sinf(src->f[1]);
417 dst->f[2] = sinf(src->f[2]);
418 dst->f[3] = sinf(src->f[3]);
419 }
420
421 static void
422 micro_sle(union tgsi_exec_channel *dst,
423 const union tgsi_exec_channel *src0,
424 const union tgsi_exec_channel *src1)
425 {
426 dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
427 dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
428 dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
429 dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
430 }
431
432 static void
433 micro_slt(union tgsi_exec_channel *dst,
434 const union tgsi_exec_channel *src0,
435 const union tgsi_exec_channel *src1)
436 {
437 dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
438 dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
439 dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
440 dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
441 }
442
443 static void
444 micro_sne(union tgsi_exec_channel *dst,
445 const union tgsi_exec_channel *src0,
446 const union tgsi_exec_channel *src1)
447 {
448 dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
449 dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
450 dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
451 dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
452 }
453
454 static void
455 micro_sfl(union tgsi_exec_channel *dst)
456 {
457 dst->f[0] = 0.0f;
458 dst->f[1] = 0.0f;
459 dst->f[2] = 0.0f;
460 dst->f[3] = 0.0f;
461 }
462
463 static void
464 micro_str(union tgsi_exec_channel *dst)
465 {
466 dst->f[0] = 1.0f;
467 dst->f[1] = 1.0f;
468 dst->f[2] = 1.0f;
469 dst->f[3] = 1.0f;
470 }
471
472 static void
473 micro_trunc(union tgsi_exec_channel *dst,
474 const union tgsi_exec_channel *src)
475 {
476 dst->f[0] = (float)(int)src->f[0];
477 dst->f[1] = (float)(int)src->f[1];
478 dst->f[2] = (float)(int)src->f[2];
479 dst->f[3] = (float)(int)src->f[3];
480 }
481
482
483 enum tgsi_exec_datatype {
484 TGSI_EXEC_DATA_FLOAT,
485 TGSI_EXEC_DATA_INT,
486 TGSI_EXEC_DATA_UINT
487 };
488
489 /*
490 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
491 */
492 #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
493 #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
494 #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
495 #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
496 #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
497 #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
498
499
500 /** The execution mask depends on the conditional mask and the loop mask */
501 #define UPDATE_EXEC_MASK(MACH) \
502 MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
503
504
505 static const union tgsi_exec_channel ZeroVec =
506 { { 0.0, 0.0, 0.0, 0.0 } };
507
508 static const union tgsi_exec_channel OneVec = {
509 {1.0f, 1.0f, 1.0f, 1.0f}
510 };
511
512 static const union tgsi_exec_channel P128Vec = {
513 {128.0f, 128.0f, 128.0f, 128.0f}
514 };
515
516 static const union tgsi_exec_channel M128Vec = {
517 {-128.0f, -128.0f, -128.0f, -128.0f}
518 };
519
520
521 /**
522 * Assert that none of the float values in 'chan' are infinite or NaN.
523 * NaN and Inf may occur normally during program execution and should
524 * not lead to crashes, etc. But when debugging, it's helpful to catch
525 * them.
526 */
527 static INLINE void
528 check_inf_or_nan(const union tgsi_exec_channel *chan)
529 {
530 assert(!util_is_inf_or_nan((chan)->f[0]));
531 assert(!util_is_inf_or_nan((chan)->f[1]));
532 assert(!util_is_inf_or_nan((chan)->f[2]));
533 assert(!util_is_inf_or_nan((chan)->f[3]));
534 }
535
536
537 #ifdef DEBUG
538 static void
539 print_chan(const char *msg, const union tgsi_exec_channel *chan)
540 {
541 debug_printf("%s = {%f, %f, %f, %f}\n",
542 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
543 }
544 #endif
545
546
547 #ifdef DEBUG
548 static void
549 print_temp(const struct tgsi_exec_machine *mach, uint index)
550 {
551 const struct tgsi_exec_vector *tmp = &mach->Temps[index];
552 int i;
553 debug_printf("Temp[%u] =\n", index);
554 for (i = 0; i < 4; i++) {
555 debug_printf(" %c: { %f, %f, %f, %f }\n",
556 "XYZW"[i],
557 tmp->xyzw[i].f[0],
558 tmp->xyzw[i].f[1],
559 tmp->xyzw[i].f[2],
560 tmp->xyzw[i].f[3]);
561 }
562 }
563 #endif
564
565
566 void
567 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
568 unsigned num_bufs,
569 const void **bufs,
570 const unsigned *buf_sizes)
571 {
572 unsigned i;
573
574 for (i = 0; i < num_bufs; i++) {
575 mach->Consts[i] = bufs[i];
576 mach->ConstsSize[i] = buf_sizes[i];
577 }
578 }
579
580
581 /**
582 * Check if there's a potential src/dst register data dependency when
583 * using SOA execution.
584 * Example:
585 * MOV T, T.yxwz;
586 * This would expand into:
587 * MOV t0, t1;
588 * MOV t1, t0;
589 * MOV t2, t3;
590 * MOV t3, t2;
591 * The second instruction will have the wrong value for t0 if executed as-is.
592 */
593 boolean
594 tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
595 {
596 uint i, chan;
597
598 uint writemask = inst->Dst[0].Register.WriteMask;
599 if (writemask == TGSI_WRITEMASK_X ||
600 writemask == TGSI_WRITEMASK_Y ||
601 writemask == TGSI_WRITEMASK_Z ||
602 writemask == TGSI_WRITEMASK_W ||
603 writemask == TGSI_WRITEMASK_NONE) {
604 /* no chance of data dependency */
605 return FALSE;
606 }
607
608 /* loop over src regs */
609 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
610 if ((inst->Src[i].Register.File ==
611 inst->Dst[0].Register.File) &&
612 ((inst->Src[i].Register.Index ==
613 inst->Dst[0].Register.Index) ||
614 inst->Src[i].Register.Indirect ||
615 inst->Dst[0].Register.Indirect)) {
616 /* loop over dest channels */
617 uint channelsWritten = 0x0;
618 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
619 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
620 /* check if we're reading a channel that's been written */
621 uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
622 if (channelsWritten & (1 << swizzle)) {
623 return TRUE;
624 }
625
626 channelsWritten |= (1 << chan);
627 }
628 }
629 }
630 }
631 return FALSE;
632 }
633
634
635 /**
636 * Initialize machine state by expanding tokens to full instructions,
637 * allocating temporary storage, setting up constants, etc.
638 * After this, we can call tgsi_exec_machine_run() many times.
639 */
640 void
641 tgsi_exec_machine_bind_shader(
642 struct tgsi_exec_machine *mach,
643 const struct tgsi_token *tokens,
644 struct tgsi_sampler *sampler)
645 {
646 uint k;
647 struct tgsi_parse_context parse;
648 struct tgsi_full_instruction *instructions;
649 struct tgsi_full_declaration *declarations;
650 uint maxInstructions = 10, numInstructions = 0;
651 uint maxDeclarations = 10, numDeclarations = 0;
652
653 #if 0
654 tgsi_dump(tokens, 0);
655 #endif
656
657 util_init_math();
658
659
660 mach->Tokens = tokens;
661 mach->Sampler = sampler;
662
663 if (!tokens) {
664 /* unbind and free all */
665 FREE(mach->Declarations);
666 mach->Declarations = NULL;
667 mach->NumDeclarations = 0;
668
669 FREE(mach->Instructions);
670 mach->Instructions = NULL;
671 mach->NumInstructions = 0;
672
673 return;
674 }
675
676 k = tgsi_parse_init (&parse, mach->Tokens);
677 if (k != TGSI_PARSE_OK) {
678 debug_printf( "Problem parsing!\n" );
679 return;
680 }
681
682 mach->Processor = parse.FullHeader.Processor.Processor;
683 mach->ImmLimit = 0;
684 mach->NumOutputs = 0;
685
686 if (mach->Processor == TGSI_PROCESSOR_GEOMETRY &&
687 !mach->UsedGeometryShader) {
688 struct tgsi_exec_vector *inputs;
689 struct tgsi_exec_vector *outputs;
690
691 inputs = align_malloc(sizeof(struct tgsi_exec_vector) *
692 TGSI_MAX_PRIM_VERTICES * PIPE_MAX_SHADER_INPUTS,
693 16);
694
695 if (!inputs)
696 return;
697
698 outputs = align_malloc(sizeof(struct tgsi_exec_vector) *
699 TGSI_MAX_TOTAL_VERTICES, 16);
700
701 if (!outputs) {
702 align_free(inputs);
703 return;
704 }
705
706 align_free(mach->Inputs);
707 align_free(mach->Outputs);
708
709 mach->Inputs = inputs;
710 mach->Outputs = outputs;
711 mach->UsedGeometryShader = TRUE;
712 }
713
714 declarations = (struct tgsi_full_declaration *)
715 MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
716
717 if (!declarations) {
718 return;
719 }
720
721 instructions = (struct tgsi_full_instruction *)
722 MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
723
724 if (!instructions) {
725 FREE( declarations );
726 return;
727 }
728
729 while( !tgsi_parse_end_of_tokens( &parse ) ) {
730 uint i;
731
732 tgsi_parse_token( &parse );
733 switch( parse.FullToken.Token.Type ) {
734 case TGSI_TOKEN_TYPE_DECLARATION:
735 /* save expanded declaration */
736 if (numDeclarations == maxDeclarations) {
737 declarations = REALLOC(declarations,
738 maxDeclarations
739 * sizeof(struct tgsi_full_declaration),
740 (maxDeclarations + 10)
741 * sizeof(struct tgsi_full_declaration));
742 maxDeclarations += 10;
743 }
744 if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
745 unsigned reg;
746 for (reg = parse.FullToken.FullDeclaration.Range.First;
747 reg <= parse.FullToken.FullDeclaration.Range.Last;
748 ++reg) {
749 ++mach->NumOutputs;
750 }
751 }
752 memcpy(declarations + numDeclarations,
753 &parse.FullToken.FullDeclaration,
754 sizeof(declarations[0]));
755 numDeclarations++;
756 break;
757
758 case TGSI_TOKEN_TYPE_IMMEDIATE:
759 {
760 uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
761 assert( size <= 4 );
762 assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES );
763
764 for( i = 0; i < size; i++ ) {
765 mach->Imms[mach->ImmLimit][i] =
766 parse.FullToken.FullImmediate.u[i].Float;
767 }
768 mach->ImmLimit += 1;
769 }
770 break;
771
772 case TGSI_TOKEN_TYPE_INSTRUCTION:
773
774 /* save expanded instruction */
775 if (numInstructions == maxInstructions) {
776 instructions = REALLOC(instructions,
777 maxInstructions
778 * sizeof(struct tgsi_full_instruction),
779 (maxInstructions + 10)
780 * sizeof(struct tgsi_full_instruction));
781 maxInstructions += 10;
782 }
783
784 memcpy(instructions + numInstructions,
785 &parse.FullToken.FullInstruction,
786 sizeof(instructions[0]));
787
788 numInstructions++;
789 break;
790
791 case TGSI_TOKEN_TYPE_PROPERTY:
792 if (mach->Processor == TGSI_PROCESSOR_GEOMETRY) {
793 if (parse.FullToken.FullProperty.Property.PropertyName == TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES) {
794 mach->MaxOutputVertices = parse.FullToken.FullProperty.u[0].Data;
795 }
796 }
797 break;
798
799 default:
800 assert( 0 );
801 }
802 }
803 tgsi_parse_free (&parse);
804
805 FREE(mach->Declarations);
806 mach->Declarations = declarations;
807 mach->NumDeclarations = numDeclarations;
808
809 FREE(mach->Instructions);
810 mach->Instructions = instructions;
811 mach->NumInstructions = numInstructions;
812 }
813
814
815 struct tgsi_exec_machine *
816 tgsi_exec_machine_create( void )
817 {
818 struct tgsi_exec_machine *mach;
819 uint i;
820
821 mach = align_malloc( sizeof *mach, 16 );
822 if (!mach)
823 goto fail;
824
825 memset(mach, 0, sizeof(*mach));
826
827 mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
828 mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
829 mach->Predicates = &mach->Temps[TGSI_EXEC_TEMP_P0];
830
831 mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_INPUTS, 16);
832 mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_OUTPUTS, 16);
833 if (!mach->Inputs || !mach->Outputs)
834 goto fail;
835
836 /* Setup constants needed by the SSE2 executor. */
837 for( i = 0; i < 4; i++ ) {
838 mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
839 mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
840 mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
841 mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF; /* not used */
842 mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
843 mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f; /* not used */
844 mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
845 mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
846 mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
847 mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
848 }
849
850 #ifdef DEBUG
851 /* silence warnings */
852 (void) print_chan;
853 (void) print_temp;
854 #endif
855
856 return mach;
857
858 fail:
859 if (mach) {
860 align_free(mach->Inputs);
861 align_free(mach->Outputs);
862 align_free(mach);
863 }
864 return NULL;
865 }
866
867
868 void
869 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
870 {
871 if (mach) {
872 FREE(mach->Instructions);
873 FREE(mach->Declarations);
874
875 align_free(mach->Inputs);
876 align_free(mach->Outputs);
877
878 align_free(mach);
879 }
880 }
881
882 static void
883 micro_add(union tgsi_exec_channel *dst,
884 const union tgsi_exec_channel *src0,
885 const union tgsi_exec_channel *src1)
886 {
887 dst->f[0] = src0->f[0] + src1->f[0];
888 dst->f[1] = src0->f[1] + src1->f[1];
889 dst->f[2] = src0->f[2] + src1->f[2];
890 dst->f[3] = src0->f[3] + src1->f[3];
891 }
892
893 static void
894 micro_div(
895 union tgsi_exec_channel *dst,
896 const union tgsi_exec_channel *src0,
897 const union tgsi_exec_channel *src1 )
898 {
899 if (src1->f[0] != 0) {
900 dst->f[0] = src0->f[0] / src1->f[0];
901 }
902 if (src1->f[1] != 0) {
903 dst->f[1] = src0->f[1] / src1->f[1];
904 }
905 if (src1->f[2] != 0) {
906 dst->f[2] = src0->f[2] / src1->f[2];
907 }
908 if (src1->f[3] != 0) {
909 dst->f[3] = src0->f[3] / src1->f[3];
910 }
911 }
912
913 static void
914 micro_rcc(union tgsi_exec_channel *dst,
915 const union tgsi_exec_channel *src)
916 {
917 uint i;
918
919 for (i = 0; i < 4; i++) {
920 float recip = 1.0f / src->f[i];
921
922 if (recip > 0.0f)
923 dst->f[i] = CLAMP(recip, 5.42101e-020f, 1.84467e+019f);
924 else
925 dst->f[i] = CLAMP(recip, -1.84467e+019f, -5.42101e-020f);
926 }
927 }
928
929 static void
930 micro_lt(
931 union tgsi_exec_channel *dst,
932 const union tgsi_exec_channel *src0,
933 const union tgsi_exec_channel *src1,
934 const union tgsi_exec_channel *src2,
935 const union tgsi_exec_channel *src3 )
936 {
937 dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
938 dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
939 dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
940 dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
941 }
942
943 static void
944 micro_max(union tgsi_exec_channel *dst,
945 const union tgsi_exec_channel *src0,
946 const union tgsi_exec_channel *src1)
947 {
948 dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
949 dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
950 dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
951 dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
952 }
953
954 static void
955 micro_min(union tgsi_exec_channel *dst,
956 const union tgsi_exec_channel *src0,
957 const union tgsi_exec_channel *src1)
958 {
959 dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
960 dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
961 dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
962 dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
963 }
964
965 static void
966 micro_mul(union tgsi_exec_channel *dst,
967 const union tgsi_exec_channel *src0,
968 const union tgsi_exec_channel *src1)
969 {
970 dst->f[0] = src0->f[0] * src1->f[0];
971 dst->f[1] = src0->f[1] * src1->f[1];
972 dst->f[2] = src0->f[2] * src1->f[2];
973 dst->f[3] = src0->f[3] * src1->f[3];
974 }
975
976 static void
977 micro_neg(
978 union tgsi_exec_channel *dst,
979 const union tgsi_exec_channel *src )
980 {
981 dst->f[0] = -src->f[0];
982 dst->f[1] = -src->f[1];
983 dst->f[2] = -src->f[2];
984 dst->f[3] = -src->f[3];
985 }
986
987 static void
988 micro_pow(
989 union tgsi_exec_channel *dst,
990 const union tgsi_exec_channel *src0,
991 const union tgsi_exec_channel *src1 )
992 {
993 #if FAST_MATH
994 dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
995 dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
996 dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
997 dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
998 #else
999 dst->f[0] = powf( src0->f[0], src1->f[0] );
1000 dst->f[1] = powf( src0->f[1], src1->f[1] );
1001 dst->f[2] = powf( src0->f[2], src1->f[2] );
1002 dst->f[3] = powf( src0->f[3], src1->f[3] );
1003 #endif
1004 }
1005
1006 static void
1007 micro_sub(union tgsi_exec_channel *dst,
1008 const union tgsi_exec_channel *src0,
1009 const union tgsi_exec_channel *src1)
1010 {
1011 dst->f[0] = src0->f[0] - src1->f[0];
1012 dst->f[1] = src0->f[1] - src1->f[1];
1013 dst->f[2] = src0->f[2] - src1->f[2];
1014 dst->f[3] = src0->f[3] - src1->f[3];
1015 }
1016
1017 static void
1018 fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1019 const uint chan_index,
1020 const uint file,
1021 const uint swizzle,
1022 const union tgsi_exec_channel *index,
1023 const union tgsi_exec_channel *index2D,
1024 union tgsi_exec_channel *chan)
1025 {
1026 uint i;
1027
1028 assert(swizzle < 4);
1029
1030 switch (file) {
1031 case TGSI_FILE_CONSTANT:
1032 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1033 assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
1034 assert(mach->Consts[index2D->i[i]]);
1035
1036 if (index->i[i] < 0) {
1037 chan->u[i] = 0;
1038 } else {
1039 /* NOTE: copying the const value as a uint instead of float */
1040 const uint constbuf = index2D->i[i];
1041 const uint *buf = (const uint *)mach->Consts[constbuf];
1042 const int pos = index->i[i] * 4 + swizzle;
1043 /* const buffer bounds check */
1044 if (pos < 0 || pos >= (int) mach->ConstsSize[constbuf]) {
1045 if (0) {
1046 /* Debug: print warning */
1047 static int count = 0;
1048 if (count++ < 100)
1049 debug_printf("TGSI Exec: const buffer index %d"
1050 " out of bounds\n", pos);
1051 }
1052 chan->u[i] = 0;
1053 }
1054 else
1055 chan->u[i] = buf[pos];
1056 }
1057 }
1058 break;
1059
1060 case TGSI_FILE_INPUT:
1061 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1062 /*
1063 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1064 debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1065 index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1066 index2D->i[i], index->i[i]);
1067 }*/
1068 int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1069 assert(pos >= 0);
1070 assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
1071 chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1072 }
1073 break;
1074
1075 case TGSI_FILE_SYSTEM_VALUE:
1076 /* XXX no swizzling at this point. Will be needed if we put
1077 * gl_FragCoord, for example, in a sys value register.
1078 */
1079 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1080 chan->u[i] = mach->SystemValue[index->i[i]].u[i];
1081 }
1082 break;
1083
1084 case TGSI_FILE_TEMPORARY:
1085 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1086 assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1087 assert(index2D->i[i] == 0);
1088
1089 chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1090 }
1091 break;
1092
1093 case TGSI_FILE_IMMEDIATE:
1094 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1095 assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1096 assert(index2D->i[i] == 0);
1097
1098 chan->f[i] = mach->Imms[index->i[i]][swizzle];
1099 }
1100 break;
1101
1102 case TGSI_FILE_ADDRESS:
1103 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1104 assert(index->i[i] >= 0);
1105 assert(index2D->i[i] == 0);
1106
1107 chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1108 }
1109 break;
1110
1111 case TGSI_FILE_PREDICATE:
1112 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1113 assert(index->i[i] >= 0 && index->i[i] < TGSI_EXEC_NUM_PREDS);
1114 assert(index2D->i[i] == 0);
1115
1116 chan->u[i] = mach->Predicates[0].xyzw[swizzle].u[i];
1117 }
1118 break;
1119
1120 case TGSI_FILE_OUTPUT:
1121 /* vertex/fragment output vars can be read too */
1122 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1123 assert(index->i[i] >= 0);
1124 assert(index2D->i[i] == 0);
1125
1126 chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1127 }
1128 break;
1129
1130 default:
1131 assert(0);
1132 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1133 chan->u[i] = 0;
1134 }
1135 }
1136 }
1137
1138 static void
1139 fetch_source(const struct tgsi_exec_machine *mach,
1140 union tgsi_exec_channel *chan,
1141 const struct tgsi_full_src_register *reg,
1142 const uint chan_index,
1143 enum tgsi_exec_datatype src_datatype)
1144 {
1145 union tgsi_exec_channel index;
1146 union tgsi_exec_channel index2D;
1147 uint swizzle;
1148
1149 /* We start with a direct index into a register file.
1150 *
1151 * file[1],
1152 * where:
1153 * file = Register.File
1154 * [1] = Register.Index
1155 */
1156 index.i[0] =
1157 index.i[1] =
1158 index.i[2] =
1159 index.i[3] = reg->Register.Index;
1160
1161 /* There is an extra source register that indirectly subscripts
1162 * a register file. The direct index now becomes an offset
1163 * that is being added to the indirect register.
1164 *
1165 * file[ind[2].x+1],
1166 * where:
1167 * ind = Indirect.File
1168 * [2] = Indirect.Index
1169 * .x = Indirect.SwizzleX
1170 */
1171 if (reg->Register.Indirect) {
1172 union tgsi_exec_channel index2;
1173 union tgsi_exec_channel indir_index;
1174 const uint execmask = mach->ExecMask;
1175 uint i;
1176
1177 /* which address register (always zero now) */
1178 index2.i[0] =
1179 index2.i[1] =
1180 index2.i[2] =
1181 index2.i[3] = reg->Indirect.Index;
1182 /* get current value of address register[swizzle] */
1183 swizzle = reg->Indirect.Swizzle;
1184 fetch_src_file_channel(mach,
1185 chan_index,
1186 reg->Indirect.File,
1187 swizzle,
1188 &index2,
1189 &ZeroVec,
1190 &indir_index);
1191
1192 /* add value of address register to the offset */
1193 index.i[0] += indir_index.i[0];
1194 index.i[1] += indir_index.i[1];
1195 index.i[2] += indir_index.i[2];
1196 index.i[3] += indir_index.i[3];
1197
1198 /* for disabled execution channels, zero-out the index to
1199 * avoid using a potential garbage value.
1200 */
1201 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1202 if ((execmask & (1 << i)) == 0)
1203 index.i[i] = 0;
1204 }
1205 }
1206
1207 /* There is an extra source register that is a second
1208 * subscript to a register file. Effectively it means that
1209 * the register file is actually a 2D array of registers.
1210 *
1211 * file[3][1],
1212 * where:
1213 * [3] = Dimension.Index
1214 */
1215 if (reg->Register.Dimension) {
1216 index2D.i[0] =
1217 index2D.i[1] =
1218 index2D.i[2] =
1219 index2D.i[3] = reg->Dimension.Index;
1220
1221 /* Again, the second subscript index can be addressed indirectly
1222 * identically to the first one.
1223 * Nothing stops us from indirectly addressing the indirect register,
1224 * but there is no need for that, so we won't exercise it.
1225 *
1226 * file[ind[4].y+3][1],
1227 * where:
1228 * ind = DimIndirect.File
1229 * [4] = DimIndirect.Index
1230 * .y = DimIndirect.SwizzleX
1231 */
1232 if (reg->Dimension.Indirect) {
1233 union tgsi_exec_channel index2;
1234 union tgsi_exec_channel indir_index;
1235 const uint execmask = mach->ExecMask;
1236 uint i;
1237
1238 index2.i[0] =
1239 index2.i[1] =
1240 index2.i[2] =
1241 index2.i[3] = reg->DimIndirect.Index;
1242
1243 swizzle = reg->DimIndirect.Swizzle;
1244 fetch_src_file_channel(mach,
1245 chan_index,
1246 reg->DimIndirect.File,
1247 swizzle,
1248 &index2,
1249 &ZeroVec,
1250 &indir_index);
1251
1252 index2D.i[0] += indir_index.i[0];
1253 index2D.i[1] += indir_index.i[1];
1254 index2D.i[2] += indir_index.i[2];
1255 index2D.i[3] += indir_index.i[3];
1256
1257 /* for disabled execution channels, zero-out the index to
1258 * avoid using a potential garbage value.
1259 */
1260 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1261 if ((execmask & (1 << i)) == 0) {
1262 index2D.i[i] = 0;
1263 }
1264 }
1265 }
1266
1267 /* If by any chance there was a need for a 3D array of register
1268 * files, we would have to check whether Dimension is followed
1269 * by a dimension register and continue the saga.
1270 */
1271 } else {
1272 index2D.i[0] =
1273 index2D.i[1] =
1274 index2D.i[2] =
1275 index2D.i[3] = 0;
1276 }
1277
1278 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1279 fetch_src_file_channel(mach,
1280 chan_index,
1281 reg->Register.File,
1282 swizzle,
1283 &index,
1284 &index2D,
1285 chan);
1286
1287 if (reg->Register.Absolute) {
1288 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1289 micro_abs(chan, chan);
1290 } else {
1291 micro_iabs(chan, chan);
1292 }
1293 }
1294
1295 if (reg->Register.Negate) {
1296 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1297 micro_neg(chan, chan);
1298 } else {
1299 micro_ineg(chan, chan);
1300 }
1301 }
1302 }
1303
1304 static void
1305 store_dest(struct tgsi_exec_machine *mach,
1306 const union tgsi_exec_channel *chan,
1307 const struct tgsi_full_dst_register *reg,
1308 const struct tgsi_full_instruction *inst,
1309 uint chan_index,
1310 enum tgsi_exec_datatype dst_datatype)
1311 {
1312 uint i;
1313 union tgsi_exec_channel null;
1314 union tgsi_exec_channel *dst;
1315 union tgsi_exec_channel index2D;
1316 uint execmask = mach->ExecMask;
1317 int offset = 0; /* indirection offset */
1318 int index;
1319
1320 /* for debugging */
1321 if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1322 check_inf_or_nan(chan);
1323 }
1324
1325 /* There is an extra source register that indirectly subscripts
1326 * a register file. The direct index now becomes an offset
1327 * that is being added to the indirect register.
1328 *
1329 * file[ind[2].x+1],
1330 * where:
1331 * ind = Indirect.File
1332 * [2] = Indirect.Index
1333 * .x = Indirect.SwizzleX
1334 */
1335 if (reg->Register.Indirect) {
1336 union tgsi_exec_channel index;
1337 union tgsi_exec_channel indir_index;
1338 uint swizzle;
1339
1340 /* which address register (always zero for now) */
1341 index.i[0] =
1342 index.i[1] =
1343 index.i[2] =
1344 index.i[3] = reg->Indirect.Index;
1345
1346 /* get current value of address register[swizzle] */
1347 swizzle = reg->Indirect.Swizzle;
1348
1349 /* fetch values from the address/indirection register */
1350 fetch_src_file_channel(mach,
1351 chan_index,
1352 reg->Indirect.File,
1353 swizzle,
1354 &index,
1355 &ZeroVec,
1356 &indir_index);
1357
1358 /* save indirection offset */
1359 offset = indir_index.i[0];
1360 }
1361
1362 /* There is an extra source register that is a second
1363 * subscript to a register file. Effectively it means that
1364 * the register file is actually a 2D array of registers.
1365 *
1366 * file[3][1],
1367 * where:
1368 * [3] = Dimension.Index
1369 */
1370 if (reg->Register.Dimension) {
1371 index2D.i[0] =
1372 index2D.i[1] =
1373 index2D.i[2] =
1374 index2D.i[3] = reg->Dimension.Index;
1375
1376 /* Again, the second subscript index can be addressed indirectly
1377 * identically to the first one.
1378 * Nothing stops us from indirectly addressing the indirect register,
1379 * but there is no need for that, so we won't exercise it.
1380 *
1381 * file[ind[4].y+3][1],
1382 * where:
1383 * ind = DimIndirect.File
1384 * [4] = DimIndirect.Index
1385 * .y = DimIndirect.SwizzleX
1386 */
1387 if (reg->Dimension.Indirect) {
1388 union tgsi_exec_channel index2;
1389 union tgsi_exec_channel indir_index;
1390 const uint execmask = mach->ExecMask;
1391 unsigned swizzle;
1392 uint i;
1393
1394 index2.i[0] =
1395 index2.i[1] =
1396 index2.i[2] =
1397 index2.i[3] = reg->DimIndirect.Index;
1398
1399 swizzle = reg->DimIndirect.Swizzle;
1400 fetch_src_file_channel(mach,
1401 chan_index,
1402 reg->DimIndirect.File,
1403 swizzle,
1404 &index2,
1405 &ZeroVec,
1406 &indir_index);
1407
1408 index2D.i[0] += indir_index.i[0];
1409 index2D.i[1] += indir_index.i[1];
1410 index2D.i[2] += indir_index.i[2];
1411 index2D.i[3] += indir_index.i[3];
1412
1413 /* for disabled execution channels, zero-out the index to
1414 * avoid using a potential garbage value.
1415 */
1416 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1417 if ((execmask & (1 << i)) == 0) {
1418 index2D.i[i] = 0;
1419 }
1420 }
1421 }
1422
1423 /* If by any chance there was a need for a 3D array of register
1424 * files, we would have to check whether Dimension is followed
1425 * by a dimension register and continue the saga.
1426 */
1427 } else {
1428 index2D.i[0] =
1429 index2D.i[1] =
1430 index2D.i[2] =
1431 index2D.i[3] = 0;
1432 }
1433
1434 switch (reg->Register.File) {
1435 case TGSI_FILE_NULL:
1436 dst = &null;
1437 break;
1438
1439 case TGSI_FILE_OUTPUT:
1440 index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1441 + reg->Register.Index;
1442 dst = &mach->Outputs[offset + index].xyzw[chan_index];
1443 #if 0
1444 debug_printf("NumOutputs = %d, TEMP_O_C/I = %d, redindex = %d\n",
1445 mach->NumOutputs, mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0],
1446 reg->Register.Index);
1447 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1448 debug_printf("STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1449 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1450 if (execmask & (1 << i))
1451 debug_printf("%f, ", chan->f[i]);
1452 debug_printf(")\n");
1453 }
1454 #endif
1455 break;
1456
1457 case TGSI_FILE_TEMPORARY:
1458 index = reg->Register.Index;
1459 assert( index < TGSI_EXEC_NUM_TEMPS );
1460 dst = &mach->Temps[offset + index].xyzw[chan_index];
1461 break;
1462
1463 case TGSI_FILE_ADDRESS:
1464 index = reg->Register.Index;
1465 dst = &mach->Addrs[index].xyzw[chan_index];
1466 break;
1467
1468 case TGSI_FILE_PREDICATE:
1469 index = reg->Register.Index;
1470 assert(index < TGSI_EXEC_NUM_PREDS);
1471 dst = &mach->Predicates[index].xyzw[chan_index];
1472 break;
1473
1474 default:
1475 assert( 0 );
1476 return;
1477 }
1478
1479 if (inst->Instruction.Predicate) {
1480 uint swizzle;
1481 union tgsi_exec_channel *pred;
1482
1483 switch (chan_index) {
1484 case TGSI_CHAN_X:
1485 swizzle = inst->Predicate.SwizzleX;
1486 break;
1487 case TGSI_CHAN_Y:
1488 swizzle = inst->Predicate.SwizzleY;
1489 break;
1490 case TGSI_CHAN_Z:
1491 swizzle = inst->Predicate.SwizzleZ;
1492 break;
1493 case TGSI_CHAN_W:
1494 swizzle = inst->Predicate.SwizzleW;
1495 break;
1496 default:
1497 assert(0);
1498 return;
1499 }
1500
1501 assert(inst->Predicate.Index == 0);
1502
1503 pred = &mach->Predicates[inst->Predicate.Index].xyzw[swizzle];
1504
1505 if (inst->Predicate.Negate) {
1506 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1507 if (pred->u[i]) {
1508 execmask &= ~(1 << i);
1509 }
1510 }
1511 } else {
1512 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1513 if (!pred->u[i]) {
1514 execmask &= ~(1 << i);
1515 }
1516 }
1517 }
1518 }
1519
1520 switch (inst->Instruction.Saturate) {
1521 case TGSI_SAT_NONE:
1522 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1523 if (execmask & (1 << i))
1524 dst->i[i] = chan->i[i];
1525 break;
1526
1527 case TGSI_SAT_ZERO_ONE:
1528 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1529 if (execmask & (1 << i)) {
1530 if (chan->f[i] < 0.0f)
1531 dst->f[i] = 0.0f;
1532 else if (chan->f[i] > 1.0f)
1533 dst->f[i] = 1.0f;
1534 else
1535 dst->i[i] = chan->i[i];
1536 }
1537 break;
1538
1539 case TGSI_SAT_MINUS_PLUS_ONE:
1540 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1541 if (execmask & (1 << i)) {
1542 if (chan->f[i] < -1.0f)
1543 dst->f[i] = -1.0f;
1544 else if (chan->f[i] > 1.0f)
1545 dst->f[i] = 1.0f;
1546 else
1547 dst->i[i] = chan->i[i];
1548 }
1549 break;
1550
1551 default:
1552 assert( 0 );
1553 }
1554 }
1555
1556 #define FETCH(VAL,INDEX,CHAN)\
1557 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1558
1559 #define IFETCH(VAL,INDEX,CHAN)\
1560 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT)
1561
1562
1563 /**
1564 * Execute ARB-style KIL which is predicated by a src register.
1565 * Kill fragment if any of the four values is less than zero.
1566 */
1567 static void
1568 exec_kill_if(struct tgsi_exec_machine *mach,
1569 const struct tgsi_full_instruction *inst)
1570 {
1571 uint uniquemask;
1572 uint chan_index;
1573 uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1574 union tgsi_exec_channel r[1];
1575
1576 /* This mask stores component bits that were already tested. */
1577 uniquemask = 0;
1578
1579 for (chan_index = 0; chan_index < 4; chan_index++)
1580 {
1581 uint swizzle;
1582 uint i;
1583
1584 /* unswizzle channel */
1585 swizzle = tgsi_util_get_full_src_register_swizzle (
1586 &inst->Src[0],
1587 chan_index);
1588
1589 /* check if the component has not been already tested */
1590 if (uniquemask & (1 << swizzle))
1591 continue;
1592 uniquemask |= 1 << swizzle;
1593
1594 FETCH(&r[0], 0, chan_index);
1595 for (i = 0; i < 4; i++)
1596 if (r[0].f[i] < 0.0f)
1597 kilmask |= 1 << i;
1598 }
1599
1600 /* restrict to fragments currently executing */
1601 kilmask &= mach->ExecMask;
1602
1603 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1604 }
1605
1606 /**
1607 * Unconditional fragment kill/discard.
1608 */
1609 static void
1610 exec_kill(struct tgsi_exec_machine *mach,
1611 const struct tgsi_full_instruction *inst)
1612 {
1613 uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1614
1615 /* kill fragment for all fragments currently executing */
1616 kilmask = mach->ExecMask;
1617 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1618 }
1619
1620 static void
1621 emit_vertex(struct tgsi_exec_machine *mach)
1622 {
1623 /* FIXME: check for exec mask correctly
1624 unsigned i;
1625 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
1626 if ((mach->ExecMask & (1 << i)))
1627 */
1628 if (mach->ExecMask) {
1629 if (mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]] >= mach->MaxOutputVertices)
1630 return;
1631
1632 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
1633 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
1634 }
1635 }
1636
1637 static void
1638 emit_primitive(struct tgsi_exec_machine *mach)
1639 {
1640 unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
1641 /* FIXME: check for exec mask correctly
1642 unsigned i;
1643 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
1644 if ((mach->ExecMask & (1 << i)))
1645 */
1646 if (mach->ExecMask) {
1647 ++(*prim_count);
1648 debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
1649 mach->Primitives[*prim_count] = 0;
1650 }
1651 }
1652
1653 static void
1654 conditional_emit_primitive(struct tgsi_exec_machine *mach)
1655 {
1656 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1657 int emitted_verts =
1658 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]];
1659 if (emitted_verts) {
1660 emit_primitive(mach);
1661 }
1662 }
1663 }
1664
1665
1666 /*
1667 * Fetch four texture samples using STR texture coordinates.
1668 */
1669 static void
1670 fetch_texel( struct tgsi_sampler *sampler,
1671 const unsigned sview_idx,
1672 const unsigned sampler_idx,
1673 const union tgsi_exec_channel *s,
1674 const union tgsi_exec_channel *t,
1675 const union tgsi_exec_channel *p,
1676 const union tgsi_exec_channel *c0,
1677 const union tgsi_exec_channel *c1,
1678 float derivs[3][2][TGSI_QUAD_SIZE],
1679 const int8_t offset[3],
1680 enum tgsi_sampler_control control,
1681 union tgsi_exec_channel *r,
1682 union tgsi_exec_channel *g,
1683 union tgsi_exec_channel *b,
1684 union tgsi_exec_channel *a )
1685 {
1686 uint j;
1687 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1688
1689 /* FIXME: handle explicit derivs, offsets */
1690 sampler->get_samples(sampler, sview_idx, sampler_idx,
1691 s->f, t->f, p->f, c0->f, c1->f, derivs, offset, control, rgba);
1692
1693 for (j = 0; j < 4; j++) {
1694 r->f[j] = rgba[0][j];
1695 g->f[j] = rgba[1][j];
1696 b->f[j] = rgba[2][j];
1697 a->f[j] = rgba[3][j];
1698 }
1699 }
1700
1701
1702 #define TEX_MODIFIER_NONE 0
1703 #define TEX_MODIFIER_PROJECTED 1
1704 #define TEX_MODIFIER_LOD_BIAS 2
1705 #define TEX_MODIFIER_EXPLICIT_LOD 3
1706 #define TEX_MODIFIER_LEVEL_ZERO 4
1707
1708
1709 /*
1710 * Fetch all 3 (for s,t,r coords) texel offsets, put them into int array.
1711 */
1712 static void
1713 fetch_texel_offsets(struct tgsi_exec_machine *mach,
1714 const struct tgsi_full_instruction *inst,
1715 int8_t offsets[3])
1716 {
1717 if (inst->Texture.NumOffsets == 1) {
1718 union tgsi_exec_channel index;
1719 union tgsi_exec_channel offset[3];
1720 index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index;
1721 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
1722 inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]);
1723 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
1724 inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]);
1725 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
1726 inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]);
1727 offsets[0] = offset[0].i[0];
1728 offsets[1] = offset[1].i[0];
1729 offsets[2] = offset[2].i[0];
1730 } else {
1731 assert(inst->Texture.NumOffsets == 0);
1732 offsets[0] = offsets[1] = offsets[2] = 0;
1733 }
1734 }
1735
1736
1737 /*
1738 * Fetch dx and dy values for one channel (s, t or r).
1739 * Put dx values into one float array, dy values into another.
1740 */
1741 static void
1742 fetch_assign_deriv_channel(struct tgsi_exec_machine *mach,
1743 const struct tgsi_full_instruction *inst,
1744 unsigned regdsrcx,
1745 unsigned chan,
1746 float derivs[2][TGSI_QUAD_SIZE])
1747 {
1748 union tgsi_exec_channel d;
1749 FETCH(&d, regdsrcx, chan);
1750 derivs[0][0] = d.f[0];
1751 derivs[0][1] = d.f[1];
1752 derivs[0][2] = d.f[2];
1753 derivs[0][3] = d.f[3];
1754 FETCH(&d, regdsrcx + 1, chan);
1755 derivs[1][0] = d.f[0];
1756 derivs[1][1] = d.f[1];
1757 derivs[1][2] = d.f[2];
1758 derivs[1][3] = d.f[3];
1759 }
1760
1761
1762 /*
1763 * execute a texture instruction.
1764 *
1765 * modifier is used to control the channel routing for the\
1766 * instruction variants like proj, lod, and texture with lod bias.
1767 * sampler indicates which src register the sampler is contained in.
1768 */
1769 static void
1770 exec_tex(struct tgsi_exec_machine *mach,
1771 const struct tgsi_full_instruction *inst,
1772 uint modifier, uint sampler)
1773 {
1774 const uint unit = inst->Src[sampler].Register.Index;
1775 const union tgsi_exec_channel *args[5], *proj = NULL;
1776 union tgsi_exec_channel r[5];
1777 enum tgsi_sampler_control control = tgsi_sampler_lod_none;
1778 uint chan;
1779 int8_t offsets[3];
1780 int dim, shadow_ref, i;
1781
1782 /* always fetch all 3 offsets, overkill but keeps code simple */
1783 fetch_texel_offsets(mach, inst, offsets);
1784
1785 assert(modifier != TEX_MODIFIER_LEVEL_ZERO);
1786 assert(inst->Texture.Texture != TGSI_TEXTURE_BUFFER);
1787
1788 dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture, &shadow_ref);
1789
1790 assert(dim <= 4);
1791 if (shadow_ref >= 0)
1792 assert(shadow_ref >= dim && shadow_ref < Elements(args));
1793
1794 /* fetch modifier to the last argument */
1795 if (modifier != TEX_MODIFIER_NONE) {
1796 const int last = Elements(args) - 1;
1797
1798 /* fetch modifier from src0.w or src1.x */
1799 if (sampler == 1) {
1800 assert(dim <= TGSI_CHAN_W && shadow_ref != TGSI_CHAN_W);
1801 FETCH(&r[last], 0, TGSI_CHAN_W);
1802 }
1803 else {
1804 assert(shadow_ref != 4);
1805 FETCH(&r[last], 1, TGSI_CHAN_X);
1806 }
1807
1808 if (modifier != TEX_MODIFIER_PROJECTED) {
1809 args[last] = &r[last];
1810 }
1811 else {
1812 proj = &r[last];
1813 args[last] = &ZeroVec;
1814 }
1815
1816 /* point unused arguments to zero vector */
1817 for (i = dim; i < last; i++)
1818 args[i] = &ZeroVec;
1819
1820 if (modifier == TEX_MODIFIER_EXPLICIT_LOD)
1821 control = tgsi_sampler_lod_explicit;
1822 else if (modifier == TEX_MODIFIER_LOD_BIAS)
1823 control = tgsi_sampler_lod_bias;
1824 }
1825 else {
1826 for (i = dim; i < Elements(args); i++)
1827 args[i] = &ZeroVec;
1828 }
1829
1830 /* fetch coordinates */
1831 for (i = 0; i < dim; i++) {
1832 FETCH(&r[i], 0, TGSI_CHAN_X + i);
1833
1834 if (proj)
1835 micro_div(&r[i], &r[i], proj);
1836
1837 args[i] = &r[i];
1838 }
1839
1840 /* fetch reference value */
1841 if (shadow_ref >= 0) {
1842 FETCH(&r[shadow_ref], shadow_ref / 4, TGSI_CHAN_X + (shadow_ref % 4));
1843
1844 if (proj)
1845 micro_div(&r[shadow_ref], &r[shadow_ref], proj);
1846
1847 args[shadow_ref] = &r[shadow_ref];
1848 }
1849
1850 fetch_texel(mach->Sampler, unit, unit,
1851 args[0], args[1], args[2], args[3], args[4],
1852 NULL, offsets, control,
1853 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1854
1855 #if 0
1856 debug_printf("fetch r: %g %g %g %g\n",
1857 r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
1858 debug_printf("fetch g: %g %g %g %g\n",
1859 r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
1860 debug_printf("fetch b: %g %g %g %g\n",
1861 r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
1862 debug_printf("fetch a: %g %g %g %g\n",
1863 r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
1864 #endif
1865
1866 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1867 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1868 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1869 }
1870 }
1871 }
1872
1873
1874 static void
1875 exec_txd(struct tgsi_exec_machine *mach,
1876 const struct tgsi_full_instruction *inst)
1877 {
1878 const uint unit = inst->Src[3].Register.Index;
1879 union tgsi_exec_channel r[4];
1880 float derivs[3][2][TGSI_QUAD_SIZE];
1881 uint chan;
1882 int8_t offsets[3];
1883
1884 /* always fetch all 3 offsets, overkill but keeps code simple */
1885 fetch_texel_offsets(mach, inst, offsets);
1886
1887 switch (inst->Texture.Texture) {
1888 case TGSI_TEXTURE_1D:
1889 FETCH(&r[0], 0, TGSI_CHAN_X);
1890
1891 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1892
1893 fetch_texel(mach->Sampler, unit, unit,
1894 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
1895 derivs, offsets, tgsi_sampler_derivs_explicit,
1896 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1897 break;
1898
1899 case TGSI_TEXTURE_SHADOW1D:
1900 case TGSI_TEXTURE_1D_ARRAY:
1901 case TGSI_TEXTURE_SHADOW1D_ARRAY:
1902 /* SHADOW1D/1D_ARRAY would not need Y/Z respectively, but don't bother */
1903 FETCH(&r[0], 0, TGSI_CHAN_X);
1904 FETCH(&r[1], 0, TGSI_CHAN_Y);
1905 FETCH(&r[2], 0, TGSI_CHAN_Z);
1906
1907 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1908
1909 fetch_texel(mach->Sampler, unit, unit,
1910 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
1911 derivs, offsets, tgsi_sampler_derivs_explicit,
1912 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1913 break;
1914
1915 case TGSI_TEXTURE_2D:
1916 case TGSI_TEXTURE_RECT:
1917 FETCH(&r[0], 0, TGSI_CHAN_X);
1918 FETCH(&r[1], 0, TGSI_CHAN_Y);
1919
1920 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1921 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
1922
1923 fetch_texel(mach->Sampler, unit, unit,
1924 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
1925 derivs, offsets, tgsi_sampler_derivs_explicit,
1926 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1927 break;
1928
1929
1930 case TGSI_TEXTURE_SHADOW2D:
1931 case TGSI_TEXTURE_SHADOWRECT:
1932 case TGSI_TEXTURE_2D_ARRAY:
1933 case TGSI_TEXTURE_SHADOW2D_ARRAY:
1934 /* only SHADOW2D_ARRAY actually needs W */
1935 FETCH(&r[0], 0, TGSI_CHAN_X);
1936 FETCH(&r[1], 0, TGSI_CHAN_Y);
1937 FETCH(&r[2], 0, TGSI_CHAN_Z);
1938 FETCH(&r[3], 0, TGSI_CHAN_W);
1939
1940 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1941 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
1942
1943 fetch_texel(mach->Sampler, unit, unit,
1944 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
1945 derivs, offsets, tgsi_sampler_derivs_explicit,
1946 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1947 break;
1948
1949 case TGSI_TEXTURE_3D:
1950 case TGSI_TEXTURE_CUBE:
1951 case TGSI_TEXTURE_CUBE_ARRAY:
1952 /* only TEXTURE_CUBE_ARRAY actually needs W */
1953 FETCH(&r[0], 0, TGSI_CHAN_X);
1954 FETCH(&r[1], 0, TGSI_CHAN_Y);
1955 FETCH(&r[2], 0, TGSI_CHAN_Z);
1956 FETCH(&r[3], 0, TGSI_CHAN_W);
1957
1958 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1959 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
1960 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Z, derivs[2]);
1961
1962 fetch_texel(mach->Sampler, unit, unit,
1963 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
1964 derivs, offsets, tgsi_sampler_derivs_explicit,
1965 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1966 break;
1967
1968 default:
1969 assert(0);
1970 }
1971
1972 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1973 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1974 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1975 }
1976 }
1977 }
1978
1979
1980 static void
1981 exec_txf(struct tgsi_exec_machine *mach,
1982 const struct tgsi_full_instruction *inst)
1983 {
1984 const uint unit = inst->Src[1].Register.Index;
1985 union tgsi_exec_channel r[4];
1986 uint chan;
1987 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1988 int j;
1989 int8_t offsets[3];
1990 unsigned target;
1991
1992 /* always fetch all 3 offsets, overkill but keeps code simple */
1993 fetch_texel_offsets(mach, inst, offsets);
1994
1995 IFETCH(&r[3], 0, TGSI_CHAN_W);
1996
1997 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I) {
1998 target = mach->SamplerViews[unit].Resource;
1999 }
2000 else {
2001 target = inst->Texture.Texture;
2002 }
2003 switch(target) {
2004 case TGSI_TEXTURE_3D:
2005 case TGSI_TEXTURE_2D_ARRAY:
2006 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2007 IFETCH(&r[2], 0, TGSI_CHAN_Z);
2008 /* fallthrough */
2009 case TGSI_TEXTURE_2D:
2010 case TGSI_TEXTURE_RECT:
2011 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2012 case TGSI_TEXTURE_SHADOW2D:
2013 case TGSI_TEXTURE_SHADOWRECT:
2014 case TGSI_TEXTURE_1D_ARRAY:
2015 IFETCH(&r[1], 0, TGSI_CHAN_Y);
2016 /* fallthrough */
2017 case TGSI_TEXTURE_BUFFER:
2018 case TGSI_TEXTURE_1D:
2019 case TGSI_TEXTURE_SHADOW1D:
2020 IFETCH(&r[0], 0, TGSI_CHAN_X);
2021 break;
2022 default:
2023 assert(0);
2024 break;
2025 }
2026
2027 mach->Sampler->get_texel(mach->Sampler, unit, r[0].i, r[1].i, r[2].i, r[3].i,
2028 offsets, rgba);
2029
2030 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2031 r[0].f[j] = rgba[0][j];
2032 r[1].f[j] = rgba[1][j];
2033 r[2].f[j] = rgba[2][j];
2034 r[3].f[j] = rgba[3][j];
2035 }
2036
2037 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I) {
2038 unsigned char swizzles[4];
2039 swizzles[0] = inst->Src[1].Register.SwizzleX;
2040 swizzles[1] = inst->Src[1].Register.SwizzleY;
2041 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2042 swizzles[3] = inst->Src[1].Register.SwizzleW;
2043
2044 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2045 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2046 store_dest(mach, &r[swizzles[chan]],
2047 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2048 }
2049 }
2050 }
2051 else {
2052 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2053 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2054 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2055 }
2056 }
2057 }
2058 }
2059
2060 static void
2061 exec_txq(struct tgsi_exec_machine *mach,
2062 const struct tgsi_full_instruction *inst)
2063 {
2064 const uint unit = inst->Src[1].Register.Index;
2065 int result[4];
2066 union tgsi_exec_channel r[4], src;
2067 uint chan;
2068 int i,j;
2069
2070 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
2071
2072 /* XXX: This interface can't return per-pixel values */
2073 mach->Sampler->get_dims(mach->Sampler, unit, src.i[0], result);
2074
2075 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2076 for (j = 0; j < 4; j++) {
2077 r[j].i[i] = result[j];
2078 }
2079 }
2080
2081 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2082 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2083 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
2084 TGSI_EXEC_DATA_INT);
2085 }
2086 }
2087 }
2088
2089 static void
2090 exec_sample(struct tgsi_exec_machine *mach,
2091 const struct tgsi_full_instruction *inst,
2092 uint modifier, boolean compare)
2093 {
2094 const uint resource_unit = inst->Src[1].Register.Index;
2095 const uint sampler_unit = inst->Src[2].Register.Index;
2096 union tgsi_exec_channel r[4], c1;
2097 const union tgsi_exec_channel *lod = &ZeroVec;
2098 enum tgsi_sampler_control control = tgsi_sampler_lod_none;
2099 uint chan;
2100 unsigned char swizzles[4];
2101 int8_t offsets[3];
2102
2103 /* always fetch all 3 offsets, overkill but keeps code simple */
2104 fetch_texel_offsets(mach, inst, offsets);
2105
2106 assert(modifier != TEX_MODIFIER_PROJECTED);
2107
2108 if (modifier != TEX_MODIFIER_NONE) {
2109 if (modifier == TEX_MODIFIER_LOD_BIAS) {
2110 FETCH(&c1, 3, TGSI_CHAN_X);
2111 lod = &c1;
2112 control = tgsi_sampler_lod_bias;
2113 }
2114 else if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
2115 FETCH(&c1, 3, TGSI_CHAN_X);
2116 lod = &c1;
2117 control = tgsi_sampler_lod_explicit;
2118 }
2119 else {
2120 assert(modifier == TEX_MODIFIER_LEVEL_ZERO);
2121 control = tgsi_sampler_lod_zero;
2122 }
2123 }
2124
2125 FETCH(&r[0], 0, TGSI_CHAN_X);
2126
2127 switch (mach->SamplerViews[resource_unit].Resource) {
2128 case TGSI_TEXTURE_1D:
2129 if (compare) {
2130 FETCH(&r[2], 3, TGSI_CHAN_X);
2131 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2132 &r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2133 NULL, offsets, control,
2134 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2135 }
2136 else {
2137 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2138 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2139 NULL, offsets, control,
2140 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2141 }
2142 break;
2143
2144 case TGSI_TEXTURE_1D_ARRAY:
2145 case TGSI_TEXTURE_2D:
2146 case TGSI_TEXTURE_RECT:
2147 FETCH(&r[1], 0, TGSI_CHAN_Y);
2148 if (compare) {
2149 FETCH(&r[2], 3, TGSI_CHAN_X);
2150 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2151 &r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2152 NULL, offsets, control,
2153 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2154 }
2155 else {
2156 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2157 &r[0], &r[1], &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2158 NULL, offsets, control,
2159 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2160 }
2161 break;
2162
2163 case TGSI_TEXTURE_2D_ARRAY:
2164 case TGSI_TEXTURE_3D:
2165 case TGSI_TEXTURE_CUBE:
2166 FETCH(&r[1], 0, TGSI_CHAN_Y);
2167 FETCH(&r[2], 0, TGSI_CHAN_Z);
2168 if(compare) {
2169 FETCH(&r[3], 3, TGSI_CHAN_X);
2170 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2171 &r[0], &r[1], &r[2], &r[3], lod,
2172 NULL, offsets, control,
2173 &r[0], &r[1], &r[2], &r[3]);
2174 }
2175 else {
2176 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2177 &r[0], &r[1], &r[2], &ZeroVec, lod,
2178 NULL, offsets, control,
2179 &r[0], &r[1], &r[2], &r[3]);
2180 }
2181 break;
2182
2183 case TGSI_TEXTURE_CUBE_ARRAY:
2184 FETCH(&r[1], 0, TGSI_CHAN_Y);
2185 FETCH(&r[2], 0, TGSI_CHAN_Z);
2186 FETCH(&r[3], 0, TGSI_CHAN_W);
2187 if(compare) {
2188 FETCH(&r[4], 3, TGSI_CHAN_X);
2189 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2190 &r[0], &r[1], &r[2], &r[3], &r[4],
2191 NULL, offsets, control,
2192 &r[0], &r[1], &r[2], &r[3]);
2193 }
2194 else {
2195 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2196 &r[0], &r[1], &r[2], &r[3], lod,
2197 NULL, offsets, control,
2198 &r[0], &r[1], &r[2], &r[3]);
2199 }
2200 break;
2201
2202
2203 default:
2204 assert(0);
2205 }
2206
2207 swizzles[0] = inst->Src[1].Register.SwizzleX;
2208 swizzles[1] = inst->Src[1].Register.SwizzleY;
2209 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2210 swizzles[3] = inst->Src[1].Register.SwizzleW;
2211
2212 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2213 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2214 store_dest(mach, &r[swizzles[chan]],
2215 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2216 }
2217 }
2218 }
2219
2220 static void
2221 exec_sample_d(struct tgsi_exec_machine *mach,
2222 const struct tgsi_full_instruction *inst)
2223 {
2224 const uint resource_unit = inst->Src[1].Register.Index;
2225 const uint sampler_unit = inst->Src[2].Register.Index;
2226 union tgsi_exec_channel r[4];
2227 float derivs[3][2][TGSI_QUAD_SIZE];
2228 uint chan;
2229 unsigned char swizzles[4];
2230 int8_t offsets[3];
2231
2232 /* always fetch all 3 offsets, overkill but keeps code simple */
2233 fetch_texel_offsets(mach, inst, offsets);
2234
2235 FETCH(&r[0], 0, TGSI_CHAN_X);
2236
2237 switch (mach->SamplerViews[resource_unit].Resource) {
2238 case TGSI_TEXTURE_1D:
2239 case TGSI_TEXTURE_1D_ARRAY:
2240 /* only 1D array actually needs Y */
2241 FETCH(&r[1], 0, TGSI_CHAN_Y);
2242
2243 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2244
2245 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2246 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2247 derivs, offsets, tgsi_sampler_derivs_explicit,
2248 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2249 break;
2250
2251 case TGSI_TEXTURE_2D:
2252 case TGSI_TEXTURE_RECT:
2253 case TGSI_TEXTURE_2D_ARRAY:
2254 /* only 2D array actually needs Z */
2255 FETCH(&r[1], 0, TGSI_CHAN_Y);
2256 FETCH(&r[2], 0, TGSI_CHAN_Z);
2257
2258 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2259 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2260
2261 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2262 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* inputs */
2263 derivs, offsets, tgsi_sampler_derivs_explicit,
2264 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2265 break;
2266
2267 case TGSI_TEXTURE_3D:
2268 case TGSI_TEXTURE_CUBE:
2269 case TGSI_TEXTURE_CUBE_ARRAY:
2270 /* only cube array actually needs W */
2271 FETCH(&r[1], 0, TGSI_CHAN_Y);
2272 FETCH(&r[2], 0, TGSI_CHAN_Z);
2273 FETCH(&r[3], 0, TGSI_CHAN_W);
2274
2275 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2276 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2277 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Z, derivs[2]);
2278
2279 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2280 &r[0], &r[1], &r[2], &r[3], &ZeroVec,
2281 derivs, offsets, tgsi_sampler_derivs_explicit,
2282 &r[0], &r[1], &r[2], &r[3]);
2283 break;
2284
2285 default:
2286 assert(0);
2287 }
2288
2289 swizzles[0] = inst->Src[1].Register.SwizzleX;
2290 swizzles[1] = inst->Src[1].Register.SwizzleY;
2291 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2292 swizzles[3] = inst->Src[1].Register.SwizzleW;
2293
2294 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2295 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2296 store_dest(mach, &r[swizzles[chan]],
2297 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2298 }
2299 }
2300 }
2301
2302
2303 /**
2304 * Evaluate a constant-valued coefficient at the position of the
2305 * current quad.
2306 */
2307 static void
2308 eval_constant_coef(
2309 struct tgsi_exec_machine *mach,
2310 unsigned attrib,
2311 unsigned chan )
2312 {
2313 unsigned i;
2314
2315 for( i = 0; i < TGSI_QUAD_SIZE; i++ ) {
2316 mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2317 }
2318 }
2319
2320 /**
2321 * Evaluate a linear-valued coefficient at the position of the
2322 * current quad.
2323 */
2324 static void
2325 eval_linear_coef(
2326 struct tgsi_exec_machine *mach,
2327 unsigned attrib,
2328 unsigned chan )
2329 {
2330 const float x = mach->QuadPos.xyzw[0].f[0];
2331 const float y = mach->QuadPos.xyzw[1].f[0];
2332 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2333 const float dady = mach->InterpCoefs[attrib].dady[chan];
2334 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2335 mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2336 mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2337 mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2338 mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2339 }
2340
2341 /**
2342 * Evaluate a perspective-valued coefficient at the position of the
2343 * current quad.
2344 */
2345 static void
2346 eval_perspective_coef(
2347 struct tgsi_exec_machine *mach,
2348 unsigned attrib,
2349 unsigned chan )
2350 {
2351 const float x = mach->QuadPos.xyzw[0].f[0];
2352 const float y = mach->QuadPos.xyzw[1].f[0];
2353 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2354 const float dady = mach->InterpCoefs[attrib].dady[chan];
2355 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2356 const float *w = mach->QuadPos.xyzw[3].f;
2357 /* divide by W here */
2358 mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2359 mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2360 mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2361 mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2362 }
2363
2364
2365 typedef void (* eval_coef_func)(
2366 struct tgsi_exec_machine *mach,
2367 unsigned attrib,
2368 unsigned chan );
2369
2370 static void
2371 exec_declaration(struct tgsi_exec_machine *mach,
2372 const struct tgsi_full_declaration *decl)
2373 {
2374 if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) {
2375 mach->SamplerViews[decl->Range.First] = decl->SamplerView;
2376 return;
2377 }
2378
2379 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
2380 if (decl->Declaration.File == TGSI_FILE_INPUT) {
2381 uint first, last, mask;
2382
2383 first = decl->Range.First;
2384 last = decl->Range.Last;
2385 mask = decl->Declaration.UsageMask;
2386
2387 /* XXX we could remove this special-case code since
2388 * mach->InterpCoefs[first].a0 should already have the
2389 * front/back-face value. But we should first update the
2390 * ureg code to emit the right UsageMask value (WRITEMASK_X).
2391 * Then, we could remove the tgsi_exec_machine::Face field.
2392 */
2393 /* XXX make FACE a system value */
2394 if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
2395 uint i;
2396
2397 assert(decl->Semantic.Index == 0);
2398 assert(first == last);
2399
2400 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2401 mach->Inputs[first].xyzw[0].f[i] = mach->Face;
2402 }
2403 } else {
2404 eval_coef_func eval;
2405 uint i, j;
2406
2407 switch (decl->Interp.Interpolate) {
2408 case TGSI_INTERPOLATE_CONSTANT:
2409 eval = eval_constant_coef;
2410 break;
2411
2412 case TGSI_INTERPOLATE_LINEAR:
2413 eval = eval_linear_coef;
2414 break;
2415
2416 case TGSI_INTERPOLATE_PERSPECTIVE:
2417 eval = eval_perspective_coef;
2418 break;
2419
2420 case TGSI_INTERPOLATE_COLOR:
2421 eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef;
2422 break;
2423
2424 default:
2425 assert(0);
2426 return;
2427 }
2428
2429 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2430 if (mask & (1 << j)) {
2431 for (i = first; i <= last; i++) {
2432 eval(mach, i, j);
2433 }
2434 }
2435 }
2436 }
2437
2438 if (DEBUG_EXECUTION) {
2439 uint i, j;
2440 for (i = first; i <= last; ++i) {
2441 debug_printf("IN[%2u] = ", i);
2442 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2443 if (j > 0) {
2444 debug_printf(" ");
2445 }
2446 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
2447 mach->Inputs[i].xyzw[0].f[j], mach->Inputs[i].xyzw[0].u[j],
2448 mach->Inputs[i].xyzw[1].f[j], mach->Inputs[i].xyzw[1].u[j],
2449 mach->Inputs[i].xyzw[2].f[j], mach->Inputs[i].xyzw[2].u[j],
2450 mach->Inputs[i].xyzw[3].f[j], mach->Inputs[i].xyzw[3].u[j]);
2451 }
2452 }
2453 }
2454 }
2455 }
2456
2457 if (decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
2458 mach->SysSemanticToIndex[decl->Declaration.Semantic] = decl->Range.First;
2459 }
2460 }
2461
2462
2463 typedef void (* micro_op)(union tgsi_exec_channel *dst);
2464
2465 static void
2466 exec_vector(struct tgsi_exec_machine *mach,
2467 const struct tgsi_full_instruction *inst,
2468 micro_op op,
2469 enum tgsi_exec_datatype dst_datatype)
2470 {
2471 unsigned int chan;
2472
2473 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2474 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2475 union tgsi_exec_channel dst;
2476
2477 op(&dst);
2478 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2479 }
2480 }
2481 }
2482
2483 typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
2484 const union tgsi_exec_channel *src);
2485
2486 static void
2487 exec_scalar_unary(struct tgsi_exec_machine *mach,
2488 const struct tgsi_full_instruction *inst,
2489 micro_unary_op op,
2490 enum tgsi_exec_datatype dst_datatype,
2491 enum tgsi_exec_datatype src_datatype)
2492 {
2493 unsigned int chan;
2494 union tgsi_exec_channel src;
2495 union tgsi_exec_channel dst;
2496
2497 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
2498 op(&dst, &src);
2499 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2500 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2501 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2502 }
2503 }
2504 }
2505
2506 static void
2507 exec_vector_unary(struct tgsi_exec_machine *mach,
2508 const struct tgsi_full_instruction *inst,
2509 micro_unary_op op,
2510 enum tgsi_exec_datatype dst_datatype,
2511 enum tgsi_exec_datatype src_datatype)
2512 {
2513 unsigned int chan;
2514 struct tgsi_exec_vector dst;
2515
2516 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2517 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2518 union tgsi_exec_channel src;
2519
2520 fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
2521 op(&dst.xyzw[chan], &src);
2522 }
2523 }
2524 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2525 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2526 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2527 }
2528 }
2529 }
2530
2531 typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
2532 const union tgsi_exec_channel *src0,
2533 const union tgsi_exec_channel *src1);
2534
2535 static void
2536 exec_scalar_binary(struct tgsi_exec_machine *mach,
2537 const struct tgsi_full_instruction *inst,
2538 micro_binary_op op,
2539 enum tgsi_exec_datatype dst_datatype,
2540 enum tgsi_exec_datatype src_datatype)
2541 {
2542 unsigned int chan;
2543 union tgsi_exec_channel src[2];
2544 union tgsi_exec_channel dst;
2545
2546 fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype);
2547 fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, src_datatype);
2548 op(&dst, &src[0], &src[1]);
2549 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2550 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2551 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2552 }
2553 }
2554 }
2555
2556 static void
2557 exec_vector_binary(struct tgsi_exec_machine *mach,
2558 const struct tgsi_full_instruction *inst,
2559 micro_binary_op op,
2560 enum tgsi_exec_datatype dst_datatype,
2561 enum tgsi_exec_datatype src_datatype)
2562 {
2563 unsigned int chan;
2564 struct tgsi_exec_vector dst;
2565
2566 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2567 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2568 union tgsi_exec_channel src[2];
2569
2570 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2571 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2572 op(&dst.xyzw[chan], &src[0], &src[1]);
2573 }
2574 }
2575 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2576 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2577 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2578 }
2579 }
2580 }
2581
2582 typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
2583 const union tgsi_exec_channel *src0,
2584 const union tgsi_exec_channel *src1,
2585 const union tgsi_exec_channel *src2);
2586
2587 static void
2588 exec_vector_trinary(struct tgsi_exec_machine *mach,
2589 const struct tgsi_full_instruction *inst,
2590 micro_trinary_op op,
2591 enum tgsi_exec_datatype dst_datatype,
2592 enum tgsi_exec_datatype src_datatype)
2593 {
2594 unsigned int chan;
2595 struct tgsi_exec_vector dst;
2596
2597 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2598 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2599 union tgsi_exec_channel src[3];
2600
2601 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2602 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2603 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
2604 op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
2605 }
2606 }
2607 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2608 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2609 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2610 }
2611 }
2612 }
2613
2614 typedef void (* micro_quaternary_op)(union tgsi_exec_channel *dst,
2615 const union tgsi_exec_channel *src0,
2616 const union tgsi_exec_channel *src1,
2617 const union tgsi_exec_channel *src2,
2618 const union tgsi_exec_channel *src3);
2619
2620 static void
2621 exec_vector_quaternary(struct tgsi_exec_machine *mach,
2622 const struct tgsi_full_instruction *inst,
2623 micro_quaternary_op op,
2624 enum tgsi_exec_datatype dst_datatype,
2625 enum tgsi_exec_datatype src_datatype)
2626 {
2627 unsigned int chan;
2628 struct tgsi_exec_vector dst;
2629
2630 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2631 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2632 union tgsi_exec_channel src[4];
2633
2634 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2635 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2636 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
2637 fetch_source(mach, &src[3], &inst->Src[3], chan, src_datatype);
2638 op(&dst.xyzw[chan], &src[0], &src[1], &src[2], &src[3]);
2639 }
2640 }
2641 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2642 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2643 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2644 }
2645 }
2646 }
2647
2648 static void
2649 exec_dp3(struct tgsi_exec_machine *mach,
2650 const struct tgsi_full_instruction *inst)
2651 {
2652 unsigned int chan;
2653 union tgsi_exec_channel arg[3];
2654
2655 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2656 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2657 micro_mul(&arg[2], &arg[0], &arg[1]);
2658
2659 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
2660 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2661 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2662 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2663 }
2664
2665 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2666 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2667 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2668 }
2669 }
2670 }
2671
2672 static void
2673 exec_dp4(struct tgsi_exec_machine *mach,
2674 const struct tgsi_full_instruction *inst)
2675 {
2676 unsigned int chan;
2677 union tgsi_exec_channel arg[3];
2678
2679 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2680 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2681 micro_mul(&arg[2], &arg[0], &arg[1]);
2682
2683 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
2684 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2685 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2686 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2687 }
2688
2689 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2690 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2691 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2692 }
2693 }
2694 }
2695
2696 static void
2697 exec_dp2a(struct tgsi_exec_machine *mach,
2698 const struct tgsi_full_instruction *inst)
2699 {
2700 unsigned int chan;
2701 union tgsi_exec_channel arg[3];
2702
2703 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2704 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2705 micro_mul(&arg[2], &arg[0], &arg[1]);
2706
2707 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2708 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2709 micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2710
2711 fetch_source(mach, &arg[1], &inst->Src[2], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2712 micro_add(&arg[0], &arg[0], &arg[1]);
2713
2714 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2715 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2716 store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2717 }
2718 }
2719 }
2720
2721 static void
2722 exec_dph(struct tgsi_exec_machine *mach,
2723 const struct tgsi_full_instruction *inst)
2724 {
2725 unsigned int chan;
2726 union tgsi_exec_channel arg[3];
2727
2728 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2729 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2730 micro_mul(&arg[2], &arg[0], &arg[1]);
2731
2732 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2733 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2734 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2735
2736 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2737 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2738 micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2739
2740 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2741 micro_add(&arg[0], &arg[0], &arg[1]);
2742
2743 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2744 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2745 store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2746 }
2747 }
2748 }
2749
2750 static void
2751 exec_dp2(struct tgsi_exec_machine *mach,
2752 const struct tgsi_full_instruction *inst)
2753 {
2754 unsigned int chan;
2755 union tgsi_exec_channel arg[3];
2756
2757 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2758 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2759 micro_mul(&arg[2], &arg[0], &arg[1]);
2760
2761 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2762 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2763 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2764
2765 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2766 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2767 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2768 }
2769 }
2770 }
2771
2772 static void
2773 exec_nrm4(struct tgsi_exec_machine *mach,
2774 const struct tgsi_full_instruction *inst)
2775 {
2776 unsigned int chan;
2777 union tgsi_exec_channel arg[4];
2778 union tgsi_exec_channel scale;
2779
2780 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2781 micro_mul(&scale, &arg[0], &arg[0]);
2782
2783 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
2784 union tgsi_exec_channel product;
2785
2786 fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2787 micro_mul(&product, &arg[chan], &arg[chan]);
2788 micro_add(&scale, &scale, &product);
2789 }
2790
2791 micro_rsq(&scale, &scale);
2792
2793 for (chan = TGSI_CHAN_X; chan <= TGSI_CHAN_W; chan++) {
2794 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2795 micro_mul(&arg[chan], &arg[chan], &scale);
2796 store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2797 }
2798 }
2799 }
2800
2801 static void
2802 exec_nrm3(struct tgsi_exec_machine *mach,
2803 const struct tgsi_full_instruction *inst)
2804 {
2805 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2806 unsigned int chan;
2807 union tgsi_exec_channel arg[3];
2808 union tgsi_exec_channel scale;
2809
2810 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2811 micro_mul(&scale, &arg[0], &arg[0]);
2812
2813 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
2814 union tgsi_exec_channel product;
2815
2816 fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2817 micro_mul(&product, &arg[chan], &arg[chan]);
2818 micro_add(&scale, &scale, &product);
2819 }
2820
2821 micro_rsq(&scale, &scale);
2822
2823 for (chan = TGSI_CHAN_X; chan <= TGSI_CHAN_Z; chan++) {
2824 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2825 micro_mul(&arg[chan], &arg[chan], &scale);
2826 store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2827 }
2828 }
2829 }
2830
2831 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2832 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2833 }
2834 }
2835
2836 static void
2837 exec_scs(struct tgsi_exec_machine *mach,
2838 const struct tgsi_full_instruction *inst)
2839 {
2840 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) {
2841 union tgsi_exec_channel arg;
2842 union tgsi_exec_channel result;
2843
2844 fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2845
2846 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2847 micro_cos(&result, &arg);
2848 store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2849 }
2850 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2851 micro_sin(&result, &arg);
2852 store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2853 }
2854 }
2855 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2856 store_dest(mach, &ZeroVec, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2857 }
2858 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2859 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2860 }
2861 }
2862
2863 static void
2864 exec_x2d(struct tgsi_exec_machine *mach,
2865 const struct tgsi_full_instruction *inst)
2866 {
2867 union tgsi_exec_channel r[4];
2868 union tgsi_exec_channel d[2];
2869
2870 fetch_source(mach, &r[0], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2871 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2872 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XZ) {
2873 fetch_source(mach, &r[2], &inst->Src[2], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2874 micro_mul(&r[2], &r[2], &r[0]);
2875 fetch_source(mach, &r[3], &inst->Src[2], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2876 micro_mul(&r[3], &r[3], &r[1]);
2877 micro_add(&r[2], &r[2], &r[3]);
2878 fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2879 micro_add(&d[0], &r[2], &r[3]);
2880 }
2881 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YW) {
2882 fetch_source(mach, &r[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2883 micro_mul(&r[2], &r[2], &r[0]);
2884 fetch_source(mach, &r[3], &inst->Src[2], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2885 micro_mul(&r[3], &r[3], &r[1]);
2886 micro_add(&r[2], &r[2], &r[3]);
2887 fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2888 micro_add(&d[1], &r[2], &r[3]);
2889 }
2890 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2891 store_dest(mach, &d[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2892 }
2893 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2894 store_dest(mach, &d[1], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2895 }
2896 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2897 store_dest(mach, &d[0], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2898 }
2899 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2900 store_dest(mach, &d[1], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2901 }
2902 }
2903
2904 static void
2905 exec_rfl(struct tgsi_exec_machine *mach,
2906 const struct tgsi_full_instruction *inst)
2907 {
2908 union tgsi_exec_channel r[9];
2909
2910 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2911 /* r0 = dp3(src0, src0) */
2912 fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2913 micro_mul(&r[0], &r[2], &r[2]);
2914 fetch_source(mach, &r[4], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2915 micro_mul(&r[8], &r[4], &r[4]);
2916 micro_add(&r[0], &r[0], &r[8]);
2917 fetch_source(mach, &r[6], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2918 micro_mul(&r[8], &r[6], &r[6]);
2919 micro_add(&r[0], &r[0], &r[8]);
2920
2921 /* r1 = dp3(src0, src1) */
2922 fetch_source(mach, &r[3], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2923 micro_mul(&r[1], &r[2], &r[3]);
2924 fetch_source(mach, &r[5], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2925 micro_mul(&r[8], &r[4], &r[5]);
2926 micro_add(&r[1], &r[1], &r[8]);
2927 fetch_source(mach, &r[7], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2928 micro_mul(&r[8], &r[6], &r[7]);
2929 micro_add(&r[1], &r[1], &r[8]);
2930
2931 /* r1 = 2 * r1 / r0 */
2932 micro_add(&r[1], &r[1], &r[1]);
2933 micro_div(&r[1], &r[1], &r[0]);
2934
2935 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2936 micro_mul(&r[2], &r[2], &r[1]);
2937 micro_sub(&r[2], &r[2], &r[3]);
2938 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2939 }
2940 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2941 micro_mul(&r[4], &r[4], &r[1]);
2942 micro_sub(&r[4], &r[4], &r[5]);
2943 store_dest(mach, &r[4], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2944 }
2945 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2946 micro_mul(&r[6], &r[6], &r[1]);
2947 micro_sub(&r[6], &r[6], &r[7]);
2948 store_dest(mach, &r[6], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2949 }
2950 }
2951 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2952 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2953 }
2954 }
2955
2956 static void
2957 exec_xpd(struct tgsi_exec_machine *mach,
2958 const struct tgsi_full_instruction *inst)
2959 {
2960 union tgsi_exec_channel r[6];
2961 union tgsi_exec_channel d[3];
2962
2963 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2964 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2965
2966 micro_mul(&r[2], &r[0], &r[1]);
2967
2968 fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2969 fetch_source(mach, &r[4], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2970
2971 micro_mul(&r[5], &r[3], &r[4] );
2972 micro_sub(&d[TGSI_CHAN_X], &r[2], &r[5]);
2973
2974 fetch_source(mach, &r[2], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2975
2976 micro_mul(&r[3], &r[3], &r[2]);
2977
2978 fetch_source(mach, &r[5], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2979
2980 micro_mul(&r[1], &r[1], &r[5]);
2981 micro_sub(&d[TGSI_CHAN_Y], &r[3], &r[1]);
2982
2983 micro_mul(&r[5], &r[5], &r[4]);
2984 micro_mul(&r[0], &r[0], &r[2]);
2985 micro_sub(&d[TGSI_CHAN_Z], &r[5], &r[0]);
2986
2987 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2988 store_dest(mach, &d[TGSI_CHAN_X], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2989 }
2990 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2991 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2992 }
2993 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2994 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2995 }
2996 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2997 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2998 }
2999 }
3000
3001 static void
3002 exec_dst(struct tgsi_exec_machine *mach,
3003 const struct tgsi_full_instruction *inst)
3004 {
3005 union tgsi_exec_channel r[2];
3006 union tgsi_exec_channel d[4];
3007
3008 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3009 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3010 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3011 micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]);
3012 }
3013 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3014 fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3015 }
3016 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3017 fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3018 }
3019
3020 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3021 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3022 }
3023 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3024 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3025 }
3026 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3027 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3028 }
3029 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3030 store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3031 }
3032 }
3033
3034 static void
3035 exec_log(struct tgsi_exec_machine *mach,
3036 const struct tgsi_full_instruction *inst)
3037 {
3038 union tgsi_exec_channel r[3];
3039
3040 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3041 micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */
3042 micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */
3043 micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */
3044 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3045 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3046 }
3047 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3048 micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */
3049 micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
3050 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3051 }
3052 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3053 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3054 }
3055 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3056 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3057 }
3058 }
3059
3060 static void
3061 exec_exp(struct tgsi_exec_machine *mach,
3062 const struct tgsi_full_instruction *inst)
3063 {
3064 union tgsi_exec_channel r[3];
3065
3066 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3067 micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */
3068 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3069 micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */
3070 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3071 }
3072 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3073 micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
3074 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3075 }
3076 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3077 micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */
3078 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3079 }
3080 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3081 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3082 }
3083 }
3084
3085 static void
3086 exec_lit(struct tgsi_exec_machine *mach,
3087 const struct tgsi_full_instruction *inst)
3088 {
3089 union tgsi_exec_channel r[3];
3090 union tgsi_exec_channel d[3];
3091
3092 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
3093 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3094 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3095 fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3096 micro_max(&r[1], &r[1], &ZeroVec);
3097
3098 fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3099 micro_min(&r[2], &r[2], &P128Vec);
3100 micro_max(&r[2], &r[2], &M128Vec);
3101 micro_pow(&r[1], &r[1], &r[2]);
3102 micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
3103 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3104 }
3105 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3106 micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec);
3107 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3108 }
3109 }
3110 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3111 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3112 }
3113
3114 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3115 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3116 }
3117 }
3118
3119 static void
3120 exec_break(struct tgsi_exec_machine *mach)
3121 {
3122 if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
3123 /* turn off loop channels for each enabled exec channel */
3124 mach->LoopMask &= ~mach->ExecMask;
3125 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3126 UPDATE_EXEC_MASK(mach);
3127 } else {
3128 assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
3129
3130 mach->Switch.mask = 0x0;
3131
3132 UPDATE_EXEC_MASK(mach);
3133 }
3134 }
3135
3136 static void
3137 exec_switch(struct tgsi_exec_machine *mach,
3138 const struct tgsi_full_instruction *inst)
3139 {
3140 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3141 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3142
3143 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3144 fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3145 mach->Switch.mask = 0x0;
3146 mach->Switch.defaultMask = 0x0;
3147
3148 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3149 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
3150
3151 UPDATE_EXEC_MASK(mach);
3152 }
3153
3154 static void
3155 exec_case(struct tgsi_exec_machine *mach,
3156 const struct tgsi_full_instruction *inst)
3157 {
3158 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3159 union tgsi_exec_channel src;
3160 uint mask = 0;
3161
3162 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3163
3164 if (mach->Switch.selector.u[0] == src.u[0]) {
3165 mask |= 0x1;
3166 }
3167 if (mach->Switch.selector.u[1] == src.u[1]) {
3168 mask |= 0x2;
3169 }
3170 if (mach->Switch.selector.u[2] == src.u[2]) {
3171 mask |= 0x4;
3172 }
3173 if (mach->Switch.selector.u[3] == src.u[3]) {
3174 mask |= 0x8;
3175 }
3176
3177 mach->Switch.defaultMask |= mask;
3178
3179 mach->Switch.mask |= mask & prevMask;
3180
3181 UPDATE_EXEC_MASK(mach);
3182 }
3183
3184 /* FIXME: this will only work if default is last */
3185 static void
3186 exec_default(struct tgsi_exec_machine *mach)
3187 {
3188 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3189
3190 mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
3191
3192 UPDATE_EXEC_MASK(mach);
3193 }
3194
3195 static void
3196 exec_endswitch(struct tgsi_exec_machine *mach)
3197 {
3198 mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
3199 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3200
3201 UPDATE_EXEC_MASK(mach);
3202 }
3203
3204 static void
3205 micro_i2f(union tgsi_exec_channel *dst,
3206 const union tgsi_exec_channel *src)
3207 {
3208 dst->f[0] = (float)src->i[0];
3209 dst->f[1] = (float)src->i[1];
3210 dst->f[2] = (float)src->i[2];
3211 dst->f[3] = (float)src->i[3];
3212 }
3213
3214 static void
3215 micro_not(union tgsi_exec_channel *dst,
3216 const union tgsi_exec_channel *src)
3217 {
3218 dst->u[0] = ~src->u[0];
3219 dst->u[1] = ~src->u[1];
3220 dst->u[2] = ~src->u[2];
3221 dst->u[3] = ~src->u[3];
3222 }
3223
3224 static void
3225 micro_shl(union tgsi_exec_channel *dst,
3226 const union tgsi_exec_channel *src0,
3227 const union tgsi_exec_channel *src1)
3228 {
3229 unsigned masked_count;
3230 masked_count = src1->u[0] & 0x1f;
3231 dst->u[0] = src0->u[0] << masked_count;
3232 masked_count = src1->u[1] & 0x1f;
3233 dst->u[1] = src0->u[1] << masked_count;
3234 masked_count = src1->u[2] & 0x1f;
3235 dst->u[2] = src0->u[2] << masked_count;
3236 masked_count = src1->u[3] & 0x1f;
3237 dst->u[3] = src0->u[3] << masked_count;
3238 }
3239
3240 static void
3241 micro_and(union tgsi_exec_channel *dst,
3242 const union tgsi_exec_channel *src0,
3243 const union tgsi_exec_channel *src1)
3244 {
3245 dst->u[0] = src0->u[0] & src1->u[0];
3246 dst->u[1] = src0->u[1] & src1->u[1];
3247 dst->u[2] = src0->u[2] & src1->u[2];
3248 dst->u[3] = src0->u[3] & src1->u[3];
3249 }
3250
3251 static void
3252 micro_or(union tgsi_exec_channel *dst,
3253 const union tgsi_exec_channel *src0,
3254 const union tgsi_exec_channel *src1)
3255 {
3256 dst->u[0] = src0->u[0] | src1->u[0];
3257 dst->u[1] = src0->u[1] | src1->u[1];
3258 dst->u[2] = src0->u[2] | src1->u[2];
3259 dst->u[3] = src0->u[3] | src1->u[3];
3260 }
3261
3262 static void
3263 micro_xor(union tgsi_exec_channel *dst,
3264 const union tgsi_exec_channel *src0,
3265 const union tgsi_exec_channel *src1)
3266 {
3267 dst->u[0] = src0->u[0] ^ src1->u[0];
3268 dst->u[1] = src0->u[1] ^ src1->u[1];
3269 dst->u[2] = src0->u[2] ^ src1->u[2];
3270 dst->u[3] = src0->u[3] ^ src1->u[3];
3271 }
3272
3273 static void
3274 micro_mod(union tgsi_exec_channel *dst,
3275 const union tgsi_exec_channel *src0,
3276 const union tgsi_exec_channel *src1)
3277 {
3278 dst->i[0] = src0->i[0] % src1->i[0];
3279 dst->i[1] = src0->i[1] % src1->i[1];
3280 dst->i[2] = src0->i[2] % src1->i[2];
3281 dst->i[3] = src0->i[3] % src1->i[3];
3282 }
3283
3284 static void
3285 micro_f2i(union tgsi_exec_channel *dst,
3286 const union tgsi_exec_channel *src)
3287 {
3288 dst->i[0] = (int)src->f[0];
3289 dst->i[1] = (int)src->f[1];
3290 dst->i[2] = (int)src->f[2];
3291 dst->i[3] = (int)src->f[3];
3292 }
3293
3294 static void
3295 micro_fseq(union tgsi_exec_channel *dst,
3296 const union tgsi_exec_channel *src0,
3297 const union tgsi_exec_channel *src1)
3298 {
3299 dst->u[0] = src0->f[0] == src1->f[0] ? ~0 : 0;
3300 dst->u[1] = src0->f[1] == src1->f[1] ? ~0 : 0;
3301 dst->u[2] = src0->f[2] == src1->f[2] ? ~0 : 0;
3302 dst->u[3] = src0->f[3] == src1->f[3] ? ~0 : 0;
3303 }
3304
3305 static void
3306 micro_fsge(union tgsi_exec_channel *dst,
3307 const union tgsi_exec_channel *src0,
3308 const union tgsi_exec_channel *src1)
3309 {
3310 dst->u[0] = src0->f[0] >= src1->f[0] ? ~0 : 0;
3311 dst->u[1] = src0->f[1] >= src1->f[1] ? ~0 : 0;
3312 dst->u[2] = src0->f[2] >= src1->f[2] ? ~0 : 0;
3313 dst->u[3] = src0->f[3] >= src1->f[3] ? ~0 : 0;
3314 }
3315
3316 static void
3317 micro_fslt(union tgsi_exec_channel *dst,
3318 const union tgsi_exec_channel *src0,
3319 const union tgsi_exec_channel *src1)
3320 {
3321 dst->u[0] = src0->f[0] < src1->f[0] ? ~0 : 0;
3322 dst->u[1] = src0->f[1] < src1->f[1] ? ~0 : 0;
3323 dst->u[2] = src0->f[2] < src1->f[2] ? ~0 : 0;
3324 dst->u[3] = src0->f[3] < src1->f[3] ? ~0 : 0;
3325 }
3326
3327 static void
3328 micro_fsne(union tgsi_exec_channel *dst,
3329 const union tgsi_exec_channel *src0,
3330 const union tgsi_exec_channel *src1)
3331 {
3332 dst->u[0] = src0->f[0] != src1->f[0] ? ~0 : 0;
3333 dst->u[1] = src0->f[1] != src1->f[1] ? ~0 : 0;
3334 dst->u[2] = src0->f[2] != src1->f[2] ? ~0 : 0;
3335 dst->u[3] = src0->f[3] != src1->f[3] ? ~0 : 0;
3336 }
3337
3338 static void
3339 micro_idiv(union tgsi_exec_channel *dst,
3340 const union tgsi_exec_channel *src0,
3341 const union tgsi_exec_channel *src1)
3342 {
3343 dst->i[0] = src0->i[0] / src1->i[0];
3344 dst->i[1] = src0->i[1] / src1->i[1];
3345 dst->i[2] = src0->i[2] / src1->i[2];
3346 dst->i[3] = src0->i[3] / src1->i[3];
3347 }
3348
3349 static void
3350 micro_imax(union tgsi_exec_channel *dst,
3351 const union tgsi_exec_channel *src0,
3352 const union tgsi_exec_channel *src1)
3353 {
3354 dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
3355 dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
3356 dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
3357 dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
3358 }
3359
3360 static void
3361 micro_imin(union tgsi_exec_channel *dst,
3362 const union tgsi_exec_channel *src0,
3363 const union tgsi_exec_channel *src1)
3364 {
3365 dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
3366 dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
3367 dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
3368 dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
3369 }
3370
3371 static void
3372 micro_isge(union tgsi_exec_channel *dst,
3373 const union tgsi_exec_channel *src0,
3374 const union tgsi_exec_channel *src1)
3375 {
3376 dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
3377 dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
3378 dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
3379 dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
3380 }
3381
3382 static void
3383 micro_ishr(union tgsi_exec_channel *dst,
3384 const union tgsi_exec_channel *src0,
3385 const union tgsi_exec_channel *src1)
3386 {
3387 unsigned masked_count;
3388 masked_count = src1->i[0] & 0x1f;
3389 dst->i[0] = src0->i[0] >> masked_count;
3390 masked_count = src1->i[1] & 0x1f;
3391 dst->i[1] = src0->i[1] >> masked_count;
3392 masked_count = src1->i[2] & 0x1f;
3393 dst->i[2] = src0->i[2] >> masked_count;
3394 masked_count = src1->i[3] & 0x1f;
3395 dst->i[3] = src0->i[3] >> masked_count;
3396 }
3397
3398 static void
3399 micro_islt(union tgsi_exec_channel *dst,
3400 const union tgsi_exec_channel *src0,
3401 const union tgsi_exec_channel *src1)
3402 {
3403 dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
3404 dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
3405 dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
3406 dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
3407 }
3408
3409 static void
3410 micro_f2u(union tgsi_exec_channel *dst,
3411 const union tgsi_exec_channel *src)
3412 {
3413 dst->u[0] = (uint)src->f[0];
3414 dst->u[1] = (uint)src->f[1];
3415 dst->u[2] = (uint)src->f[2];
3416 dst->u[3] = (uint)src->f[3];
3417 }
3418
3419 static void
3420 micro_u2f(union tgsi_exec_channel *dst,
3421 const union tgsi_exec_channel *src)
3422 {
3423 dst->f[0] = (float)src->u[0];
3424 dst->f[1] = (float)src->u[1];
3425 dst->f[2] = (float)src->u[2];
3426 dst->f[3] = (float)src->u[3];
3427 }
3428
3429 static void
3430 micro_uadd(union tgsi_exec_channel *dst,
3431 const union tgsi_exec_channel *src0,
3432 const union tgsi_exec_channel *src1)
3433 {
3434 dst->u[0] = src0->u[0] + src1->u[0];
3435 dst->u[1] = src0->u[1] + src1->u[1];
3436 dst->u[2] = src0->u[2] + src1->u[2];
3437 dst->u[3] = src0->u[3] + src1->u[3];
3438 }
3439
3440 static void
3441 micro_udiv(union tgsi_exec_channel *dst,
3442 const union tgsi_exec_channel *src0,
3443 const union tgsi_exec_channel *src1)
3444 {
3445 dst->u[0] = src1->u[0] ? src0->u[0] / src1->u[0] : ~0u;
3446 dst->u[1] = src1->u[1] ? src0->u[1] / src1->u[1] : ~0u;
3447 dst->u[2] = src1->u[2] ? src0->u[2] / src1->u[2] : ~0u;
3448 dst->u[3] = src1->u[3] ? src0->u[3] / src1->u[3] : ~0u;
3449 }
3450
3451 static void
3452 micro_umad(union tgsi_exec_channel *dst,
3453 const union tgsi_exec_channel *src0,
3454 const union tgsi_exec_channel *src1,
3455 const union tgsi_exec_channel *src2)
3456 {
3457 dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
3458 dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
3459 dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
3460 dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
3461 }
3462
3463 static void
3464 micro_umax(union tgsi_exec_channel *dst,
3465 const union tgsi_exec_channel *src0,
3466 const union tgsi_exec_channel *src1)
3467 {
3468 dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
3469 dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
3470 dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
3471 dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
3472 }
3473
3474 static void
3475 micro_umin(union tgsi_exec_channel *dst,
3476 const union tgsi_exec_channel *src0,
3477 const union tgsi_exec_channel *src1)
3478 {
3479 dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
3480 dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
3481 dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
3482 dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
3483 }
3484
3485 static void
3486 micro_umod(union tgsi_exec_channel *dst,
3487 const union tgsi_exec_channel *src0,
3488 const union tgsi_exec_channel *src1)
3489 {
3490 dst->u[0] = src1->u[0] ? src0->u[0] % src1->u[0] : ~0u;
3491 dst->u[1] = src1->u[1] ? src0->u[1] % src1->u[1] : ~0u;
3492 dst->u[2] = src1->u[2] ? src0->u[2] % src1->u[2] : ~0u;
3493 dst->u[3] = src1->u[3] ? src0->u[3] % src1->u[3] : ~0u;
3494 }
3495
3496 static void
3497 micro_umul(union tgsi_exec_channel *dst,
3498 const union tgsi_exec_channel *src0,
3499 const union tgsi_exec_channel *src1)
3500 {
3501 dst->u[0] = src0->u[0] * src1->u[0];
3502 dst->u[1] = src0->u[1] * src1->u[1];
3503 dst->u[2] = src0->u[2] * src1->u[2];
3504 dst->u[3] = src0->u[3] * src1->u[3];
3505 }
3506
3507 static void
3508 micro_imul_hi(union tgsi_exec_channel *dst,
3509 const union tgsi_exec_channel *src0,
3510 const union tgsi_exec_channel *src1)
3511 {
3512 #define I64M(x, y) ((((int64_t)x) * ((int64_t)y)) >> 32)
3513 dst->i[0] = I64M(src0->i[0], src1->i[0]);
3514 dst->i[1] = I64M(src0->i[1], src1->i[1]);
3515 dst->i[2] = I64M(src0->i[2], src1->i[2]);
3516 dst->i[3] = I64M(src0->i[3], src1->i[3]);
3517 #undef I64M
3518 }
3519
3520 static void
3521 micro_umul_hi(union tgsi_exec_channel *dst,
3522 const union tgsi_exec_channel *src0,
3523 const union tgsi_exec_channel *src1)
3524 {
3525 #define U64M(x, y) ((((uint64_t)x) * ((uint64_t)y)) >> 32)
3526 dst->u[0] = U64M(src0->u[0], src1->u[0]);
3527 dst->u[1] = U64M(src0->u[1], src1->u[1]);
3528 dst->u[2] = U64M(src0->u[2], src1->u[2]);
3529 dst->u[3] = U64M(src0->u[3], src1->u[3]);
3530 #undef U64M
3531 }
3532
3533 static void
3534 micro_useq(union tgsi_exec_channel *dst,
3535 const union tgsi_exec_channel *src0,
3536 const union tgsi_exec_channel *src1)
3537 {
3538 dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
3539 dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
3540 dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
3541 dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
3542 }
3543
3544 static void
3545 micro_usge(union tgsi_exec_channel *dst,
3546 const union tgsi_exec_channel *src0,
3547 const union tgsi_exec_channel *src1)
3548 {
3549 dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
3550 dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
3551 dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
3552 dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
3553 }
3554
3555 static void
3556 micro_ushr(union tgsi_exec_channel *dst,
3557 const union tgsi_exec_channel *src0,
3558 const union tgsi_exec_channel *src1)
3559 {
3560 unsigned masked_count;
3561 masked_count = src1->u[0] & 0x1f;
3562 dst->u[0] = src0->u[0] >> masked_count;
3563 masked_count = src1->u[1] & 0x1f;
3564 dst->u[1] = src0->u[1] >> masked_count;
3565 masked_count = src1->u[2] & 0x1f;
3566 dst->u[2] = src0->u[2] >> masked_count;
3567 masked_count = src1->u[3] & 0x1f;
3568 dst->u[3] = src0->u[3] >> masked_count;
3569 }
3570
3571 static void
3572 micro_uslt(union tgsi_exec_channel *dst,
3573 const union tgsi_exec_channel *src0,
3574 const union tgsi_exec_channel *src1)
3575 {
3576 dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
3577 dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
3578 dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
3579 dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
3580 }
3581
3582 static void
3583 micro_usne(union tgsi_exec_channel *dst,
3584 const union tgsi_exec_channel *src0,
3585 const union tgsi_exec_channel *src1)
3586 {
3587 dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
3588 dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
3589 dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
3590 dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
3591 }
3592
3593 static void
3594 micro_uarl(union tgsi_exec_channel *dst,
3595 const union tgsi_exec_channel *src)
3596 {
3597 dst->i[0] = src->u[0];
3598 dst->i[1] = src->u[1];
3599 dst->i[2] = src->u[2];
3600 dst->i[3] = src->u[3];
3601 }
3602
3603 static void
3604 micro_ucmp(union tgsi_exec_channel *dst,
3605 const union tgsi_exec_channel *src0,
3606 const union tgsi_exec_channel *src1,
3607 const union tgsi_exec_channel *src2)
3608 {
3609 dst->u[0] = src0->u[0] ? src1->u[0] : src2->u[0];
3610 dst->u[1] = src0->u[1] ? src1->u[1] : src2->u[1];
3611 dst->u[2] = src0->u[2] ? src1->u[2] : src2->u[2];
3612 dst->u[3] = src0->u[3] ? src1->u[3] : src2->u[3];
3613 }
3614
3615 /**
3616 * Signed bitfield extract (i.e. sign-extend the extracted bits)
3617 */
3618 static void
3619 micro_ibfe(union tgsi_exec_channel *dst,
3620 const union tgsi_exec_channel *src0,
3621 const union tgsi_exec_channel *src1,
3622 const union tgsi_exec_channel *src2)
3623 {
3624 int i;
3625 for (i = 0; i < 4; i++) {
3626 int width = src2->i[i] & 0x1f;
3627 int offset = src1->i[i] & 0x1f;
3628 if (width == 0)
3629 dst->i[i] = 0;
3630 else if (width + offset < 32)
3631 dst->i[i] = (src0->i[i] << (32 - width - offset)) >> (32 - width);
3632 else
3633 dst->i[i] = src0->i[i] >> offset;
3634 }
3635 }
3636
3637 /**
3638 * Unsigned bitfield extract
3639 */
3640 static void
3641 micro_ubfe(union tgsi_exec_channel *dst,
3642 const union tgsi_exec_channel *src0,
3643 const union tgsi_exec_channel *src1,
3644 const union tgsi_exec_channel *src2)
3645 {
3646 int i;
3647 for (i = 0; i < 4; i++) {
3648 int width = src2->u[i] & 0x1f;
3649 int offset = src1->u[i] & 0x1f;
3650 if (width == 0)
3651 dst->u[i] = 0;
3652 else if (width + offset < 32)
3653 dst->u[i] = (src0->u[i] << (32 - width - offset)) >> (32 - width);
3654 else
3655 dst->u[i] = src0->u[i] >> offset;
3656 }
3657 }
3658
3659 /**
3660 * Bitfield insert: copy low bits from src1 into a region of src0.
3661 */
3662 static void
3663 micro_bfi(union tgsi_exec_channel *dst,
3664 const union tgsi_exec_channel *src0,
3665 const union tgsi_exec_channel *src1,
3666 const union tgsi_exec_channel *src2,
3667 const union tgsi_exec_channel *src3)
3668 {
3669 int i;
3670 for (i = 0; i < 4; i++) {
3671 int width = src3->u[i] & 0x1f;
3672 int offset = src2->u[i] & 0x1f;
3673 int bitmask = ((1 << width) - 1) << offset;
3674 dst->u[i] = ((src1->u[i] << offset) & bitmask) | (src0->u[i] & ~bitmask);
3675 }
3676 }
3677
3678 static void
3679 micro_brev(union tgsi_exec_channel *dst,
3680 const union tgsi_exec_channel *src)
3681 {
3682 dst->u[0] = util_bitreverse(src->u[0]);
3683 dst->u[1] = util_bitreverse(src->u[1]);
3684 dst->u[2] = util_bitreverse(src->u[2]);
3685 dst->u[3] = util_bitreverse(src->u[3]);
3686 }
3687
3688 static void
3689 micro_popc(union tgsi_exec_channel *dst,
3690 const union tgsi_exec_channel *src)
3691 {
3692 dst->u[0] = util_bitcount(src->u[0]);
3693 dst->u[1] = util_bitcount(src->u[1]);
3694 dst->u[2] = util_bitcount(src->u[2]);
3695 dst->u[3] = util_bitcount(src->u[3]);
3696 }
3697
3698 static void
3699 micro_lsb(union tgsi_exec_channel *dst,
3700 const union tgsi_exec_channel *src)
3701 {
3702 dst->i[0] = ffs(src->u[0]) - 1;
3703 dst->i[1] = ffs(src->u[1]) - 1;
3704 dst->i[2] = ffs(src->u[2]) - 1;
3705 dst->i[3] = ffs(src->u[3]) - 1;
3706 }
3707
3708 static void
3709 micro_imsb(union tgsi_exec_channel *dst,
3710 const union tgsi_exec_channel *src)
3711 {
3712 dst->i[0] = util_last_bit_signed(src->i[0]) - 1;
3713 dst->i[1] = util_last_bit_signed(src->i[1]) - 1;
3714 dst->i[2] = util_last_bit_signed(src->i[2]) - 1;
3715 dst->i[3] = util_last_bit_signed(src->i[3]) - 1;
3716 }
3717
3718 static void
3719 micro_umsb(union tgsi_exec_channel *dst,
3720 const union tgsi_exec_channel *src)
3721 {
3722 dst->i[0] = util_last_bit(src->u[0]) - 1;
3723 dst->i[1] = util_last_bit(src->u[1]) - 1;
3724 dst->i[2] = util_last_bit(src->u[2]) - 1;
3725 dst->i[3] = util_last_bit(src->u[3]) - 1;
3726 }
3727
3728 static void
3729 exec_instruction(
3730 struct tgsi_exec_machine *mach,
3731 const struct tgsi_full_instruction *inst,
3732 int *pc )
3733 {
3734 union tgsi_exec_channel r[10];
3735
3736 (*pc)++;
3737
3738 switch (inst->Instruction.Opcode) {
3739 case TGSI_OPCODE_ARL:
3740 exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3741 break;
3742
3743 case TGSI_OPCODE_MOV:
3744 exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
3745 break;
3746
3747 case TGSI_OPCODE_LIT:
3748 exec_lit(mach, inst);
3749 break;
3750
3751 case TGSI_OPCODE_RCP:
3752 exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3753 break;
3754
3755 case TGSI_OPCODE_RSQ:
3756 exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3757 break;
3758
3759 case TGSI_OPCODE_EXP:
3760 exec_exp(mach, inst);
3761 break;
3762
3763 case TGSI_OPCODE_LOG:
3764 exec_log(mach, inst);
3765 break;
3766
3767 case TGSI_OPCODE_MUL:
3768 exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3769 break;
3770
3771 case TGSI_OPCODE_ADD:
3772 exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3773 break;
3774
3775 case TGSI_OPCODE_DP3:
3776 exec_dp3(mach, inst);
3777 break;
3778
3779 case TGSI_OPCODE_DP4:
3780 exec_dp4(mach, inst);
3781 break;
3782
3783 case TGSI_OPCODE_DST:
3784 exec_dst(mach, inst);
3785 break;
3786
3787 case TGSI_OPCODE_MIN:
3788 exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3789 break;
3790
3791 case TGSI_OPCODE_MAX:
3792 exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3793 break;
3794
3795 case TGSI_OPCODE_SLT:
3796 exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3797 break;
3798
3799 case TGSI_OPCODE_SGE:
3800 exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3801 break;
3802
3803 case TGSI_OPCODE_MAD:
3804 exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3805 break;
3806
3807 case TGSI_OPCODE_SUB:
3808 exec_vector_binary(mach, inst, micro_sub, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3809 break;
3810
3811 case TGSI_OPCODE_LRP:
3812 exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3813 break;
3814
3815 case TGSI_OPCODE_CND:
3816 exec_vector_trinary(mach, inst, micro_cnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3817 break;
3818
3819 case TGSI_OPCODE_SQRT:
3820 exec_scalar_unary(mach, inst, micro_sqrt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3821 break;
3822
3823 case TGSI_OPCODE_DP2A:
3824 exec_dp2a(mach, inst);
3825 break;
3826
3827 case TGSI_OPCODE_FRC:
3828 exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3829 break;
3830
3831 case TGSI_OPCODE_CLAMP:
3832 exec_vector_trinary(mach, inst, micro_clamp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3833 break;
3834
3835 case TGSI_OPCODE_FLR:
3836 exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3837 break;
3838
3839 case TGSI_OPCODE_ROUND:
3840 exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3841 break;
3842
3843 case TGSI_OPCODE_EX2:
3844 exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3845 break;
3846
3847 case TGSI_OPCODE_LG2:
3848 exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3849 break;
3850
3851 case TGSI_OPCODE_POW:
3852 exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3853 break;
3854
3855 case TGSI_OPCODE_XPD:
3856 exec_xpd(mach, inst);
3857 break;
3858
3859 case TGSI_OPCODE_ABS:
3860 exec_vector_unary(mach, inst, micro_abs, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3861 break;
3862
3863 case TGSI_OPCODE_RCC:
3864 exec_scalar_unary(mach, inst, micro_rcc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3865 break;
3866
3867 case TGSI_OPCODE_DPH:
3868 exec_dph(mach, inst);
3869 break;
3870
3871 case TGSI_OPCODE_COS:
3872 exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3873 break;
3874
3875 case TGSI_OPCODE_DDX:
3876 exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3877 break;
3878
3879 case TGSI_OPCODE_DDY:
3880 exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3881 break;
3882
3883 case TGSI_OPCODE_KILL:
3884 exec_kill (mach, inst);
3885 break;
3886
3887 case TGSI_OPCODE_KILL_IF:
3888 exec_kill_if (mach, inst);
3889 break;
3890
3891 case TGSI_OPCODE_PK2H:
3892 assert (0);
3893 break;
3894
3895 case TGSI_OPCODE_PK2US:
3896 assert (0);
3897 break;
3898
3899 case TGSI_OPCODE_PK4B:
3900 assert (0);
3901 break;
3902
3903 case TGSI_OPCODE_PK4UB:
3904 assert (0);
3905 break;
3906
3907 case TGSI_OPCODE_RFL:
3908 exec_rfl(mach, inst);
3909 break;
3910
3911 case TGSI_OPCODE_SEQ:
3912 exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3913 break;
3914
3915 case TGSI_OPCODE_SFL:
3916 exec_vector(mach, inst, micro_sfl, TGSI_EXEC_DATA_FLOAT);
3917 break;
3918
3919 case TGSI_OPCODE_SGT:
3920 exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3921 break;
3922
3923 case TGSI_OPCODE_SIN:
3924 exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3925 break;
3926
3927 case TGSI_OPCODE_SLE:
3928 exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3929 break;
3930
3931 case TGSI_OPCODE_SNE:
3932 exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3933 break;
3934
3935 case TGSI_OPCODE_STR:
3936 exec_vector(mach, inst, micro_str, TGSI_EXEC_DATA_FLOAT);
3937 break;
3938
3939 case TGSI_OPCODE_TEX:
3940 /* simple texture lookup */
3941 /* src[0] = texcoord */
3942 /* src[1] = sampler unit */
3943 exec_tex(mach, inst, TEX_MODIFIER_NONE, 1);
3944 break;
3945
3946 case TGSI_OPCODE_TXB:
3947 /* Texture lookup with lod bias */
3948 /* src[0] = texcoord (src[0].w = LOD bias) */
3949 /* src[1] = sampler unit */
3950 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 1);
3951 break;
3952
3953 case TGSI_OPCODE_TXD:
3954 /* Texture lookup with explict partial derivatives */
3955 /* src[0] = texcoord */
3956 /* src[1] = d[strq]/dx */
3957 /* src[2] = d[strq]/dy */
3958 /* src[3] = sampler unit */
3959 exec_txd(mach, inst);
3960 break;
3961
3962 case TGSI_OPCODE_TXL:
3963 /* Texture lookup with explit LOD */
3964 /* src[0] = texcoord (src[0].w = LOD) */
3965 /* src[1] = sampler unit */
3966 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 1);
3967 break;
3968
3969 case TGSI_OPCODE_TXP:
3970 /* Texture lookup with projection */
3971 /* src[0] = texcoord (src[0].w = projection) */
3972 /* src[1] = sampler unit */
3973 exec_tex(mach, inst, TEX_MODIFIER_PROJECTED, 1);
3974 break;
3975
3976 case TGSI_OPCODE_UP2H:
3977 assert (0);
3978 break;
3979
3980 case TGSI_OPCODE_UP2US:
3981 assert (0);
3982 break;
3983
3984 case TGSI_OPCODE_UP4B:
3985 assert (0);
3986 break;
3987
3988 case TGSI_OPCODE_UP4UB:
3989 assert (0);
3990 break;
3991
3992 case TGSI_OPCODE_X2D:
3993 exec_x2d(mach, inst);
3994 break;
3995
3996 case TGSI_OPCODE_ARA:
3997 assert (0);
3998 break;
3999
4000 case TGSI_OPCODE_ARR:
4001 exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
4002 break;
4003
4004 case TGSI_OPCODE_BRA:
4005 assert (0);
4006 break;
4007
4008 case TGSI_OPCODE_CAL:
4009 /* skip the call if no execution channels are enabled */
4010 if (mach->ExecMask) {
4011 /* do the call */
4012
4013 /* First, record the depths of the execution stacks.
4014 * This is important for deeply nested/looped return statements.
4015 * We have to unwind the stacks by the correct amount. For a
4016 * real code generator, we could determine the number of entries
4017 * to pop off each stack with simple static analysis and avoid
4018 * implementing this data structure at run time.
4019 */
4020 mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
4021 mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
4022 mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
4023 mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
4024 mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
4025 /* note that PC was already incremented above */
4026 mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
4027
4028 mach->CallStackTop++;
4029
4030 /* Second, push the Cond, Loop, Cont, Func stacks */
4031 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
4032 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
4033 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
4034 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
4035 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
4036 assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
4037
4038 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
4039 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
4040 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
4041 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
4042 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
4043 mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
4044
4045 /* Finally, jump to the subroutine */
4046 *pc = inst->Label.Label;
4047 }
4048 break;
4049
4050 case TGSI_OPCODE_RET:
4051 mach->FuncMask &= ~mach->ExecMask;
4052 UPDATE_EXEC_MASK(mach);
4053
4054 if (mach->FuncMask == 0x0) {
4055 /* really return now (otherwise, keep executing */
4056
4057 if (mach->CallStackTop == 0) {
4058 /* returning from main() */
4059 mach->CondStackTop = 0;
4060 mach->LoopStackTop = 0;
4061 *pc = -1;
4062 return;
4063 }
4064
4065 assert(mach->CallStackTop > 0);
4066 mach->CallStackTop--;
4067
4068 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
4069 mach->CondMask = mach->CondStack[mach->CondStackTop];
4070
4071 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
4072 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
4073
4074 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
4075 mach->ContMask = mach->ContStack[mach->ContStackTop];
4076
4077 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
4078 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
4079
4080 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
4081 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
4082
4083 assert(mach->FuncStackTop > 0);
4084 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
4085
4086 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
4087
4088 UPDATE_EXEC_MASK(mach);
4089 }
4090 break;
4091
4092 case TGSI_OPCODE_SSG:
4093 exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
4094 break;
4095
4096 case TGSI_OPCODE_CMP:
4097 exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
4098 break;
4099
4100 case TGSI_OPCODE_SCS:
4101 exec_scs(mach, inst);
4102 break;
4103
4104 case TGSI_OPCODE_NRM:
4105 exec_nrm3(mach, inst);
4106 break;
4107
4108 case TGSI_OPCODE_NRM4:
4109 exec_nrm4(mach, inst);
4110 break;
4111
4112 case TGSI_OPCODE_DIV:
4113 exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
4114 break;
4115
4116 case TGSI_OPCODE_DP2:
4117 exec_dp2(mach, inst);
4118 break;
4119
4120 case TGSI_OPCODE_IF:
4121 /* push CondMask */
4122 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
4123 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
4124 FETCH( &r[0], 0, TGSI_CHAN_X );
4125 /* update CondMask */
4126 if( ! r[0].f[0] ) {
4127 mach->CondMask &= ~0x1;
4128 }
4129 if( ! r[0].f[1] ) {
4130 mach->CondMask &= ~0x2;
4131 }
4132 if( ! r[0].f[2] ) {
4133 mach->CondMask &= ~0x4;
4134 }
4135 if( ! r[0].f[3] ) {
4136 mach->CondMask &= ~0x8;
4137 }
4138 UPDATE_EXEC_MASK(mach);
4139 /* Todo: If CondMask==0, jump to ELSE */
4140 break;
4141
4142 case TGSI_OPCODE_UIF:
4143 /* push CondMask */
4144 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
4145 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
4146 IFETCH( &r[0], 0, TGSI_CHAN_X );
4147 /* update CondMask */
4148 if( ! r[0].u[0] ) {
4149 mach->CondMask &= ~0x1;
4150 }
4151 if( ! r[0].u[1] ) {
4152 mach->CondMask &= ~0x2;
4153 }
4154 if( ! r[0].u[2] ) {
4155 mach->CondMask &= ~0x4;
4156 }
4157 if( ! r[0].u[3] ) {
4158 mach->CondMask &= ~0x8;
4159 }
4160 UPDATE_EXEC_MASK(mach);
4161 /* Todo: If CondMask==0, jump to ELSE */
4162 break;
4163
4164 case TGSI_OPCODE_ELSE:
4165 /* invert CondMask wrt previous mask */
4166 {
4167 uint prevMask;
4168 assert(mach->CondStackTop > 0);
4169 prevMask = mach->CondStack[mach->CondStackTop - 1];
4170 mach->CondMask = ~mach->CondMask & prevMask;
4171 UPDATE_EXEC_MASK(mach);
4172 /* Todo: If CondMask==0, jump to ENDIF */
4173 }
4174 break;
4175
4176 case TGSI_OPCODE_ENDIF:
4177 /* pop CondMask */
4178 assert(mach->CondStackTop > 0);
4179 mach->CondMask = mach->CondStack[--mach->CondStackTop];
4180 UPDATE_EXEC_MASK(mach);
4181 break;
4182
4183 case TGSI_OPCODE_END:
4184 /* make sure we end primitives which haven't
4185 * been explicitly emitted */
4186 conditional_emit_primitive(mach);
4187 /* halt execution */
4188 *pc = -1;
4189 break;
4190
4191 case TGSI_OPCODE_PUSHA:
4192 assert (0);
4193 break;
4194
4195 case TGSI_OPCODE_POPA:
4196 assert (0);
4197 break;
4198
4199 case TGSI_OPCODE_CEIL:
4200 exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
4201 break;
4202
4203 case TGSI_OPCODE_I2F:
4204 exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
4205 break;
4206
4207 case TGSI_OPCODE_NOT:
4208 exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4209 break;
4210
4211 case TGSI_OPCODE_TRUNC:
4212 exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
4213 break;
4214
4215 case TGSI_OPCODE_SHL:
4216 exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4217 break;
4218
4219 case TGSI_OPCODE_AND:
4220 exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4221 break;
4222
4223 case TGSI_OPCODE_OR:
4224 exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4225 break;
4226
4227 case TGSI_OPCODE_MOD:
4228 exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4229 break;
4230
4231 case TGSI_OPCODE_XOR:
4232 exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4233 break;
4234
4235 case TGSI_OPCODE_SAD:
4236 assert (0);
4237 break;
4238
4239 case TGSI_OPCODE_TXF:
4240 exec_txf(mach, inst);
4241 break;
4242
4243 case TGSI_OPCODE_TXQ:
4244 exec_txq(mach, inst);
4245 break;
4246
4247 case TGSI_OPCODE_EMIT:
4248 emit_vertex(mach);
4249 break;
4250
4251 case TGSI_OPCODE_ENDPRIM:
4252 emit_primitive(mach);
4253 break;
4254
4255 case TGSI_OPCODE_BGNLOOP:
4256 /* push LoopMask and ContMasks */
4257 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
4258 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
4259 assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
4260 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
4261
4262 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
4263 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
4264 mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
4265 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
4266 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
4267 break;
4268
4269 case TGSI_OPCODE_ENDLOOP:
4270 /* Restore ContMask, but don't pop */
4271 assert(mach->ContStackTop > 0);
4272 mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
4273 UPDATE_EXEC_MASK(mach);
4274 if (mach->ExecMask) {
4275 /* repeat loop: jump to instruction just past BGNLOOP */
4276 assert(mach->LoopLabelStackTop > 0);
4277 *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
4278 }
4279 else {
4280 /* exit loop: pop LoopMask */
4281 assert(mach->LoopStackTop > 0);
4282 mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
4283 /* pop ContMask */
4284 assert(mach->ContStackTop > 0);
4285 mach->ContMask = mach->ContStack[--mach->ContStackTop];
4286 assert(mach->LoopLabelStackTop > 0);
4287 --mach->LoopLabelStackTop;
4288
4289 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
4290 }
4291 UPDATE_EXEC_MASK(mach);
4292 break;
4293
4294 case TGSI_OPCODE_BRK:
4295 exec_break(mach);
4296 break;
4297
4298 case TGSI_OPCODE_CONT:
4299 /* turn off cont channels for each enabled exec channel */
4300 mach->ContMask &= ~mach->ExecMask;
4301 /* Todo: if mach->LoopMask == 0, jump to end of loop */
4302 UPDATE_EXEC_MASK(mach);
4303 break;
4304
4305 case TGSI_OPCODE_BGNSUB:
4306 /* no-op */
4307 break;
4308
4309 case TGSI_OPCODE_ENDSUB:
4310 /*
4311 * XXX: This really should be a no-op. We should never reach this opcode.
4312 */
4313
4314 assert(mach->CallStackTop > 0);
4315 mach->CallStackTop--;
4316
4317 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
4318 mach->CondMask = mach->CondStack[mach->CondStackTop];
4319
4320 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
4321 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
4322
4323 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
4324 mach->ContMask = mach->ContStack[mach->ContStackTop];
4325
4326 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
4327 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
4328
4329 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
4330 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
4331
4332 assert(mach->FuncStackTop > 0);
4333 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
4334
4335 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
4336
4337 UPDATE_EXEC_MASK(mach);
4338 break;
4339
4340 case TGSI_OPCODE_NOP:
4341 break;
4342
4343 case TGSI_OPCODE_BREAKC:
4344 IFETCH(&r[0], 0, TGSI_CHAN_X);
4345 /* update CondMask */
4346 if (r[0].u[0] && (mach->ExecMask & 0x1)) {
4347 mach->LoopMask &= ~0x1;
4348 }
4349 if (r[0].u[1] && (mach->ExecMask & 0x2)) {
4350 mach->LoopMask &= ~0x2;
4351 }
4352 if (r[0].u[2] && (mach->ExecMask & 0x4)) {
4353 mach->LoopMask &= ~0x4;
4354 }
4355 if (r[0].u[3] && (mach->ExecMask & 0x8)) {
4356 mach->LoopMask &= ~0x8;
4357 }
4358 /* Todo: if mach->LoopMask == 0, jump to end of loop */
4359 UPDATE_EXEC_MASK(mach);
4360 break;
4361
4362 case TGSI_OPCODE_F2I:
4363 exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
4364 break;
4365
4366 case TGSI_OPCODE_FSEQ:
4367 exec_vector_binary(mach, inst, micro_fseq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
4368 break;
4369
4370 case TGSI_OPCODE_FSGE:
4371 exec_vector_binary(mach, inst, micro_fsge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
4372 break;
4373
4374 case TGSI_OPCODE_FSLT:
4375 exec_vector_binary(mach, inst, micro_fslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
4376 break;
4377
4378 case TGSI_OPCODE_FSNE:
4379 exec_vector_binary(mach, inst, micro_fsne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
4380 break;
4381
4382 case TGSI_OPCODE_IDIV:
4383 exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4384 break;
4385
4386 case TGSI_OPCODE_IMAX:
4387 exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4388 break;
4389
4390 case TGSI_OPCODE_IMIN:
4391 exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4392 break;
4393
4394 case TGSI_OPCODE_INEG:
4395 exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4396 break;
4397
4398 case TGSI_OPCODE_ISGE:
4399 exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4400 break;
4401
4402 case TGSI_OPCODE_ISHR:
4403 exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4404 break;
4405
4406 case TGSI_OPCODE_ISLT:
4407 exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4408 break;
4409
4410 case TGSI_OPCODE_F2U:
4411 exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
4412 break;
4413
4414 case TGSI_OPCODE_U2F:
4415 exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
4416 break;
4417
4418 case TGSI_OPCODE_UADD:
4419 exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4420 break;
4421
4422 case TGSI_OPCODE_UDIV:
4423 exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4424 break;
4425
4426 case TGSI_OPCODE_UMAD:
4427 exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4428 break;
4429
4430 case TGSI_OPCODE_UMAX:
4431 exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4432 break;
4433
4434 case TGSI_OPCODE_UMIN:
4435 exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4436 break;
4437
4438 case TGSI_OPCODE_UMOD:
4439 exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4440 break;
4441
4442 case TGSI_OPCODE_UMUL:
4443 exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4444 break;
4445
4446 case TGSI_OPCODE_IMUL_HI:
4447 exec_vector_binary(mach, inst, micro_imul_hi, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4448 break;
4449
4450 case TGSI_OPCODE_UMUL_HI:
4451 exec_vector_binary(mach, inst, micro_umul_hi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4452 break;
4453
4454 case TGSI_OPCODE_USEQ:
4455 exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4456 break;
4457
4458 case TGSI_OPCODE_USGE:
4459 exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4460 break;
4461
4462 case TGSI_OPCODE_USHR:
4463 exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4464 break;
4465
4466 case TGSI_OPCODE_USLT:
4467 exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4468 break;
4469
4470 case TGSI_OPCODE_USNE:
4471 exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4472 break;
4473
4474 case TGSI_OPCODE_SWITCH:
4475 exec_switch(mach, inst);
4476 break;
4477
4478 case TGSI_OPCODE_CASE:
4479 exec_case(mach, inst);
4480 break;
4481
4482 case TGSI_OPCODE_DEFAULT:
4483 exec_default(mach);
4484 break;
4485
4486 case TGSI_OPCODE_ENDSWITCH:
4487 exec_endswitch(mach);
4488 break;
4489
4490 case TGSI_OPCODE_SAMPLE_I:
4491 exec_txf(mach, inst);
4492 break;
4493
4494 case TGSI_OPCODE_SAMPLE_I_MS:
4495 assert(0);
4496 break;
4497
4498 case TGSI_OPCODE_SAMPLE:
4499 exec_sample(mach, inst, TEX_MODIFIER_NONE, FALSE);
4500 break;
4501
4502 case TGSI_OPCODE_SAMPLE_B:
4503 exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS, FALSE);
4504 break;
4505
4506 case TGSI_OPCODE_SAMPLE_C:
4507 exec_sample(mach, inst, TEX_MODIFIER_NONE, TRUE);
4508 break;
4509
4510 case TGSI_OPCODE_SAMPLE_C_LZ:
4511 exec_sample(mach, inst, TEX_MODIFIER_LEVEL_ZERO, TRUE);
4512 break;
4513
4514 case TGSI_OPCODE_SAMPLE_D:
4515 exec_sample_d(mach, inst);
4516 break;
4517
4518 case TGSI_OPCODE_SAMPLE_L:
4519 exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, FALSE);
4520 break;
4521
4522 case TGSI_OPCODE_GATHER4:
4523 assert(0);
4524 break;
4525
4526 case TGSI_OPCODE_SVIEWINFO:
4527 exec_txq(mach, inst);
4528 break;
4529
4530 case TGSI_OPCODE_SAMPLE_POS:
4531 assert(0);
4532 break;
4533
4534 case TGSI_OPCODE_SAMPLE_INFO:
4535 assert(0);
4536 break;
4537
4538 case TGSI_OPCODE_UARL:
4539 exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
4540 break;
4541
4542 case TGSI_OPCODE_UCMP:
4543 exec_vector_trinary(mach, inst, micro_ucmp, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4544 break;
4545
4546 case TGSI_OPCODE_IABS:
4547 exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4548 break;
4549
4550 case TGSI_OPCODE_ISSG:
4551 exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4552 break;
4553
4554 case TGSI_OPCODE_TEX2:
4555 /* simple texture lookup */
4556 /* src[0] = texcoord */
4557 /* src[1] = compare */
4558 /* src[2] = sampler unit */
4559 exec_tex(mach, inst, TEX_MODIFIER_NONE, 2);
4560 break;
4561 case TGSI_OPCODE_TXB2:
4562 /* simple texture lookup */
4563 /* src[0] = texcoord */
4564 /* src[1] = bias */
4565 /* src[2] = sampler unit */
4566 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 2);
4567 break;
4568 case TGSI_OPCODE_TXL2:
4569 /* simple texture lookup */
4570 /* src[0] = texcoord */
4571 /* src[1] = lod */
4572 /* src[2] = sampler unit */
4573 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 2);
4574 break;
4575
4576 case TGSI_OPCODE_IBFE:
4577 exec_vector_trinary(mach, inst, micro_ibfe, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4578 break;
4579 case TGSI_OPCODE_UBFE:
4580 exec_vector_trinary(mach, inst, micro_ubfe, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4581 break;
4582 case TGSI_OPCODE_BFI:
4583 exec_vector_quaternary(mach, inst, micro_bfi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4584 break;
4585 case TGSI_OPCODE_BREV:
4586 exec_vector_unary(mach, inst, micro_brev, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4587 break;
4588 case TGSI_OPCODE_POPC:
4589 exec_vector_unary(mach, inst, micro_popc, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4590 break;
4591 case TGSI_OPCODE_LSB:
4592 exec_vector_unary(mach, inst, micro_lsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
4593 break;
4594 case TGSI_OPCODE_IMSB:
4595 exec_vector_unary(mach, inst, micro_imsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4596 break;
4597 case TGSI_OPCODE_UMSB:
4598 exec_vector_unary(mach, inst, micro_umsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
4599 break;
4600 default:
4601 assert( 0 );
4602 }
4603 }
4604
4605
4606 /**
4607 * Run TGSI interpreter.
4608 * \return bitmask of "alive" quad components
4609 */
4610 uint
4611 tgsi_exec_machine_run( struct tgsi_exec_machine *mach )
4612 {
4613 uint i;
4614 int pc = 0;
4615 uint default_mask = 0xf;
4616
4617 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
4618 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
4619
4620 if( mach->Processor == TGSI_PROCESSOR_GEOMETRY ) {
4621 mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
4622 mach->Primitives[0] = 0;
4623 /* GS runs on a single primitive for now */
4624 default_mask = 0x1;
4625 }
4626
4627 mach->CondMask = default_mask;
4628 mach->LoopMask = default_mask;
4629 mach->ContMask = default_mask;
4630 mach->FuncMask = default_mask;
4631 mach->ExecMask = default_mask;
4632
4633 mach->Switch.mask = default_mask;
4634
4635 assert(mach->CondStackTop == 0);
4636 assert(mach->LoopStackTop == 0);
4637 assert(mach->ContStackTop == 0);
4638 assert(mach->SwitchStackTop == 0);
4639 assert(mach->BreakStackTop == 0);
4640 assert(mach->CallStackTop == 0);
4641
4642
4643 /* execute declarations (interpolants) */
4644 for (i = 0; i < mach->NumDeclarations; i++) {
4645 exec_declaration( mach, mach->Declarations+i );
4646 }
4647
4648 {
4649 #if DEBUG_EXECUTION
4650 struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
4651 struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
4652 uint inst = 1;
4653
4654 memset(mach->Temps, 0, sizeof(temps));
4655 memset(mach->Outputs, 0, sizeof(outputs));
4656 memset(temps, 0, sizeof(temps));
4657 memset(outputs, 0, sizeof(outputs));
4658 #endif
4659
4660 /* execute instructions, until pc is set to -1 */
4661 while (pc != -1) {
4662
4663 #if DEBUG_EXECUTION
4664 uint i;
4665
4666 tgsi_dump_instruction(&mach->Instructions[pc], inst++);
4667 #endif
4668
4669 assert(pc < (int) mach->NumInstructions);
4670 exec_instruction(mach, mach->Instructions + pc, &pc);
4671
4672 #if DEBUG_EXECUTION
4673 for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
4674 if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
4675 uint j;
4676
4677 memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
4678 debug_printf("TEMP[%2u] = ", i);
4679 for (j = 0; j < 4; j++) {
4680 if (j > 0) {
4681 debug_printf(" ");
4682 }
4683 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4684 temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
4685 temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
4686 temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
4687 temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
4688 }
4689 }
4690 }
4691 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
4692 if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
4693 uint j;
4694
4695 memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
4696 debug_printf("OUT[%2u] = ", i);
4697 for (j = 0; j < 4; j++) {
4698 if (j > 0) {
4699 debug_printf(" ");
4700 }
4701 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4702 outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
4703 outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
4704 outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
4705 outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
4706 }
4707 }
4708 }
4709 #endif
4710 }
4711 }
4712
4713 #if 0
4714 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
4715 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
4716 /*
4717 * Scale back depth component.
4718 */
4719 for (i = 0; i < 4; i++)
4720 mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
4721 }
4722 #endif
4723
4724 /* Strictly speaking, these assertions aren't really needed but they
4725 * can potentially catch some bugs in the control flow code.
4726 */
4727 assert(mach->CondStackTop == 0);
4728 assert(mach->LoopStackTop == 0);
4729 assert(mach->ContStackTop == 0);
4730 assert(mach->SwitchStackTop == 0);
4731 assert(mach->BreakStackTop == 0);
4732 assert(mach->CallStackTop == 0);
4733
4734 return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4735 }