gl: updated glxext.h to version 27
[mesa.git] / src / gallium / auxiliary / util / u_gen_mipmap.c
1 /**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008 VMware, Inc. All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Mipmap generation utility
32 *
33 * @author Brian Paul
34 */
35
36
37 #include "pipe/p_context.h"
38 #include "util/u_debug.h"
39 #include "pipe/p_defines.h"
40 #include "util/u_inlines.h"
41 #include "pipe/p_shader_tokens.h"
42 #include "pipe/p_state.h"
43
44 #include "util/u_format.h"
45 #include "util/u_memory.h"
46 #include "util/u_draw_quad.h"
47 #include "util/u_gen_mipmap.h"
48 #include "util/u_simple_shaders.h"
49 #include "util/u_math.h"
50 #include "util/u_texture.h"
51
52 #include "cso_cache/cso_context.h"
53
54
55 struct gen_mipmap_state
56 {
57 struct pipe_context *pipe;
58 struct cso_context *cso;
59
60 struct pipe_blend_state blend;
61 struct pipe_depth_stencil_alpha_state depthstencil;
62 struct pipe_rasterizer_state rasterizer;
63 struct pipe_sampler_state sampler;
64 struct pipe_clip_state clip;
65
66 void *vs;
67 void *fs2d, *fsCube;
68
69 struct pipe_buffer *vbuf; /**< quad vertices */
70 unsigned vbuf_slot;
71
72 float vertices[4][2][4]; /**< vertex/texcoords for quad */
73 };
74
75
76
77 enum dtype
78 {
79 DTYPE_UBYTE,
80 DTYPE_UBYTE_3_3_2,
81 DTYPE_USHORT,
82 DTYPE_USHORT_4_4_4_4,
83 DTYPE_USHORT_5_6_5,
84 DTYPE_USHORT_1_5_5_5_REV,
85 DTYPE_UINT,
86 DTYPE_FLOAT,
87 DTYPE_HALF_FLOAT
88 };
89
90
91 typedef ushort half_float;
92
93
94 static half_float
95 float_to_half(float f)
96 {
97 /* XXX fix this */
98 return 0;
99 }
100
101 static float
102 half_to_float(half_float h)
103 {
104 /* XXX fix this */
105 return 0.0f;
106 }
107
108
109
110
111 /**
112 * \name Support macros for do_row and do_row_3d
113 *
114 * The macro madness is here for two reasons. First, it compacts the code
115 * slightly. Second, it makes it much easier to adjust the specifics of the
116 * filter to tune the rounding characteristics.
117 */
118 /*@{*/
119 #define DECLARE_ROW_POINTERS(t, e) \
120 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
121 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
122 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
123 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
124 t(*dst)[e] = (t(*)[e]) dstRow
125
126 #define DECLARE_ROW_POINTERS0(t) \
127 const t *rowA = (const t *) srcRowA; \
128 const t *rowB = (const t *) srcRowB; \
129 const t *rowC = (const t *) srcRowC; \
130 const t *rowD = (const t *) srcRowD; \
131 t *dst = (t *) dstRow
132
133 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
134 ((unsigned) Aj + (unsigned) Ak \
135 + (unsigned) Bj + (unsigned) Bk \
136 + (unsigned) Cj + (unsigned) Ck \
137 + (unsigned) Dj + (unsigned) Dk \
138 + 4) >> 3
139
140 #define FILTER_3D(e) \
141 do { \
142 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
143 rowB[j][e], rowB[k][e], \
144 rowC[j][e], rowC[k][e], \
145 rowD[j][e], rowD[k][e]); \
146 } while(0)
147
148 #define FILTER_F_3D(e) \
149 do { \
150 dst[i][e] = (rowA[j][e] + rowA[k][e] \
151 + rowB[j][e] + rowB[k][e] \
152 + rowC[j][e] + rowC[k][e] \
153 + rowD[j][e] + rowD[k][e]) * 0.125F; \
154 } while(0)
155
156 #define FILTER_HF_3D(e) \
157 do { \
158 const float aj = half_to_float(rowA[j][e]); \
159 const float ak = half_to_float(rowA[k][e]); \
160 const float bj = half_to_float(rowB[j][e]); \
161 const float bk = half_to_float(rowB[k][e]); \
162 const float cj = half_to_float(rowC[j][e]); \
163 const float ck = half_to_float(rowC[k][e]); \
164 const float dj = half_to_float(rowD[j][e]); \
165 const float dk = half_to_float(rowD[k][e]); \
166 dst[i][e] = float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
167 * 0.125F); \
168 } while(0)
169 /*@}*/
170
171
172 /**
173 * Average together two rows of a source image to produce a single new
174 * row in the dest image. It's legal for the two source rows to point
175 * to the same data. The source width must be equal to either the
176 * dest width or two times the dest width.
177 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
178 * \param comps number of components per pixel (1..4)
179 */
180 static void
181 do_row(enum dtype datatype, uint comps, int srcWidth,
182 const void *srcRowA, const void *srcRowB,
183 int dstWidth, void *dstRow)
184 {
185 const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
186 const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
187
188 assert(comps >= 1);
189 assert(comps <= 4);
190
191 /* This assertion is no longer valid with non-power-of-2 textures
192 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
193 */
194
195 if (datatype == DTYPE_UBYTE && comps == 4) {
196 uint i, j, k;
197 const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
198 const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
199 ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
200 for (i = j = 0, k = k0; i < (uint) dstWidth;
201 i++, j += colStride, k += colStride) {
202 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
203 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
204 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
205 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
206 }
207 }
208 else if (datatype == DTYPE_UBYTE && comps == 3) {
209 uint i, j, k;
210 const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
211 const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
212 ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
213 for (i = j = 0, k = k0; i < (uint) dstWidth;
214 i++, j += colStride, k += colStride) {
215 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
216 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
217 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
218 }
219 }
220 else if (datatype == DTYPE_UBYTE && comps == 2) {
221 uint i, j, k;
222 const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
223 const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
224 ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
225 for (i = j = 0, k = k0; i < (uint) dstWidth;
226 i++, j += colStride, k += colStride) {
227 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
228 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
229 }
230 }
231 else if (datatype == DTYPE_UBYTE && comps == 1) {
232 uint i, j, k;
233 const ubyte *rowA = (const ubyte *) srcRowA;
234 const ubyte *rowB = (const ubyte *) srcRowB;
235 ubyte *dst = (ubyte *) dstRow;
236 for (i = j = 0, k = k0; i < (uint) dstWidth;
237 i++, j += colStride, k += colStride) {
238 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
239 }
240 }
241
242 else if (datatype == DTYPE_USHORT && comps == 4) {
243 uint i, j, k;
244 const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
245 const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
246 ushort(*dst)[4] = (ushort(*)[4]) dstRow;
247 for (i = j = 0, k = k0; i < (uint) dstWidth;
248 i++, j += colStride, k += colStride) {
249 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
250 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
251 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
252 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
253 }
254 }
255 else if (datatype == DTYPE_USHORT && comps == 3) {
256 uint i, j, k;
257 const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
258 const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
259 ushort(*dst)[3] = (ushort(*)[3]) dstRow;
260 for (i = j = 0, k = k0; i < (uint) dstWidth;
261 i++, j += colStride, k += colStride) {
262 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
263 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
264 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
265 }
266 }
267 else if (datatype == DTYPE_USHORT && comps == 2) {
268 uint i, j, k;
269 const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
270 const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
271 ushort(*dst)[2] = (ushort(*)[2]) dstRow;
272 for (i = j = 0, k = k0; i < (uint) dstWidth;
273 i++, j += colStride, k += colStride) {
274 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
275 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
276 }
277 }
278 else if (datatype == DTYPE_USHORT && comps == 1) {
279 uint i, j, k;
280 const ushort *rowA = (const ushort *) srcRowA;
281 const ushort *rowB = (const ushort *) srcRowB;
282 ushort *dst = (ushort *) dstRow;
283 for (i = j = 0, k = k0; i < (uint) dstWidth;
284 i++, j += colStride, k += colStride) {
285 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
286 }
287 }
288
289 else if (datatype == DTYPE_FLOAT && comps == 4) {
290 uint i, j, k;
291 const float(*rowA)[4] = (const float(*)[4]) srcRowA;
292 const float(*rowB)[4] = (const float(*)[4]) srcRowB;
293 float(*dst)[4] = (float(*)[4]) dstRow;
294 for (i = j = 0, k = k0; i < (uint) dstWidth;
295 i++, j += colStride, k += colStride) {
296 dst[i][0] = (rowA[j][0] + rowA[k][0] +
297 rowB[j][0] + rowB[k][0]) * 0.25F;
298 dst[i][1] = (rowA[j][1] + rowA[k][1] +
299 rowB[j][1] + rowB[k][1]) * 0.25F;
300 dst[i][2] = (rowA[j][2] + rowA[k][2] +
301 rowB[j][2] + rowB[k][2]) * 0.25F;
302 dst[i][3] = (rowA[j][3] + rowA[k][3] +
303 rowB[j][3] + rowB[k][3]) * 0.25F;
304 }
305 }
306 else if (datatype == DTYPE_FLOAT && comps == 3) {
307 uint i, j, k;
308 const float(*rowA)[3] = (const float(*)[3]) srcRowA;
309 const float(*rowB)[3] = (const float(*)[3]) srcRowB;
310 float(*dst)[3] = (float(*)[3]) dstRow;
311 for (i = j = 0, k = k0; i < (uint) dstWidth;
312 i++, j += colStride, k += colStride) {
313 dst[i][0] = (rowA[j][0] + rowA[k][0] +
314 rowB[j][0] + rowB[k][0]) * 0.25F;
315 dst[i][1] = (rowA[j][1] + rowA[k][1] +
316 rowB[j][1] + rowB[k][1]) * 0.25F;
317 dst[i][2] = (rowA[j][2] + rowA[k][2] +
318 rowB[j][2] + rowB[k][2]) * 0.25F;
319 }
320 }
321 else if (datatype == DTYPE_FLOAT && comps == 2) {
322 uint i, j, k;
323 const float(*rowA)[2] = (const float(*)[2]) srcRowA;
324 const float(*rowB)[2] = (const float(*)[2]) srcRowB;
325 float(*dst)[2] = (float(*)[2]) dstRow;
326 for (i = j = 0, k = k0; i < (uint) dstWidth;
327 i++, j += colStride, k += colStride) {
328 dst[i][0] = (rowA[j][0] + rowA[k][0] +
329 rowB[j][0] + rowB[k][0]) * 0.25F;
330 dst[i][1] = (rowA[j][1] + rowA[k][1] +
331 rowB[j][1] + rowB[k][1]) * 0.25F;
332 }
333 }
334 else if (datatype == DTYPE_FLOAT && comps == 1) {
335 uint i, j, k;
336 const float *rowA = (const float *) srcRowA;
337 const float *rowB = (const float *) srcRowB;
338 float *dst = (float *) dstRow;
339 for (i = j = 0, k = k0; i < (uint) dstWidth;
340 i++, j += colStride, k += colStride) {
341 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
342 }
343 }
344
345 #if 0
346 else if (datatype == HALF_DTYPE_FLOAT && comps == 4) {
347 uint i, j, k, comp;
348 const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
349 const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
350 half_float(*dst)[4] = (half_float(*)[4]) dstRow;
351 for (i = j = 0, k = k0; i < (uint) dstWidth;
352 i++, j += colStride, k += colStride) {
353 for (comp = 0; comp < 4; comp++) {
354 float aj, ak, bj, bk;
355 aj = half_to_float(rowA[j][comp]);
356 ak = half_to_float(rowA[k][comp]);
357 bj = half_to_float(rowB[j][comp]);
358 bk = half_to_float(rowB[k][comp]);
359 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
360 }
361 }
362 }
363 else if (datatype == DTYPE_HALF_FLOAT && comps == 3) {
364 uint i, j, k, comp;
365 const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
366 const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
367 half_float(*dst)[3] = (half_float(*)[3]) dstRow;
368 for (i = j = 0, k = k0; i < (uint) dstWidth;
369 i++, j += colStride, k += colStride) {
370 for (comp = 0; comp < 3; comp++) {
371 float aj, ak, bj, bk;
372 aj = half_to_float(rowA[j][comp]);
373 ak = half_to_float(rowA[k][comp]);
374 bj = half_to_float(rowB[j][comp]);
375 bk = half_to_float(rowB[k][comp]);
376 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
377 }
378 }
379 }
380 else if (datatype == DTYPE_HALF_FLOAT && comps == 2) {
381 uint i, j, k, comp;
382 const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
383 const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
384 half_float(*dst)[2] = (half_float(*)[2]) dstRow;
385 for (i = j = 0, k = k0; i < (uint) dstWidth;
386 i++, j += colStride, k += colStride) {
387 for (comp = 0; comp < 2; comp++) {
388 float aj, ak, bj, bk;
389 aj = half_to_float(rowA[j][comp]);
390 ak = half_to_float(rowA[k][comp]);
391 bj = half_to_float(rowB[j][comp]);
392 bk = half_to_float(rowB[k][comp]);
393 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
394 }
395 }
396 }
397 else if (datatype == DTYPE_HALF_FLOAT && comps == 1) {
398 uint i, j, k;
399 const half_float *rowA = (const half_float *) srcRowA;
400 const half_float *rowB = (const half_float *) srcRowB;
401 half_float *dst = (half_float *) dstRow;
402 for (i = j = 0, k = k0; i < (uint) dstWidth;
403 i++, j += colStride, k += colStride) {
404 float aj, ak, bj, bk;
405 aj = half_to_float(rowA[j]);
406 ak = half_to_float(rowA[k]);
407 bj = half_to_float(rowB[j]);
408 bk = half_to_float(rowB[k]);
409 dst[i] = float_to_half((aj + ak + bj + bk) * 0.25F);
410 }
411 }
412 #endif
413
414 else if (datatype == DTYPE_UINT && comps == 1) {
415 uint i, j, k;
416 const uint *rowA = (const uint *) srcRowA;
417 const uint *rowB = (const uint *) srcRowB;
418 uint *dst = (uint *) dstRow;
419 for (i = j = 0, k = k0; i < (uint) dstWidth;
420 i++, j += colStride, k += colStride) {
421 dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
422 }
423 }
424
425 else if (datatype == DTYPE_USHORT_5_6_5 && comps == 3) {
426 uint i, j, k;
427 const ushort *rowA = (const ushort *) srcRowA;
428 const ushort *rowB = (const ushort *) srcRowB;
429 ushort *dst = (ushort *) dstRow;
430 for (i = j = 0, k = k0; i < (uint) dstWidth;
431 i++, j += colStride, k += colStride) {
432 const int rowAr0 = rowA[j] & 0x1f;
433 const int rowAr1 = rowA[k] & 0x1f;
434 const int rowBr0 = rowB[j] & 0x1f;
435 const int rowBr1 = rowB[k] & 0x1f;
436 const int rowAg0 = (rowA[j] >> 5) & 0x3f;
437 const int rowAg1 = (rowA[k] >> 5) & 0x3f;
438 const int rowBg0 = (rowB[j] >> 5) & 0x3f;
439 const int rowBg1 = (rowB[k] >> 5) & 0x3f;
440 const int rowAb0 = (rowA[j] >> 11) & 0x1f;
441 const int rowAb1 = (rowA[k] >> 11) & 0x1f;
442 const int rowBb0 = (rowB[j] >> 11) & 0x1f;
443 const int rowBb1 = (rowB[k] >> 11) & 0x1f;
444 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
445 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
446 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
447 dst[i] = (blue << 11) | (green << 5) | red;
448 }
449 }
450 else if (datatype == DTYPE_USHORT_4_4_4_4 && comps == 4) {
451 uint i, j, k;
452 const ushort *rowA = (const ushort *) srcRowA;
453 const ushort *rowB = (const ushort *) srcRowB;
454 ushort *dst = (ushort *) dstRow;
455 for (i = j = 0, k = k0; i < (uint) dstWidth;
456 i++, j += colStride, k += colStride) {
457 const int rowAr0 = rowA[j] & 0xf;
458 const int rowAr1 = rowA[k] & 0xf;
459 const int rowBr0 = rowB[j] & 0xf;
460 const int rowBr1 = rowB[k] & 0xf;
461 const int rowAg0 = (rowA[j] >> 4) & 0xf;
462 const int rowAg1 = (rowA[k] >> 4) & 0xf;
463 const int rowBg0 = (rowB[j] >> 4) & 0xf;
464 const int rowBg1 = (rowB[k] >> 4) & 0xf;
465 const int rowAb0 = (rowA[j] >> 8) & 0xf;
466 const int rowAb1 = (rowA[k] >> 8) & 0xf;
467 const int rowBb0 = (rowB[j] >> 8) & 0xf;
468 const int rowBb1 = (rowB[k] >> 8) & 0xf;
469 const int rowAa0 = (rowA[j] >> 12) & 0xf;
470 const int rowAa1 = (rowA[k] >> 12) & 0xf;
471 const int rowBa0 = (rowB[j] >> 12) & 0xf;
472 const int rowBa1 = (rowB[k] >> 12) & 0xf;
473 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
474 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
475 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
476 const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
477 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
478 }
479 }
480 else if (datatype == DTYPE_USHORT_1_5_5_5_REV && comps == 4) {
481 uint i, j, k;
482 const ushort *rowA = (const ushort *) srcRowA;
483 const ushort *rowB = (const ushort *) srcRowB;
484 ushort *dst = (ushort *) dstRow;
485 for (i = j = 0, k = k0; i < (uint) dstWidth;
486 i++, j += colStride, k += colStride) {
487 const int rowAr0 = rowA[j] & 0x1f;
488 const int rowAr1 = rowA[k] & 0x1f;
489 const int rowBr0 = rowB[j] & 0x1f;
490 const int rowBr1 = rowB[k] & 0x1f;
491 const int rowAg0 = (rowA[j] >> 5) & 0x1f;
492 const int rowAg1 = (rowA[k] >> 5) & 0x1f;
493 const int rowBg0 = (rowB[j] >> 5) & 0x1f;
494 const int rowBg1 = (rowB[k] >> 5) & 0x1f;
495 const int rowAb0 = (rowA[j] >> 10) & 0x1f;
496 const int rowAb1 = (rowA[k] >> 10) & 0x1f;
497 const int rowBb0 = (rowB[j] >> 10) & 0x1f;
498 const int rowBb1 = (rowB[k] >> 10) & 0x1f;
499 const int rowAa0 = (rowA[j] >> 15) & 0x1;
500 const int rowAa1 = (rowA[k] >> 15) & 0x1;
501 const int rowBa0 = (rowB[j] >> 15) & 0x1;
502 const int rowBa1 = (rowB[k] >> 15) & 0x1;
503 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
504 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
505 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
506 const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
507 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
508 }
509 }
510 else if (datatype == DTYPE_UBYTE_3_3_2 && comps == 3) {
511 uint i, j, k;
512 const ubyte *rowA = (const ubyte *) srcRowA;
513 const ubyte *rowB = (const ubyte *) srcRowB;
514 ubyte *dst = (ubyte *) dstRow;
515 for (i = j = 0, k = k0; i < (uint) dstWidth;
516 i++, j += colStride, k += colStride) {
517 const int rowAr0 = rowA[j] & 0x3;
518 const int rowAr1 = rowA[k] & 0x3;
519 const int rowBr0 = rowB[j] & 0x3;
520 const int rowBr1 = rowB[k] & 0x3;
521 const int rowAg0 = (rowA[j] >> 2) & 0x7;
522 const int rowAg1 = (rowA[k] >> 2) & 0x7;
523 const int rowBg0 = (rowB[j] >> 2) & 0x7;
524 const int rowBg1 = (rowB[k] >> 2) & 0x7;
525 const int rowAb0 = (rowA[j] >> 5) & 0x7;
526 const int rowAb1 = (rowA[k] >> 5) & 0x7;
527 const int rowBb0 = (rowB[j] >> 5) & 0x7;
528 const int rowBb1 = (rowB[k] >> 5) & 0x7;
529 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
530 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
531 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
532 dst[i] = (blue << 5) | (green << 2) | red;
533 }
534 }
535 else {
536 debug_printf("bad format in do_row()");
537 }
538 }
539
540
541 /**
542 * Average together four rows of a source image to produce a single new
543 * row in the dest image. It's legal for the two source rows to point
544 * to the same data. The source width must be equal to either the
545 * dest width or two times the dest width.
546 *
547 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
548 * \c GL_FLOAT, etc.
549 * \param comps number of components per pixel (1..4)
550 * \param srcWidth Width of a row in the source data
551 * \param srcRowA Pointer to one of the rows of source data
552 * \param srcRowB Pointer to one of the rows of source data
553 * \param srcRowC Pointer to one of the rows of source data
554 * \param srcRowD Pointer to one of the rows of source data
555 * \param dstWidth Width of a row in the destination data
556 * \param srcRowA Pointer to the row of destination data
557 */
558 static void
559 do_row_3D(enum dtype datatype, uint comps, int srcWidth,
560 const void *srcRowA, const void *srcRowB,
561 const void *srcRowC, const void *srcRowD,
562 int dstWidth, void *dstRow)
563 {
564 const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
565 const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
566 uint i, j, k;
567
568 assert(comps >= 1);
569 assert(comps <= 4);
570
571 if ((datatype == DTYPE_UBYTE) && (comps == 4)) {
572 DECLARE_ROW_POINTERS(ubyte, 4);
573
574 for (i = j = 0, k = k0; i < (uint) dstWidth;
575 i++, j += colStride, k += colStride) {
576 FILTER_3D(0);
577 FILTER_3D(1);
578 FILTER_3D(2);
579 FILTER_3D(3);
580 }
581 }
582 else if ((datatype == DTYPE_UBYTE) && (comps == 3)) {
583 DECLARE_ROW_POINTERS(ubyte, 3);
584
585 for (i = j = 0, k = k0; i < (uint) dstWidth;
586 i++, j += colStride, k += colStride) {
587 FILTER_3D(0);
588 FILTER_3D(1);
589 FILTER_3D(2);
590 }
591 }
592 else if ((datatype == DTYPE_UBYTE) && (comps == 2)) {
593 DECLARE_ROW_POINTERS(ubyte, 2);
594
595 for (i = j = 0, k = k0; i < (uint) dstWidth;
596 i++, j += colStride, k += colStride) {
597 FILTER_3D(0);
598 FILTER_3D(1);
599 }
600 }
601 else if ((datatype == DTYPE_UBYTE) && (comps == 1)) {
602 DECLARE_ROW_POINTERS(ubyte, 1);
603
604 for (i = j = 0, k = k0; i < (uint) dstWidth;
605 i++, j += colStride, k += colStride) {
606 FILTER_3D(0);
607 }
608 }
609 else if ((datatype == DTYPE_USHORT) && (comps == 4)) {
610 DECLARE_ROW_POINTERS(ushort, 4);
611
612 for (i = j = 0, k = k0; i < (uint) dstWidth;
613 i++, j += colStride, k += colStride) {
614 FILTER_3D(0);
615 FILTER_3D(1);
616 FILTER_3D(2);
617 FILTER_3D(3);
618 }
619 }
620 else if ((datatype == DTYPE_USHORT) && (comps == 3)) {
621 DECLARE_ROW_POINTERS(ushort, 3);
622
623 for (i = j = 0, k = k0; i < (uint) dstWidth;
624 i++, j += colStride, k += colStride) {
625 FILTER_3D(0);
626 FILTER_3D(1);
627 FILTER_3D(2);
628 }
629 }
630 else if ((datatype == DTYPE_USHORT) && (comps == 2)) {
631 DECLARE_ROW_POINTERS(ushort, 2);
632
633 for (i = j = 0, k = k0; i < (uint) dstWidth;
634 i++, j += colStride, k += colStride) {
635 FILTER_3D(0);
636 FILTER_3D(1);
637 }
638 }
639 else if ((datatype == DTYPE_USHORT) && (comps == 1)) {
640 DECLARE_ROW_POINTERS(ushort, 1);
641
642 for (i = j = 0, k = k0; i < (uint) dstWidth;
643 i++, j += colStride, k += colStride) {
644 FILTER_3D(0);
645 }
646 }
647 else if ((datatype == DTYPE_FLOAT) && (comps == 4)) {
648 DECLARE_ROW_POINTERS(float, 4);
649
650 for (i = j = 0, k = k0; i < (uint) dstWidth;
651 i++, j += colStride, k += colStride) {
652 FILTER_F_3D(0);
653 FILTER_F_3D(1);
654 FILTER_F_3D(2);
655 FILTER_F_3D(3);
656 }
657 }
658 else if ((datatype == DTYPE_FLOAT) && (comps == 3)) {
659 DECLARE_ROW_POINTERS(float, 3);
660
661 for (i = j = 0, k = k0; i < (uint) dstWidth;
662 i++, j += colStride, k += colStride) {
663 FILTER_F_3D(0);
664 FILTER_F_3D(1);
665 FILTER_F_3D(2);
666 }
667 }
668 else if ((datatype == DTYPE_FLOAT) && (comps == 2)) {
669 DECLARE_ROW_POINTERS(float, 2);
670
671 for (i = j = 0, k = k0; i < (uint) dstWidth;
672 i++, j += colStride, k += colStride) {
673 FILTER_F_3D(0);
674 FILTER_F_3D(1);
675 }
676 }
677 else if ((datatype == DTYPE_FLOAT) && (comps == 1)) {
678 DECLARE_ROW_POINTERS(float, 1);
679
680 for (i = j = 0, k = k0; i < (uint) dstWidth;
681 i++, j += colStride, k += colStride) {
682 FILTER_F_3D(0);
683 }
684 }
685 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 4)) {
686 DECLARE_ROW_POINTERS(half_float, 4);
687
688 for (i = j = 0, k = k0; i < (uint) dstWidth;
689 i++, j += colStride, k += colStride) {
690 FILTER_HF_3D(0);
691 FILTER_HF_3D(1);
692 FILTER_HF_3D(2);
693 FILTER_HF_3D(3);
694 }
695 }
696 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 3)) {
697 DECLARE_ROW_POINTERS(half_float, 4);
698
699 for (i = j = 0, k = k0; i < (uint) dstWidth;
700 i++, j += colStride, k += colStride) {
701 FILTER_HF_3D(0);
702 FILTER_HF_3D(1);
703 FILTER_HF_3D(2);
704 }
705 }
706 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 2)) {
707 DECLARE_ROW_POINTERS(half_float, 4);
708
709 for (i = j = 0, k = k0; i < (uint) dstWidth;
710 i++, j += colStride, k += colStride) {
711 FILTER_HF_3D(0);
712 FILTER_HF_3D(1);
713 }
714 }
715 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 1)) {
716 DECLARE_ROW_POINTERS(half_float, 4);
717
718 for (i = j = 0, k = k0; i < (uint) dstWidth;
719 i++, j += colStride, k += colStride) {
720 FILTER_HF_3D(0);
721 }
722 }
723 else if ((datatype == DTYPE_UINT) && (comps == 1)) {
724 const uint *rowA = (const uint *) srcRowA;
725 const uint *rowB = (const uint *) srcRowB;
726 const uint *rowC = (const uint *) srcRowC;
727 const uint *rowD = (const uint *) srcRowD;
728 float *dst = (float *) dstRow;
729
730 for (i = j = 0, k = k0; i < (uint) dstWidth;
731 i++, j += colStride, k += colStride) {
732 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
733 + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
734 + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
735 + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
736 dst[i] = (float)((double) tmp * 0.125);
737 }
738 }
739 else if ((datatype == DTYPE_USHORT_5_6_5) && (comps == 3)) {
740 DECLARE_ROW_POINTERS0(ushort);
741
742 for (i = j = 0, k = k0; i < (uint) dstWidth;
743 i++, j += colStride, k += colStride) {
744 const int rowAr0 = rowA[j] & 0x1f;
745 const int rowAr1 = rowA[k] & 0x1f;
746 const int rowBr0 = rowB[j] & 0x1f;
747 const int rowBr1 = rowB[k] & 0x1f;
748 const int rowCr0 = rowC[j] & 0x1f;
749 const int rowCr1 = rowC[k] & 0x1f;
750 const int rowDr0 = rowD[j] & 0x1f;
751 const int rowDr1 = rowD[k] & 0x1f;
752 const int rowAg0 = (rowA[j] >> 5) & 0x3f;
753 const int rowAg1 = (rowA[k] >> 5) & 0x3f;
754 const int rowBg0 = (rowB[j] >> 5) & 0x3f;
755 const int rowBg1 = (rowB[k] >> 5) & 0x3f;
756 const int rowCg0 = (rowC[j] >> 5) & 0x3f;
757 const int rowCg1 = (rowC[k] >> 5) & 0x3f;
758 const int rowDg0 = (rowD[j] >> 5) & 0x3f;
759 const int rowDg1 = (rowD[k] >> 5) & 0x3f;
760 const int rowAb0 = (rowA[j] >> 11) & 0x1f;
761 const int rowAb1 = (rowA[k] >> 11) & 0x1f;
762 const int rowBb0 = (rowB[j] >> 11) & 0x1f;
763 const int rowBb1 = (rowB[k] >> 11) & 0x1f;
764 const int rowCb0 = (rowC[j] >> 11) & 0x1f;
765 const int rowCb1 = (rowC[k] >> 11) & 0x1f;
766 const int rowDb0 = (rowD[j] >> 11) & 0x1f;
767 const int rowDb1 = (rowD[k] >> 11) & 0x1f;
768 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
769 rowCr0, rowCr1, rowDr0, rowDr1);
770 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
771 rowCg0, rowCg1, rowDg0, rowDg1);
772 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
773 rowCb0, rowCb1, rowDb0, rowDb1);
774 dst[i] = (b << 11) | (g << 5) | r;
775 }
776 }
777 else if ((datatype == DTYPE_USHORT_4_4_4_4) && (comps == 4)) {
778 DECLARE_ROW_POINTERS0(ushort);
779
780 for (i = j = 0, k = k0; i < (uint) dstWidth;
781 i++, j += colStride, k += colStride) {
782 const int rowAr0 = rowA[j] & 0xf;
783 const int rowAr1 = rowA[k] & 0xf;
784 const int rowBr0 = rowB[j] & 0xf;
785 const int rowBr1 = rowB[k] & 0xf;
786 const int rowCr0 = rowC[j] & 0xf;
787 const int rowCr1 = rowC[k] & 0xf;
788 const int rowDr0 = rowD[j] & 0xf;
789 const int rowDr1 = rowD[k] & 0xf;
790 const int rowAg0 = (rowA[j] >> 4) & 0xf;
791 const int rowAg1 = (rowA[k] >> 4) & 0xf;
792 const int rowBg0 = (rowB[j] >> 4) & 0xf;
793 const int rowBg1 = (rowB[k] >> 4) & 0xf;
794 const int rowCg0 = (rowC[j] >> 4) & 0xf;
795 const int rowCg1 = (rowC[k] >> 4) & 0xf;
796 const int rowDg0 = (rowD[j] >> 4) & 0xf;
797 const int rowDg1 = (rowD[k] >> 4) & 0xf;
798 const int rowAb0 = (rowA[j] >> 8) & 0xf;
799 const int rowAb1 = (rowA[k] >> 8) & 0xf;
800 const int rowBb0 = (rowB[j] >> 8) & 0xf;
801 const int rowBb1 = (rowB[k] >> 8) & 0xf;
802 const int rowCb0 = (rowC[j] >> 8) & 0xf;
803 const int rowCb1 = (rowC[k] >> 8) & 0xf;
804 const int rowDb0 = (rowD[j] >> 8) & 0xf;
805 const int rowDb1 = (rowD[k] >> 8) & 0xf;
806 const int rowAa0 = (rowA[j] >> 12) & 0xf;
807 const int rowAa1 = (rowA[k] >> 12) & 0xf;
808 const int rowBa0 = (rowB[j] >> 12) & 0xf;
809 const int rowBa1 = (rowB[k] >> 12) & 0xf;
810 const int rowCa0 = (rowC[j] >> 12) & 0xf;
811 const int rowCa1 = (rowC[k] >> 12) & 0xf;
812 const int rowDa0 = (rowD[j] >> 12) & 0xf;
813 const int rowDa1 = (rowD[k] >> 12) & 0xf;
814 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
815 rowCr0, rowCr1, rowDr0, rowDr1);
816 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
817 rowCg0, rowCg1, rowDg0, rowDg1);
818 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
819 rowCb0, rowCb1, rowDb0, rowDb1);
820 const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
821 rowCa0, rowCa1, rowDa0, rowDa1);
822
823 dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
824 }
825 }
826 else if ((datatype == DTYPE_USHORT_1_5_5_5_REV) && (comps == 4)) {
827 DECLARE_ROW_POINTERS0(ushort);
828
829 for (i = j = 0, k = k0; i < (uint) dstWidth;
830 i++, j += colStride, k += colStride) {
831 const int rowAr0 = rowA[j] & 0x1f;
832 const int rowAr1 = rowA[k] & 0x1f;
833 const int rowBr0 = rowB[j] & 0x1f;
834 const int rowBr1 = rowB[k] & 0x1f;
835 const int rowCr0 = rowC[j] & 0x1f;
836 const int rowCr1 = rowC[k] & 0x1f;
837 const int rowDr0 = rowD[j] & 0x1f;
838 const int rowDr1 = rowD[k] & 0x1f;
839 const int rowAg0 = (rowA[j] >> 5) & 0x1f;
840 const int rowAg1 = (rowA[k] >> 5) & 0x1f;
841 const int rowBg0 = (rowB[j] >> 5) & 0x1f;
842 const int rowBg1 = (rowB[k] >> 5) & 0x1f;
843 const int rowCg0 = (rowC[j] >> 5) & 0x1f;
844 const int rowCg1 = (rowC[k] >> 5) & 0x1f;
845 const int rowDg0 = (rowD[j] >> 5) & 0x1f;
846 const int rowDg1 = (rowD[k] >> 5) & 0x1f;
847 const int rowAb0 = (rowA[j] >> 10) & 0x1f;
848 const int rowAb1 = (rowA[k] >> 10) & 0x1f;
849 const int rowBb0 = (rowB[j] >> 10) & 0x1f;
850 const int rowBb1 = (rowB[k] >> 10) & 0x1f;
851 const int rowCb0 = (rowC[j] >> 10) & 0x1f;
852 const int rowCb1 = (rowC[k] >> 10) & 0x1f;
853 const int rowDb0 = (rowD[j] >> 10) & 0x1f;
854 const int rowDb1 = (rowD[k] >> 10) & 0x1f;
855 const int rowAa0 = (rowA[j] >> 15) & 0x1;
856 const int rowAa1 = (rowA[k] >> 15) & 0x1;
857 const int rowBa0 = (rowB[j] >> 15) & 0x1;
858 const int rowBa1 = (rowB[k] >> 15) & 0x1;
859 const int rowCa0 = (rowC[j] >> 15) & 0x1;
860 const int rowCa1 = (rowC[k] >> 15) & 0x1;
861 const int rowDa0 = (rowD[j] >> 15) & 0x1;
862 const int rowDa1 = (rowD[k] >> 15) & 0x1;
863 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
864 rowCr0, rowCr1, rowDr0, rowDr1);
865 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
866 rowCg0, rowCg1, rowDg0, rowDg1);
867 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
868 rowCb0, rowCb1, rowDb0, rowDb1);
869 const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
870 rowCa0, rowCa1, rowDa0, rowDa1);
871
872 dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
873 }
874 }
875 else if ((datatype == DTYPE_UBYTE_3_3_2) && (comps == 3)) {
876 DECLARE_ROW_POINTERS0(ushort);
877
878 for (i = j = 0, k = k0; i < (uint) dstWidth;
879 i++, j += colStride, k += colStride) {
880 const int rowAr0 = rowA[j] & 0x3;
881 const int rowAr1 = rowA[k] & 0x3;
882 const int rowBr0 = rowB[j] & 0x3;
883 const int rowBr1 = rowB[k] & 0x3;
884 const int rowCr0 = rowC[j] & 0x3;
885 const int rowCr1 = rowC[k] & 0x3;
886 const int rowDr0 = rowD[j] & 0x3;
887 const int rowDr1 = rowD[k] & 0x3;
888 const int rowAg0 = (rowA[j] >> 2) & 0x7;
889 const int rowAg1 = (rowA[k] >> 2) & 0x7;
890 const int rowBg0 = (rowB[j] >> 2) & 0x7;
891 const int rowBg1 = (rowB[k] >> 2) & 0x7;
892 const int rowCg0 = (rowC[j] >> 2) & 0x7;
893 const int rowCg1 = (rowC[k] >> 2) & 0x7;
894 const int rowDg0 = (rowD[j] >> 2) & 0x7;
895 const int rowDg1 = (rowD[k] >> 2) & 0x7;
896 const int rowAb0 = (rowA[j] >> 5) & 0x7;
897 const int rowAb1 = (rowA[k] >> 5) & 0x7;
898 const int rowBb0 = (rowB[j] >> 5) & 0x7;
899 const int rowBb1 = (rowB[k] >> 5) & 0x7;
900 const int rowCb0 = (rowC[j] >> 5) & 0x7;
901 const int rowCb1 = (rowC[k] >> 5) & 0x7;
902 const int rowDb0 = (rowD[j] >> 5) & 0x7;
903 const int rowDb1 = (rowD[k] >> 5) & 0x7;
904 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
905 rowCr0, rowCr1, rowDr0, rowDr1);
906 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
907 rowCg0, rowCg1, rowDg0, rowDg1);
908 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
909 rowCb0, rowCb1, rowDb0, rowDb1);
910 dst[i] = (b << 5) | (g << 2) | r;
911 }
912 }
913 else {
914 debug_printf("bad format in do_row_3D()");
915 }
916 }
917
918
919
920 static void
921 format_to_type_comps(enum pipe_format pformat,
922 enum dtype *datatype, uint *comps)
923 {
924 /* XXX I think this could be implemented in terms of the pf_*() functions */
925 switch (pformat) {
926 case PIPE_FORMAT_B8G8R8A8_UNORM:
927 case PIPE_FORMAT_B8G8R8X8_UNORM:
928 case PIPE_FORMAT_A8R8G8B8_UNORM:
929 case PIPE_FORMAT_X8R8G8B8_UNORM:
930 case PIPE_FORMAT_A8B8G8R8_SRGB:
931 case PIPE_FORMAT_X8B8G8R8_SRGB:
932 case PIPE_FORMAT_B8G8R8A8_SRGB:
933 case PIPE_FORMAT_B8G8R8X8_SRGB:
934 case PIPE_FORMAT_A8R8G8B8_SRGB:
935 case PIPE_FORMAT_X8R8G8B8_SRGB:
936 case PIPE_FORMAT_R8G8B8_SRGB:
937 *datatype = DTYPE_UBYTE;
938 *comps = 4;
939 return;
940 case PIPE_FORMAT_B5G5R5A1_UNORM:
941 *datatype = DTYPE_USHORT_1_5_5_5_REV;
942 *comps = 4;
943 return;
944 case PIPE_FORMAT_B4G4R4A4_UNORM:
945 *datatype = DTYPE_USHORT_4_4_4_4;
946 *comps = 4;
947 return;
948 case PIPE_FORMAT_B5G6R5_UNORM:
949 *datatype = DTYPE_USHORT_5_6_5;
950 *comps = 3;
951 return;
952 case PIPE_FORMAT_L8_UNORM:
953 case PIPE_FORMAT_L8_SRGB:
954 case PIPE_FORMAT_A8_UNORM:
955 case PIPE_FORMAT_I8_UNORM:
956 *datatype = DTYPE_UBYTE;
957 *comps = 1;
958 return;
959 case PIPE_FORMAT_L8A8_UNORM:
960 case PIPE_FORMAT_L8A8_SRGB:
961 *datatype = DTYPE_UBYTE;
962 *comps = 2;
963 return;
964 default:
965 assert(0);
966 *datatype = DTYPE_UBYTE;
967 *comps = 0;
968 break;
969 }
970 }
971
972
973 static void
974 reduce_1d(enum pipe_format pformat,
975 int srcWidth, const ubyte *srcPtr,
976 int dstWidth, ubyte *dstPtr)
977 {
978 enum dtype datatype;
979 uint comps;
980
981 format_to_type_comps(pformat, &datatype, &comps);
982
983 /* we just duplicate the input row, kind of hack, saves code */
984 do_row(datatype, comps,
985 srcWidth, srcPtr, srcPtr,
986 dstWidth, dstPtr);
987 }
988
989
990 /**
991 * Strides are in bytes. If zero, it'll be computed as width * bpp.
992 */
993 static void
994 reduce_2d(enum pipe_format pformat,
995 int srcWidth, int srcHeight,
996 int srcRowStride, const ubyte *srcPtr,
997 int dstWidth, int dstHeight,
998 int dstRowStride, ubyte *dstPtr)
999 {
1000 enum dtype datatype;
1001 uint comps;
1002 const int bpt = util_format_get_blocksize(pformat);
1003 const ubyte *srcA, *srcB;
1004 ubyte *dst;
1005 int row;
1006
1007 format_to_type_comps(pformat, &datatype, &comps);
1008
1009 if (!srcRowStride)
1010 srcRowStride = bpt * srcWidth;
1011
1012 if (!dstRowStride)
1013 dstRowStride = bpt * dstWidth;
1014
1015 /* Compute src and dst pointers */
1016 srcA = srcPtr;
1017 if (srcHeight > 1)
1018 srcB = srcA + srcRowStride;
1019 else
1020 srcB = srcA;
1021 dst = dstPtr;
1022
1023 for (row = 0; row < dstHeight; row++) {
1024 do_row(datatype, comps,
1025 srcWidth, srcA, srcB,
1026 dstWidth, dst);
1027 srcA += 2 * srcRowStride;
1028 srcB += 2 * srcRowStride;
1029 dst += dstRowStride;
1030 }
1031 }
1032
1033
1034 static void
1035 reduce_3d(enum pipe_format pformat,
1036 int srcWidth, int srcHeight, int srcDepth,
1037 int srcRowStride, const ubyte *srcPtr,
1038 int dstWidth, int dstHeight, int dstDepth,
1039 int dstRowStride, ubyte *dstPtr)
1040 {
1041 const int bpt = util_format_get_blocksize(pformat);
1042 const int border = 0;
1043 int img, row;
1044 int bytesPerSrcImage, bytesPerDstImage;
1045 int bytesPerSrcRow, bytesPerDstRow;
1046 int srcImageOffset, srcRowOffset;
1047 enum dtype datatype;
1048 uint comps;
1049
1050 format_to_type_comps(pformat, &datatype, &comps);
1051
1052 bytesPerSrcImage = srcWidth * srcHeight * bpt;
1053 bytesPerDstImage = dstWidth * dstHeight * bpt;
1054
1055 bytesPerSrcRow = srcWidth * bpt;
1056 bytesPerDstRow = dstWidth * bpt;
1057
1058 /* Offset between adjacent src images to be averaged together */
1059 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1060
1061 /* Offset between adjacent src rows to be averaged together */
1062 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1063
1064 /*
1065 * Need to average together up to 8 src pixels for each dest pixel.
1066 * Break that down into 3 operations:
1067 * 1. take two rows from source image and average them together.
1068 * 2. take two rows from next source image and average them together.
1069 * 3. take the two averaged rows and average them for the final dst row.
1070 */
1071
1072 /*
1073 printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1074 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1075 */
1076
1077 for (img = 0; img < dstDepth; img++) {
1078 /* first source image pointer, skipping border */
1079 const ubyte *imgSrcA = srcPtr
1080 + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1081 + img * (bytesPerSrcImage + srcImageOffset);
1082 /* second source image pointer, skipping border */
1083 const ubyte *imgSrcB = imgSrcA + srcImageOffset;
1084 /* address of the dest image, skipping border */
1085 ubyte *imgDst = dstPtr
1086 + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1087 + img * bytesPerDstImage;
1088
1089 /* setup the four source row pointers and the dest row pointer */
1090 const ubyte *srcImgARowA = imgSrcA;
1091 const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
1092 const ubyte *srcImgBRowA = imgSrcB;
1093 const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1094 ubyte *dstImgRow = imgDst;
1095
1096 for (row = 0; row < dstHeight; row++) {
1097 do_row_3D(datatype, comps, srcWidth,
1098 srcImgARowA, srcImgARowB,
1099 srcImgBRowA, srcImgBRowB,
1100 dstWidth, dstImgRow);
1101
1102 /* advance to next rows */
1103 srcImgARowA += bytesPerSrcRow + srcRowOffset;
1104 srcImgARowB += bytesPerSrcRow + srcRowOffset;
1105 srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1106 srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1107 dstImgRow += bytesPerDstRow;
1108 }
1109 }
1110 }
1111
1112
1113
1114
1115 static void
1116 make_1d_mipmap(struct gen_mipmap_state *ctx,
1117 struct pipe_texture *pt,
1118 uint face, uint baseLevel, uint lastLevel)
1119 {
1120 struct pipe_context *pipe = ctx->pipe;
1121 struct pipe_screen *screen = pipe->screen;
1122 const uint zslice = 0;
1123 uint dstLevel;
1124
1125 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1126 const uint srcLevel = dstLevel - 1;
1127 struct pipe_transfer *srcTrans, *dstTrans;
1128 void *srcMap, *dstMap;
1129
1130 srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1131 PIPE_TRANSFER_READ, 0, 0,
1132 u_minify(pt->width0, srcLevel),
1133 u_minify(pt->height0, srcLevel));
1134 dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1135 PIPE_TRANSFER_WRITE, 0, 0,
1136 u_minify(pt->width0, dstLevel),
1137 u_minify(pt->height0, dstLevel));
1138
1139 srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1140 dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1141
1142 reduce_1d(pt->format,
1143 srcTrans->width, srcMap,
1144 dstTrans->width, dstMap);
1145
1146 screen->transfer_unmap(screen, srcTrans);
1147 screen->transfer_unmap(screen, dstTrans);
1148
1149 screen->tex_transfer_destroy(srcTrans);
1150 screen->tex_transfer_destroy(dstTrans);
1151 }
1152 }
1153
1154
1155 static void
1156 make_2d_mipmap(struct gen_mipmap_state *ctx,
1157 struct pipe_texture *pt,
1158 uint face, uint baseLevel, uint lastLevel)
1159 {
1160 struct pipe_context *pipe = ctx->pipe;
1161 struct pipe_screen *screen = pipe->screen;
1162 const uint zslice = 0;
1163 uint dstLevel;
1164
1165 assert(util_format_get_blockwidth(pt->format) == 1);
1166 assert(util_format_get_blockheight(pt->format) == 1);
1167
1168 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1169 const uint srcLevel = dstLevel - 1;
1170 struct pipe_transfer *srcTrans, *dstTrans;
1171 ubyte *srcMap, *dstMap;
1172
1173 srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1174 PIPE_TRANSFER_READ, 0, 0,
1175 u_minify(pt->width0, srcLevel),
1176 u_minify(pt->height0, srcLevel));
1177 dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1178 PIPE_TRANSFER_WRITE, 0, 0,
1179 u_minify(pt->width0, dstLevel),
1180 u_minify(pt->height0, dstLevel));
1181
1182 srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1183 dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1184
1185 reduce_2d(pt->format,
1186 srcTrans->width, srcTrans->height,
1187 srcTrans->stride, srcMap,
1188 dstTrans->width, dstTrans->height,
1189 dstTrans->stride, dstMap);
1190
1191 screen->transfer_unmap(screen, srcTrans);
1192 screen->transfer_unmap(screen, dstTrans);
1193
1194 screen->tex_transfer_destroy(srcTrans);
1195 screen->tex_transfer_destroy(dstTrans);
1196 }
1197 }
1198
1199
1200 static void
1201 make_3d_mipmap(struct gen_mipmap_state *ctx,
1202 struct pipe_texture *pt,
1203 uint face, uint baseLevel, uint lastLevel)
1204 {
1205 #if 0
1206 struct pipe_context *pipe = ctx->pipe;
1207 struct pipe_screen *screen = pipe->screen;
1208 uint dstLevel, zslice = 0;
1209
1210 assert(util_format_get_blockwidth(pt->format) == 1);
1211 assert(util_format_get_blockheight(pt->format) == 1);
1212
1213 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1214 const uint srcLevel = dstLevel - 1;
1215 struct pipe_transfer *srcTrans, *dstTrans;
1216 ubyte *srcMap, *dstMap;
1217
1218 srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1219 PIPE_TRANSFER_READ, 0, 0,
1220 u_minify(pt->width0, srcLevel),
1221 u_minify(pt->height0, srcLevel));
1222 dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1223 PIPE_TRANSFER_WRITE, 0, 0,
1224 u_minify(pt->width0, dstLevel),
1225 u_minify(pt->height0, dstLevel));
1226
1227 srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1228 dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1229
1230 reduce_3d(pt->format,
1231 srcTrans->width, srcTrans->height,
1232 srcTrans->stride, srcMap,
1233 dstTrans->width, dstTrans->height,
1234 dstTrans->stride, dstMap);
1235
1236 screen->transfer_unmap(screen, srcTrans);
1237 screen->transfer_unmap(screen, dstTrans);
1238
1239 screen->tex_transfer_destroy(srcTrans);
1240 screen->tex_transfer_destroy(dstTrans);
1241 }
1242 #else
1243 (void) reduce_3d;
1244 #endif
1245 }
1246
1247
1248 static void
1249 fallback_gen_mipmap(struct gen_mipmap_state *ctx,
1250 struct pipe_texture *pt,
1251 uint face, uint baseLevel, uint lastLevel)
1252 {
1253 switch (pt->target) {
1254 case PIPE_TEXTURE_1D:
1255 make_1d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1256 break;
1257 case PIPE_TEXTURE_2D:
1258 case PIPE_TEXTURE_CUBE:
1259 make_2d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1260 break;
1261 case PIPE_TEXTURE_3D:
1262 make_3d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1263 break;
1264 default:
1265 assert(0);
1266 }
1267 }
1268
1269
1270 /**
1271 * Create a mipmap generation context.
1272 * The idea is to create one of these and re-use it each time we need to
1273 * generate a mipmap.
1274 */
1275 struct gen_mipmap_state *
1276 util_create_gen_mipmap(struct pipe_context *pipe,
1277 struct cso_context *cso)
1278 {
1279 struct gen_mipmap_state *ctx;
1280 uint i;
1281
1282 ctx = CALLOC_STRUCT(gen_mipmap_state);
1283 if (!ctx)
1284 return NULL;
1285
1286 ctx->pipe = pipe;
1287 ctx->cso = cso;
1288
1289 /* disabled blending/masking */
1290 memset(&ctx->blend, 0, sizeof(ctx->blend));
1291 ctx->blend.rt[0].colormask = PIPE_MASK_RGBA;
1292
1293 /* no-op depth/stencil/alpha */
1294 memset(&ctx->depthstencil, 0, sizeof(ctx->depthstencil));
1295
1296 /* rasterizer */
1297 memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
1298 ctx->rasterizer.front_winding = PIPE_WINDING_CW;
1299 ctx->rasterizer.cull_mode = PIPE_WINDING_NONE;
1300 ctx->rasterizer.gl_rasterization_rules = 1;
1301
1302 /* sampler state */
1303 memset(&ctx->sampler, 0, sizeof(ctx->sampler));
1304 ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1305 ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1306 ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1307 ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
1308 ctx->sampler.normalized_coords = 1;
1309
1310 /* vertex shader - still needed to specify mapping from fragment
1311 * shader input semantics to vertex elements
1312 */
1313 {
1314 const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
1315 TGSI_SEMANTIC_GENERIC };
1316 const uint semantic_indexes[] = { 0, 0 };
1317 ctx->vs = util_make_vertex_passthrough_shader(pipe, 2, semantic_names,
1318 semantic_indexes);
1319 }
1320
1321 /* fragment shader */
1322 ctx->fs2d = util_make_fragment_tex_shader(pipe, TGSI_TEXTURE_2D);
1323 ctx->fsCube = util_make_fragment_tex_shader(pipe, TGSI_TEXTURE_CUBE);
1324
1325 /* vertex data that doesn't change */
1326 for (i = 0; i < 4; i++) {
1327 ctx->vertices[i][0][2] = 0.0f; /* z */
1328 ctx->vertices[i][0][3] = 1.0f; /* w */
1329 ctx->vertices[i][1][3] = 1.0f; /* q */
1330 }
1331
1332 /* Note: the actual vertex buffer is allocated as needed below */
1333
1334 return ctx;
1335 }
1336
1337
1338 /**
1339 * Get next "slot" of vertex space in the vertex buffer.
1340 * We're allocating one large vertex buffer and using it piece by piece.
1341 */
1342 static unsigned
1343 get_next_slot(struct gen_mipmap_state *ctx)
1344 {
1345 const unsigned max_slots = 4096 / sizeof ctx->vertices;
1346
1347 if (ctx->vbuf_slot >= max_slots)
1348 util_gen_mipmap_flush( ctx );
1349
1350 if (!ctx->vbuf) {
1351 ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
1352 32,
1353 PIPE_BUFFER_USAGE_VERTEX,
1354 max_slots * sizeof ctx->vertices);
1355 }
1356
1357 return ctx->vbuf_slot++ * sizeof ctx->vertices;
1358 }
1359
1360
1361 static unsigned
1362 set_vertex_data(struct gen_mipmap_state *ctx,
1363 enum pipe_texture_target tex_target,
1364 uint face)
1365 {
1366 unsigned offset;
1367
1368 /* vert[0].position */
1369 ctx->vertices[0][0][0] = -1.0f; /*x*/
1370 ctx->vertices[0][0][1] = -1.0f; /*y*/
1371
1372 /* vert[1].position */
1373 ctx->vertices[1][0][0] = 1.0f;
1374 ctx->vertices[1][0][1] = -1.0f;
1375
1376 /* vert[2].position */
1377 ctx->vertices[2][0][0] = 1.0f;
1378 ctx->vertices[2][0][1] = 1.0f;
1379
1380 /* vert[3].position */
1381 ctx->vertices[3][0][0] = -1.0f;
1382 ctx->vertices[3][0][1] = 1.0f;
1383
1384 /* Setup vertex texcoords. This is a little tricky for cube maps. */
1385 if (tex_target == PIPE_TEXTURE_CUBE) {
1386 static const float st[4][2] = {
1387 {0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}
1388 };
1389
1390 util_map_texcoords2d_onto_cubemap(face, &st[0][0], 2,
1391 &ctx->vertices[0][1][0], 8);
1392 }
1393 else {
1394 /* 1D/2D */
1395 ctx->vertices[0][1][0] = 0.0f; /*s*/
1396 ctx->vertices[0][1][1] = 0.0f; /*t*/
1397 ctx->vertices[0][1][2] = 0.0f; /*r*/
1398
1399 ctx->vertices[1][1][0] = 1.0f;
1400 ctx->vertices[1][1][1] = 0.0f;
1401 ctx->vertices[1][1][2] = 0.0f;
1402
1403 ctx->vertices[2][1][0] = 1.0f;
1404 ctx->vertices[2][1][1] = 1.0f;
1405 ctx->vertices[2][1][2] = 0.0f;
1406
1407 ctx->vertices[3][1][0] = 0.0f;
1408 ctx->vertices[3][1][1] = 1.0f;
1409 ctx->vertices[3][1][2] = 0.0f;
1410 }
1411
1412 offset = get_next_slot( ctx );
1413
1414 pipe_buffer_write_nooverlap(ctx->pipe->screen, ctx->vbuf,
1415 offset, sizeof(ctx->vertices), ctx->vertices);
1416
1417 return offset;
1418 }
1419
1420
1421
1422 /**
1423 * Destroy a mipmap generation context
1424 */
1425 void
1426 util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
1427 {
1428 struct pipe_context *pipe = ctx->pipe;
1429
1430 pipe->delete_vs_state(pipe, ctx->vs);
1431 pipe->delete_fs_state(pipe, ctx->fs2d);
1432 pipe->delete_fs_state(pipe, ctx->fsCube);
1433
1434 pipe_buffer_reference(&ctx->vbuf, NULL);
1435
1436 FREE(ctx);
1437 }
1438
1439
1440
1441 /* Release vertex buffer at end of frame to avoid synchronous
1442 * rendering.
1443 */
1444 void util_gen_mipmap_flush( struct gen_mipmap_state *ctx )
1445 {
1446 pipe_buffer_reference(&ctx->vbuf, NULL);
1447 ctx->vbuf_slot = 0;
1448 }
1449
1450
1451 /**
1452 * Generate mipmap images. It's assumed all needed texture memory is
1453 * already allocated.
1454 *
1455 * \param pt the texture to generate mipmap levels for
1456 * \param face which cube face to generate mipmaps for (0 for non-cube maps)
1457 * \param baseLevel the first mipmap level to use as a src
1458 * \param lastLevel the last mipmap level to generate
1459 * \param filter the minification filter used to generate mipmap levels with
1460 * \param filter one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
1461 */
1462 void
1463 util_gen_mipmap(struct gen_mipmap_state *ctx,
1464 struct pipe_texture *pt,
1465 uint face, uint baseLevel, uint lastLevel, uint filter)
1466 {
1467 struct pipe_context *pipe = ctx->pipe;
1468 struct pipe_screen *screen = pipe->screen;
1469 struct pipe_framebuffer_state fb;
1470 void *fs = (pt->target == PIPE_TEXTURE_CUBE) ? ctx->fsCube : ctx->fs2d;
1471 uint dstLevel;
1472 uint zslice = 0;
1473 uint offset;
1474
1475 /* The texture object should have room for the levels which we're
1476 * about to generate.
1477 */
1478 assert(lastLevel <= pt->last_level);
1479
1480 /* If this fails, why are we here? */
1481 assert(lastLevel > baseLevel);
1482
1483 assert(filter == PIPE_TEX_FILTER_LINEAR ||
1484 filter == PIPE_TEX_FILTER_NEAREST);
1485
1486 /* check if we can render in the texture's format */
1487 if (!screen->is_format_supported(screen, pt->format, PIPE_TEXTURE_2D,
1488 PIPE_TEXTURE_USAGE_RENDER_TARGET, 0)) {
1489 fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
1490 return;
1491 }
1492
1493 /* save state (restored below) */
1494 cso_save_blend(ctx->cso);
1495 cso_save_depth_stencil_alpha(ctx->cso);
1496 cso_save_rasterizer(ctx->cso);
1497 cso_save_samplers(ctx->cso);
1498 cso_save_sampler_textures(ctx->cso);
1499 cso_save_framebuffer(ctx->cso);
1500 cso_save_fragment_shader(ctx->cso);
1501 cso_save_vertex_shader(ctx->cso);
1502 cso_save_viewport(ctx->cso);
1503 cso_save_clip(ctx->cso);
1504
1505 /* bind our state */
1506 cso_set_blend(ctx->cso, &ctx->blend);
1507 cso_set_depth_stencil_alpha(ctx->cso, &ctx->depthstencil);
1508 cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
1509 cso_set_clip(ctx->cso, &ctx->clip);
1510
1511 cso_set_fragment_shader_handle(ctx->cso, fs);
1512 cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
1513
1514 /* init framebuffer state */
1515 memset(&fb, 0, sizeof(fb));
1516 fb.nr_cbufs = 1;
1517
1518 /* set min/mag to same filter for faster sw speed */
1519 ctx->sampler.mag_img_filter = filter;
1520 ctx->sampler.min_img_filter = filter;
1521
1522 /*
1523 * XXX for small mipmap levels, it may be faster to use the software
1524 * fallback path...
1525 */
1526 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1527 const uint srcLevel = dstLevel - 1;
1528 struct pipe_viewport_state vp;
1529
1530 struct pipe_surface *surf =
1531 screen->get_tex_surface(screen, pt, face, dstLevel, zslice,
1532 PIPE_BUFFER_USAGE_GPU_WRITE);
1533
1534 /*
1535 * Setup framebuffer / dest surface
1536 */
1537 fb.cbufs[0] = surf;
1538 fb.width = u_minify(pt->width0, dstLevel);
1539 fb.height = u_minify(pt->height0, dstLevel);
1540 cso_set_framebuffer(ctx->cso, &fb);
1541
1542 /* viewport */
1543 vp.scale[0] = 0.5f * fb.width;
1544 vp.scale[1] = 0.5f * fb.height;
1545 vp.scale[2] = 1.0f;
1546 vp.scale[3] = 1.0f;
1547 vp.translate[0] = 0.5f * fb.width;
1548 vp.translate[1] = 0.5f * fb.height;
1549 vp.translate[2] = 0.0f;
1550 vp.translate[3] = 0.0f;
1551 cso_set_viewport(ctx->cso, &vp);
1552
1553 /*
1554 * Setup sampler state
1555 * Note: we should only have to set the min/max LOD clamps to ensure
1556 * we grab texels from the right mipmap level. But some hardware
1557 * has trouble with min clamping so we also set the lod_bias to
1558 * try to work around that.
1559 */
1560 ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
1561 ctx->sampler.lod_bias = (float) srcLevel;
1562 cso_single_sampler(ctx->cso, 0, &ctx->sampler);
1563 cso_single_sampler_done(ctx->cso);
1564
1565 cso_set_sampler_textures(ctx->cso, 1, &pt);
1566
1567 /* quad coords in clip coords */
1568 offset = set_vertex_data(ctx,
1569 pt->target,
1570 face);
1571
1572 util_draw_vertex_buffer(ctx->pipe,
1573 ctx->vbuf,
1574 offset,
1575 PIPE_PRIM_TRIANGLE_FAN,
1576 4, /* verts */
1577 2); /* attribs/vert */
1578
1579 pipe->flush(pipe, PIPE_FLUSH_RENDER_CACHE, NULL);
1580
1581 /* need to signal that the texture has changed _after_ rendering to it */
1582 pipe_surface_reference( &surf, NULL );
1583 }
1584
1585 /* restore state we changed */
1586 cso_restore_blend(ctx->cso);
1587 cso_restore_depth_stencil_alpha(ctx->cso);
1588 cso_restore_rasterizer(ctx->cso);
1589 cso_restore_samplers(ctx->cso);
1590 cso_restore_sampler_textures(ctx->cso);
1591 cso_restore_framebuffer(ctx->cso);
1592 cso_restore_fragment_shader(ctx->cso);
1593 cso_restore_vertex_shader(ctx->cso);
1594 cso_restore_viewport(ctx->cso);
1595 cso_restore_clip(ctx->cso);
1596 }