tgsi: exec TGSI_OPCODE_SQRT as a scalar instruction, not vector
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_exec.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009-2010 VMware, Inc. All rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * TGSI interpreter/executor.
31 *
32 * Flow control information:
33 *
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
38 *
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers. This is the ExecMask.
42 * See store_dest().
43 *
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47 *
48 *
49 * Authors:
50 * Michal Krol
51 * Brian Paul
52 */
53
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_memory.h"
62 #include "util/u_math.h"
63
64
65 #define DEBUG_EXECUTION 0
66
67
68 #define FAST_MATH 0
69
70 #define TILE_TOP_LEFT 0
71 #define TILE_TOP_RIGHT 1
72 #define TILE_BOTTOM_LEFT 2
73 #define TILE_BOTTOM_RIGHT 3
74
75 static void
76 micro_abs(union tgsi_exec_channel *dst,
77 const union tgsi_exec_channel *src)
78 {
79 dst->f[0] = fabsf(src->f[0]);
80 dst->f[1] = fabsf(src->f[1]);
81 dst->f[2] = fabsf(src->f[2]);
82 dst->f[3] = fabsf(src->f[3]);
83 }
84
85 static void
86 micro_arl(union tgsi_exec_channel *dst,
87 const union tgsi_exec_channel *src)
88 {
89 dst->i[0] = (int)floorf(src->f[0]);
90 dst->i[1] = (int)floorf(src->f[1]);
91 dst->i[2] = (int)floorf(src->f[2]);
92 dst->i[3] = (int)floorf(src->f[3]);
93 }
94
95 static void
96 micro_arr(union tgsi_exec_channel *dst,
97 const union tgsi_exec_channel *src)
98 {
99 dst->i[0] = (int)floorf(src->f[0] + 0.5f);
100 dst->i[1] = (int)floorf(src->f[1] + 0.5f);
101 dst->i[2] = (int)floorf(src->f[2] + 0.5f);
102 dst->i[3] = (int)floorf(src->f[3] + 0.5f);
103 }
104
105 static void
106 micro_ceil(union tgsi_exec_channel *dst,
107 const union tgsi_exec_channel *src)
108 {
109 dst->f[0] = ceilf(src->f[0]);
110 dst->f[1] = ceilf(src->f[1]);
111 dst->f[2] = ceilf(src->f[2]);
112 dst->f[3] = ceilf(src->f[3]);
113 }
114
115 static void
116 micro_clamp(union tgsi_exec_channel *dst,
117 const union tgsi_exec_channel *src0,
118 const union tgsi_exec_channel *src1,
119 const union tgsi_exec_channel *src2)
120 {
121 dst->f[0] = src0->f[0] < src1->f[0] ? src1->f[0] : src0->f[0] > src2->f[0] ? src2->f[0] : src0->f[0];
122 dst->f[1] = src0->f[1] < src1->f[1] ? src1->f[1] : src0->f[1] > src2->f[1] ? src2->f[1] : src0->f[1];
123 dst->f[2] = src0->f[2] < src1->f[2] ? src1->f[2] : src0->f[2] > src2->f[2] ? src2->f[2] : src0->f[2];
124 dst->f[3] = src0->f[3] < src1->f[3] ? src1->f[3] : src0->f[3] > src2->f[3] ? src2->f[3] : src0->f[3];
125 }
126
127 static void
128 micro_cmp(union tgsi_exec_channel *dst,
129 const union tgsi_exec_channel *src0,
130 const union tgsi_exec_channel *src1,
131 const union tgsi_exec_channel *src2)
132 {
133 dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
134 dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
135 dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
136 dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
137 }
138
139 static void
140 micro_cnd(union tgsi_exec_channel *dst,
141 const union tgsi_exec_channel *src0,
142 const union tgsi_exec_channel *src1,
143 const union tgsi_exec_channel *src2)
144 {
145 dst->f[0] = src2->f[0] > 0.5f ? src0->f[0] : src1->f[0];
146 dst->f[1] = src2->f[1] > 0.5f ? src0->f[1] : src1->f[1];
147 dst->f[2] = src2->f[2] > 0.5f ? src0->f[2] : src1->f[2];
148 dst->f[3] = src2->f[3] > 0.5f ? src0->f[3] : src1->f[3];
149 }
150
151 static void
152 micro_cos(union tgsi_exec_channel *dst,
153 const union tgsi_exec_channel *src)
154 {
155 dst->f[0] = cosf(src->f[0]);
156 dst->f[1] = cosf(src->f[1]);
157 dst->f[2] = cosf(src->f[2]);
158 dst->f[3] = cosf(src->f[3]);
159 }
160
161 static void
162 micro_ddx(union tgsi_exec_channel *dst,
163 const union tgsi_exec_channel *src)
164 {
165 dst->f[0] =
166 dst->f[1] =
167 dst->f[2] =
168 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
169 }
170
171 static void
172 micro_ddy(union tgsi_exec_channel *dst,
173 const union tgsi_exec_channel *src)
174 {
175 dst->f[0] =
176 dst->f[1] =
177 dst->f[2] =
178 dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
179 }
180
181 static void
182 micro_exp2(union tgsi_exec_channel *dst,
183 const union tgsi_exec_channel *src)
184 {
185 #if FAST_MATH
186 dst->f[0] = util_fast_exp2(src->f[0]);
187 dst->f[1] = util_fast_exp2(src->f[1]);
188 dst->f[2] = util_fast_exp2(src->f[2]);
189 dst->f[3] = util_fast_exp2(src->f[3]);
190 #else
191 #if DEBUG
192 /* Inf is okay for this instruction, so clamp it to silence assertions. */
193 uint i;
194 union tgsi_exec_channel clamped;
195
196 for (i = 0; i < 4; i++) {
197 if (src->f[i] > 127.99999f) {
198 clamped.f[i] = 127.99999f;
199 } else if (src->f[i] < -126.99999f) {
200 clamped.f[i] = -126.99999f;
201 } else {
202 clamped.f[i] = src->f[i];
203 }
204 }
205 src = &clamped;
206 #endif /* DEBUG */
207
208 dst->f[0] = powf(2.0f, src->f[0]);
209 dst->f[1] = powf(2.0f, src->f[1]);
210 dst->f[2] = powf(2.0f, src->f[2]);
211 dst->f[3] = powf(2.0f, src->f[3]);
212 #endif /* FAST_MATH */
213 }
214
215 static void
216 micro_flr(union tgsi_exec_channel *dst,
217 const union tgsi_exec_channel *src)
218 {
219 dst->f[0] = floorf(src->f[0]);
220 dst->f[1] = floorf(src->f[1]);
221 dst->f[2] = floorf(src->f[2]);
222 dst->f[3] = floorf(src->f[3]);
223 }
224
225 static void
226 micro_frc(union tgsi_exec_channel *dst,
227 const union tgsi_exec_channel *src)
228 {
229 dst->f[0] = src->f[0] - floorf(src->f[0]);
230 dst->f[1] = src->f[1] - floorf(src->f[1]);
231 dst->f[2] = src->f[2] - floorf(src->f[2]);
232 dst->f[3] = src->f[3] - floorf(src->f[3]);
233 }
234
235 static void
236 micro_iabs(union tgsi_exec_channel *dst,
237 const union tgsi_exec_channel *src)
238 {
239 dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
240 dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
241 dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
242 dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
243 }
244
245 static void
246 micro_ineg(union tgsi_exec_channel *dst,
247 const union tgsi_exec_channel *src)
248 {
249 dst->i[0] = -src->i[0];
250 dst->i[1] = -src->i[1];
251 dst->i[2] = -src->i[2];
252 dst->i[3] = -src->i[3];
253 }
254
255 static void
256 micro_lg2(union tgsi_exec_channel *dst,
257 const union tgsi_exec_channel *src)
258 {
259 #if FAST_MATH
260 dst->f[0] = util_fast_log2(src->f[0]);
261 dst->f[1] = util_fast_log2(src->f[1]);
262 dst->f[2] = util_fast_log2(src->f[2]);
263 dst->f[3] = util_fast_log2(src->f[3]);
264 #else
265 dst->f[0] = logf(src->f[0]) * 1.442695f;
266 dst->f[1] = logf(src->f[1]) * 1.442695f;
267 dst->f[2] = logf(src->f[2]) * 1.442695f;
268 dst->f[3] = logf(src->f[3]) * 1.442695f;
269 #endif
270 }
271
272 static void
273 micro_lrp(union tgsi_exec_channel *dst,
274 const union tgsi_exec_channel *src0,
275 const union tgsi_exec_channel *src1,
276 const union tgsi_exec_channel *src2)
277 {
278 dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
279 dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
280 dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
281 dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
282 }
283
284 static void
285 micro_mad(union tgsi_exec_channel *dst,
286 const union tgsi_exec_channel *src0,
287 const union tgsi_exec_channel *src1,
288 const union tgsi_exec_channel *src2)
289 {
290 dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
291 dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
292 dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
293 dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
294 }
295
296 static void
297 micro_mov(union tgsi_exec_channel *dst,
298 const union tgsi_exec_channel *src)
299 {
300 dst->u[0] = src->u[0];
301 dst->u[1] = src->u[1];
302 dst->u[2] = src->u[2];
303 dst->u[3] = src->u[3];
304 }
305
306 static void
307 micro_rcp(union tgsi_exec_channel *dst,
308 const union tgsi_exec_channel *src)
309 {
310 #if 0 /* for debugging */
311 assert(src->f[0] != 0.0f);
312 assert(src->f[1] != 0.0f);
313 assert(src->f[2] != 0.0f);
314 assert(src->f[3] != 0.0f);
315 #endif
316 dst->f[0] = 1.0f / src->f[0];
317 dst->f[1] = 1.0f / src->f[1];
318 dst->f[2] = 1.0f / src->f[2];
319 dst->f[3] = 1.0f / src->f[3];
320 }
321
322 static void
323 micro_rnd(union tgsi_exec_channel *dst,
324 const union tgsi_exec_channel *src)
325 {
326 dst->f[0] = floorf(src->f[0] + 0.5f);
327 dst->f[1] = floorf(src->f[1] + 0.5f);
328 dst->f[2] = floorf(src->f[2] + 0.5f);
329 dst->f[3] = floorf(src->f[3] + 0.5f);
330 }
331
332 static void
333 micro_rsq(union tgsi_exec_channel *dst,
334 const union tgsi_exec_channel *src)
335 {
336 #if 0 /* for debugging */
337 assert(src->f[0] != 0.0f);
338 assert(src->f[1] != 0.0f);
339 assert(src->f[2] != 0.0f);
340 assert(src->f[3] != 0.0f);
341 #endif
342 dst->f[0] = 1.0f / sqrtf(fabsf(src->f[0]));
343 dst->f[1] = 1.0f / sqrtf(fabsf(src->f[1]));
344 dst->f[2] = 1.0f / sqrtf(fabsf(src->f[2]));
345 dst->f[3] = 1.0f / sqrtf(fabsf(src->f[3]));
346 }
347
348 static void
349 micro_sqrt(union tgsi_exec_channel *dst,
350 const union tgsi_exec_channel *src)
351 {
352 dst->f[0] = sqrtf(fabsf(src->f[0]));
353 dst->f[1] = sqrtf(fabsf(src->f[1]));
354 dst->f[2] = sqrtf(fabsf(src->f[2]));
355 dst->f[3] = sqrtf(fabsf(src->f[3]));
356 }
357
358 static void
359 micro_seq(union tgsi_exec_channel *dst,
360 const union tgsi_exec_channel *src0,
361 const union tgsi_exec_channel *src1)
362 {
363 dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
364 dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
365 dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
366 dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
367 }
368
369 static void
370 micro_sge(union tgsi_exec_channel *dst,
371 const union tgsi_exec_channel *src0,
372 const union tgsi_exec_channel *src1)
373 {
374 dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
375 dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
376 dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
377 dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
378 }
379
380 static void
381 micro_sgn(union tgsi_exec_channel *dst,
382 const union tgsi_exec_channel *src)
383 {
384 dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
385 dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
386 dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
387 dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
388 }
389
390 static void
391 micro_isgn(union tgsi_exec_channel *dst,
392 const union tgsi_exec_channel *src)
393 {
394 dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0;
395 dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0;
396 dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0;
397 dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0;
398 }
399
400 static void
401 micro_sgt(union tgsi_exec_channel *dst,
402 const union tgsi_exec_channel *src0,
403 const union tgsi_exec_channel *src1)
404 {
405 dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
406 dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
407 dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
408 dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
409 }
410
411 static void
412 micro_sin(union tgsi_exec_channel *dst,
413 const union tgsi_exec_channel *src)
414 {
415 dst->f[0] = sinf(src->f[0]);
416 dst->f[1] = sinf(src->f[1]);
417 dst->f[2] = sinf(src->f[2]);
418 dst->f[3] = sinf(src->f[3]);
419 }
420
421 static void
422 micro_sle(union tgsi_exec_channel *dst,
423 const union tgsi_exec_channel *src0,
424 const union tgsi_exec_channel *src1)
425 {
426 dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
427 dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
428 dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
429 dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
430 }
431
432 static void
433 micro_slt(union tgsi_exec_channel *dst,
434 const union tgsi_exec_channel *src0,
435 const union tgsi_exec_channel *src1)
436 {
437 dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
438 dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
439 dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
440 dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
441 }
442
443 static void
444 micro_sne(union tgsi_exec_channel *dst,
445 const union tgsi_exec_channel *src0,
446 const union tgsi_exec_channel *src1)
447 {
448 dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
449 dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
450 dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
451 dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
452 }
453
454 static void
455 micro_sfl(union tgsi_exec_channel *dst)
456 {
457 dst->f[0] = 0.0f;
458 dst->f[1] = 0.0f;
459 dst->f[2] = 0.0f;
460 dst->f[3] = 0.0f;
461 }
462
463 static void
464 micro_str(union tgsi_exec_channel *dst)
465 {
466 dst->f[0] = 1.0f;
467 dst->f[1] = 1.0f;
468 dst->f[2] = 1.0f;
469 dst->f[3] = 1.0f;
470 }
471
472 static void
473 micro_trunc(union tgsi_exec_channel *dst,
474 const union tgsi_exec_channel *src)
475 {
476 dst->f[0] = (float)(int)src->f[0];
477 dst->f[1] = (float)(int)src->f[1];
478 dst->f[2] = (float)(int)src->f[2];
479 dst->f[3] = (float)(int)src->f[3];
480 }
481
482
483 enum tgsi_exec_datatype {
484 TGSI_EXEC_DATA_FLOAT,
485 TGSI_EXEC_DATA_INT,
486 TGSI_EXEC_DATA_UINT
487 };
488
489 /*
490 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
491 */
492 #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
493 #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
494 #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
495 #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
496 #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
497 #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
498
499
500 /** The execution mask depends on the conditional mask and the loop mask */
501 #define UPDATE_EXEC_MASK(MACH) \
502 MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
503
504
505 static const union tgsi_exec_channel ZeroVec =
506 { { 0.0, 0.0, 0.0, 0.0 } };
507
508 static const union tgsi_exec_channel OneVec = {
509 {1.0f, 1.0f, 1.0f, 1.0f}
510 };
511
512 static const union tgsi_exec_channel P128Vec = {
513 {128.0f, 128.0f, 128.0f, 128.0f}
514 };
515
516 static const union tgsi_exec_channel M128Vec = {
517 {-128.0f, -128.0f, -128.0f, -128.0f}
518 };
519
520
521 /**
522 * Assert that none of the float values in 'chan' are infinite or NaN.
523 * NaN and Inf may occur normally during program execution and should
524 * not lead to crashes, etc. But when debugging, it's helpful to catch
525 * them.
526 */
527 static INLINE void
528 check_inf_or_nan(const union tgsi_exec_channel *chan)
529 {
530 assert(!util_is_inf_or_nan((chan)->f[0]));
531 assert(!util_is_inf_or_nan((chan)->f[1]));
532 assert(!util_is_inf_or_nan((chan)->f[2]));
533 assert(!util_is_inf_or_nan((chan)->f[3]));
534 }
535
536
537 #ifdef DEBUG
538 static void
539 print_chan(const char *msg, const union tgsi_exec_channel *chan)
540 {
541 debug_printf("%s = {%f, %f, %f, %f}\n",
542 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
543 }
544 #endif
545
546
547 #ifdef DEBUG
548 static void
549 print_temp(const struct tgsi_exec_machine *mach, uint index)
550 {
551 const struct tgsi_exec_vector *tmp = &mach->Temps[index];
552 int i;
553 debug_printf("Temp[%u] =\n", index);
554 for (i = 0; i < 4; i++) {
555 debug_printf(" %c: { %f, %f, %f, %f }\n",
556 "XYZW"[i],
557 tmp->xyzw[i].f[0],
558 tmp->xyzw[i].f[1],
559 tmp->xyzw[i].f[2],
560 tmp->xyzw[i].f[3]);
561 }
562 }
563 #endif
564
565
566 void
567 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
568 unsigned num_bufs,
569 const void **bufs,
570 const unsigned *buf_sizes)
571 {
572 unsigned i;
573
574 for (i = 0; i < num_bufs; i++) {
575 mach->Consts[i] = bufs[i];
576 mach->ConstsSize[i] = buf_sizes[i];
577 }
578 }
579
580
581 /**
582 * Check if there's a potential src/dst register data dependency when
583 * using SOA execution.
584 * Example:
585 * MOV T, T.yxwz;
586 * This would expand into:
587 * MOV t0, t1;
588 * MOV t1, t0;
589 * MOV t2, t3;
590 * MOV t3, t2;
591 * The second instruction will have the wrong value for t0 if executed as-is.
592 */
593 boolean
594 tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
595 {
596 uint i, chan;
597
598 uint writemask = inst->Dst[0].Register.WriteMask;
599 if (writemask == TGSI_WRITEMASK_X ||
600 writemask == TGSI_WRITEMASK_Y ||
601 writemask == TGSI_WRITEMASK_Z ||
602 writemask == TGSI_WRITEMASK_W ||
603 writemask == TGSI_WRITEMASK_NONE) {
604 /* no chance of data dependency */
605 return FALSE;
606 }
607
608 /* loop over src regs */
609 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
610 if ((inst->Src[i].Register.File ==
611 inst->Dst[0].Register.File) &&
612 ((inst->Src[i].Register.Index ==
613 inst->Dst[0].Register.Index) ||
614 inst->Src[i].Register.Indirect ||
615 inst->Dst[0].Register.Indirect)) {
616 /* loop over dest channels */
617 uint channelsWritten = 0x0;
618 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
619 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
620 /* check if we're reading a channel that's been written */
621 uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
622 if (channelsWritten & (1 << swizzle)) {
623 return TRUE;
624 }
625
626 channelsWritten |= (1 << chan);
627 }
628 }
629 }
630 }
631 return FALSE;
632 }
633
634
635 /**
636 * Initialize machine state by expanding tokens to full instructions,
637 * allocating temporary storage, setting up constants, etc.
638 * After this, we can call tgsi_exec_machine_run() many times.
639 */
640 void
641 tgsi_exec_machine_bind_shader(
642 struct tgsi_exec_machine *mach,
643 const struct tgsi_token *tokens,
644 struct tgsi_sampler *sampler)
645 {
646 uint k;
647 struct tgsi_parse_context parse;
648 struct tgsi_full_instruction *instructions;
649 struct tgsi_full_declaration *declarations;
650 uint maxInstructions = 10, numInstructions = 0;
651 uint maxDeclarations = 10, numDeclarations = 0;
652
653 #if 0
654 tgsi_dump(tokens, 0);
655 #endif
656
657 util_init_math();
658
659
660 mach->Tokens = tokens;
661 mach->Sampler = sampler;
662
663 if (!tokens) {
664 /* unbind and free all */
665 FREE(mach->Declarations);
666 mach->Declarations = NULL;
667 mach->NumDeclarations = 0;
668
669 FREE(mach->Instructions);
670 mach->Instructions = NULL;
671 mach->NumInstructions = 0;
672
673 return;
674 }
675
676 k = tgsi_parse_init (&parse, mach->Tokens);
677 if (k != TGSI_PARSE_OK) {
678 debug_printf( "Problem parsing!\n" );
679 return;
680 }
681
682 mach->Processor = parse.FullHeader.Processor.Processor;
683 mach->ImmLimit = 0;
684 mach->NumOutputs = 0;
685
686 if (mach->Processor == TGSI_PROCESSOR_GEOMETRY &&
687 !mach->UsedGeometryShader) {
688 struct tgsi_exec_vector *inputs;
689 struct tgsi_exec_vector *outputs;
690
691 inputs = align_malloc(sizeof(struct tgsi_exec_vector) *
692 TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS,
693 16);
694
695 if (!inputs)
696 return;
697
698 outputs = align_malloc(sizeof(struct tgsi_exec_vector) *
699 TGSI_MAX_TOTAL_VERTICES, 16);
700
701 if (!outputs) {
702 align_free(inputs);
703 return;
704 }
705
706 align_free(mach->Inputs);
707 align_free(mach->Outputs);
708
709 mach->Inputs = inputs;
710 mach->Outputs = outputs;
711 mach->UsedGeometryShader = TRUE;
712 }
713
714 declarations = (struct tgsi_full_declaration *)
715 MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
716
717 if (!declarations) {
718 return;
719 }
720
721 instructions = (struct tgsi_full_instruction *)
722 MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
723
724 if (!instructions) {
725 FREE( declarations );
726 return;
727 }
728
729 while( !tgsi_parse_end_of_tokens( &parse ) ) {
730 uint i;
731
732 tgsi_parse_token( &parse );
733 switch( parse.FullToken.Token.Type ) {
734 case TGSI_TOKEN_TYPE_DECLARATION:
735 /* save expanded declaration */
736 if (numDeclarations == maxDeclarations) {
737 declarations = REALLOC(declarations,
738 maxDeclarations
739 * sizeof(struct tgsi_full_declaration),
740 (maxDeclarations + 10)
741 * sizeof(struct tgsi_full_declaration));
742 maxDeclarations += 10;
743 }
744 if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
745 unsigned reg;
746 for (reg = parse.FullToken.FullDeclaration.Range.First;
747 reg <= parse.FullToken.FullDeclaration.Range.Last;
748 ++reg) {
749 ++mach->NumOutputs;
750 }
751 }
752 memcpy(declarations + numDeclarations,
753 &parse.FullToken.FullDeclaration,
754 sizeof(declarations[0]));
755 numDeclarations++;
756 break;
757
758 case TGSI_TOKEN_TYPE_IMMEDIATE:
759 {
760 uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
761 assert( size <= 4 );
762 assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES );
763
764 for( i = 0; i < size; i++ ) {
765 mach->Imms[mach->ImmLimit][i] =
766 parse.FullToken.FullImmediate.u[i].Float;
767 }
768 mach->ImmLimit += 1;
769 }
770 break;
771
772 case TGSI_TOKEN_TYPE_INSTRUCTION:
773
774 /* save expanded instruction */
775 if (numInstructions == maxInstructions) {
776 instructions = REALLOC(instructions,
777 maxInstructions
778 * sizeof(struct tgsi_full_instruction),
779 (maxInstructions + 10)
780 * sizeof(struct tgsi_full_instruction));
781 maxInstructions += 10;
782 }
783
784 memcpy(instructions + numInstructions,
785 &parse.FullToken.FullInstruction,
786 sizeof(instructions[0]));
787
788 numInstructions++;
789 break;
790
791 case TGSI_TOKEN_TYPE_PROPERTY:
792 break;
793
794 default:
795 assert( 0 );
796 }
797 }
798 tgsi_parse_free (&parse);
799
800 FREE(mach->Declarations);
801 mach->Declarations = declarations;
802 mach->NumDeclarations = numDeclarations;
803
804 FREE(mach->Instructions);
805 mach->Instructions = instructions;
806 mach->NumInstructions = numInstructions;
807 }
808
809
810 struct tgsi_exec_machine *
811 tgsi_exec_machine_create( void )
812 {
813 struct tgsi_exec_machine *mach;
814 uint i;
815
816 mach = align_malloc( sizeof *mach, 16 );
817 if (!mach)
818 goto fail;
819
820 memset(mach, 0, sizeof(*mach));
821
822 mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
823 mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
824 mach->Predicates = &mach->Temps[TGSI_EXEC_TEMP_P0];
825
826 mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_ATTRIBS, 16);
827 mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_ATTRIBS, 16);
828 if (!mach->Inputs || !mach->Outputs)
829 goto fail;
830
831 /* Setup constants needed by the SSE2 executor. */
832 for( i = 0; i < 4; i++ ) {
833 mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
834 mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
835 mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
836 mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF; /* not used */
837 mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
838 mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f; /* not used */
839 mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
840 mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
841 mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
842 mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
843 }
844
845 #ifdef DEBUG
846 /* silence warnings */
847 (void) print_chan;
848 (void) print_temp;
849 #endif
850
851 return mach;
852
853 fail:
854 if (mach) {
855 align_free(mach->Inputs);
856 align_free(mach->Outputs);
857 align_free(mach);
858 }
859 return NULL;
860 }
861
862
863 void
864 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
865 {
866 if (mach) {
867 FREE(mach->Instructions);
868 FREE(mach->Declarations);
869
870 align_free(mach->Inputs);
871 align_free(mach->Outputs);
872
873 align_free(mach);
874 }
875 }
876
877 static void
878 micro_add(union tgsi_exec_channel *dst,
879 const union tgsi_exec_channel *src0,
880 const union tgsi_exec_channel *src1)
881 {
882 dst->f[0] = src0->f[0] + src1->f[0];
883 dst->f[1] = src0->f[1] + src1->f[1];
884 dst->f[2] = src0->f[2] + src1->f[2];
885 dst->f[3] = src0->f[3] + src1->f[3];
886 }
887
888 static void
889 micro_div(
890 union tgsi_exec_channel *dst,
891 const union tgsi_exec_channel *src0,
892 const union tgsi_exec_channel *src1 )
893 {
894 if (src1->f[0] != 0) {
895 dst->f[0] = src0->f[0] / src1->f[0];
896 }
897 if (src1->f[1] != 0) {
898 dst->f[1] = src0->f[1] / src1->f[1];
899 }
900 if (src1->f[2] != 0) {
901 dst->f[2] = src0->f[2] / src1->f[2];
902 }
903 if (src1->f[3] != 0) {
904 dst->f[3] = src0->f[3] / src1->f[3];
905 }
906 }
907
908 static void
909 micro_rcc(union tgsi_exec_channel *dst,
910 const union tgsi_exec_channel *src)
911 {
912 uint i;
913
914 for (i = 0; i < 4; i++) {
915 float recip = 1.0f / src->f[i];
916
917 if (recip > 0.0f) {
918 if (recip > 1.884467e+019f) {
919 dst->f[i] = 1.884467e+019f;
920 }
921 else if (recip < 5.42101e-020f) {
922 dst->f[i] = 5.42101e-020f;
923 }
924 else {
925 dst->f[i] = recip;
926 }
927 }
928 else {
929 if (recip < -1.884467e+019f) {
930 dst->f[i] = -1.884467e+019f;
931 }
932 else if (recip > -5.42101e-020f) {
933 dst->f[i] = -5.42101e-020f;
934 }
935 else {
936 dst->f[i] = recip;
937 }
938 }
939 }
940 }
941
942 static void
943 micro_lt(
944 union tgsi_exec_channel *dst,
945 const union tgsi_exec_channel *src0,
946 const union tgsi_exec_channel *src1,
947 const union tgsi_exec_channel *src2,
948 const union tgsi_exec_channel *src3 )
949 {
950 dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
951 dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
952 dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
953 dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
954 }
955
956 static void
957 micro_max(union tgsi_exec_channel *dst,
958 const union tgsi_exec_channel *src0,
959 const union tgsi_exec_channel *src1)
960 {
961 dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
962 dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
963 dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
964 dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
965 }
966
967 static void
968 micro_min(union tgsi_exec_channel *dst,
969 const union tgsi_exec_channel *src0,
970 const union tgsi_exec_channel *src1)
971 {
972 dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
973 dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
974 dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
975 dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
976 }
977
978 static void
979 micro_mul(union tgsi_exec_channel *dst,
980 const union tgsi_exec_channel *src0,
981 const union tgsi_exec_channel *src1)
982 {
983 dst->f[0] = src0->f[0] * src1->f[0];
984 dst->f[1] = src0->f[1] * src1->f[1];
985 dst->f[2] = src0->f[2] * src1->f[2];
986 dst->f[3] = src0->f[3] * src1->f[3];
987 }
988
989 static void
990 micro_neg(
991 union tgsi_exec_channel *dst,
992 const union tgsi_exec_channel *src )
993 {
994 dst->f[0] = -src->f[0];
995 dst->f[1] = -src->f[1];
996 dst->f[2] = -src->f[2];
997 dst->f[3] = -src->f[3];
998 }
999
1000 static void
1001 micro_pow(
1002 union tgsi_exec_channel *dst,
1003 const union tgsi_exec_channel *src0,
1004 const union tgsi_exec_channel *src1 )
1005 {
1006 #if FAST_MATH
1007 dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
1008 dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
1009 dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
1010 dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
1011 #else
1012 dst->f[0] = powf( src0->f[0], src1->f[0] );
1013 dst->f[1] = powf( src0->f[1], src1->f[1] );
1014 dst->f[2] = powf( src0->f[2], src1->f[2] );
1015 dst->f[3] = powf( src0->f[3], src1->f[3] );
1016 #endif
1017 }
1018
1019 static void
1020 micro_sub(union tgsi_exec_channel *dst,
1021 const union tgsi_exec_channel *src0,
1022 const union tgsi_exec_channel *src1)
1023 {
1024 dst->f[0] = src0->f[0] - src1->f[0];
1025 dst->f[1] = src0->f[1] - src1->f[1];
1026 dst->f[2] = src0->f[2] - src1->f[2];
1027 dst->f[3] = src0->f[3] - src1->f[3];
1028 }
1029
1030 static void
1031 fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1032 const uint chan_index,
1033 const uint file,
1034 const uint swizzle,
1035 const union tgsi_exec_channel *index,
1036 const union tgsi_exec_channel *index2D,
1037 union tgsi_exec_channel *chan)
1038 {
1039 uint i;
1040
1041 assert(swizzle < 4);
1042
1043 switch (file) {
1044 case TGSI_FILE_CONSTANT:
1045 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1046 assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
1047 assert(mach->Consts[index2D->i[i]]);
1048
1049 if (index->i[i] < 0) {
1050 chan->u[i] = 0;
1051 } else {
1052 /* NOTE: copying the const value as a uint instead of float */
1053 const uint constbuf = index2D->i[i];
1054 const uint *buf = (const uint *)mach->Consts[constbuf];
1055 const int pos = index->i[i] * 4 + swizzle;
1056 /* const buffer bounds check */
1057 if (pos < 0 || pos >= (int) mach->ConstsSize[constbuf]) {
1058 if (0) {
1059 /* Debug: print warning */
1060 static int count = 0;
1061 if (count++ < 100)
1062 debug_printf("TGSI Exec: const buffer index %d"
1063 " out of bounds\n", pos);
1064 }
1065 chan->u[i] = 0;
1066 }
1067 else
1068 chan->u[i] = buf[pos];
1069 }
1070 }
1071 break;
1072
1073 case TGSI_FILE_INPUT:
1074 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1075 /*
1076 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1077 debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1078 index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1079 index2D->i[i], index->i[i]);
1080 }*/
1081 int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1082 assert(pos >= 0);
1083 assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
1084 chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1085 }
1086 break;
1087
1088 case TGSI_FILE_SYSTEM_VALUE:
1089 /* XXX no swizzling at this point. Will be needed if we put
1090 * gl_FragCoord, for example, in a sys value register.
1091 */
1092 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1093 chan->u[i] = mach->SystemValue[index->i[i]].u[i];
1094 }
1095 break;
1096
1097 case TGSI_FILE_TEMPORARY:
1098 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1099 assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1100 assert(index2D->i[i] == 0);
1101
1102 chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1103 }
1104 break;
1105
1106 case TGSI_FILE_IMMEDIATE:
1107 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1108 assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1109 assert(index2D->i[i] == 0);
1110
1111 chan->f[i] = mach->Imms[index->i[i]][swizzle];
1112 }
1113 break;
1114
1115 case TGSI_FILE_ADDRESS:
1116 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1117 assert(index->i[i] >= 0);
1118 assert(index2D->i[i] == 0);
1119
1120 chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1121 }
1122 break;
1123
1124 case TGSI_FILE_PREDICATE:
1125 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1126 assert(index->i[i] >= 0 && index->i[i] < TGSI_EXEC_NUM_PREDS);
1127 assert(index2D->i[i] == 0);
1128
1129 chan->u[i] = mach->Predicates[0].xyzw[swizzle].u[i];
1130 }
1131 break;
1132
1133 case TGSI_FILE_OUTPUT:
1134 /* vertex/fragment output vars can be read too */
1135 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1136 assert(index->i[i] >= 0);
1137 assert(index2D->i[i] == 0);
1138
1139 chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1140 }
1141 break;
1142
1143 default:
1144 assert(0);
1145 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1146 chan->u[i] = 0;
1147 }
1148 }
1149 }
1150
1151 static void
1152 fetch_source(const struct tgsi_exec_machine *mach,
1153 union tgsi_exec_channel *chan,
1154 const struct tgsi_full_src_register *reg,
1155 const uint chan_index,
1156 enum tgsi_exec_datatype src_datatype)
1157 {
1158 union tgsi_exec_channel index;
1159 union tgsi_exec_channel index2D;
1160 uint swizzle;
1161
1162 /* We start with a direct index into a register file.
1163 *
1164 * file[1],
1165 * where:
1166 * file = Register.File
1167 * [1] = Register.Index
1168 */
1169 index.i[0] =
1170 index.i[1] =
1171 index.i[2] =
1172 index.i[3] = reg->Register.Index;
1173
1174 /* There is an extra source register that indirectly subscripts
1175 * a register file. The direct index now becomes an offset
1176 * that is being added to the indirect register.
1177 *
1178 * file[ind[2].x+1],
1179 * where:
1180 * ind = Indirect.File
1181 * [2] = Indirect.Index
1182 * .x = Indirect.SwizzleX
1183 */
1184 if (reg->Register.Indirect) {
1185 union tgsi_exec_channel index2;
1186 union tgsi_exec_channel indir_index;
1187 const uint execmask = mach->ExecMask;
1188 uint i;
1189
1190 /* which address register (always zero now) */
1191 index2.i[0] =
1192 index2.i[1] =
1193 index2.i[2] =
1194 index2.i[3] = reg->Indirect.Index;
1195 /* get current value of address register[swizzle] */
1196 swizzle = reg->Indirect.Swizzle;
1197 fetch_src_file_channel(mach,
1198 chan_index,
1199 reg->Indirect.File,
1200 swizzle,
1201 &index2,
1202 &ZeroVec,
1203 &indir_index);
1204
1205 /* add value of address register to the offset */
1206 index.i[0] += indir_index.i[0];
1207 index.i[1] += indir_index.i[1];
1208 index.i[2] += indir_index.i[2];
1209 index.i[3] += indir_index.i[3];
1210
1211 /* for disabled execution channels, zero-out the index to
1212 * avoid using a potential garbage value.
1213 */
1214 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1215 if ((execmask & (1 << i)) == 0)
1216 index.i[i] = 0;
1217 }
1218 }
1219
1220 /* There is an extra source register that is a second
1221 * subscript to a register file. Effectively it means that
1222 * the register file is actually a 2D array of registers.
1223 *
1224 * file[3][1],
1225 * where:
1226 * [3] = Dimension.Index
1227 */
1228 if (reg->Register.Dimension) {
1229 index2D.i[0] =
1230 index2D.i[1] =
1231 index2D.i[2] =
1232 index2D.i[3] = reg->Dimension.Index;
1233
1234 /* Again, the second subscript index can be addressed indirectly
1235 * identically to the first one.
1236 * Nothing stops us from indirectly addressing the indirect register,
1237 * but there is no need for that, so we won't exercise it.
1238 *
1239 * file[ind[4].y+3][1],
1240 * where:
1241 * ind = DimIndirect.File
1242 * [4] = DimIndirect.Index
1243 * .y = DimIndirect.SwizzleX
1244 */
1245 if (reg->Dimension.Indirect) {
1246 union tgsi_exec_channel index2;
1247 union tgsi_exec_channel indir_index;
1248 const uint execmask = mach->ExecMask;
1249 uint i;
1250
1251 index2.i[0] =
1252 index2.i[1] =
1253 index2.i[2] =
1254 index2.i[3] = reg->DimIndirect.Index;
1255
1256 swizzle = reg->DimIndirect.Swizzle;
1257 fetch_src_file_channel(mach,
1258 chan_index,
1259 reg->DimIndirect.File,
1260 swizzle,
1261 &index2,
1262 &ZeroVec,
1263 &indir_index);
1264
1265 index2D.i[0] += indir_index.i[0];
1266 index2D.i[1] += indir_index.i[1];
1267 index2D.i[2] += indir_index.i[2];
1268 index2D.i[3] += indir_index.i[3];
1269
1270 /* for disabled execution channels, zero-out the index to
1271 * avoid using a potential garbage value.
1272 */
1273 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1274 if ((execmask & (1 << i)) == 0) {
1275 index2D.i[i] = 0;
1276 }
1277 }
1278 }
1279
1280 /* If by any chance there was a need for a 3D array of register
1281 * files, we would have to check whether Dimension is followed
1282 * by a dimension register and continue the saga.
1283 */
1284 } else {
1285 index2D.i[0] =
1286 index2D.i[1] =
1287 index2D.i[2] =
1288 index2D.i[3] = 0;
1289 }
1290
1291 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1292 fetch_src_file_channel(mach,
1293 chan_index,
1294 reg->Register.File,
1295 swizzle,
1296 &index,
1297 &index2D,
1298 chan);
1299
1300 if (reg->Register.Absolute) {
1301 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1302 micro_abs(chan, chan);
1303 } else {
1304 micro_iabs(chan, chan);
1305 }
1306 }
1307
1308 if (reg->Register.Negate) {
1309 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1310 micro_neg(chan, chan);
1311 } else {
1312 micro_ineg(chan, chan);
1313 }
1314 }
1315 }
1316
1317 static void
1318 store_dest(struct tgsi_exec_machine *mach,
1319 const union tgsi_exec_channel *chan,
1320 const struct tgsi_full_dst_register *reg,
1321 const struct tgsi_full_instruction *inst,
1322 uint chan_index,
1323 enum tgsi_exec_datatype dst_datatype)
1324 {
1325 uint i;
1326 union tgsi_exec_channel null;
1327 union tgsi_exec_channel *dst;
1328 union tgsi_exec_channel index2D;
1329 uint execmask = mach->ExecMask;
1330 int offset = 0; /* indirection offset */
1331 int index;
1332
1333 /* for debugging */
1334 if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1335 check_inf_or_nan(chan);
1336 }
1337
1338 /* There is an extra source register that indirectly subscripts
1339 * a register file. The direct index now becomes an offset
1340 * that is being added to the indirect register.
1341 *
1342 * file[ind[2].x+1],
1343 * where:
1344 * ind = Indirect.File
1345 * [2] = Indirect.Index
1346 * .x = Indirect.SwizzleX
1347 */
1348 if (reg->Register.Indirect) {
1349 union tgsi_exec_channel index;
1350 union tgsi_exec_channel indir_index;
1351 uint swizzle;
1352
1353 /* which address register (always zero for now) */
1354 index.i[0] =
1355 index.i[1] =
1356 index.i[2] =
1357 index.i[3] = reg->Indirect.Index;
1358
1359 /* get current value of address register[swizzle] */
1360 swizzle = reg->Indirect.Swizzle;
1361
1362 /* fetch values from the address/indirection register */
1363 fetch_src_file_channel(mach,
1364 chan_index,
1365 reg->Indirect.File,
1366 swizzle,
1367 &index,
1368 &ZeroVec,
1369 &indir_index);
1370
1371 /* save indirection offset */
1372 offset = indir_index.i[0];
1373 }
1374
1375 /* There is an extra source register that is a second
1376 * subscript to a register file. Effectively it means that
1377 * the register file is actually a 2D array of registers.
1378 *
1379 * file[3][1],
1380 * where:
1381 * [3] = Dimension.Index
1382 */
1383 if (reg->Register.Dimension) {
1384 index2D.i[0] =
1385 index2D.i[1] =
1386 index2D.i[2] =
1387 index2D.i[3] = reg->Dimension.Index;
1388
1389 /* Again, the second subscript index can be addressed indirectly
1390 * identically to the first one.
1391 * Nothing stops us from indirectly addressing the indirect register,
1392 * but there is no need for that, so we won't exercise it.
1393 *
1394 * file[ind[4].y+3][1],
1395 * where:
1396 * ind = DimIndirect.File
1397 * [4] = DimIndirect.Index
1398 * .y = DimIndirect.SwizzleX
1399 */
1400 if (reg->Dimension.Indirect) {
1401 union tgsi_exec_channel index2;
1402 union tgsi_exec_channel indir_index;
1403 const uint execmask = mach->ExecMask;
1404 unsigned swizzle;
1405 uint i;
1406
1407 index2.i[0] =
1408 index2.i[1] =
1409 index2.i[2] =
1410 index2.i[3] = reg->DimIndirect.Index;
1411
1412 swizzle = reg->DimIndirect.Swizzle;
1413 fetch_src_file_channel(mach,
1414 chan_index,
1415 reg->DimIndirect.File,
1416 swizzle,
1417 &index2,
1418 &ZeroVec,
1419 &indir_index);
1420
1421 index2D.i[0] += indir_index.i[0];
1422 index2D.i[1] += indir_index.i[1];
1423 index2D.i[2] += indir_index.i[2];
1424 index2D.i[3] += indir_index.i[3];
1425
1426 /* for disabled execution channels, zero-out the index to
1427 * avoid using a potential garbage value.
1428 */
1429 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1430 if ((execmask & (1 << i)) == 0) {
1431 index2D.i[i] = 0;
1432 }
1433 }
1434 }
1435
1436 /* If by any chance there was a need for a 3D array of register
1437 * files, we would have to check whether Dimension is followed
1438 * by a dimension register and continue the saga.
1439 */
1440 } else {
1441 index2D.i[0] =
1442 index2D.i[1] =
1443 index2D.i[2] =
1444 index2D.i[3] = 0;
1445 }
1446
1447 switch (reg->Register.File) {
1448 case TGSI_FILE_NULL:
1449 dst = &null;
1450 break;
1451
1452 case TGSI_FILE_OUTPUT:
1453 index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1454 + reg->Register.Index;
1455 dst = &mach->Outputs[offset + index].xyzw[chan_index];
1456 #if 0
1457 debug_printf("NumOutputs = %d, TEMP_O_C/I = %d, redindex = %d\n",
1458 mach->NumOutputs, mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0],
1459 reg->Register.Index);
1460 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1461 debug_printf("STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1462 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1463 if (execmask & (1 << i))
1464 debug_printf("%f, ", chan->f[i]);
1465 debug_printf(")\n");
1466 }
1467 #endif
1468 break;
1469
1470 case TGSI_FILE_TEMPORARY:
1471 index = reg->Register.Index;
1472 assert( index < TGSI_EXEC_NUM_TEMPS );
1473 dst = &mach->Temps[offset + index].xyzw[chan_index];
1474 break;
1475
1476 case TGSI_FILE_ADDRESS:
1477 index = reg->Register.Index;
1478 dst = &mach->Addrs[index].xyzw[chan_index];
1479 break;
1480
1481 case TGSI_FILE_PREDICATE:
1482 index = reg->Register.Index;
1483 assert(index < TGSI_EXEC_NUM_PREDS);
1484 dst = &mach->Predicates[index].xyzw[chan_index];
1485 break;
1486
1487 default:
1488 assert( 0 );
1489 return;
1490 }
1491
1492 if (inst->Instruction.Predicate) {
1493 uint swizzle;
1494 union tgsi_exec_channel *pred;
1495
1496 switch (chan_index) {
1497 case TGSI_CHAN_X:
1498 swizzle = inst->Predicate.SwizzleX;
1499 break;
1500 case TGSI_CHAN_Y:
1501 swizzle = inst->Predicate.SwizzleY;
1502 break;
1503 case TGSI_CHAN_Z:
1504 swizzle = inst->Predicate.SwizzleZ;
1505 break;
1506 case TGSI_CHAN_W:
1507 swizzle = inst->Predicate.SwizzleW;
1508 break;
1509 default:
1510 assert(0);
1511 return;
1512 }
1513
1514 assert(inst->Predicate.Index == 0);
1515
1516 pred = &mach->Predicates[inst->Predicate.Index].xyzw[swizzle];
1517
1518 if (inst->Predicate.Negate) {
1519 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1520 if (pred->u[i]) {
1521 execmask &= ~(1 << i);
1522 }
1523 }
1524 } else {
1525 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1526 if (!pred->u[i]) {
1527 execmask &= ~(1 << i);
1528 }
1529 }
1530 }
1531 }
1532
1533 switch (inst->Instruction.Saturate) {
1534 case TGSI_SAT_NONE:
1535 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1536 if (execmask & (1 << i))
1537 dst->i[i] = chan->i[i];
1538 break;
1539
1540 case TGSI_SAT_ZERO_ONE:
1541 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1542 if (execmask & (1 << i)) {
1543 if (chan->f[i] < 0.0f)
1544 dst->f[i] = 0.0f;
1545 else if (chan->f[i] > 1.0f)
1546 dst->f[i] = 1.0f;
1547 else
1548 dst->i[i] = chan->i[i];
1549 }
1550 break;
1551
1552 case TGSI_SAT_MINUS_PLUS_ONE:
1553 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1554 if (execmask & (1 << i)) {
1555 if (chan->f[i] < -1.0f)
1556 dst->f[i] = -1.0f;
1557 else if (chan->f[i] > 1.0f)
1558 dst->f[i] = 1.0f;
1559 else
1560 dst->i[i] = chan->i[i];
1561 }
1562 break;
1563
1564 default:
1565 assert( 0 );
1566 }
1567 }
1568
1569 #define FETCH(VAL,INDEX,CHAN)\
1570 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1571
1572 #define IFETCH(VAL,INDEX,CHAN)\
1573 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT)
1574
1575
1576 /**
1577 * Execute ARB-style KIL which is predicated by a src register.
1578 * Kill fragment if any of the four values is less than zero.
1579 */
1580 static void
1581 exec_kil(struct tgsi_exec_machine *mach,
1582 const struct tgsi_full_instruction *inst)
1583 {
1584 uint uniquemask;
1585 uint chan_index;
1586 uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1587 union tgsi_exec_channel r[1];
1588
1589 /* This mask stores component bits that were already tested. */
1590 uniquemask = 0;
1591
1592 for (chan_index = 0; chan_index < 4; chan_index++)
1593 {
1594 uint swizzle;
1595 uint i;
1596
1597 /* unswizzle channel */
1598 swizzle = tgsi_util_get_full_src_register_swizzle (
1599 &inst->Src[0],
1600 chan_index);
1601
1602 /* check if the component has not been already tested */
1603 if (uniquemask & (1 << swizzle))
1604 continue;
1605 uniquemask |= 1 << swizzle;
1606
1607 FETCH(&r[0], 0, chan_index);
1608 for (i = 0; i < 4; i++)
1609 if (r[0].f[i] < 0.0f)
1610 kilmask |= 1 << i;
1611 }
1612
1613 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1614 }
1615
1616 /**
1617 * Execute NVIDIA-style KIL which is predicated by a condition code.
1618 * Kill fragment if the condition code is TRUE.
1619 */
1620 static void
1621 exec_kilp(struct tgsi_exec_machine *mach,
1622 const struct tgsi_full_instruction *inst)
1623 {
1624 uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1625
1626 /* "unconditional" kil */
1627 kilmask = mach->ExecMask;
1628 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1629 }
1630
1631 static void
1632 emit_vertex(struct tgsi_exec_machine *mach)
1633 {
1634 /* FIXME: check for exec mask correctly
1635 unsigned i;
1636 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
1637 if ((mach->ExecMask & (1 << i)))
1638 */
1639 if (mach->ExecMask) {
1640 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
1641 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
1642 }
1643 }
1644
1645 static void
1646 emit_primitive(struct tgsi_exec_machine *mach)
1647 {
1648 unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
1649 /* FIXME: check for exec mask correctly
1650 unsigned i;
1651 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
1652 if ((mach->ExecMask & (1 << i)))
1653 */
1654 if (mach->ExecMask) {
1655 ++(*prim_count);
1656 debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
1657 mach->Primitives[*prim_count] = 0;
1658 }
1659 }
1660
1661 static void
1662 conditional_emit_primitive(struct tgsi_exec_machine *mach)
1663 {
1664 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1665 int emitted_verts =
1666 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]];
1667 if (emitted_verts) {
1668 emit_primitive(mach);
1669 }
1670 }
1671 }
1672
1673
1674 /*
1675 * Fetch four texture samples using STR texture coordinates.
1676 */
1677 static void
1678 fetch_texel( struct tgsi_sampler *sampler,
1679 const unsigned sview_idx,
1680 const unsigned sampler_idx,
1681 const union tgsi_exec_channel *s,
1682 const union tgsi_exec_channel *t,
1683 const union tgsi_exec_channel *p,
1684 const union tgsi_exec_channel *c0,
1685 const union tgsi_exec_channel *c1,
1686 float derivs[3][2][TGSI_QUAD_SIZE],
1687 const int8_t offset[3],
1688 enum tgsi_sampler_control control,
1689 union tgsi_exec_channel *r,
1690 union tgsi_exec_channel *g,
1691 union tgsi_exec_channel *b,
1692 union tgsi_exec_channel *a )
1693 {
1694 uint j;
1695 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1696
1697 /* FIXME: handle explicit derivs, offsets */
1698 sampler->get_samples(sampler, sview_idx, sampler_idx,
1699 s->f, t->f, p->f, c0->f, c1->f, derivs, offset, control, rgba);
1700
1701 for (j = 0; j < 4; j++) {
1702 r->f[j] = rgba[0][j];
1703 g->f[j] = rgba[1][j];
1704 b->f[j] = rgba[2][j];
1705 a->f[j] = rgba[3][j];
1706 }
1707 }
1708
1709
1710 #define TEX_MODIFIER_NONE 0
1711 #define TEX_MODIFIER_PROJECTED 1
1712 #define TEX_MODIFIER_LOD_BIAS 2
1713 #define TEX_MODIFIER_EXPLICIT_LOD 3
1714 #define TEX_MODIFIER_LEVEL_ZERO 4
1715
1716
1717 /*
1718 * Fetch all 3 (for s,t,r coords) texel offsets, put them into int array.
1719 */
1720 static void
1721 fetch_texel_offsets(struct tgsi_exec_machine *mach,
1722 const struct tgsi_full_instruction *inst,
1723 int8_t offsets[3])
1724 {
1725 if (inst->Texture.NumOffsets == 1) {
1726 union tgsi_exec_channel index;
1727 union tgsi_exec_channel offset[3];
1728 index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index;
1729 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
1730 inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]);
1731 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
1732 inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]);
1733 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
1734 inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]);
1735 offsets[0] = offset[0].i[0];
1736 offsets[1] = offset[1].i[0];
1737 offsets[2] = offset[2].i[0];
1738 } else {
1739 assert(inst->Texture.NumOffsets == 0);
1740 offsets[0] = offsets[1] = offsets[2] = 0;
1741 }
1742 }
1743
1744
1745 /*
1746 * Fetch dx and dy values for one channel (s, t or r).
1747 * Put dx values into one float array, dy values into another.
1748 */
1749 static void
1750 fetch_assign_deriv_channel(struct tgsi_exec_machine *mach,
1751 const struct tgsi_full_instruction *inst,
1752 unsigned regdsrcx,
1753 unsigned chan,
1754 float derivs[2][TGSI_QUAD_SIZE])
1755 {
1756 union tgsi_exec_channel d;
1757 FETCH(&d, regdsrcx, chan);
1758 derivs[0][0] = d.f[0];
1759 derivs[0][1] = d.f[1];
1760 derivs[0][2] = d.f[2];
1761 derivs[0][3] = d.f[3];
1762 FETCH(&d, regdsrcx + 1, chan);
1763 derivs[1][0] = d.f[0];
1764 derivs[1][1] = d.f[1];
1765 derivs[1][2] = d.f[2];
1766 derivs[1][3] = d.f[3];
1767 }
1768
1769
1770 /*
1771 * execute a texture instruction.
1772 *
1773 * modifier is used to control the channel routing for the\
1774 * instruction variants like proj, lod, and texture with lod bias.
1775 * sampler indicates which src register the sampler is contained in.
1776 */
1777 static void
1778 exec_tex(struct tgsi_exec_machine *mach,
1779 const struct tgsi_full_instruction *inst,
1780 uint modifier, uint sampler)
1781 {
1782 const uint unit = inst->Src[sampler].Register.Index;
1783 const union tgsi_exec_channel *args[5], *proj = NULL;
1784 union tgsi_exec_channel r[5];
1785 enum tgsi_sampler_control control = tgsi_sampler_lod_none;
1786 uint chan;
1787 int8_t offsets[3];
1788 int dim, shadow_ref, i;
1789
1790 /* always fetch all 3 offsets, overkill but keeps code simple */
1791 fetch_texel_offsets(mach, inst, offsets);
1792
1793 assert(modifier != TEX_MODIFIER_LEVEL_ZERO);
1794 assert(inst->Texture.Texture != TGSI_TEXTURE_BUFFER);
1795
1796 dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture, &shadow_ref);
1797
1798 assert(dim <= 4);
1799 if (shadow_ref >= 0)
1800 assert(shadow_ref >= dim && shadow_ref < Elements(args));
1801
1802 /* fetch modifier to the last argument */
1803 if (modifier != TEX_MODIFIER_NONE) {
1804 const int last = Elements(args) - 1;
1805
1806 /* fetch modifier from src0.w or src1.x */
1807 if (sampler == 1) {
1808 assert(dim <= TGSI_CHAN_W && shadow_ref != TGSI_CHAN_W);
1809 FETCH(&r[last], 0, TGSI_CHAN_W);
1810 }
1811 else {
1812 assert(shadow_ref != 4);
1813 FETCH(&r[last], 1, TGSI_CHAN_X);
1814 }
1815
1816 if (modifier != TEX_MODIFIER_PROJECTED) {
1817 args[last] = &r[last];
1818 }
1819 else {
1820 proj = &r[last];
1821 args[last] = &ZeroVec;
1822 }
1823
1824 /* point unused arguments to zero vector */
1825 for (i = dim; i < last; i++)
1826 args[i] = &ZeroVec;
1827
1828 if (modifier == TEX_MODIFIER_EXPLICIT_LOD)
1829 control = tgsi_sampler_lod_explicit;
1830 else if (modifier == TEX_MODIFIER_LOD_BIAS)
1831 control = tgsi_sampler_lod_bias;
1832 }
1833 else {
1834 for (i = dim; i < Elements(args); i++)
1835 args[i] = &ZeroVec;
1836 }
1837
1838 /* fetch coordinates */
1839 for (i = 0; i < dim; i++) {
1840 FETCH(&r[i], 0, TGSI_CHAN_X + i);
1841
1842 if (proj)
1843 micro_div(&r[i], &r[i], proj);
1844
1845 args[i] = &r[i];
1846 }
1847
1848 /* fetch reference value */
1849 if (shadow_ref >= 0) {
1850 FETCH(&r[shadow_ref], shadow_ref / 4, TGSI_CHAN_X + (shadow_ref % 4));
1851
1852 if (proj)
1853 micro_div(&r[shadow_ref], &r[shadow_ref], proj);
1854
1855 args[shadow_ref] = &r[shadow_ref];
1856 }
1857
1858 fetch_texel(mach->Sampler, unit, unit,
1859 args[0], args[1], args[2], args[3], args[4],
1860 NULL, offsets, control,
1861 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1862
1863 #if 0
1864 debug_printf("fetch r: %g %g %g %g\n",
1865 r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
1866 debug_printf("fetch g: %g %g %g %g\n",
1867 r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
1868 debug_printf("fetch b: %g %g %g %g\n",
1869 r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
1870 debug_printf("fetch a: %g %g %g %g\n",
1871 r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
1872 #endif
1873
1874 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1875 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1876 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1877 }
1878 }
1879 }
1880
1881
1882 static void
1883 exec_txd(struct tgsi_exec_machine *mach,
1884 const struct tgsi_full_instruction *inst)
1885 {
1886 const uint unit = inst->Src[3].Register.Index;
1887 union tgsi_exec_channel r[4];
1888 float derivs[3][2][TGSI_QUAD_SIZE];
1889 uint chan;
1890 int8_t offsets[3];
1891
1892 /* always fetch all 3 offsets, overkill but keeps code simple */
1893 fetch_texel_offsets(mach, inst, offsets);
1894
1895 switch (inst->Texture.Texture) {
1896 case TGSI_TEXTURE_1D:
1897 FETCH(&r[0], 0, TGSI_CHAN_X);
1898
1899 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1900
1901 fetch_texel(mach->Sampler, unit, unit,
1902 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
1903 derivs, offsets, tgsi_sampler_derivs_explicit,
1904 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1905 break;
1906
1907 case TGSI_TEXTURE_SHADOW1D:
1908 case TGSI_TEXTURE_1D_ARRAY:
1909 case TGSI_TEXTURE_SHADOW1D_ARRAY:
1910 /* SHADOW1D/1D_ARRAY would not need Y/Z respectively, but don't bother */
1911 FETCH(&r[0], 0, TGSI_CHAN_X);
1912 FETCH(&r[1], 0, TGSI_CHAN_Y);
1913 FETCH(&r[2], 0, TGSI_CHAN_Z);
1914
1915 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1916
1917 fetch_texel(mach->Sampler, unit, unit,
1918 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
1919 derivs, offsets, tgsi_sampler_derivs_explicit,
1920 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1921 break;
1922
1923 case TGSI_TEXTURE_2D:
1924 case TGSI_TEXTURE_RECT:
1925 FETCH(&r[0], 0, TGSI_CHAN_X);
1926 FETCH(&r[1], 0, TGSI_CHAN_Y);
1927
1928 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1929 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
1930
1931 fetch_texel(mach->Sampler, unit, unit,
1932 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
1933 derivs, offsets, tgsi_sampler_derivs_explicit,
1934 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1935 break;
1936
1937
1938 case TGSI_TEXTURE_SHADOW2D:
1939 case TGSI_TEXTURE_SHADOWRECT:
1940 case TGSI_TEXTURE_2D_ARRAY:
1941 case TGSI_TEXTURE_SHADOW2D_ARRAY:
1942 /* only SHADOW2D_ARRAY actually needs W */
1943 FETCH(&r[0], 0, TGSI_CHAN_X);
1944 FETCH(&r[1], 0, TGSI_CHAN_Y);
1945 FETCH(&r[2], 0, TGSI_CHAN_Z);
1946 FETCH(&r[3], 0, TGSI_CHAN_W);
1947
1948 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1949 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
1950
1951 fetch_texel(mach->Sampler, unit, unit,
1952 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
1953 derivs, offsets, tgsi_sampler_derivs_explicit,
1954 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1955 break;
1956
1957 case TGSI_TEXTURE_3D:
1958 case TGSI_TEXTURE_CUBE:
1959 case TGSI_TEXTURE_CUBE_ARRAY:
1960 /* only TEXTURE_CUBE_ARRAY actually needs W */
1961 FETCH(&r[0], 0, TGSI_CHAN_X);
1962 FETCH(&r[1], 0, TGSI_CHAN_Y);
1963 FETCH(&r[2], 0, TGSI_CHAN_Z);
1964 FETCH(&r[3], 0, TGSI_CHAN_W);
1965
1966 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1967 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
1968 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Z, derivs[2]);
1969
1970 fetch_texel(mach->Sampler, unit, unit,
1971 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
1972 derivs, offsets, tgsi_sampler_derivs_explicit,
1973 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1974 break;
1975
1976 default:
1977 assert(0);
1978 }
1979
1980 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1981 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1982 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1983 }
1984 }
1985 }
1986
1987
1988 static void
1989 exec_txf(struct tgsi_exec_machine *mach,
1990 const struct tgsi_full_instruction *inst)
1991 {
1992 const uint unit = inst->Src[1].Register.Index;
1993 union tgsi_exec_channel r[4];
1994 uint chan;
1995 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1996 int j;
1997 int8_t offsets[3];
1998 unsigned target;
1999
2000 /* always fetch all 3 offsets, overkill but keeps code simple */
2001 fetch_texel_offsets(mach, inst, offsets);
2002
2003 IFETCH(&r[3], 0, TGSI_CHAN_W);
2004
2005 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I) {
2006 target = mach->SamplerViews[unit].Resource;
2007 }
2008 else {
2009 target = inst->Texture.Texture;
2010 }
2011 switch(target) {
2012 case TGSI_TEXTURE_3D:
2013 case TGSI_TEXTURE_2D_ARRAY:
2014 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2015 IFETCH(&r[2], 0, TGSI_CHAN_Z);
2016 /* fallthrough */
2017 case TGSI_TEXTURE_2D:
2018 case TGSI_TEXTURE_RECT:
2019 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2020 case TGSI_TEXTURE_SHADOW2D:
2021 case TGSI_TEXTURE_SHADOWRECT:
2022 case TGSI_TEXTURE_1D_ARRAY:
2023 IFETCH(&r[1], 0, TGSI_CHAN_Y);
2024 /* fallthrough */
2025 case TGSI_TEXTURE_BUFFER:
2026 case TGSI_TEXTURE_1D:
2027 case TGSI_TEXTURE_SHADOW1D:
2028 IFETCH(&r[0], 0, TGSI_CHAN_X);
2029 break;
2030 default:
2031 assert(0);
2032 break;
2033 }
2034
2035 mach->Sampler->get_texel(mach->Sampler, unit, r[0].i, r[1].i, r[2].i, r[3].i,
2036 offsets, rgba);
2037
2038 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2039 r[0].f[j] = rgba[0][j];
2040 r[1].f[j] = rgba[1][j];
2041 r[2].f[j] = rgba[2][j];
2042 r[3].f[j] = rgba[3][j];
2043 }
2044
2045 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2046 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2047 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2048 }
2049 }
2050 }
2051
2052 static void
2053 exec_txq(struct tgsi_exec_machine *mach,
2054 const struct tgsi_full_instruction *inst)
2055 {
2056 const uint unit = inst->Src[1].Register.Index;
2057 int result[4];
2058 union tgsi_exec_channel r[4], src;
2059 uint chan;
2060 int i,j;
2061
2062 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
2063
2064 mach->Sampler->get_dims(mach->Sampler, unit, src.i[0], result);
2065
2066 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2067 for (j = 0; j < 4; j++) {
2068 r[j].i[i] = result[j];
2069 }
2070 }
2071
2072 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2073 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2074 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
2075 TGSI_EXEC_DATA_INT);
2076 }
2077 }
2078 }
2079
2080 static void
2081 exec_sample(struct tgsi_exec_machine *mach,
2082 const struct tgsi_full_instruction *inst,
2083 uint modifier, boolean compare)
2084 {
2085 const uint resource_unit = inst->Src[1].Register.Index;
2086 const uint sampler_unit = inst->Src[2].Register.Index;
2087 union tgsi_exec_channel r[4], c1;
2088 const union tgsi_exec_channel *lod = &ZeroVec;
2089 enum tgsi_sampler_control control = tgsi_sampler_lod_none;
2090 uint chan;
2091 int8_t offsets[3];
2092
2093 /* always fetch all 3 offsets, overkill but keeps code simple */
2094 fetch_texel_offsets(mach, inst, offsets);
2095
2096 assert(modifier != TEX_MODIFIER_PROJECTED);
2097
2098 if (modifier != TEX_MODIFIER_NONE) {
2099 if (modifier == TEX_MODIFIER_LOD_BIAS) {
2100 FETCH(&c1, 3, TGSI_CHAN_X);
2101 lod = &c1;
2102 control = tgsi_sampler_lod_bias;
2103 }
2104 else if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
2105 FETCH(&c1, 3, TGSI_CHAN_X);
2106 lod = &c1;
2107 control = tgsi_sampler_lod_explicit;
2108 }
2109 else {
2110 assert(modifier == TEX_MODIFIER_LEVEL_ZERO);
2111 control = tgsi_sampler_lod_zero;
2112 }
2113 }
2114
2115 FETCH(&r[0], 0, TGSI_CHAN_X);
2116
2117 switch (mach->SamplerViews[resource_unit].Resource) {
2118 case TGSI_TEXTURE_1D:
2119 if (compare) {
2120 FETCH(&r[2], 3, TGSI_CHAN_X);
2121 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2122 &r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2123 NULL, offsets, control,
2124 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2125 }
2126 else {
2127 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2128 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2129 NULL, offsets, control,
2130 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2131 }
2132 break;
2133
2134 case TGSI_TEXTURE_1D_ARRAY:
2135 case TGSI_TEXTURE_2D:
2136 case TGSI_TEXTURE_RECT:
2137 FETCH(&r[1], 0, TGSI_CHAN_Y);
2138 if (compare) {
2139 FETCH(&r[2], 3, TGSI_CHAN_X);
2140 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2141 &r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2142 NULL, offsets, control,
2143 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2144 }
2145 else {
2146 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2147 &r[0], &r[1], &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2148 NULL, offsets, control,
2149 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2150 }
2151 break;
2152
2153 case TGSI_TEXTURE_2D_ARRAY:
2154 case TGSI_TEXTURE_3D:
2155 case TGSI_TEXTURE_CUBE:
2156 FETCH(&r[1], 0, TGSI_CHAN_Y);
2157 FETCH(&r[2], 0, TGSI_CHAN_Z);
2158 if(compare) {
2159 FETCH(&r[3], 3, TGSI_CHAN_X);
2160 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2161 &r[0], &r[1], &r[2], &r[3], lod,
2162 NULL, offsets, control,
2163 &r[0], &r[1], &r[2], &r[3]);
2164 }
2165 else {
2166 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2167 &r[0], &r[1], &r[2], &ZeroVec, lod,
2168 NULL, offsets, control,
2169 &r[0], &r[1], &r[2], &r[3]);
2170 }
2171 break;
2172
2173 case TGSI_TEXTURE_CUBE_ARRAY:
2174 FETCH(&r[1], 0, TGSI_CHAN_Y);
2175 FETCH(&r[2], 0, TGSI_CHAN_Z);
2176 FETCH(&r[3], 0, TGSI_CHAN_W);
2177 if(compare) {
2178 FETCH(&r[4], 3, TGSI_CHAN_X);
2179 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2180 &r[0], &r[1], &r[2], &r[3], &r[4],
2181 NULL, offsets, control,
2182 &r[0], &r[1], &r[2], &r[3]);
2183 }
2184 else {
2185 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2186 &r[0], &r[1], &r[2], &r[3], lod,
2187 NULL, offsets, control,
2188 &r[0], &r[1], &r[2], &r[3]);
2189 }
2190 break;
2191
2192
2193 default:
2194 assert(0);
2195 }
2196
2197 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2198 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2199 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2200 }
2201 }
2202 }
2203
2204 static void
2205 exec_sample_d(struct tgsi_exec_machine *mach,
2206 const struct tgsi_full_instruction *inst)
2207 {
2208 const uint resource_unit = inst->Src[1].Register.Index;
2209 const uint sampler_unit = inst->Src[2].Register.Index;
2210 union tgsi_exec_channel r[4];
2211 float derivs[3][2][TGSI_QUAD_SIZE];
2212 uint chan;
2213 int8_t offsets[3];
2214
2215 /* always fetch all 3 offsets, overkill but keeps code simple */
2216 fetch_texel_offsets(mach, inst, offsets);
2217
2218 FETCH(&r[0], 0, TGSI_CHAN_X);
2219
2220 switch (mach->SamplerViews[resource_unit].Resource) {
2221 case TGSI_TEXTURE_1D:
2222 case TGSI_TEXTURE_1D_ARRAY:
2223 /* only 1D array actually needs Y */
2224 FETCH(&r[1], 0, TGSI_CHAN_Y);
2225
2226 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2227
2228 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2229 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2230 derivs, offsets, tgsi_sampler_derivs_explicit,
2231 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2232 break;
2233
2234 case TGSI_TEXTURE_2D:
2235 case TGSI_TEXTURE_RECT:
2236 case TGSI_TEXTURE_2D_ARRAY:
2237 /* only 2D array actually needs Z */
2238 FETCH(&r[1], 0, TGSI_CHAN_Y);
2239 FETCH(&r[2], 0, TGSI_CHAN_Z);
2240
2241 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2242 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2243
2244 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2245 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* inputs */
2246 derivs, offsets, tgsi_sampler_derivs_explicit,
2247 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2248 break;
2249
2250 case TGSI_TEXTURE_3D:
2251 case TGSI_TEXTURE_CUBE:
2252 case TGSI_TEXTURE_CUBE_ARRAY:
2253 /* only cube array actually needs W */
2254 FETCH(&r[1], 0, TGSI_CHAN_Y);
2255 FETCH(&r[2], 0, TGSI_CHAN_Z);
2256 FETCH(&r[3], 0, TGSI_CHAN_W);
2257
2258 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2259 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2260 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Z, derivs[2]);
2261
2262 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2263 &r[0], &r[1], &r[2], &r[3], &ZeroVec,
2264 derivs, offsets, tgsi_sampler_derivs_explicit,
2265 &r[0], &r[1], &r[2], &r[3]);
2266 break;
2267
2268 default:
2269 assert(0);
2270 }
2271
2272 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2273 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2274 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2275 }
2276 }
2277 }
2278
2279
2280 /**
2281 * Evaluate a constant-valued coefficient at the position of the
2282 * current quad.
2283 */
2284 static void
2285 eval_constant_coef(
2286 struct tgsi_exec_machine *mach,
2287 unsigned attrib,
2288 unsigned chan )
2289 {
2290 unsigned i;
2291
2292 for( i = 0; i < TGSI_QUAD_SIZE; i++ ) {
2293 mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2294 }
2295 }
2296
2297 /**
2298 * Evaluate a linear-valued coefficient at the position of the
2299 * current quad.
2300 */
2301 static void
2302 eval_linear_coef(
2303 struct tgsi_exec_machine *mach,
2304 unsigned attrib,
2305 unsigned chan )
2306 {
2307 const float x = mach->QuadPos.xyzw[0].f[0];
2308 const float y = mach->QuadPos.xyzw[1].f[0];
2309 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2310 const float dady = mach->InterpCoefs[attrib].dady[chan];
2311 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2312 mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2313 mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2314 mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2315 mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2316 }
2317
2318 /**
2319 * Evaluate a perspective-valued coefficient at the position of the
2320 * current quad.
2321 */
2322 static void
2323 eval_perspective_coef(
2324 struct tgsi_exec_machine *mach,
2325 unsigned attrib,
2326 unsigned chan )
2327 {
2328 const float x = mach->QuadPos.xyzw[0].f[0];
2329 const float y = mach->QuadPos.xyzw[1].f[0];
2330 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2331 const float dady = mach->InterpCoefs[attrib].dady[chan];
2332 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2333 const float *w = mach->QuadPos.xyzw[3].f;
2334 /* divide by W here */
2335 mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2336 mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2337 mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2338 mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2339 }
2340
2341
2342 typedef void (* eval_coef_func)(
2343 struct tgsi_exec_machine *mach,
2344 unsigned attrib,
2345 unsigned chan );
2346
2347 static void
2348 exec_declaration(struct tgsi_exec_machine *mach,
2349 const struct tgsi_full_declaration *decl)
2350 {
2351 if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) {
2352 mach->SamplerViews[decl->Range.First] = decl->SamplerView;
2353 return;
2354 }
2355
2356 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
2357 if (decl->Declaration.File == TGSI_FILE_INPUT) {
2358 uint first, last, mask;
2359
2360 first = decl->Range.First;
2361 last = decl->Range.Last;
2362 mask = decl->Declaration.UsageMask;
2363
2364 /* XXX we could remove this special-case code since
2365 * mach->InterpCoefs[first].a0 should already have the
2366 * front/back-face value. But we should first update the
2367 * ureg code to emit the right UsageMask value (WRITEMASK_X).
2368 * Then, we could remove the tgsi_exec_machine::Face field.
2369 */
2370 /* XXX make FACE a system value */
2371 if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
2372 uint i;
2373
2374 assert(decl->Semantic.Index == 0);
2375 assert(first == last);
2376
2377 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2378 mach->Inputs[first].xyzw[0].f[i] = mach->Face;
2379 }
2380 } else {
2381 eval_coef_func eval;
2382 uint i, j;
2383
2384 switch (decl->Interp.Interpolate) {
2385 case TGSI_INTERPOLATE_CONSTANT:
2386 eval = eval_constant_coef;
2387 break;
2388
2389 case TGSI_INTERPOLATE_LINEAR:
2390 eval = eval_linear_coef;
2391 break;
2392
2393 case TGSI_INTERPOLATE_PERSPECTIVE:
2394 eval = eval_perspective_coef;
2395 break;
2396
2397 case TGSI_INTERPOLATE_COLOR:
2398 eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef;
2399 break;
2400
2401 default:
2402 assert(0);
2403 return;
2404 }
2405
2406 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2407 if (mask & (1 << j)) {
2408 for (i = first; i <= last; i++) {
2409 eval(mach, i, j);
2410 }
2411 }
2412 }
2413 }
2414
2415 if (DEBUG_EXECUTION) {
2416 uint i, j;
2417 for (i = first; i <= last; ++i) {
2418 debug_printf("IN[%2u] = ", i);
2419 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2420 if (j > 0) {
2421 debug_printf(" ");
2422 }
2423 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
2424 mach->Inputs[i].xyzw[0].f[j], mach->Inputs[i].xyzw[0].u[j],
2425 mach->Inputs[i].xyzw[1].f[j], mach->Inputs[i].xyzw[1].u[j],
2426 mach->Inputs[i].xyzw[2].f[j], mach->Inputs[i].xyzw[2].u[j],
2427 mach->Inputs[i].xyzw[3].f[j], mach->Inputs[i].xyzw[3].u[j]);
2428 }
2429 }
2430 }
2431 }
2432 }
2433
2434 if (decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
2435 mach->SysSemanticToIndex[decl->Declaration.Semantic] = decl->Range.First;
2436 }
2437 }
2438
2439
2440 typedef void (* micro_op)(union tgsi_exec_channel *dst);
2441
2442 static void
2443 exec_vector(struct tgsi_exec_machine *mach,
2444 const struct tgsi_full_instruction *inst,
2445 micro_op op,
2446 enum tgsi_exec_datatype dst_datatype)
2447 {
2448 unsigned int chan;
2449
2450 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2451 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2452 union tgsi_exec_channel dst;
2453
2454 op(&dst);
2455 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2456 }
2457 }
2458 }
2459
2460 typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
2461 const union tgsi_exec_channel *src);
2462
2463 static void
2464 exec_scalar_unary(struct tgsi_exec_machine *mach,
2465 const struct tgsi_full_instruction *inst,
2466 micro_unary_op op,
2467 enum tgsi_exec_datatype dst_datatype,
2468 enum tgsi_exec_datatype src_datatype)
2469 {
2470 unsigned int chan;
2471 union tgsi_exec_channel src;
2472 union tgsi_exec_channel dst;
2473
2474 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
2475 op(&dst, &src);
2476 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2477 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2478 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2479 }
2480 }
2481 }
2482
2483 static void
2484 exec_vector_unary(struct tgsi_exec_machine *mach,
2485 const struct tgsi_full_instruction *inst,
2486 micro_unary_op op,
2487 enum tgsi_exec_datatype dst_datatype,
2488 enum tgsi_exec_datatype src_datatype)
2489 {
2490 unsigned int chan;
2491 struct tgsi_exec_vector dst;
2492
2493 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2494 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2495 union tgsi_exec_channel src;
2496
2497 fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
2498 op(&dst.xyzw[chan], &src);
2499 }
2500 }
2501 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2502 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2503 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2504 }
2505 }
2506 }
2507
2508 typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
2509 const union tgsi_exec_channel *src0,
2510 const union tgsi_exec_channel *src1);
2511
2512 static void
2513 exec_scalar_binary(struct tgsi_exec_machine *mach,
2514 const struct tgsi_full_instruction *inst,
2515 micro_binary_op op,
2516 enum tgsi_exec_datatype dst_datatype,
2517 enum tgsi_exec_datatype src_datatype)
2518 {
2519 unsigned int chan;
2520 union tgsi_exec_channel src[2];
2521 union tgsi_exec_channel dst;
2522
2523 fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype);
2524 fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, src_datatype);
2525 op(&dst, &src[0], &src[1]);
2526 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2527 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2528 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2529 }
2530 }
2531 }
2532
2533 static void
2534 exec_vector_binary(struct tgsi_exec_machine *mach,
2535 const struct tgsi_full_instruction *inst,
2536 micro_binary_op op,
2537 enum tgsi_exec_datatype dst_datatype,
2538 enum tgsi_exec_datatype src_datatype)
2539 {
2540 unsigned int chan;
2541 struct tgsi_exec_vector dst;
2542
2543 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2544 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2545 union tgsi_exec_channel src[2];
2546
2547 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2548 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2549 op(&dst.xyzw[chan], &src[0], &src[1]);
2550 }
2551 }
2552 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2553 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2554 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2555 }
2556 }
2557 }
2558
2559 typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
2560 const union tgsi_exec_channel *src0,
2561 const union tgsi_exec_channel *src1,
2562 const union tgsi_exec_channel *src2);
2563
2564 static void
2565 exec_vector_trinary(struct tgsi_exec_machine *mach,
2566 const struct tgsi_full_instruction *inst,
2567 micro_trinary_op op,
2568 enum tgsi_exec_datatype dst_datatype,
2569 enum tgsi_exec_datatype src_datatype)
2570 {
2571 unsigned int chan;
2572 struct tgsi_exec_vector dst;
2573
2574 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2575 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2576 union tgsi_exec_channel src[3];
2577
2578 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2579 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2580 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
2581 op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
2582 }
2583 }
2584 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2585 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2586 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2587 }
2588 }
2589 }
2590
2591 static void
2592 exec_dp3(struct tgsi_exec_machine *mach,
2593 const struct tgsi_full_instruction *inst)
2594 {
2595 unsigned int chan;
2596 union tgsi_exec_channel arg[3];
2597
2598 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2599 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2600 micro_mul(&arg[2], &arg[0], &arg[1]);
2601
2602 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
2603 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2604 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2605 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2606 }
2607
2608 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2609 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2610 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2611 }
2612 }
2613 }
2614
2615 static void
2616 exec_dp4(struct tgsi_exec_machine *mach,
2617 const struct tgsi_full_instruction *inst)
2618 {
2619 unsigned int chan;
2620 union tgsi_exec_channel arg[3];
2621
2622 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2623 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2624 micro_mul(&arg[2], &arg[0], &arg[1]);
2625
2626 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
2627 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2628 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2629 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2630 }
2631
2632 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2633 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2634 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2635 }
2636 }
2637 }
2638
2639 static void
2640 exec_dp2a(struct tgsi_exec_machine *mach,
2641 const struct tgsi_full_instruction *inst)
2642 {
2643 unsigned int chan;
2644 union tgsi_exec_channel arg[3];
2645
2646 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2647 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2648 micro_mul(&arg[2], &arg[0], &arg[1]);
2649
2650 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2651 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2652 micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2653
2654 fetch_source(mach, &arg[1], &inst->Src[2], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2655 micro_add(&arg[0], &arg[0], &arg[1]);
2656
2657 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2658 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2659 store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2660 }
2661 }
2662 }
2663
2664 static void
2665 exec_dph(struct tgsi_exec_machine *mach,
2666 const struct tgsi_full_instruction *inst)
2667 {
2668 unsigned int chan;
2669 union tgsi_exec_channel arg[3];
2670
2671 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2672 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2673 micro_mul(&arg[2], &arg[0], &arg[1]);
2674
2675 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2676 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2677 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2678
2679 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2680 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2681 micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2682
2683 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2684 micro_add(&arg[0], &arg[0], &arg[1]);
2685
2686 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2687 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2688 store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2689 }
2690 }
2691 }
2692
2693 static void
2694 exec_dp2(struct tgsi_exec_machine *mach,
2695 const struct tgsi_full_instruction *inst)
2696 {
2697 unsigned int chan;
2698 union tgsi_exec_channel arg[3];
2699
2700 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2701 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2702 micro_mul(&arg[2], &arg[0], &arg[1]);
2703
2704 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2705 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2706 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2707
2708 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2709 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2710 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2711 }
2712 }
2713 }
2714
2715 static void
2716 exec_nrm4(struct tgsi_exec_machine *mach,
2717 const struct tgsi_full_instruction *inst)
2718 {
2719 unsigned int chan;
2720 union tgsi_exec_channel arg[4];
2721 union tgsi_exec_channel scale;
2722
2723 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2724 micro_mul(&scale, &arg[0], &arg[0]);
2725
2726 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
2727 union tgsi_exec_channel product;
2728
2729 fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2730 micro_mul(&product, &arg[chan], &arg[chan]);
2731 micro_add(&scale, &scale, &product);
2732 }
2733
2734 micro_rsq(&scale, &scale);
2735
2736 for (chan = TGSI_CHAN_X; chan <= TGSI_CHAN_W; chan++) {
2737 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2738 micro_mul(&arg[chan], &arg[chan], &scale);
2739 store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2740 }
2741 }
2742 }
2743
2744 static void
2745 exec_nrm3(struct tgsi_exec_machine *mach,
2746 const struct tgsi_full_instruction *inst)
2747 {
2748 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2749 unsigned int chan;
2750 union tgsi_exec_channel arg[3];
2751 union tgsi_exec_channel scale;
2752
2753 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2754 micro_mul(&scale, &arg[0], &arg[0]);
2755
2756 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
2757 union tgsi_exec_channel product;
2758
2759 fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2760 micro_mul(&product, &arg[chan], &arg[chan]);
2761 micro_add(&scale, &scale, &product);
2762 }
2763
2764 micro_rsq(&scale, &scale);
2765
2766 for (chan = TGSI_CHAN_X; chan <= TGSI_CHAN_Z; chan++) {
2767 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2768 micro_mul(&arg[chan], &arg[chan], &scale);
2769 store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2770 }
2771 }
2772 }
2773
2774 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2775 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2776 }
2777 }
2778
2779 static void
2780 exec_scs(struct tgsi_exec_machine *mach,
2781 const struct tgsi_full_instruction *inst)
2782 {
2783 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) {
2784 union tgsi_exec_channel arg;
2785 union tgsi_exec_channel result;
2786
2787 fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2788
2789 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2790 micro_cos(&result, &arg);
2791 store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2792 }
2793 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2794 micro_sin(&result, &arg);
2795 store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2796 }
2797 }
2798 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2799 store_dest(mach, &ZeroVec, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2800 }
2801 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2802 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2803 }
2804 }
2805
2806 static void
2807 exec_x2d(struct tgsi_exec_machine *mach,
2808 const struct tgsi_full_instruction *inst)
2809 {
2810 union tgsi_exec_channel r[4];
2811 union tgsi_exec_channel d[2];
2812
2813 fetch_source(mach, &r[0], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2814 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2815 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XZ) {
2816 fetch_source(mach, &r[2], &inst->Src[2], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2817 micro_mul(&r[2], &r[2], &r[0]);
2818 fetch_source(mach, &r[3], &inst->Src[2], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2819 micro_mul(&r[3], &r[3], &r[1]);
2820 micro_add(&r[2], &r[2], &r[3]);
2821 fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2822 micro_add(&d[0], &r[2], &r[3]);
2823 }
2824 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YW) {
2825 fetch_source(mach, &r[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2826 micro_mul(&r[2], &r[2], &r[0]);
2827 fetch_source(mach, &r[3], &inst->Src[2], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2828 micro_mul(&r[3], &r[3], &r[1]);
2829 micro_add(&r[2], &r[2], &r[3]);
2830 fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2831 micro_add(&d[1], &r[2], &r[3]);
2832 }
2833 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2834 store_dest(mach, &d[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2835 }
2836 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2837 store_dest(mach, &d[1], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2838 }
2839 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2840 store_dest(mach, &d[0], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2841 }
2842 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2843 store_dest(mach, &d[1], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2844 }
2845 }
2846
2847 static void
2848 exec_rfl(struct tgsi_exec_machine *mach,
2849 const struct tgsi_full_instruction *inst)
2850 {
2851 union tgsi_exec_channel r[9];
2852
2853 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2854 /* r0 = dp3(src0, src0) */
2855 fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2856 micro_mul(&r[0], &r[2], &r[2]);
2857 fetch_source(mach, &r[4], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2858 micro_mul(&r[8], &r[4], &r[4]);
2859 micro_add(&r[0], &r[0], &r[8]);
2860 fetch_source(mach, &r[6], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2861 micro_mul(&r[8], &r[6], &r[6]);
2862 micro_add(&r[0], &r[0], &r[8]);
2863
2864 /* r1 = dp3(src0, src1) */
2865 fetch_source(mach, &r[3], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2866 micro_mul(&r[1], &r[2], &r[3]);
2867 fetch_source(mach, &r[5], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2868 micro_mul(&r[8], &r[4], &r[5]);
2869 micro_add(&r[1], &r[1], &r[8]);
2870 fetch_source(mach, &r[7], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2871 micro_mul(&r[8], &r[6], &r[7]);
2872 micro_add(&r[1], &r[1], &r[8]);
2873
2874 /* r1 = 2 * r1 / r0 */
2875 micro_add(&r[1], &r[1], &r[1]);
2876 micro_div(&r[1], &r[1], &r[0]);
2877
2878 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2879 micro_mul(&r[2], &r[2], &r[1]);
2880 micro_sub(&r[2], &r[2], &r[3]);
2881 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2882 }
2883 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2884 micro_mul(&r[4], &r[4], &r[1]);
2885 micro_sub(&r[4], &r[4], &r[5]);
2886 store_dest(mach, &r[4], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2887 }
2888 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2889 micro_mul(&r[6], &r[6], &r[1]);
2890 micro_sub(&r[6], &r[6], &r[7]);
2891 store_dest(mach, &r[6], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2892 }
2893 }
2894 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2895 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2896 }
2897 }
2898
2899 static void
2900 exec_xpd(struct tgsi_exec_machine *mach,
2901 const struct tgsi_full_instruction *inst)
2902 {
2903 union tgsi_exec_channel r[6];
2904 union tgsi_exec_channel d[3];
2905
2906 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2907 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2908
2909 micro_mul(&r[2], &r[0], &r[1]);
2910
2911 fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2912 fetch_source(mach, &r[4], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2913
2914 micro_mul(&r[5], &r[3], &r[4] );
2915 micro_sub(&d[TGSI_CHAN_X], &r[2], &r[5]);
2916
2917 fetch_source(mach, &r[2], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2918
2919 micro_mul(&r[3], &r[3], &r[2]);
2920
2921 fetch_source(mach, &r[5], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2922
2923 micro_mul(&r[1], &r[1], &r[5]);
2924 micro_sub(&d[TGSI_CHAN_Y], &r[3], &r[1]);
2925
2926 micro_mul(&r[5], &r[5], &r[4]);
2927 micro_mul(&r[0], &r[0], &r[2]);
2928 micro_sub(&d[TGSI_CHAN_Z], &r[5], &r[0]);
2929
2930 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2931 store_dest(mach, &d[TGSI_CHAN_X], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2932 }
2933 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2934 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2935 }
2936 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2937 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2938 }
2939 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2940 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2941 }
2942 }
2943
2944 static void
2945 exec_dst(struct tgsi_exec_machine *mach,
2946 const struct tgsi_full_instruction *inst)
2947 {
2948 union tgsi_exec_channel r[2];
2949 union tgsi_exec_channel d[4];
2950
2951 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2952 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2953 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2954 micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]);
2955 }
2956 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2957 fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2958 }
2959 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2960 fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2961 }
2962
2963 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2964 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2965 }
2966 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2967 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2968 }
2969 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2970 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2971 }
2972 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2973 store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2974 }
2975 }
2976
2977 static void
2978 exec_log(struct tgsi_exec_machine *mach,
2979 const struct tgsi_full_instruction *inst)
2980 {
2981 union tgsi_exec_channel r[3];
2982
2983 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2984 micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */
2985 micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */
2986 micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */
2987 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2988 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2989 }
2990 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2991 micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */
2992 micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
2993 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2994 }
2995 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2996 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2997 }
2998 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2999 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3000 }
3001 }
3002
3003 static void
3004 exec_exp(struct tgsi_exec_machine *mach,
3005 const struct tgsi_full_instruction *inst)
3006 {
3007 union tgsi_exec_channel r[3];
3008
3009 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3010 micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */
3011 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3012 micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */
3013 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3014 }
3015 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3016 micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
3017 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3018 }
3019 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3020 micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */
3021 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3022 }
3023 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3024 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3025 }
3026 }
3027
3028 static void
3029 exec_lit(struct tgsi_exec_machine *mach,
3030 const struct tgsi_full_instruction *inst)
3031 {
3032 union tgsi_exec_channel r[3];
3033 union tgsi_exec_channel d[3];
3034
3035 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
3036 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3037 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3038 fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3039 micro_max(&r[1], &r[1], &ZeroVec);
3040
3041 fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3042 micro_min(&r[2], &r[2], &P128Vec);
3043 micro_max(&r[2], &r[2], &M128Vec);
3044 micro_pow(&r[1], &r[1], &r[2]);
3045 micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
3046 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3047 }
3048 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3049 micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec);
3050 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3051 }
3052 }
3053 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3054 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3055 }
3056
3057 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3058 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3059 }
3060 }
3061
3062 static void
3063 exec_break(struct tgsi_exec_machine *mach)
3064 {
3065 if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
3066 /* turn off loop channels for each enabled exec channel */
3067 mach->LoopMask &= ~mach->ExecMask;
3068 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3069 UPDATE_EXEC_MASK(mach);
3070 } else {
3071 assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
3072
3073 mach->Switch.mask = 0x0;
3074
3075 UPDATE_EXEC_MASK(mach);
3076 }
3077 }
3078
3079 static void
3080 exec_switch(struct tgsi_exec_machine *mach,
3081 const struct tgsi_full_instruction *inst)
3082 {
3083 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3084 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3085
3086 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3087 fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3088 mach->Switch.mask = 0x0;
3089 mach->Switch.defaultMask = 0x0;
3090
3091 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3092 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
3093
3094 UPDATE_EXEC_MASK(mach);
3095 }
3096
3097 static void
3098 exec_case(struct tgsi_exec_machine *mach,
3099 const struct tgsi_full_instruction *inst)
3100 {
3101 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3102 union tgsi_exec_channel src;
3103 uint mask = 0;
3104
3105 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3106
3107 if (mach->Switch.selector.u[0] == src.u[0]) {
3108 mask |= 0x1;
3109 }
3110 if (mach->Switch.selector.u[1] == src.u[1]) {
3111 mask |= 0x2;
3112 }
3113 if (mach->Switch.selector.u[2] == src.u[2]) {
3114 mask |= 0x4;
3115 }
3116 if (mach->Switch.selector.u[3] == src.u[3]) {
3117 mask |= 0x8;
3118 }
3119
3120 mach->Switch.defaultMask |= mask;
3121
3122 mach->Switch.mask |= mask & prevMask;
3123
3124 UPDATE_EXEC_MASK(mach);
3125 }
3126
3127 /* FIXME: this will only work if default is last */
3128 static void
3129 exec_default(struct tgsi_exec_machine *mach)
3130 {
3131 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3132
3133 mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
3134
3135 UPDATE_EXEC_MASK(mach);
3136 }
3137
3138 static void
3139 exec_endswitch(struct tgsi_exec_machine *mach)
3140 {
3141 mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
3142 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3143
3144 UPDATE_EXEC_MASK(mach);
3145 }
3146
3147 static void
3148 micro_i2f(union tgsi_exec_channel *dst,
3149 const union tgsi_exec_channel *src)
3150 {
3151 dst->f[0] = (float)src->i[0];
3152 dst->f[1] = (float)src->i[1];
3153 dst->f[2] = (float)src->i[2];
3154 dst->f[3] = (float)src->i[3];
3155 }
3156
3157 static void
3158 micro_not(union tgsi_exec_channel *dst,
3159 const union tgsi_exec_channel *src)
3160 {
3161 dst->u[0] = ~src->u[0];
3162 dst->u[1] = ~src->u[1];
3163 dst->u[2] = ~src->u[2];
3164 dst->u[3] = ~src->u[3];
3165 }
3166
3167 static void
3168 micro_shl(union tgsi_exec_channel *dst,
3169 const union tgsi_exec_channel *src0,
3170 const union tgsi_exec_channel *src1)
3171 {
3172 dst->u[0] = src0->u[0] << src1->u[0];
3173 dst->u[1] = src0->u[1] << src1->u[1];
3174 dst->u[2] = src0->u[2] << src1->u[2];
3175 dst->u[3] = src0->u[3] << src1->u[3];
3176 }
3177
3178 static void
3179 micro_and(union tgsi_exec_channel *dst,
3180 const union tgsi_exec_channel *src0,
3181 const union tgsi_exec_channel *src1)
3182 {
3183 dst->u[0] = src0->u[0] & src1->u[0];
3184 dst->u[1] = src0->u[1] & src1->u[1];
3185 dst->u[2] = src0->u[2] & src1->u[2];
3186 dst->u[3] = src0->u[3] & src1->u[3];
3187 }
3188
3189 static void
3190 micro_or(union tgsi_exec_channel *dst,
3191 const union tgsi_exec_channel *src0,
3192 const union tgsi_exec_channel *src1)
3193 {
3194 dst->u[0] = src0->u[0] | src1->u[0];
3195 dst->u[1] = src0->u[1] | src1->u[1];
3196 dst->u[2] = src0->u[2] | src1->u[2];
3197 dst->u[3] = src0->u[3] | src1->u[3];
3198 }
3199
3200 static void
3201 micro_xor(union tgsi_exec_channel *dst,
3202 const union tgsi_exec_channel *src0,
3203 const union tgsi_exec_channel *src1)
3204 {
3205 dst->u[0] = src0->u[0] ^ src1->u[0];
3206 dst->u[1] = src0->u[1] ^ src1->u[1];
3207 dst->u[2] = src0->u[2] ^ src1->u[2];
3208 dst->u[3] = src0->u[3] ^ src1->u[3];
3209 }
3210
3211 static void
3212 micro_mod(union tgsi_exec_channel *dst,
3213 const union tgsi_exec_channel *src0,
3214 const union tgsi_exec_channel *src1)
3215 {
3216 dst->i[0] = src0->i[0] % src1->i[0];
3217 dst->i[1] = src0->i[1] % src1->i[1];
3218 dst->i[2] = src0->i[2] % src1->i[2];
3219 dst->i[3] = src0->i[3] % src1->i[3];
3220 }
3221
3222 static void
3223 micro_f2i(union tgsi_exec_channel *dst,
3224 const union tgsi_exec_channel *src)
3225 {
3226 dst->i[0] = (int)src->f[0];
3227 dst->i[1] = (int)src->f[1];
3228 dst->i[2] = (int)src->f[2];
3229 dst->i[3] = (int)src->f[3];
3230 }
3231
3232 static void
3233 micro_idiv(union tgsi_exec_channel *dst,
3234 const union tgsi_exec_channel *src0,
3235 const union tgsi_exec_channel *src1)
3236 {
3237 dst->i[0] = src0->i[0] / src1->i[0];
3238 dst->i[1] = src0->i[1] / src1->i[1];
3239 dst->i[2] = src0->i[2] / src1->i[2];
3240 dst->i[3] = src0->i[3] / src1->i[3];
3241 }
3242
3243 static void
3244 micro_imax(union tgsi_exec_channel *dst,
3245 const union tgsi_exec_channel *src0,
3246 const union tgsi_exec_channel *src1)
3247 {
3248 dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
3249 dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
3250 dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
3251 dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
3252 }
3253
3254 static void
3255 micro_imin(union tgsi_exec_channel *dst,
3256 const union tgsi_exec_channel *src0,
3257 const union tgsi_exec_channel *src1)
3258 {
3259 dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
3260 dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
3261 dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
3262 dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
3263 }
3264
3265 static void
3266 micro_isge(union tgsi_exec_channel *dst,
3267 const union tgsi_exec_channel *src0,
3268 const union tgsi_exec_channel *src1)
3269 {
3270 dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
3271 dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
3272 dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
3273 dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
3274 }
3275
3276 static void
3277 micro_ishr(union tgsi_exec_channel *dst,
3278 const union tgsi_exec_channel *src0,
3279 const union tgsi_exec_channel *src1)
3280 {
3281 dst->i[0] = src0->i[0] >> src1->i[0];
3282 dst->i[1] = src0->i[1] >> src1->i[1];
3283 dst->i[2] = src0->i[2] >> src1->i[2];
3284 dst->i[3] = src0->i[3] >> src1->i[3];
3285 }
3286
3287 static void
3288 micro_islt(union tgsi_exec_channel *dst,
3289 const union tgsi_exec_channel *src0,
3290 const union tgsi_exec_channel *src1)
3291 {
3292 dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
3293 dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
3294 dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
3295 dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
3296 }
3297
3298 static void
3299 micro_f2u(union tgsi_exec_channel *dst,
3300 const union tgsi_exec_channel *src)
3301 {
3302 dst->u[0] = (uint)src->f[0];
3303 dst->u[1] = (uint)src->f[1];
3304 dst->u[2] = (uint)src->f[2];
3305 dst->u[3] = (uint)src->f[3];
3306 }
3307
3308 static void
3309 micro_u2f(union tgsi_exec_channel *dst,
3310 const union tgsi_exec_channel *src)
3311 {
3312 dst->f[0] = (float)src->u[0];
3313 dst->f[1] = (float)src->u[1];
3314 dst->f[2] = (float)src->u[2];
3315 dst->f[3] = (float)src->u[3];
3316 }
3317
3318 static void
3319 micro_uadd(union tgsi_exec_channel *dst,
3320 const union tgsi_exec_channel *src0,
3321 const union tgsi_exec_channel *src1)
3322 {
3323 dst->u[0] = src0->u[0] + src1->u[0];
3324 dst->u[1] = src0->u[1] + src1->u[1];
3325 dst->u[2] = src0->u[2] + src1->u[2];
3326 dst->u[3] = src0->u[3] + src1->u[3];
3327 }
3328
3329 static void
3330 micro_udiv(union tgsi_exec_channel *dst,
3331 const union tgsi_exec_channel *src0,
3332 const union tgsi_exec_channel *src1)
3333 {
3334 dst->u[0] = src1->u[0] ? src0->u[0] / src1->u[0] : ~0u;
3335 dst->u[1] = src1->u[1] ? src0->u[1] / src1->u[1] : ~0u;
3336 dst->u[2] = src1->u[2] ? src0->u[2] / src1->u[2] : ~0u;
3337 dst->u[3] = src1->u[3] ? src0->u[3] / src1->u[3] : ~0u;
3338 }
3339
3340 static void
3341 micro_umad(union tgsi_exec_channel *dst,
3342 const union tgsi_exec_channel *src0,
3343 const union tgsi_exec_channel *src1,
3344 const union tgsi_exec_channel *src2)
3345 {
3346 dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
3347 dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
3348 dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
3349 dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
3350 }
3351
3352 static void
3353 micro_umax(union tgsi_exec_channel *dst,
3354 const union tgsi_exec_channel *src0,
3355 const union tgsi_exec_channel *src1)
3356 {
3357 dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
3358 dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
3359 dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
3360 dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
3361 }
3362
3363 static void
3364 micro_umin(union tgsi_exec_channel *dst,
3365 const union tgsi_exec_channel *src0,
3366 const union tgsi_exec_channel *src1)
3367 {
3368 dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
3369 dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
3370 dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
3371 dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
3372 }
3373
3374 static void
3375 micro_umod(union tgsi_exec_channel *dst,
3376 const union tgsi_exec_channel *src0,
3377 const union tgsi_exec_channel *src1)
3378 {
3379 dst->u[0] = src1->u[0] ? src0->u[0] % src1->u[0] : ~0u;
3380 dst->u[1] = src1->u[1] ? src0->u[1] % src1->u[1] : ~0u;
3381 dst->u[2] = src1->u[2] ? src0->u[2] % src1->u[2] : ~0u;
3382 dst->u[3] = src1->u[3] ? src0->u[3] % src1->u[3] : ~0u;
3383 }
3384
3385 static void
3386 micro_umul(union tgsi_exec_channel *dst,
3387 const union tgsi_exec_channel *src0,
3388 const union tgsi_exec_channel *src1)
3389 {
3390 dst->u[0] = src0->u[0] * src1->u[0];
3391 dst->u[1] = src0->u[1] * src1->u[1];
3392 dst->u[2] = src0->u[2] * src1->u[2];
3393 dst->u[3] = src0->u[3] * src1->u[3];
3394 }
3395
3396 static void
3397 micro_useq(union tgsi_exec_channel *dst,
3398 const union tgsi_exec_channel *src0,
3399 const union tgsi_exec_channel *src1)
3400 {
3401 dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
3402 dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
3403 dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
3404 dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
3405 }
3406
3407 static void
3408 micro_usge(union tgsi_exec_channel *dst,
3409 const union tgsi_exec_channel *src0,
3410 const union tgsi_exec_channel *src1)
3411 {
3412 dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
3413 dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
3414 dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
3415 dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
3416 }
3417
3418 static void
3419 micro_ushr(union tgsi_exec_channel *dst,
3420 const union tgsi_exec_channel *src0,
3421 const union tgsi_exec_channel *src1)
3422 {
3423 dst->u[0] = src0->u[0] >> src1->u[0];
3424 dst->u[1] = src0->u[1] >> src1->u[1];
3425 dst->u[2] = src0->u[2] >> src1->u[2];
3426 dst->u[3] = src0->u[3] >> src1->u[3];
3427 }
3428
3429 static void
3430 micro_uslt(union tgsi_exec_channel *dst,
3431 const union tgsi_exec_channel *src0,
3432 const union tgsi_exec_channel *src1)
3433 {
3434 dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
3435 dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
3436 dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
3437 dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
3438 }
3439
3440 static void
3441 micro_usne(union tgsi_exec_channel *dst,
3442 const union tgsi_exec_channel *src0,
3443 const union tgsi_exec_channel *src1)
3444 {
3445 dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
3446 dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
3447 dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
3448 dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
3449 }
3450
3451 static void
3452 micro_uarl(union tgsi_exec_channel *dst,
3453 const union tgsi_exec_channel *src)
3454 {
3455 dst->i[0] = src->u[0];
3456 dst->i[1] = src->u[1];
3457 dst->i[2] = src->u[2];
3458 dst->i[3] = src->u[3];
3459 }
3460
3461 static void
3462 micro_ucmp(union tgsi_exec_channel *dst,
3463 const union tgsi_exec_channel *src0,
3464 const union tgsi_exec_channel *src1,
3465 const union tgsi_exec_channel *src2)
3466 {
3467 dst->u[0] = src0->u[0] ? src1->u[0] : src2->u[0];
3468 dst->u[1] = src0->u[1] ? src1->u[1] : src2->u[1];
3469 dst->u[2] = src0->u[2] ? src1->u[2] : src2->u[2];
3470 dst->u[3] = src0->u[3] ? src1->u[3] : src2->u[3];
3471 }
3472
3473 static void
3474 exec_instruction(
3475 struct tgsi_exec_machine *mach,
3476 const struct tgsi_full_instruction *inst,
3477 int *pc )
3478 {
3479 union tgsi_exec_channel r[10];
3480
3481 (*pc)++;
3482
3483 switch (inst->Instruction.Opcode) {
3484 case TGSI_OPCODE_ARL:
3485 exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3486 break;
3487
3488 case TGSI_OPCODE_MOV:
3489 exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
3490 break;
3491
3492 case TGSI_OPCODE_LIT:
3493 exec_lit(mach, inst);
3494 break;
3495
3496 case TGSI_OPCODE_RCP:
3497 exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3498 break;
3499
3500 case TGSI_OPCODE_RSQ:
3501 exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3502 break;
3503
3504 case TGSI_OPCODE_EXP:
3505 exec_exp(mach, inst);
3506 break;
3507
3508 case TGSI_OPCODE_LOG:
3509 exec_log(mach, inst);
3510 break;
3511
3512 case TGSI_OPCODE_MUL:
3513 exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3514 break;
3515
3516 case TGSI_OPCODE_ADD:
3517 exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3518 break;
3519
3520 case TGSI_OPCODE_DP3:
3521 exec_dp3(mach, inst);
3522 break;
3523
3524 case TGSI_OPCODE_DP4:
3525 exec_dp4(mach, inst);
3526 break;
3527
3528 case TGSI_OPCODE_DST:
3529 exec_dst(mach, inst);
3530 break;
3531
3532 case TGSI_OPCODE_MIN:
3533 exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3534 break;
3535
3536 case TGSI_OPCODE_MAX:
3537 exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3538 break;
3539
3540 case TGSI_OPCODE_SLT:
3541 exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3542 break;
3543
3544 case TGSI_OPCODE_SGE:
3545 exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3546 break;
3547
3548 case TGSI_OPCODE_MAD:
3549 exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3550 break;
3551
3552 case TGSI_OPCODE_SUB:
3553 exec_vector_binary(mach, inst, micro_sub, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3554 break;
3555
3556 case TGSI_OPCODE_LRP:
3557 exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3558 break;
3559
3560 case TGSI_OPCODE_CND:
3561 exec_vector_trinary(mach, inst, micro_cnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3562 break;
3563
3564 case TGSI_OPCODE_SQRT:
3565 exec_scalar_unary(mach, inst, micro_sqrt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3566 break;
3567
3568 case TGSI_OPCODE_DP2A:
3569 exec_dp2a(mach, inst);
3570 break;
3571
3572 case TGSI_OPCODE_FRC:
3573 exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3574 break;
3575
3576 case TGSI_OPCODE_CLAMP:
3577 exec_vector_trinary(mach, inst, micro_clamp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3578 break;
3579
3580 case TGSI_OPCODE_FLR:
3581 exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3582 break;
3583
3584 case TGSI_OPCODE_ROUND:
3585 exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3586 break;
3587
3588 case TGSI_OPCODE_EX2:
3589 exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3590 break;
3591
3592 case TGSI_OPCODE_LG2:
3593 exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3594 break;
3595
3596 case TGSI_OPCODE_POW:
3597 exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3598 break;
3599
3600 case TGSI_OPCODE_XPD:
3601 exec_xpd(mach, inst);
3602 break;
3603
3604 case TGSI_OPCODE_ABS:
3605 exec_vector_unary(mach, inst, micro_abs, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3606 break;
3607
3608 case TGSI_OPCODE_RCC:
3609 exec_scalar_unary(mach, inst, micro_rcc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3610 break;
3611
3612 case TGSI_OPCODE_DPH:
3613 exec_dph(mach, inst);
3614 break;
3615
3616 case TGSI_OPCODE_COS:
3617 exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3618 break;
3619
3620 case TGSI_OPCODE_DDX:
3621 exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3622 break;
3623
3624 case TGSI_OPCODE_DDY:
3625 exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3626 break;
3627
3628 case TGSI_OPCODE_KILP:
3629 exec_kilp (mach, inst);
3630 break;
3631
3632 case TGSI_OPCODE_KIL:
3633 exec_kil (mach, inst);
3634 break;
3635
3636 case TGSI_OPCODE_PK2H:
3637 assert (0);
3638 break;
3639
3640 case TGSI_OPCODE_PK2US:
3641 assert (0);
3642 break;
3643
3644 case TGSI_OPCODE_PK4B:
3645 assert (0);
3646 break;
3647
3648 case TGSI_OPCODE_PK4UB:
3649 assert (0);
3650 break;
3651
3652 case TGSI_OPCODE_RFL:
3653 exec_rfl(mach, inst);
3654 break;
3655
3656 case TGSI_OPCODE_SEQ:
3657 exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3658 break;
3659
3660 case TGSI_OPCODE_SFL:
3661 exec_vector(mach, inst, micro_sfl, TGSI_EXEC_DATA_FLOAT);
3662 break;
3663
3664 case TGSI_OPCODE_SGT:
3665 exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3666 break;
3667
3668 case TGSI_OPCODE_SIN:
3669 exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3670 break;
3671
3672 case TGSI_OPCODE_SLE:
3673 exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3674 break;
3675
3676 case TGSI_OPCODE_SNE:
3677 exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3678 break;
3679
3680 case TGSI_OPCODE_STR:
3681 exec_vector(mach, inst, micro_str, TGSI_EXEC_DATA_FLOAT);
3682 break;
3683
3684 case TGSI_OPCODE_TEX:
3685 /* simple texture lookup */
3686 /* src[0] = texcoord */
3687 /* src[1] = sampler unit */
3688 exec_tex(mach, inst, TEX_MODIFIER_NONE, 1);
3689 break;
3690
3691 case TGSI_OPCODE_TXB:
3692 /* Texture lookup with lod bias */
3693 /* src[0] = texcoord (src[0].w = LOD bias) */
3694 /* src[1] = sampler unit */
3695 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 1);
3696 break;
3697
3698 case TGSI_OPCODE_TXD:
3699 /* Texture lookup with explict partial derivatives */
3700 /* src[0] = texcoord */
3701 /* src[1] = d[strq]/dx */
3702 /* src[2] = d[strq]/dy */
3703 /* src[3] = sampler unit */
3704 exec_txd(mach, inst);
3705 break;
3706
3707 case TGSI_OPCODE_TXL:
3708 /* Texture lookup with explit LOD */
3709 /* src[0] = texcoord (src[0].w = LOD) */
3710 /* src[1] = sampler unit */
3711 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 1);
3712 break;
3713
3714 case TGSI_OPCODE_TXP:
3715 /* Texture lookup with projection */
3716 /* src[0] = texcoord (src[0].w = projection) */
3717 /* src[1] = sampler unit */
3718 exec_tex(mach, inst, TEX_MODIFIER_PROJECTED, 1);
3719 break;
3720
3721 case TGSI_OPCODE_UP2H:
3722 assert (0);
3723 break;
3724
3725 case TGSI_OPCODE_UP2US:
3726 assert (0);
3727 break;
3728
3729 case TGSI_OPCODE_UP4B:
3730 assert (0);
3731 break;
3732
3733 case TGSI_OPCODE_UP4UB:
3734 assert (0);
3735 break;
3736
3737 case TGSI_OPCODE_X2D:
3738 exec_x2d(mach, inst);
3739 break;
3740
3741 case TGSI_OPCODE_ARA:
3742 assert (0);
3743 break;
3744
3745 case TGSI_OPCODE_ARR:
3746 exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3747 break;
3748
3749 case TGSI_OPCODE_BRA:
3750 assert (0);
3751 break;
3752
3753 case TGSI_OPCODE_CAL:
3754 /* skip the call if no execution channels are enabled */
3755 if (mach->ExecMask) {
3756 /* do the call */
3757
3758 /* First, record the depths of the execution stacks.
3759 * This is important for deeply nested/looped return statements.
3760 * We have to unwind the stacks by the correct amount. For a
3761 * real code generator, we could determine the number of entries
3762 * to pop off each stack with simple static analysis and avoid
3763 * implementing this data structure at run time.
3764 */
3765 mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
3766 mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
3767 mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
3768 mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
3769 mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
3770 /* note that PC was already incremented above */
3771 mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
3772
3773 mach->CallStackTop++;
3774
3775 /* Second, push the Cond, Loop, Cont, Func stacks */
3776 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3777 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3778 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3779 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3780 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3781 assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
3782
3783 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3784 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
3785 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
3786 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3787 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3788 mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
3789
3790 /* Finally, jump to the subroutine */
3791 *pc = inst->Label.Label;
3792 }
3793 break;
3794
3795 case TGSI_OPCODE_RET:
3796 mach->FuncMask &= ~mach->ExecMask;
3797 UPDATE_EXEC_MASK(mach);
3798
3799 if (mach->FuncMask == 0x0) {
3800 /* really return now (otherwise, keep executing */
3801
3802 if (mach->CallStackTop == 0) {
3803 /* returning from main() */
3804 mach->CondStackTop = 0;
3805 mach->LoopStackTop = 0;
3806 *pc = -1;
3807 return;
3808 }
3809
3810 assert(mach->CallStackTop > 0);
3811 mach->CallStackTop--;
3812
3813 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
3814 mach->CondMask = mach->CondStack[mach->CondStackTop];
3815
3816 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
3817 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
3818
3819 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
3820 mach->ContMask = mach->ContStack[mach->ContStackTop];
3821
3822 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
3823 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
3824
3825 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
3826 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
3827
3828 assert(mach->FuncStackTop > 0);
3829 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
3830
3831 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
3832
3833 UPDATE_EXEC_MASK(mach);
3834 }
3835 break;
3836
3837 case TGSI_OPCODE_SSG:
3838 exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3839 break;
3840
3841 case TGSI_OPCODE_CMP:
3842 exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3843 break;
3844
3845 case TGSI_OPCODE_SCS:
3846 exec_scs(mach, inst);
3847 break;
3848
3849 case TGSI_OPCODE_NRM:
3850 exec_nrm3(mach, inst);
3851 break;
3852
3853 case TGSI_OPCODE_NRM4:
3854 exec_nrm4(mach, inst);
3855 break;
3856
3857 case TGSI_OPCODE_DIV:
3858 exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3859 break;
3860
3861 case TGSI_OPCODE_DP2:
3862 exec_dp2(mach, inst);
3863 break;
3864
3865 case TGSI_OPCODE_IF:
3866 /* push CondMask */
3867 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3868 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3869 FETCH( &r[0], 0, TGSI_CHAN_X );
3870 /* update CondMask */
3871 if( ! r[0].f[0] ) {
3872 mach->CondMask &= ~0x1;
3873 }
3874 if( ! r[0].f[1] ) {
3875 mach->CondMask &= ~0x2;
3876 }
3877 if( ! r[0].f[2] ) {
3878 mach->CondMask &= ~0x4;
3879 }
3880 if( ! r[0].f[3] ) {
3881 mach->CondMask &= ~0x8;
3882 }
3883 UPDATE_EXEC_MASK(mach);
3884 /* Todo: If CondMask==0, jump to ELSE */
3885 break;
3886
3887 case TGSI_OPCODE_UIF:
3888 /* push CondMask */
3889 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3890 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3891 IFETCH( &r[0], 0, TGSI_CHAN_X );
3892 /* update CondMask */
3893 if( ! r[0].u[0] ) {
3894 mach->CondMask &= ~0x1;
3895 }
3896 if( ! r[0].u[1] ) {
3897 mach->CondMask &= ~0x2;
3898 }
3899 if( ! r[0].u[2] ) {
3900 mach->CondMask &= ~0x4;
3901 }
3902 if( ! r[0].u[3] ) {
3903 mach->CondMask &= ~0x8;
3904 }
3905 UPDATE_EXEC_MASK(mach);
3906 /* Todo: If CondMask==0, jump to ELSE */
3907 break;
3908
3909 case TGSI_OPCODE_ELSE:
3910 /* invert CondMask wrt previous mask */
3911 {
3912 uint prevMask;
3913 assert(mach->CondStackTop > 0);
3914 prevMask = mach->CondStack[mach->CondStackTop - 1];
3915 mach->CondMask = ~mach->CondMask & prevMask;
3916 UPDATE_EXEC_MASK(mach);
3917 /* Todo: If CondMask==0, jump to ENDIF */
3918 }
3919 break;
3920
3921 case TGSI_OPCODE_ENDIF:
3922 /* pop CondMask */
3923 assert(mach->CondStackTop > 0);
3924 mach->CondMask = mach->CondStack[--mach->CondStackTop];
3925 UPDATE_EXEC_MASK(mach);
3926 break;
3927
3928 case TGSI_OPCODE_END:
3929 /* make sure we end primitives which haven't
3930 * been explicitly emitted */
3931 conditional_emit_primitive(mach);
3932 /* halt execution */
3933 *pc = -1;
3934 break;
3935
3936 case TGSI_OPCODE_PUSHA:
3937 assert (0);
3938 break;
3939
3940 case TGSI_OPCODE_POPA:
3941 assert (0);
3942 break;
3943
3944 case TGSI_OPCODE_CEIL:
3945 exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3946 break;
3947
3948 case TGSI_OPCODE_I2F:
3949 exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
3950 break;
3951
3952 case TGSI_OPCODE_NOT:
3953 exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3954 break;
3955
3956 case TGSI_OPCODE_TRUNC:
3957 exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3958 break;
3959
3960 case TGSI_OPCODE_SHL:
3961 exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3962 break;
3963
3964 case TGSI_OPCODE_AND:
3965 exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3966 break;
3967
3968 case TGSI_OPCODE_OR:
3969 exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3970 break;
3971
3972 case TGSI_OPCODE_MOD:
3973 exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3974 break;
3975
3976 case TGSI_OPCODE_XOR:
3977 exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3978 break;
3979
3980 case TGSI_OPCODE_SAD:
3981 assert (0);
3982 break;
3983
3984 case TGSI_OPCODE_TXF:
3985 exec_txf(mach, inst);
3986 break;
3987
3988 case TGSI_OPCODE_TXQ:
3989 exec_txq(mach, inst);
3990 break;
3991
3992 case TGSI_OPCODE_EMIT:
3993 emit_vertex(mach);
3994 break;
3995
3996 case TGSI_OPCODE_ENDPRIM:
3997 emit_primitive(mach);
3998 break;
3999
4000 case TGSI_OPCODE_BGNLOOP:
4001 /* push LoopMask and ContMasks */
4002 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
4003 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
4004 assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
4005 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
4006
4007 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
4008 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
4009 mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
4010 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
4011 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
4012 break;
4013
4014 case TGSI_OPCODE_ENDLOOP:
4015 /* Restore ContMask, but don't pop */
4016 assert(mach->ContStackTop > 0);
4017 mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
4018 UPDATE_EXEC_MASK(mach);
4019 if (mach->ExecMask) {
4020 /* repeat loop: jump to instruction just past BGNLOOP */
4021 assert(mach->LoopLabelStackTop > 0);
4022 *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
4023 }
4024 else {
4025 /* exit loop: pop LoopMask */
4026 assert(mach->LoopStackTop > 0);
4027 mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
4028 /* pop ContMask */
4029 assert(mach->ContStackTop > 0);
4030 mach->ContMask = mach->ContStack[--mach->ContStackTop];
4031 assert(mach->LoopLabelStackTop > 0);
4032 --mach->LoopLabelStackTop;
4033
4034 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
4035 }
4036 UPDATE_EXEC_MASK(mach);
4037 break;
4038
4039 case TGSI_OPCODE_BRK:
4040 exec_break(mach);
4041 break;
4042
4043 case TGSI_OPCODE_CONT:
4044 /* turn off cont channels for each enabled exec channel */
4045 mach->ContMask &= ~mach->ExecMask;
4046 /* Todo: if mach->LoopMask == 0, jump to end of loop */
4047 UPDATE_EXEC_MASK(mach);
4048 break;
4049
4050 case TGSI_OPCODE_BGNSUB:
4051 /* no-op */
4052 break;
4053
4054 case TGSI_OPCODE_ENDSUB:
4055 /*
4056 * XXX: This really should be a no-op. We should never reach this opcode.
4057 */
4058
4059 assert(mach->CallStackTop > 0);
4060 mach->CallStackTop--;
4061
4062 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
4063 mach->CondMask = mach->CondStack[mach->CondStackTop];
4064
4065 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
4066 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
4067
4068 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
4069 mach->ContMask = mach->ContStack[mach->ContStackTop];
4070
4071 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
4072 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
4073
4074 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
4075 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
4076
4077 assert(mach->FuncStackTop > 0);
4078 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
4079
4080 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
4081
4082 UPDATE_EXEC_MASK(mach);
4083 break;
4084
4085 case TGSI_OPCODE_NOP:
4086 break;
4087
4088 case TGSI_OPCODE_BREAKC:
4089 IFETCH(&r[0], 0, TGSI_CHAN_X);
4090 /* update CondMask */
4091 if (r[0].u[0] && (mach->ExecMask & 0x1)) {
4092 mach->LoopMask &= ~0x1;
4093 }
4094 if (r[0].u[1] && (mach->ExecMask & 0x2)) {
4095 mach->LoopMask &= ~0x2;
4096 }
4097 if (r[0].u[2] && (mach->ExecMask & 0x4)) {
4098 mach->LoopMask &= ~0x4;
4099 }
4100 if (r[0].u[3] && (mach->ExecMask & 0x8)) {
4101 mach->LoopMask &= ~0x8;
4102 }
4103 /* Todo: if mach->LoopMask == 0, jump to end of loop */
4104 UPDATE_EXEC_MASK(mach);
4105 break;
4106
4107 case TGSI_OPCODE_F2I:
4108 exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
4109 break;
4110
4111 case TGSI_OPCODE_IDIV:
4112 exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4113 break;
4114
4115 case TGSI_OPCODE_IMAX:
4116 exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4117 break;
4118
4119 case TGSI_OPCODE_IMIN:
4120 exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4121 break;
4122
4123 case TGSI_OPCODE_INEG:
4124 exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4125 break;
4126
4127 case TGSI_OPCODE_ISGE:
4128 exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4129 break;
4130
4131 case TGSI_OPCODE_ISHR:
4132 exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4133 break;
4134
4135 case TGSI_OPCODE_ISLT:
4136 exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4137 break;
4138
4139 case TGSI_OPCODE_F2U:
4140 exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
4141 break;
4142
4143 case TGSI_OPCODE_U2F:
4144 exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
4145 break;
4146
4147 case TGSI_OPCODE_UADD:
4148 exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4149 break;
4150
4151 case TGSI_OPCODE_UDIV:
4152 exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4153 break;
4154
4155 case TGSI_OPCODE_UMAD:
4156 exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4157 break;
4158
4159 case TGSI_OPCODE_UMAX:
4160 exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4161 break;
4162
4163 case TGSI_OPCODE_UMIN:
4164 exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4165 break;
4166
4167 case TGSI_OPCODE_UMOD:
4168 exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4169 break;
4170
4171 case TGSI_OPCODE_UMUL:
4172 exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4173 break;
4174
4175 case TGSI_OPCODE_USEQ:
4176 exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4177 break;
4178
4179 case TGSI_OPCODE_USGE:
4180 exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4181 break;
4182
4183 case TGSI_OPCODE_USHR:
4184 exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4185 break;
4186
4187 case TGSI_OPCODE_USLT:
4188 exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4189 break;
4190
4191 case TGSI_OPCODE_USNE:
4192 exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4193 break;
4194
4195 case TGSI_OPCODE_SWITCH:
4196 exec_switch(mach, inst);
4197 break;
4198
4199 case TGSI_OPCODE_CASE:
4200 exec_case(mach, inst);
4201 break;
4202
4203 case TGSI_OPCODE_DEFAULT:
4204 exec_default(mach);
4205 break;
4206
4207 case TGSI_OPCODE_ENDSWITCH:
4208 exec_endswitch(mach);
4209 break;
4210
4211 case TGSI_OPCODE_SAMPLE_I:
4212 exec_txf(mach, inst);
4213 break;
4214
4215 case TGSI_OPCODE_SAMPLE_I_MS:
4216 assert(0);
4217 break;
4218
4219 case TGSI_OPCODE_SAMPLE:
4220 exec_sample(mach, inst, TEX_MODIFIER_NONE, FALSE);
4221 break;
4222
4223 case TGSI_OPCODE_SAMPLE_B:
4224 exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS, FALSE);
4225 break;
4226
4227 case TGSI_OPCODE_SAMPLE_C:
4228 exec_sample(mach, inst, TEX_MODIFIER_NONE, TRUE);
4229 break;
4230
4231 case TGSI_OPCODE_SAMPLE_C_LZ:
4232 exec_sample(mach, inst, TEX_MODIFIER_LEVEL_ZERO, TRUE);
4233 break;
4234
4235 case TGSI_OPCODE_SAMPLE_D:
4236 exec_sample_d(mach, inst);
4237 break;
4238
4239 case TGSI_OPCODE_SAMPLE_L:
4240 exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, FALSE);
4241 break;
4242
4243 case TGSI_OPCODE_GATHER4:
4244 assert(0);
4245 break;
4246
4247 case TGSI_OPCODE_SVIEWINFO:
4248 exec_txq(mach, inst);
4249 break;
4250
4251 case TGSI_OPCODE_SAMPLE_POS:
4252 assert(0);
4253 break;
4254
4255 case TGSI_OPCODE_SAMPLE_INFO:
4256 assert(0);
4257 break;
4258
4259 case TGSI_OPCODE_UARL:
4260 exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
4261 break;
4262
4263 case TGSI_OPCODE_UCMP:
4264 exec_vector_trinary(mach, inst, micro_ucmp, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4265 break;
4266
4267 case TGSI_OPCODE_IABS:
4268 exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4269 break;
4270
4271 case TGSI_OPCODE_ISSG:
4272 exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4273 break;
4274
4275 case TGSI_OPCODE_TEX2:
4276 /* simple texture lookup */
4277 /* src[0] = texcoord */
4278 /* src[1] = compare */
4279 /* src[2] = sampler unit */
4280 exec_tex(mach, inst, TEX_MODIFIER_NONE, 2);
4281 break;
4282 case TGSI_OPCODE_TXB2:
4283 /* simple texture lookup */
4284 /* src[0] = texcoord */
4285 /* src[1] = bias */
4286 /* src[2] = sampler unit */
4287 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 2);
4288 break;
4289 case TGSI_OPCODE_TXL2:
4290 /* simple texture lookup */
4291 /* src[0] = texcoord */
4292 /* src[1] = lod */
4293 /* src[2] = sampler unit */
4294 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 2);
4295 break;
4296 default:
4297 assert( 0 );
4298 }
4299 }
4300
4301
4302 /**
4303 * Run TGSI interpreter.
4304 * \return bitmask of "alive" quad components
4305 */
4306 uint
4307 tgsi_exec_machine_run( struct tgsi_exec_machine *mach )
4308 {
4309 uint i;
4310 int pc = 0;
4311 uint default_mask = 0xf;
4312
4313 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
4314 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
4315
4316 if( mach->Processor == TGSI_PROCESSOR_GEOMETRY ) {
4317 mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
4318 mach->Primitives[0] = 0;
4319 /* GS runs on a single primitive for now */
4320 default_mask = 0x1;
4321 }
4322
4323 mach->CondMask = default_mask;
4324 mach->LoopMask = default_mask;
4325 mach->ContMask = default_mask;
4326 mach->FuncMask = default_mask;
4327 mach->ExecMask = default_mask;
4328
4329 mach->Switch.mask = default_mask;
4330
4331 assert(mach->CondStackTop == 0);
4332 assert(mach->LoopStackTop == 0);
4333 assert(mach->ContStackTop == 0);
4334 assert(mach->SwitchStackTop == 0);
4335 assert(mach->BreakStackTop == 0);
4336 assert(mach->CallStackTop == 0);
4337
4338
4339 /* execute declarations (interpolants) */
4340 for (i = 0; i < mach->NumDeclarations; i++) {
4341 exec_declaration( mach, mach->Declarations+i );
4342 }
4343
4344 {
4345 #if DEBUG_EXECUTION
4346 struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
4347 struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
4348 uint inst = 1;
4349
4350 memset(mach->Temps, 0, sizeof(temps));
4351 memset(mach->Outputs, 0, sizeof(outputs));
4352 memset(temps, 0, sizeof(temps));
4353 memset(outputs, 0, sizeof(outputs));
4354 #endif
4355
4356 /* execute instructions, until pc is set to -1 */
4357 while (pc != -1) {
4358
4359 #if DEBUG_EXECUTION
4360 uint i;
4361
4362 tgsi_dump_instruction(&mach->Instructions[pc], inst++);
4363 #endif
4364
4365 assert(pc < (int) mach->NumInstructions);
4366 exec_instruction(mach, mach->Instructions + pc, &pc);
4367
4368 #if DEBUG_EXECUTION
4369 for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
4370 if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
4371 uint j;
4372
4373 memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
4374 debug_printf("TEMP[%2u] = ", i);
4375 for (j = 0; j < 4; j++) {
4376 if (j > 0) {
4377 debug_printf(" ");
4378 }
4379 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4380 temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
4381 temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
4382 temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
4383 temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
4384 }
4385 }
4386 }
4387 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
4388 if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
4389 uint j;
4390
4391 memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
4392 debug_printf("OUT[%2u] = ", i);
4393 for (j = 0; j < 4; j++) {
4394 if (j > 0) {
4395 debug_printf(" ");
4396 }
4397 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4398 outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
4399 outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
4400 outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
4401 outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
4402 }
4403 }
4404 }
4405 #endif
4406 }
4407 }
4408
4409 #if 0
4410 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
4411 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
4412 /*
4413 * Scale back depth component.
4414 */
4415 for (i = 0; i < 4; i++)
4416 mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
4417 }
4418 #endif
4419
4420 /* Strictly speaking, these assertions aren't really needed but they
4421 * can potentially catch some bugs in the control flow code.
4422 */
4423 assert(mach->CondStackTop == 0);
4424 assert(mach->LoopStackTop == 0);
4425 assert(mach->ContStackTop == 0);
4426 assert(mach->SwitchStackTop == 0);
4427 assert(mach->BreakStackTop == 0);
4428 assert(mach->CallStackTop == 0);
4429
4430 return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4431 }