Merge branch 'mesa_7_5_branch'
[mesa.git] / src / gallium / auxiliary / util / u_gen_mipmap.c
1 /**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008 VMware, Inc. All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Mipmap generation utility
32 *
33 * @author Brian Paul
34 */
35
36
37 #include "pipe/p_context.h"
38 #include "util/u_debug.h"
39 #include "pipe/p_defines.h"
40 #include "pipe/p_inlines.h"
41 #include "pipe/p_shader_tokens.h"
42 #include "pipe/p_state.h"
43
44 #include "util/u_memory.h"
45 #include "util/u_draw_quad.h"
46 #include "util/u_gen_mipmap.h"
47 #include "util/u_simple_shaders.h"
48
49 #include "cso_cache/cso_context.h"
50
51
52 struct gen_mipmap_state
53 {
54 struct pipe_context *pipe;
55 struct cso_context *cso;
56
57 struct pipe_blend_state blend;
58 struct pipe_depth_stencil_alpha_state depthstencil;
59 struct pipe_rasterizer_state rasterizer;
60 struct pipe_sampler_state sampler;
61
62 void *vs;
63 void *fs;
64
65 struct pipe_buffer *vbuf; /**< quad vertices */
66 unsigned vbuf_slot;
67
68 float vertices[4][2][4]; /**< vertex/texcoords for quad */
69 };
70
71
72
73 enum dtype
74 {
75 DTYPE_UBYTE,
76 DTYPE_UBYTE_3_3_2,
77 DTYPE_USHORT,
78 DTYPE_USHORT_4_4_4_4,
79 DTYPE_USHORT_5_6_5,
80 DTYPE_USHORT_1_5_5_5_REV,
81 DTYPE_UINT,
82 DTYPE_FLOAT,
83 DTYPE_HALF_FLOAT
84 };
85
86
87 typedef ushort half_float;
88
89
90 static half_float
91 float_to_half(float f)
92 {
93 /* XXX fix this */
94 return 0;
95 }
96
97 static float
98 half_to_float(half_float h)
99 {
100 /* XXX fix this */
101 return 0.0f;
102 }
103
104
105
106
107 /**
108 * \name Support macros for do_row and do_row_3d
109 *
110 * The macro madness is here for two reasons. First, it compacts the code
111 * slightly. Second, it makes it much easier to adjust the specifics of the
112 * filter to tune the rounding characteristics.
113 */
114 /*@{*/
115 #define DECLARE_ROW_POINTERS(t, e) \
116 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
117 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
118 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
119 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
120 t(*dst)[e] = (t(*)[e]) dstRow
121
122 #define DECLARE_ROW_POINTERS0(t) \
123 const t *rowA = (const t *) srcRowA; \
124 const t *rowB = (const t *) srcRowB; \
125 const t *rowC = (const t *) srcRowC; \
126 const t *rowD = (const t *) srcRowD; \
127 t *dst = (t *) dstRow
128
129 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
130 ((unsigned) Aj + (unsigned) Ak \
131 + (unsigned) Bj + (unsigned) Bk \
132 + (unsigned) Cj + (unsigned) Ck \
133 + (unsigned) Dj + (unsigned) Dk \
134 + 4) >> 3
135
136 #define FILTER_3D(e) \
137 do { \
138 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
139 rowB[j][e], rowB[k][e], \
140 rowC[j][e], rowC[k][e], \
141 rowD[j][e], rowD[k][e]); \
142 } while(0)
143
144 #define FILTER_F_3D(e) \
145 do { \
146 dst[i][e] = (rowA[j][e] + rowA[k][e] \
147 + rowB[j][e] + rowB[k][e] \
148 + rowC[j][e] + rowC[k][e] \
149 + rowD[j][e] + rowD[k][e]) * 0.125F; \
150 } while(0)
151
152 #define FILTER_HF_3D(e) \
153 do { \
154 const float aj = half_to_float(rowA[j][e]); \
155 const float ak = half_to_float(rowA[k][e]); \
156 const float bj = half_to_float(rowB[j][e]); \
157 const float bk = half_to_float(rowB[k][e]); \
158 const float cj = half_to_float(rowC[j][e]); \
159 const float ck = half_to_float(rowC[k][e]); \
160 const float dj = half_to_float(rowD[j][e]); \
161 const float dk = half_to_float(rowD[k][e]); \
162 dst[i][e] = float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
163 * 0.125F); \
164 } while(0)
165 /*@}*/
166
167
168 /**
169 * Average together two rows of a source image to produce a single new
170 * row in the dest image. It's legal for the two source rows to point
171 * to the same data. The source width must be equal to either the
172 * dest width or two times the dest width.
173 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
174 * \param comps number of components per pixel (1..4)
175 */
176 static void
177 do_row(enum dtype datatype, uint comps, int srcWidth,
178 const void *srcRowA, const void *srcRowB,
179 int dstWidth, void *dstRow)
180 {
181 const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
182 const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
183
184 assert(comps >= 1);
185 assert(comps <= 4);
186
187 /* This assertion is no longer valid with non-power-of-2 textures
188 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
189 */
190
191 if (datatype == DTYPE_UBYTE && comps == 4) {
192 uint i, j, k;
193 const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
194 const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
195 ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
196 for (i = j = 0, k = k0; i < (uint) dstWidth;
197 i++, j += colStride, k += colStride) {
198 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
199 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
200 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
201 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
202 }
203 }
204 else if (datatype == DTYPE_UBYTE && comps == 3) {
205 uint i, j, k;
206 const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
207 const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
208 ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
209 for (i = j = 0, k = k0; i < (uint) dstWidth;
210 i++, j += colStride, k += colStride) {
211 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
212 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
213 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
214 }
215 }
216 else if (datatype == DTYPE_UBYTE && comps == 2) {
217 uint i, j, k;
218 const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
219 const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
220 ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
221 for (i = j = 0, k = k0; i < (uint) dstWidth;
222 i++, j += colStride, k += colStride) {
223 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
224 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
225 }
226 }
227 else if (datatype == DTYPE_UBYTE && comps == 1) {
228 uint i, j, k;
229 const ubyte *rowA = (const ubyte *) srcRowA;
230 const ubyte *rowB = (const ubyte *) srcRowB;
231 ubyte *dst = (ubyte *) dstRow;
232 for (i = j = 0, k = k0; i < (uint) dstWidth;
233 i++, j += colStride, k += colStride) {
234 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
235 }
236 }
237
238 else if (datatype == DTYPE_USHORT && comps == 4) {
239 uint i, j, k;
240 const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
241 const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
242 ushort(*dst)[4] = (ushort(*)[4]) dstRow;
243 for (i = j = 0, k = k0; i < (uint) dstWidth;
244 i++, j += colStride, k += colStride) {
245 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
246 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
247 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
248 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
249 }
250 }
251 else if (datatype == DTYPE_USHORT && comps == 3) {
252 uint i, j, k;
253 const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
254 const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
255 ushort(*dst)[3] = (ushort(*)[3]) dstRow;
256 for (i = j = 0, k = k0; i < (uint) dstWidth;
257 i++, j += colStride, k += colStride) {
258 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
259 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
260 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
261 }
262 }
263 else if (datatype == DTYPE_USHORT && comps == 2) {
264 uint i, j, k;
265 const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
266 const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
267 ushort(*dst)[2] = (ushort(*)[2]) dstRow;
268 for (i = j = 0, k = k0; i < (uint) dstWidth;
269 i++, j += colStride, k += colStride) {
270 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
271 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
272 }
273 }
274 else if (datatype == DTYPE_USHORT && comps == 1) {
275 uint i, j, k;
276 const ushort *rowA = (const ushort *) srcRowA;
277 const ushort *rowB = (const ushort *) srcRowB;
278 ushort *dst = (ushort *) dstRow;
279 for (i = j = 0, k = k0; i < (uint) dstWidth;
280 i++, j += colStride, k += colStride) {
281 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
282 }
283 }
284
285 else if (datatype == DTYPE_FLOAT && comps == 4) {
286 uint i, j, k;
287 const float(*rowA)[4] = (const float(*)[4]) srcRowA;
288 const float(*rowB)[4] = (const float(*)[4]) srcRowB;
289 float(*dst)[4] = (float(*)[4]) dstRow;
290 for (i = j = 0, k = k0; i < (uint) dstWidth;
291 i++, j += colStride, k += colStride) {
292 dst[i][0] = (rowA[j][0] + rowA[k][0] +
293 rowB[j][0] + rowB[k][0]) * 0.25F;
294 dst[i][1] = (rowA[j][1] + rowA[k][1] +
295 rowB[j][1] + rowB[k][1]) * 0.25F;
296 dst[i][2] = (rowA[j][2] + rowA[k][2] +
297 rowB[j][2] + rowB[k][2]) * 0.25F;
298 dst[i][3] = (rowA[j][3] + rowA[k][3] +
299 rowB[j][3] + rowB[k][3]) * 0.25F;
300 }
301 }
302 else if (datatype == DTYPE_FLOAT && comps == 3) {
303 uint i, j, k;
304 const float(*rowA)[3] = (const float(*)[3]) srcRowA;
305 const float(*rowB)[3] = (const float(*)[3]) srcRowB;
306 float(*dst)[3] = (float(*)[3]) dstRow;
307 for (i = j = 0, k = k0; i < (uint) dstWidth;
308 i++, j += colStride, k += colStride) {
309 dst[i][0] = (rowA[j][0] + rowA[k][0] +
310 rowB[j][0] + rowB[k][0]) * 0.25F;
311 dst[i][1] = (rowA[j][1] + rowA[k][1] +
312 rowB[j][1] + rowB[k][1]) * 0.25F;
313 dst[i][2] = (rowA[j][2] + rowA[k][2] +
314 rowB[j][2] + rowB[k][2]) * 0.25F;
315 }
316 }
317 else if (datatype == DTYPE_FLOAT && comps == 2) {
318 uint i, j, k;
319 const float(*rowA)[2] = (const float(*)[2]) srcRowA;
320 const float(*rowB)[2] = (const float(*)[2]) srcRowB;
321 float(*dst)[2] = (float(*)[2]) dstRow;
322 for (i = j = 0, k = k0; i < (uint) dstWidth;
323 i++, j += colStride, k += colStride) {
324 dst[i][0] = (rowA[j][0] + rowA[k][0] +
325 rowB[j][0] + rowB[k][0]) * 0.25F;
326 dst[i][1] = (rowA[j][1] + rowA[k][1] +
327 rowB[j][1] + rowB[k][1]) * 0.25F;
328 }
329 }
330 else if (datatype == DTYPE_FLOAT && comps == 1) {
331 uint i, j, k;
332 const float *rowA = (const float *) srcRowA;
333 const float *rowB = (const float *) srcRowB;
334 float *dst = (float *) dstRow;
335 for (i = j = 0, k = k0; i < (uint) dstWidth;
336 i++, j += colStride, k += colStride) {
337 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
338 }
339 }
340
341 #if 0
342 else if (datatype == HALF_DTYPE_FLOAT && comps == 4) {
343 uint i, j, k, comp;
344 const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
345 const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
346 half_float(*dst)[4] = (half_float(*)[4]) dstRow;
347 for (i = j = 0, k = k0; i < (uint) dstWidth;
348 i++, j += colStride, k += colStride) {
349 for (comp = 0; comp < 4; comp++) {
350 float aj, ak, bj, bk;
351 aj = half_to_float(rowA[j][comp]);
352 ak = half_to_float(rowA[k][comp]);
353 bj = half_to_float(rowB[j][comp]);
354 bk = half_to_float(rowB[k][comp]);
355 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
356 }
357 }
358 }
359 else if (datatype == DTYPE_HALF_FLOAT && comps == 3) {
360 uint i, j, k, comp;
361 const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
362 const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
363 half_float(*dst)[3] = (half_float(*)[3]) dstRow;
364 for (i = j = 0, k = k0; i < (uint) dstWidth;
365 i++, j += colStride, k += colStride) {
366 for (comp = 0; comp < 3; comp++) {
367 float aj, ak, bj, bk;
368 aj = half_to_float(rowA[j][comp]);
369 ak = half_to_float(rowA[k][comp]);
370 bj = half_to_float(rowB[j][comp]);
371 bk = half_to_float(rowB[k][comp]);
372 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
373 }
374 }
375 }
376 else if (datatype == DTYPE_HALF_FLOAT && comps == 2) {
377 uint i, j, k, comp;
378 const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
379 const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
380 half_float(*dst)[2] = (half_float(*)[2]) dstRow;
381 for (i = j = 0, k = k0; i < (uint) dstWidth;
382 i++, j += colStride, k += colStride) {
383 for (comp = 0; comp < 2; comp++) {
384 float aj, ak, bj, bk;
385 aj = half_to_float(rowA[j][comp]);
386 ak = half_to_float(rowA[k][comp]);
387 bj = half_to_float(rowB[j][comp]);
388 bk = half_to_float(rowB[k][comp]);
389 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
390 }
391 }
392 }
393 else if (datatype == DTYPE_HALF_FLOAT && comps == 1) {
394 uint i, j, k;
395 const half_float *rowA = (const half_float *) srcRowA;
396 const half_float *rowB = (const half_float *) srcRowB;
397 half_float *dst = (half_float *) dstRow;
398 for (i = j = 0, k = k0; i < (uint) dstWidth;
399 i++, j += colStride, k += colStride) {
400 float aj, ak, bj, bk;
401 aj = half_to_float(rowA[j]);
402 ak = half_to_float(rowA[k]);
403 bj = half_to_float(rowB[j]);
404 bk = half_to_float(rowB[k]);
405 dst[i] = float_to_half((aj + ak + bj + bk) * 0.25F);
406 }
407 }
408 #endif
409
410 else if (datatype == DTYPE_UINT && comps == 1) {
411 uint i, j, k;
412 const uint *rowA = (const uint *) srcRowA;
413 const uint *rowB = (const uint *) srcRowB;
414 uint *dst = (uint *) dstRow;
415 for (i = j = 0, k = k0; i < (uint) dstWidth;
416 i++, j += colStride, k += colStride) {
417 dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
418 }
419 }
420
421 else if (datatype == DTYPE_USHORT_5_6_5 && comps == 3) {
422 uint i, j, k;
423 const ushort *rowA = (const ushort *) srcRowA;
424 const ushort *rowB = (const ushort *) srcRowB;
425 ushort *dst = (ushort *) dstRow;
426 for (i = j = 0, k = k0; i < (uint) dstWidth;
427 i++, j += colStride, k += colStride) {
428 const int rowAr0 = rowA[j] & 0x1f;
429 const int rowAr1 = rowA[k] & 0x1f;
430 const int rowBr0 = rowB[j] & 0x1f;
431 const int rowBr1 = rowB[k] & 0x1f;
432 const int rowAg0 = (rowA[j] >> 5) & 0x3f;
433 const int rowAg1 = (rowA[k] >> 5) & 0x3f;
434 const int rowBg0 = (rowB[j] >> 5) & 0x3f;
435 const int rowBg1 = (rowB[k] >> 5) & 0x3f;
436 const int rowAb0 = (rowA[j] >> 11) & 0x1f;
437 const int rowAb1 = (rowA[k] >> 11) & 0x1f;
438 const int rowBb0 = (rowB[j] >> 11) & 0x1f;
439 const int rowBb1 = (rowB[k] >> 11) & 0x1f;
440 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
441 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
442 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
443 dst[i] = (blue << 11) | (green << 5) | red;
444 }
445 }
446 else if (datatype == DTYPE_USHORT_4_4_4_4 && comps == 4) {
447 uint i, j, k;
448 const ushort *rowA = (const ushort *) srcRowA;
449 const ushort *rowB = (const ushort *) srcRowB;
450 ushort *dst = (ushort *) dstRow;
451 for (i = j = 0, k = k0; i < (uint) dstWidth;
452 i++, j += colStride, k += colStride) {
453 const int rowAr0 = rowA[j] & 0xf;
454 const int rowAr1 = rowA[k] & 0xf;
455 const int rowBr0 = rowB[j] & 0xf;
456 const int rowBr1 = rowB[k] & 0xf;
457 const int rowAg0 = (rowA[j] >> 4) & 0xf;
458 const int rowAg1 = (rowA[k] >> 4) & 0xf;
459 const int rowBg0 = (rowB[j] >> 4) & 0xf;
460 const int rowBg1 = (rowB[k] >> 4) & 0xf;
461 const int rowAb0 = (rowA[j] >> 8) & 0xf;
462 const int rowAb1 = (rowA[k] >> 8) & 0xf;
463 const int rowBb0 = (rowB[j] >> 8) & 0xf;
464 const int rowBb1 = (rowB[k] >> 8) & 0xf;
465 const int rowAa0 = (rowA[j] >> 12) & 0xf;
466 const int rowAa1 = (rowA[k] >> 12) & 0xf;
467 const int rowBa0 = (rowB[j] >> 12) & 0xf;
468 const int rowBa1 = (rowB[k] >> 12) & 0xf;
469 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
470 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
471 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
472 const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
473 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
474 }
475 }
476 else if (datatype == DTYPE_USHORT_1_5_5_5_REV && comps == 4) {
477 uint i, j, k;
478 const ushort *rowA = (const ushort *) srcRowA;
479 const ushort *rowB = (const ushort *) srcRowB;
480 ushort *dst = (ushort *) dstRow;
481 for (i = j = 0, k = k0; i < (uint) dstWidth;
482 i++, j += colStride, k += colStride) {
483 const int rowAr0 = rowA[j] & 0x1f;
484 const int rowAr1 = rowA[k] & 0x1f;
485 const int rowBr0 = rowB[j] & 0x1f;
486 const int rowBr1 = rowB[k] & 0x1f;
487 const int rowAg0 = (rowA[j] >> 5) & 0x1f;
488 const int rowAg1 = (rowA[k] >> 5) & 0x1f;
489 const int rowBg0 = (rowB[j] >> 5) & 0x1f;
490 const int rowBg1 = (rowB[k] >> 5) & 0x1f;
491 const int rowAb0 = (rowA[j] >> 10) & 0x1f;
492 const int rowAb1 = (rowA[k] >> 10) & 0x1f;
493 const int rowBb0 = (rowB[j] >> 10) & 0x1f;
494 const int rowBb1 = (rowB[k] >> 10) & 0x1f;
495 const int rowAa0 = (rowA[j] >> 15) & 0x1;
496 const int rowAa1 = (rowA[k] >> 15) & 0x1;
497 const int rowBa0 = (rowB[j] >> 15) & 0x1;
498 const int rowBa1 = (rowB[k] >> 15) & 0x1;
499 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
500 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
501 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
502 const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
503 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
504 }
505 }
506 else if (datatype == DTYPE_UBYTE_3_3_2 && comps == 3) {
507 uint i, j, k;
508 const ubyte *rowA = (const ubyte *) srcRowA;
509 const ubyte *rowB = (const ubyte *) srcRowB;
510 ubyte *dst = (ubyte *) dstRow;
511 for (i = j = 0, k = k0; i < (uint) dstWidth;
512 i++, j += colStride, k += colStride) {
513 const int rowAr0 = rowA[j] & 0x3;
514 const int rowAr1 = rowA[k] & 0x3;
515 const int rowBr0 = rowB[j] & 0x3;
516 const int rowBr1 = rowB[k] & 0x3;
517 const int rowAg0 = (rowA[j] >> 2) & 0x7;
518 const int rowAg1 = (rowA[k] >> 2) & 0x7;
519 const int rowBg0 = (rowB[j] >> 2) & 0x7;
520 const int rowBg1 = (rowB[k] >> 2) & 0x7;
521 const int rowAb0 = (rowA[j] >> 5) & 0x7;
522 const int rowAb1 = (rowA[k] >> 5) & 0x7;
523 const int rowBb0 = (rowB[j] >> 5) & 0x7;
524 const int rowBb1 = (rowB[k] >> 5) & 0x7;
525 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
526 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
527 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
528 dst[i] = (blue << 5) | (green << 2) | red;
529 }
530 }
531 else {
532 debug_printf("bad format in do_row()");
533 }
534 }
535
536
537 /**
538 * Average together four rows of a source image to produce a single new
539 * row in the dest image. It's legal for the two source rows to point
540 * to the same data. The source width must be equal to either the
541 * dest width or two times the dest width.
542 *
543 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
544 * \c GL_FLOAT, etc.
545 * \param comps number of components per pixel (1..4)
546 * \param srcWidth Width of a row in the source data
547 * \param srcRowA Pointer to one of the rows of source data
548 * \param srcRowB Pointer to one of the rows of source data
549 * \param srcRowC Pointer to one of the rows of source data
550 * \param srcRowD Pointer to one of the rows of source data
551 * \param dstWidth Width of a row in the destination data
552 * \param srcRowA Pointer to the row of destination data
553 */
554 static void
555 do_row_3D(enum dtype datatype, uint comps, int srcWidth,
556 const void *srcRowA, const void *srcRowB,
557 const void *srcRowC, const void *srcRowD,
558 int dstWidth, void *dstRow)
559 {
560 const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
561 const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
562 uint i, j, k;
563
564 assert(comps >= 1);
565 assert(comps <= 4);
566
567 if ((datatype == DTYPE_UBYTE) && (comps == 4)) {
568 DECLARE_ROW_POINTERS(ubyte, 4);
569
570 for (i = j = 0, k = k0; i < (uint) dstWidth;
571 i++, j += colStride, k += colStride) {
572 FILTER_3D(0);
573 FILTER_3D(1);
574 FILTER_3D(2);
575 FILTER_3D(3);
576 }
577 }
578 else if ((datatype == DTYPE_UBYTE) && (comps == 3)) {
579 DECLARE_ROW_POINTERS(ubyte, 3);
580
581 for (i = j = 0, k = k0; i < (uint) dstWidth;
582 i++, j += colStride, k += colStride) {
583 FILTER_3D(0);
584 FILTER_3D(1);
585 FILTER_3D(2);
586 }
587 }
588 else if ((datatype == DTYPE_UBYTE) && (comps == 2)) {
589 DECLARE_ROW_POINTERS(ubyte, 2);
590
591 for (i = j = 0, k = k0; i < (uint) dstWidth;
592 i++, j += colStride, k += colStride) {
593 FILTER_3D(0);
594 FILTER_3D(1);
595 }
596 }
597 else if ((datatype == DTYPE_UBYTE) && (comps == 1)) {
598 DECLARE_ROW_POINTERS(ubyte, 1);
599
600 for (i = j = 0, k = k0; i < (uint) dstWidth;
601 i++, j += colStride, k += colStride) {
602 FILTER_3D(0);
603 }
604 }
605 else if ((datatype == DTYPE_USHORT) && (comps == 4)) {
606 DECLARE_ROW_POINTERS(ushort, 4);
607
608 for (i = j = 0, k = k0; i < (uint) dstWidth;
609 i++, j += colStride, k += colStride) {
610 FILTER_3D(0);
611 FILTER_3D(1);
612 FILTER_3D(2);
613 FILTER_3D(3);
614 }
615 }
616 else if ((datatype == DTYPE_USHORT) && (comps == 3)) {
617 DECLARE_ROW_POINTERS(ushort, 3);
618
619 for (i = j = 0, k = k0; i < (uint) dstWidth;
620 i++, j += colStride, k += colStride) {
621 FILTER_3D(0);
622 FILTER_3D(1);
623 FILTER_3D(2);
624 }
625 }
626 else if ((datatype == DTYPE_USHORT) && (comps == 2)) {
627 DECLARE_ROW_POINTERS(ushort, 2);
628
629 for (i = j = 0, k = k0; i < (uint) dstWidth;
630 i++, j += colStride, k += colStride) {
631 FILTER_3D(0);
632 FILTER_3D(1);
633 }
634 }
635 else if ((datatype == DTYPE_USHORT) && (comps == 1)) {
636 DECLARE_ROW_POINTERS(ushort, 1);
637
638 for (i = j = 0, k = k0; i < (uint) dstWidth;
639 i++, j += colStride, k += colStride) {
640 FILTER_3D(0);
641 }
642 }
643 else if ((datatype == DTYPE_FLOAT) && (comps == 4)) {
644 DECLARE_ROW_POINTERS(float, 4);
645
646 for (i = j = 0, k = k0; i < (uint) dstWidth;
647 i++, j += colStride, k += colStride) {
648 FILTER_F_3D(0);
649 FILTER_F_3D(1);
650 FILTER_F_3D(2);
651 FILTER_F_3D(3);
652 }
653 }
654 else if ((datatype == DTYPE_FLOAT) && (comps == 3)) {
655 DECLARE_ROW_POINTERS(float, 3);
656
657 for (i = j = 0, k = k0; i < (uint) dstWidth;
658 i++, j += colStride, k += colStride) {
659 FILTER_F_3D(0);
660 FILTER_F_3D(1);
661 FILTER_F_3D(2);
662 }
663 }
664 else if ((datatype == DTYPE_FLOAT) && (comps == 2)) {
665 DECLARE_ROW_POINTERS(float, 2);
666
667 for (i = j = 0, k = k0; i < (uint) dstWidth;
668 i++, j += colStride, k += colStride) {
669 FILTER_F_3D(0);
670 FILTER_F_3D(1);
671 }
672 }
673 else if ((datatype == DTYPE_FLOAT) && (comps == 1)) {
674 DECLARE_ROW_POINTERS(float, 1);
675
676 for (i = j = 0, k = k0; i < (uint) dstWidth;
677 i++, j += colStride, k += colStride) {
678 FILTER_F_3D(0);
679 }
680 }
681 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 4)) {
682 DECLARE_ROW_POINTERS(half_float, 4);
683
684 for (i = j = 0, k = k0; i < (uint) dstWidth;
685 i++, j += colStride, k += colStride) {
686 FILTER_HF_3D(0);
687 FILTER_HF_3D(1);
688 FILTER_HF_3D(2);
689 FILTER_HF_3D(3);
690 }
691 }
692 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 3)) {
693 DECLARE_ROW_POINTERS(half_float, 4);
694
695 for (i = j = 0, k = k0; i < (uint) dstWidth;
696 i++, j += colStride, k += colStride) {
697 FILTER_HF_3D(0);
698 FILTER_HF_3D(1);
699 FILTER_HF_3D(2);
700 }
701 }
702 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 2)) {
703 DECLARE_ROW_POINTERS(half_float, 4);
704
705 for (i = j = 0, k = k0; i < (uint) dstWidth;
706 i++, j += colStride, k += colStride) {
707 FILTER_HF_3D(0);
708 FILTER_HF_3D(1);
709 }
710 }
711 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 1)) {
712 DECLARE_ROW_POINTERS(half_float, 4);
713
714 for (i = j = 0, k = k0; i < (uint) dstWidth;
715 i++, j += colStride, k += colStride) {
716 FILTER_HF_3D(0);
717 }
718 }
719 else if ((datatype == DTYPE_UINT) && (comps == 1)) {
720 const uint *rowA = (const uint *) srcRowA;
721 const uint *rowB = (const uint *) srcRowB;
722 const uint *rowC = (const uint *) srcRowC;
723 const uint *rowD = (const uint *) srcRowD;
724 float *dst = (float *) dstRow;
725
726 for (i = j = 0, k = k0; i < (uint) dstWidth;
727 i++, j += colStride, k += colStride) {
728 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
729 + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
730 + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
731 + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
732 dst[i] = (float)((double) tmp * 0.125);
733 }
734 }
735 else if ((datatype == DTYPE_USHORT_5_6_5) && (comps == 3)) {
736 DECLARE_ROW_POINTERS0(ushort);
737
738 for (i = j = 0, k = k0; i < (uint) dstWidth;
739 i++, j += colStride, k += colStride) {
740 const int rowAr0 = rowA[j] & 0x1f;
741 const int rowAr1 = rowA[k] & 0x1f;
742 const int rowBr0 = rowB[j] & 0x1f;
743 const int rowBr1 = rowB[k] & 0x1f;
744 const int rowCr0 = rowC[j] & 0x1f;
745 const int rowCr1 = rowC[k] & 0x1f;
746 const int rowDr0 = rowD[j] & 0x1f;
747 const int rowDr1 = rowD[k] & 0x1f;
748 const int rowAg0 = (rowA[j] >> 5) & 0x3f;
749 const int rowAg1 = (rowA[k] >> 5) & 0x3f;
750 const int rowBg0 = (rowB[j] >> 5) & 0x3f;
751 const int rowBg1 = (rowB[k] >> 5) & 0x3f;
752 const int rowCg0 = (rowC[j] >> 5) & 0x3f;
753 const int rowCg1 = (rowC[k] >> 5) & 0x3f;
754 const int rowDg0 = (rowD[j] >> 5) & 0x3f;
755 const int rowDg1 = (rowD[k] >> 5) & 0x3f;
756 const int rowAb0 = (rowA[j] >> 11) & 0x1f;
757 const int rowAb1 = (rowA[k] >> 11) & 0x1f;
758 const int rowBb0 = (rowB[j] >> 11) & 0x1f;
759 const int rowBb1 = (rowB[k] >> 11) & 0x1f;
760 const int rowCb0 = (rowC[j] >> 11) & 0x1f;
761 const int rowCb1 = (rowC[k] >> 11) & 0x1f;
762 const int rowDb0 = (rowD[j] >> 11) & 0x1f;
763 const int rowDb1 = (rowD[k] >> 11) & 0x1f;
764 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
765 rowCr0, rowCr1, rowDr0, rowDr1);
766 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
767 rowCg0, rowCg1, rowDg0, rowDg1);
768 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
769 rowCb0, rowCb1, rowDb0, rowDb1);
770 dst[i] = (b << 11) | (g << 5) | r;
771 }
772 }
773 else if ((datatype == DTYPE_USHORT_4_4_4_4) && (comps == 4)) {
774 DECLARE_ROW_POINTERS0(ushort);
775
776 for (i = j = 0, k = k0; i < (uint) dstWidth;
777 i++, j += colStride, k += colStride) {
778 const int rowAr0 = rowA[j] & 0xf;
779 const int rowAr1 = rowA[k] & 0xf;
780 const int rowBr0 = rowB[j] & 0xf;
781 const int rowBr1 = rowB[k] & 0xf;
782 const int rowCr0 = rowC[j] & 0xf;
783 const int rowCr1 = rowC[k] & 0xf;
784 const int rowDr0 = rowD[j] & 0xf;
785 const int rowDr1 = rowD[k] & 0xf;
786 const int rowAg0 = (rowA[j] >> 4) & 0xf;
787 const int rowAg1 = (rowA[k] >> 4) & 0xf;
788 const int rowBg0 = (rowB[j] >> 4) & 0xf;
789 const int rowBg1 = (rowB[k] >> 4) & 0xf;
790 const int rowCg0 = (rowC[j] >> 4) & 0xf;
791 const int rowCg1 = (rowC[k] >> 4) & 0xf;
792 const int rowDg0 = (rowD[j] >> 4) & 0xf;
793 const int rowDg1 = (rowD[k] >> 4) & 0xf;
794 const int rowAb0 = (rowA[j] >> 8) & 0xf;
795 const int rowAb1 = (rowA[k] >> 8) & 0xf;
796 const int rowBb0 = (rowB[j] >> 8) & 0xf;
797 const int rowBb1 = (rowB[k] >> 8) & 0xf;
798 const int rowCb0 = (rowC[j] >> 8) & 0xf;
799 const int rowCb1 = (rowC[k] >> 8) & 0xf;
800 const int rowDb0 = (rowD[j] >> 8) & 0xf;
801 const int rowDb1 = (rowD[k] >> 8) & 0xf;
802 const int rowAa0 = (rowA[j] >> 12) & 0xf;
803 const int rowAa1 = (rowA[k] >> 12) & 0xf;
804 const int rowBa0 = (rowB[j] >> 12) & 0xf;
805 const int rowBa1 = (rowB[k] >> 12) & 0xf;
806 const int rowCa0 = (rowC[j] >> 12) & 0xf;
807 const int rowCa1 = (rowC[k] >> 12) & 0xf;
808 const int rowDa0 = (rowD[j] >> 12) & 0xf;
809 const int rowDa1 = (rowD[k] >> 12) & 0xf;
810 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
811 rowCr0, rowCr1, rowDr0, rowDr1);
812 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
813 rowCg0, rowCg1, rowDg0, rowDg1);
814 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
815 rowCb0, rowCb1, rowDb0, rowDb1);
816 const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
817 rowCa0, rowCa1, rowDa0, rowDa1);
818
819 dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
820 }
821 }
822 else if ((datatype == DTYPE_USHORT_1_5_5_5_REV) && (comps == 4)) {
823 DECLARE_ROW_POINTERS0(ushort);
824
825 for (i = j = 0, k = k0; i < (uint) dstWidth;
826 i++, j += colStride, k += colStride) {
827 const int rowAr0 = rowA[j] & 0x1f;
828 const int rowAr1 = rowA[k] & 0x1f;
829 const int rowBr0 = rowB[j] & 0x1f;
830 const int rowBr1 = rowB[k] & 0x1f;
831 const int rowCr0 = rowC[j] & 0x1f;
832 const int rowCr1 = rowC[k] & 0x1f;
833 const int rowDr0 = rowD[j] & 0x1f;
834 const int rowDr1 = rowD[k] & 0x1f;
835 const int rowAg0 = (rowA[j] >> 5) & 0x1f;
836 const int rowAg1 = (rowA[k] >> 5) & 0x1f;
837 const int rowBg0 = (rowB[j] >> 5) & 0x1f;
838 const int rowBg1 = (rowB[k] >> 5) & 0x1f;
839 const int rowCg0 = (rowC[j] >> 5) & 0x1f;
840 const int rowCg1 = (rowC[k] >> 5) & 0x1f;
841 const int rowDg0 = (rowD[j] >> 5) & 0x1f;
842 const int rowDg1 = (rowD[k] >> 5) & 0x1f;
843 const int rowAb0 = (rowA[j] >> 10) & 0x1f;
844 const int rowAb1 = (rowA[k] >> 10) & 0x1f;
845 const int rowBb0 = (rowB[j] >> 10) & 0x1f;
846 const int rowBb1 = (rowB[k] >> 10) & 0x1f;
847 const int rowCb0 = (rowC[j] >> 10) & 0x1f;
848 const int rowCb1 = (rowC[k] >> 10) & 0x1f;
849 const int rowDb0 = (rowD[j] >> 10) & 0x1f;
850 const int rowDb1 = (rowD[k] >> 10) & 0x1f;
851 const int rowAa0 = (rowA[j] >> 15) & 0x1;
852 const int rowAa1 = (rowA[k] >> 15) & 0x1;
853 const int rowBa0 = (rowB[j] >> 15) & 0x1;
854 const int rowBa1 = (rowB[k] >> 15) & 0x1;
855 const int rowCa0 = (rowC[j] >> 15) & 0x1;
856 const int rowCa1 = (rowC[k] >> 15) & 0x1;
857 const int rowDa0 = (rowD[j] >> 15) & 0x1;
858 const int rowDa1 = (rowD[k] >> 15) & 0x1;
859 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
860 rowCr0, rowCr1, rowDr0, rowDr1);
861 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
862 rowCg0, rowCg1, rowDg0, rowDg1);
863 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
864 rowCb0, rowCb1, rowDb0, rowDb1);
865 const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
866 rowCa0, rowCa1, rowDa0, rowDa1);
867
868 dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
869 }
870 }
871 else if ((datatype == DTYPE_UBYTE_3_3_2) && (comps == 3)) {
872 DECLARE_ROW_POINTERS0(ushort);
873
874 for (i = j = 0, k = k0; i < (uint) dstWidth;
875 i++, j += colStride, k += colStride) {
876 const int rowAr0 = rowA[j] & 0x3;
877 const int rowAr1 = rowA[k] & 0x3;
878 const int rowBr0 = rowB[j] & 0x3;
879 const int rowBr1 = rowB[k] & 0x3;
880 const int rowCr0 = rowC[j] & 0x3;
881 const int rowCr1 = rowC[k] & 0x3;
882 const int rowDr0 = rowD[j] & 0x3;
883 const int rowDr1 = rowD[k] & 0x3;
884 const int rowAg0 = (rowA[j] >> 2) & 0x7;
885 const int rowAg1 = (rowA[k] >> 2) & 0x7;
886 const int rowBg0 = (rowB[j] >> 2) & 0x7;
887 const int rowBg1 = (rowB[k] >> 2) & 0x7;
888 const int rowCg0 = (rowC[j] >> 2) & 0x7;
889 const int rowCg1 = (rowC[k] >> 2) & 0x7;
890 const int rowDg0 = (rowD[j] >> 2) & 0x7;
891 const int rowDg1 = (rowD[k] >> 2) & 0x7;
892 const int rowAb0 = (rowA[j] >> 5) & 0x7;
893 const int rowAb1 = (rowA[k] >> 5) & 0x7;
894 const int rowBb0 = (rowB[j] >> 5) & 0x7;
895 const int rowBb1 = (rowB[k] >> 5) & 0x7;
896 const int rowCb0 = (rowC[j] >> 5) & 0x7;
897 const int rowCb1 = (rowC[k] >> 5) & 0x7;
898 const int rowDb0 = (rowD[j] >> 5) & 0x7;
899 const int rowDb1 = (rowD[k] >> 5) & 0x7;
900 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
901 rowCr0, rowCr1, rowDr0, rowDr1);
902 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
903 rowCg0, rowCg1, rowDg0, rowDg1);
904 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
905 rowCb0, rowCb1, rowDb0, rowDb1);
906 dst[i] = (b << 5) | (g << 2) | r;
907 }
908 }
909 else {
910 debug_printf("bad format in do_row_3D()");
911 }
912 }
913
914
915
916 static void
917 format_to_type_comps(enum pipe_format pformat,
918 enum dtype *datatype, uint *comps)
919 {
920 switch (pformat) {
921 case PIPE_FORMAT_A8R8G8B8_UNORM:
922 case PIPE_FORMAT_X8R8G8B8_UNORM:
923 case PIPE_FORMAT_B8G8R8A8_UNORM:
924 case PIPE_FORMAT_B8G8R8X8_UNORM:
925 *datatype = DTYPE_UBYTE;
926 *comps = 4;
927 return;
928 case PIPE_FORMAT_A1R5G5B5_UNORM:
929 *datatype = DTYPE_USHORT_1_5_5_5_REV;
930 *comps = 4;
931 return;
932 case PIPE_FORMAT_A4R4G4B4_UNORM:
933 *datatype = DTYPE_USHORT_4_4_4_4;
934 *comps = 4;
935 return;
936 case PIPE_FORMAT_R5G6B5_UNORM:
937 *datatype = DTYPE_USHORT_5_6_5;
938 *comps = 3;
939 return;
940 case PIPE_FORMAT_L8_UNORM:
941 case PIPE_FORMAT_A8_UNORM:
942 case PIPE_FORMAT_I8_UNORM:
943 *datatype = DTYPE_UBYTE;
944 *comps = 1;
945 return;
946 case PIPE_FORMAT_A8L8_UNORM:
947 *datatype = DTYPE_UBYTE;
948 *comps = 2;
949 return;
950 default:
951 assert(0);
952 *datatype = DTYPE_UBYTE;
953 *comps = 0;
954 break;
955 }
956 }
957
958
959 static void
960 reduce_1d(enum pipe_format pformat,
961 int srcWidth, const ubyte *srcPtr,
962 int dstWidth, ubyte *dstPtr)
963 {
964 enum dtype datatype;
965 uint comps;
966
967 format_to_type_comps(pformat, &datatype, &comps);
968
969 /* we just duplicate the input row, kind of hack, saves code */
970 do_row(datatype, comps,
971 srcWidth, srcPtr, srcPtr,
972 dstWidth, dstPtr);
973 }
974
975
976 /**
977 * Strides are in bytes. If zero, it'll be computed as width * bpp.
978 */
979 static void
980 reduce_2d(enum pipe_format pformat,
981 int srcWidth, int srcHeight,
982 int srcRowStride, const ubyte *srcPtr,
983 int dstWidth, int dstHeight,
984 int dstRowStride, ubyte *dstPtr)
985 {
986 enum dtype datatype;
987 uint comps;
988 const int bpt = pf_get_size(pformat);
989 const ubyte *srcA, *srcB;
990 ubyte *dst;
991 int row;
992
993 format_to_type_comps(pformat, &datatype, &comps);
994
995 if (!srcRowStride)
996 srcRowStride = bpt * srcWidth;
997
998 if (!dstRowStride)
999 dstRowStride = bpt * dstWidth;
1000
1001 /* Compute src and dst pointers */
1002 srcA = srcPtr;
1003 if (srcHeight > 1)
1004 srcB = srcA + srcRowStride;
1005 else
1006 srcB = srcA;
1007 dst = dstPtr;
1008
1009 for (row = 0; row < dstHeight; row++) {
1010 do_row(datatype, comps,
1011 srcWidth, srcA, srcB,
1012 dstWidth, dst);
1013 srcA += 2 * srcRowStride;
1014 srcB += 2 * srcRowStride;
1015 dst += dstRowStride;
1016 }
1017 }
1018
1019
1020 static void
1021 reduce_3d(enum pipe_format pformat,
1022 int srcWidth, int srcHeight, int srcDepth,
1023 int srcRowStride, const ubyte *srcPtr,
1024 int dstWidth, int dstHeight, int dstDepth,
1025 int dstRowStride, ubyte *dstPtr)
1026 {
1027 const int bpt = pf_get_size(pformat);
1028 const int border = 0;
1029 int img, row;
1030 int bytesPerSrcImage, bytesPerDstImage;
1031 int bytesPerSrcRow, bytesPerDstRow;
1032 int srcImageOffset, srcRowOffset;
1033 enum dtype datatype;
1034 uint comps;
1035
1036 format_to_type_comps(pformat, &datatype, &comps);
1037
1038 bytesPerSrcImage = srcWidth * srcHeight * bpt;
1039 bytesPerDstImage = dstWidth * dstHeight * bpt;
1040
1041 bytesPerSrcRow = srcWidth * bpt;
1042 bytesPerDstRow = dstWidth * bpt;
1043
1044 /* Offset between adjacent src images to be averaged together */
1045 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1046
1047 /* Offset between adjacent src rows to be averaged together */
1048 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1049
1050 /*
1051 * Need to average together up to 8 src pixels for each dest pixel.
1052 * Break that down into 3 operations:
1053 * 1. take two rows from source image and average them together.
1054 * 2. take two rows from next source image and average them together.
1055 * 3. take the two averaged rows and average them for the final dst row.
1056 */
1057
1058 /*
1059 _mesa_printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1060 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1061 */
1062
1063 for (img = 0; img < dstDepth; img++) {
1064 /* first source image pointer, skipping border */
1065 const ubyte *imgSrcA = srcPtr
1066 + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1067 + img * (bytesPerSrcImage + srcImageOffset);
1068 /* second source image pointer, skipping border */
1069 const ubyte *imgSrcB = imgSrcA + srcImageOffset;
1070 /* address of the dest image, skipping border */
1071 ubyte *imgDst = dstPtr
1072 + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1073 + img * bytesPerDstImage;
1074
1075 /* setup the four source row pointers and the dest row pointer */
1076 const ubyte *srcImgARowA = imgSrcA;
1077 const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
1078 const ubyte *srcImgBRowA = imgSrcB;
1079 const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1080 ubyte *dstImgRow = imgDst;
1081
1082 for (row = 0; row < dstHeight; row++) {
1083 do_row_3D(datatype, comps, srcWidth,
1084 srcImgARowA, srcImgARowB,
1085 srcImgBRowA, srcImgBRowB,
1086 dstWidth, dstImgRow);
1087
1088 /* advance to next rows */
1089 srcImgARowA += bytesPerSrcRow + srcRowOffset;
1090 srcImgARowB += bytesPerSrcRow + srcRowOffset;
1091 srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1092 srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1093 dstImgRow += bytesPerDstRow;
1094 }
1095 }
1096 }
1097
1098
1099
1100
1101 static void
1102 make_1d_mipmap(struct gen_mipmap_state *ctx,
1103 struct pipe_texture *pt,
1104 uint face, uint baseLevel, uint lastLevel)
1105 {
1106 struct pipe_context *pipe = ctx->pipe;
1107 struct pipe_screen *screen = pipe->screen;
1108 const uint zslice = 0;
1109 uint dstLevel;
1110
1111 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1112 const uint srcLevel = dstLevel - 1;
1113 struct pipe_transfer *srcTrans, *dstTrans;
1114 void *srcMap, *dstMap;
1115
1116 srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1117 PIPE_TRANSFER_READ, 0, 0,
1118 pt->width[srcLevel],
1119 pt->height[srcLevel]);
1120 dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1121 PIPE_TRANSFER_WRITE, 0, 0,
1122 pt->width[dstLevel],
1123 pt->height[dstLevel]);
1124
1125 srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1126 dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1127
1128 reduce_1d(pt->format,
1129 srcTrans->width, srcMap,
1130 dstTrans->width, dstMap);
1131
1132 screen->transfer_unmap(screen, srcTrans);
1133 screen->transfer_unmap(screen, dstTrans);
1134
1135 screen->tex_transfer_destroy(srcTrans);
1136 screen->tex_transfer_destroy(dstTrans);
1137 }
1138 }
1139
1140
1141 static void
1142 make_2d_mipmap(struct gen_mipmap_state *ctx,
1143 struct pipe_texture *pt,
1144 uint face, uint baseLevel, uint lastLevel)
1145 {
1146 struct pipe_context *pipe = ctx->pipe;
1147 struct pipe_screen *screen = pipe->screen;
1148 const uint zslice = 0;
1149 uint dstLevel;
1150
1151 assert(pt->block.width == 1);
1152 assert(pt->block.height == 1);
1153
1154 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1155 const uint srcLevel = dstLevel - 1;
1156 struct pipe_transfer *srcTrans, *dstTrans;
1157 ubyte *srcMap, *dstMap;
1158
1159 srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1160 PIPE_TRANSFER_READ, 0, 0,
1161 pt->width[srcLevel],
1162 pt->height[srcLevel]);
1163 dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1164 PIPE_TRANSFER_WRITE, 0, 0,
1165 pt->width[dstLevel],
1166 pt->height[dstLevel]);
1167
1168 srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1169 dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1170
1171 reduce_2d(pt->format,
1172 srcTrans->width, srcTrans->height,
1173 srcTrans->stride, srcMap,
1174 dstTrans->width, dstTrans->height,
1175 dstTrans->stride, dstMap);
1176
1177 screen->transfer_unmap(screen, srcTrans);
1178 screen->transfer_unmap(screen, dstTrans);
1179
1180 screen->tex_transfer_destroy(srcTrans);
1181 screen->tex_transfer_destroy(dstTrans);
1182 }
1183 }
1184
1185
1186 static void
1187 make_3d_mipmap(struct gen_mipmap_state *ctx,
1188 struct pipe_texture *pt,
1189 uint face, uint baseLevel, uint lastLevel)
1190 {
1191 #if 0
1192 struct pipe_context *pipe = ctx->pipe;
1193 struct pipe_screen *screen = pipe->screen;
1194 uint dstLevel, zslice = 0;
1195
1196 assert(pt->block.width == 1);
1197 assert(pt->block.height == 1);
1198
1199 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1200 const uint srcLevel = dstLevel - 1;
1201 struct pipe_transfer *srcTrans, *dstTrans;
1202 ubyte *srcMap, *dstMap;
1203
1204 srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1205 PIPE_TRANSFER_READ, 0, 0,
1206 pt->width[srcLevel],
1207 pt->height[srcLevel]);
1208 dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1209 PIPE_TRANSFER_WRITE, 0, 0,
1210 pt->width[dstLevel],
1211 pt->height[dstLevel]);
1212
1213 srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1214 dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1215
1216 reduce_3d(pt->format,
1217 srcTrans->width, srcTrans->height,
1218 srcTrans->stride, srcMap,
1219 dstTrans->width, dstTrans->height,
1220 dstTrans->stride, dstMap);
1221
1222 screen->transfer_unmap(screen, srcTrans);
1223 screen->transfer_unmap(screen, dstTrans);
1224
1225 screen->tex_transfer_destroy(srcTrans);
1226 screen->tex_transfer_destroy(dstTrans);
1227 }
1228 #else
1229 (void) reduce_3d;
1230 #endif
1231 }
1232
1233
1234 static void
1235 fallback_gen_mipmap(struct gen_mipmap_state *ctx,
1236 struct pipe_texture *pt,
1237 uint face, uint baseLevel, uint lastLevel)
1238 {
1239 switch (pt->target) {
1240 case PIPE_TEXTURE_1D:
1241 make_1d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1242 break;
1243 case PIPE_TEXTURE_2D:
1244 case PIPE_TEXTURE_CUBE:
1245 make_2d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1246 break;
1247 case PIPE_TEXTURE_3D:
1248 make_3d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1249 break;
1250 default:
1251 assert(0);
1252 }
1253 }
1254
1255
1256 /**
1257 * Create a mipmap generation context.
1258 * The idea is to create one of these and re-use it each time we need to
1259 * generate a mipmap.
1260 */
1261 struct gen_mipmap_state *
1262 util_create_gen_mipmap(struct pipe_context *pipe,
1263 struct cso_context *cso)
1264 {
1265 struct gen_mipmap_state *ctx;
1266 uint i;
1267
1268 ctx = CALLOC_STRUCT(gen_mipmap_state);
1269 if (!ctx)
1270 return NULL;
1271
1272 ctx->pipe = pipe;
1273 ctx->cso = cso;
1274
1275 /* disabled blending/masking */
1276 memset(&ctx->blend, 0, sizeof(ctx->blend));
1277 ctx->blend.colormask = PIPE_MASK_RGBA;
1278
1279 /* no-op depth/stencil/alpha */
1280 memset(&ctx->depthstencil, 0, sizeof(ctx->depthstencil));
1281
1282 /* rasterizer */
1283 memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
1284 ctx->rasterizer.front_winding = PIPE_WINDING_CW;
1285 ctx->rasterizer.cull_mode = PIPE_WINDING_NONE;
1286 ctx->rasterizer.bypass_vs_clip_and_viewport = 1;
1287 ctx->rasterizer.gl_rasterization_rules = 1;
1288
1289 /* sampler state */
1290 memset(&ctx->sampler, 0, sizeof(ctx->sampler));
1291 ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1292 ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1293 ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1294 ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
1295 ctx->sampler.normalized_coords = 1;
1296
1297 /* vertex shader - still needed to specify mapping from fragment
1298 * shader input semantics to vertex elements
1299 */
1300 {
1301 const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
1302 TGSI_SEMANTIC_GENERIC };
1303 const uint semantic_indexes[] = { 0, 0 };
1304 ctx->vs = util_make_vertex_passthrough_shader(pipe, 2, semantic_names,
1305 semantic_indexes);
1306 }
1307
1308 /* fragment shader */
1309 ctx->fs = util_make_fragment_tex_shader(pipe);
1310
1311 /* vertex data that doesn't change */
1312 for (i = 0; i < 4; i++) {
1313 ctx->vertices[i][0][2] = 0.0f; /* z */
1314 ctx->vertices[i][0][3] = 1.0f; /* w */
1315 ctx->vertices[i][1][3] = 1.0f; /* q */
1316 }
1317
1318 /* Note: the actual vertex buffer is allocated as needed below */
1319
1320 return ctx;
1321 }
1322
1323
1324 /**
1325 * Get next "slot" of vertex space in the vertex buffer.
1326 * We're allocating one large vertex buffer and using it piece by piece.
1327 */
1328 static unsigned
1329 get_next_slot(struct gen_mipmap_state *ctx)
1330 {
1331 const unsigned max_slots = 4096 / sizeof ctx->vertices;
1332
1333 if (ctx->vbuf_slot >= max_slots)
1334 util_gen_mipmap_flush( ctx );
1335
1336 if (!ctx->vbuf) {
1337 ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
1338 32,
1339 PIPE_BUFFER_USAGE_VERTEX,
1340 max_slots * sizeof ctx->vertices);
1341 }
1342
1343 return ctx->vbuf_slot++ * sizeof ctx->vertices;
1344 }
1345
1346
1347 static unsigned
1348 set_vertex_data(struct gen_mipmap_state *ctx,
1349 enum pipe_texture_target tex_target,
1350 uint face, float width, float height)
1351 {
1352 unsigned offset;
1353
1354 /* vert[0].position */
1355 ctx->vertices[0][0][0] = 0.0f; /*x*/
1356 ctx->vertices[0][0][1] = 0.0f; /*y*/
1357
1358 /* vert[1].position */
1359 ctx->vertices[1][0][0] = width;
1360 ctx->vertices[1][0][1] = 0.0f;
1361
1362 /* vert[2].position */
1363 ctx->vertices[2][0][0] = width;
1364 ctx->vertices[2][0][1] = height;
1365
1366 /* vert[3].position */
1367 ctx->vertices[3][0][0] = 0.0f;
1368 ctx->vertices[3][0][1] = height;
1369
1370 /* Setup vertex texcoords. This is a little tricky for cube maps. */
1371 if (tex_target == PIPE_TEXTURE_CUBE) {
1372 static const float st[4][2] = {
1373 {0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}
1374 };
1375 float rx, ry, rz;
1376 uint i;
1377
1378 /* loop over quad verts */
1379 for (i = 0; i < 4; i++) {
1380 /* Compute sc = +/-scale and tc = +/-scale.
1381 * Not +/-1 to avoid cube face selection ambiguity near the edges,
1382 * though that can still sometimes happen with this scale factor...
1383 */
1384 const float scale = 0.9999f;
1385 const float sc = (2.0f * st[i][0] - 1.0f) * scale;
1386 const float tc = (2.0f * st[i][1] - 1.0f) * scale;
1387
1388 switch (face) {
1389 case PIPE_TEX_FACE_POS_X:
1390 rx = 1.0f;
1391 ry = -tc;
1392 rz = -sc;
1393 break;
1394 case PIPE_TEX_FACE_NEG_X:
1395 rx = -1.0f;
1396 ry = -tc;
1397 rz = sc;
1398 break;
1399 case PIPE_TEX_FACE_POS_Y:
1400 rx = sc;
1401 ry = 1.0f;
1402 rz = tc;
1403 break;
1404 case PIPE_TEX_FACE_NEG_Y:
1405 rx = sc;
1406 ry = -1.0f;
1407 rz = -tc;
1408 break;
1409 case PIPE_TEX_FACE_POS_Z:
1410 rx = sc;
1411 ry = -tc;
1412 rz = 1.0f;
1413 break;
1414 case PIPE_TEX_FACE_NEG_Z:
1415 rx = -sc;
1416 ry = -tc;
1417 rz = -1.0f;
1418 break;
1419 default:
1420 assert(0);
1421 }
1422
1423 ctx->vertices[i][1][0] = rx; /*s*/
1424 ctx->vertices[i][1][1] = ry; /*t*/
1425 ctx->vertices[i][1][2] = rz; /*r*/
1426 }
1427 }
1428 else {
1429 /* 1D/2D */
1430 ctx->vertices[0][1][0] = 0.0f; /*s*/
1431 ctx->vertices[0][1][1] = 0.0f; /*t*/
1432 ctx->vertices[0][1][2] = 0.0f; /*r*/
1433
1434 ctx->vertices[1][1][0] = 1.0f;
1435 ctx->vertices[1][1][1] = 0.0f;
1436 ctx->vertices[1][1][2] = 0.0f;
1437
1438 ctx->vertices[2][1][0] = 1.0f;
1439 ctx->vertices[2][1][1] = 1.0f;
1440 ctx->vertices[2][1][2] = 0.0f;
1441
1442 ctx->vertices[3][1][0] = 0.0f;
1443 ctx->vertices[3][1][1] = 1.0f;
1444 ctx->vertices[3][1][2] = 0.0f;
1445 }
1446
1447 offset = get_next_slot( ctx );
1448
1449 pipe_buffer_write(ctx->pipe->screen, ctx->vbuf,
1450 offset, sizeof(ctx->vertices), ctx->vertices);
1451
1452 return offset;
1453 }
1454
1455
1456
1457 /**
1458 * Destroy a mipmap generation context
1459 */
1460 void
1461 util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
1462 {
1463 struct pipe_context *pipe = ctx->pipe;
1464
1465 pipe->delete_vs_state(pipe, ctx->vs);
1466 pipe->delete_fs_state(pipe, ctx->fs);
1467
1468 pipe_buffer_reference(&ctx->vbuf, NULL);
1469
1470 FREE(ctx);
1471 }
1472
1473
1474
1475 /* Release vertex buffer at end of frame to avoid synchronous
1476 * rendering.
1477 */
1478 void util_gen_mipmap_flush( struct gen_mipmap_state *ctx )
1479 {
1480 pipe_buffer_reference(&ctx->vbuf, NULL);
1481 ctx->vbuf_slot = 0;
1482 }
1483
1484
1485 /**
1486 * Generate mipmap images. It's assumed all needed texture memory is
1487 * already allocated.
1488 *
1489 * \param pt the texture to generate mipmap levels for
1490 * \param face which cube face to generate mipmaps for (0 for non-cube maps)
1491 * \param baseLevel the first mipmap level to use as a src
1492 * \param lastLevel the last mipmap level to generate
1493 * \param filter the minification filter used to generate mipmap levels with
1494 * \param filter one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
1495 */
1496 void
1497 util_gen_mipmap(struct gen_mipmap_state *ctx,
1498 struct pipe_texture *pt,
1499 uint face, uint baseLevel, uint lastLevel, uint filter)
1500 {
1501 struct pipe_context *pipe = ctx->pipe;
1502 struct pipe_screen *screen = pipe->screen;
1503 struct pipe_framebuffer_state fb;
1504 uint dstLevel;
1505 uint zslice = 0;
1506 uint offset;
1507
1508 /* check if we can render in the texture's format */
1509 if (!screen->is_format_supported(screen, pt->format, PIPE_TEXTURE_2D,
1510 PIPE_TEXTURE_USAGE_RENDER_TARGET, 0)) {
1511 fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
1512 return;
1513 }
1514
1515 /* save state (restored below) */
1516 cso_save_blend(ctx->cso);
1517 cso_save_depth_stencil_alpha(ctx->cso);
1518 cso_save_rasterizer(ctx->cso);
1519 cso_save_samplers(ctx->cso);
1520 cso_save_sampler_textures(ctx->cso);
1521 cso_save_framebuffer(ctx->cso);
1522 cso_save_fragment_shader(ctx->cso);
1523 cso_save_vertex_shader(ctx->cso);
1524
1525 /* bind our state */
1526 cso_set_blend(ctx->cso, &ctx->blend);
1527 cso_set_depth_stencil_alpha(ctx->cso, &ctx->depthstencil);
1528 cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
1529
1530 cso_set_fragment_shader_handle(ctx->cso, ctx->fs);
1531 cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
1532
1533 /* init framebuffer state */
1534 memset(&fb, 0, sizeof(fb));
1535 fb.nr_cbufs = 1;
1536
1537 /* set min/mag to same filter for faster sw speed */
1538 ctx->sampler.mag_img_filter = filter;
1539 ctx->sampler.min_img_filter = filter;
1540
1541 /*
1542 * XXX for small mipmap levels, it may be faster to use the software
1543 * fallback path...
1544 */
1545 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1546 const uint srcLevel = dstLevel - 1;
1547
1548 struct pipe_surface *surf =
1549 screen->get_tex_surface(screen, pt, face, dstLevel, zslice,
1550 PIPE_BUFFER_USAGE_GPU_WRITE);
1551
1552 /*
1553 * Setup framebuffer / dest surface
1554 */
1555 fb.cbufs[0] = surf;
1556 fb.width = pt->width[dstLevel];
1557 fb.height = pt->height[dstLevel];
1558 cso_set_framebuffer(ctx->cso, &fb);
1559
1560 /*
1561 * Setup sampler state
1562 * Note: we should only have to set the min/max LOD clamps to ensure
1563 * we grab texels from the right mipmap level. But some hardware
1564 * has trouble with min clamping so we also set the lod_bias to
1565 * try to work around that.
1566 */
1567 ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
1568 ctx->sampler.lod_bias = (float) srcLevel;
1569 cso_single_sampler(ctx->cso, 0, &ctx->sampler);
1570 cso_single_sampler_done(ctx->cso);
1571
1572 cso_set_sampler_textures(ctx->cso, 1, &pt);
1573
1574 /* quad coords in window coords (bypassing vs, clip and viewport) */
1575 offset = set_vertex_data(ctx,
1576 pt->target,
1577 face,
1578 (float) pt->width[dstLevel],
1579 (float) pt->height[dstLevel]);
1580
1581 util_draw_vertex_buffer(ctx->pipe,
1582 ctx->vbuf,
1583 offset,
1584 PIPE_PRIM_TRIANGLE_FAN,
1585 4, /* verts */
1586 2); /* attribs/vert */
1587
1588 pipe->flush(pipe, PIPE_FLUSH_RENDER_CACHE, NULL);
1589
1590 /* need to signal that the texture has changed _after_ rendering to it */
1591 pipe_surface_reference( &surf, NULL );
1592 }
1593
1594 /* restore state we changed */
1595 cso_restore_blend(ctx->cso);
1596 cso_restore_depth_stencil_alpha(ctx->cso);
1597 cso_restore_rasterizer(ctx->cso);
1598 cso_restore_samplers(ctx->cso);
1599 cso_restore_sampler_textures(ctx->cso);
1600 cso_restore_framebuffer(ctx->cso);
1601 cso_restore_fragment_shader(ctx->cso);
1602 cso_restore_vertex_shader(ctx->cso);
1603 }