gallium: interface cleanups, remove nblocksx/y from pipe_texture and more
[mesa.git] / src / gallium / auxiliary / util / u_gen_mipmap.c
1 /**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008 VMware, Inc. All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Mipmap generation utility
32 *
33 * @author Brian Paul
34 */
35
36
37 #include "pipe/p_context.h"
38 #include "util/u_debug.h"
39 #include "pipe/p_defines.h"
40 #include "pipe/p_inlines.h"
41 #include "pipe/p_shader_tokens.h"
42 #include "pipe/p_state.h"
43
44 #include "util/u_memory.h"
45 #include "util/u_draw_quad.h"
46 #include "util/u_gen_mipmap.h"
47 #include "util/u_simple_shaders.h"
48 #include "util/u_math.h"
49
50 #include "cso_cache/cso_context.h"
51
52
53 struct gen_mipmap_state
54 {
55 struct pipe_context *pipe;
56 struct cso_context *cso;
57
58 struct pipe_blend_state blend;
59 struct pipe_depth_stencil_alpha_state depthstencil;
60 struct pipe_rasterizer_state rasterizer;
61 struct pipe_sampler_state sampler;
62
63 void *vs;
64 void *fs;
65
66 struct pipe_buffer *vbuf; /**< quad vertices */
67 unsigned vbuf_slot;
68
69 float vertices[4][2][4]; /**< vertex/texcoords for quad */
70 };
71
72
73
74 enum dtype
75 {
76 DTYPE_UBYTE,
77 DTYPE_UBYTE_3_3_2,
78 DTYPE_USHORT,
79 DTYPE_USHORT_4_4_4_4,
80 DTYPE_USHORT_5_6_5,
81 DTYPE_USHORT_1_5_5_5_REV,
82 DTYPE_UINT,
83 DTYPE_FLOAT,
84 DTYPE_HALF_FLOAT
85 };
86
87
88 typedef ushort half_float;
89
90
91 static half_float
92 float_to_half(float f)
93 {
94 /* XXX fix this */
95 return 0;
96 }
97
98 static float
99 half_to_float(half_float h)
100 {
101 /* XXX fix this */
102 return 0.0f;
103 }
104
105
106
107
108 /**
109 * \name Support macros for do_row and do_row_3d
110 *
111 * The macro madness is here for two reasons. First, it compacts the code
112 * slightly. Second, it makes it much easier to adjust the specifics of the
113 * filter to tune the rounding characteristics.
114 */
115 /*@{*/
116 #define DECLARE_ROW_POINTERS(t, e) \
117 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
118 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
119 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
120 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
121 t(*dst)[e] = (t(*)[e]) dstRow
122
123 #define DECLARE_ROW_POINTERS0(t) \
124 const t *rowA = (const t *) srcRowA; \
125 const t *rowB = (const t *) srcRowB; \
126 const t *rowC = (const t *) srcRowC; \
127 const t *rowD = (const t *) srcRowD; \
128 t *dst = (t *) dstRow
129
130 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
131 ((unsigned) Aj + (unsigned) Ak \
132 + (unsigned) Bj + (unsigned) Bk \
133 + (unsigned) Cj + (unsigned) Ck \
134 + (unsigned) Dj + (unsigned) Dk \
135 + 4) >> 3
136
137 #define FILTER_3D(e) \
138 do { \
139 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
140 rowB[j][e], rowB[k][e], \
141 rowC[j][e], rowC[k][e], \
142 rowD[j][e], rowD[k][e]); \
143 } while(0)
144
145 #define FILTER_F_3D(e) \
146 do { \
147 dst[i][e] = (rowA[j][e] + rowA[k][e] \
148 + rowB[j][e] + rowB[k][e] \
149 + rowC[j][e] + rowC[k][e] \
150 + rowD[j][e] + rowD[k][e]) * 0.125F; \
151 } while(0)
152
153 #define FILTER_HF_3D(e) \
154 do { \
155 const float aj = half_to_float(rowA[j][e]); \
156 const float ak = half_to_float(rowA[k][e]); \
157 const float bj = half_to_float(rowB[j][e]); \
158 const float bk = half_to_float(rowB[k][e]); \
159 const float cj = half_to_float(rowC[j][e]); \
160 const float ck = half_to_float(rowC[k][e]); \
161 const float dj = half_to_float(rowD[j][e]); \
162 const float dk = half_to_float(rowD[k][e]); \
163 dst[i][e] = float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
164 * 0.125F); \
165 } while(0)
166 /*@}*/
167
168
169 /**
170 * Average together two rows of a source image to produce a single new
171 * row in the dest image. It's legal for the two source rows to point
172 * to the same data. The source width must be equal to either the
173 * dest width or two times the dest width.
174 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
175 * \param comps number of components per pixel (1..4)
176 */
177 static void
178 do_row(enum dtype datatype, uint comps, int srcWidth,
179 const void *srcRowA, const void *srcRowB,
180 int dstWidth, void *dstRow)
181 {
182 const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
183 const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
184
185 assert(comps >= 1);
186 assert(comps <= 4);
187
188 /* This assertion is no longer valid with non-power-of-2 textures
189 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
190 */
191
192 if (datatype == DTYPE_UBYTE && comps == 4) {
193 uint i, j, k;
194 const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA;
195 const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB;
196 ubyte(*dst)[4] = (ubyte(*)[4]) dstRow;
197 for (i = j = 0, k = k0; i < (uint) dstWidth;
198 i++, j += colStride, k += colStride) {
199 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
200 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
201 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
202 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
203 }
204 }
205 else if (datatype == DTYPE_UBYTE && comps == 3) {
206 uint i, j, k;
207 const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA;
208 const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB;
209 ubyte(*dst)[3] = (ubyte(*)[3]) dstRow;
210 for (i = j = 0, k = k0; i < (uint) dstWidth;
211 i++, j += colStride, k += colStride) {
212 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
213 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
214 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
215 }
216 }
217 else if (datatype == DTYPE_UBYTE && comps == 2) {
218 uint i, j, k;
219 const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA;
220 const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB;
221 ubyte(*dst)[2] = (ubyte(*)[2]) dstRow;
222 for (i = j = 0, k = k0; i < (uint) dstWidth;
223 i++, j += colStride, k += colStride) {
224 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
225 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
226 }
227 }
228 else if (datatype == DTYPE_UBYTE && comps == 1) {
229 uint i, j, k;
230 const ubyte *rowA = (const ubyte *) srcRowA;
231 const ubyte *rowB = (const ubyte *) srcRowB;
232 ubyte *dst = (ubyte *) dstRow;
233 for (i = j = 0, k = k0; i < (uint) dstWidth;
234 i++, j += colStride, k += colStride) {
235 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
236 }
237 }
238
239 else if (datatype == DTYPE_USHORT && comps == 4) {
240 uint i, j, k;
241 const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA;
242 const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB;
243 ushort(*dst)[4] = (ushort(*)[4]) dstRow;
244 for (i = j = 0, k = k0; i < (uint) dstWidth;
245 i++, j += colStride, k += colStride) {
246 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
247 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
248 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
249 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
250 }
251 }
252 else if (datatype == DTYPE_USHORT && comps == 3) {
253 uint i, j, k;
254 const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA;
255 const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB;
256 ushort(*dst)[3] = (ushort(*)[3]) dstRow;
257 for (i = j = 0, k = k0; i < (uint) dstWidth;
258 i++, j += colStride, k += colStride) {
259 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
260 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
261 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
262 }
263 }
264 else if (datatype == DTYPE_USHORT && comps == 2) {
265 uint i, j, k;
266 const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA;
267 const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB;
268 ushort(*dst)[2] = (ushort(*)[2]) dstRow;
269 for (i = j = 0, k = k0; i < (uint) dstWidth;
270 i++, j += colStride, k += colStride) {
271 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
272 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
273 }
274 }
275 else if (datatype == DTYPE_USHORT && comps == 1) {
276 uint i, j, k;
277 const ushort *rowA = (const ushort *) srcRowA;
278 const ushort *rowB = (const ushort *) srcRowB;
279 ushort *dst = (ushort *) dstRow;
280 for (i = j = 0, k = k0; i < (uint) dstWidth;
281 i++, j += colStride, k += colStride) {
282 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
283 }
284 }
285
286 else if (datatype == DTYPE_FLOAT && comps == 4) {
287 uint i, j, k;
288 const float(*rowA)[4] = (const float(*)[4]) srcRowA;
289 const float(*rowB)[4] = (const float(*)[4]) srcRowB;
290 float(*dst)[4] = (float(*)[4]) dstRow;
291 for (i = j = 0, k = k0; i < (uint) dstWidth;
292 i++, j += colStride, k += colStride) {
293 dst[i][0] = (rowA[j][0] + rowA[k][0] +
294 rowB[j][0] + rowB[k][0]) * 0.25F;
295 dst[i][1] = (rowA[j][1] + rowA[k][1] +
296 rowB[j][1] + rowB[k][1]) * 0.25F;
297 dst[i][2] = (rowA[j][2] + rowA[k][2] +
298 rowB[j][2] + rowB[k][2]) * 0.25F;
299 dst[i][3] = (rowA[j][3] + rowA[k][3] +
300 rowB[j][3] + rowB[k][3]) * 0.25F;
301 }
302 }
303 else if (datatype == DTYPE_FLOAT && comps == 3) {
304 uint i, j, k;
305 const float(*rowA)[3] = (const float(*)[3]) srcRowA;
306 const float(*rowB)[3] = (const float(*)[3]) srcRowB;
307 float(*dst)[3] = (float(*)[3]) dstRow;
308 for (i = j = 0, k = k0; i < (uint) dstWidth;
309 i++, j += colStride, k += colStride) {
310 dst[i][0] = (rowA[j][0] + rowA[k][0] +
311 rowB[j][0] + rowB[k][0]) * 0.25F;
312 dst[i][1] = (rowA[j][1] + rowA[k][1] +
313 rowB[j][1] + rowB[k][1]) * 0.25F;
314 dst[i][2] = (rowA[j][2] + rowA[k][2] +
315 rowB[j][2] + rowB[k][2]) * 0.25F;
316 }
317 }
318 else if (datatype == DTYPE_FLOAT && comps == 2) {
319 uint i, j, k;
320 const float(*rowA)[2] = (const float(*)[2]) srcRowA;
321 const float(*rowB)[2] = (const float(*)[2]) srcRowB;
322 float(*dst)[2] = (float(*)[2]) dstRow;
323 for (i = j = 0, k = k0; i < (uint) dstWidth;
324 i++, j += colStride, k += colStride) {
325 dst[i][0] = (rowA[j][0] + rowA[k][0] +
326 rowB[j][0] + rowB[k][0]) * 0.25F;
327 dst[i][1] = (rowA[j][1] + rowA[k][1] +
328 rowB[j][1] + rowB[k][1]) * 0.25F;
329 }
330 }
331 else if (datatype == DTYPE_FLOAT && comps == 1) {
332 uint i, j, k;
333 const float *rowA = (const float *) srcRowA;
334 const float *rowB = (const float *) srcRowB;
335 float *dst = (float *) dstRow;
336 for (i = j = 0, k = k0; i < (uint) dstWidth;
337 i++, j += colStride, k += colStride) {
338 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
339 }
340 }
341
342 #if 0
343 else if (datatype == HALF_DTYPE_FLOAT && comps == 4) {
344 uint i, j, k, comp;
345 const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA;
346 const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB;
347 half_float(*dst)[4] = (half_float(*)[4]) dstRow;
348 for (i = j = 0, k = k0; i < (uint) dstWidth;
349 i++, j += colStride, k += colStride) {
350 for (comp = 0; comp < 4; comp++) {
351 float aj, ak, bj, bk;
352 aj = half_to_float(rowA[j][comp]);
353 ak = half_to_float(rowA[k][comp]);
354 bj = half_to_float(rowB[j][comp]);
355 bk = half_to_float(rowB[k][comp]);
356 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
357 }
358 }
359 }
360 else if (datatype == DTYPE_HALF_FLOAT && comps == 3) {
361 uint i, j, k, comp;
362 const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA;
363 const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB;
364 half_float(*dst)[3] = (half_float(*)[3]) dstRow;
365 for (i = j = 0, k = k0; i < (uint) dstWidth;
366 i++, j += colStride, k += colStride) {
367 for (comp = 0; comp < 3; comp++) {
368 float aj, ak, bj, bk;
369 aj = half_to_float(rowA[j][comp]);
370 ak = half_to_float(rowA[k][comp]);
371 bj = half_to_float(rowB[j][comp]);
372 bk = half_to_float(rowB[k][comp]);
373 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
374 }
375 }
376 }
377 else if (datatype == DTYPE_HALF_FLOAT && comps == 2) {
378 uint i, j, k, comp;
379 const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA;
380 const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB;
381 half_float(*dst)[2] = (half_float(*)[2]) dstRow;
382 for (i = j = 0, k = k0; i < (uint) dstWidth;
383 i++, j += colStride, k += colStride) {
384 for (comp = 0; comp < 2; comp++) {
385 float aj, ak, bj, bk;
386 aj = half_to_float(rowA[j][comp]);
387 ak = half_to_float(rowA[k][comp]);
388 bj = half_to_float(rowB[j][comp]);
389 bk = half_to_float(rowB[k][comp]);
390 dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F);
391 }
392 }
393 }
394 else if (datatype == DTYPE_HALF_FLOAT && comps == 1) {
395 uint i, j, k;
396 const half_float *rowA = (const half_float *) srcRowA;
397 const half_float *rowB = (const half_float *) srcRowB;
398 half_float *dst = (half_float *) dstRow;
399 for (i = j = 0, k = k0; i < (uint) dstWidth;
400 i++, j += colStride, k += colStride) {
401 float aj, ak, bj, bk;
402 aj = half_to_float(rowA[j]);
403 ak = half_to_float(rowA[k]);
404 bj = half_to_float(rowB[j]);
405 bk = half_to_float(rowB[k]);
406 dst[i] = float_to_half((aj + ak + bj + bk) * 0.25F);
407 }
408 }
409 #endif
410
411 else if (datatype == DTYPE_UINT && comps == 1) {
412 uint i, j, k;
413 const uint *rowA = (const uint *) srcRowA;
414 const uint *rowB = (const uint *) srcRowB;
415 uint *dst = (uint *) dstRow;
416 for (i = j = 0, k = k0; i < (uint) dstWidth;
417 i++, j += colStride, k += colStride) {
418 dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
419 }
420 }
421
422 else if (datatype == DTYPE_USHORT_5_6_5 && comps == 3) {
423 uint i, j, k;
424 const ushort *rowA = (const ushort *) srcRowA;
425 const ushort *rowB = (const ushort *) srcRowB;
426 ushort *dst = (ushort *) dstRow;
427 for (i = j = 0, k = k0; i < (uint) dstWidth;
428 i++, j += colStride, k += colStride) {
429 const int rowAr0 = rowA[j] & 0x1f;
430 const int rowAr1 = rowA[k] & 0x1f;
431 const int rowBr0 = rowB[j] & 0x1f;
432 const int rowBr1 = rowB[k] & 0x1f;
433 const int rowAg0 = (rowA[j] >> 5) & 0x3f;
434 const int rowAg1 = (rowA[k] >> 5) & 0x3f;
435 const int rowBg0 = (rowB[j] >> 5) & 0x3f;
436 const int rowBg1 = (rowB[k] >> 5) & 0x3f;
437 const int rowAb0 = (rowA[j] >> 11) & 0x1f;
438 const int rowAb1 = (rowA[k] >> 11) & 0x1f;
439 const int rowBb0 = (rowB[j] >> 11) & 0x1f;
440 const int rowBb1 = (rowB[k] >> 11) & 0x1f;
441 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
442 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
443 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
444 dst[i] = (blue << 11) | (green << 5) | red;
445 }
446 }
447 else if (datatype == DTYPE_USHORT_4_4_4_4 && comps == 4) {
448 uint i, j, k;
449 const ushort *rowA = (const ushort *) srcRowA;
450 const ushort *rowB = (const ushort *) srcRowB;
451 ushort *dst = (ushort *) dstRow;
452 for (i = j = 0, k = k0; i < (uint) dstWidth;
453 i++, j += colStride, k += colStride) {
454 const int rowAr0 = rowA[j] & 0xf;
455 const int rowAr1 = rowA[k] & 0xf;
456 const int rowBr0 = rowB[j] & 0xf;
457 const int rowBr1 = rowB[k] & 0xf;
458 const int rowAg0 = (rowA[j] >> 4) & 0xf;
459 const int rowAg1 = (rowA[k] >> 4) & 0xf;
460 const int rowBg0 = (rowB[j] >> 4) & 0xf;
461 const int rowBg1 = (rowB[k] >> 4) & 0xf;
462 const int rowAb0 = (rowA[j] >> 8) & 0xf;
463 const int rowAb1 = (rowA[k] >> 8) & 0xf;
464 const int rowBb0 = (rowB[j] >> 8) & 0xf;
465 const int rowBb1 = (rowB[k] >> 8) & 0xf;
466 const int rowAa0 = (rowA[j] >> 12) & 0xf;
467 const int rowAa1 = (rowA[k] >> 12) & 0xf;
468 const int rowBa0 = (rowB[j] >> 12) & 0xf;
469 const int rowBa1 = (rowB[k] >> 12) & 0xf;
470 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
471 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
472 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
473 const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
474 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
475 }
476 }
477 else if (datatype == DTYPE_USHORT_1_5_5_5_REV && comps == 4) {
478 uint i, j, k;
479 const ushort *rowA = (const ushort *) srcRowA;
480 const ushort *rowB = (const ushort *) srcRowB;
481 ushort *dst = (ushort *) dstRow;
482 for (i = j = 0, k = k0; i < (uint) dstWidth;
483 i++, j += colStride, k += colStride) {
484 const int rowAr0 = rowA[j] & 0x1f;
485 const int rowAr1 = rowA[k] & 0x1f;
486 const int rowBr0 = rowB[j] & 0x1f;
487 const int rowBr1 = rowB[k] & 0x1f;
488 const int rowAg0 = (rowA[j] >> 5) & 0x1f;
489 const int rowAg1 = (rowA[k] >> 5) & 0x1f;
490 const int rowBg0 = (rowB[j] >> 5) & 0x1f;
491 const int rowBg1 = (rowB[k] >> 5) & 0x1f;
492 const int rowAb0 = (rowA[j] >> 10) & 0x1f;
493 const int rowAb1 = (rowA[k] >> 10) & 0x1f;
494 const int rowBb0 = (rowB[j] >> 10) & 0x1f;
495 const int rowBb1 = (rowB[k] >> 10) & 0x1f;
496 const int rowAa0 = (rowA[j] >> 15) & 0x1;
497 const int rowAa1 = (rowA[k] >> 15) & 0x1;
498 const int rowBa0 = (rowB[j] >> 15) & 0x1;
499 const int rowBa1 = (rowB[k] >> 15) & 0x1;
500 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
501 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
502 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
503 const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
504 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
505 }
506 }
507 else if (datatype == DTYPE_UBYTE_3_3_2 && comps == 3) {
508 uint i, j, k;
509 const ubyte *rowA = (const ubyte *) srcRowA;
510 const ubyte *rowB = (const ubyte *) srcRowB;
511 ubyte *dst = (ubyte *) dstRow;
512 for (i = j = 0, k = k0; i < (uint) dstWidth;
513 i++, j += colStride, k += colStride) {
514 const int rowAr0 = rowA[j] & 0x3;
515 const int rowAr1 = rowA[k] & 0x3;
516 const int rowBr0 = rowB[j] & 0x3;
517 const int rowBr1 = rowB[k] & 0x3;
518 const int rowAg0 = (rowA[j] >> 2) & 0x7;
519 const int rowAg1 = (rowA[k] >> 2) & 0x7;
520 const int rowBg0 = (rowB[j] >> 2) & 0x7;
521 const int rowBg1 = (rowB[k] >> 2) & 0x7;
522 const int rowAb0 = (rowA[j] >> 5) & 0x7;
523 const int rowAb1 = (rowA[k] >> 5) & 0x7;
524 const int rowBb0 = (rowB[j] >> 5) & 0x7;
525 const int rowBb1 = (rowB[k] >> 5) & 0x7;
526 const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
527 const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
528 const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
529 dst[i] = (blue << 5) | (green << 2) | red;
530 }
531 }
532 else {
533 debug_printf("bad format in do_row()");
534 }
535 }
536
537
538 /**
539 * Average together four rows of a source image to produce a single new
540 * row in the dest image. It's legal for the two source rows to point
541 * to the same data. The source width must be equal to either the
542 * dest width or two times the dest width.
543 *
544 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
545 * \c GL_FLOAT, etc.
546 * \param comps number of components per pixel (1..4)
547 * \param srcWidth Width of a row in the source data
548 * \param srcRowA Pointer to one of the rows of source data
549 * \param srcRowB Pointer to one of the rows of source data
550 * \param srcRowC Pointer to one of the rows of source data
551 * \param srcRowD Pointer to one of the rows of source data
552 * \param dstWidth Width of a row in the destination data
553 * \param srcRowA Pointer to the row of destination data
554 */
555 static void
556 do_row_3D(enum dtype datatype, uint comps, int srcWidth,
557 const void *srcRowA, const void *srcRowB,
558 const void *srcRowC, const void *srcRowD,
559 int dstWidth, void *dstRow)
560 {
561 const uint k0 = (srcWidth == dstWidth) ? 0 : 1;
562 const uint colStride = (srcWidth == dstWidth) ? 1 : 2;
563 uint i, j, k;
564
565 assert(comps >= 1);
566 assert(comps <= 4);
567
568 if ((datatype == DTYPE_UBYTE) && (comps == 4)) {
569 DECLARE_ROW_POINTERS(ubyte, 4);
570
571 for (i = j = 0, k = k0; i < (uint) dstWidth;
572 i++, j += colStride, k += colStride) {
573 FILTER_3D(0);
574 FILTER_3D(1);
575 FILTER_3D(2);
576 FILTER_3D(3);
577 }
578 }
579 else if ((datatype == DTYPE_UBYTE) && (comps == 3)) {
580 DECLARE_ROW_POINTERS(ubyte, 3);
581
582 for (i = j = 0, k = k0; i < (uint) dstWidth;
583 i++, j += colStride, k += colStride) {
584 FILTER_3D(0);
585 FILTER_3D(1);
586 FILTER_3D(2);
587 }
588 }
589 else if ((datatype == DTYPE_UBYTE) && (comps == 2)) {
590 DECLARE_ROW_POINTERS(ubyte, 2);
591
592 for (i = j = 0, k = k0; i < (uint) dstWidth;
593 i++, j += colStride, k += colStride) {
594 FILTER_3D(0);
595 FILTER_3D(1);
596 }
597 }
598 else if ((datatype == DTYPE_UBYTE) && (comps == 1)) {
599 DECLARE_ROW_POINTERS(ubyte, 1);
600
601 for (i = j = 0, k = k0; i < (uint) dstWidth;
602 i++, j += colStride, k += colStride) {
603 FILTER_3D(0);
604 }
605 }
606 else if ((datatype == DTYPE_USHORT) && (comps == 4)) {
607 DECLARE_ROW_POINTERS(ushort, 4);
608
609 for (i = j = 0, k = k0; i < (uint) dstWidth;
610 i++, j += colStride, k += colStride) {
611 FILTER_3D(0);
612 FILTER_3D(1);
613 FILTER_3D(2);
614 FILTER_3D(3);
615 }
616 }
617 else if ((datatype == DTYPE_USHORT) && (comps == 3)) {
618 DECLARE_ROW_POINTERS(ushort, 3);
619
620 for (i = j = 0, k = k0; i < (uint) dstWidth;
621 i++, j += colStride, k += colStride) {
622 FILTER_3D(0);
623 FILTER_3D(1);
624 FILTER_3D(2);
625 }
626 }
627 else if ((datatype == DTYPE_USHORT) && (comps == 2)) {
628 DECLARE_ROW_POINTERS(ushort, 2);
629
630 for (i = j = 0, k = k0; i < (uint) dstWidth;
631 i++, j += colStride, k += colStride) {
632 FILTER_3D(0);
633 FILTER_3D(1);
634 }
635 }
636 else if ((datatype == DTYPE_USHORT) && (comps == 1)) {
637 DECLARE_ROW_POINTERS(ushort, 1);
638
639 for (i = j = 0, k = k0; i < (uint) dstWidth;
640 i++, j += colStride, k += colStride) {
641 FILTER_3D(0);
642 }
643 }
644 else if ((datatype == DTYPE_FLOAT) && (comps == 4)) {
645 DECLARE_ROW_POINTERS(float, 4);
646
647 for (i = j = 0, k = k0; i < (uint) dstWidth;
648 i++, j += colStride, k += colStride) {
649 FILTER_F_3D(0);
650 FILTER_F_3D(1);
651 FILTER_F_3D(2);
652 FILTER_F_3D(3);
653 }
654 }
655 else if ((datatype == DTYPE_FLOAT) && (comps == 3)) {
656 DECLARE_ROW_POINTERS(float, 3);
657
658 for (i = j = 0, k = k0; i < (uint) dstWidth;
659 i++, j += colStride, k += colStride) {
660 FILTER_F_3D(0);
661 FILTER_F_3D(1);
662 FILTER_F_3D(2);
663 }
664 }
665 else if ((datatype == DTYPE_FLOAT) && (comps == 2)) {
666 DECLARE_ROW_POINTERS(float, 2);
667
668 for (i = j = 0, k = k0; i < (uint) dstWidth;
669 i++, j += colStride, k += colStride) {
670 FILTER_F_3D(0);
671 FILTER_F_3D(1);
672 }
673 }
674 else if ((datatype == DTYPE_FLOAT) && (comps == 1)) {
675 DECLARE_ROW_POINTERS(float, 1);
676
677 for (i = j = 0, k = k0; i < (uint) dstWidth;
678 i++, j += colStride, k += colStride) {
679 FILTER_F_3D(0);
680 }
681 }
682 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 4)) {
683 DECLARE_ROW_POINTERS(half_float, 4);
684
685 for (i = j = 0, k = k0; i < (uint) dstWidth;
686 i++, j += colStride, k += colStride) {
687 FILTER_HF_3D(0);
688 FILTER_HF_3D(1);
689 FILTER_HF_3D(2);
690 FILTER_HF_3D(3);
691 }
692 }
693 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 3)) {
694 DECLARE_ROW_POINTERS(half_float, 4);
695
696 for (i = j = 0, k = k0; i < (uint) dstWidth;
697 i++, j += colStride, k += colStride) {
698 FILTER_HF_3D(0);
699 FILTER_HF_3D(1);
700 FILTER_HF_3D(2);
701 }
702 }
703 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 2)) {
704 DECLARE_ROW_POINTERS(half_float, 4);
705
706 for (i = j = 0, k = k0; i < (uint) dstWidth;
707 i++, j += colStride, k += colStride) {
708 FILTER_HF_3D(0);
709 FILTER_HF_3D(1);
710 }
711 }
712 else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 1)) {
713 DECLARE_ROW_POINTERS(half_float, 4);
714
715 for (i = j = 0, k = k0; i < (uint) dstWidth;
716 i++, j += colStride, k += colStride) {
717 FILTER_HF_3D(0);
718 }
719 }
720 else if ((datatype == DTYPE_UINT) && (comps == 1)) {
721 const uint *rowA = (const uint *) srcRowA;
722 const uint *rowB = (const uint *) srcRowB;
723 const uint *rowC = (const uint *) srcRowC;
724 const uint *rowD = (const uint *) srcRowD;
725 float *dst = (float *) dstRow;
726
727 for (i = j = 0, k = k0; i < (uint) dstWidth;
728 i++, j += colStride, k += colStride) {
729 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
730 + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
731 + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
732 + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
733 dst[i] = (float)((double) tmp * 0.125);
734 }
735 }
736 else if ((datatype == DTYPE_USHORT_5_6_5) && (comps == 3)) {
737 DECLARE_ROW_POINTERS0(ushort);
738
739 for (i = j = 0, k = k0; i < (uint) dstWidth;
740 i++, j += colStride, k += colStride) {
741 const int rowAr0 = rowA[j] & 0x1f;
742 const int rowAr1 = rowA[k] & 0x1f;
743 const int rowBr0 = rowB[j] & 0x1f;
744 const int rowBr1 = rowB[k] & 0x1f;
745 const int rowCr0 = rowC[j] & 0x1f;
746 const int rowCr1 = rowC[k] & 0x1f;
747 const int rowDr0 = rowD[j] & 0x1f;
748 const int rowDr1 = rowD[k] & 0x1f;
749 const int rowAg0 = (rowA[j] >> 5) & 0x3f;
750 const int rowAg1 = (rowA[k] >> 5) & 0x3f;
751 const int rowBg0 = (rowB[j] >> 5) & 0x3f;
752 const int rowBg1 = (rowB[k] >> 5) & 0x3f;
753 const int rowCg0 = (rowC[j] >> 5) & 0x3f;
754 const int rowCg1 = (rowC[k] >> 5) & 0x3f;
755 const int rowDg0 = (rowD[j] >> 5) & 0x3f;
756 const int rowDg1 = (rowD[k] >> 5) & 0x3f;
757 const int rowAb0 = (rowA[j] >> 11) & 0x1f;
758 const int rowAb1 = (rowA[k] >> 11) & 0x1f;
759 const int rowBb0 = (rowB[j] >> 11) & 0x1f;
760 const int rowBb1 = (rowB[k] >> 11) & 0x1f;
761 const int rowCb0 = (rowC[j] >> 11) & 0x1f;
762 const int rowCb1 = (rowC[k] >> 11) & 0x1f;
763 const int rowDb0 = (rowD[j] >> 11) & 0x1f;
764 const int rowDb1 = (rowD[k] >> 11) & 0x1f;
765 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
766 rowCr0, rowCr1, rowDr0, rowDr1);
767 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
768 rowCg0, rowCg1, rowDg0, rowDg1);
769 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
770 rowCb0, rowCb1, rowDb0, rowDb1);
771 dst[i] = (b << 11) | (g << 5) | r;
772 }
773 }
774 else if ((datatype == DTYPE_USHORT_4_4_4_4) && (comps == 4)) {
775 DECLARE_ROW_POINTERS0(ushort);
776
777 for (i = j = 0, k = k0; i < (uint) dstWidth;
778 i++, j += colStride, k += colStride) {
779 const int rowAr0 = rowA[j] & 0xf;
780 const int rowAr1 = rowA[k] & 0xf;
781 const int rowBr0 = rowB[j] & 0xf;
782 const int rowBr1 = rowB[k] & 0xf;
783 const int rowCr0 = rowC[j] & 0xf;
784 const int rowCr1 = rowC[k] & 0xf;
785 const int rowDr0 = rowD[j] & 0xf;
786 const int rowDr1 = rowD[k] & 0xf;
787 const int rowAg0 = (rowA[j] >> 4) & 0xf;
788 const int rowAg1 = (rowA[k] >> 4) & 0xf;
789 const int rowBg0 = (rowB[j] >> 4) & 0xf;
790 const int rowBg1 = (rowB[k] >> 4) & 0xf;
791 const int rowCg0 = (rowC[j] >> 4) & 0xf;
792 const int rowCg1 = (rowC[k] >> 4) & 0xf;
793 const int rowDg0 = (rowD[j] >> 4) & 0xf;
794 const int rowDg1 = (rowD[k] >> 4) & 0xf;
795 const int rowAb0 = (rowA[j] >> 8) & 0xf;
796 const int rowAb1 = (rowA[k] >> 8) & 0xf;
797 const int rowBb0 = (rowB[j] >> 8) & 0xf;
798 const int rowBb1 = (rowB[k] >> 8) & 0xf;
799 const int rowCb0 = (rowC[j] >> 8) & 0xf;
800 const int rowCb1 = (rowC[k] >> 8) & 0xf;
801 const int rowDb0 = (rowD[j] >> 8) & 0xf;
802 const int rowDb1 = (rowD[k] >> 8) & 0xf;
803 const int rowAa0 = (rowA[j] >> 12) & 0xf;
804 const int rowAa1 = (rowA[k] >> 12) & 0xf;
805 const int rowBa0 = (rowB[j] >> 12) & 0xf;
806 const int rowBa1 = (rowB[k] >> 12) & 0xf;
807 const int rowCa0 = (rowC[j] >> 12) & 0xf;
808 const int rowCa1 = (rowC[k] >> 12) & 0xf;
809 const int rowDa0 = (rowD[j] >> 12) & 0xf;
810 const int rowDa1 = (rowD[k] >> 12) & 0xf;
811 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
812 rowCr0, rowCr1, rowDr0, rowDr1);
813 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
814 rowCg0, rowCg1, rowDg0, rowDg1);
815 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
816 rowCb0, rowCb1, rowDb0, rowDb1);
817 const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
818 rowCa0, rowCa1, rowDa0, rowDa1);
819
820 dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
821 }
822 }
823 else if ((datatype == DTYPE_USHORT_1_5_5_5_REV) && (comps == 4)) {
824 DECLARE_ROW_POINTERS0(ushort);
825
826 for (i = j = 0, k = k0; i < (uint) dstWidth;
827 i++, j += colStride, k += colStride) {
828 const int rowAr0 = rowA[j] & 0x1f;
829 const int rowAr1 = rowA[k] & 0x1f;
830 const int rowBr0 = rowB[j] & 0x1f;
831 const int rowBr1 = rowB[k] & 0x1f;
832 const int rowCr0 = rowC[j] & 0x1f;
833 const int rowCr1 = rowC[k] & 0x1f;
834 const int rowDr0 = rowD[j] & 0x1f;
835 const int rowDr1 = rowD[k] & 0x1f;
836 const int rowAg0 = (rowA[j] >> 5) & 0x1f;
837 const int rowAg1 = (rowA[k] >> 5) & 0x1f;
838 const int rowBg0 = (rowB[j] >> 5) & 0x1f;
839 const int rowBg1 = (rowB[k] >> 5) & 0x1f;
840 const int rowCg0 = (rowC[j] >> 5) & 0x1f;
841 const int rowCg1 = (rowC[k] >> 5) & 0x1f;
842 const int rowDg0 = (rowD[j] >> 5) & 0x1f;
843 const int rowDg1 = (rowD[k] >> 5) & 0x1f;
844 const int rowAb0 = (rowA[j] >> 10) & 0x1f;
845 const int rowAb1 = (rowA[k] >> 10) & 0x1f;
846 const int rowBb0 = (rowB[j] >> 10) & 0x1f;
847 const int rowBb1 = (rowB[k] >> 10) & 0x1f;
848 const int rowCb0 = (rowC[j] >> 10) & 0x1f;
849 const int rowCb1 = (rowC[k] >> 10) & 0x1f;
850 const int rowDb0 = (rowD[j] >> 10) & 0x1f;
851 const int rowDb1 = (rowD[k] >> 10) & 0x1f;
852 const int rowAa0 = (rowA[j] >> 15) & 0x1;
853 const int rowAa1 = (rowA[k] >> 15) & 0x1;
854 const int rowBa0 = (rowB[j] >> 15) & 0x1;
855 const int rowBa1 = (rowB[k] >> 15) & 0x1;
856 const int rowCa0 = (rowC[j] >> 15) & 0x1;
857 const int rowCa1 = (rowC[k] >> 15) & 0x1;
858 const int rowDa0 = (rowD[j] >> 15) & 0x1;
859 const int rowDa1 = (rowD[k] >> 15) & 0x1;
860 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
861 rowCr0, rowCr1, rowDr0, rowDr1);
862 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
863 rowCg0, rowCg1, rowDg0, rowDg1);
864 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
865 rowCb0, rowCb1, rowDb0, rowDb1);
866 const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
867 rowCa0, rowCa1, rowDa0, rowDa1);
868
869 dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
870 }
871 }
872 else if ((datatype == DTYPE_UBYTE_3_3_2) && (comps == 3)) {
873 DECLARE_ROW_POINTERS0(ushort);
874
875 for (i = j = 0, k = k0; i < (uint) dstWidth;
876 i++, j += colStride, k += colStride) {
877 const int rowAr0 = rowA[j] & 0x3;
878 const int rowAr1 = rowA[k] & 0x3;
879 const int rowBr0 = rowB[j] & 0x3;
880 const int rowBr1 = rowB[k] & 0x3;
881 const int rowCr0 = rowC[j] & 0x3;
882 const int rowCr1 = rowC[k] & 0x3;
883 const int rowDr0 = rowD[j] & 0x3;
884 const int rowDr1 = rowD[k] & 0x3;
885 const int rowAg0 = (rowA[j] >> 2) & 0x7;
886 const int rowAg1 = (rowA[k] >> 2) & 0x7;
887 const int rowBg0 = (rowB[j] >> 2) & 0x7;
888 const int rowBg1 = (rowB[k] >> 2) & 0x7;
889 const int rowCg0 = (rowC[j] >> 2) & 0x7;
890 const int rowCg1 = (rowC[k] >> 2) & 0x7;
891 const int rowDg0 = (rowD[j] >> 2) & 0x7;
892 const int rowDg1 = (rowD[k] >> 2) & 0x7;
893 const int rowAb0 = (rowA[j] >> 5) & 0x7;
894 const int rowAb1 = (rowA[k] >> 5) & 0x7;
895 const int rowBb0 = (rowB[j] >> 5) & 0x7;
896 const int rowBb1 = (rowB[k] >> 5) & 0x7;
897 const int rowCb0 = (rowC[j] >> 5) & 0x7;
898 const int rowCb1 = (rowC[k] >> 5) & 0x7;
899 const int rowDb0 = (rowD[j] >> 5) & 0x7;
900 const int rowDb1 = (rowD[k] >> 5) & 0x7;
901 const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
902 rowCr0, rowCr1, rowDr0, rowDr1);
903 const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
904 rowCg0, rowCg1, rowDg0, rowDg1);
905 const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
906 rowCb0, rowCb1, rowDb0, rowDb1);
907 dst[i] = (b << 5) | (g << 2) | r;
908 }
909 }
910 else {
911 debug_printf("bad format in do_row_3D()");
912 }
913 }
914
915
916
917 static void
918 format_to_type_comps(enum pipe_format pformat,
919 enum dtype *datatype, uint *comps)
920 {
921 /* XXX I think this could be implemented in terms of the pf_*() functions */
922 switch (pformat) {
923 case PIPE_FORMAT_A8R8G8B8_UNORM:
924 case PIPE_FORMAT_X8R8G8B8_UNORM:
925 case PIPE_FORMAT_B8G8R8A8_UNORM:
926 case PIPE_FORMAT_B8G8R8X8_UNORM:
927 case PIPE_FORMAT_R8G8B8A8_SRGB:
928 case PIPE_FORMAT_R8G8B8X8_SRGB:
929 case PIPE_FORMAT_A8R8G8B8_SRGB:
930 case PIPE_FORMAT_X8R8G8B8_SRGB:
931 case PIPE_FORMAT_B8G8R8A8_SRGB:
932 case PIPE_FORMAT_B8G8R8X8_SRGB:
933 case PIPE_FORMAT_R8G8B8_SRGB:
934 *datatype = DTYPE_UBYTE;
935 *comps = 4;
936 return;
937 case PIPE_FORMAT_A1R5G5B5_UNORM:
938 *datatype = DTYPE_USHORT_1_5_5_5_REV;
939 *comps = 4;
940 return;
941 case PIPE_FORMAT_A4R4G4B4_UNORM:
942 *datatype = DTYPE_USHORT_4_4_4_4;
943 *comps = 4;
944 return;
945 case PIPE_FORMAT_R5G6B5_UNORM:
946 *datatype = DTYPE_USHORT_5_6_5;
947 *comps = 3;
948 return;
949 case PIPE_FORMAT_L8_UNORM:
950 case PIPE_FORMAT_L8_SRGB:
951 case PIPE_FORMAT_A8_UNORM:
952 case PIPE_FORMAT_I8_UNORM:
953 *datatype = DTYPE_UBYTE;
954 *comps = 1;
955 return;
956 case PIPE_FORMAT_A8L8_UNORM:
957 case PIPE_FORMAT_A8L8_SRGB:
958 *datatype = DTYPE_UBYTE;
959 *comps = 2;
960 return;
961 default:
962 assert(0);
963 *datatype = DTYPE_UBYTE;
964 *comps = 0;
965 break;
966 }
967 }
968
969
970 static void
971 reduce_1d(enum pipe_format pformat,
972 int srcWidth, const ubyte *srcPtr,
973 int dstWidth, ubyte *dstPtr)
974 {
975 enum dtype datatype;
976 uint comps;
977
978 format_to_type_comps(pformat, &datatype, &comps);
979
980 /* we just duplicate the input row, kind of hack, saves code */
981 do_row(datatype, comps,
982 srcWidth, srcPtr, srcPtr,
983 dstWidth, dstPtr);
984 }
985
986
987 /**
988 * Strides are in bytes. If zero, it'll be computed as width * bpp.
989 */
990 static void
991 reduce_2d(enum pipe_format pformat,
992 int srcWidth, int srcHeight,
993 int srcRowStride, const ubyte *srcPtr,
994 int dstWidth, int dstHeight,
995 int dstRowStride, ubyte *dstPtr)
996 {
997 enum dtype datatype;
998 uint comps;
999 const int bpt = pf_get_blocksize(pformat);
1000 const ubyte *srcA, *srcB;
1001 ubyte *dst;
1002 int row;
1003
1004 format_to_type_comps(pformat, &datatype, &comps);
1005
1006 if (!srcRowStride)
1007 srcRowStride = bpt * srcWidth;
1008
1009 if (!dstRowStride)
1010 dstRowStride = bpt * dstWidth;
1011
1012 /* Compute src and dst pointers */
1013 srcA = srcPtr;
1014 if (srcHeight > 1)
1015 srcB = srcA + srcRowStride;
1016 else
1017 srcB = srcA;
1018 dst = dstPtr;
1019
1020 for (row = 0; row < dstHeight; row++) {
1021 do_row(datatype, comps,
1022 srcWidth, srcA, srcB,
1023 dstWidth, dst);
1024 srcA += 2 * srcRowStride;
1025 srcB += 2 * srcRowStride;
1026 dst += dstRowStride;
1027 }
1028 }
1029
1030
1031 static void
1032 reduce_3d(enum pipe_format pformat,
1033 int srcWidth, int srcHeight, int srcDepth,
1034 int srcRowStride, const ubyte *srcPtr,
1035 int dstWidth, int dstHeight, int dstDepth,
1036 int dstRowStride, ubyte *dstPtr)
1037 {
1038 const int bpt = pf_get_blocksize(pformat);
1039 const int border = 0;
1040 int img, row;
1041 int bytesPerSrcImage, bytesPerDstImage;
1042 int bytesPerSrcRow, bytesPerDstRow;
1043 int srcImageOffset, srcRowOffset;
1044 enum dtype datatype;
1045 uint comps;
1046
1047 format_to_type_comps(pformat, &datatype, &comps);
1048
1049 bytesPerSrcImage = srcWidth * srcHeight * bpt;
1050 bytesPerDstImage = dstWidth * dstHeight * bpt;
1051
1052 bytesPerSrcRow = srcWidth * bpt;
1053 bytesPerDstRow = dstWidth * bpt;
1054
1055 /* Offset between adjacent src images to be averaged together */
1056 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1057
1058 /* Offset between adjacent src rows to be averaged together */
1059 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1060
1061 /*
1062 * Need to average together up to 8 src pixels for each dest pixel.
1063 * Break that down into 3 operations:
1064 * 1. take two rows from source image and average them together.
1065 * 2. take two rows from next source image and average them together.
1066 * 3. take the two averaged rows and average them for the final dst row.
1067 */
1068
1069 /*
1070 _mesa_printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1071 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1072 */
1073
1074 for (img = 0; img < dstDepth; img++) {
1075 /* first source image pointer, skipping border */
1076 const ubyte *imgSrcA = srcPtr
1077 + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1078 + img * (bytesPerSrcImage + srcImageOffset);
1079 /* second source image pointer, skipping border */
1080 const ubyte *imgSrcB = imgSrcA + srcImageOffset;
1081 /* address of the dest image, skipping border */
1082 ubyte *imgDst = dstPtr
1083 + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1084 + img * bytesPerDstImage;
1085
1086 /* setup the four source row pointers and the dest row pointer */
1087 const ubyte *srcImgARowA = imgSrcA;
1088 const ubyte *srcImgARowB = imgSrcA + srcRowOffset;
1089 const ubyte *srcImgBRowA = imgSrcB;
1090 const ubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1091 ubyte *dstImgRow = imgDst;
1092
1093 for (row = 0; row < dstHeight; row++) {
1094 do_row_3D(datatype, comps, srcWidth,
1095 srcImgARowA, srcImgARowB,
1096 srcImgBRowA, srcImgBRowB,
1097 dstWidth, dstImgRow);
1098
1099 /* advance to next rows */
1100 srcImgARowA += bytesPerSrcRow + srcRowOffset;
1101 srcImgARowB += bytesPerSrcRow + srcRowOffset;
1102 srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1103 srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1104 dstImgRow += bytesPerDstRow;
1105 }
1106 }
1107 }
1108
1109
1110
1111
1112 static void
1113 make_1d_mipmap(struct gen_mipmap_state *ctx,
1114 struct pipe_texture *pt,
1115 uint face, uint baseLevel, uint lastLevel)
1116 {
1117 struct pipe_context *pipe = ctx->pipe;
1118 struct pipe_screen *screen = pipe->screen;
1119 const uint zslice = 0;
1120 uint dstLevel;
1121
1122 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1123 const uint srcLevel = dstLevel - 1;
1124 struct pipe_transfer *srcTrans, *dstTrans;
1125 void *srcMap, *dstMap;
1126
1127 srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1128 PIPE_TRANSFER_READ, 0, 0,
1129 u_minify(pt->width0, srcLevel),
1130 u_minify(pt->height0, srcLevel));
1131 dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1132 PIPE_TRANSFER_WRITE, 0, 0,
1133 u_minify(pt->width0, dstLevel),
1134 u_minify(pt->height0, dstLevel));
1135
1136 srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1137 dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1138
1139 reduce_1d(pt->format,
1140 srcTrans->width, srcMap,
1141 dstTrans->width, dstMap);
1142
1143 screen->transfer_unmap(screen, srcTrans);
1144 screen->transfer_unmap(screen, dstTrans);
1145
1146 screen->tex_transfer_destroy(srcTrans);
1147 screen->tex_transfer_destroy(dstTrans);
1148 }
1149 }
1150
1151
1152 static void
1153 make_2d_mipmap(struct gen_mipmap_state *ctx,
1154 struct pipe_texture *pt,
1155 uint face, uint baseLevel, uint lastLevel)
1156 {
1157 struct pipe_context *pipe = ctx->pipe;
1158 struct pipe_screen *screen = pipe->screen;
1159 const uint zslice = 0;
1160 uint dstLevel;
1161
1162 assert(pf_get_blockwidth(pt->format) == 1);
1163 assert(pf_get_blockheight(pt->format) == 1);
1164
1165 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1166 const uint srcLevel = dstLevel - 1;
1167 struct pipe_transfer *srcTrans, *dstTrans;
1168 ubyte *srcMap, *dstMap;
1169
1170 srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1171 PIPE_TRANSFER_READ, 0, 0,
1172 u_minify(pt->width0, srcLevel),
1173 u_minify(pt->height0, srcLevel));
1174 dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1175 PIPE_TRANSFER_WRITE, 0, 0,
1176 u_minify(pt->width0, dstLevel),
1177 u_minify(pt->height0, dstLevel));
1178
1179 srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1180 dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1181
1182 reduce_2d(pt->format,
1183 srcTrans->width, srcTrans->height,
1184 srcTrans->stride, srcMap,
1185 dstTrans->width, dstTrans->height,
1186 dstTrans->stride, dstMap);
1187
1188 screen->transfer_unmap(screen, srcTrans);
1189 screen->transfer_unmap(screen, dstTrans);
1190
1191 screen->tex_transfer_destroy(srcTrans);
1192 screen->tex_transfer_destroy(dstTrans);
1193 }
1194 }
1195
1196
1197 static void
1198 make_3d_mipmap(struct gen_mipmap_state *ctx,
1199 struct pipe_texture *pt,
1200 uint face, uint baseLevel, uint lastLevel)
1201 {
1202 #if 0
1203 struct pipe_context *pipe = ctx->pipe;
1204 struct pipe_screen *screen = pipe->screen;
1205 uint dstLevel, zslice = 0;
1206
1207 assert(pf_get_blockwidth(pt->format) == 1);
1208 assert(pf_get_blockheight(pt->format) == 1);
1209
1210 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1211 const uint srcLevel = dstLevel - 1;
1212 struct pipe_transfer *srcTrans, *dstTrans;
1213 ubyte *srcMap, *dstMap;
1214
1215 srcTrans = screen->get_tex_transfer(screen, pt, face, srcLevel, zslice,
1216 PIPE_TRANSFER_READ, 0, 0,
1217 u_minify(pt->width0, srcLevel),
1218 u_minify(pt->height0, srcLevel));
1219 dstTrans = screen->get_tex_transfer(screen, pt, face, dstLevel, zslice,
1220 PIPE_TRANSFER_WRITE, 0, 0,
1221 u_minify(pt->width0, dstLevel),
1222 u_minify(pt->height0, dstLevel));
1223
1224 srcMap = (ubyte *) screen->transfer_map(screen, srcTrans);
1225 dstMap = (ubyte *) screen->transfer_map(screen, dstTrans);
1226
1227 reduce_3d(pt->format,
1228 srcTrans->width, srcTrans->height,
1229 srcTrans->stride, srcMap,
1230 dstTrans->width, dstTrans->height,
1231 dstTrans->stride, dstMap);
1232
1233 screen->transfer_unmap(screen, srcTrans);
1234 screen->transfer_unmap(screen, dstTrans);
1235
1236 screen->tex_transfer_destroy(srcTrans);
1237 screen->tex_transfer_destroy(dstTrans);
1238 }
1239 #else
1240 (void) reduce_3d;
1241 #endif
1242 }
1243
1244
1245 static void
1246 fallback_gen_mipmap(struct gen_mipmap_state *ctx,
1247 struct pipe_texture *pt,
1248 uint face, uint baseLevel, uint lastLevel)
1249 {
1250 switch (pt->target) {
1251 case PIPE_TEXTURE_1D:
1252 make_1d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1253 break;
1254 case PIPE_TEXTURE_2D:
1255 case PIPE_TEXTURE_CUBE:
1256 make_2d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1257 break;
1258 case PIPE_TEXTURE_3D:
1259 make_3d_mipmap(ctx, pt, face, baseLevel, lastLevel);
1260 break;
1261 default:
1262 assert(0);
1263 }
1264 }
1265
1266
1267 /**
1268 * Create a mipmap generation context.
1269 * The idea is to create one of these and re-use it each time we need to
1270 * generate a mipmap.
1271 */
1272 struct gen_mipmap_state *
1273 util_create_gen_mipmap(struct pipe_context *pipe,
1274 struct cso_context *cso)
1275 {
1276 struct gen_mipmap_state *ctx;
1277 uint i;
1278
1279 ctx = CALLOC_STRUCT(gen_mipmap_state);
1280 if (!ctx)
1281 return NULL;
1282
1283 ctx->pipe = pipe;
1284 ctx->cso = cso;
1285
1286 /* disabled blending/masking */
1287 memset(&ctx->blend, 0, sizeof(ctx->blend));
1288 ctx->blend.colormask = PIPE_MASK_RGBA;
1289
1290 /* no-op depth/stencil/alpha */
1291 memset(&ctx->depthstencil, 0, sizeof(ctx->depthstencil));
1292
1293 /* rasterizer */
1294 memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer));
1295 ctx->rasterizer.front_winding = PIPE_WINDING_CW;
1296 ctx->rasterizer.cull_mode = PIPE_WINDING_NONE;
1297 ctx->rasterizer.bypass_vs_clip_and_viewport = 1;
1298 ctx->rasterizer.gl_rasterization_rules = 1;
1299
1300 /* sampler state */
1301 memset(&ctx->sampler, 0, sizeof(ctx->sampler));
1302 ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1303 ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1304 ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
1305 ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST;
1306 ctx->sampler.normalized_coords = 1;
1307
1308 /* vertex shader - still needed to specify mapping from fragment
1309 * shader input semantics to vertex elements
1310 */
1311 {
1312 const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
1313 TGSI_SEMANTIC_GENERIC };
1314 const uint semantic_indexes[] = { 0, 0 };
1315 ctx->vs = util_make_vertex_passthrough_shader(pipe, 2, semantic_names,
1316 semantic_indexes);
1317 }
1318
1319 /* fragment shader */
1320 ctx->fs = util_make_fragment_tex_shader(pipe);
1321
1322 /* vertex data that doesn't change */
1323 for (i = 0; i < 4; i++) {
1324 ctx->vertices[i][0][2] = 0.0f; /* z */
1325 ctx->vertices[i][0][3] = 1.0f; /* w */
1326 ctx->vertices[i][1][3] = 1.0f; /* q */
1327 }
1328
1329 /* Note: the actual vertex buffer is allocated as needed below */
1330
1331 return ctx;
1332 }
1333
1334
1335 /**
1336 * Get next "slot" of vertex space in the vertex buffer.
1337 * We're allocating one large vertex buffer and using it piece by piece.
1338 */
1339 static unsigned
1340 get_next_slot(struct gen_mipmap_state *ctx)
1341 {
1342 const unsigned max_slots = 4096 / sizeof ctx->vertices;
1343
1344 if (ctx->vbuf_slot >= max_slots)
1345 util_gen_mipmap_flush( ctx );
1346
1347 if (!ctx->vbuf) {
1348 ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
1349 32,
1350 PIPE_BUFFER_USAGE_VERTEX,
1351 max_slots * sizeof ctx->vertices);
1352 }
1353
1354 return ctx->vbuf_slot++ * sizeof ctx->vertices;
1355 }
1356
1357
1358 static unsigned
1359 set_vertex_data(struct gen_mipmap_state *ctx,
1360 enum pipe_texture_target tex_target,
1361 uint face, float width, float height)
1362 {
1363 unsigned offset;
1364
1365 /* vert[0].position */
1366 ctx->vertices[0][0][0] = 0.0f; /*x*/
1367 ctx->vertices[0][0][1] = 0.0f; /*y*/
1368
1369 /* vert[1].position */
1370 ctx->vertices[1][0][0] = width;
1371 ctx->vertices[1][0][1] = 0.0f;
1372
1373 /* vert[2].position */
1374 ctx->vertices[2][0][0] = width;
1375 ctx->vertices[2][0][1] = height;
1376
1377 /* vert[3].position */
1378 ctx->vertices[3][0][0] = 0.0f;
1379 ctx->vertices[3][0][1] = height;
1380
1381 /* Setup vertex texcoords. This is a little tricky for cube maps. */
1382 if (tex_target == PIPE_TEXTURE_CUBE) {
1383 static const float st[4][2] = {
1384 {0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}
1385 };
1386 float rx, ry, rz;
1387 uint i;
1388
1389 /* loop over quad verts */
1390 for (i = 0; i < 4; i++) {
1391 /* Compute sc = +/-scale and tc = +/-scale.
1392 * Not +/-1 to avoid cube face selection ambiguity near the edges,
1393 * though that can still sometimes happen with this scale factor...
1394 */
1395 const float scale = 0.9999f;
1396 const float sc = (2.0f * st[i][0] - 1.0f) * scale;
1397 const float tc = (2.0f * st[i][1] - 1.0f) * scale;
1398
1399 switch (face) {
1400 case PIPE_TEX_FACE_POS_X:
1401 rx = 1.0f;
1402 ry = -tc;
1403 rz = -sc;
1404 break;
1405 case PIPE_TEX_FACE_NEG_X:
1406 rx = -1.0f;
1407 ry = -tc;
1408 rz = sc;
1409 break;
1410 case PIPE_TEX_FACE_POS_Y:
1411 rx = sc;
1412 ry = 1.0f;
1413 rz = tc;
1414 break;
1415 case PIPE_TEX_FACE_NEG_Y:
1416 rx = sc;
1417 ry = -1.0f;
1418 rz = -tc;
1419 break;
1420 case PIPE_TEX_FACE_POS_Z:
1421 rx = sc;
1422 ry = -tc;
1423 rz = 1.0f;
1424 break;
1425 case PIPE_TEX_FACE_NEG_Z:
1426 rx = -sc;
1427 ry = -tc;
1428 rz = -1.0f;
1429 break;
1430 default:
1431 rx = ry = rz = 0.0f;
1432 assert(0);
1433 }
1434
1435 ctx->vertices[i][1][0] = rx; /*s*/
1436 ctx->vertices[i][1][1] = ry; /*t*/
1437 ctx->vertices[i][1][2] = rz; /*r*/
1438 }
1439 }
1440 else {
1441 /* 1D/2D */
1442 ctx->vertices[0][1][0] = 0.0f; /*s*/
1443 ctx->vertices[0][1][1] = 0.0f; /*t*/
1444 ctx->vertices[0][1][2] = 0.0f; /*r*/
1445
1446 ctx->vertices[1][1][0] = 1.0f;
1447 ctx->vertices[1][1][1] = 0.0f;
1448 ctx->vertices[1][1][2] = 0.0f;
1449
1450 ctx->vertices[2][1][0] = 1.0f;
1451 ctx->vertices[2][1][1] = 1.0f;
1452 ctx->vertices[2][1][2] = 0.0f;
1453
1454 ctx->vertices[3][1][0] = 0.0f;
1455 ctx->vertices[3][1][1] = 1.0f;
1456 ctx->vertices[3][1][2] = 0.0f;
1457 }
1458
1459 offset = get_next_slot( ctx );
1460
1461 pipe_buffer_write(ctx->pipe->screen, ctx->vbuf,
1462 offset, sizeof(ctx->vertices), ctx->vertices);
1463
1464 return offset;
1465 }
1466
1467
1468
1469 /**
1470 * Destroy a mipmap generation context
1471 */
1472 void
1473 util_destroy_gen_mipmap(struct gen_mipmap_state *ctx)
1474 {
1475 struct pipe_context *pipe = ctx->pipe;
1476
1477 pipe->delete_vs_state(pipe, ctx->vs);
1478 pipe->delete_fs_state(pipe, ctx->fs);
1479
1480 pipe_buffer_reference(&ctx->vbuf, NULL);
1481
1482 FREE(ctx);
1483 }
1484
1485
1486
1487 /* Release vertex buffer at end of frame to avoid synchronous
1488 * rendering.
1489 */
1490 void util_gen_mipmap_flush( struct gen_mipmap_state *ctx )
1491 {
1492 pipe_buffer_reference(&ctx->vbuf, NULL);
1493 ctx->vbuf_slot = 0;
1494 }
1495
1496
1497 /**
1498 * Generate mipmap images. It's assumed all needed texture memory is
1499 * already allocated.
1500 *
1501 * \param pt the texture to generate mipmap levels for
1502 * \param face which cube face to generate mipmaps for (0 for non-cube maps)
1503 * \param baseLevel the first mipmap level to use as a src
1504 * \param lastLevel the last mipmap level to generate
1505 * \param filter the minification filter used to generate mipmap levels with
1506 * \param filter one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
1507 */
1508 void
1509 util_gen_mipmap(struct gen_mipmap_state *ctx,
1510 struct pipe_texture *pt,
1511 uint face, uint baseLevel, uint lastLevel, uint filter)
1512 {
1513 struct pipe_context *pipe = ctx->pipe;
1514 struct pipe_screen *screen = pipe->screen;
1515 struct pipe_framebuffer_state fb;
1516 uint dstLevel;
1517 uint zslice = 0;
1518 uint offset;
1519
1520 /* The texture object should have room for the levels which we're
1521 * about to generate.
1522 */
1523 assert(lastLevel <= pt->last_level);
1524
1525 /* If this fails, why are we here? */
1526 assert(lastLevel > baseLevel);
1527
1528 assert(filter == PIPE_TEX_FILTER_LINEAR ||
1529 filter == PIPE_TEX_FILTER_NEAREST);
1530
1531 /* check if we can render in the texture's format */
1532 if (!screen->is_format_supported(screen, pt->format, PIPE_TEXTURE_2D,
1533 PIPE_TEXTURE_USAGE_RENDER_TARGET, 0)) {
1534 fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel);
1535 return;
1536 }
1537
1538 /* save state (restored below) */
1539 cso_save_blend(ctx->cso);
1540 cso_save_depth_stencil_alpha(ctx->cso);
1541 cso_save_rasterizer(ctx->cso);
1542 cso_save_samplers(ctx->cso);
1543 cso_save_sampler_textures(ctx->cso);
1544 cso_save_framebuffer(ctx->cso);
1545 cso_save_fragment_shader(ctx->cso);
1546 cso_save_vertex_shader(ctx->cso);
1547
1548 /* bind our state */
1549 cso_set_blend(ctx->cso, &ctx->blend);
1550 cso_set_depth_stencil_alpha(ctx->cso, &ctx->depthstencil);
1551 cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
1552
1553 cso_set_fragment_shader_handle(ctx->cso, ctx->fs);
1554 cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
1555
1556 /* init framebuffer state */
1557 memset(&fb, 0, sizeof(fb));
1558 fb.nr_cbufs = 1;
1559
1560 /* set min/mag to same filter for faster sw speed */
1561 ctx->sampler.mag_img_filter = filter;
1562 ctx->sampler.min_img_filter = filter;
1563
1564 /*
1565 * XXX for small mipmap levels, it may be faster to use the software
1566 * fallback path...
1567 */
1568 for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) {
1569 const uint srcLevel = dstLevel - 1;
1570
1571 struct pipe_surface *surf =
1572 screen->get_tex_surface(screen, pt, face, dstLevel, zslice,
1573 PIPE_BUFFER_USAGE_GPU_WRITE);
1574
1575 /*
1576 * Setup framebuffer / dest surface
1577 */
1578 fb.cbufs[0] = surf;
1579 fb.width = u_minify(pt->width0, dstLevel);
1580 fb.height = u_minify(pt->height0, dstLevel);
1581 cso_set_framebuffer(ctx->cso, &fb);
1582
1583 /*
1584 * Setup sampler state
1585 * Note: we should only have to set the min/max LOD clamps to ensure
1586 * we grab texels from the right mipmap level. But some hardware
1587 * has trouble with min clamping so we also set the lod_bias to
1588 * try to work around that.
1589 */
1590 ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel;
1591 ctx->sampler.lod_bias = (float) srcLevel;
1592 cso_single_sampler(ctx->cso, 0, &ctx->sampler);
1593 cso_single_sampler_done(ctx->cso);
1594
1595 cso_set_sampler_textures(ctx->cso, 1, &pt);
1596
1597 /* quad coords in window coords (bypassing vs, clip and viewport) */
1598 offset = set_vertex_data(ctx,
1599 pt->target,
1600 face,
1601 (float) u_minify(pt->width0, dstLevel),
1602 (float) u_minify(pt->height0, dstLevel));
1603
1604 util_draw_vertex_buffer(ctx->pipe,
1605 ctx->vbuf,
1606 offset,
1607 PIPE_PRIM_TRIANGLE_FAN,
1608 4, /* verts */
1609 2); /* attribs/vert */
1610
1611 pipe->flush(pipe, PIPE_FLUSH_RENDER_CACHE, NULL);
1612
1613 /* need to signal that the texture has changed _after_ rendering to it */
1614 pipe_surface_reference( &surf, NULL );
1615 }
1616
1617 /* restore state we changed */
1618 cso_restore_blend(ctx->cso);
1619 cso_restore_depth_stencil_alpha(ctx->cso);
1620 cso_restore_rasterizer(ctx->cso);
1621 cso_restore_samplers(ctx->cso);
1622 cso_restore_sampler_textures(ctx->cso);
1623 cso_restore_framebuffer(ctx->cso);
1624 cso_restore_fragment_shader(ctx->cso);
1625 cso_restore_vertex_shader(ctx->cso);
1626 }