tgsi: add support for 1D/2D texture arrays
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_exec.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009-2010 VMware, Inc. All rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * TGSI interpreter/executor.
31 *
32 * Flow control information:
33 *
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
38 *
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers. This is the ExecMask.
42 * See store_dest().
43 *
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47 *
48 *
49 * Authors:
50 * Michal Krol
51 * Brian Paul
52 */
53
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_memory.h"
62 #include "util/u_math.h"
63
64
65 #define FAST_MATH 1
66
67 #define TILE_TOP_LEFT 0
68 #define TILE_TOP_RIGHT 1
69 #define TILE_BOTTOM_LEFT 2
70 #define TILE_BOTTOM_RIGHT 3
71
72 static void
73 micro_abs(union tgsi_exec_channel *dst,
74 const union tgsi_exec_channel *src)
75 {
76 dst->f[0] = fabsf(src->f[0]);
77 dst->f[1] = fabsf(src->f[1]);
78 dst->f[2] = fabsf(src->f[2]);
79 dst->f[3] = fabsf(src->f[3]);
80 }
81
82 static void
83 micro_arl(union tgsi_exec_channel *dst,
84 const union tgsi_exec_channel *src)
85 {
86 dst->i[0] = (int)floorf(src->f[0]);
87 dst->i[1] = (int)floorf(src->f[1]);
88 dst->i[2] = (int)floorf(src->f[2]);
89 dst->i[3] = (int)floorf(src->f[3]);
90 }
91
92 static void
93 micro_arr(union tgsi_exec_channel *dst,
94 const union tgsi_exec_channel *src)
95 {
96 dst->i[0] = (int)floorf(src->f[0] + 0.5f);
97 dst->i[1] = (int)floorf(src->f[1] + 0.5f);
98 dst->i[2] = (int)floorf(src->f[2] + 0.5f);
99 dst->i[3] = (int)floorf(src->f[3] + 0.5f);
100 }
101
102 static void
103 micro_ceil(union tgsi_exec_channel *dst,
104 const union tgsi_exec_channel *src)
105 {
106 dst->f[0] = ceilf(src->f[0]);
107 dst->f[1] = ceilf(src->f[1]);
108 dst->f[2] = ceilf(src->f[2]);
109 dst->f[3] = ceilf(src->f[3]);
110 }
111
112 static void
113 micro_clamp(union tgsi_exec_channel *dst,
114 const union tgsi_exec_channel *src0,
115 const union tgsi_exec_channel *src1,
116 const union tgsi_exec_channel *src2)
117 {
118 dst->f[0] = src0->f[0] < src1->f[0] ? src1->f[0] : src0->f[0] > src2->f[0] ? src2->f[0] : src0->f[0];
119 dst->f[1] = src0->f[1] < src1->f[1] ? src1->f[1] : src0->f[1] > src2->f[1] ? src2->f[1] : src0->f[1];
120 dst->f[2] = src0->f[2] < src1->f[2] ? src1->f[2] : src0->f[2] > src2->f[2] ? src2->f[2] : src0->f[2];
121 dst->f[3] = src0->f[3] < src1->f[3] ? src1->f[3] : src0->f[3] > src2->f[3] ? src2->f[3] : src0->f[3];
122 }
123
124 static void
125 micro_cmp(union tgsi_exec_channel *dst,
126 const union tgsi_exec_channel *src0,
127 const union tgsi_exec_channel *src1,
128 const union tgsi_exec_channel *src2)
129 {
130 dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
131 dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
132 dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
133 dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
134 }
135
136 static void
137 micro_cnd(union tgsi_exec_channel *dst,
138 const union tgsi_exec_channel *src0,
139 const union tgsi_exec_channel *src1,
140 const union tgsi_exec_channel *src2)
141 {
142 dst->f[0] = src2->f[0] > 0.5f ? src0->f[0] : src1->f[0];
143 dst->f[1] = src2->f[1] > 0.5f ? src0->f[1] : src1->f[1];
144 dst->f[2] = src2->f[2] > 0.5f ? src0->f[2] : src1->f[2];
145 dst->f[3] = src2->f[3] > 0.5f ? src0->f[3] : src1->f[3];
146 }
147
148 static void
149 micro_cos(union tgsi_exec_channel *dst,
150 const union tgsi_exec_channel *src)
151 {
152 dst->f[0] = cosf(src->f[0]);
153 dst->f[1] = cosf(src->f[1]);
154 dst->f[2] = cosf(src->f[2]);
155 dst->f[3] = cosf(src->f[3]);
156 }
157
158 static void
159 micro_ddx(union tgsi_exec_channel *dst,
160 const union tgsi_exec_channel *src)
161 {
162 dst->f[0] =
163 dst->f[1] =
164 dst->f[2] =
165 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
166 }
167
168 static void
169 micro_ddy(union tgsi_exec_channel *dst,
170 const union tgsi_exec_channel *src)
171 {
172 dst->f[0] =
173 dst->f[1] =
174 dst->f[2] =
175 dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
176 }
177
178 static void
179 micro_exp2(union tgsi_exec_channel *dst,
180 const union tgsi_exec_channel *src)
181 {
182 #if FAST_MATH
183 dst->f[0] = util_fast_exp2(src->f[0]);
184 dst->f[1] = util_fast_exp2(src->f[1]);
185 dst->f[2] = util_fast_exp2(src->f[2]);
186 dst->f[3] = util_fast_exp2(src->f[3]);
187 #else
188 #if DEBUG
189 /* Inf is okay for this instruction, so clamp it to silence assertions. */
190 uint i;
191 union tgsi_exec_channel clamped;
192
193 for (i = 0; i < 4; i++) {
194 if (src->f[i] > 127.99999f) {
195 clamped.f[i] = 127.99999f;
196 } else if (src->f[i] < -126.99999f) {
197 clamped.f[i] = -126.99999f;
198 } else {
199 clamped.f[i] = src->f[i];
200 }
201 }
202 src = &clamped;
203 #endif /* DEBUG */
204
205 dst->f[0] = powf(2.0f, src->f[0]);
206 dst->f[1] = powf(2.0f, src->f[1]);
207 dst->f[2] = powf(2.0f, src->f[2]);
208 dst->f[3] = powf(2.0f, src->f[3]);
209 #endif /* FAST_MATH */
210 }
211
212 static void
213 micro_flr(union tgsi_exec_channel *dst,
214 const union tgsi_exec_channel *src)
215 {
216 dst->f[0] = floorf(src->f[0]);
217 dst->f[1] = floorf(src->f[1]);
218 dst->f[2] = floorf(src->f[2]);
219 dst->f[3] = floorf(src->f[3]);
220 }
221
222 static void
223 micro_frc(union tgsi_exec_channel *dst,
224 const union tgsi_exec_channel *src)
225 {
226 dst->f[0] = src->f[0] - floorf(src->f[0]);
227 dst->f[1] = src->f[1] - floorf(src->f[1]);
228 dst->f[2] = src->f[2] - floorf(src->f[2]);
229 dst->f[3] = src->f[3] - floorf(src->f[3]);
230 }
231
232 static void
233 micro_iabs(union tgsi_exec_channel *dst,
234 const union tgsi_exec_channel *src)
235 {
236 dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
237 dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
238 dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
239 dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
240 }
241
242 static void
243 micro_ineg(union tgsi_exec_channel *dst,
244 const union tgsi_exec_channel *src)
245 {
246 dst->i[0] = -src->i[0];
247 dst->i[1] = -src->i[1];
248 dst->i[2] = -src->i[2];
249 dst->i[3] = -src->i[3];
250 }
251
252 static void
253 micro_lg2(union tgsi_exec_channel *dst,
254 const union tgsi_exec_channel *src)
255 {
256 #if FAST_MATH
257 dst->f[0] = util_fast_log2(src->f[0]);
258 dst->f[1] = util_fast_log2(src->f[1]);
259 dst->f[2] = util_fast_log2(src->f[2]);
260 dst->f[3] = util_fast_log2(src->f[3]);
261 #else
262 dst->f[0] = logf(src->f[0]) * 1.442695f;
263 dst->f[1] = logf(src->f[1]) * 1.442695f;
264 dst->f[2] = logf(src->f[2]) * 1.442695f;
265 dst->f[3] = logf(src->f[3]) * 1.442695f;
266 #endif
267 }
268
269 static void
270 micro_lrp(union tgsi_exec_channel *dst,
271 const union tgsi_exec_channel *src0,
272 const union tgsi_exec_channel *src1,
273 const union tgsi_exec_channel *src2)
274 {
275 dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
276 dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
277 dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
278 dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
279 }
280
281 static void
282 micro_mad(union tgsi_exec_channel *dst,
283 const union tgsi_exec_channel *src0,
284 const union tgsi_exec_channel *src1,
285 const union tgsi_exec_channel *src2)
286 {
287 dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
288 dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
289 dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
290 dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
291 }
292
293 static void
294 micro_mov(union tgsi_exec_channel *dst,
295 const union tgsi_exec_channel *src)
296 {
297 dst->u[0] = src->u[0];
298 dst->u[1] = src->u[1];
299 dst->u[2] = src->u[2];
300 dst->u[3] = src->u[3];
301 }
302
303 static void
304 micro_rcp(union tgsi_exec_channel *dst,
305 const union tgsi_exec_channel *src)
306 {
307 #if 0 /* for debugging */
308 assert(src->f[0] != 0.0f);
309 assert(src->f[1] != 0.0f);
310 assert(src->f[2] != 0.0f);
311 assert(src->f[3] != 0.0f);
312 #endif
313 dst->f[0] = 1.0f / src->f[0];
314 dst->f[1] = 1.0f / src->f[1];
315 dst->f[2] = 1.0f / src->f[2];
316 dst->f[3] = 1.0f / src->f[3];
317 }
318
319 static void
320 micro_rnd(union tgsi_exec_channel *dst,
321 const union tgsi_exec_channel *src)
322 {
323 dst->f[0] = floorf(src->f[0] + 0.5f);
324 dst->f[1] = floorf(src->f[1] + 0.5f);
325 dst->f[2] = floorf(src->f[2] + 0.5f);
326 dst->f[3] = floorf(src->f[3] + 0.5f);
327 }
328
329 static void
330 micro_rsq(union tgsi_exec_channel *dst,
331 const union tgsi_exec_channel *src)
332 {
333 #if 0 /* for debugging */
334 assert(src->f[0] != 0.0f);
335 assert(src->f[1] != 0.0f);
336 assert(src->f[2] != 0.0f);
337 assert(src->f[3] != 0.0f);
338 #endif
339 dst->f[0] = 1.0f / sqrtf(fabsf(src->f[0]));
340 dst->f[1] = 1.0f / sqrtf(fabsf(src->f[1]));
341 dst->f[2] = 1.0f / sqrtf(fabsf(src->f[2]));
342 dst->f[3] = 1.0f / sqrtf(fabsf(src->f[3]));
343 }
344
345 static void
346 micro_seq(union tgsi_exec_channel *dst,
347 const union tgsi_exec_channel *src0,
348 const union tgsi_exec_channel *src1)
349 {
350 dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
351 dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
352 dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
353 dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
354 }
355
356 static void
357 micro_sge(union tgsi_exec_channel *dst,
358 const union tgsi_exec_channel *src0,
359 const union tgsi_exec_channel *src1)
360 {
361 dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
362 dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
363 dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
364 dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
365 }
366
367 static void
368 micro_sgn(union tgsi_exec_channel *dst,
369 const union tgsi_exec_channel *src)
370 {
371 dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
372 dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
373 dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
374 dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
375 }
376
377 static void
378 micro_sgt(union tgsi_exec_channel *dst,
379 const union tgsi_exec_channel *src0,
380 const union tgsi_exec_channel *src1)
381 {
382 dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
383 dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
384 dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
385 dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
386 }
387
388 static void
389 micro_sin(union tgsi_exec_channel *dst,
390 const union tgsi_exec_channel *src)
391 {
392 dst->f[0] = sinf(src->f[0]);
393 dst->f[1] = sinf(src->f[1]);
394 dst->f[2] = sinf(src->f[2]);
395 dst->f[3] = sinf(src->f[3]);
396 }
397
398 static void
399 micro_sle(union tgsi_exec_channel *dst,
400 const union tgsi_exec_channel *src0,
401 const union tgsi_exec_channel *src1)
402 {
403 dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
404 dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
405 dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
406 dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
407 }
408
409 static void
410 micro_slt(union tgsi_exec_channel *dst,
411 const union tgsi_exec_channel *src0,
412 const union tgsi_exec_channel *src1)
413 {
414 dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
415 dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
416 dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
417 dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
418 }
419
420 static void
421 micro_sne(union tgsi_exec_channel *dst,
422 const union tgsi_exec_channel *src0,
423 const union tgsi_exec_channel *src1)
424 {
425 dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
426 dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
427 dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
428 dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
429 }
430
431 static void
432 micro_sfl(union tgsi_exec_channel *dst)
433 {
434 dst->f[0] = 0.0f;
435 dst->f[1] = 0.0f;
436 dst->f[2] = 0.0f;
437 dst->f[3] = 0.0f;
438 }
439
440 static void
441 micro_str(union tgsi_exec_channel *dst)
442 {
443 dst->f[0] = 1.0f;
444 dst->f[1] = 1.0f;
445 dst->f[2] = 1.0f;
446 dst->f[3] = 1.0f;
447 }
448
449 static void
450 micro_trunc(union tgsi_exec_channel *dst,
451 const union tgsi_exec_channel *src)
452 {
453 dst->f[0] = (float)(int)src->f[0];
454 dst->f[1] = (float)(int)src->f[1];
455 dst->f[2] = (float)(int)src->f[2];
456 dst->f[3] = (float)(int)src->f[3];
457 }
458
459
460 #define CHAN_X 0
461 #define CHAN_Y 1
462 #define CHAN_Z 2
463 #define CHAN_W 3
464
465 enum tgsi_exec_datatype {
466 TGSI_EXEC_DATA_FLOAT,
467 TGSI_EXEC_DATA_INT,
468 TGSI_EXEC_DATA_UINT
469 };
470
471 /*
472 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
473 */
474 #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
475 #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
476 #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
477 #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
478 #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
479 #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
480
481
482 /** The execution mask depends on the conditional mask and the loop mask */
483 #define UPDATE_EXEC_MASK(MACH) \
484 MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
485
486
487 static const union tgsi_exec_channel ZeroVec =
488 { { 0.0, 0.0, 0.0, 0.0 } };
489
490 static const union tgsi_exec_channel OneVec = {
491 {1.0f, 1.0f, 1.0f, 1.0f}
492 };
493
494 static const union tgsi_exec_channel P128Vec = {
495 {128.0f, 128.0f, 128.0f, 128.0f}
496 };
497
498 static const union tgsi_exec_channel M128Vec = {
499 {-128.0f, -128.0f, -128.0f, -128.0f}
500 };
501
502
503 /**
504 * Assert that none of the float values in 'chan' are infinite or NaN.
505 * NaN and Inf may occur normally during program execution and should
506 * not lead to crashes, etc. But when debugging, it's helpful to catch
507 * them.
508 */
509 static INLINE void
510 check_inf_or_nan(const union tgsi_exec_channel *chan)
511 {
512 assert(!util_is_inf_or_nan((chan)->f[0]));
513 assert(!util_is_inf_or_nan((chan)->f[1]));
514 assert(!util_is_inf_or_nan((chan)->f[2]));
515 assert(!util_is_inf_or_nan((chan)->f[3]));
516 }
517
518
519 #ifdef DEBUG
520 static void
521 print_chan(const char *msg, const union tgsi_exec_channel *chan)
522 {
523 debug_printf("%s = {%f, %f, %f, %f}\n",
524 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
525 }
526 #endif
527
528
529 #ifdef DEBUG
530 static void
531 print_temp(const struct tgsi_exec_machine *mach, uint index)
532 {
533 const struct tgsi_exec_vector *tmp = &mach->Temps[index];
534 int i;
535 debug_printf("Temp[%u] =\n", index);
536 for (i = 0; i < 4; i++) {
537 debug_printf(" %c: { %f, %f, %f, %f }\n",
538 "XYZW"[i],
539 tmp->xyzw[i].f[0],
540 tmp->xyzw[i].f[1],
541 tmp->xyzw[i].f[2],
542 tmp->xyzw[i].f[3]);
543 }
544 }
545 #endif
546
547
548 void
549 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
550 unsigned num_bufs,
551 const void **bufs,
552 const unsigned *buf_sizes)
553 {
554 unsigned i;
555
556 for (i = 0; i < num_bufs; i++) {
557 mach->Consts[i] = bufs[i];
558 mach->ConstsSize[i] = buf_sizes[i];
559 }
560 }
561
562
563 /**
564 * Check if there's a potential src/dst register data dependency when
565 * using SOA execution.
566 * Example:
567 * MOV T, T.yxwz;
568 * This would expand into:
569 * MOV t0, t1;
570 * MOV t1, t0;
571 * MOV t2, t3;
572 * MOV t3, t2;
573 * The second instruction will have the wrong value for t0 if executed as-is.
574 */
575 boolean
576 tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
577 {
578 uint i, chan;
579
580 uint writemask = inst->Dst[0].Register.WriteMask;
581 if (writemask == TGSI_WRITEMASK_X ||
582 writemask == TGSI_WRITEMASK_Y ||
583 writemask == TGSI_WRITEMASK_Z ||
584 writemask == TGSI_WRITEMASK_W ||
585 writemask == TGSI_WRITEMASK_NONE) {
586 /* no chance of data dependency */
587 return FALSE;
588 }
589
590 /* loop over src regs */
591 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
592 if ((inst->Src[i].Register.File ==
593 inst->Dst[0].Register.File) &&
594 ((inst->Src[i].Register.Index ==
595 inst->Dst[0].Register.Index) ||
596 inst->Src[i].Register.Indirect ||
597 inst->Dst[0].Register.Indirect)) {
598 /* loop over dest channels */
599 uint channelsWritten = 0x0;
600 for (chan = 0; chan < NUM_CHANNELS; chan++) {
601 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
602 /* check if we're reading a channel that's been written */
603 uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
604 if (channelsWritten & (1 << swizzle)) {
605 return TRUE;
606 }
607
608 channelsWritten |= (1 << chan);
609 }
610 }
611 }
612 }
613 return FALSE;
614 }
615
616
617 /**
618 * Initialize machine state by expanding tokens to full instructions,
619 * allocating temporary storage, setting up constants, etc.
620 * After this, we can call tgsi_exec_machine_run() many times.
621 */
622 void
623 tgsi_exec_machine_bind_shader(
624 struct tgsi_exec_machine *mach,
625 const struct tgsi_token *tokens,
626 uint numSamplers,
627 struct tgsi_sampler **samplers)
628 {
629 uint k;
630 struct tgsi_parse_context parse;
631 struct tgsi_full_instruction *instructions;
632 struct tgsi_full_declaration *declarations;
633 uint maxInstructions = 10, numInstructions = 0;
634 uint maxDeclarations = 10, numDeclarations = 0;
635
636 #if 0
637 tgsi_dump(tokens, 0);
638 #endif
639
640 util_init_math();
641
642 if (numSamplers) {
643 assert(samplers);
644 }
645
646 mach->Tokens = tokens;
647 mach->Samplers = samplers;
648
649 if (!tokens) {
650 /* unbind and free all */
651 if (mach->Declarations) {
652 FREE( mach->Declarations );
653 }
654 mach->Declarations = NULL;
655 mach->NumDeclarations = 0;
656
657 if (mach->Instructions) {
658 FREE( mach->Instructions );
659 }
660 mach->Instructions = NULL;
661 mach->NumInstructions = 0;
662
663 return;
664 }
665
666 k = tgsi_parse_init (&parse, mach->Tokens);
667 if (k != TGSI_PARSE_OK) {
668 debug_printf( "Problem parsing!\n" );
669 return;
670 }
671
672 mach->Processor = parse.FullHeader.Processor.Processor;
673 mach->ImmLimit = 0;
674
675 declarations = (struct tgsi_full_declaration *)
676 MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
677
678 if (!declarations) {
679 return;
680 }
681
682 instructions = (struct tgsi_full_instruction *)
683 MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
684
685 if (!instructions) {
686 FREE( declarations );
687 return;
688 }
689
690 while( !tgsi_parse_end_of_tokens( &parse ) ) {
691 uint i;
692
693 tgsi_parse_token( &parse );
694 switch( parse.FullToken.Token.Type ) {
695 case TGSI_TOKEN_TYPE_DECLARATION:
696 /* save expanded declaration */
697 if (numDeclarations == maxDeclarations) {
698 declarations = REALLOC(declarations,
699 maxDeclarations
700 * sizeof(struct tgsi_full_declaration),
701 (maxDeclarations + 10)
702 * sizeof(struct tgsi_full_declaration));
703 maxDeclarations += 10;
704 }
705 if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
706 unsigned reg;
707 for (reg = parse.FullToken.FullDeclaration.Range.First;
708 reg <= parse.FullToken.FullDeclaration.Range.Last;
709 ++reg) {
710 ++mach->NumOutputs;
711 }
712 }
713 if (parse.FullToken.FullDeclaration.Declaration.File ==
714 TGSI_FILE_IMMEDIATE_ARRAY) {
715 unsigned reg;
716 struct tgsi_full_declaration *decl =
717 &parse.FullToken.FullDeclaration;
718 debug_assert(decl->Range.Last < TGSI_EXEC_NUM_IMMEDIATES);
719 for (reg = decl->Range.First; reg <= decl->Range.Last; ++reg) {
720 for( i = 0; i < 4; i++ ) {
721 int idx = reg * 4 + i;
722 mach->ImmArray[reg][i] = decl->ImmediateData.u[idx].Float;
723 }
724 }
725 }
726 memcpy(declarations + numDeclarations,
727 &parse.FullToken.FullDeclaration,
728 sizeof(declarations[0]));
729 numDeclarations++;
730 break;
731
732 case TGSI_TOKEN_TYPE_IMMEDIATE:
733 {
734 uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
735 assert( size <= 4 );
736 assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES );
737
738 for( i = 0; i < size; i++ ) {
739 mach->Imms[mach->ImmLimit][i] =
740 parse.FullToken.FullImmediate.u[i].Float;
741 }
742 mach->ImmLimit += 1;
743 }
744 break;
745
746 case TGSI_TOKEN_TYPE_INSTRUCTION:
747
748 /* save expanded instruction */
749 if (numInstructions == maxInstructions) {
750 instructions = REALLOC(instructions,
751 maxInstructions
752 * sizeof(struct tgsi_full_instruction),
753 (maxInstructions + 10)
754 * sizeof(struct tgsi_full_instruction));
755 maxInstructions += 10;
756 }
757
758 memcpy(instructions + numInstructions,
759 &parse.FullToken.FullInstruction,
760 sizeof(instructions[0]));
761
762 numInstructions++;
763 break;
764
765 case TGSI_TOKEN_TYPE_PROPERTY:
766 break;
767
768 default:
769 assert( 0 );
770 }
771 }
772 tgsi_parse_free (&parse);
773
774 if (mach->Declarations) {
775 FREE( mach->Declarations );
776 }
777 mach->Declarations = declarations;
778 mach->NumDeclarations = numDeclarations;
779
780 if (mach->Instructions) {
781 FREE( mach->Instructions );
782 }
783 mach->Instructions = instructions;
784 mach->NumInstructions = numInstructions;
785 }
786
787
788 struct tgsi_exec_machine *
789 tgsi_exec_machine_create( void )
790 {
791 struct tgsi_exec_machine *mach;
792 uint i;
793
794 mach = align_malloc( sizeof *mach, 16 );
795 if (!mach)
796 goto fail;
797
798 memset(mach, 0, sizeof(*mach));
799
800 mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
801 mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
802 mach->Predicates = &mach->Temps[TGSI_EXEC_TEMP_P0];
803
804 /* Setup constants needed by the SSE2 executor. */
805 for( i = 0; i < 4; i++ ) {
806 mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
807 mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
808 mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
809 mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF; /* not used */
810 mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
811 mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f; /* not used */
812 mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
813 mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
814 mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
815 mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
816 }
817
818 #ifdef DEBUG
819 /* silence warnings */
820 (void) print_chan;
821 (void) print_temp;
822 #endif
823
824 return mach;
825
826 fail:
827 align_free(mach);
828 return NULL;
829 }
830
831
832 void
833 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
834 {
835 if (mach) {
836 if (mach->Instructions)
837 FREE(mach->Instructions);
838 if (mach->Declarations)
839 FREE(mach->Declarations);
840 }
841
842 align_free(mach);
843 }
844
845 static void
846 micro_add(union tgsi_exec_channel *dst,
847 const union tgsi_exec_channel *src0,
848 const union tgsi_exec_channel *src1)
849 {
850 dst->f[0] = src0->f[0] + src1->f[0];
851 dst->f[1] = src0->f[1] + src1->f[1];
852 dst->f[2] = src0->f[2] + src1->f[2];
853 dst->f[3] = src0->f[3] + src1->f[3];
854 }
855
856 static void
857 micro_div(
858 union tgsi_exec_channel *dst,
859 const union tgsi_exec_channel *src0,
860 const union tgsi_exec_channel *src1 )
861 {
862 if (src1->f[0] != 0) {
863 dst->f[0] = src0->f[0] / src1->f[0];
864 }
865 if (src1->f[1] != 0) {
866 dst->f[1] = src0->f[1] / src1->f[1];
867 }
868 if (src1->f[2] != 0) {
869 dst->f[2] = src0->f[2] / src1->f[2];
870 }
871 if (src1->f[3] != 0) {
872 dst->f[3] = src0->f[3] / src1->f[3];
873 }
874 }
875
876 static void
877 micro_rcc(union tgsi_exec_channel *dst,
878 const union tgsi_exec_channel *src)
879 {
880 uint i;
881
882 for (i = 0; i < 4; i++) {
883 float recip = 1.0f / src->f[i];
884
885 if (recip > 0.0f) {
886 if (recip > 1.884467e+019f) {
887 dst->f[i] = 1.884467e+019f;
888 }
889 else if (recip < 5.42101e-020f) {
890 dst->f[i] = 5.42101e-020f;
891 }
892 else {
893 dst->f[i] = recip;
894 }
895 }
896 else {
897 if (recip < -1.884467e+019f) {
898 dst->f[i] = -1.884467e+019f;
899 }
900 else if (recip > -5.42101e-020f) {
901 dst->f[i] = -5.42101e-020f;
902 }
903 else {
904 dst->f[i] = recip;
905 }
906 }
907 }
908 }
909
910 static void
911 micro_lt(
912 union tgsi_exec_channel *dst,
913 const union tgsi_exec_channel *src0,
914 const union tgsi_exec_channel *src1,
915 const union tgsi_exec_channel *src2,
916 const union tgsi_exec_channel *src3 )
917 {
918 dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
919 dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
920 dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
921 dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
922 }
923
924 static void
925 micro_max(union tgsi_exec_channel *dst,
926 const union tgsi_exec_channel *src0,
927 const union tgsi_exec_channel *src1)
928 {
929 dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
930 dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
931 dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
932 dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
933 }
934
935 static void
936 micro_min(union tgsi_exec_channel *dst,
937 const union tgsi_exec_channel *src0,
938 const union tgsi_exec_channel *src1)
939 {
940 dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
941 dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
942 dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
943 dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
944 }
945
946 static void
947 micro_mul(union tgsi_exec_channel *dst,
948 const union tgsi_exec_channel *src0,
949 const union tgsi_exec_channel *src1)
950 {
951 dst->f[0] = src0->f[0] * src1->f[0];
952 dst->f[1] = src0->f[1] * src1->f[1];
953 dst->f[2] = src0->f[2] * src1->f[2];
954 dst->f[3] = src0->f[3] * src1->f[3];
955 }
956
957 static void
958 micro_neg(
959 union tgsi_exec_channel *dst,
960 const union tgsi_exec_channel *src )
961 {
962 dst->f[0] = -src->f[0];
963 dst->f[1] = -src->f[1];
964 dst->f[2] = -src->f[2];
965 dst->f[3] = -src->f[3];
966 }
967
968 static void
969 micro_pow(
970 union tgsi_exec_channel *dst,
971 const union tgsi_exec_channel *src0,
972 const union tgsi_exec_channel *src1 )
973 {
974 #if FAST_MATH
975 dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
976 dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
977 dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
978 dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
979 #else
980 dst->f[0] = powf( src0->f[0], src1->f[0] );
981 dst->f[1] = powf( src0->f[1], src1->f[1] );
982 dst->f[2] = powf( src0->f[2], src1->f[2] );
983 dst->f[3] = powf( src0->f[3], src1->f[3] );
984 #endif
985 }
986
987 static void
988 micro_sub(union tgsi_exec_channel *dst,
989 const union tgsi_exec_channel *src0,
990 const union tgsi_exec_channel *src1)
991 {
992 dst->f[0] = src0->f[0] - src1->f[0];
993 dst->f[1] = src0->f[1] - src1->f[1];
994 dst->f[2] = src0->f[2] - src1->f[2];
995 dst->f[3] = src0->f[3] - src1->f[3];
996 }
997
998 static void
999 fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1000 const uint file,
1001 const uint swizzle,
1002 const union tgsi_exec_channel *index,
1003 const union tgsi_exec_channel *index2D,
1004 union tgsi_exec_channel *chan)
1005 {
1006 uint i;
1007
1008 assert(swizzle < 4);
1009
1010 switch (file) {
1011 case TGSI_FILE_CONSTANT:
1012 for (i = 0; i < QUAD_SIZE; i++) {
1013 assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
1014 assert(mach->Consts[index2D->i[i]]);
1015
1016 if (index->i[i] < 0) {
1017 chan->u[i] = 0;
1018 } else {
1019 /* NOTE: copying the const value as a uint instead of float */
1020 const uint constbuf = index2D->i[i];
1021 const uint *buf = (const uint *)mach->Consts[constbuf];
1022 const int pos = index->i[i] * 4 + swizzle;
1023 /* const buffer bounds check */
1024 if (pos < 0 || pos >= mach->ConstsSize[constbuf]) {
1025 if (0) {
1026 /* Debug: print warning */
1027 static int count = 0;
1028 if (count++ < 100)
1029 debug_printf("TGSI Exec: const buffer index %d"
1030 " out of bounds\n", pos);
1031 }
1032 chan->u[i] = 0;
1033 }
1034 else
1035 chan->u[i] = buf[pos];
1036 }
1037 }
1038 break;
1039
1040 case TGSI_FILE_INPUT:
1041 for (i = 0; i < QUAD_SIZE; i++) {
1042 /*
1043 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1044 debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1045 index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1046 index2D->i[i], index->i[i]);
1047 }*/
1048 int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1049 assert(pos >= 0);
1050 assert(pos < Elements(mach->Inputs));
1051 chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1052 }
1053 break;
1054
1055 case TGSI_FILE_SYSTEM_VALUE:
1056 /* XXX no swizzling at this point. Will be needed if we put
1057 * gl_FragCoord, for example, in a sys value register.
1058 */
1059 for (i = 0; i < QUAD_SIZE; i++) {
1060 chan->f[i] = mach->SystemValue[index->i[i]][0];
1061 }
1062 break;
1063
1064 case TGSI_FILE_TEMPORARY:
1065 for (i = 0; i < QUAD_SIZE; i++) {
1066 assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1067 assert(index2D->i[i] == 0);
1068
1069 chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1070 }
1071 break;
1072
1073 case TGSI_FILE_TEMPORARY_ARRAY:
1074 for (i = 0; i < QUAD_SIZE; i++) {
1075 assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1076 assert(index2D->i[i] < TGSI_EXEC_NUM_TEMP_ARRAYS);
1077
1078 chan->u[i] =
1079 mach->TempArray[index2D->i[i]][index->i[i]].xyzw[swizzle].u[i];
1080 }
1081 break;
1082
1083 case TGSI_FILE_IMMEDIATE:
1084 for (i = 0; i < QUAD_SIZE; i++) {
1085 assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1086 assert(index2D->i[i] == 0);
1087
1088 chan->f[i] = mach->Imms[index->i[i]][swizzle];
1089 }
1090 break;
1091
1092 case TGSI_FILE_IMMEDIATE_ARRAY:
1093 for (i = 0; i < QUAD_SIZE; i++) {
1094 assert(index2D->i[i] == 0);
1095
1096 chan->f[i] = mach->ImmArray[index->i[i]][swizzle];
1097 }
1098 break;
1099
1100 case TGSI_FILE_ADDRESS:
1101 for (i = 0; i < QUAD_SIZE; i++) {
1102 assert(index->i[i] >= 0);
1103 assert(index2D->i[i] == 0);
1104
1105 chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1106 }
1107 break;
1108
1109 case TGSI_FILE_PREDICATE:
1110 for (i = 0; i < QUAD_SIZE; i++) {
1111 assert(index->i[i] >= 0 && index->i[i] < TGSI_EXEC_NUM_PREDS);
1112 assert(index2D->i[i] == 0);
1113
1114 chan->u[i] = mach->Predicates[0].xyzw[swizzle].u[i];
1115 }
1116 break;
1117
1118 case TGSI_FILE_OUTPUT:
1119 /* vertex/fragment output vars can be read too */
1120 for (i = 0; i < QUAD_SIZE; i++) {
1121 assert(index->i[i] >= 0);
1122 assert(index2D->i[i] == 0);
1123
1124 chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1125 }
1126 break;
1127
1128 default:
1129 assert(0);
1130 for (i = 0; i < QUAD_SIZE; i++) {
1131 chan->u[i] = 0;
1132 }
1133 }
1134 }
1135
1136 static void
1137 fetch_source(const struct tgsi_exec_machine *mach,
1138 union tgsi_exec_channel *chan,
1139 const struct tgsi_full_src_register *reg,
1140 const uint chan_index,
1141 enum tgsi_exec_datatype src_datatype)
1142 {
1143 union tgsi_exec_channel index;
1144 union tgsi_exec_channel index2D;
1145 uint swizzle;
1146
1147 /* We start with a direct index into a register file.
1148 *
1149 * file[1],
1150 * where:
1151 * file = Register.File
1152 * [1] = Register.Index
1153 */
1154 index.i[0] =
1155 index.i[1] =
1156 index.i[2] =
1157 index.i[3] = reg->Register.Index;
1158
1159 /* There is an extra source register that indirectly subscripts
1160 * a register file. The direct index now becomes an offset
1161 * that is being added to the indirect register.
1162 *
1163 * file[ind[2].x+1],
1164 * where:
1165 * ind = Indirect.File
1166 * [2] = Indirect.Index
1167 * .x = Indirect.SwizzleX
1168 */
1169 if (reg->Register.Indirect) {
1170 union tgsi_exec_channel index2;
1171 union tgsi_exec_channel indir_index;
1172 const uint execmask = mach->ExecMask;
1173 uint i;
1174
1175 /* which address register (always zero now) */
1176 index2.i[0] =
1177 index2.i[1] =
1178 index2.i[2] =
1179 index2.i[3] = reg->Indirect.Index;
1180 assert(reg->Indirect.File == TGSI_FILE_ADDRESS);
1181 /* get current value of address register[swizzle] */
1182 swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, CHAN_X );
1183 fetch_src_file_channel(mach,
1184 reg->Indirect.File,
1185 swizzle,
1186 &index2,
1187 &ZeroVec,
1188 &indir_index);
1189
1190 /* add value of address register to the offset */
1191 index.i[0] += indir_index.i[0];
1192 index.i[1] += indir_index.i[1];
1193 index.i[2] += indir_index.i[2];
1194 index.i[3] += indir_index.i[3];
1195
1196 /* for disabled execution channels, zero-out the index to
1197 * avoid using a potential garbage value.
1198 */
1199 for (i = 0; i < QUAD_SIZE; i++) {
1200 if ((execmask & (1 << i)) == 0)
1201 index.i[i] = 0;
1202 }
1203 }
1204
1205 /* There is an extra source register that is a second
1206 * subscript to a register file. Effectively it means that
1207 * the register file is actually a 2D array of registers.
1208 *
1209 * file[3][1],
1210 * where:
1211 * [3] = Dimension.Index
1212 */
1213 if (reg->Register.Dimension) {
1214 index2D.i[0] =
1215 index2D.i[1] =
1216 index2D.i[2] =
1217 index2D.i[3] = reg->Dimension.Index;
1218
1219 /* Again, the second subscript index can be addressed indirectly
1220 * identically to the first one.
1221 * Nothing stops us from indirectly addressing the indirect register,
1222 * but there is no need for that, so we won't exercise it.
1223 *
1224 * file[ind[4].y+3][1],
1225 * where:
1226 * ind = DimIndirect.File
1227 * [4] = DimIndirect.Index
1228 * .y = DimIndirect.SwizzleX
1229 */
1230 if (reg->Dimension.Indirect) {
1231 union tgsi_exec_channel index2;
1232 union tgsi_exec_channel indir_index;
1233 const uint execmask = mach->ExecMask;
1234 uint i;
1235
1236 index2.i[0] =
1237 index2.i[1] =
1238 index2.i[2] =
1239 index2.i[3] = reg->DimIndirect.Index;
1240
1241 swizzle = tgsi_util_get_src_register_swizzle( &reg->DimIndirect, CHAN_X );
1242 fetch_src_file_channel(mach,
1243 reg->DimIndirect.File,
1244 swizzle,
1245 &index2,
1246 &ZeroVec,
1247 &indir_index);
1248
1249 index2D.i[0] += indir_index.i[0];
1250 index2D.i[1] += indir_index.i[1];
1251 index2D.i[2] += indir_index.i[2];
1252 index2D.i[3] += indir_index.i[3];
1253
1254 /* for disabled execution channels, zero-out the index to
1255 * avoid using a potential garbage value.
1256 */
1257 for (i = 0; i < QUAD_SIZE; i++) {
1258 if ((execmask & (1 << i)) == 0) {
1259 index2D.i[i] = 0;
1260 }
1261 }
1262 }
1263
1264 /* If by any chance there was a need for a 3D array of register
1265 * files, we would have to check whether Dimension is followed
1266 * by a dimension register and continue the saga.
1267 */
1268 } else {
1269 index2D.i[0] =
1270 index2D.i[1] =
1271 index2D.i[2] =
1272 index2D.i[3] = 0;
1273 }
1274
1275 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1276 fetch_src_file_channel(mach,
1277 reg->Register.File,
1278 swizzle,
1279 &index,
1280 &index2D,
1281 chan);
1282
1283 if (reg->Register.Absolute) {
1284 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1285 micro_abs(chan, chan);
1286 } else {
1287 micro_iabs(chan, chan);
1288 }
1289 }
1290
1291 if (reg->Register.Negate) {
1292 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1293 micro_neg(chan, chan);
1294 } else {
1295 micro_ineg(chan, chan);
1296 }
1297 }
1298 }
1299
1300 static void
1301 store_dest(struct tgsi_exec_machine *mach,
1302 const union tgsi_exec_channel *chan,
1303 const struct tgsi_full_dst_register *reg,
1304 const struct tgsi_full_instruction *inst,
1305 uint chan_index,
1306 enum tgsi_exec_datatype dst_datatype)
1307 {
1308 uint i;
1309 union tgsi_exec_channel null;
1310 union tgsi_exec_channel *dst;
1311 union tgsi_exec_channel index2D;
1312 uint execmask = mach->ExecMask;
1313 int offset = 0; /* indirection offset */
1314 int index;
1315
1316 /* for debugging */
1317 if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1318 check_inf_or_nan(chan);
1319 }
1320
1321 /* There is an extra source register that indirectly subscripts
1322 * a register file. The direct index now becomes an offset
1323 * that is being added to the indirect register.
1324 *
1325 * file[ind[2].x+1],
1326 * where:
1327 * ind = Indirect.File
1328 * [2] = Indirect.Index
1329 * .x = Indirect.SwizzleX
1330 */
1331 if (reg->Register.Indirect) {
1332 union tgsi_exec_channel index;
1333 union tgsi_exec_channel indir_index;
1334 uint swizzle;
1335
1336 /* which address register (always zero for now) */
1337 index.i[0] =
1338 index.i[1] =
1339 index.i[2] =
1340 index.i[3] = reg->Indirect.Index;
1341
1342 /* get current value of address register[swizzle] */
1343 swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, CHAN_X );
1344
1345 /* fetch values from the address/indirection register */
1346 fetch_src_file_channel(mach,
1347 reg->Indirect.File,
1348 swizzle,
1349 &index,
1350 &ZeroVec,
1351 &indir_index);
1352
1353 /* save indirection offset */
1354 offset = indir_index.i[0];
1355 }
1356
1357 /* There is an extra source register that is a second
1358 * subscript to a register file. Effectively it means that
1359 * the register file is actually a 2D array of registers.
1360 *
1361 * file[3][1],
1362 * where:
1363 * [3] = Dimension.Index
1364 */
1365 if (reg->Register.Dimension) {
1366 index2D.i[0] =
1367 index2D.i[1] =
1368 index2D.i[2] =
1369 index2D.i[3] = reg->Dimension.Index;
1370
1371 /* Again, the second subscript index can be addressed indirectly
1372 * identically to the first one.
1373 * Nothing stops us from indirectly addressing the indirect register,
1374 * but there is no need for that, so we won't exercise it.
1375 *
1376 * file[ind[4].y+3][1],
1377 * where:
1378 * ind = DimIndirect.File
1379 * [4] = DimIndirect.Index
1380 * .y = DimIndirect.SwizzleX
1381 */
1382 if (reg->Dimension.Indirect) {
1383 union tgsi_exec_channel index2;
1384 union tgsi_exec_channel indir_index;
1385 const uint execmask = mach->ExecMask;
1386 unsigned swizzle;
1387 uint i;
1388
1389 index2.i[0] =
1390 index2.i[1] =
1391 index2.i[2] =
1392 index2.i[3] = reg->DimIndirect.Index;
1393
1394 swizzle = tgsi_util_get_src_register_swizzle( &reg->DimIndirect, CHAN_X );
1395 fetch_src_file_channel(mach,
1396 reg->DimIndirect.File,
1397 swizzle,
1398 &index2,
1399 &ZeroVec,
1400 &indir_index);
1401
1402 index2D.i[0] += indir_index.i[0];
1403 index2D.i[1] += indir_index.i[1];
1404 index2D.i[2] += indir_index.i[2];
1405 index2D.i[3] += indir_index.i[3];
1406
1407 /* for disabled execution channels, zero-out the index to
1408 * avoid using a potential garbage value.
1409 */
1410 for (i = 0; i < QUAD_SIZE; i++) {
1411 if ((execmask & (1 << i)) == 0) {
1412 index2D.i[i] = 0;
1413 }
1414 }
1415 }
1416
1417 /* If by any chance there was a need for a 3D array of register
1418 * files, we would have to check whether Dimension is followed
1419 * by a dimension register and continue the saga.
1420 */
1421 } else {
1422 index2D.i[0] =
1423 index2D.i[1] =
1424 index2D.i[2] =
1425 index2D.i[3] = 0;
1426 }
1427
1428 switch (reg->Register.File) {
1429 case TGSI_FILE_NULL:
1430 dst = &null;
1431 break;
1432
1433 case TGSI_FILE_OUTPUT:
1434 index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1435 + reg->Register.Index;
1436 dst = &mach->Outputs[offset + index].xyzw[chan_index];
1437 #if 0
1438 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1439 fprintf(stderr, "STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1440 for (i = 0; i < QUAD_SIZE; i++)
1441 if (execmask & (1 << i))
1442 fprintf(stderr, "%f, ", chan->f[i]);
1443 fprintf(stderr, ")\n");
1444 }
1445 #endif
1446 break;
1447
1448 case TGSI_FILE_TEMPORARY:
1449 index = reg->Register.Index;
1450 assert( index < TGSI_EXEC_NUM_TEMPS );
1451 dst = &mach->Temps[offset + index].xyzw[chan_index];
1452 break;
1453
1454 case TGSI_FILE_TEMPORARY_ARRAY:
1455 index = reg->Register.Index;
1456 assert( index < TGSI_EXEC_NUM_TEMPS );
1457 assert( index2D.i[0] < TGSI_EXEC_NUM_TEMP_ARRAYS );
1458 /* XXX we use index2D.i[0] here but somehow we might
1459 * end up with someone trying to store indirectly in
1460 * different buffers */
1461 dst = &mach->TempArray[index2D.i[0]][offset + index].xyzw[chan_index];
1462 break;
1463
1464 case TGSI_FILE_ADDRESS:
1465 index = reg->Register.Index;
1466 dst = &mach->Addrs[index].xyzw[chan_index];
1467 break;
1468
1469 case TGSI_FILE_PREDICATE:
1470 index = reg->Register.Index;
1471 assert(index < TGSI_EXEC_NUM_PREDS);
1472 dst = &mach->Predicates[index].xyzw[chan_index];
1473 break;
1474
1475 default:
1476 assert( 0 );
1477 return;
1478 }
1479
1480 if (inst->Instruction.Predicate) {
1481 uint swizzle;
1482 union tgsi_exec_channel *pred;
1483
1484 switch (chan_index) {
1485 case CHAN_X:
1486 swizzle = inst->Predicate.SwizzleX;
1487 break;
1488 case CHAN_Y:
1489 swizzle = inst->Predicate.SwizzleY;
1490 break;
1491 case CHAN_Z:
1492 swizzle = inst->Predicate.SwizzleZ;
1493 break;
1494 case CHAN_W:
1495 swizzle = inst->Predicate.SwizzleW;
1496 break;
1497 default:
1498 assert(0);
1499 return;
1500 }
1501
1502 assert(inst->Predicate.Index == 0);
1503
1504 pred = &mach->Predicates[inst->Predicate.Index].xyzw[swizzle];
1505
1506 if (inst->Predicate.Negate) {
1507 for (i = 0; i < QUAD_SIZE; i++) {
1508 if (pred->u[i]) {
1509 execmask &= ~(1 << i);
1510 }
1511 }
1512 } else {
1513 for (i = 0; i < QUAD_SIZE; i++) {
1514 if (!pred->u[i]) {
1515 execmask &= ~(1 << i);
1516 }
1517 }
1518 }
1519 }
1520
1521 switch (inst->Instruction.Saturate) {
1522 case TGSI_SAT_NONE:
1523 for (i = 0; i < QUAD_SIZE; i++)
1524 if (execmask & (1 << i))
1525 dst->i[i] = chan->i[i];
1526 break;
1527
1528 case TGSI_SAT_ZERO_ONE:
1529 for (i = 0; i < QUAD_SIZE; i++)
1530 if (execmask & (1 << i)) {
1531 if (chan->f[i] < 0.0f)
1532 dst->f[i] = 0.0f;
1533 else if (chan->f[i] > 1.0f)
1534 dst->f[i] = 1.0f;
1535 else
1536 dst->i[i] = chan->i[i];
1537 }
1538 break;
1539
1540 case TGSI_SAT_MINUS_PLUS_ONE:
1541 for (i = 0; i < QUAD_SIZE; i++)
1542 if (execmask & (1 << i)) {
1543 if (chan->f[i] < -1.0f)
1544 dst->f[i] = -1.0f;
1545 else if (chan->f[i] > 1.0f)
1546 dst->f[i] = 1.0f;
1547 else
1548 dst->i[i] = chan->i[i];
1549 }
1550 break;
1551
1552 default:
1553 assert( 0 );
1554 }
1555 }
1556
1557 #define FETCH(VAL,INDEX,CHAN)\
1558 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1559
1560
1561 /**
1562 * Execute ARB-style KIL which is predicated by a src register.
1563 * Kill fragment if any of the four values is less than zero.
1564 */
1565 static void
1566 exec_kil(struct tgsi_exec_machine *mach,
1567 const struct tgsi_full_instruction *inst)
1568 {
1569 uint uniquemask;
1570 uint chan_index;
1571 uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1572 union tgsi_exec_channel r[1];
1573
1574 /* This mask stores component bits that were already tested. */
1575 uniquemask = 0;
1576
1577 for (chan_index = 0; chan_index < 4; chan_index++)
1578 {
1579 uint swizzle;
1580 uint i;
1581
1582 /* unswizzle channel */
1583 swizzle = tgsi_util_get_full_src_register_swizzle (
1584 &inst->Src[0],
1585 chan_index);
1586
1587 /* check if the component has not been already tested */
1588 if (uniquemask & (1 << swizzle))
1589 continue;
1590 uniquemask |= 1 << swizzle;
1591
1592 FETCH(&r[0], 0, chan_index);
1593 for (i = 0; i < 4; i++)
1594 if (r[0].f[i] < 0.0f)
1595 kilmask |= 1 << i;
1596 }
1597
1598 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1599 }
1600
1601 /**
1602 * Execute NVIDIA-style KIL which is predicated by a condition code.
1603 * Kill fragment if the condition code is TRUE.
1604 */
1605 static void
1606 exec_kilp(struct tgsi_exec_machine *mach,
1607 const struct tgsi_full_instruction *inst)
1608 {
1609 uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1610
1611 /* "unconditional" kil */
1612 kilmask = mach->ExecMask;
1613 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1614 }
1615
1616 static void
1617 emit_vertex(struct tgsi_exec_machine *mach)
1618 {
1619 /* FIXME: check for exec mask correctly
1620 unsigned i;
1621 for (i = 0; i < QUAD_SIZE; ++i) {
1622 if ((mach->ExecMask & (1 << i)))
1623 */
1624 if (mach->ExecMask) {
1625 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
1626 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
1627 }
1628 }
1629
1630 static void
1631 emit_primitive(struct tgsi_exec_machine *mach)
1632 {
1633 unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
1634 /* FIXME: check for exec mask correctly
1635 unsigned i;
1636 for (i = 0; i < QUAD_SIZE; ++i) {
1637 if ((mach->ExecMask & (1 << i)))
1638 */
1639 if (mach->ExecMask) {
1640 ++(*prim_count);
1641 debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
1642 mach->Primitives[*prim_count] = 0;
1643 }
1644 }
1645
1646 static void
1647 conditional_emit_primitive(struct tgsi_exec_machine *mach)
1648 {
1649 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1650 int emitted_verts =
1651 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]];
1652 if (emitted_verts) {
1653 emit_primitive(mach);
1654 }
1655 }
1656 }
1657
1658
1659 /*
1660 * Fetch four texture samples using STR texture coordinates.
1661 */
1662 static void
1663 fetch_texel( struct tgsi_sampler *sampler,
1664 const union tgsi_exec_channel *s,
1665 const union tgsi_exec_channel *t,
1666 const union tgsi_exec_channel *p,
1667 const union tgsi_exec_channel *c0,
1668 enum tgsi_sampler_control control,
1669 union tgsi_exec_channel *r,
1670 union tgsi_exec_channel *g,
1671 union tgsi_exec_channel *b,
1672 union tgsi_exec_channel *a )
1673 {
1674 uint j;
1675 float rgba[NUM_CHANNELS][QUAD_SIZE];
1676
1677 sampler->get_samples(sampler, s->f, t->f, p->f, c0->f, control, rgba);
1678
1679 for (j = 0; j < 4; j++) {
1680 r->f[j] = rgba[0][j];
1681 g->f[j] = rgba[1][j];
1682 b->f[j] = rgba[2][j];
1683 a->f[j] = rgba[3][j];
1684 }
1685 }
1686
1687
1688 #define TEX_MODIFIER_NONE 0
1689 #define TEX_MODIFIER_PROJECTED 1
1690 #define TEX_MODIFIER_LOD_BIAS 2
1691 #define TEX_MODIFIER_EXPLICIT_LOD 3
1692
1693
1694 static void
1695 exec_tex(struct tgsi_exec_machine *mach,
1696 const struct tgsi_full_instruction *inst,
1697 uint modifier)
1698 {
1699 const uint unit = inst->Src[1].Register.Index;
1700 union tgsi_exec_channel r[4];
1701 const union tgsi_exec_channel *lod = &ZeroVec;
1702 enum tgsi_sampler_control control;
1703 uint chan;
1704
1705 if (modifier != TEX_MODIFIER_NONE) {
1706 FETCH(&r[3], 0, CHAN_W);
1707 if (modifier != TEX_MODIFIER_PROJECTED) {
1708 lod = &r[3];
1709 }
1710 }
1711
1712 if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
1713 control = tgsi_sampler_lod_explicit;
1714 } else {
1715 control = tgsi_sampler_lod_bias;
1716 }
1717
1718 switch (inst->Texture.Texture) {
1719 case TGSI_TEXTURE_1D:
1720 case TGSI_TEXTURE_SHADOW1D:
1721 FETCH(&r[0], 0, CHAN_X);
1722
1723 if (modifier == TEX_MODIFIER_PROJECTED) {
1724 micro_div(&r[0], &r[0], &r[3]);
1725 }
1726
1727 fetch_texel(mach->Samplers[unit],
1728 &r[0], &ZeroVec, &ZeroVec, lod, /* S, T, P, LOD */
1729 control,
1730 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1731 break;
1732
1733 case TGSI_TEXTURE_2D:
1734 case TGSI_TEXTURE_RECT:
1735 case TGSI_TEXTURE_SHADOW2D:
1736 case TGSI_TEXTURE_SHADOWRECT:
1737 FETCH(&r[0], 0, CHAN_X);
1738 FETCH(&r[1], 0, CHAN_Y);
1739 FETCH(&r[2], 0, CHAN_Z);
1740
1741 if (modifier == TEX_MODIFIER_PROJECTED) {
1742 micro_div(&r[0], &r[0], &r[3]);
1743 micro_div(&r[1], &r[1], &r[3]);
1744 micro_div(&r[2], &r[2], &r[3]);
1745 }
1746
1747 fetch_texel(mach->Samplers[unit],
1748 &r[0], &r[1], &r[2], lod, /* S, T, P, LOD */
1749 control,
1750 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1751 break;
1752
1753 case TGSI_TEXTURE_1D_ARRAY:
1754 FETCH(&r[0], 0, CHAN_X);
1755 FETCH(&r[1], 0, CHAN_Y);
1756
1757 if (modifier == TEX_MODIFIER_PROJECTED) {
1758 micro_div(&r[0], &r[0], &r[3]);
1759 }
1760
1761 fetch_texel(mach->Samplers[unit],
1762 &r[0], &r[1], &r[2], lod, /* S, T, P, LOD */
1763 control,
1764 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1765 break;
1766
1767 case TGSI_TEXTURE_2D_ARRAY:
1768 FETCH(&r[0], 0, CHAN_X);
1769 FETCH(&r[1], 0, CHAN_Y);
1770 FETCH(&r[2], 0, CHAN_Z);
1771
1772 if (modifier == TEX_MODIFIER_PROJECTED) {
1773 micro_div(&r[0], &r[0], &r[3]);
1774 micro_div(&r[1], &r[1], &r[3]);
1775 }
1776
1777 fetch_texel(mach->Samplers[unit],
1778 &r[0], &r[1], &r[2], lod, /* S, T, P, LOD */
1779 control,
1780 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1781 break;
1782
1783 case TGSI_TEXTURE_3D:
1784 case TGSI_TEXTURE_CUBE:
1785 FETCH(&r[0], 0, CHAN_X);
1786 FETCH(&r[1], 0, CHAN_Y);
1787 FETCH(&r[2], 0, CHAN_Z);
1788
1789 if (modifier == TEX_MODIFIER_PROJECTED) {
1790 micro_div(&r[0], &r[0], &r[3]);
1791 micro_div(&r[1], &r[1], &r[3]);
1792 micro_div(&r[2], &r[2], &r[3]);
1793 }
1794
1795 fetch_texel(mach->Samplers[unit],
1796 &r[0], &r[1], &r[2], lod,
1797 control,
1798 &r[0], &r[1], &r[2], &r[3]);
1799 break;
1800
1801 default:
1802 assert(0);
1803 }
1804
1805 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1806 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1807 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1808 }
1809 }
1810 }
1811
1812 static void
1813 exec_txd(struct tgsi_exec_machine *mach,
1814 const struct tgsi_full_instruction *inst)
1815 {
1816 const uint unit = inst->Src[3].Register.Index;
1817 union tgsi_exec_channel r[4];
1818 uint chan;
1819
1820 /*
1821 * XXX: This is fake TXD -- the derivatives are not taken into account, yet.
1822 */
1823
1824 switch (inst->Texture.Texture) {
1825 case TGSI_TEXTURE_1D:
1826 case TGSI_TEXTURE_SHADOW1D:
1827
1828 FETCH(&r[0], 0, CHAN_X);
1829
1830 fetch_texel(mach->Samplers[unit],
1831 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, BIAS */
1832 tgsi_sampler_lod_bias,
1833 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1834 break;
1835
1836 case TGSI_TEXTURE_2D:
1837 case TGSI_TEXTURE_RECT:
1838 case TGSI_TEXTURE_SHADOW2D:
1839 case TGSI_TEXTURE_SHADOWRECT:
1840
1841 FETCH(&r[0], 0, CHAN_X);
1842 FETCH(&r[1], 0, CHAN_Y);
1843 FETCH(&r[2], 0, CHAN_Z);
1844
1845 fetch_texel(mach->Samplers[unit],
1846 &r[0], &r[1], &r[2], &ZeroVec, /* inputs */
1847 tgsi_sampler_lod_bias,
1848 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1849 break;
1850
1851 case TGSI_TEXTURE_3D:
1852 case TGSI_TEXTURE_CUBE:
1853
1854 FETCH(&r[0], 0, CHAN_X);
1855 FETCH(&r[1], 0, CHAN_Y);
1856 FETCH(&r[2], 0, CHAN_Z);
1857
1858 fetch_texel(mach->Samplers[unit],
1859 &r[0], &r[1], &r[2], &ZeroVec,
1860 tgsi_sampler_lod_bias,
1861 &r[0], &r[1], &r[2], &r[3]);
1862 break;
1863
1864 default:
1865 assert(0);
1866 }
1867
1868 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1869 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1870 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1871 }
1872 }
1873 }
1874
1875
1876
1877 static void
1878 exec_sample(struct tgsi_exec_machine *mach,
1879 const struct tgsi_full_instruction *inst,
1880 uint modifier)
1881 {
1882 const uint resource_unit = inst->Src[1].Register.Index;
1883 const uint sampler_unit = inst->Src[2].Register.Index;
1884 union tgsi_exec_channel r[4];
1885 const union tgsi_exec_channel *lod = &ZeroVec;
1886 enum tgsi_sampler_control control;
1887 uint chan;
1888
1889 if (modifier != TEX_MODIFIER_NONE) {
1890 if (modifier == TEX_MODIFIER_LOD_BIAS)
1891 FETCH(&r[3], 3, CHAN_X);
1892 else /*TEX_MODIFIER_LOD*/
1893 FETCH(&r[3], 0, CHAN_W);
1894
1895 if (modifier != TEX_MODIFIER_PROJECTED) {
1896 lod = &r[3];
1897 }
1898 }
1899
1900 if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
1901 control = tgsi_sampler_lod_explicit;
1902 } else {
1903 control = tgsi_sampler_lod_bias;
1904 }
1905
1906 switch (mach->Resources[resource_unit].Resource) {
1907 case TGSI_TEXTURE_1D:
1908 case TGSI_TEXTURE_SHADOW1D:
1909 FETCH(&r[0], 0, CHAN_X);
1910
1911 if (modifier == TEX_MODIFIER_PROJECTED) {
1912 micro_div(&r[0], &r[0], &r[3]);
1913 }
1914
1915 fetch_texel(mach->Samplers[sampler_unit],
1916 &r[0], &ZeroVec, &ZeroVec, lod, /* S, T, P, LOD */
1917 control,
1918 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1919 break;
1920
1921 case TGSI_TEXTURE_2D:
1922 case TGSI_TEXTURE_RECT:
1923 case TGSI_TEXTURE_SHADOW2D:
1924 case TGSI_TEXTURE_SHADOWRECT:
1925 FETCH(&r[0], 0, CHAN_X);
1926 FETCH(&r[1], 0, CHAN_Y);
1927 FETCH(&r[2], 0, CHAN_Z);
1928
1929 if (modifier == TEX_MODIFIER_PROJECTED) {
1930 micro_div(&r[0], &r[0], &r[3]);
1931 micro_div(&r[1], &r[1], &r[3]);
1932 micro_div(&r[2], &r[2], &r[3]);
1933 }
1934
1935 fetch_texel(mach->Samplers[sampler_unit],
1936 &r[0], &r[1], &r[2], lod, /* S, T, P, LOD */
1937 control,
1938 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1939 break;
1940
1941 case TGSI_TEXTURE_3D:
1942 case TGSI_TEXTURE_CUBE:
1943 FETCH(&r[0], 0, CHAN_X);
1944 FETCH(&r[1], 0, CHAN_Y);
1945 FETCH(&r[2], 0, CHAN_Z);
1946
1947 if (modifier == TEX_MODIFIER_PROJECTED) {
1948 micro_div(&r[0], &r[0], &r[3]);
1949 micro_div(&r[1], &r[1], &r[3]);
1950 micro_div(&r[2], &r[2], &r[3]);
1951 }
1952
1953 fetch_texel(mach->Samplers[sampler_unit],
1954 &r[0], &r[1], &r[2], lod,
1955 control,
1956 &r[0], &r[1], &r[2], &r[3]);
1957 break;
1958
1959 default:
1960 assert(0);
1961 }
1962
1963 for (chan = 0; chan < NUM_CHANNELS; chan++) {
1964 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1965 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1966 }
1967 }
1968 }
1969
1970 static void
1971 exec_sample_d(struct tgsi_exec_machine *mach,
1972 const struct tgsi_full_instruction *inst)
1973 {
1974 const uint resource_unit = inst->Src[1].Register.Index;
1975 const uint sampler_unit = inst->Src[2].Register.Index;
1976 union tgsi_exec_channel r[4];
1977 uint chan;
1978 /*
1979 * XXX: This is fake SAMPLE_D -- the derivatives are not taken into account, yet.
1980 */
1981
1982 switch (mach->Resources[resource_unit].Resource) {
1983 case TGSI_TEXTURE_1D:
1984 case TGSI_TEXTURE_SHADOW1D:
1985
1986 FETCH(&r[0], 0, CHAN_X);
1987
1988 fetch_texel(mach->Samplers[sampler_unit],
1989 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, BIAS */
1990 tgsi_sampler_lod_bias,
1991 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1992 break;
1993
1994 case TGSI_TEXTURE_2D:
1995 case TGSI_TEXTURE_RECT:
1996 case TGSI_TEXTURE_SHADOW2D:
1997 case TGSI_TEXTURE_SHADOWRECT:
1998
1999 FETCH(&r[0], 0, CHAN_X);
2000 FETCH(&r[1], 0, CHAN_Y);
2001 FETCH(&r[2], 0, CHAN_Z);
2002
2003 fetch_texel(mach->Samplers[sampler_unit],
2004 &r[0], &r[1], &r[2], &ZeroVec, /* inputs */
2005 tgsi_sampler_lod_bias,
2006 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2007 break;
2008
2009 case TGSI_TEXTURE_3D:
2010 case TGSI_TEXTURE_CUBE:
2011
2012 FETCH(&r[0], 0, CHAN_X);
2013 FETCH(&r[1], 0, CHAN_Y);
2014 FETCH(&r[2], 0, CHAN_Z);
2015
2016 fetch_texel(mach->Samplers[sampler_unit],
2017 &r[0], &r[1], &r[2], &ZeroVec,
2018 tgsi_sampler_lod_bias,
2019 &r[0], &r[1], &r[2], &r[3]);
2020 break;
2021
2022 default:
2023 assert(0);
2024 }
2025
2026 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2027 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2028 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2029 }
2030 }
2031 }
2032
2033
2034 /**
2035 * Evaluate a constant-valued coefficient at the position of the
2036 * current quad.
2037 */
2038 static void
2039 eval_constant_coef(
2040 struct tgsi_exec_machine *mach,
2041 unsigned attrib,
2042 unsigned chan )
2043 {
2044 unsigned i;
2045
2046 for( i = 0; i < QUAD_SIZE; i++ ) {
2047 mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2048 }
2049 }
2050
2051 /**
2052 * Evaluate a linear-valued coefficient at the position of the
2053 * current quad.
2054 */
2055 static void
2056 eval_linear_coef(
2057 struct tgsi_exec_machine *mach,
2058 unsigned attrib,
2059 unsigned chan )
2060 {
2061 const float x = mach->QuadPos.xyzw[0].f[0];
2062 const float y = mach->QuadPos.xyzw[1].f[0];
2063 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2064 const float dady = mach->InterpCoefs[attrib].dady[chan];
2065 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2066 mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2067 mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2068 mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2069 mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2070 }
2071
2072 /**
2073 * Evaluate a perspective-valued coefficient at the position of the
2074 * current quad.
2075 */
2076 static void
2077 eval_perspective_coef(
2078 struct tgsi_exec_machine *mach,
2079 unsigned attrib,
2080 unsigned chan )
2081 {
2082 const float x = mach->QuadPos.xyzw[0].f[0];
2083 const float y = mach->QuadPos.xyzw[1].f[0];
2084 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2085 const float dady = mach->InterpCoefs[attrib].dady[chan];
2086 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2087 const float *w = mach->QuadPos.xyzw[3].f;
2088 /* divide by W here */
2089 mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2090 mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2091 mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2092 mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2093 }
2094
2095
2096 typedef void (* eval_coef_func)(
2097 struct tgsi_exec_machine *mach,
2098 unsigned attrib,
2099 unsigned chan );
2100
2101 static void
2102 exec_declaration(struct tgsi_exec_machine *mach,
2103 const struct tgsi_full_declaration *decl)
2104 {
2105 if (decl->Declaration.File == TGSI_FILE_RESOURCE) {
2106 mach->Resources[decl->Range.First] = decl->Resource;
2107 return;
2108 }
2109
2110 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
2111 if (decl->Declaration.File == TGSI_FILE_INPUT) {
2112 uint first, last, mask;
2113
2114 first = decl->Range.First;
2115 last = decl->Range.Last;
2116 mask = decl->Declaration.UsageMask;
2117
2118 /* XXX we could remove this special-case code since
2119 * mach->InterpCoefs[first].a0 should already have the
2120 * front/back-face value. But we should first update the
2121 * ureg code to emit the right UsageMask value (WRITEMASK_X).
2122 * Then, we could remove the tgsi_exec_machine::Face field.
2123 */
2124 /* XXX make FACE a system value */
2125 if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
2126 uint i;
2127
2128 assert(decl->Semantic.Index == 0);
2129 assert(first == last);
2130
2131 for (i = 0; i < QUAD_SIZE; i++) {
2132 mach->Inputs[first].xyzw[0].f[i] = mach->Face;
2133 }
2134 } else {
2135 eval_coef_func eval;
2136 uint i, j;
2137
2138 switch (decl->Declaration.Interpolate) {
2139 case TGSI_INTERPOLATE_CONSTANT:
2140 eval = eval_constant_coef;
2141 break;
2142
2143 case TGSI_INTERPOLATE_LINEAR:
2144 eval = eval_linear_coef;
2145 break;
2146
2147 case TGSI_INTERPOLATE_PERSPECTIVE:
2148 eval = eval_perspective_coef;
2149 break;
2150
2151 default:
2152 assert(0);
2153 return;
2154 }
2155
2156 for (j = 0; j < NUM_CHANNELS; j++) {
2157 if (mask & (1 << j)) {
2158 for (i = first; i <= last; i++) {
2159 eval(mach, i, j);
2160 }
2161 }
2162 }
2163 }
2164 }
2165 }
2166
2167 if (decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
2168 mach->SysSemanticToIndex[decl->Declaration.Semantic] = decl->Range.First;
2169 }
2170 }
2171
2172
2173 typedef void (* micro_op)(union tgsi_exec_channel *dst);
2174
2175 static void
2176 exec_vector(struct tgsi_exec_machine *mach,
2177 const struct tgsi_full_instruction *inst,
2178 micro_op op,
2179 enum tgsi_exec_datatype dst_datatype)
2180 {
2181 unsigned int chan;
2182
2183 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2184 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2185 union tgsi_exec_channel dst;
2186
2187 op(&dst);
2188 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2189 }
2190 }
2191 }
2192
2193 typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
2194 const union tgsi_exec_channel *src);
2195
2196 static void
2197 exec_scalar_unary(struct tgsi_exec_machine *mach,
2198 const struct tgsi_full_instruction *inst,
2199 micro_unary_op op,
2200 enum tgsi_exec_datatype dst_datatype,
2201 enum tgsi_exec_datatype src_datatype)
2202 {
2203 unsigned int chan;
2204 union tgsi_exec_channel src;
2205 union tgsi_exec_channel dst;
2206
2207 fetch_source(mach, &src, &inst->Src[0], CHAN_X, src_datatype);
2208 op(&dst, &src);
2209 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2210 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2211 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2212 }
2213 }
2214 }
2215
2216 static void
2217 exec_vector_unary(struct tgsi_exec_machine *mach,
2218 const struct tgsi_full_instruction *inst,
2219 micro_unary_op op,
2220 enum tgsi_exec_datatype dst_datatype,
2221 enum tgsi_exec_datatype src_datatype)
2222 {
2223 unsigned int chan;
2224 struct tgsi_exec_vector dst;
2225
2226 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2227 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2228 union tgsi_exec_channel src;
2229
2230 fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
2231 op(&dst.xyzw[chan], &src);
2232 }
2233 }
2234 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2235 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2236 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2237 }
2238 }
2239 }
2240
2241 typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
2242 const union tgsi_exec_channel *src0,
2243 const union tgsi_exec_channel *src1);
2244
2245 static void
2246 exec_scalar_binary(struct tgsi_exec_machine *mach,
2247 const struct tgsi_full_instruction *inst,
2248 micro_binary_op op,
2249 enum tgsi_exec_datatype dst_datatype,
2250 enum tgsi_exec_datatype src_datatype)
2251 {
2252 unsigned int chan;
2253 union tgsi_exec_channel src[2];
2254 union tgsi_exec_channel dst;
2255
2256 fetch_source(mach, &src[0], &inst->Src[0], CHAN_X, src_datatype);
2257 fetch_source(mach, &src[1], &inst->Src[1], CHAN_Y, src_datatype);
2258 op(&dst, &src[0], &src[1]);
2259 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2260 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2261 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2262 }
2263 }
2264 }
2265
2266 static void
2267 exec_vector_binary(struct tgsi_exec_machine *mach,
2268 const struct tgsi_full_instruction *inst,
2269 micro_binary_op op,
2270 enum tgsi_exec_datatype dst_datatype,
2271 enum tgsi_exec_datatype src_datatype)
2272 {
2273 unsigned int chan;
2274 struct tgsi_exec_vector dst;
2275
2276 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2277 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2278 union tgsi_exec_channel src[2];
2279
2280 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2281 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2282 op(&dst.xyzw[chan], &src[0], &src[1]);
2283 }
2284 }
2285 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2286 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2287 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2288 }
2289 }
2290 }
2291
2292 typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
2293 const union tgsi_exec_channel *src0,
2294 const union tgsi_exec_channel *src1,
2295 const union tgsi_exec_channel *src2);
2296
2297 static void
2298 exec_vector_trinary(struct tgsi_exec_machine *mach,
2299 const struct tgsi_full_instruction *inst,
2300 micro_trinary_op op,
2301 enum tgsi_exec_datatype dst_datatype,
2302 enum tgsi_exec_datatype src_datatype)
2303 {
2304 unsigned int chan;
2305 struct tgsi_exec_vector dst;
2306
2307 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2308 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2309 union tgsi_exec_channel src[3];
2310
2311 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2312 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2313 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
2314 op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
2315 }
2316 }
2317 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2318 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2319 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2320 }
2321 }
2322 }
2323
2324 static void
2325 exec_dp3(struct tgsi_exec_machine *mach,
2326 const struct tgsi_full_instruction *inst)
2327 {
2328 unsigned int chan;
2329 union tgsi_exec_channel arg[3];
2330
2331 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2332 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2333 micro_mul(&arg[2], &arg[0], &arg[1]);
2334
2335 for (chan = CHAN_Y; chan <= CHAN_Z; chan++) {
2336 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2337 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2338 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2339 }
2340
2341 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2342 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2343 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2344 }
2345 }
2346 }
2347
2348 static void
2349 exec_dp4(struct tgsi_exec_machine *mach,
2350 const struct tgsi_full_instruction *inst)
2351 {
2352 unsigned int chan;
2353 union tgsi_exec_channel arg[3];
2354
2355 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2356 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2357 micro_mul(&arg[2], &arg[0], &arg[1]);
2358
2359 for (chan = CHAN_Y; chan <= CHAN_W; chan++) {
2360 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2361 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2362 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2363 }
2364
2365 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2366 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2367 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2368 }
2369 }
2370 }
2371
2372 static void
2373 exec_dp2a(struct tgsi_exec_machine *mach,
2374 const struct tgsi_full_instruction *inst)
2375 {
2376 unsigned int chan;
2377 union tgsi_exec_channel arg[3];
2378
2379 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2380 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2381 micro_mul(&arg[2], &arg[0], &arg[1]);
2382
2383 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2384 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2385 micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2386
2387 fetch_source(mach, &arg[1], &inst->Src[2], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2388 micro_add(&arg[0], &arg[0], &arg[1]);
2389
2390 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2391 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2392 store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2393 }
2394 }
2395 }
2396
2397 static void
2398 exec_dph(struct tgsi_exec_machine *mach,
2399 const struct tgsi_full_instruction *inst)
2400 {
2401 unsigned int chan;
2402 union tgsi_exec_channel arg[3];
2403
2404 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2405 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2406 micro_mul(&arg[2], &arg[0], &arg[1]);
2407
2408 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2409 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2410 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2411
2412 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2413 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2414 micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2415
2416 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_W, TGSI_EXEC_DATA_FLOAT);
2417 micro_add(&arg[0], &arg[0], &arg[1]);
2418
2419 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2420 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2421 store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2422 }
2423 }
2424 }
2425
2426 static void
2427 exec_dp2(struct tgsi_exec_machine *mach,
2428 const struct tgsi_full_instruction *inst)
2429 {
2430 unsigned int chan;
2431 union tgsi_exec_channel arg[3];
2432
2433 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2434 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2435 micro_mul(&arg[2], &arg[0], &arg[1]);
2436
2437 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2438 fetch_source(mach, &arg[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2439 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2440
2441 for (chan = 0; chan < NUM_CHANNELS; chan++) {
2442 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2443 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2444 }
2445 }
2446 }
2447
2448 static void
2449 exec_nrm4(struct tgsi_exec_machine *mach,
2450 const struct tgsi_full_instruction *inst)
2451 {
2452 unsigned int chan;
2453 union tgsi_exec_channel arg[4];
2454 union tgsi_exec_channel scale;
2455
2456 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2457 micro_mul(&scale, &arg[0], &arg[0]);
2458
2459 for (chan = CHAN_Y; chan <= CHAN_W; chan++) {
2460 union tgsi_exec_channel product;
2461
2462 fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2463 micro_mul(&product, &arg[chan], &arg[chan]);
2464 micro_add(&scale, &scale, &product);
2465 }
2466
2467 micro_rsq(&scale, &scale);
2468
2469 for (chan = CHAN_X; chan <= CHAN_W; chan++) {
2470 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2471 micro_mul(&arg[chan], &arg[chan], &scale);
2472 store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2473 }
2474 }
2475 }
2476
2477 static void
2478 exec_nrm3(struct tgsi_exec_machine *mach,
2479 const struct tgsi_full_instruction *inst)
2480 {
2481 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2482 unsigned int chan;
2483 union tgsi_exec_channel arg[3];
2484 union tgsi_exec_channel scale;
2485
2486 fetch_source(mach, &arg[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2487 micro_mul(&scale, &arg[0], &arg[0]);
2488
2489 for (chan = CHAN_Y; chan <= CHAN_Z; chan++) {
2490 union tgsi_exec_channel product;
2491
2492 fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2493 micro_mul(&product, &arg[chan], &arg[chan]);
2494 micro_add(&scale, &scale, &product);
2495 }
2496
2497 micro_rsq(&scale, &scale);
2498
2499 for (chan = CHAN_X; chan <= CHAN_Z; chan++) {
2500 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2501 micro_mul(&arg[chan], &arg[chan], &scale);
2502 store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2503 }
2504 }
2505 }
2506
2507 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2508 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2509 }
2510 }
2511
2512 static void
2513 exec_scs(struct tgsi_exec_machine *mach,
2514 const struct tgsi_full_instruction *inst)
2515 {
2516 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) {
2517 union tgsi_exec_channel arg;
2518 union tgsi_exec_channel result;
2519
2520 fetch_source(mach, &arg, &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2521
2522 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2523 micro_cos(&result, &arg);
2524 store_dest(mach, &result, &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2525 }
2526 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2527 micro_sin(&result, &arg);
2528 store_dest(mach, &result, &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2529 }
2530 }
2531 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2532 store_dest(mach, &ZeroVec, &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2533 }
2534 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2535 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2536 }
2537 }
2538
2539 static void
2540 exec_x2d(struct tgsi_exec_machine *mach,
2541 const struct tgsi_full_instruction *inst)
2542 {
2543 union tgsi_exec_channel r[4];
2544 union tgsi_exec_channel d[2];
2545
2546 fetch_source(mach, &r[0], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2547 fetch_source(mach, &r[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2548 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XZ) {
2549 fetch_source(mach, &r[2], &inst->Src[2], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2550 micro_mul(&r[2], &r[2], &r[0]);
2551 fetch_source(mach, &r[3], &inst->Src[2], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2552 micro_mul(&r[3], &r[3], &r[1]);
2553 micro_add(&r[2], &r[2], &r[3]);
2554 fetch_source(mach, &r[3], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2555 micro_add(&d[0], &r[2], &r[3]);
2556 }
2557 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YW) {
2558 fetch_source(mach, &r[2], &inst->Src[2], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2559 micro_mul(&r[2], &r[2], &r[0]);
2560 fetch_source(mach, &r[3], &inst->Src[2], CHAN_W, TGSI_EXEC_DATA_FLOAT);
2561 micro_mul(&r[3], &r[3], &r[1]);
2562 micro_add(&r[2], &r[2], &r[3]);
2563 fetch_source(mach, &r[3], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2564 micro_add(&d[1], &r[2], &r[3]);
2565 }
2566 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2567 store_dest(mach, &d[0], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2568 }
2569 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2570 store_dest(mach, &d[1], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2571 }
2572 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2573 store_dest(mach, &d[0], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2574 }
2575 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2576 store_dest(mach, &d[1], &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2577 }
2578 }
2579
2580 static void
2581 exec_rfl(struct tgsi_exec_machine *mach,
2582 const struct tgsi_full_instruction *inst)
2583 {
2584 union tgsi_exec_channel r[9];
2585
2586 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2587 /* r0 = dp3(src0, src0) */
2588 fetch_source(mach, &r[2], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2589 micro_mul(&r[0], &r[2], &r[2]);
2590 fetch_source(mach, &r[4], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2591 micro_mul(&r[8], &r[4], &r[4]);
2592 micro_add(&r[0], &r[0], &r[8]);
2593 fetch_source(mach, &r[6], &inst->Src[0], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2594 micro_mul(&r[8], &r[6], &r[6]);
2595 micro_add(&r[0], &r[0], &r[8]);
2596
2597 /* r1 = dp3(src0, src1) */
2598 fetch_source(mach, &r[3], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2599 micro_mul(&r[1], &r[2], &r[3]);
2600 fetch_source(mach, &r[5], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2601 micro_mul(&r[8], &r[4], &r[5]);
2602 micro_add(&r[1], &r[1], &r[8]);
2603 fetch_source(mach, &r[7], &inst->Src[1], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2604 micro_mul(&r[8], &r[6], &r[7]);
2605 micro_add(&r[1], &r[1], &r[8]);
2606
2607 /* r1 = 2 * r1 / r0 */
2608 micro_add(&r[1], &r[1], &r[1]);
2609 micro_div(&r[1], &r[1], &r[0]);
2610
2611 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2612 micro_mul(&r[2], &r[2], &r[1]);
2613 micro_sub(&r[2], &r[2], &r[3]);
2614 store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2615 }
2616 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2617 micro_mul(&r[4], &r[4], &r[1]);
2618 micro_sub(&r[4], &r[4], &r[5]);
2619 store_dest(mach, &r[4], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2620 }
2621 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2622 micro_mul(&r[6], &r[6], &r[1]);
2623 micro_sub(&r[6], &r[6], &r[7]);
2624 store_dest(mach, &r[6], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2625 }
2626 }
2627 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2628 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2629 }
2630 }
2631
2632 static void
2633 exec_xpd(struct tgsi_exec_machine *mach,
2634 const struct tgsi_full_instruction *inst)
2635 {
2636 union tgsi_exec_channel r[6];
2637 union tgsi_exec_channel d[3];
2638
2639 fetch_source(mach, &r[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2640 fetch_source(mach, &r[1], &inst->Src[1], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2641
2642 micro_mul(&r[2], &r[0], &r[1]);
2643
2644 fetch_source(mach, &r[3], &inst->Src[0], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2645 fetch_source(mach, &r[4], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2646
2647 micro_mul(&r[5], &r[3], &r[4] );
2648 micro_sub(&d[CHAN_X], &r[2], &r[5]);
2649
2650 fetch_source(mach, &r[2], &inst->Src[1], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2651
2652 micro_mul(&r[3], &r[3], &r[2]);
2653
2654 fetch_source(mach, &r[5], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2655
2656 micro_mul(&r[1], &r[1], &r[5]);
2657 micro_sub(&d[CHAN_Y], &r[3], &r[1]);
2658
2659 micro_mul(&r[5], &r[5], &r[4]);
2660 micro_mul(&r[0], &r[0], &r[2]);
2661 micro_sub(&d[CHAN_Z], &r[5], &r[0]);
2662
2663 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2664 store_dest(mach, &d[CHAN_X], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2665 }
2666 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2667 store_dest(mach, &d[CHAN_Y], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2668 }
2669 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2670 store_dest(mach, &d[CHAN_Z], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2671 }
2672 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2673 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2674 }
2675 }
2676
2677 static void
2678 exec_dst(struct tgsi_exec_machine *mach,
2679 const struct tgsi_full_instruction *inst)
2680 {
2681 union tgsi_exec_channel r[2];
2682 union tgsi_exec_channel d[4];
2683
2684 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2685 fetch_source(mach, &r[0], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2686 fetch_source(mach, &r[1], &inst->Src[1], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2687 micro_mul(&d[CHAN_Y], &r[0], &r[1]);
2688 }
2689 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2690 fetch_source(mach, &d[CHAN_Z], &inst->Src[0], CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2691 }
2692 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2693 fetch_source(mach, &d[CHAN_W], &inst->Src[1], CHAN_W, TGSI_EXEC_DATA_FLOAT);
2694 }
2695
2696 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2697 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2698 }
2699 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2700 store_dest(mach, &d[CHAN_Y], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2701 }
2702 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2703 store_dest(mach, &d[CHAN_Z], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2704 }
2705 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2706 store_dest(mach, &d[CHAN_W], &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2707 }
2708 }
2709
2710 static void
2711 exec_log(struct tgsi_exec_machine *mach,
2712 const struct tgsi_full_instruction *inst)
2713 {
2714 union tgsi_exec_channel r[3];
2715
2716 fetch_source(mach, &r[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2717 micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */
2718 micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */
2719 micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */
2720 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2721 store_dest(mach, &r[0], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2722 }
2723 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2724 micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */
2725 micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
2726 store_dest(mach, &r[0], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2727 }
2728 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2729 store_dest(mach, &r[1], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2730 }
2731 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2732 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2733 }
2734 }
2735
2736 static void
2737 exec_exp(struct tgsi_exec_machine *mach,
2738 const struct tgsi_full_instruction *inst)
2739 {
2740 union tgsi_exec_channel r[3];
2741
2742 fetch_source(mach, &r[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2743 micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */
2744 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2745 micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */
2746 store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2747 }
2748 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2749 micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
2750 store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2751 }
2752 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2753 micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */
2754 store_dest(mach, &r[2], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2755 }
2756 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2757 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2758 }
2759 }
2760
2761 static void
2762 exec_lit(struct tgsi_exec_machine *mach,
2763 const struct tgsi_full_instruction *inst)
2764 {
2765 union tgsi_exec_channel r[3];
2766 union tgsi_exec_channel d[3];
2767
2768 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2769 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_X, TGSI_EXEC_DATA_FLOAT);
2770 }
2771 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
2772 fetch_source(mach, &r[0], &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_FLOAT);
2773 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2774 micro_max(&d[CHAN_Y], &r[0], &ZeroVec);
2775 store_dest(mach, &d[CHAN_Y], &inst->Dst[0], inst, CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2776 }
2777
2778 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2779 fetch_source(mach, &r[1], &inst->Src[0], CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2780 micro_max(&r[1], &r[1], &ZeroVec);
2781
2782 fetch_source(mach, &r[2], &inst->Src[0], CHAN_W, TGSI_EXEC_DATA_FLOAT);
2783 micro_min(&r[2], &r[2], &P128Vec);
2784 micro_max(&r[2], &r[2], &M128Vec);
2785 micro_pow(&r[1], &r[1], &r[2]);
2786 micro_lt(&d[CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
2787 store_dest(mach, &d[CHAN_Z], &inst->Dst[0], inst, CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2788 }
2789 }
2790 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2791 store_dest(mach, &OneVec, &inst->Dst[0], inst, CHAN_W, TGSI_EXEC_DATA_FLOAT);
2792 }
2793 }
2794
2795 static void
2796 exec_break(struct tgsi_exec_machine *mach)
2797 {
2798 if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
2799 /* turn off loop channels for each enabled exec channel */
2800 mach->LoopMask &= ~mach->ExecMask;
2801 /* Todo: if mach->LoopMask == 0, jump to end of loop */
2802 UPDATE_EXEC_MASK(mach);
2803 } else {
2804 assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
2805
2806 mach->Switch.mask = 0x0;
2807
2808 UPDATE_EXEC_MASK(mach);
2809 }
2810 }
2811
2812 static void
2813 exec_switch(struct tgsi_exec_machine *mach,
2814 const struct tgsi_full_instruction *inst)
2815 {
2816 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
2817 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
2818
2819 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
2820 fetch_source(mach, &mach->Switch.selector, &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_UINT);
2821 mach->Switch.mask = 0x0;
2822 mach->Switch.defaultMask = 0x0;
2823
2824 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
2825 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
2826
2827 UPDATE_EXEC_MASK(mach);
2828 }
2829
2830 static void
2831 exec_case(struct tgsi_exec_machine *mach,
2832 const struct tgsi_full_instruction *inst)
2833 {
2834 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
2835 union tgsi_exec_channel src;
2836 uint mask = 0;
2837
2838 fetch_source(mach, &src, &inst->Src[0], CHAN_X, TGSI_EXEC_DATA_UINT);
2839
2840 if (mach->Switch.selector.u[0] == src.u[0]) {
2841 mask |= 0x1;
2842 }
2843 if (mach->Switch.selector.u[1] == src.u[1]) {
2844 mask |= 0x2;
2845 }
2846 if (mach->Switch.selector.u[2] == src.u[2]) {
2847 mask |= 0x4;
2848 }
2849 if (mach->Switch.selector.u[3] == src.u[3]) {
2850 mask |= 0x8;
2851 }
2852
2853 mach->Switch.defaultMask |= mask;
2854
2855 mach->Switch.mask |= mask & prevMask;
2856
2857 UPDATE_EXEC_MASK(mach);
2858 }
2859
2860 static void
2861 exec_default(struct tgsi_exec_machine *mach)
2862 {
2863 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
2864
2865 mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
2866
2867 UPDATE_EXEC_MASK(mach);
2868 }
2869
2870 static void
2871 exec_endswitch(struct tgsi_exec_machine *mach)
2872 {
2873 mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
2874 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
2875
2876 UPDATE_EXEC_MASK(mach);
2877 }
2878
2879 static void
2880 micro_i2f(union tgsi_exec_channel *dst,
2881 const union tgsi_exec_channel *src)
2882 {
2883 dst->f[0] = (float)src->i[0];
2884 dst->f[1] = (float)src->i[1];
2885 dst->f[2] = (float)src->i[2];
2886 dst->f[3] = (float)src->i[3];
2887 }
2888
2889 static void
2890 micro_not(union tgsi_exec_channel *dst,
2891 const union tgsi_exec_channel *src)
2892 {
2893 dst->u[0] = ~src->u[0];
2894 dst->u[1] = ~src->u[1];
2895 dst->u[2] = ~src->u[2];
2896 dst->u[3] = ~src->u[3];
2897 }
2898
2899 static void
2900 micro_shl(union tgsi_exec_channel *dst,
2901 const union tgsi_exec_channel *src0,
2902 const union tgsi_exec_channel *src1)
2903 {
2904 dst->u[0] = src0->u[0] << src1->u[0];
2905 dst->u[1] = src0->u[1] << src1->u[1];
2906 dst->u[2] = src0->u[2] << src1->u[2];
2907 dst->u[3] = src0->u[3] << src1->u[3];
2908 }
2909
2910 static void
2911 micro_and(union tgsi_exec_channel *dst,
2912 const union tgsi_exec_channel *src0,
2913 const union tgsi_exec_channel *src1)
2914 {
2915 dst->u[0] = src0->u[0] & src1->u[0];
2916 dst->u[1] = src0->u[1] & src1->u[1];
2917 dst->u[2] = src0->u[2] & src1->u[2];
2918 dst->u[3] = src0->u[3] & src1->u[3];
2919 }
2920
2921 static void
2922 micro_or(union tgsi_exec_channel *dst,
2923 const union tgsi_exec_channel *src0,
2924 const union tgsi_exec_channel *src1)
2925 {
2926 dst->u[0] = src0->u[0] | src1->u[0];
2927 dst->u[1] = src0->u[1] | src1->u[1];
2928 dst->u[2] = src0->u[2] | src1->u[2];
2929 dst->u[3] = src0->u[3] | src1->u[3];
2930 }
2931
2932 static void
2933 micro_xor(union tgsi_exec_channel *dst,
2934 const union tgsi_exec_channel *src0,
2935 const union tgsi_exec_channel *src1)
2936 {
2937 dst->u[0] = src0->u[0] ^ src1->u[0];
2938 dst->u[1] = src0->u[1] ^ src1->u[1];
2939 dst->u[2] = src0->u[2] ^ src1->u[2];
2940 dst->u[3] = src0->u[3] ^ src1->u[3];
2941 }
2942
2943 static void
2944 micro_f2i(union tgsi_exec_channel *dst,
2945 const union tgsi_exec_channel *src)
2946 {
2947 dst->i[0] = (int)src->f[0];
2948 dst->i[1] = (int)src->f[1];
2949 dst->i[2] = (int)src->f[2];
2950 dst->i[3] = (int)src->f[3];
2951 }
2952
2953 static void
2954 micro_idiv(union tgsi_exec_channel *dst,
2955 const union tgsi_exec_channel *src0,
2956 const union tgsi_exec_channel *src1)
2957 {
2958 dst->i[0] = src0->i[0] / src1->i[0];
2959 dst->i[1] = src0->i[1] / src1->i[1];
2960 dst->i[2] = src0->i[2] / src1->i[2];
2961 dst->i[3] = src0->i[3] / src1->i[3];
2962 }
2963
2964 static void
2965 micro_imax(union tgsi_exec_channel *dst,
2966 const union tgsi_exec_channel *src0,
2967 const union tgsi_exec_channel *src1)
2968 {
2969 dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
2970 dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
2971 dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
2972 dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
2973 }
2974
2975 static void
2976 micro_imin(union tgsi_exec_channel *dst,
2977 const union tgsi_exec_channel *src0,
2978 const union tgsi_exec_channel *src1)
2979 {
2980 dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
2981 dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
2982 dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
2983 dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
2984 }
2985
2986 static void
2987 micro_isge(union tgsi_exec_channel *dst,
2988 const union tgsi_exec_channel *src0,
2989 const union tgsi_exec_channel *src1)
2990 {
2991 dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
2992 dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
2993 dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
2994 dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
2995 }
2996
2997 static void
2998 micro_ishr(union tgsi_exec_channel *dst,
2999 const union tgsi_exec_channel *src0,
3000 const union tgsi_exec_channel *src1)
3001 {
3002 dst->i[0] = src0->i[0] >> src1->i[0];
3003 dst->i[1] = src0->i[1] >> src1->i[1];
3004 dst->i[2] = src0->i[2] >> src1->i[2];
3005 dst->i[3] = src0->i[3] >> src1->i[3];
3006 }
3007
3008 static void
3009 micro_islt(union tgsi_exec_channel *dst,
3010 const union tgsi_exec_channel *src0,
3011 const union tgsi_exec_channel *src1)
3012 {
3013 dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
3014 dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
3015 dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
3016 dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
3017 }
3018
3019 static void
3020 micro_f2u(union tgsi_exec_channel *dst,
3021 const union tgsi_exec_channel *src)
3022 {
3023 dst->u[0] = (uint)src->f[0];
3024 dst->u[1] = (uint)src->f[1];
3025 dst->u[2] = (uint)src->f[2];
3026 dst->u[3] = (uint)src->f[3];
3027 }
3028
3029 static void
3030 micro_u2f(union tgsi_exec_channel *dst,
3031 const union tgsi_exec_channel *src)
3032 {
3033 dst->f[0] = (float)src->u[0];
3034 dst->f[1] = (float)src->u[1];
3035 dst->f[2] = (float)src->u[2];
3036 dst->f[3] = (float)src->u[3];
3037 }
3038
3039 static void
3040 micro_uadd(union tgsi_exec_channel *dst,
3041 const union tgsi_exec_channel *src0,
3042 const union tgsi_exec_channel *src1)
3043 {
3044 dst->u[0] = src0->u[0] + src1->u[0];
3045 dst->u[1] = src0->u[1] + src1->u[1];
3046 dst->u[2] = src0->u[2] + src1->u[2];
3047 dst->u[3] = src0->u[3] + src1->u[3];
3048 }
3049
3050 static void
3051 micro_udiv(union tgsi_exec_channel *dst,
3052 const union tgsi_exec_channel *src0,
3053 const union tgsi_exec_channel *src1)
3054 {
3055 dst->u[0] = src0->u[0] / src1->u[0];
3056 dst->u[1] = src0->u[1] / src1->u[1];
3057 dst->u[2] = src0->u[2] / src1->u[2];
3058 dst->u[3] = src0->u[3] / src1->u[3];
3059 }
3060
3061 static void
3062 micro_umad(union tgsi_exec_channel *dst,
3063 const union tgsi_exec_channel *src0,
3064 const union tgsi_exec_channel *src1,
3065 const union tgsi_exec_channel *src2)
3066 {
3067 dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
3068 dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
3069 dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
3070 dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
3071 }
3072
3073 static void
3074 micro_umax(union tgsi_exec_channel *dst,
3075 const union tgsi_exec_channel *src0,
3076 const union tgsi_exec_channel *src1)
3077 {
3078 dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
3079 dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
3080 dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
3081 dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
3082 }
3083
3084 static void
3085 micro_umin(union tgsi_exec_channel *dst,
3086 const union tgsi_exec_channel *src0,
3087 const union tgsi_exec_channel *src1)
3088 {
3089 dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
3090 dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
3091 dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
3092 dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
3093 }
3094
3095 static void
3096 micro_umod(union tgsi_exec_channel *dst,
3097 const union tgsi_exec_channel *src0,
3098 const union tgsi_exec_channel *src1)
3099 {
3100 dst->u[0] = src0->u[0] % src1->u[0];
3101 dst->u[1] = src0->u[1] % src1->u[1];
3102 dst->u[2] = src0->u[2] % src1->u[2];
3103 dst->u[3] = src0->u[3] % src1->u[3];
3104 }
3105
3106 static void
3107 micro_umul(union tgsi_exec_channel *dst,
3108 const union tgsi_exec_channel *src0,
3109 const union tgsi_exec_channel *src1)
3110 {
3111 dst->u[0] = src0->u[0] * src1->u[0];
3112 dst->u[1] = src0->u[1] * src1->u[1];
3113 dst->u[2] = src0->u[2] * src1->u[2];
3114 dst->u[3] = src0->u[3] * src1->u[3];
3115 }
3116
3117 static void
3118 micro_useq(union tgsi_exec_channel *dst,
3119 const union tgsi_exec_channel *src0,
3120 const union tgsi_exec_channel *src1)
3121 {
3122 dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
3123 dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
3124 dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
3125 dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
3126 }
3127
3128 static void
3129 micro_usge(union tgsi_exec_channel *dst,
3130 const union tgsi_exec_channel *src0,
3131 const union tgsi_exec_channel *src1)
3132 {
3133 dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
3134 dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
3135 dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
3136 dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
3137 }
3138
3139 static void
3140 micro_ushr(union tgsi_exec_channel *dst,
3141 const union tgsi_exec_channel *src0,
3142 const union tgsi_exec_channel *src1)
3143 {
3144 dst->u[0] = src0->u[0] >> src1->u[0];
3145 dst->u[1] = src0->u[1] >> src1->u[1];
3146 dst->u[2] = src0->u[2] >> src1->u[2];
3147 dst->u[3] = src0->u[3] >> src1->u[3];
3148 }
3149
3150 static void
3151 micro_uslt(union tgsi_exec_channel *dst,
3152 const union tgsi_exec_channel *src0,
3153 const union tgsi_exec_channel *src1)
3154 {
3155 dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
3156 dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
3157 dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
3158 dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
3159 }
3160
3161 static void
3162 micro_usne(union tgsi_exec_channel *dst,
3163 const union tgsi_exec_channel *src0,
3164 const union tgsi_exec_channel *src1)
3165 {
3166 dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
3167 dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
3168 dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
3169 dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
3170 }
3171
3172 static void
3173 exec_instruction(
3174 struct tgsi_exec_machine *mach,
3175 const struct tgsi_full_instruction *inst,
3176 int *pc )
3177 {
3178 union tgsi_exec_channel r[10];
3179
3180 (*pc)++;
3181
3182 switch (inst->Instruction.Opcode) {
3183 case TGSI_OPCODE_ARL:
3184 exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3185 break;
3186
3187 case TGSI_OPCODE_MOV:
3188 exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
3189 break;
3190
3191 case TGSI_OPCODE_LIT:
3192 exec_lit(mach, inst);
3193 break;
3194
3195 case TGSI_OPCODE_RCP:
3196 exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3197 break;
3198
3199 case TGSI_OPCODE_RSQ:
3200 exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3201 break;
3202
3203 case TGSI_OPCODE_EXP:
3204 exec_exp(mach, inst);
3205 break;
3206
3207 case TGSI_OPCODE_LOG:
3208 exec_log(mach, inst);
3209 break;
3210
3211 case TGSI_OPCODE_MUL:
3212 exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3213 break;
3214
3215 case TGSI_OPCODE_ADD:
3216 exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3217 break;
3218
3219 case TGSI_OPCODE_DP3:
3220 exec_dp3(mach, inst);
3221 break;
3222
3223 case TGSI_OPCODE_DP4:
3224 exec_dp4(mach, inst);
3225 break;
3226
3227 case TGSI_OPCODE_DST:
3228 exec_dst(mach, inst);
3229 break;
3230
3231 case TGSI_OPCODE_MIN:
3232 exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3233 break;
3234
3235 case TGSI_OPCODE_MAX:
3236 exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3237 break;
3238
3239 case TGSI_OPCODE_SLT:
3240 exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3241 break;
3242
3243 case TGSI_OPCODE_SGE:
3244 exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3245 break;
3246
3247 case TGSI_OPCODE_MAD:
3248 exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3249 break;
3250
3251 case TGSI_OPCODE_SUB:
3252 exec_vector_binary(mach, inst, micro_sub, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3253 break;
3254
3255 case TGSI_OPCODE_LRP:
3256 exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3257 break;
3258
3259 case TGSI_OPCODE_CND:
3260 exec_vector_trinary(mach, inst, micro_cnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3261 break;
3262
3263 case TGSI_OPCODE_DP2A:
3264 exec_dp2a(mach, inst);
3265 break;
3266
3267 case TGSI_OPCODE_FRC:
3268 exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3269 break;
3270
3271 case TGSI_OPCODE_CLAMP:
3272 exec_vector_trinary(mach, inst, micro_clamp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3273 break;
3274
3275 case TGSI_OPCODE_FLR:
3276 exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3277 break;
3278
3279 case TGSI_OPCODE_ROUND:
3280 exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3281 break;
3282
3283 case TGSI_OPCODE_EX2:
3284 exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3285 break;
3286
3287 case TGSI_OPCODE_LG2:
3288 exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3289 break;
3290
3291 case TGSI_OPCODE_POW:
3292 exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3293 break;
3294
3295 case TGSI_OPCODE_XPD:
3296 exec_xpd(mach, inst);
3297 break;
3298
3299 case TGSI_OPCODE_ABS:
3300 exec_vector_unary(mach, inst, micro_abs, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3301 break;
3302
3303 case TGSI_OPCODE_RCC:
3304 exec_scalar_unary(mach, inst, micro_rcc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3305 break;
3306
3307 case TGSI_OPCODE_DPH:
3308 exec_dph(mach, inst);
3309 break;
3310
3311 case TGSI_OPCODE_COS:
3312 exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3313 break;
3314
3315 case TGSI_OPCODE_DDX:
3316 exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3317 break;
3318
3319 case TGSI_OPCODE_DDY:
3320 exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3321 break;
3322
3323 case TGSI_OPCODE_KILP:
3324 exec_kilp (mach, inst);
3325 break;
3326
3327 case TGSI_OPCODE_KIL:
3328 exec_kil (mach, inst);
3329 break;
3330
3331 case TGSI_OPCODE_PK2H:
3332 assert (0);
3333 break;
3334
3335 case TGSI_OPCODE_PK2US:
3336 assert (0);
3337 break;
3338
3339 case TGSI_OPCODE_PK4B:
3340 assert (0);
3341 break;
3342
3343 case TGSI_OPCODE_PK4UB:
3344 assert (0);
3345 break;
3346
3347 case TGSI_OPCODE_RFL:
3348 exec_rfl(mach, inst);
3349 break;
3350
3351 case TGSI_OPCODE_SEQ:
3352 exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3353 break;
3354
3355 case TGSI_OPCODE_SFL:
3356 exec_vector(mach, inst, micro_sfl, TGSI_EXEC_DATA_FLOAT);
3357 break;
3358
3359 case TGSI_OPCODE_SGT:
3360 exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3361 break;
3362
3363 case TGSI_OPCODE_SIN:
3364 exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3365 break;
3366
3367 case TGSI_OPCODE_SLE:
3368 exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3369 break;
3370
3371 case TGSI_OPCODE_SNE:
3372 exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3373 break;
3374
3375 case TGSI_OPCODE_STR:
3376 exec_vector(mach, inst, micro_str, TGSI_EXEC_DATA_FLOAT);
3377 break;
3378
3379 case TGSI_OPCODE_TEX:
3380 /* simple texture lookup */
3381 /* src[0] = texcoord */
3382 /* src[1] = sampler unit */
3383 exec_tex(mach, inst, TEX_MODIFIER_NONE);
3384 break;
3385
3386 case TGSI_OPCODE_TXB:
3387 /* Texture lookup with lod bias */
3388 /* src[0] = texcoord (src[0].w = LOD bias) */
3389 /* src[1] = sampler unit */
3390 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS);
3391 break;
3392
3393 case TGSI_OPCODE_TXD:
3394 /* Texture lookup with explict partial derivatives */
3395 /* src[0] = texcoord */
3396 /* src[1] = d[strq]/dx */
3397 /* src[2] = d[strq]/dy */
3398 /* src[3] = sampler unit */
3399 exec_txd(mach, inst);
3400 break;
3401
3402 case TGSI_OPCODE_TXL:
3403 /* Texture lookup with explit LOD */
3404 /* src[0] = texcoord (src[0].w = LOD) */
3405 /* src[1] = sampler unit */
3406 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD);
3407 break;
3408
3409 case TGSI_OPCODE_TXP:
3410 /* Texture lookup with projection */
3411 /* src[0] = texcoord (src[0].w = projection) */
3412 /* src[1] = sampler unit */
3413 exec_tex(mach, inst, TEX_MODIFIER_PROJECTED);
3414 break;
3415
3416 case TGSI_OPCODE_UP2H:
3417 assert (0);
3418 break;
3419
3420 case TGSI_OPCODE_UP2US:
3421 assert (0);
3422 break;
3423
3424 case TGSI_OPCODE_UP4B:
3425 assert (0);
3426 break;
3427
3428 case TGSI_OPCODE_UP4UB:
3429 assert (0);
3430 break;
3431
3432 case TGSI_OPCODE_X2D:
3433 exec_x2d(mach, inst);
3434 break;
3435
3436 case TGSI_OPCODE_ARA:
3437 assert (0);
3438 break;
3439
3440 case TGSI_OPCODE_ARR:
3441 exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3442 break;
3443
3444 case TGSI_OPCODE_BRA:
3445 assert (0);
3446 break;
3447
3448 case TGSI_OPCODE_CAL:
3449 /* skip the call if no execution channels are enabled */
3450 if (mach->ExecMask) {
3451 /* do the call */
3452
3453 /* First, record the depths of the execution stacks.
3454 * This is important for deeply nested/looped return statements.
3455 * We have to unwind the stacks by the correct amount. For a
3456 * real code generator, we could determine the number of entries
3457 * to pop off each stack with simple static analysis and avoid
3458 * implementing this data structure at run time.
3459 */
3460 mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
3461 mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
3462 mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
3463 mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
3464 mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
3465 /* note that PC was already incremented above */
3466 mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
3467
3468 mach->CallStackTop++;
3469
3470 /* Second, push the Cond, Loop, Cont, Func stacks */
3471 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3472 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3473 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3474 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3475 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3476 assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
3477
3478 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3479 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
3480 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
3481 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3482 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3483 mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
3484
3485 /* Finally, jump to the subroutine */
3486 *pc = inst->Label.Label;
3487 }
3488 break;
3489
3490 case TGSI_OPCODE_RET:
3491 mach->FuncMask &= ~mach->ExecMask;
3492 UPDATE_EXEC_MASK(mach);
3493
3494 if (mach->FuncMask == 0x0) {
3495 /* really return now (otherwise, keep executing */
3496
3497 if (mach->CallStackTop == 0) {
3498 /* returning from main() */
3499 mach->CondStackTop = 0;
3500 mach->LoopStackTop = 0;
3501 *pc = -1;
3502 return;
3503 }
3504
3505 assert(mach->CallStackTop > 0);
3506 mach->CallStackTop--;
3507
3508 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
3509 mach->CondMask = mach->CondStack[mach->CondStackTop];
3510
3511 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
3512 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
3513
3514 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
3515 mach->ContMask = mach->ContStack[mach->ContStackTop];
3516
3517 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
3518 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
3519
3520 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
3521 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
3522
3523 assert(mach->FuncStackTop > 0);
3524 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
3525
3526 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
3527
3528 UPDATE_EXEC_MASK(mach);
3529 }
3530 break;
3531
3532 case TGSI_OPCODE_SSG:
3533 exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3534 break;
3535
3536 case TGSI_OPCODE_CMP:
3537 exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3538 break;
3539
3540 case TGSI_OPCODE_SCS:
3541 exec_scs(mach, inst);
3542 break;
3543
3544 case TGSI_OPCODE_NRM:
3545 exec_nrm3(mach, inst);
3546 break;
3547
3548 case TGSI_OPCODE_NRM4:
3549 exec_nrm4(mach, inst);
3550 break;
3551
3552 case TGSI_OPCODE_DIV:
3553 exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3554 break;
3555
3556 case TGSI_OPCODE_DP2:
3557 exec_dp2(mach, inst);
3558 break;
3559
3560 case TGSI_OPCODE_IF:
3561 /* push CondMask */
3562 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3563 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3564 FETCH( &r[0], 0, CHAN_X );
3565 /* update CondMask */
3566 if( ! r[0].u[0] ) {
3567 mach->CondMask &= ~0x1;
3568 }
3569 if( ! r[0].u[1] ) {
3570 mach->CondMask &= ~0x2;
3571 }
3572 if( ! r[0].u[2] ) {
3573 mach->CondMask &= ~0x4;
3574 }
3575 if( ! r[0].u[3] ) {
3576 mach->CondMask &= ~0x8;
3577 }
3578 UPDATE_EXEC_MASK(mach);
3579 /* Todo: If CondMask==0, jump to ELSE */
3580 break;
3581
3582 case TGSI_OPCODE_ELSE:
3583 /* invert CondMask wrt previous mask */
3584 {
3585 uint prevMask;
3586 assert(mach->CondStackTop > 0);
3587 prevMask = mach->CondStack[mach->CondStackTop - 1];
3588 mach->CondMask = ~mach->CondMask & prevMask;
3589 UPDATE_EXEC_MASK(mach);
3590 /* Todo: If CondMask==0, jump to ENDIF */
3591 }
3592 break;
3593
3594 case TGSI_OPCODE_ENDIF:
3595 /* pop CondMask */
3596 assert(mach->CondStackTop > 0);
3597 mach->CondMask = mach->CondStack[--mach->CondStackTop];
3598 UPDATE_EXEC_MASK(mach);
3599 break;
3600
3601 case TGSI_OPCODE_END:
3602 /* make sure we end primitives which haven't
3603 * been explicitly emitted */
3604 conditional_emit_primitive(mach);
3605 /* halt execution */
3606 *pc = -1;
3607 break;
3608
3609 case TGSI_OPCODE_PUSHA:
3610 assert (0);
3611 break;
3612
3613 case TGSI_OPCODE_POPA:
3614 assert (0);
3615 break;
3616
3617 case TGSI_OPCODE_CEIL:
3618 exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3619 break;
3620
3621 case TGSI_OPCODE_I2F:
3622 exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
3623 break;
3624
3625 case TGSI_OPCODE_NOT:
3626 exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3627 break;
3628
3629 case TGSI_OPCODE_TRUNC:
3630 exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3631 break;
3632
3633 case TGSI_OPCODE_SHL:
3634 exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3635 break;
3636
3637 case TGSI_OPCODE_AND:
3638 exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3639 break;
3640
3641 case TGSI_OPCODE_OR:
3642 exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3643 break;
3644
3645 case TGSI_OPCODE_MOD:
3646 assert (0);
3647 break;
3648
3649 case TGSI_OPCODE_XOR:
3650 exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3651 break;
3652
3653 case TGSI_OPCODE_SAD:
3654 assert (0);
3655 break;
3656
3657 case TGSI_OPCODE_TXF:
3658 assert (0);
3659 break;
3660
3661 case TGSI_OPCODE_TXQ:
3662 assert (0);
3663 break;
3664
3665 case TGSI_OPCODE_EMIT:
3666 emit_vertex(mach);
3667 break;
3668
3669 case TGSI_OPCODE_ENDPRIM:
3670 emit_primitive(mach);
3671 break;
3672
3673 case TGSI_OPCODE_BGNLOOP:
3674 /* push LoopMask and ContMasks */
3675 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3676 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3677 assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3678 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3679
3680 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
3681 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
3682 mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
3683 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3684 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
3685 break;
3686
3687 case TGSI_OPCODE_ENDLOOP:
3688 /* Restore ContMask, but don't pop */
3689 assert(mach->ContStackTop > 0);
3690 mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
3691 UPDATE_EXEC_MASK(mach);
3692 if (mach->ExecMask) {
3693 /* repeat loop: jump to instruction just past BGNLOOP */
3694 assert(mach->LoopLabelStackTop > 0);
3695 *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
3696 }
3697 else {
3698 /* exit loop: pop LoopMask */
3699 assert(mach->LoopStackTop > 0);
3700 mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
3701 /* pop ContMask */
3702 assert(mach->ContStackTop > 0);
3703 mach->ContMask = mach->ContStack[--mach->ContStackTop];
3704 assert(mach->LoopLabelStackTop > 0);
3705 --mach->LoopLabelStackTop;
3706
3707 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3708 }
3709 UPDATE_EXEC_MASK(mach);
3710 break;
3711
3712 case TGSI_OPCODE_BRK:
3713 exec_break(mach);
3714 break;
3715
3716 case TGSI_OPCODE_CONT:
3717 /* turn off cont channels for each enabled exec channel */
3718 mach->ContMask &= ~mach->ExecMask;
3719 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3720 UPDATE_EXEC_MASK(mach);
3721 break;
3722
3723 case TGSI_OPCODE_BGNSUB:
3724 /* no-op */
3725 break;
3726
3727 case TGSI_OPCODE_ENDSUB:
3728 /*
3729 * XXX: This really should be a no-op. We should never reach this opcode.
3730 */
3731
3732 assert(mach->CallStackTop > 0);
3733 mach->CallStackTop--;
3734
3735 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
3736 mach->CondMask = mach->CondStack[mach->CondStackTop];
3737
3738 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
3739 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
3740
3741 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
3742 mach->ContMask = mach->ContStack[mach->ContStackTop];
3743
3744 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
3745 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
3746
3747 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
3748 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
3749
3750 assert(mach->FuncStackTop > 0);
3751 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
3752
3753 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
3754
3755 UPDATE_EXEC_MASK(mach);
3756 break;
3757
3758 case TGSI_OPCODE_NOP:
3759 break;
3760
3761 case TGSI_OPCODE_BREAKC:
3762 FETCH(&r[0], 0, CHAN_X);
3763 /* update CondMask */
3764 if (r[0].u[0] && (mach->ExecMask & 0x1)) {
3765 mach->LoopMask &= ~0x1;
3766 }
3767 if (r[0].u[1] && (mach->ExecMask & 0x2)) {
3768 mach->LoopMask &= ~0x2;
3769 }
3770 if (r[0].u[2] && (mach->ExecMask & 0x4)) {
3771 mach->LoopMask &= ~0x4;
3772 }
3773 if (r[0].u[3] && (mach->ExecMask & 0x8)) {
3774 mach->LoopMask &= ~0x8;
3775 }
3776 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3777 UPDATE_EXEC_MASK(mach);
3778 break;
3779
3780 case TGSI_OPCODE_F2I:
3781 exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3782 break;
3783
3784 case TGSI_OPCODE_IDIV:
3785 exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3786 break;
3787
3788 case TGSI_OPCODE_IMAX:
3789 exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3790 break;
3791
3792 case TGSI_OPCODE_IMIN:
3793 exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3794 break;
3795
3796 case TGSI_OPCODE_INEG:
3797 exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3798 break;
3799
3800 case TGSI_OPCODE_ISGE:
3801 exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3802 break;
3803
3804 case TGSI_OPCODE_ISHR:
3805 exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3806 break;
3807
3808 case TGSI_OPCODE_ISLT:
3809 exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3810 break;
3811
3812 case TGSI_OPCODE_F2U:
3813 exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
3814 break;
3815
3816 case TGSI_OPCODE_U2F:
3817 exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
3818 break;
3819
3820 case TGSI_OPCODE_UADD:
3821 exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3822 break;
3823
3824 case TGSI_OPCODE_UDIV:
3825 exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3826 break;
3827
3828 case TGSI_OPCODE_UMAD:
3829 exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3830 break;
3831
3832 case TGSI_OPCODE_UMAX:
3833 exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3834 break;
3835
3836 case TGSI_OPCODE_UMIN:
3837 exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3838 break;
3839
3840 case TGSI_OPCODE_UMOD:
3841 exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3842 break;
3843
3844 case TGSI_OPCODE_UMUL:
3845 exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3846 break;
3847
3848 case TGSI_OPCODE_USEQ:
3849 exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3850 break;
3851
3852 case TGSI_OPCODE_USGE:
3853 exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3854 break;
3855
3856 case TGSI_OPCODE_USHR:
3857 exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3858 break;
3859
3860 case TGSI_OPCODE_USLT:
3861 exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3862 break;
3863
3864 case TGSI_OPCODE_USNE:
3865 exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3866 break;
3867
3868 case TGSI_OPCODE_SWITCH:
3869 exec_switch(mach, inst);
3870 break;
3871
3872 case TGSI_OPCODE_CASE:
3873 exec_case(mach, inst);
3874 break;
3875
3876 case TGSI_OPCODE_DEFAULT:
3877 exec_default(mach);
3878 break;
3879
3880 case TGSI_OPCODE_ENDSWITCH:
3881 exec_endswitch(mach);
3882 break;
3883
3884 case TGSI_OPCODE_LOAD:
3885 assert(0);
3886 break;
3887
3888 case TGSI_OPCODE_LOAD_MS:
3889 assert(0);
3890 break;
3891
3892 case TGSI_OPCODE_SAMPLE:
3893 exec_sample(mach, inst, TEX_MODIFIER_NONE);
3894 break;
3895
3896 case TGSI_OPCODE_SAMPLE_B:
3897 exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS);
3898 break;
3899
3900 case TGSI_OPCODE_SAMPLE_C:
3901 exec_sample(mach, inst, TEX_MODIFIER_NONE);
3902 break;
3903
3904 case TGSI_OPCODE_SAMPLE_C_LZ:
3905 exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS);
3906 break;
3907
3908 case TGSI_OPCODE_SAMPLE_D:
3909 exec_sample_d(mach, inst);
3910 break;
3911
3912 case TGSI_OPCODE_SAMPLE_L:
3913 exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD);
3914 break;
3915
3916 case TGSI_OPCODE_GATHER4:
3917 assert(0);
3918 break;
3919
3920 case TGSI_OPCODE_RESINFO:
3921 assert(0);
3922 break;
3923
3924 case TGSI_OPCODE_SAMPLE_POS:
3925 assert(0);
3926 break;
3927
3928 case TGSI_OPCODE_SAMPLE_INFO:
3929 assert(0);
3930 break;
3931
3932 default:
3933 assert( 0 );
3934 }
3935 }
3936
3937
3938 #define DEBUG_EXECUTION 0
3939
3940
3941 /**
3942 * Run TGSI interpreter.
3943 * \return bitmask of "alive" quad components
3944 */
3945 uint
3946 tgsi_exec_machine_run( struct tgsi_exec_machine *mach )
3947 {
3948 uint i;
3949 int pc = 0;
3950
3951 mach->CondMask = 0xf;
3952 mach->LoopMask = 0xf;
3953 mach->ContMask = 0xf;
3954 mach->FuncMask = 0xf;
3955 mach->ExecMask = 0xf;
3956
3957 mach->Switch.mask = 0xf;
3958
3959 assert(mach->CondStackTop == 0);
3960 assert(mach->LoopStackTop == 0);
3961 assert(mach->ContStackTop == 0);
3962 assert(mach->SwitchStackTop == 0);
3963 assert(mach->BreakStackTop == 0);
3964 assert(mach->CallStackTop == 0);
3965
3966 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
3967 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
3968
3969 if( mach->Processor == TGSI_PROCESSOR_GEOMETRY ) {
3970 mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
3971 mach->Primitives[0] = 0;
3972 }
3973
3974 /* execute declarations (interpolants) */
3975 for (i = 0; i < mach->NumDeclarations; i++) {
3976 exec_declaration( mach, mach->Declarations+i );
3977 }
3978
3979 {
3980 #if DEBUG_EXECUTION
3981 struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
3982 struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
3983 uint inst = 1;
3984
3985 memcpy(temps, mach->Temps, sizeof(temps));
3986 memcpy(outputs, mach->Outputs, sizeof(outputs));
3987 #endif
3988
3989 /* execute instructions, until pc is set to -1 */
3990 while (pc != -1) {
3991
3992 #if DEBUG_EXECUTION
3993 uint i;
3994
3995 tgsi_dump_instruction(&mach->Instructions[pc], inst++);
3996 #endif
3997
3998 assert(pc < (int) mach->NumInstructions);
3999 exec_instruction(mach, mach->Instructions + pc, &pc);
4000
4001 #if DEBUG_EXECUTION
4002 for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
4003 if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
4004 uint j;
4005
4006 memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
4007 debug_printf("TEMP[%2u] = ", i);
4008 for (j = 0; j < 4; j++) {
4009 if (j > 0) {
4010 debug_printf(" ");
4011 }
4012 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4013 temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
4014 temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
4015 temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
4016 temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
4017 }
4018 }
4019 }
4020 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
4021 if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
4022 uint j;
4023
4024 memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
4025 debug_printf("OUT[%2u] = ", i);
4026 for (j = 0; j < 4; j++) {
4027 if (j > 0) {
4028 debug_printf(" ");
4029 }
4030 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4031 outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
4032 outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
4033 outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
4034 outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
4035 }
4036 }
4037 }
4038 #endif
4039 }
4040 }
4041
4042 #if 0
4043 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
4044 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
4045 /*
4046 * Scale back depth component.
4047 */
4048 for (i = 0; i < 4; i++)
4049 mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
4050 }
4051 #endif
4052
4053 /* Strictly speaking, these assertions aren't really needed but they
4054 * can potentially catch some bugs in the control flow code.
4055 */
4056 assert(mach->CondStackTop == 0);
4057 assert(mach->LoopStackTop == 0);
4058 assert(mach->ContStackTop == 0);
4059 assert(mach->SwitchStackTop == 0);
4060 assert(mach->BreakStackTop == 0);
4061 assert(mach->CallStackTop == 0);
4062
4063 return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4064 }