gallium/docs: improve docs for SAMPLE_POS, SAMPLE_INFO, TXQS, MSAA semantics
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and
32 negation modifiers are supported (with absolute value being applied
33 first). The only source of TGSI_OPCODE_MOV and the second and third
34 sources of TGSI_OPCODE_UCMP are considered to have float type for
35 applying modifiers.
36
37 For inputs which have signed or unsigned type only the negate modifier is
38 supported.
39
40 Instruction Set
41 ---------------
42
43 Core ISA
44 ^^^^^^^^^^^^^^^^^^^^^^^^^
45
46 These opcodes are guaranteed to be available regardless of the driver being
47 used.
48
49 .. opcode:: ARL - Address Register Load
50
51 .. math::
52
53 dst.x = (int) \lfloor src.x\rfloor
54
55 dst.y = (int) \lfloor src.y\rfloor
56
57 dst.z = (int) \lfloor src.z\rfloor
58
59 dst.w = (int) \lfloor src.w\rfloor
60
61
62 .. opcode:: MOV - Move
63
64 .. math::
65
66 dst.x = src.x
67
68 dst.y = src.y
69
70 dst.z = src.z
71
72 dst.w = src.w
73
74
75 .. opcode:: LIT - Light Coefficients
76
77 .. math::
78
79 dst.x &= 1 \\
80 dst.y &= max(src.x, 0) \\
81 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
82 dst.w &= 1
83
84
85 .. opcode:: RCP - Reciprocal
86
87 This instruction replicates its result.
88
89 .. math::
90
91 dst = \frac{1}{src.x}
92
93
94 .. opcode:: RSQ - Reciprocal Square Root
95
96 This instruction replicates its result. The results are undefined for src <= 0.
97
98 .. math::
99
100 dst = \frac{1}{\sqrt{src.x}}
101
102
103 .. opcode:: SQRT - Square Root
104
105 This instruction replicates its result. The results are undefined for src < 0.
106
107 .. math::
108
109 dst = {\sqrt{src.x}}
110
111
112 .. opcode:: EXP - Approximate Exponential Base 2
113
114 .. math::
115
116 dst.x &= 2^{\lfloor src.x\rfloor} \\
117 dst.y &= src.x - \lfloor src.x\rfloor \\
118 dst.z &= 2^{src.x} \\
119 dst.w &= 1
120
121
122 .. opcode:: LOG - Approximate Logarithm Base 2
123
124 .. math::
125
126 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
127 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
128 dst.z &= \log_2{|src.x|} \\
129 dst.w &= 1
130
131
132 .. opcode:: MUL - Multiply
133
134 .. math::
135
136 dst.x = src0.x \times src1.x
137
138 dst.y = src0.y \times src1.y
139
140 dst.z = src0.z \times src1.z
141
142 dst.w = src0.w \times src1.w
143
144
145 .. opcode:: ADD - Add
146
147 .. math::
148
149 dst.x = src0.x + src1.x
150
151 dst.y = src0.y + src1.y
152
153 dst.z = src0.z + src1.z
154
155 dst.w = src0.w + src1.w
156
157
158 .. opcode:: DP3 - 3-component Dot Product
159
160 This instruction replicates its result.
161
162 .. math::
163
164 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
165
166
167 .. opcode:: DP4 - 4-component Dot Product
168
169 This instruction replicates its result.
170
171 .. math::
172
173 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
174
175
176 .. opcode:: DST - Distance Vector
177
178 .. math::
179
180 dst.x &= 1\\
181 dst.y &= src0.y \times src1.y\\
182 dst.z &= src0.z\\
183 dst.w &= src1.w
184
185
186 .. opcode:: MIN - Minimum
187
188 .. math::
189
190 dst.x = min(src0.x, src1.x)
191
192 dst.y = min(src0.y, src1.y)
193
194 dst.z = min(src0.z, src1.z)
195
196 dst.w = min(src0.w, src1.w)
197
198
199 .. opcode:: MAX - Maximum
200
201 .. math::
202
203 dst.x = max(src0.x, src1.x)
204
205 dst.y = max(src0.y, src1.y)
206
207 dst.z = max(src0.z, src1.z)
208
209 dst.w = max(src0.w, src1.w)
210
211
212 .. opcode:: SLT - Set On Less Than
213
214 .. math::
215
216 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
217
218 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
219
220 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
221
222 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
223
224
225 .. opcode:: SGE - Set On Greater Equal Than
226
227 .. math::
228
229 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
230
231 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
232
233 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
234
235 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
236
237
238 .. opcode:: MAD - Multiply And Add
239
240 .. math::
241
242 dst.x = src0.x \times src1.x + src2.x
243
244 dst.y = src0.y \times src1.y + src2.y
245
246 dst.z = src0.z \times src1.z + src2.z
247
248 dst.w = src0.w \times src1.w + src2.w
249
250
251 .. opcode:: LRP - Linear Interpolate
252
253 .. math::
254
255 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
256
257 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
258
259 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
260
261 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
262
263
264 .. opcode:: FMA - Fused Multiply-Add
265
266 Perform a * b + c with no intermediate rounding step.
267
268 .. math::
269
270 dst.x = src0.x \times src1.x + src2.x
271
272 dst.y = src0.y \times src1.y + src2.y
273
274 dst.z = src0.z \times src1.z + src2.z
275
276 dst.w = src0.w \times src1.w + src2.w
277
278
279 .. opcode:: DP2A - 2-component Dot Product And Add
280
281 .. math::
282
283 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
288
289 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
290
291
292 .. opcode:: FRC - Fraction
293
294 .. math::
295
296 dst.x = src.x - \lfloor src.x\rfloor
297
298 dst.y = src.y - \lfloor src.y\rfloor
299
300 dst.z = src.z - \lfloor src.z\rfloor
301
302 dst.w = src.w - \lfloor src.w\rfloor
303
304
305 .. opcode:: FLR - Floor
306
307 .. math::
308
309 dst.x = \lfloor src.x\rfloor
310
311 dst.y = \lfloor src.y\rfloor
312
313 dst.z = \lfloor src.z\rfloor
314
315 dst.w = \lfloor src.w\rfloor
316
317
318 .. opcode:: ROUND - Round
319
320 .. math::
321
322 dst.x = round(src.x)
323
324 dst.y = round(src.y)
325
326 dst.z = round(src.z)
327
328 dst.w = round(src.w)
329
330
331 .. opcode:: EX2 - Exponential Base 2
332
333 This instruction replicates its result.
334
335 .. math::
336
337 dst = 2^{src.x}
338
339
340 .. opcode:: LG2 - Logarithm Base 2
341
342 This instruction replicates its result.
343
344 .. math::
345
346 dst = \log_2{src.x}
347
348
349 .. opcode:: POW - Power
350
351 This instruction replicates its result.
352
353 .. math::
354
355 dst = src0.x^{src1.x}
356
357 .. opcode:: XPD - Cross Product
358
359 .. math::
360
361 dst.x = src0.y \times src1.z - src1.y \times src0.z
362
363 dst.y = src0.z \times src1.x - src1.z \times src0.x
364
365 dst.z = src0.x \times src1.y - src1.x \times src0.y
366
367 dst.w = 1
368
369
370 .. opcode:: DPH - Homogeneous Dot Product
371
372 This instruction replicates its result.
373
374 .. math::
375
376 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
377
378
379 .. opcode:: COS - Cosine
380
381 This instruction replicates its result.
382
383 .. math::
384
385 dst = \cos{src.x}
386
387
388 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
389
390 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
391 advertised. When it is, the fine version guarantees one derivative per row
392 while DDX is allowed to be the same for the entire 2x2 quad.
393
394 .. math::
395
396 dst.x = partialx(src.x)
397
398 dst.y = partialx(src.y)
399
400 dst.z = partialx(src.z)
401
402 dst.w = partialx(src.w)
403
404
405 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
406
407 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
408 advertised. When it is, the fine version guarantees one derivative per column
409 while DDY is allowed to be the same for the entire 2x2 quad.
410
411 .. math::
412
413 dst.x = partialy(src.x)
414
415 dst.y = partialy(src.y)
416
417 dst.z = partialy(src.z)
418
419 dst.w = partialy(src.w)
420
421
422 .. opcode:: PK2H - Pack Two 16-bit Floats
423
424 This instruction replicates its result.
425
426 .. math::
427
428 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
429
430
431 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
432
433 TBD
434
435
436 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
437
438 TBD
439
440
441 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
442
443 TBD
444
445
446 .. opcode:: SEQ - Set On Equal
447
448 .. math::
449
450 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
451
452 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
453
454 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
455
456 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
457
458
459 .. opcode:: SGT - Set On Greater Than
460
461 .. math::
462
463 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
464
465 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
466
467 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
468
469 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
470
471
472 .. opcode:: SIN - Sine
473
474 This instruction replicates its result.
475
476 .. math::
477
478 dst = \sin{src.x}
479
480
481 .. opcode:: SLE - Set On Less Equal Than
482
483 .. math::
484
485 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
486
487 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
488
489 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
490
491 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
492
493
494 .. opcode:: SNE - Set On Not Equal
495
496 .. math::
497
498 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
499
500 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
501
502 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
503
504 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
505
506
507 .. opcode:: TEX - Texture Lookup
508
509 for array textures src0.y contains the slice for 1D,
510 and src0.z contain the slice for 2D.
511
512 for shadow textures with no arrays (and not cube map),
513 src0.z contains the reference value.
514
515 for shadow textures with arrays, src0.z contains
516 the reference value for 1D arrays, and src0.w contains
517 the reference value for 2D arrays and cube maps.
518
519 for cube map array shadow textures, the reference value
520 cannot be passed in src0.w, and TEX2 must be used instead.
521
522 .. math::
523
524 coord = src0
525
526 shadow_ref = src0.z or src0.w (optional)
527
528 unit = src1
529
530 dst = texture\_sample(unit, coord, shadow_ref)
531
532
533 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
534
535 this is the same as TEX, but uses another reg to encode the
536 reference value.
537
538 .. math::
539
540 coord = src0
541
542 shadow_ref = src1.x
543
544 unit = src2
545
546 dst = texture\_sample(unit, coord, shadow_ref)
547
548
549
550
551 .. opcode:: TXD - Texture Lookup with Derivatives
552
553 .. math::
554
555 coord = src0
556
557 ddx = src1
558
559 ddy = src2
560
561 unit = src3
562
563 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
564
565
566 .. opcode:: TXP - Projective Texture Lookup
567
568 .. math::
569
570 coord.x = src0.x / src0.w
571
572 coord.y = src0.y / src0.w
573
574 coord.z = src0.z / src0.w
575
576 coord.w = src0.w
577
578 unit = src1
579
580 dst = texture\_sample(unit, coord)
581
582
583 .. opcode:: UP2H - Unpack Two 16-Bit Floats
584
585 .. math::
586
587 dst.x = f16\_to\_f32(src0.x \& 0xffff)
588
589 dst.y = f16\_to\_f32(src0.x >> 16)
590
591 dst.z = f16\_to\_f32(src0.x \& 0xffff)
592
593 dst.w = f16\_to\_f32(src0.x >> 16)
594
595 .. note::
596
597 Considered for removal.
598
599 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
600
601 TBD
602
603 .. note::
604
605 Considered for removal.
606
607 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
608
609 TBD
610
611 .. note::
612
613 Considered for removal.
614
615 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
616
617 TBD
618
619 .. note::
620
621 Considered for removal.
622
623
624 .. opcode:: ARR - Address Register Load With Round
625
626 .. math::
627
628 dst.x = (int) round(src.x)
629
630 dst.y = (int) round(src.y)
631
632 dst.z = (int) round(src.z)
633
634 dst.w = (int) round(src.w)
635
636
637 .. opcode:: SSG - Set Sign
638
639 .. math::
640
641 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
642
643 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
644
645 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
646
647 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
648
649
650 .. opcode:: CMP - Compare
651
652 .. math::
653
654 dst.x = (src0.x < 0) ? src1.x : src2.x
655
656 dst.y = (src0.y < 0) ? src1.y : src2.y
657
658 dst.z = (src0.z < 0) ? src1.z : src2.z
659
660 dst.w = (src0.w < 0) ? src1.w : src2.w
661
662
663 .. opcode:: KILL_IF - Conditional Discard
664
665 Conditional discard. Allowed in fragment shaders only.
666
667 .. math::
668
669 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
670 discard
671 endif
672
673
674 .. opcode:: KILL - Discard
675
676 Unconditional discard. Allowed in fragment shaders only.
677
678
679 .. opcode:: SCS - Sine Cosine
680
681 .. math::
682
683 dst.x = \cos{src.x}
684
685 dst.y = \sin{src.x}
686
687 dst.z = 0
688
689 dst.w = 1
690
691
692 .. opcode:: TXB - Texture Lookup With Bias
693
694 for cube map array textures and shadow cube maps, the bias value
695 cannot be passed in src0.w, and TXB2 must be used instead.
696
697 if the target is a shadow texture, the reference value is always
698 in src.z (this prevents shadow 3d and shadow 2d arrays from
699 using this instruction, but this is not needed).
700
701 .. math::
702
703 coord.x = src0.x
704
705 coord.y = src0.y
706
707 coord.z = src0.z
708
709 coord.w = none
710
711 bias = src0.w
712
713 unit = src1
714
715 dst = texture\_sample(unit, coord, bias)
716
717
718 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
719
720 this is the same as TXB, but uses another reg to encode the
721 lod bias value for cube map arrays and shadow cube maps.
722 Presumably shadow 2d arrays and shadow 3d targets could use
723 this encoding too, but this is not legal.
724
725 shadow cube map arrays are neither possible nor required.
726
727 .. math::
728
729 coord = src0
730
731 bias = src1.x
732
733 unit = src2
734
735 dst = texture\_sample(unit, coord, bias)
736
737
738 .. opcode:: DIV - Divide
739
740 .. math::
741
742 dst.x = \frac{src0.x}{src1.x}
743
744 dst.y = \frac{src0.y}{src1.y}
745
746 dst.z = \frac{src0.z}{src1.z}
747
748 dst.w = \frac{src0.w}{src1.w}
749
750
751 .. opcode:: DP2 - 2-component Dot Product
752
753 This instruction replicates its result.
754
755 .. math::
756
757 dst = src0.x \times src1.x + src0.y \times src1.y
758
759
760 .. opcode:: TEX_LZ - Texture Lookup With LOD = 0
761
762 This is the same as TXL with LOD = 0. Like every texture opcode, it obeys
763 pipe_sampler_view::u.tex.first_level and pipe_sampler_state::min_lod.
764 There is no way to override those two in shaders.
765
766 .. math::
767
768 coord.x = src0.x
769
770 coord.y = src0.y
771
772 coord.z = src0.z
773
774 coord.w = none
775
776 lod = 0
777
778 unit = src1
779
780 dst = texture\_sample(unit, coord, lod)
781
782
783 .. opcode:: TXL - Texture Lookup With explicit LOD
784
785 for cube map array textures, the explicit lod value
786 cannot be passed in src0.w, and TXL2 must be used instead.
787
788 if the target is a shadow texture, the reference value is always
789 in src.z (this prevents shadow 3d / 2d array / cube targets from
790 using this instruction, but this is not needed).
791
792 .. math::
793
794 coord.x = src0.x
795
796 coord.y = src0.y
797
798 coord.z = src0.z
799
800 coord.w = none
801
802 lod = src0.w
803
804 unit = src1
805
806 dst = texture\_sample(unit, coord, lod)
807
808
809 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
810
811 this is the same as TXL, but uses another reg to encode the
812 explicit lod value.
813 Presumably shadow 3d / 2d array / cube targets could use
814 this encoding too, but this is not legal.
815
816 shadow cube map arrays are neither possible nor required.
817
818 .. math::
819
820 coord = src0
821
822 lod = src1.x
823
824 unit = src2
825
826 dst = texture\_sample(unit, coord, lod)
827
828
829 .. opcode:: PUSHA - Push Address Register On Stack
830
831 push(src.x)
832 push(src.y)
833 push(src.z)
834 push(src.w)
835
836 .. note::
837
838 Considered for cleanup.
839
840 .. note::
841
842 Considered for removal.
843
844 .. opcode:: POPA - Pop Address Register From Stack
845
846 dst.w = pop()
847 dst.z = pop()
848 dst.y = pop()
849 dst.x = pop()
850
851 .. note::
852
853 Considered for cleanup.
854
855 .. note::
856
857 Considered for removal.
858
859
860 .. opcode:: CALLNZ - Subroutine Call If Not Zero
861
862 TBD
863
864 .. note::
865
866 Considered for cleanup.
867
868 .. note::
869
870 Considered for removal.
871
872
873 Compute ISA
874 ^^^^^^^^^^^^^^^^^^^^^^^^
875
876 These opcodes are primarily provided for special-use computational shaders.
877 Support for these opcodes indicated by a special pipe capability bit (TBD).
878
879 XXX doesn't look like most of the opcodes really belong here.
880
881 .. opcode:: CEIL - Ceiling
882
883 .. math::
884
885 dst.x = \lceil src.x\rceil
886
887 dst.y = \lceil src.y\rceil
888
889 dst.z = \lceil src.z\rceil
890
891 dst.w = \lceil src.w\rceil
892
893
894 .. opcode:: TRUNC - Truncate
895
896 .. math::
897
898 dst.x = trunc(src.x)
899
900 dst.y = trunc(src.y)
901
902 dst.z = trunc(src.z)
903
904 dst.w = trunc(src.w)
905
906
907 .. opcode:: MOD - Modulus
908
909 .. math::
910
911 dst.x = src0.x \bmod src1.x
912
913 dst.y = src0.y \bmod src1.y
914
915 dst.z = src0.z \bmod src1.z
916
917 dst.w = src0.w \bmod src1.w
918
919
920 .. opcode:: UARL - Integer Address Register Load
921
922 Moves the contents of the source register, assumed to be an integer, into the
923 destination register, which is assumed to be an address (ADDR) register.
924
925
926 .. opcode:: SAD - Sum Of Absolute Differences
927
928 .. math::
929
930 dst.x = |src0.x - src1.x| + src2.x
931
932 dst.y = |src0.y - src1.y| + src2.y
933
934 dst.z = |src0.z - src1.z| + src2.z
935
936 dst.w = |src0.w - src1.w| + src2.w
937
938
939 .. opcode:: TXF - Texel Fetch
940
941 As per NV_gpu_shader4, extract a single texel from a specified texture
942 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
943 four-component signed integer vector used to identify the single texel
944 accessed. 3 components + level. Just like texture instructions, an optional
945 offset vector is provided, which is subject to various driver restrictions
946 (regarding range, source of offsets). This instruction ignores the sampler
947 state.
948
949 TXF(uint_vec coord, int_vec offset).
950
951
952 .. opcode:: TXF_LZ - Texel Fetch
953
954 This is the same as TXF with level = 0. Like TXF, it obeys
955 pipe_sampler_view::u.tex.first_level.
956
957
958 .. opcode:: TXQ - Texture Size Query
959
960 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
961 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
962 depth), 1D array (width, layers), 2D array (width, height, layers).
963 Also return the number of accessible levels (last_level - first_level + 1)
964 in W.
965
966 For components which don't return a resource dimension, their value
967 is undefined.
968
969 .. math::
970
971 lod = src0.x
972
973 dst.x = texture\_width(unit, lod)
974
975 dst.y = texture\_height(unit, lod)
976
977 dst.z = texture\_depth(unit, lod)
978
979 dst.w = texture\_levels(unit)
980
981
982 .. opcode:: TXQS - Texture Samples Query
983
984 This retrieves the number of samples in the texture, and stores it
985 into the x component as an unsigned integer. The other components are
986 undefined. If the texture is not multisampled, this function returns
987 (1, undef, undef, undef).
988
989 .. math::
990
991 dst.x = texture\_samples(unit)
992
993
994 .. opcode:: TG4 - Texture Gather
995
996 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
997 filtering operation and packs them into a single register. Only works with
998 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
999 addressing modes of the sampler and the top level of any mip pyramid are
1000 used. Set W to zero. It behaves like the TEX instruction, but a filtered
1001 sample is not generated. The four samples that contribute to filtering are
1002 placed into xyzw in clockwise order, starting with the (u,v) texture
1003 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
1004 where the magnitude of the deltas are half a texel.
1005
1006 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1007 depth compares, single component selection, and a non-constant offset. It
1008 doesn't allow support for the GL independent offset to get i0,j0. This would
1009 require another CAP is hw can do it natively. For now we lower that before
1010 TGSI.
1011
1012 .. math::
1013
1014 coord = src0
1015
1016 component = src1
1017
1018 dst = texture\_gather4 (unit, coord, component)
1019
1020 (with SM5 - cube array shadow)
1021
1022 .. math::
1023
1024 coord = src0
1025
1026 compare = src1
1027
1028 dst = texture\_gather (uint, coord, compare)
1029
1030 .. opcode:: LODQ - level of detail query
1031
1032 Compute the LOD information that the texture pipe would use to access the
1033 texture. The Y component contains the computed LOD lambda_prime. The X
1034 component contains the LOD that will be accessed, based on min/max lod's
1035 and mipmap filters.
1036
1037 .. math::
1038
1039 coord = src0
1040
1041 dst.xy = lodq(uint, coord);
1042
1043 .. opcode:: CLOCK - retrieve the current shader time
1044
1045 Invoking this instruction multiple times in the same shader should
1046 cause monotonically increasing values to be returned. The values
1047 are implicitly 64-bit, so if fewer than 64 bits of precision are
1048 available, to provide expected wraparound semantics, the value
1049 should be shifted up so that the most significant bit of the time
1050 is the most significant bit of the 64-bit value.
1051
1052 .. math::
1053
1054 dst.xy = clock()
1055
1056
1057 Integer ISA
1058 ^^^^^^^^^^^^^^^^^^^^^^^^
1059 These opcodes are used for integer operations.
1060 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1061
1062
1063 .. opcode:: I2F - Signed Integer To Float
1064
1065 Rounding is unspecified (round to nearest even suggested).
1066
1067 .. math::
1068
1069 dst.x = (float) src.x
1070
1071 dst.y = (float) src.y
1072
1073 dst.z = (float) src.z
1074
1075 dst.w = (float) src.w
1076
1077
1078 .. opcode:: U2F - Unsigned Integer To Float
1079
1080 Rounding is unspecified (round to nearest even suggested).
1081
1082 .. math::
1083
1084 dst.x = (float) src.x
1085
1086 dst.y = (float) src.y
1087
1088 dst.z = (float) src.z
1089
1090 dst.w = (float) src.w
1091
1092
1093 .. opcode:: F2I - Float to Signed Integer
1094
1095 Rounding is towards zero (truncate).
1096 Values outside signed range (including NaNs) produce undefined results.
1097
1098 .. math::
1099
1100 dst.x = (int) src.x
1101
1102 dst.y = (int) src.y
1103
1104 dst.z = (int) src.z
1105
1106 dst.w = (int) src.w
1107
1108
1109 .. opcode:: F2U - Float to Unsigned Integer
1110
1111 Rounding is towards zero (truncate).
1112 Values outside unsigned range (including NaNs) produce undefined results.
1113
1114 .. math::
1115
1116 dst.x = (unsigned) src.x
1117
1118 dst.y = (unsigned) src.y
1119
1120 dst.z = (unsigned) src.z
1121
1122 dst.w = (unsigned) src.w
1123
1124
1125 .. opcode:: UADD - Integer Add
1126
1127 This instruction works the same for signed and unsigned integers.
1128 The low 32bit of the result is returned.
1129
1130 .. math::
1131
1132 dst.x = src0.x + src1.x
1133
1134 dst.y = src0.y + src1.y
1135
1136 dst.z = src0.z + src1.z
1137
1138 dst.w = src0.w + src1.w
1139
1140
1141 .. opcode:: UMAD - Integer Multiply And Add
1142
1143 This instruction works the same for signed and unsigned integers.
1144 The multiplication returns the low 32bit (as does the result itself).
1145
1146 .. math::
1147
1148 dst.x = src0.x \times src1.x + src2.x
1149
1150 dst.y = src0.y \times src1.y + src2.y
1151
1152 dst.z = src0.z \times src1.z + src2.z
1153
1154 dst.w = src0.w \times src1.w + src2.w
1155
1156
1157 .. opcode:: UMUL - Integer Multiply
1158
1159 This instruction works the same for signed and unsigned integers.
1160 The low 32bit of the result is returned.
1161
1162 .. math::
1163
1164 dst.x = src0.x \times src1.x
1165
1166 dst.y = src0.y \times src1.y
1167
1168 dst.z = src0.z \times src1.z
1169
1170 dst.w = src0.w \times src1.w
1171
1172
1173 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1174
1175 The high 32bits of the multiplication of 2 signed integers are returned.
1176
1177 .. math::
1178
1179 dst.x = (src0.x \times src1.x) >> 32
1180
1181 dst.y = (src0.y \times src1.y) >> 32
1182
1183 dst.z = (src0.z \times src1.z) >> 32
1184
1185 dst.w = (src0.w \times src1.w) >> 32
1186
1187
1188 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1189
1190 The high 32bits of the multiplication of 2 unsigned integers are returned.
1191
1192 .. math::
1193
1194 dst.x = (src0.x \times src1.x) >> 32
1195
1196 dst.y = (src0.y \times src1.y) >> 32
1197
1198 dst.z = (src0.z \times src1.z) >> 32
1199
1200 dst.w = (src0.w \times src1.w) >> 32
1201
1202
1203 .. opcode:: IDIV - Signed Integer Division
1204
1205 TBD: behavior for division by zero.
1206
1207 .. math::
1208
1209 dst.x = \frac{src0.x}{src1.x}
1210
1211 dst.y = \frac{src0.y}{src1.y}
1212
1213 dst.z = \frac{src0.z}{src1.z}
1214
1215 dst.w = \frac{src0.w}{src1.w}
1216
1217
1218 .. opcode:: UDIV - Unsigned Integer Division
1219
1220 For division by zero, 0xffffffff is returned.
1221
1222 .. math::
1223
1224 dst.x = \frac{src0.x}{src1.x}
1225
1226 dst.y = \frac{src0.y}{src1.y}
1227
1228 dst.z = \frac{src0.z}{src1.z}
1229
1230 dst.w = \frac{src0.w}{src1.w}
1231
1232
1233 .. opcode:: UMOD - Unsigned Integer Remainder
1234
1235 If second arg is zero, 0xffffffff is returned.
1236
1237 .. math::
1238
1239 dst.x = src0.x \bmod src1.x
1240
1241 dst.y = src0.y \bmod src1.y
1242
1243 dst.z = src0.z \bmod src1.z
1244
1245 dst.w = src0.w \bmod src1.w
1246
1247
1248 .. opcode:: NOT - Bitwise Not
1249
1250 .. math::
1251
1252 dst.x = \sim src.x
1253
1254 dst.y = \sim src.y
1255
1256 dst.z = \sim src.z
1257
1258 dst.w = \sim src.w
1259
1260
1261 .. opcode:: AND - Bitwise And
1262
1263 .. math::
1264
1265 dst.x = src0.x \& src1.x
1266
1267 dst.y = src0.y \& src1.y
1268
1269 dst.z = src0.z \& src1.z
1270
1271 dst.w = src0.w \& src1.w
1272
1273
1274 .. opcode:: OR - Bitwise Or
1275
1276 .. math::
1277
1278 dst.x = src0.x | src1.x
1279
1280 dst.y = src0.y | src1.y
1281
1282 dst.z = src0.z | src1.z
1283
1284 dst.w = src0.w | src1.w
1285
1286
1287 .. opcode:: XOR - Bitwise Xor
1288
1289 .. math::
1290
1291 dst.x = src0.x \oplus src1.x
1292
1293 dst.y = src0.y \oplus src1.y
1294
1295 dst.z = src0.z \oplus src1.z
1296
1297 dst.w = src0.w \oplus src1.w
1298
1299
1300 .. opcode:: IMAX - Maximum of Signed Integers
1301
1302 .. math::
1303
1304 dst.x = max(src0.x, src1.x)
1305
1306 dst.y = max(src0.y, src1.y)
1307
1308 dst.z = max(src0.z, src1.z)
1309
1310 dst.w = max(src0.w, src1.w)
1311
1312
1313 .. opcode:: UMAX - Maximum of Unsigned Integers
1314
1315 .. math::
1316
1317 dst.x = max(src0.x, src1.x)
1318
1319 dst.y = max(src0.y, src1.y)
1320
1321 dst.z = max(src0.z, src1.z)
1322
1323 dst.w = max(src0.w, src1.w)
1324
1325
1326 .. opcode:: IMIN - Minimum of Signed Integers
1327
1328 .. math::
1329
1330 dst.x = min(src0.x, src1.x)
1331
1332 dst.y = min(src0.y, src1.y)
1333
1334 dst.z = min(src0.z, src1.z)
1335
1336 dst.w = min(src0.w, src1.w)
1337
1338
1339 .. opcode:: UMIN - Minimum of Unsigned Integers
1340
1341 .. math::
1342
1343 dst.x = min(src0.x, src1.x)
1344
1345 dst.y = min(src0.y, src1.y)
1346
1347 dst.z = min(src0.z, src1.z)
1348
1349 dst.w = min(src0.w, src1.w)
1350
1351
1352 .. opcode:: SHL - Shift Left
1353
1354 The shift count is masked with 0x1f before the shift is applied.
1355
1356 .. math::
1357
1358 dst.x = src0.x << (0x1f \& src1.x)
1359
1360 dst.y = src0.y << (0x1f \& src1.y)
1361
1362 dst.z = src0.z << (0x1f \& src1.z)
1363
1364 dst.w = src0.w << (0x1f \& src1.w)
1365
1366
1367 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1368
1369 The shift count is masked with 0x1f before the shift is applied.
1370
1371 .. math::
1372
1373 dst.x = src0.x >> (0x1f \& src1.x)
1374
1375 dst.y = src0.y >> (0x1f \& src1.y)
1376
1377 dst.z = src0.z >> (0x1f \& src1.z)
1378
1379 dst.w = src0.w >> (0x1f \& src1.w)
1380
1381
1382 .. opcode:: USHR - Logical Shift Right
1383
1384 The shift count is masked with 0x1f before the shift is applied.
1385
1386 .. math::
1387
1388 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1389
1390 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1391
1392 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1393
1394 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1395
1396
1397 .. opcode:: UCMP - Integer Conditional Move
1398
1399 .. math::
1400
1401 dst.x = src0.x ? src1.x : src2.x
1402
1403 dst.y = src0.y ? src1.y : src2.y
1404
1405 dst.z = src0.z ? src1.z : src2.z
1406
1407 dst.w = src0.w ? src1.w : src2.w
1408
1409
1410
1411 .. opcode:: ISSG - Integer Set Sign
1412
1413 .. math::
1414
1415 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1416
1417 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1418
1419 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1420
1421 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1422
1423
1424
1425 .. opcode:: FSLT - Float Set On Less Than (ordered)
1426
1427 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1428
1429 .. math::
1430
1431 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1432
1433 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1434
1435 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1436
1437 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1438
1439
1440 .. opcode:: ISLT - Signed Integer Set On Less Than
1441
1442 .. math::
1443
1444 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1445
1446 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1447
1448 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1449
1450 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1451
1452
1453 .. opcode:: USLT - Unsigned Integer Set On Less Than
1454
1455 .. math::
1456
1457 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1458
1459 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1460
1461 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1462
1463 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1464
1465
1466 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1467
1468 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1469
1470 .. math::
1471
1472 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1473
1474 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1475
1476 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1477
1478 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1479
1480
1481 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1482
1483 .. math::
1484
1485 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1486
1487 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1488
1489 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1490
1491 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1492
1493
1494 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1495
1496 .. math::
1497
1498 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1499
1500 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1501
1502 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1503
1504 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1505
1506
1507 .. opcode:: FSEQ - Float Set On Equal (ordered)
1508
1509 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1510
1511 .. math::
1512
1513 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1514
1515 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1516
1517 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1518
1519 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1520
1521
1522 .. opcode:: USEQ - Integer Set On Equal
1523
1524 .. math::
1525
1526 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1527
1528 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1529
1530 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1531
1532 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1533
1534
1535 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1536
1537 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1538
1539 .. math::
1540
1541 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1542
1543 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1544
1545 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1546
1547 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1548
1549
1550 .. opcode:: USNE - Integer Set On Not Equal
1551
1552 .. math::
1553
1554 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1555
1556 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1557
1558 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1559
1560 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1561
1562
1563 .. opcode:: INEG - Integer Negate
1564
1565 Two's complement.
1566
1567 .. math::
1568
1569 dst.x = -src.x
1570
1571 dst.y = -src.y
1572
1573 dst.z = -src.z
1574
1575 dst.w = -src.w
1576
1577
1578 .. opcode:: IABS - Integer Absolute Value
1579
1580 .. math::
1581
1582 dst.x = |src.x|
1583
1584 dst.y = |src.y|
1585
1586 dst.z = |src.z|
1587
1588 dst.w = |src.w|
1589
1590 Bitwise ISA
1591 ^^^^^^^^^^^
1592 These opcodes are used for bit-level manipulation of integers.
1593
1594 .. opcode:: IBFE - Signed Bitfield Extract
1595
1596 Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1597 sign-extends them if the high bit of the extracted window is set.
1598
1599 Pseudocode::
1600
1601 def ibfe(value, offset, bits):
1602 if offset < 0 or bits < 0 or offset + bits > 32:
1603 return undefined
1604 if bits == 0: return 0
1605 # Note: >> sign-extends
1606 return (value << (32 - offset - bits)) >> (32 - bits)
1607
1608 .. opcode:: UBFE - Unsigned Bitfield Extract
1609
1610 Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1611 any sign-extension.
1612
1613 Pseudocode::
1614
1615 def ubfe(value, offset, bits):
1616 if offset < 0 or bits < 0 or offset + bits > 32:
1617 return undefined
1618 if bits == 0: return 0
1619 # Note: >> does not sign-extend
1620 return (value << (32 - offset - bits)) >> (32 - bits)
1621
1622 .. opcode:: BFI - Bitfield Insert
1623
1624 Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1625 of 'insert'.
1626
1627 Pseudocode::
1628
1629 def bfi(base, insert, offset, bits):
1630 if offset < 0 or bits < 0 or offset + bits > 32:
1631 return undefined
1632 # << defined such that mask == ~0 when bits == 32, offset == 0
1633 mask = ((1 << bits) - 1) << offset
1634 return ((insert << offset) & mask) | (base & ~mask)
1635
1636 .. opcode:: BREV - Bitfield Reverse
1637
1638 See SM5 instruction BFREV. Reverses the bits of the argument.
1639
1640 .. opcode:: POPC - Population Count
1641
1642 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1643
1644 .. opcode:: LSB - Index of lowest set bit
1645
1646 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1647 bit of the argument. Returns -1 if none are set.
1648
1649 .. opcode:: IMSB - Index of highest non-sign bit
1650
1651 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1652 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1653 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1654 (i.e. for inputs 0 and -1).
1655
1656 .. opcode:: UMSB - Index of highest set bit
1657
1658 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1659 set bit of the argument. Returns -1 if none are set.
1660
1661 Geometry ISA
1662 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1663
1664 These opcodes are only supported in geometry shaders; they have no meaning
1665 in any other type of shader.
1666
1667 .. opcode:: EMIT - Emit
1668
1669 Generate a new vertex for the current primitive into the specified vertex
1670 stream using the values in the output registers.
1671
1672
1673 .. opcode:: ENDPRIM - End Primitive
1674
1675 Complete the current primitive in the specified vertex stream (consisting of
1676 the emitted vertices), and start a new one.
1677
1678
1679 GLSL ISA
1680 ^^^^^^^^^^
1681
1682 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1683 opcodes is determined by a special capability bit, ``GLSL``.
1684 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1685
1686 .. opcode:: CAL - Subroutine Call
1687
1688 push(pc)
1689 pc = target
1690
1691
1692 .. opcode:: RET - Subroutine Call Return
1693
1694 pc = pop()
1695
1696
1697 .. opcode:: CONT - Continue
1698
1699 Unconditionally moves the point of execution to the instruction after the
1700 last bgnloop. The instruction must appear within a bgnloop/endloop.
1701
1702 .. note::
1703
1704 Support for CONT is determined by a special capability bit,
1705 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1706
1707
1708 .. opcode:: BGNLOOP - Begin a Loop
1709
1710 Start a loop. Must have a matching endloop.
1711
1712
1713 .. opcode:: BGNSUB - Begin Subroutine
1714
1715 Starts definition of a subroutine. Must have a matching endsub.
1716
1717
1718 .. opcode:: ENDLOOP - End a Loop
1719
1720 End a loop started with bgnloop.
1721
1722
1723 .. opcode:: ENDSUB - End Subroutine
1724
1725 Ends definition of a subroutine.
1726
1727
1728 .. opcode:: NOP - No Operation
1729
1730 Do nothing.
1731
1732
1733 .. opcode:: BRK - Break
1734
1735 Unconditionally moves the point of execution to the instruction after the
1736 next endloop or endswitch. The instruction must appear within a loop/endloop
1737 or switch/endswitch.
1738
1739
1740 .. opcode:: BREAKC - Break Conditional
1741
1742 Conditionally moves the point of execution to the instruction after the
1743 next endloop or endswitch. The instruction must appear within a loop/endloop
1744 or switch/endswitch.
1745 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1746 as an integer register.
1747
1748 .. note::
1749
1750 Considered for removal as it's quite inconsistent wrt other opcodes
1751 (could emulate with UIF/BRK/ENDIF).
1752
1753
1754 .. opcode:: IF - Float If
1755
1756 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1757
1758 src0.x != 0.0
1759
1760 where src0.x is interpreted as a floating point register.
1761
1762
1763 .. opcode:: UIF - Bitwise If
1764
1765 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1766
1767 src0.x != 0
1768
1769 where src0.x is interpreted as an integer register.
1770
1771
1772 .. opcode:: ELSE - Else
1773
1774 Starts an else block, after an IF or UIF statement.
1775
1776
1777 .. opcode:: ENDIF - End If
1778
1779 Ends an IF or UIF block.
1780
1781
1782 .. opcode:: SWITCH - Switch
1783
1784 Starts a C-style switch expression. The switch consists of one or multiple
1785 CASE statements, and at most one DEFAULT statement. Execution of a statement
1786 ends when a BRK is hit, but just like in C falling through to other cases
1787 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1788 just as last statement, and fallthrough is allowed into/from it.
1789 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1790
1791 Example::
1792
1793 SWITCH src[0].x
1794 CASE src[0].x
1795 (some instructions here)
1796 (optional BRK here)
1797 DEFAULT
1798 (some instructions here)
1799 (optional BRK here)
1800 CASE src[0].x
1801 (some instructions here)
1802 (optional BRK here)
1803 ENDSWITCH
1804
1805
1806 .. opcode:: CASE - Switch case
1807
1808 This represents a switch case label. The src arg must be an integer immediate.
1809
1810
1811 .. opcode:: DEFAULT - Switch default
1812
1813 This represents the default case in the switch, which is taken if no other
1814 case matches.
1815
1816
1817 .. opcode:: ENDSWITCH - End of switch
1818
1819 Ends a switch expression.
1820
1821
1822 Interpolation ISA
1823 ^^^^^^^^^^^^^^^^^
1824
1825 The interpolation instructions allow an input to be interpolated in a
1826 different way than its declaration. This corresponds to the GLSL 4.00
1827 interpolateAt* functions. The first argument of each of these must come from
1828 ``TGSI_FILE_INPUT``.
1829
1830 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1831
1832 Interpolates the varying specified by src0 at the centroid
1833
1834 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1835
1836 Interpolates the varying specified by src0 at the sample id specified by
1837 src1.x (interpreted as an integer)
1838
1839 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1840
1841 Interpolates the varying specified by src0 at the offset src1.xy from the
1842 pixel center (interpreted as floats)
1843
1844
1845 .. _doubleopcodes:
1846
1847 Double ISA
1848 ^^^^^^^^^^^^^^^
1849
1850 The double-precision opcodes reinterpret four-component vectors into
1851 two-component vectors with doubled precision in each component.
1852
1853 .. opcode:: DABS - Absolute
1854
1855 .. math::
1856
1857 dst.xy = |src0.xy|
1858
1859 dst.zw = |src0.zw|
1860
1861 .. opcode:: DADD - Add
1862
1863 .. math::
1864
1865 dst.xy = src0.xy + src1.xy
1866
1867 dst.zw = src0.zw + src1.zw
1868
1869 .. opcode:: DSEQ - Set on Equal
1870
1871 .. math::
1872
1873 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1874
1875 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1876
1877 .. opcode:: DSNE - Set on Equal
1878
1879 .. math::
1880
1881 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1882
1883 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1884
1885 .. opcode:: DSLT - Set on Less than
1886
1887 .. math::
1888
1889 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1890
1891 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1892
1893 .. opcode:: DSGE - Set on Greater equal
1894
1895 .. math::
1896
1897 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1898
1899 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1900
1901 .. opcode:: DFRAC - Fraction
1902
1903 .. math::
1904
1905 dst.xy = src.xy - \lfloor src.xy\rfloor
1906
1907 dst.zw = src.zw - \lfloor src.zw\rfloor
1908
1909 .. opcode:: DTRUNC - Truncate
1910
1911 .. math::
1912
1913 dst.xy = trunc(src.xy)
1914
1915 dst.zw = trunc(src.zw)
1916
1917 .. opcode:: DCEIL - Ceiling
1918
1919 .. math::
1920
1921 dst.xy = \lceil src.xy\rceil
1922
1923 dst.zw = \lceil src.zw\rceil
1924
1925 .. opcode:: DFLR - Floor
1926
1927 .. math::
1928
1929 dst.xy = \lfloor src.xy\rfloor
1930
1931 dst.zw = \lfloor src.zw\rfloor
1932
1933 .. opcode:: DROUND - Fraction
1934
1935 .. math::
1936
1937 dst.xy = round(src.xy)
1938
1939 dst.zw = round(src.zw)
1940
1941 .. opcode:: DSSG - Set Sign
1942
1943 .. math::
1944
1945 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1946
1947 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1948
1949 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1950
1951 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1952 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1953 :math:`dst1 \times 2^{dst0} = src` .
1954
1955 .. math::
1956
1957 dst0.xy = exp(src.xy)
1958
1959 dst1.xy = frac(src.xy)
1960
1961 dst0.zw = exp(src.zw)
1962
1963 dst1.zw = frac(src.zw)
1964
1965 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1966
1967 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1968 source is an integer.
1969
1970 .. math::
1971
1972 dst.xy = src0.xy \times 2^{src1.x}
1973
1974 dst.zw = src0.zw \times 2^{src1.y}
1975
1976 .. opcode:: DMIN - Minimum
1977
1978 .. math::
1979
1980 dst.xy = min(src0.xy, src1.xy)
1981
1982 dst.zw = min(src0.zw, src1.zw)
1983
1984 .. opcode:: DMAX - Maximum
1985
1986 .. math::
1987
1988 dst.xy = max(src0.xy, src1.xy)
1989
1990 dst.zw = max(src0.zw, src1.zw)
1991
1992 .. opcode:: DMUL - Multiply
1993
1994 .. math::
1995
1996 dst.xy = src0.xy \times src1.xy
1997
1998 dst.zw = src0.zw \times src1.zw
1999
2000
2001 .. opcode:: DMAD - Multiply And Add
2002
2003 .. math::
2004
2005 dst.xy = src0.xy \times src1.xy + src2.xy
2006
2007 dst.zw = src0.zw \times src1.zw + src2.zw
2008
2009
2010 .. opcode:: DFMA - Fused Multiply-Add
2011
2012 Perform a * b + c with no intermediate rounding step.
2013
2014 .. math::
2015
2016 dst.xy = src0.xy \times src1.xy + src2.xy
2017
2018 dst.zw = src0.zw \times src1.zw + src2.zw
2019
2020
2021 .. opcode:: DDIV - Divide
2022
2023 .. math::
2024
2025 dst.xy = \frac{src0.xy}{src1.xy}
2026
2027 dst.zw = \frac{src0.zw}{src1.zw}
2028
2029
2030 .. opcode:: DRCP - Reciprocal
2031
2032 .. math::
2033
2034 dst.xy = \frac{1}{src.xy}
2035
2036 dst.zw = \frac{1}{src.zw}
2037
2038 .. opcode:: DSQRT - Square Root
2039
2040 .. math::
2041
2042 dst.xy = \sqrt{src.xy}
2043
2044 dst.zw = \sqrt{src.zw}
2045
2046 .. opcode:: DRSQ - Reciprocal Square Root
2047
2048 .. math::
2049
2050 dst.xy = \frac{1}{\sqrt{src.xy}}
2051
2052 dst.zw = \frac{1}{\sqrt{src.zw}}
2053
2054 .. opcode:: F2D - Float to Double
2055
2056 .. math::
2057
2058 dst.xy = double(src0.x)
2059
2060 dst.zw = double(src0.y)
2061
2062 .. opcode:: D2F - Double to Float
2063
2064 .. math::
2065
2066 dst.x = float(src0.xy)
2067
2068 dst.y = float(src0.zw)
2069
2070 .. opcode:: I2D - Int to Double
2071
2072 .. math::
2073
2074 dst.xy = double(src0.x)
2075
2076 dst.zw = double(src0.y)
2077
2078 .. opcode:: D2I - Double to Int
2079
2080 .. math::
2081
2082 dst.x = int(src0.xy)
2083
2084 dst.y = int(src0.zw)
2085
2086 .. opcode:: U2D - Unsigned Int to Double
2087
2088 .. math::
2089
2090 dst.xy = double(src0.x)
2091
2092 dst.zw = double(src0.y)
2093
2094 .. opcode:: D2U - Double to Unsigned Int
2095
2096 .. math::
2097
2098 dst.x = unsigned(src0.xy)
2099
2100 dst.y = unsigned(src0.zw)
2101
2102 64-bit Integer ISA
2103 ^^^^^^^^^^^^^^^^^^
2104
2105 The 64-bit integer opcodes reinterpret four-component vectors into
2106 two-component vectors with 64-bits in each component.
2107
2108 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2109
2110 .. math::
2111
2112 dst.xy = |src0.xy|
2113
2114 dst.zw = |src0.zw|
2115
2116 .. opcode:: I64NEG - 64-bit Integer Negate
2117
2118 Two's complement.
2119
2120 .. math::
2121
2122 dst.xy = -src.xy
2123
2124 dst.zw = -src.zw
2125
2126 .. opcode:: I64SSG - 64-bit Integer Set Sign
2127
2128 .. math::
2129
2130 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2131
2132 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2133
2134 .. opcode:: U64ADD - 64-bit Integer Add
2135
2136 .. math::
2137
2138 dst.xy = src0.xy + src1.xy
2139
2140 dst.zw = src0.zw + src1.zw
2141
2142 .. opcode:: U64MUL - 64-bit Integer Multiply
2143
2144 .. math::
2145
2146 dst.xy = src0.xy * src1.xy
2147
2148 dst.zw = src0.zw * src1.zw
2149
2150 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2151
2152 .. math::
2153
2154 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2155
2156 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2157
2158 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2159
2160 .. math::
2161
2162 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2163
2164 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2165
2166 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2167
2168 .. math::
2169
2170 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2171
2172 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2173
2174 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2175
2176 .. math::
2177
2178 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2179
2180 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2181
2182 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2183
2184 .. math::
2185
2186 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2187
2188 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2189
2190 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2191
2192 .. math::
2193
2194 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2195
2196 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2197
2198 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2199
2200 .. math::
2201
2202 dst.xy = min(src0.xy, src1.xy)
2203
2204 dst.zw = min(src0.zw, src1.zw)
2205
2206 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2207
2208 .. math::
2209
2210 dst.xy = min(src0.xy, src1.xy)
2211
2212 dst.zw = min(src0.zw, src1.zw)
2213
2214 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2215
2216 .. math::
2217
2218 dst.xy = max(src0.xy, src1.xy)
2219
2220 dst.zw = max(src0.zw, src1.zw)
2221
2222 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2223
2224 .. math::
2225
2226 dst.xy = max(src0.xy, src1.xy)
2227
2228 dst.zw = max(src0.zw, src1.zw)
2229
2230 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2231
2232 The shift count is masked with 0x3f before the shift is applied.
2233
2234 .. math::
2235
2236 dst.xy = src0.xy << (0x3f \& src1.x)
2237
2238 dst.zw = src0.zw << (0x3f \& src1.y)
2239
2240 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2241
2242 The shift count is masked with 0x3f before the shift is applied.
2243
2244 .. math::
2245
2246 dst.xy = src0.xy >> (0x3f \& src1.x)
2247
2248 dst.zw = src0.zw >> (0x3f \& src1.y)
2249
2250 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2251
2252 The shift count is masked with 0x3f before the shift is applied.
2253
2254 .. math::
2255
2256 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2257
2258 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2259
2260 .. opcode:: I64DIV - 64-bit Signed Integer Division
2261
2262 .. math::
2263
2264 dst.xy = \frac{src0.xy}{src1.xy}
2265
2266 dst.zw = \frac{src0.zw}{src1.zw}
2267
2268 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2269
2270 .. math::
2271
2272 dst.xy = \frac{src0.xy}{src1.xy}
2273
2274 dst.zw = \frac{src0.zw}{src1.zw}
2275
2276 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2277
2278 .. math::
2279
2280 dst.xy = src0.xy \bmod src1.xy
2281
2282 dst.zw = src0.zw \bmod src1.zw
2283
2284 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2285
2286 .. math::
2287
2288 dst.xy = src0.xy \bmod src1.xy
2289
2290 dst.zw = src0.zw \bmod src1.zw
2291
2292 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2293
2294 .. math::
2295
2296 dst.xy = (uint64_t) src0.x
2297
2298 dst.zw = (uint64_t) src0.y
2299
2300 .. opcode:: F2I64 - Float to 64-bit Int
2301
2302 .. math::
2303
2304 dst.xy = (int64_t) src0.x
2305
2306 dst.zw = (int64_t) src0.y
2307
2308 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2309
2310 This is a zero extension.
2311
2312 .. math::
2313
2314 dst.xy = (uint64_t) src0.x
2315
2316 dst.zw = (uint64_t) src0.y
2317
2318 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2319
2320 This is a sign extension.
2321
2322 .. math::
2323
2324 dst.xy = (int64_t) src0.x
2325
2326 dst.zw = (int64_t) src0.y
2327
2328 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2329
2330 .. math::
2331
2332 dst.xy = (uint64_t) src0.xy
2333
2334 dst.zw = (uint64_t) src0.zw
2335
2336 .. opcode:: D2I64 - Double to 64-bit Int
2337
2338 .. math::
2339
2340 dst.xy = (int64_t) src0.xy
2341
2342 dst.zw = (int64_t) src0.zw
2343
2344 .. opcode:: U642F - 64-bit unsigned integer to float
2345
2346 .. math::
2347
2348 dst.x = (float) src0.xy
2349
2350 dst.y = (float) src0.zw
2351
2352 .. opcode:: I642F - 64-bit Int to Float
2353
2354 .. math::
2355
2356 dst.x = (float) src0.xy
2357
2358 dst.y = (float) src0.zw
2359
2360 .. opcode:: U642D - 64-bit unsigned integer to double
2361
2362 .. math::
2363
2364 dst.xy = (double) src0.xy
2365
2366 dst.zw = (double) src0.zw
2367
2368 .. opcode:: I642D - 64-bit Int to double
2369
2370 .. math::
2371
2372 dst.xy = (double) src0.xy
2373
2374 dst.zw = (double) src0.zw
2375
2376 .. _samplingopcodes:
2377
2378 Resource Sampling Opcodes
2379 ^^^^^^^^^^^^^^^^^^^^^^^^^
2380
2381 Those opcodes follow very closely semantics of the respective Direct3D
2382 instructions. If in doubt double check Direct3D documentation.
2383 Note that the swizzle on SVIEW (src1) determines texel swizzling
2384 after lookup.
2385
2386 .. opcode:: SAMPLE
2387
2388 Using provided address, sample data from the specified texture using the
2389 filtering mode identified by the given sampler. The source data may come from
2390 any resource type other than buffers.
2391
2392 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2393
2394 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2395
2396 .. opcode:: SAMPLE_I
2397
2398 Simplified alternative to the SAMPLE instruction. Using the provided
2399 integer address, SAMPLE_I fetches data from the specified sampler view
2400 without any filtering. The source data may come from any resource type
2401 other than CUBE.
2402
2403 Syntax: ``SAMPLE_I dst, address, sampler_view``
2404
2405 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2406
2407 The 'address' is specified as unsigned integers. If the 'address' is out of
2408 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2409 components. As such the instruction doesn't honor address wrap modes, in
2410 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2411 address.w always provides an unsigned integer mipmap level. If the value is
2412 out of the range then the instruction always returns 0 in all components.
2413 address.yz are ignored for buffers and 1d textures. address.z is ignored
2414 for 1d texture arrays and 2d textures.
2415
2416 For 1D texture arrays address.y provides the array index (also as unsigned
2417 integer). If the value is out of the range of available array indices
2418 [0... (array size - 1)] then the opcode always returns 0 in all components.
2419 For 2D texture arrays address.z provides the array index, otherwise it
2420 exhibits the same behavior as in the case for 1D texture arrays. The exact
2421 semantics of the source address are presented in the table below:
2422
2423 +---------------------------+----+-----+-----+---------+
2424 | resource type | X | Y | Z | W |
2425 +===========================+====+=====+=====+=========+
2426 | ``PIPE_BUFFER`` | x | | | ignored |
2427 +---------------------------+----+-----+-----+---------+
2428 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2429 +---------------------------+----+-----+-----+---------+
2430 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2431 +---------------------------+----+-----+-----+---------+
2432 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2433 +---------------------------+----+-----+-----+---------+
2434 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2435 +---------------------------+----+-----+-----+---------+
2436 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2437 +---------------------------+----+-----+-----+---------+
2438 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2439 +---------------------------+----+-----+-----+---------+
2440 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2441 +---------------------------+----+-----+-----+---------+
2442
2443 Where 'mpl' is a mipmap level and 'idx' is the array index.
2444
2445 .. opcode:: SAMPLE_I_MS
2446
2447 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2448
2449 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2450
2451 .. opcode:: SAMPLE_B
2452
2453 Just like the SAMPLE instruction with the exception that an additional bias
2454 is applied to the level of detail computed as part of the instruction
2455 execution.
2456
2457 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2458
2459 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2460
2461 .. opcode:: SAMPLE_C
2462
2463 Similar to the SAMPLE instruction but it performs a comparison filter. The
2464 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2465 additional float32 operand, reference value, which must be a register with
2466 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2467 current samplers compare_func (in pipe_sampler_state) to compare reference
2468 value against the red component value for the surce resource at each texel
2469 that the currently configured texture filter covers based on the provided
2470 coordinates.
2471
2472 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2473
2474 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2475
2476 .. opcode:: SAMPLE_C_LZ
2477
2478 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2479 for level-zero.
2480
2481 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2482
2483 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2484
2485
2486 .. opcode:: SAMPLE_D
2487
2488 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2489 the source address in the x direction and the y direction are provided by
2490 extra parameters.
2491
2492 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2493
2494 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2495
2496 .. opcode:: SAMPLE_L
2497
2498 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2499 directly as a scalar value, representing no anisotropy.
2500
2501 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2502
2503 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2504
2505 .. opcode:: GATHER4
2506
2507 Gathers the four texels to be used in a bi-linear filtering operation and
2508 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2509 and cubemaps arrays. For 2D textures, only the addressing modes of the
2510 sampler and the top level of any mip pyramid are used. Set W to zero. It
2511 behaves like the SAMPLE instruction, but a filtered sample is not
2512 generated. The four samples that contribute to filtering are placed into
2513 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2514 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2515 magnitude of the deltas are half a texel.
2516
2517
2518 .. opcode:: SVIEWINFO
2519
2520 Query the dimensions of a given sampler view. dst receives width, height,
2521 depth or array size and number of mipmap levels as int4. The dst can have a
2522 writemask which will specify what info is the caller interested in.
2523
2524 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2525
2526 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2527
2528 src_mip_level is an unsigned integer scalar. If it's out of range then
2529 returns 0 for width, height and depth/array size but the total number of
2530 mipmap is still returned correctly for the given sampler view. The returned
2531 width, height and depth values are for the mipmap level selected by the
2532 src_mip_level and are in the number of texels. For 1d texture array width
2533 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2534 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2535 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2536 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2537 resinfo allowing swizzling dst values is ignored (due to the interaction
2538 with rcpfloat modifier which requires some swizzle handling in the state
2539 tracker anyway).
2540
2541 .. opcode:: SAMPLE_POS
2542
2543 Query the position of a sample in the given resource or render target
2544 when per-sample fragment shading is in effect.
2545
2546 Syntax: ``SAMPLE_POS dst, source, sample_index``
2547
2548 dst receives float4 (x, y, undef, undef) indicated where the sample is
2549 located. Sample locations are in the range [0, 1] where 0.5 is the center
2550 of the fragment.
2551
2552 source is either a sampler view (to indicate a shader resource) or temp
2553 register (to indicate the render target). The source register may have
2554 an optional swizzle to apply to the returned result
2555
2556 sample_index is an integer scalar indicating which sample position is to
2557 be queried.
2558
2559 If per-sample shading is not in effect or the source resource or render
2560 target is not multisampled, the result is (0.5, 0.5, undef, undef).
2561
2562 NOTE: no driver has implemented this opcode yet (and no state tracker
2563 emits it). This information is subject to change.
2564
2565 .. opcode:: SAMPLE_INFO
2566
2567 Query the number of samples in a multisampled resource or render target.
2568
2569 Syntax: ``SAMPLE_INFO dst, source``
2570
2571 dst receives int4 (n, 0, 0, 0) where n is the number of samples in a
2572 resource or the render target.
2573
2574 source is either a sampler view (to indicate a shader resource) or temp
2575 register (to indicate the render target). The source register may have
2576 an optional swizzle to apply to the returned result
2577
2578 If per-sample shading is not in effect or the source resource or render
2579 target is not multisampled, the result is (1, 0, 0, 0).
2580
2581 NOTE: no driver has implemented this opcode yet (and no state tracker
2582 emits it). This information is subject to change.
2583
2584 .. _resourceopcodes:
2585
2586 Resource Access Opcodes
2587 ^^^^^^^^^^^^^^^^^^^^^^^
2588
2589 For these opcodes, the resource can be a BUFFER, IMAGE, or MEMORY.
2590
2591 .. opcode:: LOAD - Fetch data from a shader buffer or image
2592
2593 Syntax: ``LOAD dst, resource, address``
2594
2595 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2596
2597 Using the provided integer address, LOAD fetches data
2598 from the specified buffer or texture without any
2599 filtering.
2600
2601 The 'address' is specified as a vector of unsigned
2602 integers. If the 'address' is out of range the result
2603 is unspecified.
2604
2605 Only the first mipmap level of a resource can be read
2606 from using this instruction.
2607
2608 For 1D or 2D texture arrays, the array index is
2609 provided as an unsigned integer in address.y or
2610 address.z, respectively. address.yz are ignored for
2611 buffers and 1D textures. address.z is ignored for 1D
2612 texture arrays and 2D textures. address.w is always
2613 ignored.
2614
2615 A swizzle suffix may be added to the resource argument
2616 this will cause the resource data to be swizzled accordingly.
2617
2618 .. opcode:: STORE - Write data to a shader resource
2619
2620 Syntax: ``STORE resource, address, src``
2621
2622 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2623
2624 Using the provided integer address, STORE writes data
2625 to the specified buffer or texture.
2626
2627 The 'address' is specified as a vector of unsigned
2628 integers. If the 'address' is out of range the result
2629 is unspecified.
2630
2631 Only the first mipmap level of a resource can be
2632 written to using this instruction.
2633
2634 For 1D or 2D texture arrays, the array index is
2635 provided as an unsigned integer in address.y or
2636 address.z, respectively. address.yz are ignored for
2637 buffers and 1D textures. address.z is ignored for 1D
2638 texture arrays and 2D textures. address.w is always
2639 ignored.
2640
2641 .. opcode:: RESQ - Query information about a resource
2642
2643 Syntax: ``RESQ dst, resource``
2644
2645 Example: ``RESQ TEMP[0], BUFFER[0]``
2646
2647 Returns information about the buffer or image resource. For buffer
2648 resources, the size (in bytes) is returned in the x component. For
2649 image resources, .xyz will contain the width/height/layers of the
2650 image, while .w will contain the number of samples for multi-sampled
2651 images.
2652
2653 .. opcode:: FBFETCH - Load data from framebuffer
2654
2655 Syntax: ``FBFETCH dst, output``
2656
2657 Example: ``FBFETCH TEMP[0], OUT[0]``
2658
2659 This is only valid on ``COLOR`` semantic outputs. Returns the color
2660 of the current position in the framebuffer from before this fragment
2661 shader invocation. May return the same value from multiple calls for
2662 a particular output within a single invocation. Note that result may
2663 be undefined if a fragment is drawn multiple times without a blend
2664 barrier in between.
2665
2666
2667 .. _threadsyncopcodes:
2668
2669 Inter-thread synchronization opcodes
2670 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2671
2672 These opcodes are intended for communication between threads running
2673 within the same compute grid. For now they're only valid in compute
2674 programs.
2675
2676 .. opcode:: MFENCE - Memory fence
2677
2678 Syntax: ``MFENCE resource``
2679
2680 Example: ``MFENCE RES[0]``
2681
2682 This opcode forces strong ordering between any memory access
2683 operations that affect the specified resource. This means that
2684 previous loads and stores (and only those) will be performed and
2685 visible to other threads before the program execution continues.
2686
2687
2688 .. opcode:: LFENCE - Load memory fence
2689
2690 Syntax: ``LFENCE resource``
2691
2692 Example: ``LFENCE RES[0]``
2693
2694 Similar to MFENCE, but it only affects the ordering of memory loads.
2695
2696
2697 .. opcode:: SFENCE - Store memory fence
2698
2699 Syntax: ``SFENCE resource``
2700
2701 Example: ``SFENCE RES[0]``
2702
2703 Similar to MFENCE, but it only affects the ordering of memory stores.
2704
2705
2706 .. opcode:: BARRIER - Thread group barrier
2707
2708 ``BARRIER``
2709
2710 This opcode suspends the execution of the current thread until all
2711 the remaining threads in the working group reach the same point of
2712 the program. Results are unspecified if any of the remaining
2713 threads terminates or never reaches an executed BARRIER instruction.
2714
2715 .. opcode:: MEMBAR - Memory barrier
2716
2717 ``MEMBAR type``
2718
2719 This opcode waits for the completion of all memory accesses based on
2720 the type passed in. The type is an immediate bitfield with the following
2721 meaning:
2722
2723 Bit 0: Shader storage buffers
2724 Bit 1: Atomic buffers
2725 Bit 2: Images
2726 Bit 3: Shared memory
2727 Bit 4: Thread group
2728
2729 These may be passed in in any combination. An implementation is free to not
2730 distinguish between these as it sees fit. However these map to all the
2731 possibilities made available by GLSL.
2732
2733 .. _atomopcodes:
2734
2735 Atomic opcodes
2736 ^^^^^^^^^^^^^^
2737
2738 These opcodes provide atomic variants of some common arithmetic and
2739 logical operations. In this context atomicity means that another
2740 concurrent memory access operation that affects the same memory
2741 location is guaranteed to be performed strictly before or after the
2742 entire execution of the atomic operation. The resource may be a BUFFER,
2743 IMAGE, or MEMORY. In the case of an image, the offset works the same as for
2744 ``LOAD`` and ``STORE``, specified above. These atomic operations may
2745 only be used with 32-bit integer image formats.
2746
2747 .. opcode:: ATOMUADD - Atomic integer addition
2748
2749 Syntax: ``ATOMUADD dst, resource, offset, src``
2750
2751 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2752
2753 The following operation is performed atomically:
2754
2755 .. math::
2756
2757 dst_x = resource[offset]
2758
2759 resource[offset] = dst_x + src_x
2760
2761
2762 .. opcode:: ATOMXCHG - Atomic exchange
2763
2764 Syntax: ``ATOMXCHG dst, resource, offset, src``
2765
2766 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2767
2768 The following operation is performed atomically:
2769
2770 .. math::
2771
2772 dst_x = resource[offset]
2773
2774 resource[offset] = src_x
2775
2776
2777 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2778
2779 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2780
2781 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2782
2783 The following operation is performed atomically:
2784
2785 .. math::
2786
2787 dst_x = resource[offset]
2788
2789 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2790
2791
2792 .. opcode:: ATOMAND - Atomic bitwise And
2793
2794 Syntax: ``ATOMAND dst, resource, offset, src``
2795
2796 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2797
2798 The following operation is performed atomically:
2799
2800 .. math::
2801
2802 dst_x = resource[offset]
2803
2804 resource[offset] = dst_x \& src_x
2805
2806
2807 .. opcode:: ATOMOR - Atomic bitwise Or
2808
2809 Syntax: ``ATOMOR dst, resource, offset, src``
2810
2811 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2812
2813 The following operation is performed atomically:
2814
2815 .. math::
2816
2817 dst_x = resource[offset]
2818
2819 resource[offset] = dst_x | src_x
2820
2821
2822 .. opcode:: ATOMXOR - Atomic bitwise Xor
2823
2824 Syntax: ``ATOMXOR dst, resource, offset, src``
2825
2826 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2827
2828 The following operation is performed atomically:
2829
2830 .. math::
2831
2832 dst_x = resource[offset]
2833
2834 resource[offset] = dst_x \oplus src_x
2835
2836
2837 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2838
2839 Syntax: ``ATOMUMIN dst, resource, offset, src``
2840
2841 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2842
2843 The following operation is performed atomically:
2844
2845 .. math::
2846
2847 dst_x = resource[offset]
2848
2849 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2850
2851
2852 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2853
2854 Syntax: ``ATOMUMAX dst, resource, offset, src``
2855
2856 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2857
2858 The following operation is performed atomically:
2859
2860 .. math::
2861
2862 dst_x = resource[offset]
2863
2864 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2865
2866
2867 .. opcode:: ATOMIMIN - Atomic signed minimum
2868
2869 Syntax: ``ATOMIMIN dst, resource, offset, src``
2870
2871 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2872
2873 The following operation is performed atomically:
2874
2875 .. math::
2876
2877 dst_x = resource[offset]
2878
2879 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2880
2881
2882 .. opcode:: ATOMIMAX - Atomic signed maximum
2883
2884 Syntax: ``ATOMIMAX dst, resource, offset, src``
2885
2886 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2887
2888 The following operation is performed atomically:
2889
2890 .. math::
2891
2892 dst_x = resource[offset]
2893
2894 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2895
2896
2897 .. _interlaneopcodes:
2898
2899 Inter-lane opcodes
2900 ^^^^^^^^^^^^^^^^^^
2901
2902 These opcodes reduce the given value across the shader invocations
2903 running in the current SIMD group. Every thread in the subgroup will receive
2904 the same result. The BALLOT operations accept a single-channel argument that
2905 is treated as a boolean and produce a 64-bit value.
2906
2907 .. opcode:: VOTE_ANY - Value is set in any of the active invocations
2908
2909 Syntax: ``VOTE_ANY dst, value``
2910
2911 Example: ``VOTE_ANY TEMP[0].x, TEMP[1].x``
2912
2913
2914 .. opcode:: VOTE_ALL - Value is set in all of the active invocations
2915
2916 Syntax: ``VOTE_ALL dst, value``
2917
2918 Example: ``VOTE_ALL TEMP[0].x, TEMP[1].x``
2919
2920
2921 .. opcode:: VOTE_EQ - Value is the same in all of the active invocations
2922
2923 Syntax: ``VOTE_EQ dst, value``
2924
2925 Example: ``VOTE_EQ TEMP[0].x, TEMP[1].x``
2926
2927
2928 .. opcode:: BALLOT - Lanemask of whether the value is set in each active
2929 invocation
2930
2931 Syntax: ``BALLOT dst, value``
2932
2933 Example: ``BALLOT TEMP[0].xy, TEMP[1].x``
2934
2935 When the argument is a constant true, this produces a bitmask of active
2936 invocations. In fragment shaders, this can include helper invocations
2937 (invocations whose outputs and writes to memory are discarded, but which
2938 are used to compute derivatives).
2939
2940
2941 .. opcode:: READ_FIRST - Broadcast the value from the first active
2942 invocation to all active lanes
2943
2944 Syntax: ``READ_FIRST dst, value``
2945
2946 Example: ``READ_FIRST TEMP[0], TEMP[1]``
2947
2948
2949 .. opcode:: READ_INVOC - Retrieve the value from the given invocation
2950 (need not be uniform)
2951
2952 Syntax: ``READ_INVOC dst, value, invocation``
2953
2954 Example: ``READ_INVOC TEMP[0].xy, TEMP[1].xy, TEMP[2].x``
2955
2956 invocation.x controls the invocation number to read from for all channels.
2957 The invocation number must be the same across all active invocations in a
2958 sub-group; otherwise, the results are undefined.
2959
2960
2961 Explanation of symbols used
2962 ------------------------------
2963
2964
2965 Functions
2966 ^^^^^^^^^^^^^^
2967
2968
2969 :math:`|x|` Absolute value of `x`.
2970
2971 :math:`\lceil x \rceil` Ceiling of `x`.
2972
2973 clamp(x,y,z) Clamp x between y and z.
2974 (x < y) ? y : (x > z) ? z : x
2975
2976 :math:`\lfloor x\rfloor` Floor of `x`.
2977
2978 :math:`\log_2{x}` Logarithm of `x`, base 2.
2979
2980 max(x,y) Maximum of x and y.
2981 (x > y) ? x : y
2982
2983 min(x,y) Minimum of x and y.
2984 (x < y) ? x : y
2985
2986 partialx(x) Derivative of x relative to fragment's X.
2987
2988 partialy(x) Derivative of x relative to fragment's Y.
2989
2990 pop() Pop from stack.
2991
2992 :math:`x^y` `x` to the power `y`.
2993
2994 push(x) Push x on stack.
2995
2996 round(x) Round x.
2997
2998 trunc(x) Truncate x, i.e. drop the fraction bits.
2999
3000
3001 Keywords
3002 ^^^^^^^^^^^^^
3003
3004
3005 discard Discard fragment.
3006
3007 pc Program counter.
3008
3009 target Label of target instruction.
3010
3011
3012 Other tokens
3013 ---------------
3014
3015
3016 Declaration
3017 ^^^^^^^^^^^
3018
3019
3020 Declares a register that is will be referenced as an operand in Instruction
3021 tokens.
3022
3023 File field contains register file that is being declared and is one
3024 of TGSI_FILE.
3025
3026 UsageMask field specifies which of the register components can be accessed
3027 and is one of TGSI_WRITEMASK.
3028
3029 The Local flag specifies that a given value isn't intended for
3030 subroutine parameter passing and, as a result, the implementation
3031 isn't required to give any guarantees of it being preserved across
3032 subroutine boundaries. As it's merely a compiler hint, the
3033 implementation is free to ignore it.
3034
3035 If Dimension flag is set to 1, a Declaration Dimension token follows.
3036
3037 If Semantic flag is set to 1, a Declaration Semantic token follows.
3038
3039 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
3040
3041 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
3042
3043 If Array flag is set to 1, a Declaration Array token follows.
3044
3045 Array Declaration
3046 ^^^^^^^^^^^^^^^^^^^^^^^^
3047
3048 Declarations can optional have an ArrayID attribute which can be referred by
3049 indirect addressing operands. An ArrayID of zero is reserved and treated as
3050 if no ArrayID is specified.
3051
3052 If an indirect addressing operand refers to a specific declaration by using
3053 an ArrayID only the registers in this declaration are guaranteed to be
3054 accessed, accessing any register outside this declaration results in undefined
3055 behavior. Note that for compatibility the effective index is zero-based and
3056 not relative to the specified declaration
3057
3058 If no ArrayID is specified with an indirect addressing operand the whole
3059 register file might be accessed by this operand. This is strongly discouraged
3060 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
3061 This is only legal for TEMP and CONST register files.
3062
3063 Declaration Semantic
3064 ^^^^^^^^^^^^^^^^^^^^^^^^
3065
3066 Vertex and fragment shader input and output registers may be labeled
3067 with semantic information consisting of a name and index.
3068
3069 Follows Declaration token if Semantic bit is set.
3070
3071 Since its purpose is to link a shader with other stages of the pipeline,
3072 it is valid to follow only those Declaration tokens that declare a register
3073 either in INPUT or OUTPUT file.
3074
3075 SemanticName field contains the semantic name of the register being declared.
3076 There is no default value.
3077
3078 SemanticIndex is an optional subscript that can be used to distinguish
3079 different register declarations with the same semantic name. The default value
3080 is 0.
3081
3082 The meanings of the individual semantic names are explained in the following
3083 sections.
3084
3085 TGSI_SEMANTIC_POSITION
3086 """"""""""""""""""""""
3087
3088 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
3089 output register which contains the homogeneous vertex position in the clip
3090 space coordinate system. After clipping, the X, Y and Z components of the
3091 vertex will be divided by the W value to get normalized device coordinates.
3092
3093 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
3094 fragment shader input (or system value, depending on which one is
3095 supported by the driver) contains the fragment's window position. The X
3096 component starts at zero and always increases from left to right.
3097 The Y component starts at zero and always increases but Y=0 may either
3098 indicate the top of the window or the bottom depending on the fragment
3099 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
3100 The Z coordinate ranges from 0 to 1 to represent depth from the front
3101 to the back of the Z buffer. The W component contains the interpolated
3102 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
3103 but unlike d3d10 which interpolates the same 1/w but then gives back
3104 the reciprocal of the interpolated value).
3105
3106 Fragment shaders may also declare an output register with
3107 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
3108 the fragment shader to change the fragment's Z position.
3109
3110
3111
3112 TGSI_SEMANTIC_COLOR
3113 """""""""""""""""""
3114
3115 For vertex shader outputs or fragment shader inputs/outputs, this
3116 label indicates that the register contains an R,G,B,A color.
3117
3118 Several shader inputs/outputs may contain colors so the semantic index
3119 is used to distinguish them. For example, color[0] may be the diffuse
3120 color while color[1] may be the specular color.
3121
3122 This label is needed so that the flat/smooth shading can be applied
3123 to the right interpolants during rasterization.
3124
3125
3126
3127 TGSI_SEMANTIC_BCOLOR
3128 """"""""""""""""""""
3129
3130 Back-facing colors are only used for back-facing polygons, and are only valid
3131 in vertex shader outputs. After rasterization, all polygons are front-facing
3132 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
3133 so all BCOLORs effectively become regular COLORs in the fragment shader.
3134
3135
3136 TGSI_SEMANTIC_FOG
3137 """""""""""""""""
3138
3139 Vertex shader inputs and outputs and fragment shader inputs may be
3140 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
3141 a fog coordinate. Typically, the fragment shader will use the fog coordinate
3142 to compute a fog blend factor which is used to blend the normal fragment color
3143 with a constant fog color. But fog coord really is just an ordinary vec4
3144 register like regular semantics.
3145
3146
3147 TGSI_SEMANTIC_PSIZE
3148 """""""""""""""""""
3149
3150 Vertex shader input and output registers may be labeled with
3151 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3152 in the form (S, 0, 0, 1). The point size controls the width or diameter
3153 of points for rasterization. This label cannot be used in fragment
3154 shaders.
3155
3156 When using this semantic, be sure to set the appropriate state in the
3157 :ref:`rasterizer` first.
3158
3159
3160 TGSI_SEMANTIC_TEXCOORD
3161 """"""""""""""""""""""
3162
3163 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3164
3165 Vertex shader outputs and fragment shader inputs may be labeled with
3166 this semantic to make them replaceable by sprite coordinates via the
3167 sprite_coord_enable state in the :ref:`rasterizer`.
3168 The semantic index permitted with this semantic is limited to <= 7.
3169
3170 If the driver does not support TEXCOORD, sprite coordinate replacement
3171 applies to inputs with the GENERIC semantic instead.
3172
3173 The intended use case for this semantic is gl_TexCoord.
3174
3175
3176 TGSI_SEMANTIC_PCOORD
3177 """"""""""""""""""""
3178
3179 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3180
3181 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3182 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3183 the current primitive is a point and point sprites are enabled. Otherwise,
3184 the contents of the register are undefined.
3185
3186 The intended use case for this semantic is gl_PointCoord.
3187
3188
3189 TGSI_SEMANTIC_GENERIC
3190 """""""""""""""""""""
3191
3192 All vertex/fragment shader inputs/outputs not labeled with any other
3193 semantic label can be considered to be generic attributes. Typical
3194 uses of generic inputs/outputs are texcoords and user-defined values.
3195
3196
3197 TGSI_SEMANTIC_NORMAL
3198 """"""""""""""""""""
3199
3200 Indicates that a vertex shader input is a normal vector. This is
3201 typically only used for legacy graphics APIs.
3202
3203
3204 TGSI_SEMANTIC_FACE
3205 """"""""""""""""""
3206
3207 This label applies to fragment shader inputs (or system values,
3208 depending on which one is supported by the driver) and indicates that
3209 the register contains front/back-face information.
3210
3211 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3212 where F will be positive when the fragment belongs to a front-facing polygon,
3213 and negative when the fragment belongs to a back-facing polygon.
3214
3215 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3216 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3217 0 when the fragment belongs to a back-facing polygon.
3218
3219
3220 TGSI_SEMANTIC_EDGEFLAG
3221 """"""""""""""""""""""
3222
3223 For vertex shaders, this sematic label indicates that an input or
3224 output is a boolean edge flag. The register layout is [F, x, x, x]
3225 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3226 simply copies the edge flag input to the edgeflag output.
3227
3228 Edge flags are used to control which lines or points are actually
3229 drawn when the polygon mode converts triangles/quads/polygons into
3230 points or lines.
3231
3232
3233 TGSI_SEMANTIC_STENCIL
3234 """""""""""""""""""""
3235
3236 For fragment shaders, this semantic label indicates that an output
3237 is a writable stencil reference value. Only the Y component is writable.
3238 This allows the fragment shader to change the fragments stencilref value.
3239
3240
3241 TGSI_SEMANTIC_VIEWPORT_INDEX
3242 """"""""""""""""""""""""""""
3243
3244 For geometry shaders, this semantic label indicates that an output
3245 contains the index of the viewport (and scissor) to use.
3246 This is an integer value, and only the X component is used.
3247
3248 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3249 supported, then this semantic label can also be used in vertex or
3250 tessellation evaluation shaders, respectively. Only the value written in the
3251 last vertex processing stage is used.
3252
3253
3254 TGSI_SEMANTIC_LAYER
3255 """""""""""""""""""
3256
3257 For geometry shaders, this semantic label indicates that an output
3258 contains the layer value to use for the color and depth/stencil surfaces.
3259 This is an integer value, and only the X component is used.
3260 (Also known as rendertarget array index.)
3261
3262 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3263 supported, then this semantic label can also be used in vertex or
3264 tessellation evaluation shaders, respectively. Only the value written in the
3265 last vertex processing stage is used.
3266
3267
3268 TGSI_SEMANTIC_CULLDIST
3269 """"""""""""""""""""""
3270
3271 Used as distance to plane for performing application-defined culling
3272 of individual primitives against a plane. When components of vertex
3273 elements are given this label, these values are assumed to be a
3274 float32 signed distance to a plane. Primitives will be completely
3275 discarded if the plane distance for all of the vertices in the
3276 primitive are < 0. If a vertex has a cull distance of NaN, that
3277 vertex counts as "out" (as if its < 0);
3278 The limits on both clip and cull distances are bound
3279 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3280 the maximum number of components that can be used to hold the
3281 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3282 which specifies the maximum number of registers which can be
3283 annotated with those semantics.
3284
3285
3286 TGSI_SEMANTIC_CLIPDIST
3287 """"""""""""""""""""""
3288
3289 Note this covers clipping and culling distances.
3290
3291 When components of vertex elements are identified this way, these
3292 values are each assumed to be a float32 signed distance to a plane.
3293
3294 For clip distances:
3295 Primitive setup only invokes rasterization on pixels for which
3296 the interpolated plane distances are >= 0.
3297
3298 For cull distances:
3299 Primitives will be completely discarded if the plane distance
3300 for all of the vertices in the primitive are < 0.
3301 If a vertex has a cull distance of NaN, that vertex counts as "out"
3302 (as if its < 0);
3303
3304 Multiple clip/cull planes can be implemented simultaneously, by
3305 annotating multiple components of one or more vertex elements with
3306 the above specified semantic.
3307 The limits on both clip and cull distances are bound
3308 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3309 the maximum number of components that can be used to hold the
3310 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3311 which specifies the maximum number of registers which can be
3312 annotated with those semantics.
3313 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3314 are used to divide up the 2 x vec4 space between clipping and culling.
3315
3316 TGSI_SEMANTIC_SAMPLEID
3317 """"""""""""""""""""""
3318
3319 For fragment shaders, this semantic label indicates that a system value
3320 contains the current sample id (i.e. gl_SampleID) as an unsigned int.
3321 Only the X component is used. If per-sample shading is not enabled,
3322 the result is (0, undef, undef, undef).
3323
3324 TGSI_SEMANTIC_SAMPLEPOS
3325 """""""""""""""""""""""
3326
3327 For fragment shaders, this semantic label indicates that a system
3328 value contains the current sample's position as float4(x, y, undef, undef)
3329 in the render target (i.e. gl_SamplePosition) when per-fragment shading
3330 is in effect. Position values are in the range [0, 1] where 0.5 is
3331 the center of the fragment.
3332
3333 TGSI_SEMANTIC_SAMPLEMASK
3334 """"""""""""""""""""""""
3335
3336 For fragment shaders, this semantic label can be applied to either a
3337 shader system value input or output.
3338
3339 For a system value, the sample mask indicates the set of samples covered by
3340 the current primitive. If MSAA is not enabled, the value is (1, 0, 0, 0).
3341
3342 For an output, the sample mask is used to disable further sample processing.
3343
3344 For both, the register type is uint[4] but only the X component is used
3345 (i.e. gl_SampleMask[0]). Each bit corresponds to one sample position (up
3346 to 32x MSAA is supported).
3347
3348 TGSI_SEMANTIC_INVOCATIONID
3349 """"""""""""""""""""""""""
3350
3351 For geometry shaders, this semantic label indicates that a system value
3352 contains the current invocation id (i.e. gl_InvocationID).
3353 This is an integer value, and only the X component is used.
3354
3355 TGSI_SEMANTIC_INSTANCEID
3356 """"""""""""""""""""""""
3357
3358 For vertex shaders, this semantic label indicates that a system value contains
3359 the current instance id (i.e. gl_InstanceID). It does not include the base
3360 instance. This is an integer value, and only the X component is used.
3361
3362 TGSI_SEMANTIC_VERTEXID
3363 """"""""""""""""""""""
3364
3365 For vertex shaders, this semantic label indicates that a system value contains
3366 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3367 base vertex. This is an integer value, and only the X component is used.
3368
3369 TGSI_SEMANTIC_VERTEXID_NOBASE
3370 """""""""""""""""""""""""""""""
3371
3372 For vertex shaders, this semantic label indicates that a system value contains
3373 the current vertex id without including the base vertex (this corresponds to
3374 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3375 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3376 is used.
3377
3378 TGSI_SEMANTIC_BASEVERTEX
3379 """"""""""""""""""""""""
3380
3381 For vertex shaders, this semantic label indicates that a system value contains
3382 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3383 this contains the first (or start) value instead.
3384 This is an integer value, and only the X component is used.
3385
3386 TGSI_SEMANTIC_PRIMID
3387 """"""""""""""""""""
3388
3389 For geometry and fragment shaders, this semantic label indicates the value
3390 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3391 and only the X component is used.
3392 FIXME: This right now can be either a ordinary input or a system value...
3393
3394
3395 TGSI_SEMANTIC_PATCH
3396 """""""""""""""""""
3397
3398 For tessellation evaluation/control shaders, this semantic label indicates a
3399 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3400 arrays.
3401
3402 TGSI_SEMANTIC_TESSCOORD
3403 """""""""""""""""""""""
3404
3405 For tessellation evaluation shaders, this semantic label indicates the
3406 coordinates of the vertex being processed. This is available in XYZ; W is
3407 undefined.
3408
3409 TGSI_SEMANTIC_TESSOUTER
3410 """""""""""""""""""""""
3411
3412 For tessellation evaluation/control shaders, this semantic label indicates the
3413 outer tessellation levels of the patch. Isoline tessellation will only have XY
3414 defined, triangle will have XYZ and quads will have XYZW defined. This
3415 corresponds to gl_TessLevelOuter.
3416
3417 TGSI_SEMANTIC_TESSINNER
3418 """""""""""""""""""""""
3419
3420 For tessellation evaluation/control shaders, this semantic label indicates the
3421 inner tessellation levels of the patch. The X value is only defined for
3422 triangle tessellation, while quads will have XY defined. This is entirely
3423 undefined for isoline tessellation.
3424
3425 TGSI_SEMANTIC_VERTICESIN
3426 """"""""""""""""""""""""
3427
3428 For tessellation evaluation/control shaders, this semantic label indicates the
3429 number of vertices provided in the input patch. Only the X value is defined.
3430
3431 TGSI_SEMANTIC_HELPER_INVOCATION
3432 """""""""""""""""""""""""""""""
3433
3434 For fragment shaders, this semantic indicates whether the current
3435 invocation is covered or not. Helper invocations are created in order
3436 to properly compute derivatives, however it may be desirable to skip
3437 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3438
3439 TGSI_SEMANTIC_BASEINSTANCE
3440 """"""""""""""""""""""""""
3441
3442 For vertex shaders, the base instance argument supplied for this
3443 draw. This is an integer value, and only the X component is used.
3444
3445 TGSI_SEMANTIC_DRAWID
3446 """"""""""""""""""""
3447
3448 For vertex shaders, the zero-based index of the current draw in a
3449 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3450 component is used.
3451
3452
3453 TGSI_SEMANTIC_WORK_DIM
3454 """"""""""""""""""""""
3455
3456 For compute shaders started via opencl this retrieves the work_dim
3457 parameter to the clEnqueueNDRangeKernel call with which the shader
3458 was started.
3459
3460
3461 TGSI_SEMANTIC_GRID_SIZE
3462 """""""""""""""""""""""
3463
3464 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3465 of a grid of thread blocks.
3466
3467
3468 TGSI_SEMANTIC_BLOCK_ID
3469 """"""""""""""""""""""
3470
3471 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3472 current block inside of the grid.
3473
3474
3475 TGSI_SEMANTIC_BLOCK_SIZE
3476 """"""""""""""""""""""""
3477
3478 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3479 of a block in threads.
3480
3481
3482 TGSI_SEMANTIC_THREAD_ID
3483 """""""""""""""""""""""
3484
3485 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3486 current thread inside of the block.
3487
3488
3489 TGSI_SEMANTIC_SUBGROUP_SIZE
3490 """""""""""""""""""""""""""
3491
3492 This semantic indicates the subgroup size for the current invocation. This is
3493 an integer of at most 64, as it indicates the width of lanemasks. It does not
3494 depend on the number of invocations that are active.
3495
3496
3497 TGSI_SEMANTIC_SUBGROUP_INVOCATION
3498 """""""""""""""""""""""""""""""""
3499
3500 The index of the current invocation within its subgroup.
3501
3502
3503 TGSI_SEMANTIC_SUBGROUP_EQ_MASK
3504 """"""""""""""""""""""""""""""
3505
3506 A bit mask of ``bit index == TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3507 ``1 << subgroup_invocation`` in arbitrary precision arithmetic.
3508
3509
3510 TGSI_SEMANTIC_SUBGROUP_GE_MASK
3511 """"""""""""""""""""""""""""""
3512
3513 A bit mask of ``bit index >= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3514 ``((1 << (subgroup_size - subgroup_invocation)) - 1) << subgroup_invocation``
3515 in arbitrary precision arithmetic.
3516
3517
3518 TGSI_SEMANTIC_SUBGROUP_GT_MASK
3519 """"""""""""""""""""""""""""""
3520
3521 A bit mask of ``bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3522 ``((1 << (subgroup_size - subgroup_invocation - 1)) - 1) << (subgroup_invocation + 1)``
3523 in arbitrary precision arithmetic.
3524
3525
3526 TGSI_SEMANTIC_SUBGROUP_LE_MASK
3527 """"""""""""""""""""""""""""""
3528
3529 A bit mask of ``bit index <= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3530 ``(1 << (subgroup_invocation + 1)) - 1`` in arbitrary precision arithmetic.
3531
3532
3533 TGSI_SEMANTIC_SUBGROUP_LT_MASK
3534 """"""""""""""""""""""""""""""
3535
3536 A bit mask of ``bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3537 ``(1 << subgroup_invocation) - 1`` in arbitrary precision arithmetic.
3538
3539
3540 Declaration Interpolate
3541 ^^^^^^^^^^^^^^^^^^^^^^^
3542
3543 This token is only valid for fragment shader INPUT declarations.
3544
3545 The Interpolate field specifes the way input is being interpolated by
3546 the rasteriser and is one of TGSI_INTERPOLATE_*.
3547
3548 The Location field specifies the location inside the pixel that the
3549 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3550 when per-sample shading is enabled, the implementation may choose to
3551 interpolate at the sample irrespective of the Location field.
3552
3553 The CylindricalWrap bitfield specifies which register components
3554 should be subject to cylindrical wrapping when interpolating by the
3555 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3556 should be interpolated according to cylindrical wrapping rules.
3557
3558
3559 Declaration Sampler View
3560 ^^^^^^^^^^^^^^^^^^^^^^^^
3561
3562 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3563
3564 DCL SVIEW[#], resource, type(s)
3565
3566 Declares a shader input sampler view and assigns it to a SVIEW[#]
3567 register.
3568
3569 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3570
3571 type must be 1 or 4 entries (if specifying on a per-component
3572 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3573
3574 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3575 which take an explicit SVIEW[#] source register), there may be optionally
3576 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3577 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3578 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3579 But note in particular that some drivers need to know the sampler type
3580 (float/int/unsigned) in order to generate the correct code, so cases
3581 where integer textures are sampled, SVIEW[#] declarations should be
3582 used.
3583
3584 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3585 in the same shader.
3586
3587 Declaration Resource
3588 ^^^^^^^^^^^^^^^^^^^^
3589
3590 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3591
3592 DCL RES[#], resource [, WR] [, RAW]
3593
3594 Declares a shader input resource and assigns it to a RES[#]
3595 register.
3596
3597 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3598 2DArray.
3599
3600 If the RAW keyword is not specified, the texture data will be
3601 subject to conversion, swizzling and scaling as required to yield
3602 the specified data type from the physical data format of the bound
3603 resource.
3604
3605 If the RAW keyword is specified, no channel conversion will be
3606 performed: the values read for each of the channels (X,Y,Z,W) will
3607 correspond to consecutive words in the same order and format
3608 they're found in memory. No element-to-address conversion will be
3609 performed either: the value of the provided X coordinate will be
3610 interpreted in byte units instead of texel units. The result of
3611 accessing a misaligned address is undefined.
3612
3613 Usage of the STORE opcode is only allowed if the WR (writable) flag
3614 is set.
3615
3616
3617 Properties
3618 ^^^^^^^^^^^^^^^^^^^^^^^^
3619
3620 Properties are general directives that apply to the whole TGSI program.
3621
3622 FS_COORD_ORIGIN
3623 """""""""""""""
3624
3625 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3626 The default value is UPPER_LEFT.
3627
3628 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3629 increase downward and rightward.
3630 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3631 increase upward and rightward.
3632
3633 OpenGL defaults to LOWER_LEFT, and is configurable with the
3634 GL_ARB_fragment_coord_conventions extension.
3635
3636 DirectX 9/10 use UPPER_LEFT.
3637
3638 FS_COORD_PIXEL_CENTER
3639 """""""""""""""""""""
3640
3641 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3642 The default value is HALF_INTEGER.
3643
3644 If HALF_INTEGER, the fractionary part of the position will be 0.5
3645 If INTEGER, the fractionary part of the position will be 0.0
3646
3647 Note that this does not affect the set of fragments generated by
3648 rasterization, which is instead controlled by half_pixel_center in the
3649 rasterizer.
3650
3651 OpenGL defaults to HALF_INTEGER, and is configurable with the
3652 GL_ARB_fragment_coord_conventions extension.
3653
3654 DirectX 9 uses INTEGER.
3655 DirectX 10 uses HALF_INTEGER.
3656
3657 FS_COLOR0_WRITES_ALL_CBUFS
3658 """"""""""""""""""""""""""
3659 Specifies that writes to the fragment shader color 0 are replicated to all
3660 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3661 fragData is directed to a single color buffer, but fragColor is broadcast.
3662
3663 VS_PROHIBIT_UCPS
3664 """"""""""""""""""""""""""
3665 If this property is set on the program bound to the shader stage before the
3666 fragment shader, user clip planes should have no effect (be disabled) even if
3667 that shader does not write to any clip distance outputs and the rasterizer's
3668 clip_plane_enable is non-zero.
3669 This property is only supported by drivers that also support shader clip
3670 distance outputs.
3671 This is useful for APIs that don't have UCPs and where clip distances written
3672 by a shader cannot be disabled.
3673
3674 GS_INVOCATIONS
3675 """"""""""""""
3676
3677 Specifies the number of times a geometry shader should be executed for each
3678 input primitive. Each invocation will have a different
3679 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3680 be 1.
3681
3682 VS_WINDOW_SPACE_POSITION
3683 """"""""""""""""""""""""""
3684 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3685 is assumed to contain window space coordinates.
3686 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3687 directly taken from the 4-th component of the shader output.
3688 Naturally, clipping is not performed on window coordinates either.
3689 The effect of this property is undefined if a geometry or tessellation shader
3690 are in use.
3691
3692 TCS_VERTICES_OUT
3693 """"""""""""""""
3694
3695 The number of vertices written by the tessellation control shader. This
3696 effectively defines the patch input size of the tessellation evaluation shader
3697 as well.
3698
3699 TES_PRIM_MODE
3700 """""""""""""
3701
3702 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3703 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3704 separate isolines settings, the regular lines is assumed to mean isolines.)
3705
3706 TES_SPACING
3707 """""""""""
3708
3709 This sets the spacing mode of the tessellation generator, one of
3710 ``PIPE_TESS_SPACING_*``.
3711
3712 TES_VERTEX_ORDER_CW
3713 """""""""""""""""""
3714
3715 This sets the vertex order to be clockwise if the value is 1, or
3716 counter-clockwise if set to 0.
3717
3718 TES_POINT_MODE
3719 """"""""""""""
3720
3721 If set to a non-zero value, this turns on point mode for the tessellator,
3722 which means that points will be generated instead of primitives.
3723
3724 NUM_CLIPDIST_ENABLED
3725 """"""""""""""""""""
3726
3727 How many clip distance scalar outputs are enabled.
3728
3729 NUM_CULLDIST_ENABLED
3730 """"""""""""""""""""
3731
3732 How many cull distance scalar outputs are enabled.
3733
3734 FS_EARLY_DEPTH_STENCIL
3735 """"""""""""""""""""""
3736
3737 Whether depth test, stencil test, and occlusion query should run before
3738 the fragment shader (regardless of fragment shader side effects). Corresponds
3739 to GLSL early_fragment_tests.
3740
3741 NEXT_SHADER
3742 """""""""""
3743
3744 Which shader stage will MOST LIKELY follow after this shader when the shader
3745 is bound. This is only a hint to the driver and doesn't have to be precise.
3746 Only set for VS and TES.
3747
3748 CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3749 """""""""""""""""""""""""""""""""""""
3750
3751 Threads per block in each dimension, if known at compile time. If the block size
3752 is known all three should be at least 1. If it is unknown they should all be set
3753 to 0 or not set.
3754
3755 MUL_ZERO_WINS
3756 """""""""""""
3757
3758 The MUL TGSI operation (FP32 multiplication) will return 0 if either
3759 of the operands are equal to 0. That means that 0 * Inf = 0. This
3760 should be set the same way for an entire pipeline. Note that this
3761 applies not only to the literal MUL TGSI opcode, but all FP32
3762 multiplications implied by other operations, such as MAD, FMA, DP2,
3763 DP3, DP4, DPH, DST, LOG, LRP, XPD, and possibly others. If there is a
3764 mismatch between shaders, then it is unspecified whether this behavior
3765 will be enabled.
3766
3767 FS_POST_DEPTH_COVERAGE
3768 """"""""""""""""""""""
3769
3770 When enabled, the input for TGSI_SEMANTIC_SAMPLEMASK will exclude samples
3771 that have failed the depth/stencil tests. This is only valid when
3772 FS_EARLY_DEPTH_STENCIL is also specified.
3773
3774
3775 Texture Sampling and Texture Formats
3776 ------------------------------------
3777
3778 This table shows how texture image components are returned as (x,y,z,w) tuples
3779 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3780 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3781 well.
3782
3783 +--------------------+--------------+--------------------+--------------+
3784 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3785 +====================+==============+====================+==============+
3786 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3787 +--------------------+--------------+--------------------+--------------+
3788 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3789 +--------------------+--------------+--------------------+--------------+
3790 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3791 +--------------------+--------------+--------------------+--------------+
3792 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3793 +--------------------+--------------+--------------------+--------------+
3794 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3795 +--------------------+--------------+--------------------+--------------+
3796 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3797 +--------------------+--------------+--------------------+--------------+
3798 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3799 +--------------------+--------------+--------------------+--------------+
3800 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3801 +--------------------+--------------+--------------------+--------------+
3802 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3803 | | | [#envmap-bumpmap]_ | |
3804 +--------------------+--------------+--------------------+--------------+
3805 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3806 | | | [#depth-tex-mode]_ | |
3807 +--------------------+--------------+--------------------+--------------+
3808 | S | (s, s, s, s) | unknown | unknown |
3809 +--------------------+--------------+--------------------+--------------+
3810
3811 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3812 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3813 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.