gallium: Drop unused BRA opcode.
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: CND - Condition
276
277 .. math::
278
279 dst.x = (src2.x > 0.5) ? src0.x : src1.x
280
281 dst.y = (src2.y > 0.5) ? src0.y : src1.y
282
283 dst.z = (src2.z > 0.5) ? src0.z : src1.z
284
285 dst.w = (src2.w > 0.5) ? src0.w : src1.w
286
287
288 .. opcode:: DP2A - 2-component Dot Product And Add
289
290 .. math::
291
292 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
293
294 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300
301 .. opcode:: FRC - Fraction
302
303 .. math::
304
305 dst.x = src.x - \lfloor src.x\rfloor
306
307 dst.y = src.y - \lfloor src.y\rfloor
308
309 dst.z = src.z - \lfloor src.z\rfloor
310
311 dst.w = src.w - \lfloor src.w\rfloor
312
313
314 .. opcode:: CLAMP - Clamp
315
316 .. math::
317
318 dst.x = clamp(src0.x, src1.x, src2.x)
319
320 dst.y = clamp(src0.y, src1.y, src2.y)
321
322 dst.z = clamp(src0.z, src1.z, src2.z)
323
324 dst.w = clamp(src0.w, src1.w, src2.w)
325
326
327 .. opcode:: FLR - Floor
328
329 This is identical to :opcode:`ARL`.
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: DPH - Homogeneous Dot Product
408
409 This instruction replicates its result.
410
411 .. math::
412
413 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
414
415
416 .. opcode:: COS - Cosine
417
418 This instruction replicates its result.
419
420 .. math::
421
422 dst = \cos{src.x}
423
424
425 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
426
427 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
428 advertised. When it is, the fine version guarantees one derivative per row
429 while DDX is allowed to be the same for the entire 2x2 quad.
430
431 .. math::
432
433 dst.x = partialx(src.x)
434
435 dst.y = partialx(src.y)
436
437 dst.z = partialx(src.z)
438
439 dst.w = partialx(src.w)
440
441
442 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
443
444 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
445 advertised. When it is, the fine version guarantees one derivative per column
446 while DDY is allowed to be the same for the entire 2x2 quad.
447
448 .. math::
449
450 dst.x = partialy(src.x)
451
452 dst.y = partialy(src.y)
453
454 dst.z = partialy(src.z)
455
456 dst.w = partialy(src.w)
457
458
459 .. opcode:: PK2H - Pack Two 16-bit Floats
460
461 TBD
462
463
464 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
465
466 TBD
467
468
469 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
470
471 TBD
472
473
474 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
475
476 TBD
477
478
479 .. opcode:: SEQ - Set On Equal
480
481 .. math::
482
483 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
484
485 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
486
487 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
488
489 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
490
491
492 .. opcode:: SGT - Set On Greater Than
493
494 .. math::
495
496 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
497
498 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
499
500 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
501
502 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
503
504
505 .. opcode:: SIN - Sine
506
507 This instruction replicates its result.
508
509 .. math::
510
511 dst = \sin{src.x}
512
513
514 .. opcode:: SLE - Set On Less Equal Than
515
516 .. math::
517
518 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
519
520 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
521
522 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
523
524 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
525
526
527 .. opcode:: SNE - Set On Not Equal
528
529 .. math::
530
531 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
532
533 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
534
535 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
536
537 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
538
539
540 .. opcode:: STR - Set On True
541
542 This instruction replicates its result.
543
544 .. math::
545
546 dst = 1.0F
547
548
549 .. opcode:: TEX - Texture Lookup
550
551 for array textures src0.y contains the slice for 1D,
552 and src0.z contain the slice for 2D.
553
554 for shadow textures with no arrays (and not cube map),
555 src0.z contains the reference value.
556
557 for shadow textures with arrays, src0.z contains
558 the reference value for 1D arrays, and src0.w contains
559 the reference value for 2D arrays and cube maps.
560
561 for cube map array shadow textures, the reference value
562 cannot be passed in src0.w, and TEX2 must be used instead.
563
564 .. math::
565
566 coord = src0
567
568 shadow_ref = src0.z or src0.w (optional)
569
570 unit = src1
571
572 dst = texture\_sample(unit, coord, shadow_ref)
573
574
575 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
576
577 this is the same as TEX, but uses another reg to encode the
578 reference value.
579
580 .. math::
581
582 coord = src0
583
584 shadow_ref = src1.x
585
586 unit = src2
587
588 dst = texture\_sample(unit, coord, shadow_ref)
589
590
591
592
593 .. opcode:: TXD - Texture Lookup with Derivatives
594
595 .. math::
596
597 coord = src0
598
599 ddx = src1
600
601 ddy = src2
602
603 unit = src3
604
605 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
606
607
608 .. opcode:: TXP - Projective Texture Lookup
609
610 .. math::
611
612 coord.x = src0.x / src0.w
613
614 coord.y = src0.y / src0.w
615
616 coord.z = src0.z / src0.w
617
618 coord.w = src0.w
619
620 unit = src1
621
622 dst = texture\_sample(unit, coord)
623
624
625 .. opcode:: UP2H - Unpack Two 16-Bit Floats
626
627 TBD
628
629 .. note::
630
631 Considered for removal.
632
633 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
634
635 TBD
636
637 .. note::
638
639 Considered for removal.
640
641 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
642
643 TBD
644
645 .. note::
646
647 Considered for removal.
648
649 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
650
651 TBD
652
653 .. note::
654
655 Considered for removal.
656
657
658 .. opcode:: ARR - Address Register Load With Round
659
660 .. math::
661
662 dst.x = round(src.x)
663
664 dst.y = round(src.y)
665
666 dst.z = round(src.z)
667
668 dst.w = round(src.w)
669
670
671 .. opcode:: SSG - Set Sign
672
673 .. math::
674
675 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
676
677 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
678
679 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
680
681 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
682
683
684 .. opcode:: CMP - Compare
685
686 .. math::
687
688 dst.x = (src0.x < 0) ? src1.x : src2.x
689
690 dst.y = (src0.y < 0) ? src1.y : src2.y
691
692 dst.z = (src0.z < 0) ? src1.z : src2.z
693
694 dst.w = (src0.w < 0) ? src1.w : src2.w
695
696
697 .. opcode:: KILL_IF - Conditional Discard
698
699 Conditional discard. Allowed in fragment shaders only.
700
701 .. math::
702
703 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
704 discard
705 endif
706
707
708 .. opcode:: KILL - Discard
709
710 Unconditional discard. Allowed in fragment shaders only.
711
712
713 .. opcode:: SCS - Sine Cosine
714
715 .. math::
716
717 dst.x = \cos{src.x}
718
719 dst.y = \sin{src.x}
720
721 dst.z = 0
722
723 dst.w = 1
724
725
726 .. opcode:: TXB - Texture Lookup With Bias
727
728 for cube map array textures and shadow cube maps, the bias value
729 cannot be passed in src0.w, and TXB2 must be used instead.
730
731 if the target is a shadow texture, the reference value is always
732 in src.z (this prevents shadow 3d and shadow 2d arrays from
733 using this instruction, but this is not needed).
734
735 .. math::
736
737 coord.x = src0.x
738
739 coord.y = src0.y
740
741 coord.z = src0.z
742
743 coord.w = none
744
745 bias = src0.w
746
747 unit = src1
748
749 dst = texture\_sample(unit, coord, bias)
750
751
752 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
753
754 this is the same as TXB, but uses another reg to encode the
755 lod bias value for cube map arrays and shadow cube maps.
756 Presumably shadow 2d arrays and shadow 3d targets could use
757 this encoding too, but this is not legal.
758
759 shadow cube map arrays are neither possible nor required.
760
761 .. math::
762
763 coord = src0
764
765 bias = src1.x
766
767 unit = src2
768
769 dst = texture\_sample(unit, coord, bias)
770
771
772 .. opcode:: DIV - Divide
773
774 .. math::
775
776 dst.x = \frac{src0.x}{src1.x}
777
778 dst.y = \frac{src0.y}{src1.y}
779
780 dst.z = \frac{src0.z}{src1.z}
781
782 dst.w = \frac{src0.w}{src1.w}
783
784
785 .. opcode:: DP2 - 2-component Dot Product
786
787 This instruction replicates its result.
788
789 .. math::
790
791 dst = src0.x \times src1.x + src0.y \times src1.y
792
793
794 .. opcode:: TXL - Texture Lookup With explicit LOD
795
796 for cube map array textures, the explicit lod value
797 cannot be passed in src0.w, and TXL2 must be used instead.
798
799 if the target is a shadow texture, the reference value is always
800 in src.z (this prevents shadow 3d / 2d array / cube targets from
801 using this instruction, but this is not needed).
802
803 .. math::
804
805 coord.x = src0.x
806
807 coord.y = src0.y
808
809 coord.z = src0.z
810
811 coord.w = none
812
813 lod = src0.w
814
815 unit = src1
816
817 dst = texture\_sample(unit, coord, lod)
818
819
820 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
821
822 this is the same as TXL, but uses another reg to encode the
823 explicit lod value.
824 Presumably shadow 3d / 2d array / cube targets could use
825 this encoding too, but this is not legal.
826
827 shadow cube map arrays are neither possible nor required.
828
829 .. math::
830
831 coord = src0
832
833 lod = src1.x
834
835 unit = src2
836
837 dst = texture\_sample(unit, coord, lod)
838
839
840 .. opcode:: PUSHA - Push Address Register On Stack
841
842 push(src.x)
843 push(src.y)
844 push(src.z)
845 push(src.w)
846
847 .. note::
848
849 Considered for cleanup.
850
851 .. note::
852
853 Considered for removal.
854
855 .. opcode:: POPA - Pop Address Register From Stack
856
857 dst.w = pop()
858 dst.z = pop()
859 dst.y = pop()
860 dst.x = pop()
861
862 .. note::
863
864 Considered for cleanup.
865
866 .. note::
867
868 Considered for removal.
869
870
871 .. opcode:: CALLNZ - Subroutine Call If Not Zero
872
873 TBD
874
875 .. note::
876
877 Considered for cleanup.
878
879 .. note::
880
881 Considered for removal.
882
883
884 Compute ISA
885 ^^^^^^^^^^^^^^^^^^^^^^^^
886
887 These opcodes are primarily provided for special-use computational shaders.
888 Support for these opcodes indicated by a special pipe capability bit (TBD).
889
890 XXX doesn't look like most of the opcodes really belong here.
891
892 .. opcode:: CEIL - Ceiling
893
894 .. math::
895
896 dst.x = \lceil src.x\rceil
897
898 dst.y = \lceil src.y\rceil
899
900 dst.z = \lceil src.z\rceil
901
902 dst.w = \lceil src.w\rceil
903
904
905 .. opcode:: TRUNC - Truncate
906
907 .. math::
908
909 dst.x = trunc(src.x)
910
911 dst.y = trunc(src.y)
912
913 dst.z = trunc(src.z)
914
915 dst.w = trunc(src.w)
916
917
918 .. opcode:: MOD - Modulus
919
920 .. math::
921
922 dst.x = src0.x \bmod src1.x
923
924 dst.y = src0.y \bmod src1.y
925
926 dst.z = src0.z \bmod src1.z
927
928 dst.w = src0.w \bmod src1.w
929
930
931 .. opcode:: UARL - Integer Address Register Load
932
933 Moves the contents of the source register, assumed to be an integer, into the
934 destination register, which is assumed to be an address (ADDR) register.
935
936
937 .. opcode:: SAD - Sum Of Absolute Differences
938
939 .. math::
940
941 dst.x = |src0.x - src1.x| + src2.x
942
943 dst.y = |src0.y - src1.y| + src2.y
944
945 dst.z = |src0.z - src1.z| + src2.z
946
947 dst.w = |src0.w - src1.w| + src2.w
948
949
950 .. opcode:: TXF - Texel Fetch
951
952 As per NV_gpu_shader4, extract a single texel from a specified texture
953 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
954 four-component signed integer vector used to identify the single texel
955 accessed. 3 components + level. Just like texture instructions, an optional
956 offset vector is provided, which is subject to various driver restrictions
957 (regarding range, source of offsets).
958 TXF(uint_vec coord, int_vec offset).
959
960
961 .. opcode:: TXQ - Texture Size Query
962
963 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
964 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
965 depth), 1D array (width, layers), 2D array (width, height, layers).
966 Also return the number of accessible levels (last_level - first_level + 1)
967 in W.
968
969 For components which don't return a resource dimension, their value
970 is undefined.
971
972
973 .. math::
974
975 lod = src0.x
976
977 dst.x = texture\_width(unit, lod)
978
979 dst.y = texture\_height(unit, lod)
980
981 dst.z = texture\_depth(unit, lod)
982
983 dst.w = texture\_levels(unit)
984
985 .. opcode:: TG4 - Texture Gather
986
987 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
988 filtering operation and packs them into a single register. Only works with
989 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
990 addressing modes of the sampler and the top level of any mip pyramid are
991 used. Set W to zero. It behaves like the TEX instruction, but a filtered
992 sample is not generated. The four samples that contribute to filtering are
993 placed into xyzw in clockwise order, starting with the (u,v) texture
994 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
995 where the magnitude of the deltas are half a texel.
996
997 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
998 depth compares, single component selection, and a non-constant offset. It
999 doesn't allow support for the GL independent offset to get i0,j0. This would
1000 require another CAP is hw can do it natively. For now we lower that before
1001 TGSI.
1002
1003 .. math::
1004
1005 coord = src0
1006
1007 component = src1
1008
1009 dst = texture\_gather4 (unit, coord, component)
1010
1011 (with SM5 - cube array shadow)
1012
1013 .. math::
1014
1015 coord = src0
1016
1017 compare = src1
1018
1019 dst = texture\_gather (uint, coord, compare)
1020
1021 .. opcode:: LODQ - level of detail query
1022
1023 Compute the LOD information that the texture pipe would use to access the
1024 texture. The Y component contains the computed LOD lambda_prime. The X
1025 component contains the LOD that will be accessed, based on min/max lod's
1026 and mipmap filters.
1027
1028 .. math::
1029
1030 coord = src0
1031
1032 dst.xy = lodq(uint, coord);
1033
1034 Integer ISA
1035 ^^^^^^^^^^^^^^^^^^^^^^^^
1036 These opcodes are used for integer operations.
1037 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1038
1039
1040 .. opcode:: I2F - Signed Integer To Float
1041
1042 Rounding is unspecified (round to nearest even suggested).
1043
1044 .. math::
1045
1046 dst.x = (float) src.x
1047
1048 dst.y = (float) src.y
1049
1050 dst.z = (float) src.z
1051
1052 dst.w = (float) src.w
1053
1054
1055 .. opcode:: U2F - Unsigned Integer To Float
1056
1057 Rounding is unspecified (round to nearest even suggested).
1058
1059 .. math::
1060
1061 dst.x = (float) src.x
1062
1063 dst.y = (float) src.y
1064
1065 dst.z = (float) src.z
1066
1067 dst.w = (float) src.w
1068
1069
1070 .. opcode:: F2I - Float to Signed Integer
1071
1072 Rounding is towards zero (truncate).
1073 Values outside signed range (including NaNs) produce undefined results.
1074
1075 .. math::
1076
1077 dst.x = (int) src.x
1078
1079 dst.y = (int) src.y
1080
1081 dst.z = (int) src.z
1082
1083 dst.w = (int) src.w
1084
1085
1086 .. opcode:: F2U - Float to Unsigned Integer
1087
1088 Rounding is towards zero (truncate).
1089 Values outside unsigned range (including NaNs) produce undefined results.
1090
1091 .. math::
1092
1093 dst.x = (unsigned) src.x
1094
1095 dst.y = (unsigned) src.y
1096
1097 dst.z = (unsigned) src.z
1098
1099 dst.w = (unsigned) src.w
1100
1101
1102 .. opcode:: UADD - Integer Add
1103
1104 This instruction works the same for signed and unsigned integers.
1105 The low 32bit of the result is returned.
1106
1107 .. math::
1108
1109 dst.x = src0.x + src1.x
1110
1111 dst.y = src0.y + src1.y
1112
1113 dst.z = src0.z + src1.z
1114
1115 dst.w = src0.w + src1.w
1116
1117
1118 .. opcode:: UMAD - Integer Multiply And Add
1119
1120 This instruction works the same for signed and unsigned integers.
1121 The multiplication returns the low 32bit (as does the result itself).
1122
1123 .. math::
1124
1125 dst.x = src0.x \times src1.x + src2.x
1126
1127 dst.y = src0.y \times src1.y + src2.y
1128
1129 dst.z = src0.z \times src1.z + src2.z
1130
1131 dst.w = src0.w \times src1.w + src2.w
1132
1133
1134 .. opcode:: UMUL - Integer Multiply
1135
1136 This instruction works the same for signed and unsigned integers.
1137 The low 32bit of the result is returned.
1138
1139 .. math::
1140
1141 dst.x = src0.x \times src1.x
1142
1143 dst.y = src0.y \times src1.y
1144
1145 dst.z = src0.z \times src1.z
1146
1147 dst.w = src0.w \times src1.w
1148
1149
1150 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1151
1152 The high 32bits of the multiplication of 2 signed integers are returned.
1153
1154 .. math::
1155
1156 dst.x = (src0.x \times src1.x) >> 32
1157
1158 dst.y = (src0.y \times src1.y) >> 32
1159
1160 dst.z = (src0.z \times src1.z) >> 32
1161
1162 dst.w = (src0.w \times src1.w) >> 32
1163
1164
1165 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1166
1167 The high 32bits of the multiplication of 2 unsigned integers are returned.
1168
1169 .. math::
1170
1171 dst.x = (src0.x \times src1.x) >> 32
1172
1173 dst.y = (src0.y \times src1.y) >> 32
1174
1175 dst.z = (src0.z \times src1.z) >> 32
1176
1177 dst.w = (src0.w \times src1.w) >> 32
1178
1179
1180 .. opcode:: IDIV - Signed Integer Division
1181
1182 TBD: behavior for division by zero.
1183
1184 .. math::
1185
1186 dst.x = src0.x \ src1.x
1187
1188 dst.y = src0.y \ src1.y
1189
1190 dst.z = src0.z \ src1.z
1191
1192 dst.w = src0.w \ src1.w
1193
1194
1195 .. opcode:: UDIV - Unsigned Integer Division
1196
1197 For division by zero, 0xffffffff is returned.
1198
1199 .. math::
1200
1201 dst.x = src0.x \ src1.x
1202
1203 dst.y = src0.y \ src1.y
1204
1205 dst.z = src0.z \ src1.z
1206
1207 dst.w = src0.w \ src1.w
1208
1209
1210 .. opcode:: UMOD - Unsigned Integer Remainder
1211
1212 If second arg is zero, 0xffffffff is returned.
1213
1214 .. math::
1215
1216 dst.x = src0.x \ src1.x
1217
1218 dst.y = src0.y \ src1.y
1219
1220 dst.z = src0.z \ src1.z
1221
1222 dst.w = src0.w \ src1.w
1223
1224
1225 .. opcode:: NOT - Bitwise Not
1226
1227 .. math::
1228
1229 dst.x = \sim src.x
1230
1231 dst.y = \sim src.y
1232
1233 dst.z = \sim src.z
1234
1235 dst.w = \sim src.w
1236
1237
1238 .. opcode:: AND - Bitwise And
1239
1240 .. math::
1241
1242 dst.x = src0.x \& src1.x
1243
1244 dst.y = src0.y \& src1.y
1245
1246 dst.z = src0.z \& src1.z
1247
1248 dst.w = src0.w \& src1.w
1249
1250
1251 .. opcode:: OR - Bitwise Or
1252
1253 .. math::
1254
1255 dst.x = src0.x | src1.x
1256
1257 dst.y = src0.y | src1.y
1258
1259 dst.z = src0.z | src1.z
1260
1261 dst.w = src0.w | src1.w
1262
1263
1264 .. opcode:: XOR - Bitwise Xor
1265
1266 .. math::
1267
1268 dst.x = src0.x \oplus src1.x
1269
1270 dst.y = src0.y \oplus src1.y
1271
1272 dst.z = src0.z \oplus src1.z
1273
1274 dst.w = src0.w \oplus src1.w
1275
1276
1277 .. opcode:: IMAX - Maximum of Signed Integers
1278
1279 .. math::
1280
1281 dst.x = max(src0.x, src1.x)
1282
1283 dst.y = max(src0.y, src1.y)
1284
1285 dst.z = max(src0.z, src1.z)
1286
1287 dst.w = max(src0.w, src1.w)
1288
1289
1290 .. opcode:: UMAX - Maximum of Unsigned Integers
1291
1292 .. math::
1293
1294 dst.x = max(src0.x, src1.x)
1295
1296 dst.y = max(src0.y, src1.y)
1297
1298 dst.z = max(src0.z, src1.z)
1299
1300 dst.w = max(src0.w, src1.w)
1301
1302
1303 .. opcode:: IMIN - Minimum of Signed Integers
1304
1305 .. math::
1306
1307 dst.x = min(src0.x, src1.x)
1308
1309 dst.y = min(src0.y, src1.y)
1310
1311 dst.z = min(src0.z, src1.z)
1312
1313 dst.w = min(src0.w, src1.w)
1314
1315
1316 .. opcode:: UMIN - Minimum of Unsigned Integers
1317
1318 .. math::
1319
1320 dst.x = min(src0.x, src1.x)
1321
1322 dst.y = min(src0.y, src1.y)
1323
1324 dst.z = min(src0.z, src1.z)
1325
1326 dst.w = min(src0.w, src1.w)
1327
1328
1329 .. opcode:: SHL - Shift Left
1330
1331 The shift count is masked with 0x1f before the shift is applied.
1332
1333 .. math::
1334
1335 dst.x = src0.x << (0x1f \& src1.x)
1336
1337 dst.y = src0.y << (0x1f \& src1.y)
1338
1339 dst.z = src0.z << (0x1f \& src1.z)
1340
1341 dst.w = src0.w << (0x1f \& src1.w)
1342
1343
1344 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1345
1346 The shift count is masked with 0x1f before the shift is applied.
1347
1348 .. math::
1349
1350 dst.x = src0.x >> (0x1f \& src1.x)
1351
1352 dst.y = src0.y >> (0x1f \& src1.y)
1353
1354 dst.z = src0.z >> (0x1f \& src1.z)
1355
1356 dst.w = src0.w >> (0x1f \& src1.w)
1357
1358
1359 .. opcode:: USHR - Logical Shift Right
1360
1361 The shift count is masked with 0x1f before the shift is applied.
1362
1363 .. math::
1364
1365 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1366
1367 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1368
1369 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1370
1371 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1372
1373
1374 .. opcode:: UCMP - Integer Conditional Move
1375
1376 .. math::
1377
1378 dst.x = src0.x ? src1.x : src2.x
1379
1380 dst.y = src0.y ? src1.y : src2.y
1381
1382 dst.z = src0.z ? src1.z : src2.z
1383
1384 dst.w = src0.w ? src1.w : src2.w
1385
1386
1387
1388 .. opcode:: ISSG - Integer Set Sign
1389
1390 .. math::
1391
1392 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1393
1394 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1395
1396 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1397
1398 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1399
1400
1401
1402 .. opcode:: FSLT - Float Set On Less Than (ordered)
1403
1404 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1405
1406 .. math::
1407
1408 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1409
1410 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1411
1412 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1413
1414 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1415
1416
1417 .. opcode:: ISLT - Signed Integer Set On Less Than
1418
1419 .. math::
1420
1421 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1422
1423 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1424
1425 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1426
1427 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1428
1429
1430 .. opcode:: USLT - Unsigned Integer Set On Less Than
1431
1432 .. math::
1433
1434 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1435
1436 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1437
1438 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1439
1440 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1441
1442
1443 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1444
1445 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1446
1447 .. math::
1448
1449 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1450
1451 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1452
1453 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1454
1455 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1456
1457
1458 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1459
1460 .. math::
1461
1462 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1463
1464 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1465
1466 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1467
1468 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1469
1470
1471 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1472
1473 .. math::
1474
1475 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1476
1477 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1478
1479 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1480
1481 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1482
1483
1484 .. opcode:: FSEQ - Float Set On Equal (ordered)
1485
1486 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1487
1488 .. math::
1489
1490 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1491
1492 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1493
1494 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1495
1496 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1497
1498
1499 .. opcode:: USEQ - Integer Set On Equal
1500
1501 .. math::
1502
1503 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1504
1505 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1506
1507 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1508
1509 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1510
1511
1512 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1513
1514 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1515
1516 .. math::
1517
1518 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1519
1520 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1521
1522 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1523
1524 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1525
1526
1527 .. opcode:: USNE - Integer Set On Not Equal
1528
1529 .. math::
1530
1531 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1532
1533 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1534
1535 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1536
1537 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1538
1539
1540 .. opcode:: INEG - Integer Negate
1541
1542 Two's complement.
1543
1544 .. math::
1545
1546 dst.x = -src.x
1547
1548 dst.y = -src.y
1549
1550 dst.z = -src.z
1551
1552 dst.w = -src.w
1553
1554
1555 .. opcode:: IABS - Integer Absolute Value
1556
1557 .. math::
1558
1559 dst.x = |src.x|
1560
1561 dst.y = |src.y|
1562
1563 dst.z = |src.z|
1564
1565 dst.w = |src.w|
1566
1567 Bitwise ISA
1568 ^^^^^^^^^^^
1569 These opcodes are used for bit-level manipulation of integers.
1570
1571 .. opcode:: IBFE - Signed Bitfield Extract
1572
1573 See SM5 instruction of the same name. Extracts a set of bits from the input,
1574 and sign-extends them if the high bit of the extracted window is set.
1575
1576 Pseudocode::
1577
1578 def ibfe(value, offset, bits):
1579 offset = offset & 0x1f
1580 bits = bits & 0x1f
1581 if bits == 0: return 0
1582 # Note: >> sign-extends
1583 if width + offset < 32:
1584 return (value << (32 - offset - bits)) >> (32 - bits)
1585 else:
1586 return value >> offset
1587
1588 .. opcode:: UBFE - Unsigned Bitfield Extract
1589
1590 See SM5 instruction of the same name. Extracts a set of bits from the input,
1591 without any sign-extension.
1592
1593 Pseudocode::
1594
1595 def ubfe(value, offset, bits):
1596 offset = offset & 0x1f
1597 bits = bits & 0x1f
1598 if bits == 0: return 0
1599 # Note: >> does not sign-extend
1600 if width + offset < 32:
1601 return (value << (32 - offset - bits)) >> (32 - bits)
1602 else:
1603 return value >> offset
1604
1605 .. opcode:: BFI - Bitfield Insert
1606
1607 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1608 the low bits of 'insert'.
1609
1610 Pseudocode::
1611
1612 def bfi(base, insert, offset, bits):
1613 offset = offset & 0x1f
1614 bits = bits & 0x1f
1615 mask = ((1 << bits) - 1) << offset
1616 return ((insert << offset) & mask) | (base & ~mask)
1617
1618 .. opcode:: BREV - Bitfield Reverse
1619
1620 See SM5 instruction BFREV. Reverses the bits of the argument.
1621
1622 .. opcode:: POPC - Population Count
1623
1624 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1625
1626 .. opcode:: LSB - Index of lowest set bit
1627
1628 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1629 bit of the argument. Returns -1 if none are set.
1630
1631 .. opcode:: IMSB - Index of highest non-sign bit
1632
1633 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1634 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1635 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1636 (i.e. for inputs 0 and -1).
1637
1638 .. opcode:: UMSB - Index of highest set bit
1639
1640 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1641 set bit of the argument. Returns -1 if none are set.
1642
1643 Geometry ISA
1644 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1645
1646 These opcodes are only supported in geometry shaders; they have no meaning
1647 in any other type of shader.
1648
1649 .. opcode:: EMIT - Emit
1650
1651 Generate a new vertex for the current primitive into the specified vertex
1652 stream using the values in the output registers.
1653
1654
1655 .. opcode:: ENDPRIM - End Primitive
1656
1657 Complete the current primitive in the specified vertex stream (consisting of
1658 the emitted vertices), and start a new one.
1659
1660
1661 GLSL ISA
1662 ^^^^^^^^^^
1663
1664 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1665 opcodes is determined by a special capability bit, ``GLSL``.
1666 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1667
1668 .. opcode:: CAL - Subroutine Call
1669
1670 push(pc)
1671 pc = target
1672
1673
1674 .. opcode:: RET - Subroutine Call Return
1675
1676 pc = pop()
1677
1678
1679 .. opcode:: CONT - Continue
1680
1681 Unconditionally moves the point of execution to the instruction after the
1682 last bgnloop. The instruction must appear within a bgnloop/endloop.
1683
1684 .. note::
1685
1686 Support for CONT is determined by a special capability bit,
1687 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1688
1689
1690 .. opcode:: BGNLOOP - Begin a Loop
1691
1692 Start a loop. Must have a matching endloop.
1693
1694
1695 .. opcode:: BGNSUB - Begin Subroutine
1696
1697 Starts definition of a subroutine. Must have a matching endsub.
1698
1699
1700 .. opcode:: ENDLOOP - End a Loop
1701
1702 End a loop started with bgnloop.
1703
1704
1705 .. opcode:: ENDSUB - End Subroutine
1706
1707 Ends definition of a subroutine.
1708
1709
1710 .. opcode:: NOP - No Operation
1711
1712 Do nothing.
1713
1714
1715 .. opcode:: BRK - Break
1716
1717 Unconditionally moves the point of execution to the instruction after the
1718 next endloop or endswitch. The instruction must appear within a loop/endloop
1719 or switch/endswitch.
1720
1721
1722 .. opcode:: BREAKC - Break Conditional
1723
1724 Conditionally moves the point of execution to the instruction after the
1725 next endloop or endswitch. The instruction must appear within a loop/endloop
1726 or switch/endswitch.
1727 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1728 as an integer register.
1729
1730 .. note::
1731
1732 Considered for removal as it's quite inconsistent wrt other opcodes
1733 (could emulate with UIF/BRK/ENDIF).
1734
1735
1736 .. opcode:: IF - Float If
1737
1738 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1739
1740 src0.x != 0.0
1741
1742 where src0.x is interpreted as a floating point register.
1743
1744
1745 .. opcode:: UIF - Bitwise If
1746
1747 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1748
1749 src0.x != 0
1750
1751 where src0.x is interpreted as an integer register.
1752
1753
1754 .. opcode:: ELSE - Else
1755
1756 Starts an else block, after an IF or UIF statement.
1757
1758
1759 .. opcode:: ENDIF - End If
1760
1761 Ends an IF or UIF block.
1762
1763
1764 .. opcode:: SWITCH - Switch
1765
1766 Starts a C-style switch expression. The switch consists of one or multiple
1767 CASE statements, and at most one DEFAULT statement. Execution of a statement
1768 ends when a BRK is hit, but just like in C falling through to other cases
1769 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1770 just as last statement, and fallthrough is allowed into/from it.
1771 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1772
1773 Example::
1774
1775 SWITCH src[0].x
1776 CASE src[0].x
1777 (some instructions here)
1778 (optional BRK here)
1779 DEFAULT
1780 (some instructions here)
1781 (optional BRK here)
1782 CASE src[0].x
1783 (some instructions here)
1784 (optional BRK here)
1785 ENDSWITCH
1786
1787
1788 .. opcode:: CASE - Switch case
1789
1790 This represents a switch case label. The src arg must be an integer immediate.
1791
1792
1793 .. opcode:: DEFAULT - Switch default
1794
1795 This represents the default case in the switch, which is taken if no other
1796 case matches.
1797
1798
1799 .. opcode:: ENDSWITCH - End of switch
1800
1801 Ends a switch expression.
1802
1803
1804 Interpolation ISA
1805 ^^^^^^^^^^^^^^^^^
1806
1807 The interpolation instructions allow an input to be interpolated in a
1808 different way than its declaration. This corresponds to the GLSL 4.00
1809 interpolateAt* functions. The first argument of each of these must come from
1810 ``TGSI_FILE_INPUT``.
1811
1812 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1813
1814 Interpolates the varying specified by src0 at the centroid
1815
1816 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1817
1818 Interpolates the varying specified by src0 at the sample id specified by
1819 src1.x (interpreted as an integer)
1820
1821 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1822
1823 Interpolates the varying specified by src0 at the offset src1.xy from the
1824 pixel center (interpreted as floats)
1825
1826
1827 .. _doubleopcodes:
1828
1829 Double ISA
1830 ^^^^^^^^^^^^^^^
1831
1832 The double-precision opcodes reinterpret four-component vectors into
1833 two-component vectors with doubled precision in each component.
1834
1835 Support for these opcodes is XXX undecided. :T
1836
1837 .. opcode:: DADD - Add
1838
1839 .. math::
1840
1841 dst.xy = src0.xy + src1.xy
1842
1843 dst.zw = src0.zw + src1.zw
1844
1845
1846 .. opcode:: DDIV - Divide
1847
1848 .. math::
1849
1850 dst.xy = src0.xy / src1.xy
1851
1852 dst.zw = src0.zw / src1.zw
1853
1854 .. opcode:: DSEQ - Set on Equal
1855
1856 .. math::
1857
1858 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1859
1860 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1861
1862 .. opcode:: DSLT - Set on Less than
1863
1864 .. math::
1865
1866 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1867
1868 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1869
1870 .. opcode:: DFRAC - Fraction
1871
1872 .. math::
1873
1874 dst.xy = src.xy - \lfloor src.xy\rfloor
1875
1876 dst.zw = src.zw - \lfloor src.zw\rfloor
1877
1878
1879 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1880
1881 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1882 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1883 :math:`dst1 \times 2^{dst0} = src` .
1884
1885 .. math::
1886
1887 dst0.xy = exp(src.xy)
1888
1889 dst1.xy = frac(src.xy)
1890
1891 dst0.zw = exp(src.zw)
1892
1893 dst1.zw = frac(src.zw)
1894
1895 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1896
1897 This opcode is the inverse of :opcode:`DFRACEXP`.
1898
1899 .. math::
1900
1901 dst.xy = src0.xy \times 2^{src1.xy}
1902
1903 dst.zw = src0.zw \times 2^{src1.zw}
1904
1905 .. opcode:: DMIN - Minimum
1906
1907 .. math::
1908
1909 dst.xy = min(src0.xy, src1.xy)
1910
1911 dst.zw = min(src0.zw, src1.zw)
1912
1913 .. opcode:: DMAX - Maximum
1914
1915 .. math::
1916
1917 dst.xy = max(src0.xy, src1.xy)
1918
1919 dst.zw = max(src0.zw, src1.zw)
1920
1921 .. opcode:: DMUL - Multiply
1922
1923 .. math::
1924
1925 dst.xy = src0.xy \times src1.xy
1926
1927 dst.zw = src0.zw \times src1.zw
1928
1929
1930 .. opcode:: DMAD - Multiply And Add
1931
1932 .. math::
1933
1934 dst.xy = src0.xy \times src1.xy + src2.xy
1935
1936 dst.zw = src0.zw \times src1.zw + src2.zw
1937
1938
1939 .. opcode:: DRCP - Reciprocal
1940
1941 .. math::
1942
1943 dst.xy = \frac{1}{src.xy}
1944
1945 dst.zw = \frac{1}{src.zw}
1946
1947 .. opcode:: DSQRT - Square Root
1948
1949 .. math::
1950
1951 dst.xy = \sqrt{src.xy}
1952
1953 dst.zw = \sqrt{src.zw}
1954
1955
1956 .. _samplingopcodes:
1957
1958 Resource Sampling Opcodes
1959 ^^^^^^^^^^^^^^^^^^^^^^^^^
1960
1961 Those opcodes follow very closely semantics of the respective Direct3D
1962 instructions. If in doubt double check Direct3D documentation.
1963 Note that the swizzle on SVIEW (src1) determines texel swizzling
1964 after lookup.
1965
1966 .. opcode:: SAMPLE
1967
1968 Using provided address, sample data from the specified texture using the
1969 filtering mode identified by the gven sampler. The source data may come from
1970 any resource type other than buffers.
1971
1972 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
1973
1974 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
1975
1976 .. opcode:: SAMPLE_I
1977
1978 Simplified alternative to the SAMPLE instruction. Using the provided
1979 integer address, SAMPLE_I fetches data from the specified sampler view
1980 without any filtering. The source data may come from any resource type
1981 other than CUBE.
1982
1983 Syntax: ``SAMPLE_I dst, address, sampler_view``
1984
1985 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
1986
1987 The 'address' is specified as unsigned integers. If the 'address' is out of
1988 range [0...(# texels - 1)] the result of the fetch is always 0 in all
1989 components. As such the instruction doesn't honor address wrap modes, in
1990 cases where that behavior is desirable 'SAMPLE' instruction should be used.
1991 address.w always provides an unsigned integer mipmap level. If the value is
1992 out of the range then the instruction always returns 0 in all components.
1993 address.yz are ignored for buffers and 1d textures. address.z is ignored
1994 for 1d texture arrays and 2d textures.
1995
1996 For 1D texture arrays address.y provides the array index (also as unsigned
1997 integer). If the value is out of the range of available array indices
1998 [0... (array size - 1)] then the opcode always returns 0 in all components.
1999 For 2D texture arrays address.z provides the array index, otherwise it
2000 exhibits the same behavior as in the case for 1D texture arrays. The exact
2001 semantics of the source address are presented in the table below:
2002
2003 +---------------------------+----+-----+-----+---------+
2004 | resource type | X | Y | Z | W |
2005 +===========================+====+=====+=====+=========+
2006 | ``PIPE_BUFFER`` | x | | | ignored |
2007 +---------------------------+----+-----+-----+---------+
2008 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2009 +---------------------------+----+-----+-----+---------+
2010 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2011 +---------------------------+----+-----+-----+---------+
2012 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2013 +---------------------------+----+-----+-----+---------+
2014 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2015 +---------------------------+----+-----+-----+---------+
2016 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2017 +---------------------------+----+-----+-----+---------+
2018 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2019 +---------------------------+----+-----+-----+---------+
2020 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2021 +---------------------------+----+-----+-----+---------+
2022
2023 Where 'mpl' is a mipmap level and 'idx' is the array index.
2024
2025 .. opcode:: SAMPLE_I_MS
2026
2027 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2028
2029 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2030
2031 .. opcode:: SAMPLE_B
2032
2033 Just like the SAMPLE instruction with the exception that an additional bias
2034 is applied to the level of detail computed as part of the instruction
2035 execution.
2036
2037 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2038
2039 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2040
2041 .. opcode:: SAMPLE_C
2042
2043 Similar to the SAMPLE instruction but it performs a comparison filter. The
2044 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2045 additional float32 operand, reference value, which must be a register with
2046 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2047 current samplers compare_func (in pipe_sampler_state) to compare reference
2048 value against the red component value for the surce resource at each texel
2049 that the currently configured texture filter covers based on the provided
2050 coordinates.
2051
2052 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2053
2054 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2055
2056 .. opcode:: SAMPLE_C_LZ
2057
2058 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2059 for level-zero.
2060
2061 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2062
2063 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2064
2065
2066 .. opcode:: SAMPLE_D
2067
2068 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2069 the source address in the x direction and the y direction are provided by
2070 extra parameters.
2071
2072 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2073
2074 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2075
2076 .. opcode:: SAMPLE_L
2077
2078 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2079 directly as a scalar value, representing no anisotropy.
2080
2081 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2082
2083 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2084
2085 .. opcode:: GATHER4
2086
2087 Gathers the four texels to be used in a bi-linear filtering operation and
2088 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2089 and cubemaps arrays. For 2D textures, only the addressing modes of the
2090 sampler and the top level of any mip pyramid are used. Set W to zero. It
2091 behaves like the SAMPLE instruction, but a filtered sample is not
2092 generated. The four samples that contribute to filtering are placed into
2093 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2094 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2095 magnitude of the deltas are half a texel.
2096
2097
2098 .. opcode:: SVIEWINFO
2099
2100 Query the dimensions of a given sampler view. dst receives width, height,
2101 depth or array size and number of mipmap levels as int4. The dst can have a
2102 writemask which will specify what info is the caller interested in.
2103
2104 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2105
2106 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2107
2108 src_mip_level is an unsigned integer scalar. If it's out of range then
2109 returns 0 for width, height and depth/array size but the total number of
2110 mipmap is still returned correctly for the given sampler view. The returned
2111 width, height and depth values are for the mipmap level selected by the
2112 src_mip_level and are in the number of texels. For 1d texture array width
2113 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2114 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2115 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2116 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2117 resinfo allowing swizzling dst values is ignored (due to the interaction
2118 with rcpfloat modifier which requires some swizzle handling in the state
2119 tracker anyway).
2120
2121 .. opcode:: SAMPLE_POS
2122
2123 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2124 indicated where the sample is located. If the resource is not a multi-sample
2125 resource and not a render target, the result is 0.
2126
2127 .. opcode:: SAMPLE_INFO
2128
2129 dst receives number of samples in x. If the resource is not a multi-sample
2130 resource and not a render target, the result is 0.
2131
2132
2133 .. _resourceopcodes:
2134
2135 Resource Access Opcodes
2136 ^^^^^^^^^^^^^^^^^^^^^^^
2137
2138 .. opcode:: LOAD - Fetch data from a shader resource
2139
2140 Syntax: ``LOAD dst, resource, address``
2141
2142 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2143
2144 Using the provided integer address, LOAD fetches data
2145 from the specified buffer or texture without any
2146 filtering.
2147
2148 The 'address' is specified as a vector of unsigned
2149 integers. If the 'address' is out of range the result
2150 is unspecified.
2151
2152 Only the first mipmap level of a resource can be read
2153 from using this instruction.
2154
2155 For 1D or 2D texture arrays, the array index is
2156 provided as an unsigned integer in address.y or
2157 address.z, respectively. address.yz are ignored for
2158 buffers and 1D textures. address.z is ignored for 1D
2159 texture arrays and 2D textures. address.w is always
2160 ignored.
2161
2162 .. opcode:: STORE - Write data to a shader resource
2163
2164 Syntax: ``STORE resource, address, src``
2165
2166 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2167
2168 Using the provided integer address, STORE writes data
2169 to the specified buffer or texture.
2170
2171 The 'address' is specified as a vector of unsigned
2172 integers. If the 'address' is out of range the result
2173 is unspecified.
2174
2175 Only the first mipmap level of a resource can be
2176 written to using this instruction.
2177
2178 For 1D or 2D texture arrays, the array index is
2179 provided as an unsigned integer in address.y or
2180 address.z, respectively. address.yz are ignored for
2181 buffers and 1D textures. address.z is ignored for 1D
2182 texture arrays and 2D textures. address.w is always
2183 ignored.
2184
2185
2186 .. _threadsyncopcodes:
2187
2188 Inter-thread synchronization opcodes
2189 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2190
2191 These opcodes are intended for communication between threads running
2192 within the same compute grid. For now they're only valid in compute
2193 programs.
2194
2195 .. opcode:: MFENCE - Memory fence
2196
2197 Syntax: ``MFENCE resource``
2198
2199 Example: ``MFENCE RES[0]``
2200
2201 This opcode forces strong ordering between any memory access
2202 operations that affect the specified resource. This means that
2203 previous loads and stores (and only those) will be performed and
2204 visible to other threads before the program execution continues.
2205
2206
2207 .. opcode:: LFENCE - Load memory fence
2208
2209 Syntax: ``LFENCE resource``
2210
2211 Example: ``LFENCE RES[0]``
2212
2213 Similar to MFENCE, but it only affects the ordering of memory loads.
2214
2215
2216 .. opcode:: SFENCE - Store memory fence
2217
2218 Syntax: ``SFENCE resource``
2219
2220 Example: ``SFENCE RES[0]``
2221
2222 Similar to MFENCE, but it only affects the ordering of memory stores.
2223
2224
2225 .. opcode:: BARRIER - Thread group barrier
2226
2227 ``BARRIER``
2228
2229 This opcode suspends the execution of the current thread until all
2230 the remaining threads in the working group reach the same point of
2231 the program. Results are unspecified if any of the remaining
2232 threads terminates or never reaches an executed BARRIER instruction.
2233
2234
2235 .. _atomopcodes:
2236
2237 Atomic opcodes
2238 ^^^^^^^^^^^^^^
2239
2240 These opcodes provide atomic variants of some common arithmetic and
2241 logical operations. In this context atomicity means that another
2242 concurrent memory access operation that affects the same memory
2243 location is guaranteed to be performed strictly before or after the
2244 entire execution of the atomic operation.
2245
2246 For the moment they're only valid in compute programs.
2247
2248 .. opcode:: ATOMUADD - Atomic integer addition
2249
2250 Syntax: ``ATOMUADD dst, resource, offset, src``
2251
2252 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2253
2254 The following operation is performed atomically on each component:
2255
2256 .. math::
2257
2258 dst_i = resource[offset]_i
2259
2260 resource[offset]_i = dst_i + src_i
2261
2262
2263 .. opcode:: ATOMXCHG - Atomic exchange
2264
2265 Syntax: ``ATOMXCHG dst, resource, offset, src``
2266
2267 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2268
2269 The following operation is performed atomically on each component:
2270
2271 .. math::
2272
2273 dst_i = resource[offset]_i
2274
2275 resource[offset]_i = src_i
2276
2277
2278 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2279
2280 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2281
2282 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2283
2284 The following operation is performed atomically on each component:
2285
2286 .. math::
2287
2288 dst_i = resource[offset]_i
2289
2290 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2291
2292
2293 .. opcode:: ATOMAND - Atomic bitwise And
2294
2295 Syntax: ``ATOMAND dst, resource, offset, src``
2296
2297 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2298
2299 The following operation is performed atomically on each component:
2300
2301 .. math::
2302
2303 dst_i = resource[offset]_i
2304
2305 resource[offset]_i = dst_i \& src_i
2306
2307
2308 .. opcode:: ATOMOR - Atomic bitwise Or
2309
2310 Syntax: ``ATOMOR dst, resource, offset, src``
2311
2312 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2313
2314 The following operation is performed atomically on each component:
2315
2316 .. math::
2317
2318 dst_i = resource[offset]_i
2319
2320 resource[offset]_i = dst_i | src_i
2321
2322
2323 .. opcode:: ATOMXOR - Atomic bitwise Xor
2324
2325 Syntax: ``ATOMXOR dst, resource, offset, src``
2326
2327 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2328
2329 The following operation is performed atomically on each component:
2330
2331 .. math::
2332
2333 dst_i = resource[offset]_i
2334
2335 resource[offset]_i = dst_i \oplus src_i
2336
2337
2338 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2339
2340 Syntax: ``ATOMUMIN dst, resource, offset, src``
2341
2342 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2343
2344 The following operation is performed atomically on each component:
2345
2346 .. math::
2347
2348 dst_i = resource[offset]_i
2349
2350 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2351
2352
2353 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2354
2355 Syntax: ``ATOMUMAX dst, resource, offset, src``
2356
2357 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2358
2359 The following operation is performed atomically on each component:
2360
2361 .. math::
2362
2363 dst_i = resource[offset]_i
2364
2365 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2366
2367
2368 .. opcode:: ATOMIMIN - Atomic signed minimum
2369
2370 Syntax: ``ATOMIMIN dst, resource, offset, src``
2371
2372 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2373
2374 The following operation is performed atomically on each component:
2375
2376 .. math::
2377
2378 dst_i = resource[offset]_i
2379
2380 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2381
2382
2383 .. opcode:: ATOMIMAX - Atomic signed maximum
2384
2385 Syntax: ``ATOMIMAX dst, resource, offset, src``
2386
2387 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2388
2389 The following operation is performed atomically on each component:
2390
2391 .. math::
2392
2393 dst_i = resource[offset]_i
2394
2395 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2396
2397
2398
2399 Explanation of symbols used
2400 ------------------------------
2401
2402
2403 Functions
2404 ^^^^^^^^^^^^^^
2405
2406
2407 :math:`|x|` Absolute value of `x`.
2408
2409 :math:`\lceil x \rceil` Ceiling of `x`.
2410
2411 clamp(x,y,z) Clamp x between y and z.
2412 (x < y) ? y : (x > z) ? z : x
2413
2414 :math:`\lfloor x\rfloor` Floor of `x`.
2415
2416 :math:`\log_2{x}` Logarithm of `x`, base 2.
2417
2418 max(x,y) Maximum of x and y.
2419 (x > y) ? x : y
2420
2421 min(x,y) Minimum of x and y.
2422 (x < y) ? x : y
2423
2424 partialx(x) Derivative of x relative to fragment's X.
2425
2426 partialy(x) Derivative of x relative to fragment's Y.
2427
2428 pop() Pop from stack.
2429
2430 :math:`x^y` `x` to the power `y`.
2431
2432 push(x) Push x on stack.
2433
2434 round(x) Round x.
2435
2436 trunc(x) Truncate x, i.e. drop the fraction bits.
2437
2438
2439 Keywords
2440 ^^^^^^^^^^^^^
2441
2442
2443 discard Discard fragment.
2444
2445 pc Program counter.
2446
2447 target Label of target instruction.
2448
2449
2450 Other tokens
2451 ---------------
2452
2453
2454 Declaration
2455 ^^^^^^^^^^^
2456
2457
2458 Declares a register that is will be referenced as an operand in Instruction
2459 tokens.
2460
2461 File field contains register file that is being declared and is one
2462 of TGSI_FILE.
2463
2464 UsageMask field specifies which of the register components can be accessed
2465 and is one of TGSI_WRITEMASK.
2466
2467 The Local flag specifies that a given value isn't intended for
2468 subroutine parameter passing and, as a result, the implementation
2469 isn't required to give any guarantees of it being preserved across
2470 subroutine boundaries. As it's merely a compiler hint, the
2471 implementation is free to ignore it.
2472
2473 If Dimension flag is set to 1, a Declaration Dimension token follows.
2474
2475 If Semantic flag is set to 1, a Declaration Semantic token follows.
2476
2477 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2478
2479 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2480
2481 If Array flag is set to 1, a Declaration Array token follows.
2482
2483 Array Declaration
2484 ^^^^^^^^^^^^^^^^^^^^^^^^
2485
2486 Declarations can optional have an ArrayID attribute which can be referred by
2487 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2488 if no ArrayID is specified.
2489
2490 If an indirect addressing operand refers to a specific declaration by using
2491 an ArrayID only the registers in this declaration are guaranteed to be
2492 accessed, accessing any register outside this declaration results in undefined
2493 behavior. Note that for compatibility the effective index is zero-based and
2494 not relative to the specified declaration
2495
2496 If no ArrayID is specified with an indirect addressing operand the whole
2497 register file might be accessed by this operand. This is strongly discouraged
2498 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2499
2500 Declaration Semantic
2501 ^^^^^^^^^^^^^^^^^^^^^^^^
2502
2503 Vertex and fragment shader input and output registers may be labeled
2504 with semantic information consisting of a name and index.
2505
2506 Follows Declaration token if Semantic bit is set.
2507
2508 Since its purpose is to link a shader with other stages of the pipeline,
2509 it is valid to follow only those Declaration tokens that declare a register
2510 either in INPUT or OUTPUT file.
2511
2512 SemanticName field contains the semantic name of the register being declared.
2513 There is no default value.
2514
2515 SemanticIndex is an optional subscript that can be used to distinguish
2516 different register declarations with the same semantic name. The default value
2517 is 0.
2518
2519 The meanings of the individual semantic names are explained in the following
2520 sections.
2521
2522 TGSI_SEMANTIC_POSITION
2523 """"""""""""""""""""""
2524
2525 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2526 output register which contains the homogeneous vertex position in the clip
2527 space coordinate system. After clipping, the X, Y and Z components of the
2528 vertex will be divided by the W value to get normalized device coordinates.
2529
2530 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2531 fragment shader input contains the fragment's window position. The X
2532 component starts at zero and always increases from left to right.
2533 The Y component starts at zero and always increases but Y=0 may either
2534 indicate the top of the window or the bottom depending on the fragment
2535 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2536 The Z coordinate ranges from 0 to 1 to represent depth from the front
2537 to the back of the Z buffer. The W component contains the reciprocol
2538 of the interpolated vertex position W component.
2539
2540 Fragment shaders may also declare an output register with
2541 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2542 the fragment shader to change the fragment's Z position.
2543
2544
2545
2546 TGSI_SEMANTIC_COLOR
2547 """""""""""""""""""
2548
2549 For vertex shader outputs or fragment shader inputs/outputs, this
2550 label indicates that the resister contains an R,G,B,A color.
2551
2552 Several shader inputs/outputs may contain colors so the semantic index
2553 is used to distinguish them. For example, color[0] may be the diffuse
2554 color while color[1] may be the specular color.
2555
2556 This label is needed so that the flat/smooth shading can be applied
2557 to the right interpolants during rasterization.
2558
2559
2560
2561 TGSI_SEMANTIC_BCOLOR
2562 """"""""""""""""""""
2563
2564 Back-facing colors are only used for back-facing polygons, and are only valid
2565 in vertex shader outputs. After rasterization, all polygons are front-facing
2566 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2567 so all BCOLORs effectively become regular COLORs in the fragment shader.
2568
2569
2570 TGSI_SEMANTIC_FOG
2571 """""""""""""""""
2572
2573 Vertex shader inputs and outputs and fragment shader inputs may be
2574 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2575 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2576 to compute a fog blend factor which is used to blend the normal fragment color
2577 with a constant fog color. But fog coord really is just an ordinary vec4
2578 register like regular semantics.
2579
2580
2581 TGSI_SEMANTIC_PSIZE
2582 """""""""""""""""""
2583
2584 Vertex shader input and output registers may be labeled with
2585 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2586 in the form (S, 0, 0, 1). The point size controls the width or diameter
2587 of points for rasterization. This label cannot be used in fragment
2588 shaders.
2589
2590 When using this semantic, be sure to set the appropriate state in the
2591 :ref:`rasterizer` first.
2592
2593
2594 TGSI_SEMANTIC_TEXCOORD
2595 """"""""""""""""""""""
2596
2597 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2598
2599 Vertex shader outputs and fragment shader inputs may be labeled with
2600 this semantic to make them replaceable by sprite coordinates via the
2601 sprite_coord_enable state in the :ref:`rasterizer`.
2602 The semantic index permitted with this semantic is limited to <= 7.
2603
2604 If the driver does not support TEXCOORD, sprite coordinate replacement
2605 applies to inputs with the GENERIC semantic instead.
2606
2607 The intended use case for this semantic is gl_TexCoord.
2608
2609
2610 TGSI_SEMANTIC_PCOORD
2611 """"""""""""""""""""
2612
2613 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2614
2615 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2616 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2617 the current primitive is a point and point sprites are enabled. Otherwise,
2618 the contents of the register are undefined.
2619
2620 The intended use case for this semantic is gl_PointCoord.
2621
2622
2623 TGSI_SEMANTIC_GENERIC
2624 """""""""""""""""""""
2625
2626 All vertex/fragment shader inputs/outputs not labeled with any other
2627 semantic label can be considered to be generic attributes. Typical
2628 uses of generic inputs/outputs are texcoords and user-defined values.
2629
2630
2631 TGSI_SEMANTIC_NORMAL
2632 """"""""""""""""""""
2633
2634 Indicates that a vertex shader input is a normal vector. This is
2635 typically only used for legacy graphics APIs.
2636
2637
2638 TGSI_SEMANTIC_FACE
2639 """"""""""""""""""
2640
2641 This label applies to fragment shader inputs only and indicates that
2642 the register contains front/back-face information of the form (F, 0,
2643 0, 1). The first component will be positive when the fragment belongs
2644 to a front-facing polygon, and negative when the fragment belongs to a
2645 back-facing polygon.
2646
2647
2648 TGSI_SEMANTIC_EDGEFLAG
2649 """"""""""""""""""""""
2650
2651 For vertex shaders, this sematic label indicates that an input or
2652 output is a boolean edge flag. The register layout is [F, x, x, x]
2653 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2654 simply copies the edge flag input to the edgeflag output.
2655
2656 Edge flags are used to control which lines or points are actually
2657 drawn when the polygon mode converts triangles/quads/polygons into
2658 points or lines.
2659
2660
2661 TGSI_SEMANTIC_STENCIL
2662 """""""""""""""""""""
2663
2664 For fragment shaders, this semantic label indicates that an output
2665 is a writable stencil reference value. Only the Y component is writable.
2666 This allows the fragment shader to change the fragments stencilref value.
2667
2668
2669 TGSI_SEMANTIC_VIEWPORT_INDEX
2670 """"""""""""""""""""""""""""
2671
2672 For geometry shaders, this semantic label indicates that an output
2673 contains the index of the viewport (and scissor) to use.
2674 Only the X value is used.
2675
2676
2677 TGSI_SEMANTIC_LAYER
2678 """""""""""""""""""
2679
2680 For geometry shaders, this semantic label indicates that an output
2681 contains the layer value to use for the color and depth/stencil surfaces.
2682 Only the X value is used. (Also known as rendertarget array index.)
2683
2684
2685 TGSI_SEMANTIC_CULLDIST
2686 """"""""""""""""""""""
2687
2688 Used as distance to plane for performing application-defined culling
2689 of individual primitives against a plane. When components of vertex
2690 elements are given this label, these values are assumed to be a
2691 float32 signed distance to a plane. Primitives will be completely
2692 discarded if the plane distance for all of the vertices in the
2693 primitive are < 0. If a vertex has a cull distance of NaN, that
2694 vertex counts as "out" (as if its < 0);
2695 The limits on both clip and cull distances are bound
2696 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2697 the maximum number of components that can be used to hold the
2698 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2699 which specifies the maximum number of registers which can be
2700 annotated with those semantics.
2701
2702
2703 TGSI_SEMANTIC_CLIPDIST
2704 """"""""""""""""""""""
2705
2706 When components of vertex elements are identified this way, these
2707 values are each assumed to be a float32 signed distance to a plane.
2708 Primitive setup only invokes rasterization on pixels for which
2709 the interpolated plane distances are >= 0. Multiple clip planes
2710 can be implemented simultaneously, by annotating multiple
2711 components of one or more vertex elements with the above specified
2712 semantic. The limits on both clip and cull distances are bound
2713 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2714 the maximum number of components that can be used to hold the
2715 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2716 which specifies the maximum number of registers which can be
2717 annotated with those semantics.
2718
2719 TGSI_SEMANTIC_SAMPLEID
2720 """"""""""""""""""""""
2721
2722 For fragment shaders, this semantic label indicates that a system value
2723 contains the current sample id (i.e. gl_SampleID). Only the X value is used.
2724
2725 TGSI_SEMANTIC_SAMPLEPOS
2726 """""""""""""""""""""""
2727
2728 For fragment shaders, this semantic label indicates that a system value
2729 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2730 and Y values are used.
2731
2732 TGSI_SEMANTIC_SAMPLEMASK
2733 """"""""""""""""""""""""
2734
2735 For fragment shaders, this semantic label indicates that an output contains
2736 the sample mask used to disable further sample processing
2737 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2738
2739 TGSI_SEMANTIC_INVOCATIONID
2740 """"""""""""""""""""""""""
2741
2742 For geometry shaders, this semantic label indicates that a system value
2743 contains the current invocation id (i.e. gl_InvocationID). Only the X value is
2744 used.
2745
2746 Declaration Interpolate
2747 ^^^^^^^^^^^^^^^^^^^^^^^
2748
2749 This token is only valid for fragment shader INPUT declarations.
2750
2751 The Interpolate field specifes the way input is being interpolated by
2752 the rasteriser and is one of TGSI_INTERPOLATE_*.
2753
2754 The Location field specifies the location inside the pixel that the
2755 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2756 when per-sample shading is enabled, the implementation may choose to
2757 interpolate at the sample irrespective of the Location field.
2758
2759 The CylindricalWrap bitfield specifies which register components
2760 should be subject to cylindrical wrapping when interpolating by the
2761 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2762 should be interpolated according to cylindrical wrapping rules.
2763
2764
2765 Declaration Sampler View
2766 ^^^^^^^^^^^^^^^^^^^^^^^^
2767
2768 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2769
2770 DCL SVIEW[#], resource, type(s)
2771
2772 Declares a shader input sampler view and assigns it to a SVIEW[#]
2773 register.
2774
2775 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2776
2777 type must be 1 or 4 entries (if specifying on a per-component
2778 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2779
2780
2781 Declaration Resource
2782 ^^^^^^^^^^^^^^^^^^^^
2783
2784 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2785
2786 DCL RES[#], resource [, WR] [, RAW]
2787
2788 Declares a shader input resource and assigns it to a RES[#]
2789 register.
2790
2791 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2792 2DArray.
2793
2794 If the RAW keyword is not specified, the texture data will be
2795 subject to conversion, swizzling and scaling as required to yield
2796 the specified data type from the physical data format of the bound
2797 resource.
2798
2799 If the RAW keyword is specified, no channel conversion will be
2800 performed: the values read for each of the channels (X,Y,Z,W) will
2801 correspond to consecutive words in the same order and format
2802 they're found in memory. No element-to-address conversion will be
2803 performed either: the value of the provided X coordinate will be
2804 interpreted in byte units instead of texel units. The result of
2805 accessing a misaligned address is undefined.
2806
2807 Usage of the STORE opcode is only allowed if the WR (writable) flag
2808 is set.
2809
2810
2811 Properties
2812 ^^^^^^^^^^^^^^^^^^^^^^^^
2813
2814 Properties are general directives that apply to the whole TGSI program.
2815
2816 FS_COORD_ORIGIN
2817 """""""""""""""
2818
2819 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2820 The default value is UPPER_LEFT.
2821
2822 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2823 increase downward and rightward.
2824 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2825 increase upward and rightward.
2826
2827 OpenGL defaults to LOWER_LEFT, and is configurable with the
2828 GL_ARB_fragment_coord_conventions extension.
2829
2830 DirectX 9/10 use UPPER_LEFT.
2831
2832 FS_COORD_PIXEL_CENTER
2833 """""""""""""""""""""
2834
2835 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2836 The default value is HALF_INTEGER.
2837
2838 If HALF_INTEGER, the fractionary part of the position will be 0.5
2839 If INTEGER, the fractionary part of the position will be 0.0
2840
2841 Note that this does not affect the set of fragments generated by
2842 rasterization, which is instead controlled by half_pixel_center in the
2843 rasterizer.
2844
2845 OpenGL defaults to HALF_INTEGER, and is configurable with the
2846 GL_ARB_fragment_coord_conventions extension.
2847
2848 DirectX 9 uses INTEGER.
2849 DirectX 10 uses HALF_INTEGER.
2850
2851 FS_COLOR0_WRITES_ALL_CBUFS
2852 """"""""""""""""""""""""""
2853 Specifies that writes to the fragment shader color 0 are replicated to all
2854 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2855 fragData is directed to a single color buffer, but fragColor is broadcast.
2856
2857 VS_PROHIBIT_UCPS
2858 """"""""""""""""""""""""""
2859 If this property is set on the program bound to the shader stage before the
2860 fragment shader, user clip planes should have no effect (be disabled) even if
2861 that shader does not write to any clip distance outputs and the rasterizer's
2862 clip_plane_enable is non-zero.
2863 This property is only supported by drivers that also support shader clip
2864 distance outputs.
2865 This is useful for APIs that don't have UCPs and where clip distances written
2866 by a shader cannot be disabled.
2867
2868 GS_INVOCATIONS
2869 """"""""""""""
2870
2871 Specifies the number of times a geometry shader should be executed for each
2872 input primitive. Each invocation will have a different
2873 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2874 be 1.
2875
2876 VS_WINDOW_SPACE_POSITION
2877 """"""""""""""""""""""""""
2878 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2879 is assumed to contain window space coordinates.
2880 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2881 directly taken from the 4-th component of the shader output.
2882 Naturally, clipping is not performed on window coordinates either.
2883 The effect of this property is undefined if a geometry or tessellation shader
2884 are in use.
2885
2886 Texture Sampling and Texture Formats
2887 ------------------------------------
2888
2889 This table shows how texture image components are returned as (x,y,z,w) tuples
2890 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2891 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2892 well.
2893
2894 +--------------------+--------------+--------------------+--------------+
2895 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2896 +====================+==============+====================+==============+
2897 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2898 +--------------------+--------------+--------------------+--------------+
2899 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2900 +--------------------+--------------+--------------------+--------------+
2901 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2902 +--------------------+--------------+--------------------+--------------+
2903 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2904 +--------------------+--------------+--------------------+--------------+
2905 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2906 +--------------------+--------------+--------------------+--------------+
2907 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2908 +--------------------+--------------+--------------------+--------------+
2909 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2910 +--------------------+--------------+--------------------+--------------+
2911 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2912 +--------------------+--------------+--------------------+--------------+
2913 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2914 | | | [#envmap-bumpmap]_ | |
2915 +--------------------+--------------+--------------------+--------------+
2916 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2917 | | | [#depth-tex-mode]_ | |
2918 +--------------------+--------------+--------------------+--------------+
2919 | S | (s, s, s, s) | unknown | unknown |
2920 +--------------------+--------------+--------------------+--------------+
2921
2922 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2923 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2924 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.