tgsi: fix-up KILP comments
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_exec.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009-2010 VMware, Inc. All rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * TGSI interpreter/executor.
31 *
32 * Flow control information:
33 *
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
38 *
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers. This is the ExecMask.
42 * See store_dest().
43 *
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47 *
48 *
49 * Authors:
50 * Michal Krol
51 * Brian Paul
52 */
53
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_memory.h"
62 #include "util/u_math.h"
63
64
65 #define DEBUG_EXECUTION 0
66
67
68 #define FAST_MATH 0
69
70 #define TILE_TOP_LEFT 0
71 #define TILE_TOP_RIGHT 1
72 #define TILE_BOTTOM_LEFT 2
73 #define TILE_BOTTOM_RIGHT 3
74
75 static void
76 micro_abs(union tgsi_exec_channel *dst,
77 const union tgsi_exec_channel *src)
78 {
79 dst->f[0] = fabsf(src->f[0]);
80 dst->f[1] = fabsf(src->f[1]);
81 dst->f[2] = fabsf(src->f[2]);
82 dst->f[3] = fabsf(src->f[3]);
83 }
84
85 static void
86 micro_arl(union tgsi_exec_channel *dst,
87 const union tgsi_exec_channel *src)
88 {
89 dst->i[0] = (int)floorf(src->f[0]);
90 dst->i[1] = (int)floorf(src->f[1]);
91 dst->i[2] = (int)floorf(src->f[2]);
92 dst->i[3] = (int)floorf(src->f[3]);
93 }
94
95 static void
96 micro_arr(union tgsi_exec_channel *dst,
97 const union tgsi_exec_channel *src)
98 {
99 dst->i[0] = (int)floorf(src->f[0] + 0.5f);
100 dst->i[1] = (int)floorf(src->f[1] + 0.5f);
101 dst->i[2] = (int)floorf(src->f[2] + 0.5f);
102 dst->i[3] = (int)floorf(src->f[3] + 0.5f);
103 }
104
105 static void
106 micro_ceil(union tgsi_exec_channel *dst,
107 const union tgsi_exec_channel *src)
108 {
109 dst->f[0] = ceilf(src->f[0]);
110 dst->f[1] = ceilf(src->f[1]);
111 dst->f[2] = ceilf(src->f[2]);
112 dst->f[3] = ceilf(src->f[3]);
113 }
114
115 static void
116 micro_clamp(union tgsi_exec_channel *dst,
117 const union tgsi_exec_channel *src0,
118 const union tgsi_exec_channel *src1,
119 const union tgsi_exec_channel *src2)
120 {
121 dst->f[0] = src0->f[0] < src1->f[0] ? src1->f[0] : src0->f[0] > src2->f[0] ? src2->f[0] : src0->f[0];
122 dst->f[1] = src0->f[1] < src1->f[1] ? src1->f[1] : src0->f[1] > src2->f[1] ? src2->f[1] : src0->f[1];
123 dst->f[2] = src0->f[2] < src1->f[2] ? src1->f[2] : src0->f[2] > src2->f[2] ? src2->f[2] : src0->f[2];
124 dst->f[3] = src0->f[3] < src1->f[3] ? src1->f[3] : src0->f[3] > src2->f[3] ? src2->f[3] : src0->f[3];
125 }
126
127 static void
128 micro_cmp(union tgsi_exec_channel *dst,
129 const union tgsi_exec_channel *src0,
130 const union tgsi_exec_channel *src1,
131 const union tgsi_exec_channel *src2)
132 {
133 dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
134 dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
135 dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
136 dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
137 }
138
139 static void
140 micro_cnd(union tgsi_exec_channel *dst,
141 const union tgsi_exec_channel *src0,
142 const union tgsi_exec_channel *src1,
143 const union tgsi_exec_channel *src2)
144 {
145 dst->f[0] = src2->f[0] > 0.5f ? src0->f[0] : src1->f[0];
146 dst->f[1] = src2->f[1] > 0.5f ? src0->f[1] : src1->f[1];
147 dst->f[2] = src2->f[2] > 0.5f ? src0->f[2] : src1->f[2];
148 dst->f[3] = src2->f[3] > 0.5f ? src0->f[3] : src1->f[3];
149 }
150
151 static void
152 micro_cos(union tgsi_exec_channel *dst,
153 const union tgsi_exec_channel *src)
154 {
155 dst->f[0] = cosf(src->f[0]);
156 dst->f[1] = cosf(src->f[1]);
157 dst->f[2] = cosf(src->f[2]);
158 dst->f[3] = cosf(src->f[3]);
159 }
160
161 static void
162 micro_ddx(union tgsi_exec_channel *dst,
163 const union tgsi_exec_channel *src)
164 {
165 dst->f[0] =
166 dst->f[1] =
167 dst->f[2] =
168 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
169 }
170
171 static void
172 micro_ddy(union tgsi_exec_channel *dst,
173 const union tgsi_exec_channel *src)
174 {
175 dst->f[0] =
176 dst->f[1] =
177 dst->f[2] =
178 dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
179 }
180
181 static void
182 micro_exp2(union tgsi_exec_channel *dst,
183 const union tgsi_exec_channel *src)
184 {
185 #if FAST_MATH
186 dst->f[0] = util_fast_exp2(src->f[0]);
187 dst->f[1] = util_fast_exp2(src->f[1]);
188 dst->f[2] = util_fast_exp2(src->f[2]);
189 dst->f[3] = util_fast_exp2(src->f[3]);
190 #else
191 #if DEBUG
192 /* Inf is okay for this instruction, so clamp it to silence assertions. */
193 uint i;
194 union tgsi_exec_channel clamped;
195
196 for (i = 0; i < 4; i++) {
197 if (src->f[i] > 127.99999f) {
198 clamped.f[i] = 127.99999f;
199 } else if (src->f[i] < -126.99999f) {
200 clamped.f[i] = -126.99999f;
201 } else {
202 clamped.f[i] = src->f[i];
203 }
204 }
205 src = &clamped;
206 #endif /* DEBUG */
207
208 dst->f[0] = powf(2.0f, src->f[0]);
209 dst->f[1] = powf(2.0f, src->f[1]);
210 dst->f[2] = powf(2.0f, src->f[2]);
211 dst->f[3] = powf(2.0f, src->f[3]);
212 #endif /* FAST_MATH */
213 }
214
215 static void
216 micro_flr(union tgsi_exec_channel *dst,
217 const union tgsi_exec_channel *src)
218 {
219 dst->f[0] = floorf(src->f[0]);
220 dst->f[1] = floorf(src->f[1]);
221 dst->f[2] = floorf(src->f[2]);
222 dst->f[3] = floorf(src->f[3]);
223 }
224
225 static void
226 micro_frc(union tgsi_exec_channel *dst,
227 const union tgsi_exec_channel *src)
228 {
229 dst->f[0] = src->f[0] - floorf(src->f[0]);
230 dst->f[1] = src->f[1] - floorf(src->f[1]);
231 dst->f[2] = src->f[2] - floorf(src->f[2]);
232 dst->f[3] = src->f[3] - floorf(src->f[3]);
233 }
234
235 static void
236 micro_iabs(union tgsi_exec_channel *dst,
237 const union tgsi_exec_channel *src)
238 {
239 dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
240 dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
241 dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
242 dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
243 }
244
245 static void
246 micro_ineg(union tgsi_exec_channel *dst,
247 const union tgsi_exec_channel *src)
248 {
249 dst->i[0] = -src->i[0];
250 dst->i[1] = -src->i[1];
251 dst->i[2] = -src->i[2];
252 dst->i[3] = -src->i[3];
253 }
254
255 static void
256 micro_lg2(union tgsi_exec_channel *dst,
257 const union tgsi_exec_channel *src)
258 {
259 #if FAST_MATH
260 dst->f[0] = util_fast_log2(src->f[0]);
261 dst->f[1] = util_fast_log2(src->f[1]);
262 dst->f[2] = util_fast_log2(src->f[2]);
263 dst->f[3] = util_fast_log2(src->f[3]);
264 #else
265 dst->f[0] = logf(src->f[0]) * 1.442695f;
266 dst->f[1] = logf(src->f[1]) * 1.442695f;
267 dst->f[2] = logf(src->f[2]) * 1.442695f;
268 dst->f[3] = logf(src->f[3]) * 1.442695f;
269 #endif
270 }
271
272 static void
273 micro_lrp(union tgsi_exec_channel *dst,
274 const union tgsi_exec_channel *src0,
275 const union tgsi_exec_channel *src1,
276 const union tgsi_exec_channel *src2)
277 {
278 dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
279 dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
280 dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
281 dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
282 }
283
284 static void
285 micro_mad(union tgsi_exec_channel *dst,
286 const union tgsi_exec_channel *src0,
287 const union tgsi_exec_channel *src1,
288 const union tgsi_exec_channel *src2)
289 {
290 dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
291 dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
292 dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
293 dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
294 }
295
296 static void
297 micro_mov(union tgsi_exec_channel *dst,
298 const union tgsi_exec_channel *src)
299 {
300 dst->u[0] = src->u[0];
301 dst->u[1] = src->u[1];
302 dst->u[2] = src->u[2];
303 dst->u[3] = src->u[3];
304 }
305
306 static void
307 micro_rcp(union tgsi_exec_channel *dst,
308 const union tgsi_exec_channel *src)
309 {
310 #if 0 /* for debugging */
311 assert(src->f[0] != 0.0f);
312 assert(src->f[1] != 0.0f);
313 assert(src->f[2] != 0.0f);
314 assert(src->f[3] != 0.0f);
315 #endif
316 dst->f[0] = 1.0f / src->f[0];
317 dst->f[1] = 1.0f / src->f[1];
318 dst->f[2] = 1.0f / src->f[2];
319 dst->f[3] = 1.0f / src->f[3];
320 }
321
322 static void
323 micro_rnd(union tgsi_exec_channel *dst,
324 const union tgsi_exec_channel *src)
325 {
326 dst->f[0] = floorf(src->f[0] + 0.5f);
327 dst->f[1] = floorf(src->f[1] + 0.5f);
328 dst->f[2] = floorf(src->f[2] + 0.5f);
329 dst->f[3] = floorf(src->f[3] + 0.5f);
330 }
331
332 static void
333 micro_rsq(union tgsi_exec_channel *dst,
334 const union tgsi_exec_channel *src)
335 {
336 #if 0 /* for debugging */
337 assert(src->f[0] != 0.0f);
338 assert(src->f[1] != 0.0f);
339 assert(src->f[2] != 0.0f);
340 assert(src->f[3] != 0.0f);
341 #endif
342 dst->f[0] = 1.0f / sqrtf(fabsf(src->f[0]));
343 dst->f[1] = 1.0f / sqrtf(fabsf(src->f[1]));
344 dst->f[2] = 1.0f / sqrtf(fabsf(src->f[2]));
345 dst->f[3] = 1.0f / sqrtf(fabsf(src->f[3]));
346 }
347
348 static void
349 micro_sqrt(union tgsi_exec_channel *dst,
350 const union tgsi_exec_channel *src)
351 {
352 dst->f[0] = sqrtf(fabsf(src->f[0]));
353 dst->f[1] = sqrtf(fabsf(src->f[1]));
354 dst->f[2] = sqrtf(fabsf(src->f[2]));
355 dst->f[3] = sqrtf(fabsf(src->f[3]));
356 }
357
358 static void
359 micro_seq(union tgsi_exec_channel *dst,
360 const union tgsi_exec_channel *src0,
361 const union tgsi_exec_channel *src1)
362 {
363 dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
364 dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
365 dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
366 dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
367 }
368
369 static void
370 micro_sge(union tgsi_exec_channel *dst,
371 const union tgsi_exec_channel *src0,
372 const union tgsi_exec_channel *src1)
373 {
374 dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
375 dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
376 dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
377 dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
378 }
379
380 static void
381 micro_sgn(union tgsi_exec_channel *dst,
382 const union tgsi_exec_channel *src)
383 {
384 dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
385 dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
386 dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
387 dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
388 }
389
390 static void
391 micro_isgn(union tgsi_exec_channel *dst,
392 const union tgsi_exec_channel *src)
393 {
394 dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0;
395 dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0;
396 dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0;
397 dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0;
398 }
399
400 static void
401 micro_sgt(union tgsi_exec_channel *dst,
402 const union tgsi_exec_channel *src0,
403 const union tgsi_exec_channel *src1)
404 {
405 dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
406 dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
407 dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
408 dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
409 }
410
411 static void
412 micro_sin(union tgsi_exec_channel *dst,
413 const union tgsi_exec_channel *src)
414 {
415 dst->f[0] = sinf(src->f[0]);
416 dst->f[1] = sinf(src->f[1]);
417 dst->f[2] = sinf(src->f[2]);
418 dst->f[3] = sinf(src->f[3]);
419 }
420
421 static void
422 micro_sle(union tgsi_exec_channel *dst,
423 const union tgsi_exec_channel *src0,
424 const union tgsi_exec_channel *src1)
425 {
426 dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
427 dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
428 dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
429 dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
430 }
431
432 static void
433 micro_slt(union tgsi_exec_channel *dst,
434 const union tgsi_exec_channel *src0,
435 const union tgsi_exec_channel *src1)
436 {
437 dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
438 dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
439 dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
440 dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
441 }
442
443 static void
444 micro_sne(union tgsi_exec_channel *dst,
445 const union tgsi_exec_channel *src0,
446 const union tgsi_exec_channel *src1)
447 {
448 dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
449 dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
450 dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
451 dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
452 }
453
454 static void
455 micro_sfl(union tgsi_exec_channel *dst)
456 {
457 dst->f[0] = 0.0f;
458 dst->f[1] = 0.0f;
459 dst->f[2] = 0.0f;
460 dst->f[3] = 0.0f;
461 }
462
463 static void
464 micro_str(union tgsi_exec_channel *dst)
465 {
466 dst->f[0] = 1.0f;
467 dst->f[1] = 1.0f;
468 dst->f[2] = 1.0f;
469 dst->f[3] = 1.0f;
470 }
471
472 static void
473 micro_trunc(union tgsi_exec_channel *dst,
474 const union tgsi_exec_channel *src)
475 {
476 dst->f[0] = (float)(int)src->f[0];
477 dst->f[1] = (float)(int)src->f[1];
478 dst->f[2] = (float)(int)src->f[2];
479 dst->f[3] = (float)(int)src->f[3];
480 }
481
482
483 enum tgsi_exec_datatype {
484 TGSI_EXEC_DATA_FLOAT,
485 TGSI_EXEC_DATA_INT,
486 TGSI_EXEC_DATA_UINT
487 };
488
489 /*
490 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
491 */
492 #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
493 #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
494 #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
495 #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
496 #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
497 #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
498
499
500 /** The execution mask depends on the conditional mask and the loop mask */
501 #define UPDATE_EXEC_MASK(MACH) \
502 MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
503
504
505 static const union tgsi_exec_channel ZeroVec =
506 { { 0.0, 0.0, 0.0, 0.0 } };
507
508 static const union tgsi_exec_channel OneVec = {
509 {1.0f, 1.0f, 1.0f, 1.0f}
510 };
511
512 static const union tgsi_exec_channel P128Vec = {
513 {128.0f, 128.0f, 128.0f, 128.0f}
514 };
515
516 static const union tgsi_exec_channel M128Vec = {
517 {-128.0f, -128.0f, -128.0f, -128.0f}
518 };
519
520
521 /**
522 * Assert that none of the float values in 'chan' are infinite or NaN.
523 * NaN and Inf may occur normally during program execution and should
524 * not lead to crashes, etc. But when debugging, it's helpful to catch
525 * them.
526 */
527 static INLINE void
528 check_inf_or_nan(const union tgsi_exec_channel *chan)
529 {
530 assert(!util_is_inf_or_nan((chan)->f[0]));
531 assert(!util_is_inf_or_nan((chan)->f[1]));
532 assert(!util_is_inf_or_nan((chan)->f[2]));
533 assert(!util_is_inf_or_nan((chan)->f[3]));
534 }
535
536
537 #ifdef DEBUG
538 static void
539 print_chan(const char *msg, const union tgsi_exec_channel *chan)
540 {
541 debug_printf("%s = {%f, %f, %f, %f}\n",
542 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
543 }
544 #endif
545
546
547 #ifdef DEBUG
548 static void
549 print_temp(const struct tgsi_exec_machine *mach, uint index)
550 {
551 const struct tgsi_exec_vector *tmp = &mach->Temps[index];
552 int i;
553 debug_printf("Temp[%u] =\n", index);
554 for (i = 0; i < 4; i++) {
555 debug_printf(" %c: { %f, %f, %f, %f }\n",
556 "XYZW"[i],
557 tmp->xyzw[i].f[0],
558 tmp->xyzw[i].f[1],
559 tmp->xyzw[i].f[2],
560 tmp->xyzw[i].f[3]);
561 }
562 }
563 #endif
564
565
566 void
567 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
568 unsigned num_bufs,
569 const void **bufs,
570 const unsigned *buf_sizes)
571 {
572 unsigned i;
573
574 for (i = 0; i < num_bufs; i++) {
575 mach->Consts[i] = bufs[i];
576 mach->ConstsSize[i] = buf_sizes[i];
577 }
578 }
579
580
581 /**
582 * Check if there's a potential src/dst register data dependency when
583 * using SOA execution.
584 * Example:
585 * MOV T, T.yxwz;
586 * This would expand into:
587 * MOV t0, t1;
588 * MOV t1, t0;
589 * MOV t2, t3;
590 * MOV t3, t2;
591 * The second instruction will have the wrong value for t0 if executed as-is.
592 */
593 boolean
594 tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
595 {
596 uint i, chan;
597
598 uint writemask = inst->Dst[0].Register.WriteMask;
599 if (writemask == TGSI_WRITEMASK_X ||
600 writemask == TGSI_WRITEMASK_Y ||
601 writemask == TGSI_WRITEMASK_Z ||
602 writemask == TGSI_WRITEMASK_W ||
603 writemask == TGSI_WRITEMASK_NONE) {
604 /* no chance of data dependency */
605 return FALSE;
606 }
607
608 /* loop over src regs */
609 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
610 if ((inst->Src[i].Register.File ==
611 inst->Dst[0].Register.File) &&
612 ((inst->Src[i].Register.Index ==
613 inst->Dst[0].Register.Index) ||
614 inst->Src[i].Register.Indirect ||
615 inst->Dst[0].Register.Indirect)) {
616 /* loop over dest channels */
617 uint channelsWritten = 0x0;
618 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
619 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
620 /* check if we're reading a channel that's been written */
621 uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
622 if (channelsWritten & (1 << swizzle)) {
623 return TRUE;
624 }
625
626 channelsWritten |= (1 << chan);
627 }
628 }
629 }
630 }
631 return FALSE;
632 }
633
634
635 /**
636 * Initialize machine state by expanding tokens to full instructions,
637 * allocating temporary storage, setting up constants, etc.
638 * After this, we can call tgsi_exec_machine_run() many times.
639 */
640 void
641 tgsi_exec_machine_bind_shader(
642 struct tgsi_exec_machine *mach,
643 const struct tgsi_token *tokens,
644 struct tgsi_sampler *sampler)
645 {
646 uint k;
647 struct tgsi_parse_context parse;
648 struct tgsi_full_instruction *instructions;
649 struct tgsi_full_declaration *declarations;
650 uint maxInstructions = 10, numInstructions = 0;
651 uint maxDeclarations = 10, numDeclarations = 0;
652
653 #if 0
654 tgsi_dump(tokens, 0);
655 #endif
656
657 util_init_math();
658
659
660 mach->Tokens = tokens;
661 mach->Sampler = sampler;
662
663 if (!tokens) {
664 /* unbind and free all */
665 FREE(mach->Declarations);
666 mach->Declarations = NULL;
667 mach->NumDeclarations = 0;
668
669 FREE(mach->Instructions);
670 mach->Instructions = NULL;
671 mach->NumInstructions = 0;
672
673 return;
674 }
675
676 k = tgsi_parse_init (&parse, mach->Tokens);
677 if (k != TGSI_PARSE_OK) {
678 debug_printf( "Problem parsing!\n" );
679 return;
680 }
681
682 mach->Processor = parse.FullHeader.Processor.Processor;
683 mach->ImmLimit = 0;
684 mach->NumOutputs = 0;
685
686 if (mach->Processor == TGSI_PROCESSOR_GEOMETRY &&
687 !mach->UsedGeometryShader) {
688 struct tgsi_exec_vector *inputs;
689 struct tgsi_exec_vector *outputs;
690
691 inputs = align_malloc(sizeof(struct tgsi_exec_vector) *
692 TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS,
693 16);
694
695 if (!inputs)
696 return;
697
698 outputs = align_malloc(sizeof(struct tgsi_exec_vector) *
699 TGSI_MAX_TOTAL_VERTICES, 16);
700
701 if (!outputs) {
702 align_free(inputs);
703 return;
704 }
705
706 align_free(mach->Inputs);
707 align_free(mach->Outputs);
708
709 mach->Inputs = inputs;
710 mach->Outputs = outputs;
711 mach->UsedGeometryShader = TRUE;
712 }
713
714 declarations = (struct tgsi_full_declaration *)
715 MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
716
717 if (!declarations) {
718 return;
719 }
720
721 instructions = (struct tgsi_full_instruction *)
722 MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
723
724 if (!instructions) {
725 FREE( declarations );
726 return;
727 }
728
729 while( !tgsi_parse_end_of_tokens( &parse ) ) {
730 uint i;
731
732 tgsi_parse_token( &parse );
733 switch( parse.FullToken.Token.Type ) {
734 case TGSI_TOKEN_TYPE_DECLARATION:
735 /* save expanded declaration */
736 if (numDeclarations == maxDeclarations) {
737 declarations = REALLOC(declarations,
738 maxDeclarations
739 * sizeof(struct tgsi_full_declaration),
740 (maxDeclarations + 10)
741 * sizeof(struct tgsi_full_declaration));
742 maxDeclarations += 10;
743 }
744 if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
745 unsigned reg;
746 for (reg = parse.FullToken.FullDeclaration.Range.First;
747 reg <= parse.FullToken.FullDeclaration.Range.Last;
748 ++reg) {
749 ++mach->NumOutputs;
750 }
751 }
752 memcpy(declarations + numDeclarations,
753 &parse.FullToken.FullDeclaration,
754 sizeof(declarations[0]));
755 numDeclarations++;
756 break;
757
758 case TGSI_TOKEN_TYPE_IMMEDIATE:
759 {
760 uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
761 assert( size <= 4 );
762 assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES );
763
764 for( i = 0; i < size; i++ ) {
765 mach->Imms[mach->ImmLimit][i] =
766 parse.FullToken.FullImmediate.u[i].Float;
767 }
768 mach->ImmLimit += 1;
769 }
770 break;
771
772 case TGSI_TOKEN_TYPE_INSTRUCTION:
773
774 /* save expanded instruction */
775 if (numInstructions == maxInstructions) {
776 instructions = REALLOC(instructions,
777 maxInstructions
778 * sizeof(struct tgsi_full_instruction),
779 (maxInstructions + 10)
780 * sizeof(struct tgsi_full_instruction));
781 maxInstructions += 10;
782 }
783
784 memcpy(instructions + numInstructions,
785 &parse.FullToken.FullInstruction,
786 sizeof(instructions[0]));
787
788 numInstructions++;
789 break;
790
791 case TGSI_TOKEN_TYPE_PROPERTY:
792 break;
793
794 default:
795 assert( 0 );
796 }
797 }
798 tgsi_parse_free (&parse);
799
800 FREE(mach->Declarations);
801 mach->Declarations = declarations;
802 mach->NumDeclarations = numDeclarations;
803
804 FREE(mach->Instructions);
805 mach->Instructions = instructions;
806 mach->NumInstructions = numInstructions;
807 }
808
809
810 struct tgsi_exec_machine *
811 tgsi_exec_machine_create( void )
812 {
813 struct tgsi_exec_machine *mach;
814 uint i;
815
816 mach = align_malloc( sizeof *mach, 16 );
817 if (!mach)
818 goto fail;
819
820 memset(mach, 0, sizeof(*mach));
821
822 mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
823 mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
824 mach->Predicates = &mach->Temps[TGSI_EXEC_TEMP_P0];
825
826 mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_ATTRIBS, 16);
827 mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_ATTRIBS, 16);
828 if (!mach->Inputs || !mach->Outputs)
829 goto fail;
830
831 /* Setup constants needed by the SSE2 executor. */
832 for( i = 0; i < 4; i++ ) {
833 mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
834 mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
835 mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
836 mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF; /* not used */
837 mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
838 mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f; /* not used */
839 mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
840 mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
841 mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
842 mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
843 }
844
845 #ifdef DEBUG
846 /* silence warnings */
847 (void) print_chan;
848 (void) print_temp;
849 #endif
850
851 return mach;
852
853 fail:
854 if (mach) {
855 align_free(mach->Inputs);
856 align_free(mach->Outputs);
857 align_free(mach);
858 }
859 return NULL;
860 }
861
862
863 void
864 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
865 {
866 if (mach) {
867 FREE(mach->Instructions);
868 FREE(mach->Declarations);
869
870 align_free(mach->Inputs);
871 align_free(mach->Outputs);
872
873 align_free(mach);
874 }
875 }
876
877 static void
878 micro_add(union tgsi_exec_channel *dst,
879 const union tgsi_exec_channel *src0,
880 const union tgsi_exec_channel *src1)
881 {
882 dst->f[0] = src0->f[0] + src1->f[0];
883 dst->f[1] = src0->f[1] + src1->f[1];
884 dst->f[2] = src0->f[2] + src1->f[2];
885 dst->f[3] = src0->f[3] + src1->f[3];
886 }
887
888 static void
889 micro_div(
890 union tgsi_exec_channel *dst,
891 const union tgsi_exec_channel *src0,
892 const union tgsi_exec_channel *src1 )
893 {
894 if (src1->f[0] != 0) {
895 dst->f[0] = src0->f[0] / src1->f[0];
896 }
897 if (src1->f[1] != 0) {
898 dst->f[1] = src0->f[1] / src1->f[1];
899 }
900 if (src1->f[2] != 0) {
901 dst->f[2] = src0->f[2] / src1->f[2];
902 }
903 if (src1->f[3] != 0) {
904 dst->f[3] = src0->f[3] / src1->f[3];
905 }
906 }
907
908 static void
909 micro_rcc(union tgsi_exec_channel *dst,
910 const union tgsi_exec_channel *src)
911 {
912 uint i;
913
914 for (i = 0; i < 4; i++) {
915 float recip = 1.0f / src->f[i];
916
917 if (recip > 0.0f) {
918 if (recip > 1.884467e+019f) {
919 dst->f[i] = 1.884467e+019f;
920 }
921 else if (recip < 5.42101e-020f) {
922 dst->f[i] = 5.42101e-020f;
923 }
924 else {
925 dst->f[i] = recip;
926 }
927 }
928 else {
929 if (recip < -1.884467e+019f) {
930 dst->f[i] = -1.884467e+019f;
931 }
932 else if (recip > -5.42101e-020f) {
933 dst->f[i] = -5.42101e-020f;
934 }
935 else {
936 dst->f[i] = recip;
937 }
938 }
939 }
940 }
941
942 static void
943 micro_lt(
944 union tgsi_exec_channel *dst,
945 const union tgsi_exec_channel *src0,
946 const union tgsi_exec_channel *src1,
947 const union tgsi_exec_channel *src2,
948 const union tgsi_exec_channel *src3 )
949 {
950 dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
951 dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
952 dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
953 dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
954 }
955
956 static void
957 micro_max(union tgsi_exec_channel *dst,
958 const union tgsi_exec_channel *src0,
959 const union tgsi_exec_channel *src1)
960 {
961 dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
962 dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
963 dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
964 dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
965 }
966
967 static void
968 micro_min(union tgsi_exec_channel *dst,
969 const union tgsi_exec_channel *src0,
970 const union tgsi_exec_channel *src1)
971 {
972 dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
973 dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
974 dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
975 dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
976 }
977
978 static void
979 micro_mul(union tgsi_exec_channel *dst,
980 const union tgsi_exec_channel *src0,
981 const union tgsi_exec_channel *src1)
982 {
983 dst->f[0] = src0->f[0] * src1->f[0];
984 dst->f[1] = src0->f[1] * src1->f[1];
985 dst->f[2] = src0->f[2] * src1->f[2];
986 dst->f[3] = src0->f[3] * src1->f[3];
987 }
988
989 static void
990 micro_neg(
991 union tgsi_exec_channel *dst,
992 const union tgsi_exec_channel *src )
993 {
994 dst->f[0] = -src->f[0];
995 dst->f[1] = -src->f[1];
996 dst->f[2] = -src->f[2];
997 dst->f[3] = -src->f[3];
998 }
999
1000 static void
1001 micro_pow(
1002 union tgsi_exec_channel *dst,
1003 const union tgsi_exec_channel *src0,
1004 const union tgsi_exec_channel *src1 )
1005 {
1006 #if FAST_MATH
1007 dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
1008 dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
1009 dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
1010 dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
1011 #else
1012 dst->f[0] = powf( src0->f[0], src1->f[0] );
1013 dst->f[1] = powf( src0->f[1], src1->f[1] );
1014 dst->f[2] = powf( src0->f[2], src1->f[2] );
1015 dst->f[3] = powf( src0->f[3], src1->f[3] );
1016 #endif
1017 }
1018
1019 static void
1020 micro_sub(union tgsi_exec_channel *dst,
1021 const union tgsi_exec_channel *src0,
1022 const union tgsi_exec_channel *src1)
1023 {
1024 dst->f[0] = src0->f[0] - src1->f[0];
1025 dst->f[1] = src0->f[1] - src1->f[1];
1026 dst->f[2] = src0->f[2] - src1->f[2];
1027 dst->f[3] = src0->f[3] - src1->f[3];
1028 }
1029
1030 static void
1031 fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1032 const uint chan_index,
1033 const uint file,
1034 const uint swizzle,
1035 const union tgsi_exec_channel *index,
1036 const union tgsi_exec_channel *index2D,
1037 union tgsi_exec_channel *chan)
1038 {
1039 uint i;
1040
1041 assert(swizzle < 4);
1042
1043 switch (file) {
1044 case TGSI_FILE_CONSTANT:
1045 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1046 assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
1047 assert(mach->Consts[index2D->i[i]]);
1048
1049 if (index->i[i] < 0) {
1050 chan->u[i] = 0;
1051 } else {
1052 /* NOTE: copying the const value as a uint instead of float */
1053 const uint constbuf = index2D->i[i];
1054 const uint *buf = (const uint *)mach->Consts[constbuf];
1055 const int pos = index->i[i] * 4 + swizzle;
1056 /* const buffer bounds check */
1057 if (pos < 0 || pos >= (int) mach->ConstsSize[constbuf]) {
1058 if (0) {
1059 /* Debug: print warning */
1060 static int count = 0;
1061 if (count++ < 100)
1062 debug_printf("TGSI Exec: const buffer index %d"
1063 " out of bounds\n", pos);
1064 }
1065 chan->u[i] = 0;
1066 }
1067 else
1068 chan->u[i] = buf[pos];
1069 }
1070 }
1071 break;
1072
1073 case TGSI_FILE_INPUT:
1074 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1075 /*
1076 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1077 debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1078 index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1079 index2D->i[i], index->i[i]);
1080 }*/
1081 int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1082 assert(pos >= 0);
1083 assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
1084 chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1085 }
1086 break;
1087
1088 case TGSI_FILE_SYSTEM_VALUE:
1089 /* XXX no swizzling at this point. Will be needed if we put
1090 * gl_FragCoord, for example, in a sys value register.
1091 */
1092 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1093 chan->u[i] = mach->SystemValue[index->i[i]].u[i];
1094 }
1095 break;
1096
1097 case TGSI_FILE_TEMPORARY:
1098 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1099 assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1100 assert(index2D->i[i] == 0);
1101
1102 chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1103 }
1104 break;
1105
1106 case TGSI_FILE_IMMEDIATE:
1107 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1108 assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1109 assert(index2D->i[i] == 0);
1110
1111 chan->f[i] = mach->Imms[index->i[i]][swizzle];
1112 }
1113 break;
1114
1115 case TGSI_FILE_ADDRESS:
1116 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1117 assert(index->i[i] >= 0);
1118 assert(index2D->i[i] == 0);
1119
1120 chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1121 }
1122 break;
1123
1124 case TGSI_FILE_PREDICATE:
1125 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1126 assert(index->i[i] >= 0 && index->i[i] < TGSI_EXEC_NUM_PREDS);
1127 assert(index2D->i[i] == 0);
1128
1129 chan->u[i] = mach->Predicates[0].xyzw[swizzle].u[i];
1130 }
1131 break;
1132
1133 case TGSI_FILE_OUTPUT:
1134 /* vertex/fragment output vars can be read too */
1135 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1136 assert(index->i[i] >= 0);
1137 assert(index2D->i[i] == 0);
1138
1139 chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1140 }
1141 break;
1142
1143 default:
1144 assert(0);
1145 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1146 chan->u[i] = 0;
1147 }
1148 }
1149 }
1150
1151 static void
1152 fetch_source(const struct tgsi_exec_machine *mach,
1153 union tgsi_exec_channel *chan,
1154 const struct tgsi_full_src_register *reg,
1155 const uint chan_index,
1156 enum tgsi_exec_datatype src_datatype)
1157 {
1158 union tgsi_exec_channel index;
1159 union tgsi_exec_channel index2D;
1160 uint swizzle;
1161
1162 /* We start with a direct index into a register file.
1163 *
1164 * file[1],
1165 * where:
1166 * file = Register.File
1167 * [1] = Register.Index
1168 */
1169 index.i[0] =
1170 index.i[1] =
1171 index.i[2] =
1172 index.i[3] = reg->Register.Index;
1173
1174 /* There is an extra source register that indirectly subscripts
1175 * a register file. The direct index now becomes an offset
1176 * that is being added to the indirect register.
1177 *
1178 * file[ind[2].x+1],
1179 * where:
1180 * ind = Indirect.File
1181 * [2] = Indirect.Index
1182 * .x = Indirect.SwizzleX
1183 */
1184 if (reg->Register.Indirect) {
1185 union tgsi_exec_channel index2;
1186 union tgsi_exec_channel indir_index;
1187 const uint execmask = mach->ExecMask;
1188 uint i;
1189
1190 /* which address register (always zero now) */
1191 index2.i[0] =
1192 index2.i[1] =
1193 index2.i[2] =
1194 index2.i[3] = reg->Indirect.Index;
1195 /* get current value of address register[swizzle] */
1196 swizzle = reg->Indirect.Swizzle;
1197 fetch_src_file_channel(mach,
1198 chan_index,
1199 reg->Indirect.File,
1200 swizzle,
1201 &index2,
1202 &ZeroVec,
1203 &indir_index);
1204
1205 /* add value of address register to the offset */
1206 index.i[0] += indir_index.i[0];
1207 index.i[1] += indir_index.i[1];
1208 index.i[2] += indir_index.i[2];
1209 index.i[3] += indir_index.i[3];
1210
1211 /* for disabled execution channels, zero-out the index to
1212 * avoid using a potential garbage value.
1213 */
1214 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1215 if ((execmask & (1 << i)) == 0)
1216 index.i[i] = 0;
1217 }
1218 }
1219
1220 /* There is an extra source register that is a second
1221 * subscript to a register file. Effectively it means that
1222 * the register file is actually a 2D array of registers.
1223 *
1224 * file[3][1],
1225 * where:
1226 * [3] = Dimension.Index
1227 */
1228 if (reg->Register.Dimension) {
1229 index2D.i[0] =
1230 index2D.i[1] =
1231 index2D.i[2] =
1232 index2D.i[3] = reg->Dimension.Index;
1233
1234 /* Again, the second subscript index can be addressed indirectly
1235 * identically to the first one.
1236 * Nothing stops us from indirectly addressing the indirect register,
1237 * but there is no need for that, so we won't exercise it.
1238 *
1239 * file[ind[4].y+3][1],
1240 * where:
1241 * ind = DimIndirect.File
1242 * [4] = DimIndirect.Index
1243 * .y = DimIndirect.SwizzleX
1244 */
1245 if (reg->Dimension.Indirect) {
1246 union tgsi_exec_channel index2;
1247 union tgsi_exec_channel indir_index;
1248 const uint execmask = mach->ExecMask;
1249 uint i;
1250
1251 index2.i[0] =
1252 index2.i[1] =
1253 index2.i[2] =
1254 index2.i[3] = reg->DimIndirect.Index;
1255
1256 swizzle = reg->DimIndirect.Swizzle;
1257 fetch_src_file_channel(mach,
1258 chan_index,
1259 reg->DimIndirect.File,
1260 swizzle,
1261 &index2,
1262 &ZeroVec,
1263 &indir_index);
1264
1265 index2D.i[0] += indir_index.i[0];
1266 index2D.i[1] += indir_index.i[1];
1267 index2D.i[2] += indir_index.i[2];
1268 index2D.i[3] += indir_index.i[3];
1269
1270 /* for disabled execution channels, zero-out the index to
1271 * avoid using a potential garbage value.
1272 */
1273 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1274 if ((execmask & (1 << i)) == 0) {
1275 index2D.i[i] = 0;
1276 }
1277 }
1278 }
1279
1280 /* If by any chance there was a need for a 3D array of register
1281 * files, we would have to check whether Dimension is followed
1282 * by a dimension register and continue the saga.
1283 */
1284 } else {
1285 index2D.i[0] =
1286 index2D.i[1] =
1287 index2D.i[2] =
1288 index2D.i[3] = 0;
1289 }
1290
1291 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1292 fetch_src_file_channel(mach,
1293 chan_index,
1294 reg->Register.File,
1295 swizzle,
1296 &index,
1297 &index2D,
1298 chan);
1299
1300 if (reg->Register.Absolute) {
1301 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1302 micro_abs(chan, chan);
1303 } else {
1304 micro_iabs(chan, chan);
1305 }
1306 }
1307
1308 if (reg->Register.Negate) {
1309 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1310 micro_neg(chan, chan);
1311 } else {
1312 micro_ineg(chan, chan);
1313 }
1314 }
1315 }
1316
1317 static void
1318 store_dest(struct tgsi_exec_machine *mach,
1319 const union tgsi_exec_channel *chan,
1320 const struct tgsi_full_dst_register *reg,
1321 const struct tgsi_full_instruction *inst,
1322 uint chan_index,
1323 enum tgsi_exec_datatype dst_datatype)
1324 {
1325 uint i;
1326 union tgsi_exec_channel null;
1327 union tgsi_exec_channel *dst;
1328 union tgsi_exec_channel index2D;
1329 uint execmask = mach->ExecMask;
1330 int offset = 0; /* indirection offset */
1331 int index;
1332
1333 /* for debugging */
1334 if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1335 check_inf_or_nan(chan);
1336 }
1337
1338 /* There is an extra source register that indirectly subscripts
1339 * a register file. The direct index now becomes an offset
1340 * that is being added to the indirect register.
1341 *
1342 * file[ind[2].x+1],
1343 * where:
1344 * ind = Indirect.File
1345 * [2] = Indirect.Index
1346 * .x = Indirect.SwizzleX
1347 */
1348 if (reg->Register.Indirect) {
1349 union tgsi_exec_channel index;
1350 union tgsi_exec_channel indir_index;
1351 uint swizzle;
1352
1353 /* which address register (always zero for now) */
1354 index.i[0] =
1355 index.i[1] =
1356 index.i[2] =
1357 index.i[3] = reg->Indirect.Index;
1358
1359 /* get current value of address register[swizzle] */
1360 swizzle = reg->Indirect.Swizzle;
1361
1362 /* fetch values from the address/indirection register */
1363 fetch_src_file_channel(mach,
1364 chan_index,
1365 reg->Indirect.File,
1366 swizzle,
1367 &index,
1368 &ZeroVec,
1369 &indir_index);
1370
1371 /* save indirection offset */
1372 offset = indir_index.i[0];
1373 }
1374
1375 /* There is an extra source register that is a second
1376 * subscript to a register file. Effectively it means that
1377 * the register file is actually a 2D array of registers.
1378 *
1379 * file[3][1],
1380 * where:
1381 * [3] = Dimension.Index
1382 */
1383 if (reg->Register.Dimension) {
1384 index2D.i[0] =
1385 index2D.i[1] =
1386 index2D.i[2] =
1387 index2D.i[3] = reg->Dimension.Index;
1388
1389 /* Again, the second subscript index can be addressed indirectly
1390 * identically to the first one.
1391 * Nothing stops us from indirectly addressing the indirect register,
1392 * but there is no need for that, so we won't exercise it.
1393 *
1394 * file[ind[4].y+3][1],
1395 * where:
1396 * ind = DimIndirect.File
1397 * [4] = DimIndirect.Index
1398 * .y = DimIndirect.SwizzleX
1399 */
1400 if (reg->Dimension.Indirect) {
1401 union tgsi_exec_channel index2;
1402 union tgsi_exec_channel indir_index;
1403 const uint execmask = mach->ExecMask;
1404 unsigned swizzle;
1405 uint i;
1406
1407 index2.i[0] =
1408 index2.i[1] =
1409 index2.i[2] =
1410 index2.i[3] = reg->DimIndirect.Index;
1411
1412 swizzle = reg->DimIndirect.Swizzle;
1413 fetch_src_file_channel(mach,
1414 chan_index,
1415 reg->DimIndirect.File,
1416 swizzle,
1417 &index2,
1418 &ZeroVec,
1419 &indir_index);
1420
1421 index2D.i[0] += indir_index.i[0];
1422 index2D.i[1] += indir_index.i[1];
1423 index2D.i[2] += indir_index.i[2];
1424 index2D.i[3] += indir_index.i[3];
1425
1426 /* for disabled execution channels, zero-out the index to
1427 * avoid using a potential garbage value.
1428 */
1429 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1430 if ((execmask & (1 << i)) == 0) {
1431 index2D.i[i] = 0;
1432 }
1433 }
1434 }
1435
1436 /* If by any chance there was a need for a 3D array of register
1437 * files, we would have to check whether Dimension is followed
1438 * by a dimension register and continue the saga.
1439 */
1440 } else {
1441 index2D.i[0] =
1442 index2D.i[1] =
1443 index2D.i[2] =
1444 index2D.i[3] = 0;
1445 }
1446
1447 switch (reg->Register.File) {
1448 case TGSI_FILE_NULL:
1449 dst = &null;
1450 break;
1451
1452 case TGSI_FILE_OUTPUT:
1453 index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1454 + reg->Register.Index;
1455 dst = &mach->Outputs[offset + index].xyzw[chan_index];
1456 #if 0
1457 debug_printf("NumOutputs = %d, TEMP_O_C/I = %d, redindex = %d\n",
1458 mach->NumOutputs, mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0],
1459 reg->Register.Index);
1460 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1461 debug_printf("STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1462 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1463 if (execmask & (1 << i))
1464 debug_printf("%f, ", chan->f[i]);
1465 debug_printf(")\n");
1466 }
1467 #endif
1468 break;
1469
1470 case TGSI_FILE_TEMPORARY:
1471 index = reg->Register.Index;
1472 assert( index < TGSI_EXEC_NUM_TEMPS );
1473 dst = &mach->Temps[offset + index].xyzw[chan_index];
1474 break;
1475
1476 case TGSI_FILE_ADDRESS:
1477 index = reg->Register.Index;
1478 dst = &mach->Addrs[index].xyzw[chan_index];
1479 break;
1480
1481 case TGSI_FILE_PREDICATE:
1482 index = reg->Register.Index;
1483 assert(index < TGSI_EXEC_NUM_PREDS);
1484 dst = &mach->Predicates[index].xyzw[chan_index];
1485 break;
1486
1487 default:
1488 assert( 0 );
1489 return;
1490 }
1491
1492 if (inst->Instruction.Predicate) {
1493 uint swizzle;
1494 union tgsi_exec_channel *pred;
1495
1496 switch (chan_index) {
1497 case TGSI_CHAN_X:
1498 swizzle = inst->Predicate.SwizzleX;
1499 break;
1500 case TGSI_CHAN_Y:
1501 swizzle = inst->Predicate.SwizzleY;
1502 break;
1503 case TGSI_CHAN_Z:
1504 swizzle = inst->Predicate.SwizzleZ;
1505 break;
1506 case TGSI_CHAN_W:
1507 swizzle = inst->Predicate.SwizzleW;
1508 break;
1509 default:
1510 assert(0);
1511 return;
1512 }
1513
1514 assert(inst->Predicate.Index == 0);
1515
1516 pred = &mach->Predicates[inst->Predicate.Index].xyzw[swizzle];
1517
1518 if (inst->Predicate.Negate) {
1519 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1520 if (pred->u[i]) {
1521 execmask &= ~(1 << i);
1522 }
1523 }
1524 } else {
1525 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1526 if (!pred->u[i]) {
1527 execmask &= ~(1 << i);
1528 }
1529 }
1530 }
1531 }
1532
1533 switch (inst->Instruction.Saturate) {
1534 case TGSI_SAT_NONE:
1535 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1536 if (execmask & (1 << i))
1537 dst->i[i] = chan->i[i];
1538 break;
1539
1540 case TGSI_SAT_ZERO_ONE:
1541 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1542 if (execmask & (1 << i)) {
1543 if (chan->f[i] < 0.0f)
1544 dst->f[i] = 0.0f;
1545 else if (chan->f[i] > 1.0f)
1546 dst->f[i] = 1.0f;
1547 else
1548 dst->i[i] = chan->i[i];
1549 }
1550 break;
1551
1552 case TGSI_SAT_MINUS_PLUS_ONE:
1553 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1554 if (execmask & (1 << i)) {
1555 if (chan->f[i] < -1.0f)
1556 dst->f[i] = -1.0f;
1557 else if (chan->f[i] > 1.0f)
1558 dst->f[i] = 1.0f;
1559 else
1560 dst->i[i] = chan->i[i];
1561 }
1562 break;
1563
1564 default:
1565 assert( 0 );
1566 }
1567 }
1568
1569 #define FETCH(VAL,INDEX,CHAN)\
1570 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1571
1572 #define IFETCH(VAL,INDEX,CHAN)\
1573 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT)
1574
1575
1576 /**
1577 * Execute ARB-style KIL which is predicated by a src register.
1578 * Kill fragment if any of the four values is less than zero.
1579 */
1580 static void
1581 exec_kil(struct tgsi_exec_machine *mach,
1582 const struct tgsi_full_instruction *inst)
1583 {
1584 uint uniquemask;
1585 uint chan_index;
1586 uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1587 union tgsi_exec_channel r[1];
1588
1589 /* This mask stores component bits that were already tested. */
1590 uniquemask = 0;
1591
1592 for (chan_index = 0; chan_index < 4; chan_index++)
1593 {
1594 uint swizzle;
1595 uint i;
1596
1597 /* unswizzle channel */
1598 swizzle = tgsi_util_get_full_src_register_swizzle (
1599 &inst->Src[0],
1600 chan_index);
1601
1602 /* check if the component has not been already tested */
1603 if (uniquemask & (1 << swizzle))
1604 continue;
1605 uniquemask |= 1 << swizzle;
1606
1607 FETCH(&r[0], 0, chan_index);
1608 for (i = 0; i < 4; i++)
1609 if (r[0].f[i] < 0.0f)
1610 kilmask |= 1 << i;
1611 }
1612
1613 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1614 }
1615
1616 /**
1617 * Unconditional fragment kill/discard.
1618 */
1619 static void
1620 exec_kilp(struct tgsi_exec_machine *mach,
1621 const struct tgsi_full_instruction *inst)
1622 {
1623 uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1624
1625 /* kill fragment for all fragments currently executing */
1626 kilmask = mach->ExecMask;
1627 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
1628 }
1629
1630 static void
1631 emit_vertex(struct tgsi_exec_machine *mach)
1632 {
1633 /* FIXME: check for exec mask correctly
1634 unsigned i;
1635 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
1636 if ((mach->ExecMask & (1 << i)))
1637 */
1638 if (mach->ExecMask) {
1639 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
1640 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
1641 }
1642 }
1643
1644 static void
1645 emit_primitive(struct tgsi_exec_machine *mach)
1646 {
1647 unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
1648 /* FIXME: check for exec mask correctly
1649 unsigned i;
1650 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
1651 if ((mach->ExecMask & (1 << i)))
1652 */
1653 if (mach->ExecMask) {
1654 ++(*prim_count);
1655 debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
1656 mach->Primitives[*prim_count] = 0;
1657 }
1658 }
1659
1660 static void
1661 conditional_emit_primitive(struct tgsi_exec_machine *mach)
1662 {
1663 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1664 int emitted_verts =
1665 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]];
1666 if (emitted_verts) {
1667 emit_primitive(mach);
1668 }
1669 }
1670 }
1671
1672
1673 /*
1674 * Fetch four texture samples using STR texture coordinates.
1675 */
1676 static void
1677 fetch_texel( struct tgsi_sampler *sampler,
1678 const unsigned sview_idx,
1679 const unsigned sampler_idx,
1680 const union tgsi_exec_channel *s,
1681 const union tgsi_exec_channel *t,
1682 const union tgsi_exec_channel *p,
1683 const union tgsi_exec_channel *c0,
1684 const union tgsi_exec_channel *c1,
1685 float derivs[3][2][TGSI_QUAD_SIZE],
1686 const int8_t offset[3],
1687 enum tgsi_sampler_control control,
1688 union tgsi_exec_channel *r,
1689 union tgsi_exec_channel *g,
1690 union tgsi_exec_channel *b,
1691 union tgsi_exec_channel *a )
1692 {
1693 uint j;
1694 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1695
1696 /* FIXME: handle explicit derivs, offsets */
1697 sampler->get_samples(sampler, sview_idx, sampler_idx,
1698 s->f, t->f, p->f, c0->f, c1->f, derivs, offset, control, rgba);
1699
1700 for (j = 0; j < 4; j++) {
1701 r->f[j] = rgba[0][j];
1702 g->f[j] = rgba[1][j];
1703 b->f[j] = rgba[2][j];
1704 a->f[j] = rgba[3][j];
1705 }
1706 }
1707
1708
1709 #define TEX_MODIFIER_NONE 0
1710 #define TEX_MODIFIER_PROJECTED 1
1711 #define TEX_MODIFIER_LOD_BIAS 2
1712 #define TEX_MODIFIER_EXPLICIT_LOD 3
1713 #define TEX_MODIFIER_LEVEL_ZERO 4
1714
1715
1716 /*
1717 * Fetch all 3 (for s,t,r coords) texel offsets, put them into int array.
1718 */
1719 static void
1720 fetch_texel_offsets(struct tgsi_exec_machine *mach,
1721 const struct tgsi_full_instruction *inst,
1722 int8_t offsets[3])
1723 {
1724 if (inst->Texture.NumOffsets == 1) {
1725 union tgsi_exec_channel index;
1726 union tgsi_exec_channel offset[3];
1727 index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index;
1728 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
1729 inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]);
1730 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
1731 inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]);
1732 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
1733 inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]);
1734 offsets[0] = offset[0].i[0];
1735 offsets[1] = offset[1].i[0];
1736 offsets[2] = offset[2].i[0];
1737 } else {
1738 assert(inst->Texture.NumOffsets == 0);
1739 offsets[0] = offsets[1] = offsets[2] = 0;
1740 }
1741 }
1742
1743
1744 /*
1745 * Fetch dx and dy values for one channel (s, t or r).
1746 * Put dx values into one float array, dy values into another.
1747 */
1748 static void
1749 fetch_assign_deriv_channel(struct tgsi_exec_machine *mach,
1750 const struct tgsi_full_instruction *inst,
1751 unsigned regdsrcx,
1752 unsigned chan,
1753 float derivs[2][TGSI_QUAD_SIZE])
1754 {
1755 union tgsi_exec_channel d;
1756 FETCH(&d, regdsrcx, chan);
1757 derivs[0][0] = d.f[0];
1758 derivs[0][1] = d.f[1];
1759 derivs[0][2] = d.f[2];
1760 derivs[0][3] = d.f[3];
1761 FETCH(&d, regdsrcx + 1, chan);
1762 derivs[1][0] = d.f[0];
1763 derivs[1][1] = d.f[1];
1764 derivs[1][2] = d.f[2];
1765 derivs[1][3] = d.f[3];
1766 }
1767
1768
1769 /*
1770 * execute a texture instruction.
1771 *
1772 * modifier is used to control the channel routing for the\
1773 * instruction variants like proj, lod, and texture with lod bias.
1774 * sampler indicates which src register the sampler is contained in.
1775 */
1776 static void
1777 exec_tex(struct tgsi_exec_machine *mach,
1778 const struct tgsi_full_instruction *inst,
1779 uint modifier, uint sampler)
1780 {
1781 const uint unit = inst->Src[sampler].Register.Index;
1782 const union tgsi_exec_channel *args[5], *proj = NULL;
1783 union tgsi_exec_channel r[5];
1784 enum tgsi_sampler_control control = tgsi_sampler_lod_none;
1785 uint chan;
1786 int8_t offsets[3];
1787 int dim, shadow_ref, i;
1788
1789 /* always fetch all 3 offsets, overkill but keeps code simple */
1790 fetch_texel_offsets(mach, inst, offsets);
1791
1792 assert(modifier != TEX_MODIFIER_LEVEL_ZERO);
1793 assert(inst->Texture.Texture != TGSI_TEXTURE_BUFFER);
1794
1795 dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture, &shadow_ref);
1796
1797 assert(dim <= 4);
1798 if (shadow_ref >= 0)
1799 assert(shadow_ref >= dim && shadow_ref < Elements(args));
1800
1801 /* fetch modifier to the last argument */
1802 if (modifier != TEX_MODIFIER_NONE) {
1803 const int last = Elements(args) - 1;
1804
1805 /* fetch modifier from src0.w or src1.x */
1806 if (sampler == 1) {
1807 assert(dim <= TGSI_CHAN_W && shadow_ref != TGSI_CHAN_W);
1808 FETCH(&r[last], 0, TGSI_CHAN_W);
1809 }
1810 else {
1811 assert(shadow_ref != 4);
1812 FETCH(&r[last], 1, TGSI_CHAN_X);
1813 }
1814
1815 if (modifier != TEX_MODIFIER_PROJECTED) {
1816 args[last] = &r[last];
1817 }
1818 else {
1819 proj = &r[last];
1820 args[last] = &ZeroVec;
1821 }
1822
1823 /* point unused arguments to zero vector */
1824 for (i = dim; i < last; i++)
1825 args[i] = &ZeroVec;
1826
1827 if (modifier == TEX_MODIFIER_EXPLICIT_LOD)
1828 control = tgsi_sampler_lod_explicit;
1829 else if (modifier == TEX_MODIFIER_LOD_BIAS)
1830 control = tgsi_sampler_lod_bias;
1831 }
1832 else {
1833 for (i = dim; i < Elements(args); i++)
1834 args[i] = &ZeroVec;
1835 }
1836
1837 /* fetch coordinates */
1838 for (i = 0; i < dim; i++) {
1839 FETCH(&r[i], 0, TGSI_CHAN_X + i);
1840
1841 if (proj)
1842 micro_div(&r[i], &r[i], proj);
1843
1844 args[i] = &r[i];
1845 }
1846
1847 /* fetch reference value */
1848 if (shadow_ref >= 0) {
1849 FETCH(&r[shadow_ref], shadow_ref / 4, TGSI_CHAN_X + (shadow_ref % 4));
1850
1851 if (proj)
1852 micro_div(&r[shadow_ref], &r[shadow_ref], proj);
1853
1854 args[shadow_ref] = &r[shadow_ref];
1855 }
1856
1857 fetch_texel(mach->Sampler, unit, unit,
1858 args[0], args[1], args[2], args[3], args[4],
1859 NULL, offsets, control,
1860 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1861
1862 #if 0
1863 debug_printf("fetch r: %g %g %g %g\n",
1864 r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
1865 debug_printf("fetch g: %g %g %g %g\n",
1866 r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
1867 debug_printf("fetch b: %g %g %g %g\n",
1868 r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
1869 debug_printf("fetch a: %g %g %g %g\n",
1870 r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
1871 #endif
1872
1873 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1874 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1875 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1876 }
1877 }
1878 }
1879
1880
1881 static void
1882 exec_txd(struct tgsi_exec_machine *mach,
1883 const struct tgsi_full_instruction *inst)
1884 {
1885 const uint unit = inst->Src[3].Register.Index;
1886 union tgsi_exec_channel r[4];
1887 float derivs[3][2][TGSI_QUAD_SIZE];
1888 uint chan;
1889 int8_t offsets[3];
1890
1891 /* always fetch all 3 offsets, overkill but keeps code simple */
1892 fetch_texel_offsets(mach, inst, offsets);
1893
1894 switch (inst->Texture.Texture) {
1895 case TGSI_TEXTURE_1D:
1896 FETCH(&r[0], 0, TGSI_CHAN_X);
1897
1898 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1899
1900 fetch_texel(mach->Sampler, unit, unit,
1901 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
1902 derivs, offsets, tgsi_sampler_derivs_explicit,
1903 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1904 break;
1905
1906 case TGSI_TEXTURE_SHADOW1D:
1907 case TGSI_TEXTURE_1D_ARRAY:
1908 case TGSI_TEXTURE_SHADOW1D_ARRAY:
1909 /* SHADOW1D/1D_ARRAY would not need Y/Z respectively, but don't bother */
1910 FETCH(&r[0], 0, TGSI_CHAN_X);
1911 FETCH(&r[1], 0, TGSI_CHAN_Y);
1912 FETCH(&r[2], 0, TGSI_CHAN_Z);
1913
1914 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1915
1916 fetch_texel(mach->Sampler, unit, unit,
1917 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
1918 derivs, offsets, tgsi_sampler_derivs_explicit,
1919 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1920 break;
1921
1922 case TGSI_TEXTURE_2D:
1923 case TGSI_TEXTURE_RECT:
1924 FETCH(&r[0], 0, TGSI_CHAN_X);
1925 FETCH(&r[1], 0, TGSI_CHAN_Y);
1926
1927 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1928 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
1929
1930 fetch_texel(mach->Sampler, unit, unit,
1931 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
1932 derivs, offsets, tgsi_sampler_derivs_explicit,
1933 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
1934 break;
1935
1936
1937 case TGSI_TEXTURE_SHADOW2D:
1938 case TGSI_TEXTURE_SHADOWRECT:
1939 case TGSI_TEXTURE_2D_ARRAY:
1940 case TGSI_TEXTURE_SHADOW2D_ARRAY:
1941 /* only SHADOW2D_ARRAY actually needs W */
1942 FETCH(&r[0], 0, TGSI_CHAN_X);
1943 FETCH(&r[1], 0, TGSI_CHAN_Y);
1944 FETCH(&r[2], 0, TGSI_CHAN_Z);
1945 FETCH(&r[3], 0, TGSI_CHAN_W);
1946
1947 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1948 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
1949
1950 fetch_texel(mach->Sampler, unit, unit,
1951 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
1952 derivs, offsets, tgsi_sampler_derivs_explicit,
1953 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1954 break;
1955
1956 case TGSI_TEXTURE_3D:
1957 case TGSI_TEXTURE_CUBE:
1958 case TGSI_TEXTURE_CUBE_ARRAY:
1959 /* only TEXTURE_CUBE_ARRAY actually needs W */
1960 FETCH(&r[0], 0, TGSI_CHAN_X);
1961 FETCH(&r[1], 0, TGSI_CHAN_Y);
1962 FETCH(&r[2], 0, TGSI_CHAN_Z);
1963 FETCH(&r[3], 0, TGSI_CHAN_W);
1964
1965 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
1966 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
1967 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Z, derivs[2]);
1968
1969 fetch_texel(mach->Sampler, unit, unit,
1970 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
1971 derivs, offsets, tgsi_sampler_derivs_explicit,
1972 &r[0], &r[1], &r[2], &r[3]); /* outputs */
1973 break;
1974
1975 default:
1976 assert(0);
1977 }
1978
1979 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1980 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1981 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
1982 }
1983 }
1984 }
1985
1986
1987 static void
1988 exec_txf(struct tgsi_exec_machine *mach,
1989 const struct tgsi_full_instruction *inst)
1990 {
1991 const uint unit = inst->Src[1].Register.Index;
1992 union tgsi_exec_channel r[4];
1993 uint chan;
1994 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1995 int j;
1996 int8_t offsets[3];
1997 unsigned target;
1998
1999 /* always fetch all 3 offsets, overkill but keeps code simple */
2000 fetch_texel_offsets(mach, inst, offsets);
2001
2002 IFETCH(&r[3], 0, TGSI_CHAN_W);
2003
2004 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I) {
2005 target = mach->SamplerViews[unit].Resource;
2006 }
2007 else {
2008 target = inst->Texture.Texture;
2009 }
2010 switch(target) {
2011 case TGSI_TEXTURE_3D:
2012 case TGSI_TEXTURE_2D_ARRAY:
2013 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2014 IFETCH(&r[2], 0, TGSI_CHAN_Z);
2015 /* fallthrough */
2016 case TGSI_TEXTURE_2D:
2017 case TGSI_TEXTURE_RECT:
2018 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2019 case TGSI_TEXTURE_SHADOW2D:
2020 case TGSI_TEXTURE_SHADOWRECT:
2021 case TGSI_TEXTURE_1D_ARRAY:
2022 IFETCH(&r[1], 0, TGSI_CHAN_Y);
2023 /* fallthrough */
2024 case TGSI_TEXTURE_BUFFER:
2025 case TGSI_TEXTURE_1D:
2026 case TGSI_TEXTURE_SHADOW1D:
2027 IFETCH(&r[0], 0, TGSI_CHAN_X);
2028 break;
2029 default:
2030 assert(0);
2031 break;
2032 }
2033
2034 mach->Sampler->get_texel(mach->Sampler, unit, r[0].i, r[1].i, r[2].i, r[3].i,
2035 offsets, rgba);
2036
2037 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2038 r[0].f[j] = rgba[0][j];
2039 r[1].f[j] = rgba[1][j];
2040 r[2].f[j] = rgba[2][j];
2041 r[3].f[j] = rgba[3][j];
2042 }
2043
2044 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2045 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2046 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2047 }
2048 }
2049 }
2050
2051 static void
2052 exec_txq(struct tgsi_exec_machine *mach,
2053 const struct tgsi_full_instruction *inst)
2054 {
2055 const uint unit = inst->Src[1].Register.Index;
2056 int result[4];
2057 union tgsi_exec_channel r[4], src;
2058 uint chan;
2059 int i,j;
2060
2061 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
2062
2063 mach->Sampler->get_dims(mach->Sampler, unit, src.i[0], result);
2064
2065 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2066 for (j = 0; j < 4; j++) {
2067 r[j].i[i] = result[j];
2068 }
2069 }
2070
2071 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2072 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2073 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
2074 TGSI_EXEC_DATA_INT);
2075 }
2076 }
2077 }
2078
2079 static void
2080 exec_sample(struct tgsi_exec_machine *mach,
2081 const struct tgsi_full_instruction *inst,
2082 uint modifier, boolean compare)
2083 {
2084 const uint resource_unit = inst->Src[1].Register.Index;
2085 const uint sampler_unit = inst->Src[2].Register.Index;
2086 union tgsi_exec_channel r[4], c1;
2087 const union tgsi_exec_channel *lod = &ZeroVec;
2088 enum tgsi_sampler_control control = tgsi_sampler_lod_none;
2089 uint chan;
2090 int8_t offsets[3];
2091
2092 /* always fetch all 3 offsets, overkill but keeps code simple */
2093 fetch_texel_offsets(mach, inst, offsets);
2094
2095 assert(modifier != TEX_MODIFIER_PROJECTED);
2096
2097 if (modifier != TEX_MODIFIER_NONE) {
2098 if (modifier == TEX_MODIFIER_LOD_BIAS) {
2099 FETCH(&c1, 3, TGSI_CHAN_X);
2100 lod = &c1;
2101 control = tgsi_sampler_lod_bias;
2102 }
2103 else if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
2104 FETCH(&c1, 3, TGSI_CHAN_X);
2105 lod = &c1;
2106 control = tgsi_sampler_lod_explicit;
2107 }
2108 else {
2109 assert(modifier == TEX_MODIFIER_LEVEL_ZERO);
2110 control = tgsi_sampler_lod_zero;
2111 }
2112 }
2113
2114 FETCH(&r[0], 0, TGSI_CHAN_X);
2115
2116 switch (mach->SamplerViews[resource_unit].Resource) {
2117 case TGSI_TEXTURE_1D:
2118 if (compare) {
2119 FETCH(&r[2], 3, TGSI_CHAN_X);
2120 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2121 &r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2122 NULL, offsets, control,
2123 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2124 }
2125 else {
2126 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2127 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2128 NULL, offsets, control,
2129 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2130 }
2131 break;
2132
2133 case TGSI_TEXTURE_1D_ARRAY:
2134 case TGSI_TEXTURE_2D:
2135 case TGSI_TEXTURE_RECT:
2136 FETCH(&r[1], 0, TGSI_CHAN_Y);
2137 if (compare) {
2138 FETCH(&r[2], 3, TGSI_CHAN_X);
2139 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2140 &r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2141 NULL, offsets, control,
2142 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2143 }
2144 else {
2145 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2146 &r[0], &r[1], &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2147 NULL, offsets, control,
2148 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2149 }
2150 break;
2151
2152 case TGSI_TEXTURE_2D_ARRAY:
2153 case TGSI_TEXTURE_3D:
2154 case TGSI_TEXTURE_CUBE:
2155 FETCH(&r[1], 0, TGSI_CHAN_Y);
2156 FETCH(&r[2], 0, TGSI_CHAN_Z);
2157 if(compare) {
2158 FETCH(&r[3], 3, TGSI_CHAN_X);
2159 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2160 &r[0], &r[1], &r[2], &r[3], lod,
2161 NULL, offsets, control,
2162 &r[0], &r[1], &r[2], &r[3]);
2163 }
2164 else {
2165 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2166 &r[0], &r[1], &r[2], &ZeroVec, lod,
2167 NULL, offsets, control,
2168 &r[0], &r[1], &r[2], &r[3]);
2169 }
2170 break;
2171
2172 case TGSI_TEXTURE_CUBE_ARRAY:
2173 FETCH(&r[1], 0, TGSI_CHAN_Y);
2174 FETCH(&r[2], 0, TGSI_CHAN_Z);
2175 FETCH(&r[3], 0, TGSI_CHAN_W);
2176 if(compare) {
2177 FETCH(&r[4], 3, TGSI_CHAN_X);
2178 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2179 &r[0], &r[1], &r[2], &r[3], &r[4],
2180 NULL, offsets, control,
2181 &r[0], &r[1], &r[2], &r[3]);
2182 }
2183 else {
2184 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2185 &r[0], &r[1], &r[2], &r[3], lod,
2186 NULL, offsets, control,
2187 &r[0], &r[1], &r[2], &r[3]);
2188 }
2189 break;
2190
2191
2192 default:
2193 assert(0);
2194 }
2195
2196 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2197 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2198 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2199 }
2200 }
2201 }
2202
2203 static void
2204 exec_sample_d(struct tgsi_exec_machine *mach,
2205 const struct tgsi_full_instruction *inst)
2206 {
2207 const uint resource_unit = inst->Src[1].Register.Index;
2208 const uint sampler_unit = inst->Src[2].Register.Index;
2209 union tgsi_exec_channel r[4];
2210 float derivs[3][2][TGSI_QUAD_SIZE];
2211 uint chan;
2212 int8_t offsets[3];
2213
2214 /* always fetch all 3 offsets, overkill but keeps code simple */
2215 fetch_texel_offsets(mach, inst, offsets);
2216
2217 FETCH(&r[0], 0, TGSI_CHAN_X);
2218
2219 switch (mach->SamplerViews[resource_unit].Resource) {
2220 case TGSI_TEXTURE_1D:
2221 case TGSI_TEXTURE_1D_ARRAY:
2222 /* only 1D array actually needs Y */
2223 FETCH(&r[1], 0, TGSI_CHAN_Y);
2224
2225 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2226
2227 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2228 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2229 derivs, offsets, tgsi_sampler_derivs_explicit,
2230 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2231 break;
2232
2233 case TGSI_TEXTURE_2D:
2234 case TGSI_TEXTURE_RECT:
2235 case TGSI_TEXTURE_2D_ARRAY:
2236 /* only 2D array actually needs Z */
2237 FETCH(&r[1], 0, TGSI_CHAN_Y);
2238 FETCH(&r[2], 0, TGSI_CHAN_Z);
2239
2240 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2241 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2242
2243 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2244 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* inputs */
2245 derivs, offsets, tgsi_sampler_derivs_explicit,
2246 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2247 break;
2248
2249 case TGSI_TEXTURE_3D:
2250 case TGSI_TEXTURE_CUBE:
2251 case TGSI_TEXTURE_CUBE_ARRAY:
2252 /* only cube array actually needs W */
2253 FETCH(&r[1], 0, TGSI_CHAN_Y);
2254 FETCH(&r[2], 0, TGSI_CHAN_Z);
2255 FETCH(&r[3], 0, TGSI_CHAN_W);
2256
2257 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2258 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2259 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Z, derivs[2]);
2260
2261 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2262 &r[0], &r[1], &r[2], &r[3], &ZeroVec,
2263 derivs, offsets, tgsi_sampler_derivs_explicit,
2264 &r[0], &r[1], &r[2], &r[3]);
2265 break;
2266
2267 default:
2268 assert(0);
2269 }
2270
2271 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2272 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2273 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2274 }
2275 }
2276 }
2277
2278
2279 /**
2280 * Evaluate a constant-valued coefficient at the position of the
2281 * current quad.
2282 */
2283 static void
2284 eval_constant_coef(
2285 struct tgsi_exec_machine *mach,
2286 unsigned attrib,
2287 unsigned chan )
2288 {
2289 unsigned i;
2290
2291 for( i = 0; i < TGSI_QUAD_SIZE; i++ ) {
2292 mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2293 }
2294 }
2295
2296 /**
2297 * Evaluate a linear-valued coefficient at the position of the
2298 * current quad.
2299 */
2300 static void
2301 eval_linear_coef(
2302 struct tgsi_exec_machine *mach,
2303 unsigned attrib,
2304 unsigned chan )
2305 {
2306 const float x = mach->QuadPos.xyzw[0].f[0];
2307 const float y = mach->QuadPos.xyzw[1].f[0];
2308 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2309 const float dady = mach->InterpCoefs[attrib].dady[chan];
2310 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2311 mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2312 mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2313 mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2314 mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2315 }
2316
2317 /**
2318 * Evaluate a perspective-valued coefficient at the position of the
2319 * current quad.
2320 */
2321 static void
2322 eval_perspective_coef(
2323 struct tgsi_exec_machine *mach,
2324 unsigned attrib,
2325 unsigned chan )
2326 {
2327 const float x = mach->QuadPos.xyzw[0].f[0];
2328 const float y = mach->QuadPos.xyzw[1].f[0];
2329 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2330 const float dady = mach->InterpCoefs[attrib].dady[chan];
2331 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2332 const float *w = mach->QuadPos.xyzw[3].f;
2333 /* divide by W here */
2334 mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2335 mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2336 mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2337 mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2338 }
2339
2340
2341 typedef void (* eval_coef_func)(
2342 struct tgsi_exec_machine *mach,
2343 unsigned attrib,
2344 unsigned chan );
2345
2346 static void
2347 exec_declaration(struct tgsi_exec_machine *mach,
2348 const struct tgsi_full_declaration *decl)
2349 {
2350 if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) {
2351 mach->SamplerViews[decl->Range.First] = decl->SamplerView;
2352 return;
2353 }
2354
2355 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
2356 if (decl->Declaration.File == TGSI_FILE_INPUT) {
2357 uint first, last, mask;
2358
2359 first = decl->Range.First;
2360 last = decl->Range.Last;
2361 mask = decl->Declaration.UsageMask;
2362
2363 /* XXX we could remove this special-case code since
2364 * mach->InterpCoefs[first].a0 should already have the
2365 * front/back-face value. But we should first update the
2366 * ureg code to emit the right UsageMask value (WRITEMASK_X).
2367 * Then, we could remove the tgsi_exec_machine::Face field.
2368 */
2369 /* XXX make FACE a system value */
2370 if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
2371 uint i;
2372
2373 assert(decl->Semantic.Index == 0);
2374 assert(first == last);
2375
2376 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2377 mach->Inputs[first].xyzw[0].f[i] = mach->Face;
2378 }
2379 } else {
2380 eval_coef_func eval;
2381 uint i, j;
2382
2383 switch (decl->Interp.Interpolate) {
2384 case TGSI_INTERPOLATE_CONSTANT:
2385 eval = eval_constant_coef;
2386 break;
2387
2388 case TGSI_INTERPOLATE_LINEAR:
2389 eval = eval_linear_coef;
2390 break;
2391
2392 case TGSI_INTERPOLATE_PERSPECTIVE:
2393 eval = eval_perspective_coef;
2394 break;
2395
2396 case TGSI_INTERPOLATE_COLOR:
2397 eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef;
2398 break;
2399
2400 default:
2401 assert(0);
2402 return;
2403 }
2404
2405 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2406 if (mask & (1 << j)) {
2407 for (i = first; i <= last; i++) {
2408 eval(mach, i, j);
2409 }
2410 }
2411 }
2412 }
2413
2414 if (DEBUG_EXECUTION) {
2415 uint i, j;
2416 for (i = first; i <= last; ++i) {
2417 debug_printf("IN[%2u] = ", i);
2418 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2419 if (j > 0) {
2420 debug_printf(" ");
2421 }
2422 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
2423 mach->Inputs[i].xyzw[0].f[j], mach->Inputs[i].xyzw[0].u[j],
2424 mach->Inputs[i].xyzw[1].f[j], mach->Inputs[i].xyzw[1].u[j],
2425 mach->Inputs[i].xyzw[2].f[j], mach->Inputs[i].xyzw[2].u[j],
2426 mach->Inputs[i].xyzw[3].f[j], mach->Inputs[i].xyzw[3].u[j]);
2427 }
2428 }
2429 }
2430 }
2431 }
2432
2433 if (decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
2434 mach->SysSemanticToIndex[decl->Declaration.Semantic] = decl->Range.First;
2435 }
2436 }
2437
2438
2439 typedef void (* micro_op)(union tgsi_exec_channel *dst);
2440
2441 static void
2442 exec_vector(struct tgsi_exec_machine *mach,
2443 const struct tgsi_full_instruction *inst,
2444 micro_op op,
2445 enum tgsi_exec_datatype dst_datatype)
2446 {
2447 unsigned int chan;
2448
2449 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2450 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2451 union tgsi_exec_channel dst;
2452
2453 op(&dst);
2454 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2455 }
2456 }
2457 }
2458
2459 typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
2460 const union tgsi_exec_channel *src);
2461
2462 static void
2463 exec_scalar_unary(struct tgsi_exec_machine *mach,
2464 const struct tgsi_full_instruction *inst,
2465 micro_unary_op op,
2466 enum tgsi_exec_datatype dst_datatype,
2467 enum tgsi_exec_datatype src_datatype)
2468 {
2469 unsigned int chan;
2470 union tgsi_exec_channel src;
2471 union tgsi_exec_channel dst;
2472
2473 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
2474 op(&dst, &src);
2475 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2476 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2477 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2478 }
2479 }
2480 }
2481
2482 static void
2483 exec_vector_unary(struct tgsi_exec_machine *mach,
2484 const struct tgsi_full_instruction *inst,
2485 micro_unary_op op,
2486 enum tgsi_exec_datatype dst_datatype,
2487 enum tgsi_exec_datatype src_datatype)
2488 {
2489 unsigned int chan;
2490 struct tgsi_exec_vector dst;
2491
2492 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2493 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2494 union tgsi_exec_channel src;
2495
2496 fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
2497 op(&dst.xyzw[chan], &src);
2498 }
2499 }
2500 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2501 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2502 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2503 }
2504 }
2505 }
2506
2507 typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
2508 const union tgsi_exec_channel *src0,
2509 const union tgsi_exec_channel *src1);
2510
2511 static void
2512 exec_scalar_binary(struct tgsi_exec_machine *mach,
2513 const struct tgsi_full_instruction *inst,
2514 micro_binary_op op,
2515 enum tgsi_exec_datatype dst_datatype,
2516 enum tgsi_exec_datatype src_datatype)
2517 {
2518 unsigned int chan;
2519 union tgsi_exec_channel src[2];
2520 union tgsi_exec_channel dst;
2521
2522 fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype);
2523 fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, src_datatype);
2524 op(&dst, &src[0], &src[1]);
2525 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2526 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2527 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2528 }
2529 }
2530 }
2531
2532 static void
2533 exec_vector_binary(struct tgsi_exec_machine *mach,
2534 const struct tgsi_full_instruction *inst,
2535 micro_binary_op op,
2536 enum tgsi_exec_datatype dst_datatype,
2537 enum tgsi_exec_datatype src_datatype)
2538 {
2539 unsigned int chan;
2540 struct tgsi_exec_vector dst;
2541
2542 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2543 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2544 union tgsi_exec_channel src[2];
2545
2546 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2547 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2548 op(&dst.xyzw[chan], &src[0], &src[1]);
2549 }
2550 }
2551 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2552 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2553 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2554 }
2555 }
2556 }
2557
2558 typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
2559 const union tgsi_exec_channel *src0,
2560 const union tgsi_exec_channel *src1,
2561 const union tgsi_exec_channel *src2);
2562
2563 static void
2564 exec_vector_trinary(struct tgsi_exec_machine *mach,
2565 const struct tgsi_full_instruction *inst,
2566 micro_trinary_op op,
2567 enum tgsi_exec_datatype dst_datatype,
2568 enum tgsi_exec_datatype src_datatype)
2569 {
2570 unsigned int chan;
2571 struct tgsi_exec_vector dst;
2572
2573 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2574 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2575 union tgsi_exec_channel src[3];
2576
2577 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
2578 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
2579 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
2580 op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
2581 }
2582 }
2583 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2584 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2585 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
2586 }
2587 }
2588 }
2589
2590 static void
2591 exec_dp3(struct tgsi_exec_machine *mach,
2592 const struct tgsi_full_instruction *inst)
2593 {
2594 unsigned int chan;
2595 union tgsi_exec_channel arg[3];
2596
2597 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2598 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2599 micro_mul(&arg[2], &arg[0], &arg[1]);
2600
2601 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
2602 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2603 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2604 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2605 }
2606
2607 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2608 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2609 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2610 }
2611 }
2612 }
2613
2614 static void
2615 exec_dp4(struct tgsi_exec_machine *mach,
2616 const struct tgsi_full_instruction *inst)
2617 {
2618 unsigned int chan;
2619 union tgsi_exec_channel arg[3];
2620
2621 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2622 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2623 micro_mul(&arg[2], &arg[0], &arg[1]);
2624
2625 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
2626 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2627 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
2628 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2629 }
2630
2631 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2632 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2633 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2634 }
2635 }
2636 }
2637
2638 static void
2639 exec_dp2a(struct tgsi_exec_machine *mach,
2640 const struct tgsi_full_instruction *inst)
2641 {
2642 unsigned int chan;
2643 union tgsi_exec_channel arg[3];
2644
2645 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2646 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2647 micro_mul(&arg[2], &arg[0], &arg[1]);
2648
2649 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2650 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2651 micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2652
2653 fetch_source(mach, &arg[1], &inst->Src[2], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2654 micro_add(&arg[0], &arg[0], &arg[1]);
2655
2656 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2657 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2658 store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2659 }
2660 }
2661 }
2662
2663 static void
2664 exec_dph(struct tgsi_exec_machine *mach,
2665 const struct tgsi_full_instruction *inst)
2666 {
2667 unsigned int chan;
2668 union tgsi_exec_channel arg[3];
2669
2670 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2671 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2672 micro_mul(&arg[2], &arg[0], &arg[1]);
2673
2674 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2675 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2676 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2677
2678 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2679 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2680 micro_mad(&arg[0], &arg[0], &arg[1], &arg[2]);
2681
2682 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2683 micro_add(&arg[0], &arg[0], &arg[1]);
2684
2685 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2686 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2687 store_dest(mach, &arg[0], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2688 }
2689 }
2690 }
2691
2692 static void
2693 exec_dp2(struct tgsi_exec_machine *mach,
2694 const struct tgsi_full_instruction *inst)
2695 {
2696 unsigned int chan;
2697 union tgsi_exec_channel arg[3];
2698
2699 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2700 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2701 micro_mul(&arg[2], &arg[0], &arg[1]);
2702
2703 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2704 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2705 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
2706
2707 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2708 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2709 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2710 }
2711 }
2712 }
2713
2714 static void
2715 exec_nrm4(struct tgsi_exec_machine *mach,
2716 const struct tgsi_full_instruction *inst)
2717 {
2718 unsigned int chan;
2719 union tgsi_exec_channel arg[4];
2720 union tgsi_exec_channel scale;
2721
2722 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2723 micro_mul(&scale, &arg[0], &arg[0]);
2724
2725 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
2726 union tgsi_exec_channel product;
2727
2728 fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2729 micro_mul(&product, &arg[chan], &arg[chan]);
2730 micro_add(&scale, &scale, &product);
2731 }
2732
2733 micro_rsq(&scale, &scale);
2734
2735 for (chan = TGSI_CHAN_X; chan <= TGSI_CHAN_W; chan++) {
2736 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2737 micro_mul(&arg[chan], &arg[chan], &scale);
2738 store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2739 }
2740 }
2741 }
2742
2743 static void
2744 exec_nrm3(struct tgsi_exec_machine *mach,
2745 const struct tgsi_full_instruction *inst)
2746 {
2747 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2748 unsigned int chan;
2749 union tgsi_exec_channel arg[3];
2750 union tgsi_exec_channel scale;
2751
2752 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2753 micro_mul(&scale, &arg[0], &arg[0]);
2754
2755 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
2756 union tgsi_exec_channel product;
2757
2758 fetch_source(mach, &arg[chan], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
2759 micro_mul(&product, &arg[chan], &arg[chan]);
2760 micro_add(&scale, &scale, &product);
2761 }
2762
2763 micro_rsq(&scale, &scale);
2764
2765 for (chan = TGSI_CHAN_X; chan <= TGSI_CHAN_Z; chan++) {
2766 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2767 micro_mul(&arg[chan], &arg[chan], &scale);
2768 store_dest(mach, &arg[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2769 }
2770 }
2771 }
2772
2773 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2774 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2775 }
2776 }
2777
2778 static void
2779 exec_scs(struct tgsi_exec_machine *mach,
2780 const struct tgsi_full_instruction *inst)
2781 {
2782 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) {
2783 union tgsi_exec_channel arg;
2784 union tgsi_exec_channel result;
2785
2786 fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2787
2788 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2789 micro_cos(&result, &arg);
2790 store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2791 }
2792 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2793 micro_sin(&result, &arg);
2794 store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2795 }
2796 }
2797 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2798 store_dest(mach, &ZeroVec, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2799 }
2800 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2801 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2802 }
2803 }
2804
2805 static void
2806 exec_x2d(struct tgsi_exec_machine *mach,
2807 const struct tgsi_full_instruction *inst)
2808 {
2809 union tgsi_exec_channel r[4];
2810 union tgsi_exec_channel d[2];
2811
2812 fetch_source(mach, &r[0], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2813 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2814 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XZ) {
2815 fetch_source(mach, &r[2], &inst->Src[2], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2816 micro_mul(&r[2], &r[2], &r[0]);
2817 fetch_source(mach, &r[3], &inst->Src[2], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2818 micro_mul(&r[3], &r[3], &r[1]);
2819 micro_add(&r[2], &r[2], &r[3]);
2820 fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2821 micro_add(&d[0], &r[2], &r[3]);
2822 }
2823 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YW) {
2824 fetch_source(mach, &r[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2825 micro_mul(&r[2], &r[2], &r[0]);
2826 fetch_source(mach, &r[3], &inst->Src[2], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2827 micro_mul(&r[3], &r[3], &r[1]);
2828 micro_add(&r[2], &r[2], &r[3]);
2829 fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2830 micro_add(&d[1], &r[2], &r[3]);
2831 }
2832 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2833 store_dest(mach, &d[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2834 }
2835 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2836 store_dest(mach, &d[1], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2837 }
2838 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2839 store_dest(mach, &d[0], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2840 }
2841 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2842 store_dest(mach, &d[1], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2843 }
2844 }
2845
2846 static void
2847 exec_rfl(struct tgsi_exec_machine *mach,
2848 const struct tgsi_full_instruction *inst)
2849 {
2850 union tgsi_exec_channel r[9];
2851
2852 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XYZ) {
2853 /* r0 = dp3(src0, src0) */
2854 fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2855 micro_mul(&r[0], &r[2], &r[2]);
2856 fetch_source(mach, &r[4], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2857 micro_mul(&r[8], &r[4], &r[4]);
2858 micro_add(&r[0], &r[0], &r[8]);
2859 fetch_source(mach, &r[6], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2860 micro_mul(&r[8], &r[6], &r[6]);
2861 micro_add(&r[0], &r[0], &r[8]);
2862
2863 /* r1 = dp3(src0, src1) */
2864 fetch_source(mach, &r[3], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2865 micro_mul(&r[1], &r[2], &r[3]);
2866 fetch_source(mach, &r[5], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2867 micro_mul(&r[8], &r[4], &r[5]);
2868 micro_add(&r[1], &r[1], &r[8]);
2869 fetch_source(mach, &r[7], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2870 micro_mul(&r[8], &r[6], &r[7]);
2871 micro_add(&r[1], &r[1], &r[8]);
2872
2873 /* r1 = 2 * r1 / r0 */
2874 micro_add(&r[1], &r[1], &r[1]);
2875 micro_div(&r[1], &r[1], &r[0]);
2876
2877 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2878 micro_mul(&r[2], &r[2], &r[1]);
2879 micro_sub(&r[2], &r[2], &r[3]);
2880 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2881 }
2882 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2883 micro_mul(&r[4], &r[4], &r[1]);
2884 micro_sub(&r[4], &r[4], &r[5]);
2885 store_dest(mach, &r[4], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2886 }
2887 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2888 micro_mul(&r[6], &r[6], &r[1]);
2889 micro_sub(&r[6], &r[6], &r[7]);
2890 store_dest(mach, &r[6], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2891 }
2892 }
2893 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2894 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2895 }
2896 }
2897
2898 static void
2899 exec_xpd(struct tgsi_exec_machine *mach,
2900 const struct tgsi_full_instruction *inst)
2901 {
2902 union tgsi_exec_channel r[6];
2903 union tgsi_exec_channel d[3];
2904
2905 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2906 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2907
2908 micro_mul(&r[2], &r[0], &r[1]);
2909
2910 fetch_source(mach, &r[3], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2911 fetch_source(mach, &r[4], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2912
2913 micro_mul(&r[5], &r[3], &r[4] );
2914 micro_sub(&d[TGSI_CHAN_X], &r[2], &r[5]);
2915
2916 fetch_source(mach, &r[2], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2917
2918 micro_mul(&r[3], &r[3], &r[2]);
2919
2920 fetch_source(mach, &r[5], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2921
2922 micro_mul(&r[1], &r[1], &r[5]);
2923 micro_sub(&d[TGSI_CHAN_Y], &r[3], &r[1]);
2924
2925 micro_mul(&r[5], &r[5], &r[4]);
2926 micro_mul(&r[0], &r[0], &r[2]);
2927 micro_sub(&d[TGSI_CHAN_Z], &r[5], &r[0]);
2928
2929 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2930 store_dest(mach, &d[TGSI_CHAN_X], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2931 }
2932 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2933 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2934 }
2935 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2936 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2937 }
2938 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2939 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2940 }
2941 }
2942
2943 static void
2944 exec_dst(struct tgsi_exec_machine *mach,
2945 const struct tgsi_full_instruction *inst)
2946 {
2947 union tgsi_exec_channel r[2];
2948 union tgsi_exec_channel d[4];
2949
2950 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2951 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2952 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2953 micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]);
2954 }
2955 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2956 fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2957 }
2958 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2959 fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2960 }
2961
2962 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2963 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2964 }
2965 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2966 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2967 }
2968 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2969 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2970 }
2971 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2972 store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2973 }
2974 }
2975
2976 static void
2977 exec_log(struct tgsi_exec_machine *mach,
2978 const struct tgsi_full_instruction *inst)
2979 {
2980 union tgsi_exec_channel r[3];
2981
2982 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2983 micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */
2984 micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */
2985 micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */
2986 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2987 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
2988 }
2989 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2990 micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */
2991 micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
2992 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
2993 }
2994 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
2995 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
2996 }
2997 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
2998 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
2999 }
3000 }
3001
3002 static void
3003 exec_exp(struct tgsi_exec_machine *mach,
3004 const struct tgsi_full_instruction *inst)
3005 {
3006 union tgsi_exec_channel r[3];
3007
3008 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3009 micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */
3010 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3011 micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */
3012 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3013 }
3014 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3015 micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
3016 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3017 }
3018 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3019 micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */
3020 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3021 }
3022 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3023 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3024 }
3025 }
3026
3027 static void
3028 exec_lit(struct tgsi_exec_machine *mach,
3029 const struct tgsi_full_instruction *inst)
3030 {
3031 union tgsi_exec_channel r[3];
3032 union tgsi_exec_channel d[3];
3033
3034 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
3035 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3036 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3037 fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3038 micro_max(&r[1], &r[1], &ZeroVec);
3039
3040 fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3041 micro_min(&r[2], &r[2], &P128Vec);
3042 micro_max(&r[2], &r[2], &M128Vec);
3043 micro_pow(&r[1], &r[1], &r[2]);
3044 micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
3045 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3046 }
3047 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3048 micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec);
3049 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3050 }
3051 }
3052 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3053 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3054 }
3055
3056 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3057 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3058 }
3059 }
3060
3061 static void
3062 exec_break(struct tgsi_exec_machine *mach)
3063 {
3064 if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
3065 /* turn off loop channels for each enabled exec channel */
3066 mach->LoopMask &= ~mach->ExecMask;
3067 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3068 UPDATE_EXEC_MASK(mach);
3069 } else {
3070 assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
3071
3072 mach->Switch.mask = 0x0;
3073
3074 UPDATE_EXEC_MASK(mach);
3075 }
3076 }
3077
3078 static void
3079 exec_switch(struct tgsi_exec_machine *mach,
3080 const struct tgsi_full_instruction *inst)
3081 {
3082 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3083 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3084
3085 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3086 fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3087 mach->Switch.mask = 0x0;
3088 mach->Switch.defaultMask = 0x0;
3089
3090 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3091 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
3092
3093 UPDATE_EXEC_MASK(mach);
3094 }
3095
3096 static void
3097 exec_case(struct tgsi_exec_machine *mach,
3098 const struct tgsi_full_instruction *inst)
3099 {
3100 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3101 union tgsi_exec_channel src;
3102 uint mask = 0;
3103
3104 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3105
3106 if (mach->Switch.selector.u[0] == src.u[0]) {
3107 mask |= 0x1;
3108 }
3109 if (mach->Switch.selector.u[1] == src.u[1]) {
3110 mask |= 0x2;
3111 }
3112 if (mach->Switch.selector.u[2] == src.u[2]) {
3113 mask |= 0x4;
3114 }
3115 if (mach->Switch.selector.u[3] == src.u[3]) {
3116 mask |= 0x8;
3117 }
3118
3119 mach->Switch.defaultMask |= mask;
3120
3121 mach->Switch.mask |= mask & prevMask;
3122
3123 UPDATE_EXEC_MASK(mach);
3124 }
3125
3126 /* FIXME: this will only work if default is last */
3127 static void
3128 exec_default(struct tgsi_exec_machine *mach)
3129 {
3130 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3131
3132 mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
3133
3134 UPDATE_EXEC_MASK(mach);
3135 }
3136
3137 static void
3138 exec_endswitch(struct tgsi_exec_machine *mach)
3139 {
3140 mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
3141 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3142
3143 UPDATE_EXEC_MASK(mach);
3144 }
3145
3146 static void
3147 micro_i2f(union tgsi_exec_channel *dst,
3148 const union tgsi_exec_channel *src)
3149 {
3150 dst->f[0] = (float)src->i[0];
3151 dst->f[1] = (float)src->i[1];
3152 dst->f[2] = (float)src->i[2];
3153 dst->f[3] = (float)src->i[3];
3154 }
3155
3156 static void
3157 micro_not(union tgsi_exec_channel *dst,
3158 const union tgsi_exec_channel *src)
3159 {
3160 dst->u[0] = ~src->u[0];
3161 dst->u[1] = ~src->u[1];
3162 dst->u[2] = ~src->u[2];
3163 dst->u[3] = ~src->u[3];
3164 }
3165
3166 static void
3167 micro_shl(union tgsi_exec_channel *dst,
3168 const union tgsi_exec_channel *src0,
3169 const union tgsi_exec_channel *src1)
3170 {
3171 dst->u[0] = src0->u[0] << src1->u[0];
3172 dst->u[1] = src0->u[1] << src1->u[1];
3173 dst->u[2] = src0->u[2] << src1->u[2];
3174 dst->u[3] = src0->u[3] << src1->u[3];
3175 }
3176
3177 static void
3178 micro_and(union tgsi_exec_channel *dst,
3179 const union tgsi_exec_channel *src0,
3180 const union tgsi_exec_channel *src1)
3181 {
3182 dst->u[0] = src0->u[0] & src1->u[0];
3183 dst->u[1] = src0->u[1] & src1->u[1];
3184 dst->u[2] = src0->u[2] & src1->u[2];
3185 dst->u[3] = src0->u[3] & src1->u[3];
3186 }
3187
3188 static void
3189 micro_or(union tgsi_exec_channel *dst,
3190 const union tgsi_exec_channel *src0,
3191 const union tgsi_exec_channel *src1)
3192 {
3193 dst->u[0] = src0->u[0] | src1->u[0];
3194 dst->u[1] = src0->u[1] | src1->u[1];
3195 dst->u[2] = src0->u[2] | src1->u[2];
3196 dst->u[3] = src0->u[3] | src1->u[3];
3197 }
3198
3199 static void
3200 micro_xor(union tgsi_exec_channel *dst,
3201 const union tgsi_exec_channel *src0,
3202 const union tgsi_exec_channel *src1)
3203 {
3204 dst->u[0] = src0->u[0] ^ src1->u[0];
3205 dst->u[1] = src0->u[1] ^ src1->u[1];
3206 dst->u[2] = src0->u[2] ^ src1->u[2];
3207 dst->u[3] = src0->u[3] ^ src1->u[3];
3208 }
3209
3210 static void
3211 micro_mod(union tgsi_exec_channel *dst,
3212 const union tgsi_exec_channel *src0,
3213 const union tgsi_exec_channel *src1)
3214 {
3215 dst->i[0] = src0->i[0] % src1->i[0];
3216 dst->i[1] = src0->i[1] % src1->i[1];
3217 dst->i[2] = src0->i[2] % src1->i[2];
3218 dst->i[3] = src0->i[3] % src1->i[3];
3219 }
3220
3221 static void
3222 micro_f2i(union tgsi_exec_channel *dst,
3223 const union tgsi_exec_channel *src)
3224 {
3225 dst->i[0] = (int)src->f[0];
3226 dst->i[1] = (int)src->f[1];
3227 dst->i[2] = (int)src->f[2];
3228 dst->i[3] = (int)src->f[3];
3229 }
3230
3231 static void
3232 micro_idiv(union tgsi_exec_channel *dst,
3233 const union tgsi_exec_channel *src0,
3234 const union tgsi_exec_channel *src1)
3235 {
3236 dst->i[0] = src0->i[0] / src1->i[0];
3237 dst->i[1] = src0->i[1] / src1->i[1];
3238 dst->i[2] = src0->i[2] / src1->i[2];
3239 dst->i[3] = src0->i[3] / src1->i[3];
3240 }
3241
3242 static void
3243 micro_imax(union tgsi_exec_channel *dst,
3244 const union tgsi_exec_channel *src0,
3245 const union tgsi_exec_channel *src1)
3246 {
3247 dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
3248 dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
3249 dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
3250 dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
3251 }
3252
3253 static void
3254 micro_imin(union tgsi_exec_channel *dst,
3255 const union tgsi_exec_channel *src0,
3256 const union tgsi_exec_channel *src1)
3257 {
3258 dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
3259 dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
3260 dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
3261 dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
3262 }
3263
3264 static void
3265 micro_isge(union tgsi_exec_channel *dst,
3266 const union tgsi_exec_channel *src0,
3267 const union tgsi_exec_channel *src1)
3268 {
3269 dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
3270 dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
3271 dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
3272 dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
3273 }
3274
3275 static void
3276 micro_ishr(union tgsi_exec_channel *dst,
3277 const union tgsi_exec_channel *src0,
3278 const union tgsi_exec_channel *src1)
3279 {
3280 dst->i[0] = src0->i[0] >> src1->i[0];
3281 dst->i[1] = src0->i[1] >> src1->i[1];
3282 dst->i[2] = src0->i[2] >> src1->i[2];
3283 dst->i[3] = src0->i[3] >> src1->i[3];
3284 }
3285
3286 static void
3287 micro_islt(union tgsi_exec_channel *dst,
3288 const union tgsi_exec_channel *src0,
3289 const union tgsi_exec_channel *src1)
3290 {
3291 dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
3292 dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
3293 dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
3294 dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
3295 }
3296
3297 static void
3298 micro_f2u(union tgsi_exec_channel *dst,
3299 const union tgsi_exec_channel *src)
3300 {
3301 dst->u[0] = (uint)src->f[0];
3302 dst->u[1] = (uint)src->f[1];
3303 dst->u[2] = (uint)src->f[2];
3304 dst->u[3] = (uint)src->f[3];
3305 }
3306
3307 static void
3308 micro_u2f(union tgsi_exec_channel *dst,
3309 const union tgsi_exec_channel *src)
3310 {
3311 dst->f[0] = (float)src->u[0];
3312 dst->f[1] = (float)src->u[1];
3313 dst->f[2] = (float)src->u[2];
3314 dst->f[3] = (float)src->u[3];
3315 }
3316
3317 static void
3318 micro_uadd(union tgsi_exec_channel *dst,
3319 const union tgsi_exec_channel *src0,
3320 const union tgsi_exec_channel *src1)
3321 {
3322 dst->u[0] = src0->u[0] + src1->u[0];
3323 dst->u[1] = src0->u[1] + src1->u[1];
3324 dst->u[2] = src0->u[2] + src1->u[2];
3325 dst->u[3] = src0->u[3] + src1->u[3];
3326 }
3327
3328 static void
3329 micro_udiv(union tgsi_exec_channel *dst,
3330 const union tgsi_exec_channel *src0,
3331 const union tgsi_exec_channel *src1)
3332 {
3333 dst->u[0] = src1->u[0] ? src0->u[0] / src1->u[0] : ~0u;
3334 dst->u[1] = src1->u[1] ? src0->u[1] / src1->u[1] : ~0u;
3335 dst->u[2] = src1->u[2] ? src0->u[2] / src1->u[2] : ~0u;
3336 dst->u[3] = src1->u[3] ? src0->u[3] / src1->u[3] : ~0u;
3337 }
3338
3339 static void
3340 micro_umad(union tgsi_exec_channel *dst,
3341 const union tgsi_exec_channel *src0,
3342 const union tgsi_exec_channel *src1,
3343 const union tgsi_exec_channel *src2)
3344 {
3345 dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
3346 dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
3347 dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
3348 dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
3349 }
3350
3351 static void
3352 micro_umax(union tgsi_exec_channel *dst,
3353 const union tgsi_exec_channel *src0,
3354 const union tgsi_exec_channel *src1)
3355 {
3356 dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
3357 dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
3358 dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
3359 dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
3360 }
3361
3362 static void
3363 micro_umin(union tgsi_exec_channel *dst,
3364 const union tgsi_exec_channel *src0,
3365 const union tgsi_exec_channel *src1)
3366 {
3367 dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
3368 dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
3369 dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
3370 dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
3371 }
3372
3373 static void
3374 micro_umod(union tgsi_exec_channel *dst,
3375 const union tgsi_exec_channel *src0,
3376 const union tgsi_exec_channel *src1)
3377 {
3378 dst->u[0] = src1->u[0] ? src0->u[0] % src1->u[0] : ~0u;
3379 dst->u[1] = src1->u[1] ? src0->u[1] % src1->u[1] : ~0u;
3380 dst->u[2] = src1->u[2] ? src0->u[2] % src1->u[2] : ~0u;
3381 dst->u[3] = src1->u[3] ? src0->u[3] % src1->u[3] : ~0u;
3382 }
3383
3384 static void
3385 micro_umul(union tgsi_exec_channel *dst,
3386 const union tgsi_exec_channel *src0,
3387 const union tgsi_exec_channel *src1)
3388 {
3389 dst->u[0] = src0->u[0] * src1->u[0];
3390 dst->u[1] = src0->u[1] * src1->u[1];
3391 dst->u[2] = src0->u[2] * src1->u[2];
3392 dst->u[3] = src0->u[3] * src1->u[3];
3393 }
3394
3395 static void
3396 micro_useq(union tgsi_exec_channel *dst,
3397 const union tgsi_exec_channel *src0,
3398 const union tgsi_exec_channel *src1)
3399 {
3400 dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
3401 dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
3402 dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
3403 dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
3404 }
3405
3406 static void
3407 micro_usge(union tgsi_exec_channel *dst,
3408 const union tgsi_exec_channel *src0,
3409 const union tgsi_exec_channel *src1)
3410 {
3411 dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
3412 dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
3413 dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
3414 dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
3415 }
3416
3417 static void
3418 micro_ushr(union tgsi_exec_channel *dst,
3419 const union tgsi_exec_channel *src0,
3420 const union tgsi_exec_channel *src1)
3421 {
3422 dst->u[0] = src0->u[0] >> src1->u[0];
3423 dst->u[1] = src0->u[1] >> src1->u[1];
3424 dst->u[2] = src0->u[2] >> src1->u[2];
3425 dst->u[3] = src0->u[3] >> src1->u[3];
3426 }
3427
3428 static void
3429 micro_uslt(union tgsi_exec_channel *dst,
3430 const union tgsi_exec_channel *src0,
3431 const union tgsi_exec_channel *src1)
3432 {
3433 dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
3434 dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
3435 dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
3436 dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
3437 }
3438
3439 static void
3440 micro_usne(union tgsi_exec_channel *dst,
3441 const union tgsi_exec_channel *src0,
3442 const union tgsi_exec_channel *src1)
3443 {
3444 dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
3445 dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
3446 dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
3447 dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
3448 }
3449
3450 static void
3451 micro_uarl(union tgsi_exec_channel *dst,
3452 const union tgsi_exec_channel *src)
3453 {
3454 dst->i[0] = src->u[0];
3455 dst->i[1] = src->u[1];
3456 dst->i[2] = src->u[2];
3457 dst->i[3] = src->u[3];
3458 }
3459
3460 static void
3461 micro_ucmp(union tgsi_exec_channel *dst,
3462 const union tgsi_exec_channel *src0,
3463 const union tgsi_exec_channel *src1,
3464 const union tgsi_exec_channel *src2)
3465 {
3466 dst->u[0] = src0->u[0] ? src1->u[0] : src2->u[0];
3467 dst->u[1] = src0->u[1] ? src1->u[1] : src2->u[1];
3468 dst->u[2] = src0->u[2] ? src1->u[2] : src2->u[2];
3469 dst->u[3] = src0->u[3] ? src1->u[3] : src2->u[3];
3470 }
3471
3472 static void
3473 exec_instruction(
3474 struct tgsi_exec_machine *mach,
3475 const struct tgsi_full_instruction *inst,
3476 int *pc )
3477 {
3478 union tgsi_exec_channel r[10];
3479
3480 (*pc)++;
3481
3482 switch (inst->Instruction.Opcode) {
3483 case TGSI_OPCODE_ARL:
3484 exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3485 break;
3486
3487 case TGSI_OPCODE_MOV:
3488 exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
3489 break;
3490
3491 case TGSI_OPCODE_LIT:
3492 exec_lit(mach, inst);
3493 break;
3494
3495 case TGSI_OPCODE_RCP:
3496 exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3497 break;
3498
3499 case TGSI_OPCODE_RSQ:
3500 exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3501 break;
3502
3503 case TGSI_OPCODE_EXP:
3504 exec_exp(mach, inst);
3505 break;
3506
3507 case TGSI_OPCODE_LOG:
3508 exec_log(mach, inst);
3509 break;
3510
3511 case TGSI_OPCODE_MUL:
3512 exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3513 break;
3514
3515 case TGSI_OPCODE_ADD:
3516 exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3517 break;
3518
3519 case TGSI_OPCODE_DP3:
3520 exec_dp3(mach, inst);
3521 break;
3522
3523 case TGSI_OPCODE_DP4:
3524 exec_dp4(mach, inst);
3525 break;
3526
3527 case TGSI_OPCODE_DST:
3528 exec_dst(mach, inst);
3529 break;
3530
3531 case TGSI_OPCODE_MIN:
3532 exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3533 break;
3534
3535 case TGSI_OPCODE_MAX:
3536 exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3537 break;
3538
3539 case TGSI_OPCODE_SLT:
3540 exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3541 break;
3542
3543 case TGSI_OPCODE_SGE:
3544 exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3545 break;
3546
3547 case TGSI_OPCODE_MAD:
3548 exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3549 break;
3550
3551 case TGSI_OPCODE_SUB:
3552 exec_vector_binary(mach, inst, micro_sub, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3553 break;
3554
3555 case TGSI_OPCODE_LRP:
3556 exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3557 break;
3558
3559 case TGSI_OPCODE_CND:
3560 exec_vector_trinary(mach, inst, micro_cnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3561 break;
3562
3563 case TGSI_OPCODE_SQRT:
3564 exec_scalar_unary(mach, inst, micro_sqrt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3565 break;
3566
3567 case TGSI_OPCODE_DP2A:
3568 exec_dp2a(mach, inst);
3569 break;
3570
3571 case TGSI_OPCODE_FRC:
3572 exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3573 break;
3574
3575 case TGSI_OPCODE_CLAMP:
3576 exec_vector_trinary(mach, inst, micro_clamp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3577 break;
3578
3579 case TGSI_OPCODE_FLR:
3580 exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3581 break;
3582
3583 case TGSI_OPCODE_ROUND:
3584 exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3585 break;
3586
3587 case TGSI_OPCODE_EX2:
3588 exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3589 break;
3590
3591 case TGSI_OPCODE_LG2:
3592 exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3593 break;
3594
3595 case TGSI_OPCODE_POW:
3596 exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3597 break;
3598
3599 case TGSI_OPCODE_XPD:
3600 exec_xpd(mach, inst);
3601 break;
3602
3603 case TGSI_OPCODE_ABS:
3604 exec_vector_unary(mach, inst, micro_abs, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3605 break;
3606
3607 case TGSI_OPCODE_RCC:
3608 exec_scalar_unary(mach, inst, micro_rcc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3609 break;
3610
3611 case TGSI_OPCODE_DPH:
3612 exec_dph(mach, inst);
3613 break;
3614
3615 case TGSI_OPCODE_COS:
3616 exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3617 break;
3618
3619 case TGSI_OPCODE_DDX:
3620 exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3621 break;
3622
3623 case TGSI_OPCODE_DDY:
3624 exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3625 break;
3626
3627 case TGSI_OPCODE_KILP:
3628 exec_kilp (mach, inst);
3629 break;
3630
3631 case TGSI_OPCODE_KIL:
3632 exec_kil (mach, inst);
3633 break;
3634
3635 case TGSI_OPCODE_PK2H:
3636 assert (0);
3637 break;
3638
3639 case TGSI_OPCODE_PK2US:
3640 assert (0);
3641 break;
3642
3643 case TGSI_OPCODE_PK4B:
3644 assert (0);
3645 break;
3646
3647 case TGSI_OPCODE_PK4UB:
3648 assert (0);
3649 break;
3650
3651 case TGSI_OPCODE_RFL:
3652 exec_rfl(mach, inst);
3653 break;
3654
3655 case TGSI_OPCODE_SEQ:
3656 exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3657 break;
3658
3659 case TGSI_OPCODE_SFL:
3660 exec_vector(mach, inst, micro_sfl, TGSI_EXEC_DATA_FLOAT);
3661 break;
3662
3663 case TGSI_OPCODE_SGT:
3664 exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3665 break;
3666
3667 case TGSI_OPCODE_SIN:
3668 exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3669 break;
3670
3671 case TGSI_OPCODE_SLE:
3672 exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3673 break;
3674
3675 case TGSI_OPCODE_SNE:
3676 exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3677 break;
3678
3679 case TGSI_OPCODE_STR:
3680 exec_vector(mach, inst, micro_str, TGSI_EXEC_DATA_FLOAT);
3681 break;
3682
3683 case TGSI_OPCODE_TEX:
3684 /* simple texture lookup */
3685 /* src[0] = texcoord */
3686 /* src[1] = sampler unit */
3687 exec_tex(mach, inst, TEX_MODIFIER_NONE, 1);
3688 break;
3689
3690 case TGSI_OPCODE_TXB:
3691 /* Texture lookup with lod bias */
3692 /* src[0] = texcoord (src[0].w = LOD bias) */
3693 /* src[1] = sampler unit */
3694 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 1);
3695 break;
3696
3697 case TGSI_OPCODE_TXD:
3698 /* Texture lookup with explict partial derivatives */
3699 /* src[0] = texcoord */
3700 /* src[1] = d[strq]/dx */
3701 /* src[2] = d[strq]/dy */
3702 /* src[3] = sampler unit */
3703 exec_txd(mach, inst);
3704 break;
3705
3706 case TGSI_OPCODE_TXL:
3707 /* Texture lookup with explit LOD */
3708 /* src[0] = texcoord (src[0].w = LOD) */
3709 /* src[1] = sampler unit */
3710 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 1);
3711 break;
3712
3713 case TGSI_OPCODE_TXP:
3714 /* Texture lookup with projection */
3715 /* src[0] = texcoord (src[0].w = projection) */
3716 /* src[1] = sampler unit */
3717 exec_tex(mach, inst, TEX_MODIFIER_PROJECTED, 1);
3718 break;
3719
3720 case TGSI_OPCODE_UP2H:
3721 assert (0);
3722 break;
3723
3724 case TGSI_OPCODE_UP2US:
3725 assert (0);
3726 break;
3727
3728 case TGSI_OPCODE_UP4B:
3729 assert (0);
3730 break;
3731
3732 case TGSI_OPCODE_UP4UB:
3733 assert (0);
3734 break;
3735
3736 case TGSI_OPCODE_X2D:
3737 exec_x2d(mach, inst);
3738 break;
3739
3740 case TGSI_OPCODE_ARA:
3741 assert (0);
3742 break;
3743
3744 case TGSI_OPCODE_ARR:
3745 exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
3746 break;
3747
3748 case TGSI_OPCODE_BRA:
3749 assert (0);
3750 break;
3751
3752 case TGSI_OPCODE_CAL:
3753 /* skip the call if no execution channels are enabled */
3754 if (mach->ExecMask) {
3755 /* do the call */
3756
3757 /* First, record the depths of the execution stacks.
3758 * This is important for deeply nested/looped return statements.
3759 * We have to unwind the stacks by the correct amount. For a
3760 * real code generator, we could determine the number of entries
3761 * to pop off each stack with simple static analysis and avoid
3762 * implementing this data structure at run time.
3763 */
3764 mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
3765 mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
3766 mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
3767 mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
3768 mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
3769 /* note that PC was already incremented above */
3770 mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
3771
3772 mach->CallStackTop++;
3773
3774 /* Second, push the Cond, Loop, Cont, Func stacks */
3775 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3776 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3777 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
3778 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3779 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3780 assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
3781
3782 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3783 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
3784 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
3785 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3786 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3787 mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
3788
3789 /* Finally, jump to the subroutine */
3790 *pc = inst->Label.Label;
3791 }
3792 break;
3793
3794 case TGSI_OPCODE_RET:
3795 mach->FuncMask &= ~mach->ExecMask;
3796 UPDATE_EXEC_MASK(mach);
3797
3798 if (mach->FuncMask == 0x0) {
3799 /* really return now (otherwise, keep executing */
3800
3801 if (mach->CallStackTop == 0) {
3802 /* returning from main() */
3803 mach->CondStackTop = 0;
3804 mach->LoopStackTop = 0;
3805 *pc = -1;
3806 return;
3807 }
3808
3809 assert(mach->CallStackTop > 0);
3810 mach->CallStackTop--;
3811
3812 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
3813 mach->CondMask = mach->CondStack[mach->CondStackTop];
3814
3815 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
3816 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
3817
3818 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
3819 mach->ContMask = mach->ContStack[mach->ContStackTop];
3820
3821 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
3822 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
3823
3824 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
3825 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
3826
3827 assert(mach->FuncStackTop > 0);
3828 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
3829
3830 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
3831
3832 UPDATE_EXEC_MASK(mach);
3833 }
3834 break;
3835
3836 case TGSI_OPCODE_SSG:
3837 exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3838 break;
3839
3840 case TGSI_OPCODE_CMP:
3841 exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3842 break;
3843
3844 case TGSI_OPCODE_SCS:
3845 exec_scs(mach, inst);
3846 break;
3847
3848 case TGSI_OPCODE_NRM:
3849 exec_nrm3(mach, inst);
3850 break;
3851
3852 case TGSI_OPCODE_NRM4:
3853 exec_nrm4(mach, inst);
3854 break;
3855
3856 case TGSI_OPCODE_DIV:
3857 exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3858 break;
3859
3860 case TGSI_OPCODE_DP2:
3861 exec_dp2(mach, inst);
3862 break;
3863
3864 case TGSI_OPCODE_IF:
3865 /* push CondMask */
3866 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3867 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3868 FETCH( &r[0], 0, TGSI_CHAN_X );
3869 /* update CondMask */
3870 if( ! r[0].f[0] ) {
3871 mach->CondMask &= ~0x1;
3872 }
3873 if( ! r[0].f[1] ) {
3874 mach->CondMask &= ~0x2;
3875 }
3876 if( ! r[0].f[2] ) {
3877 mach->CondMask &= ~0x4;
3878 }
3879 if( ! r[0].f[3] ) {
3880 mach->CondMask &= ~0x8;
3881 }
3882 UPDATE_EXEC_MASK(mach);
3883 /* Todo: If CondMask==0, jump to ELSE */
3884 break;
3885
3886 case TGSI_OPCODE_UIF:
3887 /* push CondMask */
3888 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
3889 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
3890 IFETCH( &r[0], 0, TGSI_CHAN_X );
3891 /* update CondMask */
3892 if( ! r[0].u[0] ) {
3893 mach->CondMask &= ~0x1;
3894 }
3895 if( ! r[0].u[1] ) {
3896 mach->CondMask &= ~0x2;
3897 }
3898 if( ! r[0].u[2] ) {
3899 mach->CondMask &= ~0x4;
3900 }
3901 if( ! r[0].u[3] ) {
3902 mach->CondMask &= ~0x8;
3903 }
3904 UPDATE_EXEC_MASK(mach);
3905 /* Todo: If CondMask==0, jump to ELSE */
3906 break;
3907
3908 case TGSI_OPCODE_ELSE:
3909 /* invert CondMask wrt previous mask */
3910 {
3911 uint prevMask;
3912 assert(mach->CondStackTop > 0);
3913 prevMask = mach->CondStack[mach->CondStackTop - 1];
3914 mach->CondMask = ~mach->CondMask & prevMask;
3915 UPDATE_EXEC_MASK(mach);
3916 /* Todo: If CondMask==0, jump to ENDIF */
3917 }
3918 break;
3919
3920 case TGSI_OPCODE_ENDIF:
3921 /* pop CondMask */
3922 assert(mach->CondStackTop > 0);
3923 mach->CondMask = mach->CondStack[--mach->CondStackTop];
3924 UPDATE_EXEC_MASK(mach);
3925 break;
3926
3927 case TGSI_OPCODE_END:
3928 /* make sure we end primitives which haven't
3929 * been explicitly emitted */
3930 conditional_emit_primitive(mach);
3931 /* halt execution */
3932 *pc = -1;
3933 break;
3934
3935 case TGSI_OPCODE_PUSHA:
3936 assert (0);
3937 break;
3938
3939 case TGSI_OPCODE_POPA:
3940 assert (0);
3941 break;
3942
3943 case TGSI_OPCODE_CEIL:
3944 exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3945 break;
3946
3947 case TGSI_OPCODE_I2F:
3948 exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
3949 break;
3950
3951 case TGSI_OPCODE_NOT:
3952 exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3953 break;
3954
3955 case TGSI_OPCODE_TRUNC:
3956 exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
3957 break;
3958
3959 case TGSI_OPCODE_SHL:
3960 exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3961 break;
3962
3963 case TGSI_OPCODE_AND:
3964 exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3965 break;
3966
3967 case TGSI_OPCODE_OR:
3968 exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3969 break;
3970
3971 case TGSI_OPCODE_MOD:
3972 exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
3973 break;
3974
3975 case TGSI_OPCODE_XOR:
3976 exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
3977 break;
3978
3979 case TGSI_OPCODE_SAD:
3980 assert (0);
3981 break;
3982
3983 case TGSI_OPCODE_TXF:
3984 exec_txf(mach, inst);
3985 break;
3986
3987 case TGSI_OPCODE_TXQ:
3988 exec_txq(mach, inst);
3989 break;
3990
3991 case TGSI_OPCODE_EMIT:
3992 emit_vertex(mach);
3993 break;
3994
3995 case TGSI_OPCODE_ENDPRIM:
3996 emit_primitive(mach);
3997 break;
3998
3999 case TGSI_OPCODE_BGNLOOP:
4000 /* push LoopMask and ContMasks */
4001 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
4002 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
4003 assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
4004 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
4005
4006 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
4007 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
4008 mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
4009 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
4010 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
4011 break;
4012
4013 case TGSI_OPCODE_ENDLOOP:
4014 /* Restore ContMask, but don't pop */
4015 assert(mach->ContStackTop > 0);
4016 mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
4017 UPDATE_EXEC_MASK(mach);
4018 if (mach->ExecMask) {
4019 /* repeat loop: jump to instruction just past BGNLOOP */
4020 assert(mach->LoopLabelStackTop > 0);
4021 *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
4022 }
4023 else {
4024 /* exit loop: pop LoopMask */
4025 assert(mach->LoopStackTop > 0);
4026 mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
4027 /* pop ContMask */
4028 assert(mach->ContStackTop > 0);
4029 mach->ContMask = mach->ContStack[--mach->ContStackTop];
4030 assert(mach->LoopLabelStackTop > 0);
4031 --mach->LoopLabelStackTop;
4032
4033 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
4034 }
4035 UPDATE_EXEC_MASK(mach);
4036 break;
4037
4038 case TGSI_OPCODE_BRK:
4039 exec_break(mach);
4040 break;
4041
4042 case TGSI_OPCODE_CONT:
4043 /* turn off cont channels for each enabled exec channel */
4044 mach->ContMask &= ~mach->ExecMask;
4045 /* Todo: if mach->LoopMask == 0, jump to end of loop */
4046 UPDATE_EXEC_MASK(mach);
4047 break;
4048
4049 case TGSI_OPCODE_BGNSUB:
4050 /* no-op */
4051 break;
4052
4053 case TGSI_OPCODE_ENDSUB:
4054 /*
4055 * XXX: This really should be a no-op. We should never reach this opcode.
4056 */
4057
4058 assert(mach->CallStackTop > 0);
4059 mach->CallStackTop--;
4060
4061 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
4062 mach->CondMask = mach->CondStack[mach->CondStackTop];
4063
4064 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
4065 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
4066
4067 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
4068 mach->ContMask = mach->ContStack[mach->ContStackTop];
4069
4070 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
4071 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
4072
4073 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
4074 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
4075
4076 assert(mach->FuncStackTop > 0);
4077 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
4078
4079 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
4080
4081 UPDATE_EXEC_MASK(mach);
4082 break;
4083
4084 case TGSI_OPCODE_NOP:
4085 break;
4086
4087 case TGSI_OPCODE_BREAKC:
4088 IFETCH(&r[0], 0, TGSI_CHAN_X);
4089 /* update CondMask */
4090 if (r[0].u[0] && (mach->ExecMask & 0x1)) {
4091 mach->LoopMask &= ~0x1;
4092 }
4093 if (r[0].u[1] && (mach->ExecMask & 0x2)) {
4094 mach->LoopMask &= ~0x2;
4095 }
4096 if (r[0].u[2] && (mach->ExecMask & 0x4)) {
4097 mach->LoopMask &= ~0x4;
4098 }
4099 if (r[0].u[3] && (mach->ExecMask & 0x8)) {
4100 mach->LoopMask &= ~0x8;
4101 }
4102 /* Todo: if mach->LoopMask == 0, jump to end of loop */
4103 UPDATE_EXEC_MASK(mach);
4104 break;
4105
4106 case TGSI_OPCODE_F2I:
4107 exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
4108 break;
4109
4110 case TGSI_OPCODE_IDIV:
4111 exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4112 break;
4113
4114 case TGSI_OPCODE_IMAX:
4115 exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4116 break;
4117
4118 case TGSI_OPCODE_IMIN:
4119 exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4120 break;
4121
4122 case TGSI_OPCODE_INEG:
4123 exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4124 break;
4125
4126 case TGSI_OPCODE_ISGE:
4127 exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4128 break;
4129
4130 case TGSI_OPCODE_ISHR:
4131 exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4132 break;
4133
4134 case TGSI_OPCODE_ISLT:
4135 exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4136 break;
4137
4138 case TGSI_OPCODE_F2U:
4139 exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
4140 break;
4141
4142 case TGSI_OPCODE_U2F:
4143 exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
4144 break;
4145
4146 case TGSI_OPCODE_UADD:
4147 exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4148 break;
4149
4150 case TGSI_OPCODE_UDIV:
4151 exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4152 break;
4153
4154 case TGSI_OPCODE_UMAD:
4155 exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4156 break;
4157
4158 case TGSI_OPCODE_UMAX:
4159 exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4160 break;
4161
4162 case TGSI_OPCODE_UMIN:
4163 exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4164 break;
4165
4166 case TGSI_OPCODE_UMOD:
4167 exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4168 break;
4169
4170 case TGSI_OPCODE_UMUL:
4171 exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4172 break;
4173
4174 case TGSI_OPCODE_USEQ:
4175 exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4176 break;
4177
4178 case TGSI_OPCODE_USGE:
4179 exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4180 break;
4181
4182 case TGSI_OPCODE_USHR:
4183 exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4184 break;
4185
4186 case TGSI_OPCODE_USLT:
4187 exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4188 break;
4189
4190 case TGSI_OPCODE_USNE:
4191 exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4192 break;
4193
4194 case TGSI_OPCODE_SWITCH:
4195 exec_switch(mach, inst);
4196 break;
4197
4198 case TGSI_OPCODE_CASE:
4199 exec_case(mach, inst);
4200 break;
4201
4202 case TGSI_OPCODE_DEFAULT:
4203 exec_default(mach);
4204 break;
4205
4206 case TGSI_OPCODE_ENDSWITCH:
4207 exec_endswitch(mach);
4208 break;
4209
4210 case TGSI_OPCODE_SAMPLE_I:
4211 exec_txf(mach, inst);
4212 break;
4213
4214 case TGSI_OPCODE_SAMPLE_I_MS:
4215 assert(0);
4216 break;
4217
4218 case TGSI_OPCODE_SAMPLE:
4219 exec_sample(mach, inst, TEX_MODIFIER_NONE, FALSE);
4220 break;
4221
4222 case TGSI_OPCODE_SAMPLE_B:
4223 exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS, FALSE);
4224 break;
4225
4226 case TGSI_OPCODE_SAMPLE_C:
4227 exec_sample(mach, inst, TEX_MODIFIER_NONE, TRUE);
4228 break;
4229
4230 case TGSI_OPCODE_SAMPLE_C_LZ:
4231 exec_sample(mach, inst, TEX_MODIFIER_LEVEL_ZERO, TRUE);
4232 break;
4233
4234 case TGSI_OPCODE_SAMPLE_D:
4235 exec_sample_d(mach, inst);
4236 break;
4237
4238 case TGSI_OPCODE_SAMPLE_L:
4239 exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, FALSE);
4240 break;
4241
4242 case TGSI_OPCODE_GATHER4:
4243 assert(0);
4244 break;
4245
4246 case TGSI_OPCODE_SVIEWINFO:
4247 exec_txq(mach, inst);
4248 break;
4249
4250 case TGSI_OPCODE_SAMPLE_POS:
4251 assert(0);
4252 break;
4253
4254 case TGSI_OPCODE_SAMPLE_INFO:
4255 assert(0);
4256 break;
4257
4258 case TGSI_OPCODE_UARL:
4259 exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
4260 break;
4261
4262 case TGSI_OPCODE_UCMP:
4263 exec_vector_trinary(mach, inst, micro_ucmp, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
4264 break;
4265
4266 case TGSI_OPCODE_IABS:
4267 exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4268 break;
4269
4270 case TGSI_OPCODE_ISSG:
4271 exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
4272 break;
4273
4274 case TGSI_OPCODE_TEX2:
4275 /* simple texture lookup */
4276 /* src[0] = texcoord */
4277 /* src[1] = compare */
4278 /* src[2] = sampler unit */
4279 exec_tex(mach, inst, TEX_MODIFIER_NONE, 2);
4280 break;
4281 case TGSI_OPCODE_TXB2:
4282 /* simple texture lookup */
4283 /* src[0] = texcoord */
4284 /* src[1] = bias */
4285 /* src[2] = sampler unit */
4286 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 2);
4287 break;
4288 case TGSI_OPCODE_TXL2:
4289 /* simple texture lookup */
4290 /* src[0] = texcoord */
4291 /* src[1] = lod */
4292 /* src[2] = sampler unit */
4293 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 2);
4294 break;
4295 default:
4296 assert( 0 );
4297 }
4298 }
4299
4300
4301 /**
4302 * Run TGSI interpreter.
4303 * \return bitmask of "alive" quad components
4304 */
4305 uint
4306 tgsi_exec_machine_run( struct tgsi_exec_machine *mach )
4307 {
4308 uint i;
4309 int pc = 0;
4310 uint default_mask = 0xf;
4311
4312 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
4313 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
4314
4315 if( mach->Processor == TGSI_PROCESSOR_GEOMETRY ) {
4316 mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
4317 mach->Primitives[0] = 0;
4318 /* GS runs on a single primitive for now */
4319 default_mask = 0x1;
4320 }
4321
4322 mach->CondMask = default_mask;
4323 mach->LoopMask = default_mask;
4324 mach->ContMask = default_mask;
4325 mach->FuncMask = default_mask;
4326 mach->ExecMask = default_mask;
4327
4328 mach->Switch.mask = default_mask;
4329
4330 assert(mach->CondStackTop == 0);
4331 assert(mach->LoopStackTop == 0);
4332 assert(mach->ContStackTop == 0);
4333 assert(mach->SwitchStackTop == 0);
4334 assert(mach->BreakStackTop == 0);
4335 assert(mach->CallStackTop == 0);
4336
4337
4338 /* execute declarations (interpolants) */
4339 for (i = 0; i < mach->NumDeclarations; i++) {
4340 exec_declaration( mach, mach->Declarations+i );
4341 }
4342
4343 {
4344 #if DEBUG_EXECUTION
4345 struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
4346 struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
4347 uint inst = 1;
4348
4349 memset(mach->Temps, 0, sizeof(temps));
4350 memset(mach->Outputs, 0, sizeof(outputs));
4351 memset(temps, 0, sizeof(temps));
4352 memset(outputs, 0, sizeof(outputs));
4353 #endif
4354
4355 /* execute instructions, until pc is set to -1 */
4356 while (pc != -1) {
4357
4358 #if DEBUG_EXECUTION
4359 uint i;
4360
4361 tgsi_dump_instruction(&mach->Instructions[pc], inst++);
4362 #endif
4363
4364 assert(pc < (int) mach->NumInstructions);
4365 exec_instruction(mach, mach->Instructions + pc, &pc);
4366
4367 #if DEBUG_EXECUTION
4368 for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
4369 if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
4370 uint j;
4371
4372 memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
4373 debug_printf("TEMP[%2u] = ", i);
4374 for (j = 0; j < 4; j++) {
4375 if (j > 0) {
4376 debug_printf(" ");
4377 }
4378 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4379 temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
4380 temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
4381 temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
4382 temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
4383 }
4384 }
4385 }
4386 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
4387 if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
4388 uint j;
4389
4390 memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
4391 debug_printf("OUT[%2u] = ", i);
4392 for (j = 0; j < 4; j++) {
4393 if (j > 0) {
4394 debug_printf(" ");
4395 }
4396 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4397 outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
4398 outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
4399 outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
4400 outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
4401 }
4402 }
4403 }
4404 #endif
4405 }
4406 }
4407
4408 #if 0
4409 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
4410 if (mach->Processor == TGSI_PROCESSOR_FRAGMENT) {
4411 /*
4412 * Scale back depth component.
4413 */
4414 for (i = 0; i < 4; i++)
4415 mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
4416 }
4417 #endif
4418
4419 /* Strictly speaking, these assertions aren't really needed but they
4420 * can potentially catch some bugs in the control flow code.
4421 */
4422 assert(mach->CondStackTop == 0);
4423 assert(mach->LoopStackTop == 0);
4424 assert(mach->ContStackTop == 0);
4425 assert(mach->SwitchStackTop == 0);
4426 assert(mach->BreakStackTop == 0);
4427 assert(mach->CallStackTop == 0);
4428
4429 return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4430 }