gallium: add caps for POSITION and FACE system values
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = (int) \lfloor src.x\rfloor
52
53 dst.y = (int) \lfloor src.y\rfloor
54
55 dst.z = (int) \lfloor src.z\rfloor
56
57 dst.w = (int) \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: FMA - Fused Multiply-Add
276
277 Perform a * b + c with no intermediate rounding step.
278
279 .. math::
280
281 dst.x = src0.x \times src1.x + src2.x
282
283 dst.y = src0.y \times src1.y + src2.y
284
285 dst.z = src0.z \times src1.z + src2.z
286
287 dst.w = src0.w \times src1.w + src2.w
288
289
290 .. opcode:: DP2A - 2-component Dot Product And Add
291
292 .. math::
293
294 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
301
302
303 .. opcode:: FRC - Fraction
304
305 .. math::
306
307 dst.x = src.x - \lfloor src.x\rfloor
308
309 dst.y = src.y - \lfloor src.y\rfloor
310
311 dst.z = src.z - \lfloor src.z\rfloor
312
313 dst.w = src.w - \lfloor src.w\rfloor
314
315
316 .. opcode:: CLAMP - Clamp
317
318 .. math::
319
320 dst.x = clamp(src0.x, src1.x, src2.x)
321
322 dst.y = clamp(src0.y, src1.y, src2.y)
323
324 dst.z = clamp(src0.z, src1.z, src2.z)
325
326 dst.w = clamp(src0.w, src1.w, src2.w)
327
328
329 .. opcode:: FLR - Floor
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: DPH - Homogeneous Dot Product
408
409 This instruction replicates its result.
410
411 .. math::
412
413 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
414
415
416 .. opcode:: COS - Cosine
417
418 This instruction replicates its result.
419
420 .. math::
421
422 dst = \cos{src.x}
423
424
425 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
426
427 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
428 advertised. When it is, the fine version guarantees one derivative per row
429 while DDX is allowed to be the same for the entire 2x2 quad.
430
431 .. math::
432
433 dst.x = partialx(src.x)
434
435 dst.y = partialx(src.y)
436
437 dst.z = partialx(src.z)
438
439 dst.w = partialx(src.w)
440
441
442 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
443
444 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
445 advertised. When it is, the fine version guarantees one derivative per column
446 while DDY is allowed to be the same for the entire 2x2 quad.
447
448 .. math::
449
450 dst.x = partialy(src.x)
451
452 dst.y = partialy(src.y)
453
454 dst.z = partialy(src.z)
455
456 dst.w = partialy(src.w)
457
458
459 .. opcode:: PK2H - Pack Two 16-bit Floats
460
461 This instruction replicates its result.
462
463 .. math::
464
465 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
466
467
468 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
469
470 TBD
471
472
473 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
474
475 TBD
476
477
478 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
479
480 TBD
481
482
483 .. opcode:: SEQ - Set On Equal
484
485 .. math::
486
487 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
488
489 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
490
491 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
492
493 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
494
495
496 .. opcode:: SGT - Set On Greater Than
497
498 .. math::
499
500 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
501
502 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
503
504 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
505
506 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
507
508
509 .. opcode:: SIN - Sine
510
511 This instruction replicates its result.
512
513 .. math::
514
515 dst = \sin{src.x}
516
517
518 .. opcode:: SLE - Set On Less Equal Than
519
520 .. math::
521
522 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
523
524 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
525
526 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
527
528 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
529
530
531 .. opcode:: SNE - Set On Not Equal
532
533 .. math::
534
535 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
536
537 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
538
539 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
540
541 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
542
543
544 .. opcode:: TEX - Texture Lookup
545
546 for array textures src0.y contains the slice for 1D,
547 and src0.z contain the slice for 2D.
548
549 for shadow textures with no arrays (and not cube map),
550 src0.z contains the reference value.
551
552 for shadow textures with arrays, src0.z contains
553 the reference value for 1D arrays, and src0.w contains
554 the reference value for 2D arrays and cube maps.
555
556 for cube map array shadow textures, the reference value
557 cannot be passed in src0.w, and TEX2 must be used instead.
558
559 .. math::
560
561 coord = src0
562
563 shadow_ref = src0.z or src0.w (optional)
564
565 unit = src1
566
567 dst = texture\_sample(unit, coord, shadow_ref)
568
569
570 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
571
572 this is the same as TEX, but uses another reg to encode the
573 reference value.
574
575 .. math::
576
577 coord = src0
578
579 shadow_ref = src1.x
580
581 unit = src2
582
583 dst = texture\_sample(unit, coord, shadow_ref)
584
585
586
587
588 .. opcode:: TXD - Texture Lookup with Derivatives
589
590 .. math::
591
592 coord = src0
593
594 ddx = src1
595
596 ddy = src2
597
598 unit = src3
599
600 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
601
602
603 .. opcode:: TXP - Projective Texture Lookup
604
605 .. math::
606
607 coord.x = src0.x / src0.w
608
609 coord.y = src0.y / src0.w
610
611 coord.z = src0.z / src0.w
612
613 coord.w = src0.w
614
615 unit = src1
616
617 dst = texture\_sample(unit, coord)
618
619
620 .. opcode:: UP2H - Unpack Two 16-Bit Floats
621
622 .. math::
623
624 dst.x = f16\_to\_f32(src0.x \& 0xffff)
625
626 dst.y = f16\_to\_f32(src0.x >> 16)
627
628 dst.z = f16\_to\_f32(src0.x \& 0xffff)
629
630 dst.w = f16\_to\_f32(src0.x >> 16)
631
632 .. note::
633
634 Considered for removal.
635
636 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
637
638 TBD
639
640 .. note::
641
642 Considered for removal.
643
644 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
645
646 TBD
647
648 .. note::
649
650 Considered for removal.
651
652 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
653
654 TBD
655
656 .. note::
657
658 Considered for removal.
659
660
661 .. opcode:: ARR - Address Register Load With Round
662
663 .. math::
664
665 dst.x = (int) round(src.x)
666
667 dst.y = (int) round(src.y)
668
669 dst.z = (int) round(src.z)
670
671 dst.w = (int) round(src.w)
672
673
674 .. opcode:: SSG - Set Sign
675
676 .. math::
677
678 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
679
680 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
681
682 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
683
684 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
685
686
687 .. opcode:: CMP - Compare
688
689 .. math::
690
691 dst.x = (src0.x < 0) ? src1.x : src2.x
692
693 dst.y = (src0.y < 0) ? src1.y : src2.y
694
695 dst.z = (src0.z < 0) ? src1.z : src2.z
696
697 dst.w = (src0.w < 0) ? src1.w : src2.w
698
699
700 .. opcode:: KILL_IF - Conditional Discard
701
702 Conditional discard. Allowed in fragment shaders only.
703
704 .. math::
705
706 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
707 discard
708 endif
709
710
711 .. opcode:: KILL - Discard
712
713 Unconditional discard. Allowed in fragment shaders only.
714
715
716 .. opcode:: SCS - Sine Cosine
717
718 .. math::
719
720 dst.x = \cos{src.x}
721
722 dst.y = \sin{src.x}
723
724 dst.z = 0
725
726 dst.w = 1
727
728
729 .. opcode:: TXB - Texture Lookup With Bias
730
731 for cube map array textures and shadow cube maps, the bias value
732 cannot be passed in src0.w, and TXB2 must be used instead.
733
734 if the target is a shadow texture, the reference value is always
735 in src.z (this prevents shadow 3d and shadow 2d arrays from
736 using this instruction, but this is not needed).
737
738 .. math::
739
740 coord.x = src0.x
741
742 coord.y = src0.y
743
744 coord.z = src0.z
745
746 coord.w = none
747
748 bias = src0.w
749
750 unit = src1
751
752 dst = texture\_sample(unit, coord, bias)
753
754
755 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
756
757 this is the same as TXB, but uses another reg to encode the
758 lod bias value for cube map arrays and shadow cube maps.
759 Presumably shadow 2d arrays and shadow 3d targets could use
760 this encoding too, but this is not legal.
761
762 shadow cube map arrays are neither possible nor required.
763
764 .. math::
765
766 coord = src0
767
768 bias = src1.x
769
770 unit = src2
771
772 dst = texture\_sample(unit, coord, bias)
773
774
775 .. opcode:: DIV - Divide
776
777 .. math::
778
779 dst.x = \frac{src0.x}{src1.x}
780
781 dst.y = \frac{src0.y}{src1.y}
782
783 dst.z = \frac{src0.z}{src1.z}
784
785 dst.w = \frac{src0.w}{src1.w}
786
787
788 .. opcode:: DP2 - 2-component Dot Product
789
790 This instruction replicates its result.
791
792 .. math::
793
794 dst = src0.x \times src1.x + src0.y \times src1.y
795
796
797 .. opcode:: TXL - Texture Lookup With explicit LOD
798
799 for cube map array textures, the explicit lod value
800 cannot be passed in src0.w, and TXL2 must be used instead.
801
802 if the target is a shadow texture, the reference value is always
803 in src.z (this prevents shadow 3d / 2d array / cube targets from
804 using this instruction, but this is not needed).
805
806 .. math::
807
808 coord.x = src0.x
809
810 coord.y = src0.y
811
812 coord.z = src0.z
813
814 coord.w = none
815
816 lod = src0.w
817
818 unit = src1
819
820 dst = texture\_sample(unit, coord, lod)
821
822
823 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
824
825 this is the same as TXL, but uses another reg to encode the
826 explicit lod value.
827 Presumably shadow 3d / 2d array / cube targets could use
828 this encoding too, but this is not legal.
829
830 shadow cube map arrays are neither possible nor required.
831
832 .. math::
833
834 coord = src0
835
836 lod = src1.x
837
838 unit = src2
839
840 dst = texture\_sample(unit, coord, lod)
841
842
843 .. opcode:: PUSHA - Push Address Register On Stack
844
845 push(src.x)
846 push(src.y)
847 push(src.z)
848 push(src.w)
849
850 .. note::
851
852 Considered for cleanup.
853
854 .. note::
855
856 Considered for removal.
857
858 .. opcode:: POPA - Pop Address Register From Stack
859
860 dst.w = pop()
861 dst.z = pop()
862 dst.y = pop()
863 dst.x = pop()
864
865 .. note::
866
867 Considered for cleanup.
868
869 .. note::
870
871 Considered for removal.
872
873
874 .. opcode:: CALLNZ - Subroutine Call If Not Zero
875
876 TBD
877
878 .. note::
879
880 Considered for cleanup.
881
882 .. note::
883
884 Considered for removal.
885
886
887 Compute ISA
888 ^^^^^^^^^^^^^^^^^^^^^^^^
889
890 These opcodes are primarily provided for special-use computational shaders.
891 Support for these opcodes indicated by a special pipe capability bit (TBD).
892
893 XXX doesn't look like most of the opcodes really belong here.
894
895 .. opcode:: CEIL - Ceiling
896
897 .. math::
898
899 dst.x = \lceil src.x\rceil
900
901 dst.y = \lceil src.y\rceil
902
903 dst.z = \lceil src.z\rceil
904
905 dst.w = \lceil src.w\rceil
906
907
908 .. opcode:: TRUNC - Truncate
909
910 .. math::
911
912 dst.x = trunc(src.x)
913
914 dst.y = trunc(src.y)
915
916 dst.z = trunc(src.z)
917
918 dst.w = trunc(src.w)
919
920
921 .. opcode:: MOD - Modulus
922
923 .. math::
924
925 dst.x = src0.x \bmod src1.x
926
927 dst.y = src0.y \bmod src1.y
928
929 dst.z = src0.z \bmod src1.z
930
931 dst.w = src0.w \bmod src1.w
932
933
934 .. opcode:: UARL - Integer Address Register Load
935
936 Moves the contents of the source register, assumed to be an integer, into the
937 destination register, which is assumed to be an address (ADDR) register.
938
939
940 .. opcode:: SAD - Sum Of Absolute Differences
941
942 .. math::
943
944 dst.x = |src0.x - src1.x| + src2.x
945
946 dst.y = |src0.y - src1.y| + src2.y
947
948 dst.z = |src0.z - src1.z| + src2.z
949
950 dst.w = |src0.w - src1.w| + src2.w
951
952
953 .. opcode:: TXF - Texel Fetch
954
955 As per NV_gpu_shader4, extract a single texel from a specified texture
956 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
957 four-component signed integer vector used to identify the single texel
958 accessed. 3 components + level. Just like texture instructions, an optional
959 offset vector is provided, which is subject to various driver restrictions
960 (regarding range, source of offsets).
961 TXF(uint_vec coord, int_vec offset).
962
963
964 .. opcode:: TXQ - Texture Size Query
965
966 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
967 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
968 depth), 1D array (width, layers), 2D array (width, height, layers).
969 Also return the number of accessible levels (last_level - first_level + 1)
970 in W.
971
972 For components which don't return a resource dimension, their value
973 is undefined.
974
975 .. math::
976
977 lod = src0.x
978
979 dst.x = texture\_width(unit, lod)
980
981 dst.y = texture\_height(unit, lod)
982
983 dst.z = texture\_depth(unit, lod)
984
985 dst.w = texture\_levels(unit)
986
987
988 .. opcode:: TXQS - Texture Samples Query
989
990 This retrieves the number of samples in the texture, and stores it
991 into the x component. The other components are undefined.
992
993 .. math::
994
995 dst.x = texture\_samples(unit)
996
997
998 .. opcode:: TG4 - Texture Gather
999
1000 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
1001 filtering operation and packs them into a single register. Only works with
1002 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
1003 addressing modes of the sampler and the top level of any mip pyramid are
1004 used. Set W to zero. It behaves like the TEX instruction, but a filtered
1005 sample is not generated. The four samples that contribute to filtering are
1006 placed into xyzw in clockwise order, starting with the (u,v) texture
1007 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
1008 where the magnitude of the deltas are half a texel.
1009
1010 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1011 depth compares, single component selection, and a non-constant offset. It
1012 doesn't allow support for the GL independent offset to get i0,j0. This would
1013 require another CAP is hw can do it natively. For now we lower that before
1014 TGSI.
1015
1016 .. math::
1017
1018 coord = src0
1019
1020 component = src1
1021
1022 dst = texture\_gather4 (unit, coord, component)
1023
1024 (with SM5 - cube array shadow)
1025
1026 .. math::
1027
1028 coord = src0
1029
1030 compare = src1
1031
1032 dst = texture\_gather (uint, coord, compare)
1033
1034 .. opcode:: LODQ - level of detail query
1035
1036 Compute the LOD information that the texture pipe would use to access the
1037 texture. The Y component contains the computed LOD lambda_prime. The X
1038 component contains the LOD that will be accessed, based on min/max lod's
1039 and mipmap filters.
1040
1041 .. math::
1042
1043 coord = src0
1044
1045 dst.xy = lodq(uint, coord);
1046
1047 Integer ISA
1048 ^^^^^^^^^^^^^^^^^^^^^^^^
1049 These opcodes are used for integer operations.
1050 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1051
1052
1053 .. opcode:: I2F - Signed Integer To Float
1054
1055 Rounding is unspecified (round to nearest even suggested).
1056
1057 .. math::
1058
1059 dst.x = (float) src.x
1060
1061 dst.y = (float) src.y
1062
1063 dst.z = (float) src.z
1064
1065 dst.w = (float) src.w
1066
1067
1068 .. opcode:: U2F - Unsigned Integer To Float
1069
1070 Rounding is unspecified (round to nearest even suggested).
1071
1072 .. math::
1073
1074 dst.x = (float) src.x
1075
1076 dst.y = (float) src.y
1077
1078 dst.z = (float) src.z
1079
1080 dst.w = (float) src.w
1081
1082
1083 .. opcode:: F2I - Float to Signed Integer
1084
1085 Rounding is towards zero (truncate).
1086 Values outside signed range (including NaNs) produce undefined results.
1087
1088 .. math::
1089
1090 dst.x = (int) src.x
1091
1092 dst.y = (int) src.y
1093
1094 dst.z = (int) src.z
1095
1096 dst.w = (int) src.w
1097
1098
1099 .. opcode:: F2U - Float to Unsigned Integer
1100
1101 Rounding is towards zero (truncate).
1102 Values outside unsigned range (including NaNs) produce undefined results.
1103
1104 .. math::
1105
1106 dst.x = (unsigned) src.x
1107
1108 dst.y = (unsigned) src.y
1109
1110 dst.z = (unsigned) src.z
1111
1112 dst.w = (unsigned) src.w
1113
1114
1115 .. opcode:: UADD - Integer Add
1116
1117 This instruction works the same for signed and unsigned integers.
1118 The low 32bit of the result is returned.
1119
1120 .. math::
1121
1122 dst.x = src0.x + src1.x
1123
1124 dst.y = src0.y + src1.y
1125
1126 dst.z = src0.z + src1.z
1127
1128 dst.w = src0.w + src1.w
1129
1130
1131 .. opcode:: UMAD - Integer Multiply And Add
1132
1133 This instruction works the same for signed and unsigned integers.
1134 The multiplication returns the low 32bit (as does the result itself).
1135
1136 .. math::
1137
1138 dst.x = src0.x \times src1.x + src2.x
1139
1140 dst.y = src0.y \times src1.y + src2.y
1141
1142 dst.z = src0.z \times src1.z + src2.z
1143
1144 dst.w = src0.w \times src1.w + src2.w
1145
1146
1147 .. opcode:: UMUL - Integer Multiply
1148
1149 This instruction works the same for signed and unsigned integers.
1150 The low 32bit of the result is returned.
1151
1152 .. math::
1153
1154 dst.x = src0.x \times src1.x
1155
1156 dst.y = src0.y \times src1.y
1157
1158 dst.z = src0.z \times src1.z
1159
1160 dst.w = src0.w \times src1.w
1161
1162
1163 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1164
1165 The high 32bits of the multiplication of 2 signed integers are returned.
1166
1167 .. math::
1168
1169 dst.x = (src0.x \times src1.x) >> 32
1170
1171 dst.y = (src0.y \times src1.y) >> 32
1172
1173 dst.z = (src0.z \times src1.z) >> 32
1174
1175 dst.w = (src0.w \times src1.w) >> 32
1176
1177
1178 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1179
1180 The high 32bits of the multiplication of 2 unsigned integers are returned.
1181
1182 .. math::
1183
1184 dst.x = (src0.x \times src1.x) >> 32
1185
1186 dst.y = (src0.y \times src1.y) >> 32
1187
1188 dst.z = (src0.z \times src1.z) >> 32
1189
1190 dst.w = (src0.w \times src1.w) >> 32
1191
1192
1193 .. opcode:: IDIV - Signed Integer Division
1194
1195 TBD: behavior for division by zero.
1196
1197 .. math::
1198
1199 dst.x = src0.x \ src1.x
1200
1201 dst.y = src0.y \ src1.y
1202
1203 dst.z = src0.z \ src1.z
1204
1205 dst.w = src0.w \ src1.w
1206
1207
1208 .. opcode:: UDIV - Unsigned Integer Division
1209
1210 For division by zero, 0xffffffff is returned.
1211
1212 .. math::
1213
1214 dst.x = src0.x \ src1.x
1215
1216 dst.y = src0.y \ src1.y
1217
1218 dst.z = src0.z \ src1.z
1219
1220 dst.w = src0.w \ src1.w
1221
1222
1223 .. opcode:: UMOD - Unsigned Integer Remainder
1224
1225 If second arg is zero, 0xffffffff is returned.
1226
1227 .. math::
1228
1229 dst.x = src0.x \ src1.x
1230
1231 dst.y = src0.y \ src1.y
1232
1233 dst.z = src0.z \ src1.z
1234
1235 dst.w = src0.w \ src1.w
1236
1237
1238 .. opcode:: NOT - Bitwise Not
1239
1240 .. math::
1241
1242 dst.x = \sim src.x
1243
1244 dst.y = \sim src.y
1245
1246 dst.z = \sim src.z
1247
1248 dst.w = \sim src.w
1249
1250
1251 .. opcode:: AND - Bitwise And
1252
1253 .. math::
1254
1255 dst.x = src0.x \& src1.x
1256
1257 dst.y = src0.y \& src1.y
1258
1259 dst.z = src0.z \& src1.z
1260
1261 dst.w = src0.w \& src1.w
1262
1263
1264 .. opcode:: OR - Bitwise Or
1265
1266 .. math::
1267
1268 dst.x = src0.x | src1.x
1269
1270 dst.y = src0.y | src1.y
1271
1272 dst.z = src0.z | src1.z
1273
1274 dst.w = src0.w | src1.w
1275
1276
1277 .. opcode:: XOR - Bitwise Xor
1278
1279 .. math::
1280
1281 dst.x = src0.x \oplus src1.x
1282
1283 dst.y = src0.y \oplus src1.y
1284
1285 dst.z = src0.z \oplus src1.z
1286
1287 dst.w = src0.w \oplus src1.w
1288
1289
1290 .. opcode:: IMAX - Maximum of Signed Integers
1291
1292 .. math::
1293
1294 dst.x = max(src0.x, src1.x)
1295
1296 dst.y = max(src0.y, src1.y)
1297
1298 dst.z = max(src0.z, src1.z)
1299
1300 dst.w = max(src0.w, src1.w)
1301
1302
1303 .. opcode:: UMAX - Maximum of Unsigned Integers
1304
1305 .. math::
1306
1307 dst.x = max(src0.x, src1.x)
1308
1309 dst.y = max(src0.y, src1.y)
1310
1311 dst.z = max(src0.z, src1.z)
1312
1313 dst.w = max(src0.w, src1.w)
1314
1315
1316 .. opcode:: IMIN - Minimum of Signed Integers
1317
1318 .. math::
1319
1320 dst.x = min(src0.x, src1.x)
1321
1322 dst.y = min(src0.y, src1.y)
1323
1324 dst.z = min(src0.z, src1.z)
1325
1326 dst.w = min(src0.w, src1.w)
1327
1328
1329 .. opcode:: UMIN - Minimum of Unsigned Integers
1330
1331 .. math::
1332
1333 dst.x = min(src0.x, src1.x)
1334
1335 dst.y = min(src0.y, src1.y)
1336
1337 dst.z = min(src0.z, src1.z)
1338
1339 dst.w = min(src0.w, src1.w)
1340
1341
1342 .. opcode:: SHL - Shift Left
1343
1344 The shift count is masked with 0x1f before the shift is applied.
1345
1346 .. math::
1347
1348 dst.x = src0.x << (0x1f \& src1.x)
1349
1350 dst.y = src0.y << (0x1f \& src1.y)
1351
1352 dst.z = src0.z << (0x1f \& src1.z)
1353
1354 dst.w = src0.w << (0x1f \& src1.w)
1355
1356
1357 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1358
1359 The shift count is masked with 0x1f before the shift is applied.
1360
1361 .. math::
1362
1363 dst.x = src0.x >> (0x1f \& src1.x)
1364
1365 dst.y = src0.y >> (0x1f \& src1.y)
1366
1367 dst.z = src0.z >> (0x1f \& src1.z)
1368
1369 dst.w = src0.w >> (0x1f \& src1.w)
1370
1371
1372 .. opcode:: USHR - Logical Shift Right
1373
1374 The shift count is masked with 0x1f before the shift is applied.
1375
1376 .. math::
1377
1378 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1379
1380 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1381
1382 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1383
1384 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1385
1386
1387 .. opcode:: UCMP - Integer Conditional Move
1388
1389 .. math::
1390
1391 dst.x = src0.x ? src1.x : src2.x
1392
1393 dst.y = src0.y ? src1.y : src2.y
1394
1395 dst.z = src0.z ? src1.z : src2.z
1396
1397 dst.w = src0.w ? src1.w : src2.w
1398
1399
1400
1401 .. opcode:: ISSG - Integer Set Sign
1402
1403 .. math::
1404
1405 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1406
1407 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1408
1409 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1410
1411 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1412
1413
1414
1415 .. opcode:: FSLT - Float Set On Less Than (ordered)
1416
1417 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1418
1419 .. math::
1420
1421 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1422
1423 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1424
1425 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1426
1427 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1428
1429
1430 .. opcode:: ISLT - Signed Integer Set On Less Than
1431
1432 .. math::
1433
1434 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1435
1436 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1437
1438 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1439
1440 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1441
1442
1443 .. opcode:: USLT - Unsigned Integer Set On Less Than
1444
1445 .. math::
1446
1447 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1448
1449 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1450
1451 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1452
1453 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1454
1455
1456 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1457
1458 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1459
1460 .. math::
1461
1462 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1463
1464 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1465
1466 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1467
1468 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1469
1470
1471 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1472
1473 .. math::
1474
1475 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1476
1477 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1478
1479 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1480
1481 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1482
1483
1484 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1485
1486 .. math::
1487
1488 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1489
1490 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1491
1492 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1493
1494 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1495
1496
1497 .. opcode:: FSEQ - Float Set On Equal (ordered)
1498
1499 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1500
1501 .. math::
1502
1503 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1504
1505 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1506
1507 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1508
1509 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1510
1511
1512 .. opcode:: USEQ - Integer Set On Equal
1513
1514 .. math::
1515
1516 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1517
1518 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1519
1520 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1521
1522 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1523
1524
1525 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1526
1527 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1528
1529 .. math::
1530
1531 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1532
1533 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1534
1535 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1536
1537 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1538
1539
1540 .. opcode:: USNE - Integer Set On Not Equal
1541
1542 .. math::
1543
1544 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1545
1546 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1547
1548 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1549
1550 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1551
1552
1553 .. opcode:: INEG - Integer Negate
1554
1555 Two's complement.
1556
1557 .. math::
1558
1559 dst.x = -src.x
1560
1561 dst.y = -src.y
1562
1563 dst.z = -src.z
1564
1565 dst.w = -src.w
1566
1567
1568 .. opcode:: IABS - Integer Absolute Value
1569
1570 .. math::
1571
1572 dst.x = |src.x|
1573
1574 dst.y = |src.y|
1575
1576 dst.z = |src.z|
1577
1578 dst.w = |src.w|
1579
1580 Bitwise ISA
1581 ^^^^^^^^^^^
1582 These opcodes are used for bit-level manipulation of integers.
1583
1584 .. opcode:: IBFE - Signed Bitfield Extract
1585
1586 See SM5 instruction of the same name. Extracts a set of bits from the input,
1587 and sign-extends them if the high bit of the extracted window is set.
1588
1589 Pseudocode::
1590
1591 def ibfe(value, offset, bits):
1592 offset = offset & 0x1f
1593 bits = bits & 0x1f
1594 if bits == 0: return 0
1595 # Note: >> sign-extends
1596 if width + offset < 32:
1597 return (value << (32 - offset - bits)) >> (32 - bits)
1598 else:
1599 return value >> offset
1600
1601 .. opcode:: UBFE - Unsigned Bitfield Extract
1602
1603 See SM5 instruction of the same name. Extracts a set of bits from the input,
1604 without any sign-extension.
1605
1606 Pseudocode::
1607
1608 def ubfe(value, offset, bits):
1609 offset = offset & 0x1f
1610 bits = bits & 0x1f
1611 if bits == 0: return 0
1612 # Note: >> does not sign-extend
1613 if width + offset < 32:
1614 return (value << (32 - offset - bits)) >> (32 - bits)
1615 else:
1616 return value >> offset
1617
1618 .. opcode:: BFI - Bitfield Insert
1619
1620 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1621 the low bits of 'insert'.
1622
1623 Pseudocode::
1624
1625 def bfi(base, insert, offset, bits):
1626 offset = offset & 0x1f
1627 bits = bits & 0x1f
1628 mask = ((1 << bits) - 1) << offset
1629 return ((insert << offset) & mask) | (base & ~mask)
1630
1631 .. opcode:: BREV - Bitfield Reverse
1632
1633 See SM5 instruction BFREV. Reverses the bits of the argument.
1634
1635 .. opcode:: POPC - Population Count
1636
1637 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1638
1639 .. opcode:: LSB - Index of lowest set bit
1640
1641 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1642 bit of the argument. Returns -1 if none are set.
1643
1644 .. opcode:: IMSB - Index of highest non-sign bit
1645
1646 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1647 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1648 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1649 (i.e. for inputs 0 and -1).
1650
1651 .. opcode:: UMSB - Index of highest set bit
1652
1653 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1654 set bit of the argument. Returns -1 if none are set.
1655
1656 Geometry ISA
1657 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1658
1659 These opcodes are only supported in geometry shaders; they have no meaning
1660 in any other type of shader.
1661
1662 .. opcode:: EMIT - Emit
1663
1664 Generate a new vertex for the current primitive into the specified vertex
1665 stream using the values in the output registers.
1666
1667
1668 .. opcode:: ENDPRIM - End Primitive
1669
1670 Complete the current primitive in the specified vertex stream (consisting of
1671 the emitted vertices), and start a new one.
1672
1673
1674 GLSL ISA
1675 ^^^^^^^^^^
1676
1677 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1678 opcodes is determined by a special capability bit, ``GLSL``.
1679 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1680
1681 .. opcode:: CAL - Subroutine Call
1682
1683 push(pc)
1684 pc = target
1685
1686
1687 .. opcode:: RET - Subroutine Call Return
1688
1689 pc = pop()
1690
1691
1692 .. opcode:: CONT - Continue
1693
1694 Unconditionally moves the point of execution to the instruction after the
1695 last bgnloop. The instruction must appear within a bgnloop/endloop.
1696
1697 .. note::
1698
1699 Support for CONT is determined by a special capability bit,
1700 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1701
1702
1703 .. opcode:: BGNLOOP - Begin a Loop
1704
1705 Start a loop. Must have a matching endloop.
1706
1707
1708 .. opcode:: BGNSUB - Begin Subroutine
1709
1710 Starts definition of a subroutine. Must have a matching endsub.
1711
1712
1713 .. opcode:: ENDLOOP - End a Loop
1714
1715 End a loop started with bgnloop.
1716
1717
1718 .. opcode:: ENDSUB - End Subroutine
1719
1720 Ends definition of a subroutine.
1721
1722
1723 .. opcode:: NOP - No Operation
1724
1725 Do nothing.
1726
1727
1728 .. opcode:: BRK - Break
1729
1730 Unconditionally moves the point of execution to the instruction after the
1731 next endloop or endswitch. The instruction must appear within a loop/endloop
1732 or switch/endswitch.
1733
1734
1735 .. opcode:: BREAKC - Break Conditional
1736
1737 Conditionally moves the point of execution to the instruction after the
1738 next endloop or endswitch. The instruction must appear within a loop/endloop
1739 or switch/endswitch.
1740 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1741 as an integer register.
1742
1743 .. note::
1744
1745 Considered for removal as it's quite inconsistent wrt other opcodes
1746 (could emulate with UIF/BRK/ENDIF).
1747
1748
1749 .. opcode:: IF - Float If
1750
1751 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1752
1753 src0.x != 0.0
1754
1755 where src0.x is interpreted as a floating point register.
1756
1757
1758 .. opcode:: UIF - Bitwise If
1759
1760 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1761
1762 src0.x != 0
1763
1764 where src0.x is interpreted as an integer register.
1765
1766
1767 .. opcode:: ELSE - Else
1768
1769 Starts an else block, after an IF or UIF statement.
1770
1771
1772 .. opcode:: ENDIF - End If
1773
1774 Ends an IF or UIF block.
1775
1776
1777 .. opcode:: SWITCH - Switch
1778
1779 Starts a C-style switch expression. The switch consists of one or multiple
1780 CASE statements, and at most one DEFAULT statement. Execution of a statement
1781 ends when a BRK is hit, but just like in C falling through to other cases
1782 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1783 just as last statement, and fallthrough is allowed into/from it.
1784 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1785
1786 Example::
1787
1788 SWITCH src[0].x
1789 CASE src[0].x
1790 (some instructions here)
1791 (optional BRK here)
1792 DEFAULT
1793 (some instructions here)
1794 (optional BRK here)
1795 CASE src[0].x
1796 (some instructions here)
1797 (optional BRK here)
1798 ENDSWITCH
1799
1800
1801 .. opcode:: CASE - Switch case
1802
1803 This represents a switch case label. The src arg must be an integer immediate.
1804
1805
1806 .. opcode:: DEFAULT - Switch default
1807
1808 This represents the default case in the switch, which is taken if no other
1809 case matches.
1810
1811
1812 .. opcode:: ENDSWITCH - End of switch
1813
1814 Ends a switch expression.
1815
1816
1817 Interpolation ISA
1818 ^^^^^^^^^^^^^^^^^
1819
1820 The interpolation instructions allow an input to be interpolated in a
1821 different way than its declaration. This corresponds to the GLSL 4.00
1822 interpolateAt* functions. The first argument of each of these must come from
1823 ``TGSI_FILE_INPUT``.
1824
1825 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1826
1827 Interpolates the varying specified by src0 at the centroid
1828
1829 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1830
1831 Interpolates the varying specified by src0 at the sample id specified by
1832 src1.x (interpreted as an integer)
1833
1834 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1835
1836 Interpolates the varying specified by src0 at the offset src1.xy from the
1837 pixel center (interpreted as floats)
1838
1839
1840 .. _doubleopcodes:
1841
1842 Double ISA
1843 ^^^^^^^^^^^^^^^
1844
1845 The double-precision opcodes reinterpret four-component vectors into
1846 two-component vectors with doubled precision in each component.
1847
1848 .. opcode:: DABS - Absolute
1849
1850 dst.xy = |src0.xy|
1851 dst.zw = |src0.zw|
1852
1853 .. opcode:: DADD - Add
1854
1855 .. math::
1856
1857 dst.xy = src0.xy + src1.xy
1858
1859 dst.zw = src0.zw + src1.zw
1860
1861 .. opcode:: DSEQ - Set on Equal
1862
1863 .. math::
1864
1865 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1866
1867 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1868
1869 .. opcode:: DSNE - Set on Equal
1870
1871 .. math::
1872
1873 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1874
1875 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1876
1877 .. opcode:: DSLT - Set on Less than
1878
1879 .. math::
1880
1881 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1882
1883 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1884
1885 .. opcode:: DSGE - Set on Greater equal
1886
1887 .. math::
1888
1889 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1890
1891 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1892
1893 .. opcode:: DFRAC - Fraction
1894
1895 .. math::
1896
1897 dst.xy = src.xy - \lfloor src.xy\rfloor
1898
1899 dst.zw = src.zw - \lfloor src.zw\rfloor
1900
1901 .. opcode:: DTRUNC - Truncate
1902
1903 .. math::
1904
1905 dst.xy = trunc(src.xy)
1906
1907 dst.zw = trunc(src.zw)
1908
1909 .. opcode:: DCEIL - Ceiling
1910
1911 .. math::
1912
1913 dst.xy = \lceil src.xy\rceil
1914
1915 dst.zw = \lceil src.zw\rceil
1916
1917 .. opcode:: DFLR - Floor
1918
1919 .. math::
1920
1921 dst.xy = \lfloor src.xy\rfloor
1922
1923 dst.zw = \lfloor src.zw\rfloor
1924
1925 .. opcode:: DROUND - Fraction
1926
1927 .. math::
1928
1929 dst.xy = round(src.xy)
1930
1931 dst.zw = round(src.zw)
1932
1933 .. opcode:: DSSG - Set Sign
1934
1935 .. math::
1936
1937 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1938
1939 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1940
1941 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1942
1943 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1944 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1945 :math:`dst1 \times 2^{dst0} = src` .
1946
1947 .. math::
1948
1949 dst0.xy = exp(src.xy)
1950
1951 dst1.xy = frac(src.xy)
1952
1953 dst0.zw = exp(src.zw)
1954
1955 dst1.zw = frac(src.zw)
1956
1957 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1958
1959 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1960 source is an integer.
1961
1962 .. math::
1963
1964 dst.xy = src0.xy \times 2^{src1.x}
1965
1966 dst.zw = src0.zw \times 2^{src1.y}
1967
1968 .. opcode:: DMIN - Minimum
1969
1970 .. math::
1971
1972 dst.xy = min(src0.xy, src1.xy)
1973
1974 dst.zw = min(src0.zw, src1.zw)
1975
1976 .. opcode:: DMAX - Maximum
1977
1978 .. math::
1979
1980 dst.xy = max(src0.xy, src1.xy)
1981
1982 dst.zw = max(src0.zw, src1.zw)
1983
1984 .. opcode:: DMUL - Multiply
1985
1986 .. math::
1987
1988 dst.xy = src0.xy \times src1.xy
1989
1990 dst.zw = src0.zw \times src1.zw
1991
1992
1993 .. opcode:: DMAD - Multiply And Add
1994
1995 .. math::
1996
1997 dst.xy = src0.xy \times src1.xy + src2.xy
1998
1999 dst.zw = src0.zw \times src1.zw + src2.zw
2000
2001
2002 .. opcode:: DFMA - Fused Multiply-Add
2003
2004 Perform a * b + c with no intermediate rounding step.
2005
2006 .. math::
2007
2008 dst.xy = src0.xy \times src1.xy + src2.xy
2009
2010 dst.zw = src0.zw \times src1.zw + src2.zw
2011
2012
2013 .. opcode:: DRCP - Reciprocal
2014
2015 .. math::
2016
2017 dst.xy = \frac{1}{src.xy}
2018
2019 dst.zw = \frac{1}{src.zw}
2020
2021 .. opcode:: DSQRT - Square Root
2022
2023 .. math::
2024
2025 dst.xy = \sqrt{src.xy}
2026
2027 dst.zw = \sqrt{src.zw}
2028
2029 .. opcode:: DRSQ - Reciprocal Square Root
2030
2031 .. math::
2032
2033 dst.xy = \frac{1}{\sqrt{src.xy}}
2034
2035 dst.zw = \frac{1}{\sqrt{src.zw}}
2036
2037 .. opcode:: F2D - Float to Double
2038
2039 .. math::
2040
2041 dst.xy = double(src0.x)
2042
2043 dst.zw = double(src0.y)
2044
2045 .. opcode:: D2F - Double to Float
2046
2047 .. math::
2048
2049 dst.x = float(src0.xy)
2050
2051 dst.y = float(src0.zw)
2052
2053 .. opcode:: I2D - Int to Double
2054
2055 .. math::
2056
2057 dst.xy = double(src0.x)
2058
2059 dst.zw = double(src0.y)
2060
2061 .. opcode:: D2I - Double to Int
2062
2063 .. math::
2064
2065 dst.x = int(src0.xy)
2066
2067 dst.y = int(src0.zw)
2068
2069 .. opcode:: U2D - Unsigned Int to Double
2070
2071 .. math::
2072
2073 dst.xy = double(src0.x)
2074
2075 dst.zw = double(src0.y)
2076
2077 .. opcode:: D2U - Double to Unsigned Int
2078
2079 .. math::
2080
2081 dst.x = unsigned(src0.xy)
2082
2083 dst.y = unsigned(src0.zw)
2084
2085 .. _samplingopcodes:
2086
2087 Resource Sampling Opcodes
2088 ^^^^^^^^^^^^^^^^^^^^^^^^^
2089
2090 Those opcodes follow very closely semantics of the respective Direct3D
2091 instructions. If in doubt double check Direct3D documentation.
2092 Note that the swizzle on SVIEW (src1) determines texel swizzling
2093 after lookup.
2094
2095 .. opcode:: SAMPLE
2096
2097 Using provided address, sample data from the specified texture using the
2098 filtering mode identified by the gven sampler. The source data may come from
2099 any resource type other than buffers.
2100
2101 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2102
2103 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2104
2105 .. opcode:: SAMPLE_I
2106
2107 Simplified alternative to the SAMPLE instruction. Using the provided
2108 integer address, SAMPLE_I fetches data from the specified sampler view
2109 without any filtering. The source data may come from any resource type
2110 other than CUBE.
2111
2112 Syntax: ``SAMPLE_I dst, address, sampler_view``
2113
2114 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2115
2116 The 'address' is specified as unsigned integers. If the 'address' is out of
2117 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2118 components. As such the instruction doesn't honor address wrap modes, in
2119 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2120 address.w always provides an unsigned integer mipmap level. If the value is
2121 out of the range then the instruction always returns 0 in all components.
2122 address.yz are ignored for buffers and 1d textures. address.z is ignored
2123 for 1d texture arrays and 2d textures.
2124
2125 For 1D texture arrays address.y provides the array index (also as unsigned
2126 integer). If the value is out of the range of available array indices
2127 [0... (array size - 1)] then the opcode always returns 0 in all components.
2128 For 2D texture arrays address.z provides the array index, otherwise it
2129 exhibits the same behavior as in the case for 1D texture arrays. The exact
2130 semantics of the source address are presented in the table below:
2131
2132 +---------------------------+----+-----+-----+---------+
2133 | resource type | X | Y | Z | W |
2134 +===========================+====+=====+=====+=========+
2135 | ``PIPE_BUFFER`` | x | | | ignored |
2136 +---------------------------+----+-----+-----+---------+
2137 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2138 +---------------------------+----+-----+-----+---------+
2139 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2140 +---------------------------+----+-----+-----+---------+
2141 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2142 +---------------------------+----+-----+-----+---------+
2143 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2144 +---------------------------+----+-----+-----+---------+
2145 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2146 +---------------------------+----+-----+-----+---------+
2147 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2148 +---------------------------+----+-----+-----+---------+
2149 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2150 +---------------------------+----+-----+-----+---------+
2151
2152 Where 'mpl' is a mipmap level and 'idx' is the array index.
2153
2154 .. opcode:: SAMPLE_I_MS
2155
2156 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2157
2158 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2159
2160 .. opcode:: SAMPLE_B
2161
2162 Just like the SAMPLE instruction with the exception that an additional bias
2163 is applied to the level of detail computed as part of the instruction
2164 execution.
2165
2166 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2167
2168 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2169
2170 .. opcode:: SAMPLE_C
2171
2172 Similar to the SAMPLE instruction but it performs a comparison filter. The
2173 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2174 additional float32 operand, reference value, which must be a register with
2175 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2176 current samplers compare_func (in pipe_sampler_state) to compare reference
2177 value against the red component value for the surce resource at each texel
2178 that the currently configured texture filter covers based on the provided
2179 coordinates.
2180
2181 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2182
2183 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2184
2185 .. opcode:: SAMPLE_C_LZ
2186
2187 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2188 for level-zero.
2189
2190 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2191
2192 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2193
2194
2195 .. opcode:: SAMPLE_D
2196
2197 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2198 the source address in the x direction and the y direction are provided by
2199 extra parameters.
2200
2201 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2202
2203 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2204
2205 .. opcode:: SAMPLE_L
2206
2207 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2208 directly as a scalar value, representing no anisotropy.
2209
2210 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2211
2212 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2213
2214 .. opcode:: GATHER4
2215
2216 Gathers the four texels to be used in a bi-linear filtering operation and
2217 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2218 and cubemaps arrays. For 2D textures, only the addressing modes of the
2219 sampler and the top level of any mip pyramid are used. Set W to zero. It
2220 behaves like the SAMPLE instruction, but a filtered sample is not
2221 generated. The four samples that contribute to filtering are placed into
2222 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2223 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2224 magnitude of the deltas are half a texel.
2225
2226
2227 .. opcode:: SVIEWINFO
2228
2229 Query the dimensions of a given sampler view. dst receives width, height,
2230 depth or array size and number of mipmap levels as int4. The dst can have a
2231 writemask which will specify what info is the caller interested in.
2232
2233 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2234
2235 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2236
2237 src_mip_level is an unsigned integer scalar. If it's out of range then
2238 returns 0 for width, height and depth/array size but the total number of
2239 mipmap is still returned correctly for the given sampler view. The returned
2240 width, height and depth values are for the mipmap level selected by the
2241 src_mip_level and are in the number of texels. For 1d texture array width
2242 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2243 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2244 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2245 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2246 resinfo allowing swizzling dst values is ignored (due to the interaction
2247 with rcpfloat modifier which requires some swizzle handling in the state
2248 tracker anyway).
2249
2250 .. opcode:: SAMPLE_POS
2251
2252 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2253 indicated where the sample is located. If the resource is not a multi-sample
2254 resource and not a render target, the result is 0.
2255
2256 .. opcode:: SAMPLE_INFO
2257
2258 dst receives number of samples in x. If the resource is not a multi-sample
2259 resource and not a render target, the result is 0.
2260
2261
2262 .. _resourceopcodes:
2263
2264 Resource Access Opcodes
2265 ^^^^^^^^^^^^^^^^^^^^^^^
2266
2267 .. opcode:: LOAD - Fetch data from a shader resource
2268
2269 Syntax: ``LOAD dst, resource, address``
2270
2271 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2272
2273 Using the provided integer address, LOAD fetches data
2274 from the specified buffer or texture without any
2275 filtering.
2276
2277 The 'address' is specified as a vector of unsigned
2278 integers. If the 'address' is out of range the result
2279 is unspecified.
2280
2281 Only the first mipmap level of a resource can be read
2282 from using this instruction.
2283
2284 For 1D or 2D texture arrays, the array index is
2285 provided as an unsigned integer in address.y or
2286 address.z, respectively. address.yz are ignored for
2287 buffers and 1D textures. address.z is ignored for 1D
2288 texture arrays and 2D textures. address.w is always
2289 ignored.
2290
2291 .. opcode:: STORE - Write data to a shader resource
2292
2293 Syntax: ``STORE resource, address, src``
2294
2295 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2296
2297 Using the provided integer address, STORE writes data
2298 to the specified buffer or texture.
2299
2300 The 'address' is specified as a vector of unsigned
2301 integers. If the 'address' is out of range the result
2302 is unspecified.
2303
2304 Only the first mipmap level of a resource can be
2305 written to using this instruction.
2306
2307 For 1D or 2D texture arrays, the array index is
2308 provided as an unsigned integer in address.y or
2309 address.z, respectively. address.yz are ignored for
2310 buffers and 1D textures. address.z is ignored for 1D
2311 texture arrays and 2D textures. address.w is always
2312 ignored.
2313
2314
2315 .. _threadsyncopcodes:
2316
2317 Inter-thread synchronization opcodes
2318 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2319
2320 These opcodes are intended for communication between threads running
2321 within the same compute grid. For now they're only valid in compute
2322 programs.
2323
2324 .. opcode:: MFENCE - Memory fence
2325
2326 Syntax: ``MFENCE resource``
2327
2328 Example: ``MFENCE RES[0]``
2329
2330 This opcode forces strong ordering between any memory access
2331 operations that affect the specified resource. This means that
2332 previous loads and stores (and only those) will be performed and
2333 visible to other threads before the program execution continues.
2334
2335
2336 .. opcode:: LFENCE - Load memory fence
2337
2338 Syntax: ``LFENCE resource``
2339
2340 Example: ``LFENCE RES[0]``
2341
2342 Similar to MFENCE, but it only affects the ordering of memory loads.
2343
2344
2345 .. opcode:: SFENCE - Store memory fence
2346
2347 Syntax: ``SFENCE resource``
2348
2349 Example: ``SFENCE RES[0]``
2350
2351 Similar to MFENCE, but it only affects the ordering of memory stores.
2352
2353
2354 .. opcode:: BARRIER - Thread group barrier
2355
2356 ``BARRIER``
2357
2358 This opcode suspends the execution of the current thread until all
2359 the remaining threads in the working group reach the same point of
2360 the program. Results are unspecified if any of the remaining
2361 threads terminates or never reaches an executed BARRIER instruction.
2362
2363
2364 .. _atomopcodes:
2365
2366 Atomic opcodes
2367 ^^^^^^^^^^^^^^
2368
2369 These opcodes provide atomic variants of some common arithmetic and
2370 logical operations. In this context atomicity means that another
2371 concurrent memory access operation that affects the same memory
2372 location is guaranteed to be performed strictly before or after the
2373 entire execution of the atomic operation.
2374
2375 For the moment they're only valid in compute programs.
2376
2377 .. opcode:: ATOMUADD - Atomic integer addition
2378
2379 Syntax: ``ATOMUADD dst, resource, offset, src``
2380
2381 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2382
2383 The following operation is performed atomically on each component:
2384
2385 .. math::
2386
2387 dst_i = resource[offset]_i
2388
2389 resource[offset]_i = dst_i + src_i
2390
2391
2392 .. opcode:: ATOMXCHG - Atomic exchange
2393
2394 Syntax: ``ATOMXCHG dst, resource, offset, src``
2395
2396 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2397
2398 The following operation is performed atomically on each component:
2399
2400 .. math::
2401
2402 dst_i = resource[offset]_i
2403
2404 resource[offset]_i = src_i
2405
2406
2407 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2408
2409 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2410
2411 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2412
2413 The following operation is performed atomically on each component:
2414
2415 .. math::
2416
2417 dst_i = resource[offset]_i
2418
2419 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2420
2421
2422 .. opcode:: ATOMAND - Atomic bitwise And
2423
2424 Syntax: ``ATOMAND dst, resource, offset, src``
2425
2426 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2427
2428 The following operation is performed atomically on each component:
2429
2430 .. math::
2431
2432 dst_i = resource[offset]_i
2433
2434 resource[offset]_i = dst_i \& src_i
2435
2436
2437 .. opcode:: ATOMOR - Atomic bitwise Or
2438
2439 Syntax: ``ATOMOR dst, resource, offset, src``
2440
2441 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2442
2443 The following operation is performed atomically on each component:
2444
2445 .. math::
2446
2447 dst_i = resource[offset]_i
2448
2449 resource[offset]_i = dst_i | src_i
2450
2451
2452 .. opcode:: ATOMXOR - Atomic bitwise Xor
2453
2454 Syntax: ``ATOMXOR dst, resource, offset, src``
2455
2456 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2457
2458 The following operation is performed atomically on each component:
2459
2460 .. math::
2461
2462 dst_i = resource[offset]_i
2463
2464 resource[offset]_i = dst_i \oplus src_i
2465
2466
2467 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2468
2469 Syntax: ``ATOMUMIN dst, resource, offset, src``
2470
2471 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2472
2473 The following operation is performed atomically on each component:
2474
2475 .. math::
2476
2477 dst_i = resource[offset]_i
2478
2479 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2480
2481
2482 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2483
2484 Syntax: ``ATOMUMAX dst, resource, offset, src``
2485
2486 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2487
2488 The following operation is performed atomically on each component:
2489
2490 .. math::
2491
2492 dst_i = resource[offset]_i
2493
2494 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2495
2496
2497 .. opcode:: ATOMIMIN - Atomic signed minimum
2498
2499 Syntax: ``ATOMIMIN dst, resource, offset, src``
2500
2501 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2502
2503 The following operation is performed atomically on each component:
2504
2505 .. math::
2506
2507 dst_i = resource[offset]_i
2508
2509 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2510
2511
2512 .. opcode:: ATOMIMAX - Atomic signed maximum
2513
2514 Syntax: ``ATOMIMAX dst, resource, offset, src``
2515
2516 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2517
2518 The following operation is performed atomically on each component:
2519
2520 .. math::
2521
2522 dst_i = resource[offset]_i
2523
2524 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2525
2526
2527
2528 Explanation of symbols used
2529 ------------------------------
2530
2531
2532 Functions
2533 ^^^^^^^^^^^^^^
2534
2535
2536 :math:`|x|` Absolute value of `x`.
2537
2538 :math:`\lceil x \rceil` Ceiling of `x`.
2539
2540 clamp(x,y,z) Clamp x between y and z.
2541 (x < y) ? y : (x > z) ? z : x
2542
2543 :math:`\lfloor x\rfloor` Floor of `x`.
2544
2545 :math:`\log_2{x}` Logarithm of `x`, base 2.
2546
2547 max(x,y) Maximum of x and y.
2548 (x > y) ? x : y
2549
2550 min(x,y) Minimum of x and y.
2551 (x < y) ? x : y
2552
2553 partialx(x) Derivative of x relative to fragment's X.
2554
2555 partialy(x) Derivative of x relative to fragment's Y.
2556
2557 pop() Pop from stack.
2558
2559 :math:`x^y` `x` to the power `y`.
2560
2561 push(x) Push x on stack.
2562
2563 round(x) Round x.
2564
2565 trunc(x) Truncate x, i.e. drop the fraction bits.
2566
2567
2568 Keywords
2569 ^^^^^^^^^^^^^
2570
2571
2572 discard Discard fragment.
2573
2574 pc Program counter.
2575
2576 target Label of target instruction.
2577
2578
2579 Other tokens
2580 ---------------
2581
2582
2583 Declaration
2584 ^^^^^^^^^^^
2585
2586
2587 Declares a register that is will be referenced as an operand in Instruction
2588 tokens.
2589
2590 File field contains register file that is being declared and is one
2591 of TGSI_FILE.
2592
2593 UsageMask field specifies which of the register components can be accessed
2594 and is one of TGSI_WRITEMASK.
2595
2596 The Local flag specifies that a given value isn't intended for
2597 subroutine parameter passing and, as a result, the implementation
2598 isn't required to give any guarantees of it being preserved across
2599 subroutine boundaries. As it's merely a compiler hint, the
2600 implementation is free to ignore it.
2601
2602 If Dimension flag is set to 1, a Declaration Dimension token follows.
2603
2604 If Semantic flag is set to 1, a Declaration Semantic token follows.
2605
2606 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2607
2608 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2609
2610 If Array flag is set to 1, a Declaration Array token follows.
2611
2612 Array Declaration
2613 ^^^^^^^^^^^^^^^^^^^^^^^^
2614
2615 Declarations can optional have an ArrayID attribute which can be referred by
2616 indirect addressing operands. An ArrayID of zero is reserved and treated as
2617 if no ArrayID is specified.
2618
2619 If an indirect addressing operand refers to a specific declaration by using
2620 an ArrayID only the registers in this declaration are guaranteed to be
2621 accessed, accessing any register outside this declaration results in undefined
2622 behavior. Note that for compatibility the effective index is zero-based and
2623 not relative to the specified declaration
2624
2625 If no ArrayID is specified with an indirect addressing operand the whole
2626 register file might be accessed by this operand. This is strongly discouraged
2627 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2628 This is only legal for TEMP and CONST register files.
2629
2630 Declaration Semantic
2631 ^^^^^^^^^^^^^^^^^^^^^^^^
2632
2633 Vertex and fragment shader input and output registers may be labeled
2634 with semantic information consisting of a name and index.
2635
2636 Follows Declaration token if Semantic bit is set.
2637
2638 Since its purpose is to link a shader with other stages of the pipeline,
2639 it is valid to follow only those Declaration tokens that declare a register
2640 either in INPUT or OUTPUT file.
2641
2642 SemanticName field contains the semantic name of the register being declared.
2643 There is no default value.
2644
2645 SemanticIndex is an optional subscript that can be used to distinguish
2646 different register declarations with the same semantic name. The default value
2647 is 0.
2648
2649 The meanings of the individual semantic names are explained in the following
2650 sections.
2651
2652 TGSI_SEMANTIC_POSITION
2653 """"""""""""""""""""""
2654
2655 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2656 output register which contains the homogeneous vertex position in the clip
2657 space coordinate system. After clipping, the X, Y and Z components of the
2658 vertex will be divided by the W value to get normalized device coordinates.
2659
2660 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2661 fragment shader input (or system value, depending on which one is
2662 supported by the driver) contains the fragment's window position. The X
2663 component starts at zero and always increases from left to right.
2664 The Y component starts at zero and always increases but Y=0 may either
2665 indicate the top of the window or the bottom depending on the fragment
2666 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2667 The Z coordinate ranges from 0 to 1 to represent depth from the front
2668 to the back of the Z buffer. The W component contains the interpolated
2669 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2670 but unlike d3d10 which interpolates the same 1/w but then gives back
2671 the reciprocal of the interpolated value).
2672
2673 Fragment shaders may also declare an output register with
2674 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2675 the fragment shader to change the fragment's Z position.
2676
2677
2678
2679 TGSI_SEMANTIC_COLOR
2680 """""""""""""""""""
2681
2682 For vertex shader outputs or fragment shader inputs/outputs, this
2683 label indicates that the resister contains an R,G,B,A color.
2684
2685 Several shader inputs/outputs may contain colors so the semantic index
2686 is used to distinguish them. For example, color[0] may be the diffuse
2687 color while color[1] may be the specular color.
2688
2689 This label is needed so that the flat/smooth shading can be applied
2690 to the right interpolants during rasterization.
2691
2692
2693
2694 TGSI_SEMANTIC_BCOLOR
2695 """"""""""""""""""""
2696
2697 Back-facing colors are only used for back-facing polygons, and are only valid
2698 in vertex shader outputs. After rasterization, all polygons are front-facing
2699 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2700 so all BCOLORs effectively become regular COLORs in the fragment shader.
2701
2702
2703 TGSI_SEMANTIC_FOG
2704 """""""""""""""""
2705
2706 Vertex shader inputs and outputs and fragment shader inputs may be
2707 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2708 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2709 to compute a fog blend factor which is used to blend the normal fragment color
2710 with a constant fog color. But fog coord really is just an ordinary vec4
2711 register like regular semantics.
2712
2713
2714 TGSI_SEMANTIC_PSIZE
2715 """""""""""""""""""
2716
2717 Vertex shader input and output registers may be labeled with
2718 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2719 in the form (S, 0, 0, 1). The point size controls the width or diameter
2720 of points for rasterization. This label cannot be used in fragment
2721 shaders.
2722
2723 When using this semantic, be sure to set the appropriate state in the
2724 :ref:`rasterizer` first.
2725
2726
2727 TGSI_SEMANTIC_TEXCOORD
2728 """"""""""""""""""""""
2729
2730 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2731
2732 Vertex shader outputs and fragment shader inputs may be labeled with
2733 this semantic to make them replaceable by sprite coordinates via the
2734 sprite_coord_enable state in the :ref:`rasterizer`.
2735 The semantic index permitted with this semantic is limited to <= 7.
2736
2737 If the driver does not support TEXCOORD, sprite coordinate replacement
2738 applies to inputs with the GENERIC semantic instead.
2739
2740 The intended use case for this semantic is gl_TexCoord.
2741
2742
2743 TGSI_SEMANTIC_PCOORD
2744 """"""""""""""""""""
2745
2746 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2747
2748 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2749 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2750 the current primitive is a point and point sprites are enabled. Otherwise,
2751 the contents of the register are undefined.
2752
2753 The intended use case for this semantic is gl_PointCoord.
2754
2755
2756 TGSI_SEMANTIC_GENERIC
2757 """""""""""""""""""""
2758
2759 All vertex/fragment shader inputs/outputs not labeled with any other
2760 semantic label can be considered to be generic attributes. Typical
2761 uses of generic inputs/outputs are texcoords and user-defined values.
2762
2763
2764 TGSI_SEMANTIC_NORMAL
2765 """"""""""""""""""""
2766
2767 Indicates that a vertex shader input is a normal vector. This is
2768 typically only used for legacy graphics APIs.
2769
2770
2771 TGSI_SEMANTIC_FACE
2772 """"""""""""""""""
2773
2774 This label applies to fragment shader inputs (or system values,
2775 depending on which one is supported by the driver) and indicates that
2776 the register contains front/back-face information.
2777
2778 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
2779 where F will be positive when the fragment belongs to a front-facing polygon,
2780 and negative when the fragment belongs to a back-facing polygon.
2781
2782 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
2783 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
2784 0 when the fragment belongs to a back-facing polygon.
2785
2786
2787 TGSI_SEMANTIC_EDGEFLAG
2788 """"""""""""""""""""""
2789
2790 For vertex shaders, this sematic label indicates that an input or
2791 output is a boolean edge flag. The register layout is [F, x, x, x]
2792 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2793 simply copies the edge flag input to the edgeflag output.
2794
2795 Edge flags are used to control which lines or points are actually
2796 drawn when the polygon mode converts triangles/quads/polygons into
2797 points or lines.
2798
2799
2800 TGSI_SEMANTIC_STENCIL
2801 """""""""""""""""""""
2802
2803 For fragment shaders, this semantic label indicates that an output
2804 is a writable stencil reference value. Only the Y component is writable.
2805 This allows the fragment shader to change the fragments stencilref value.
2806
2807
2808 TGSI_SEMANTIC_VIEWPORT_INDEX
2809 """"""""""""""""""""""""""""
2810
2811 For geometry shaders, this semantic label indicates that an output
2812 contains the index of the viewport (and scissor) to use.
2813 This is an integer value, and only the X component is used.
2814
2815
2816 TGSI_SEMANTIC_LAYER
2817 """""""""""""""""""
2818
2819 For geometry shaders, this semantic label indicates that an output
2820 contains the layer value to use for the color and depth/stencil surfaces.
2821 This is an integer value, and only the X component is used.
2822 (Also known as rendertarget array index.)
2823
2824
2825 TGSI_SEMANTIC_CULLDIST
2826 """"""""""""""""""""""
2827
2828 Used as distance to plane for performing application-defined culling
2829 of individual primitives against a plane. When components of vertex
2830 elements are given this label, these values are assumed to be a
2831 float32 signed distance to a plane. Primitives will be completely
2832 discarded if the plane distance for all of the vertices in the
2833 primitive are < 0. If a vertex has a cull distance of NaN, that
2834 vertex counts as "out" (as if its < 0);
2835 The limits on both clip and cull distances are bound
2836 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2837 the maximum number of components that can be used to hold the
2838 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2839 which specifies the maximum number of registers which can be
2840 annotated with those semantics.
2841
2842
2843 TGSI_SEMANTIC_CLIPDIST
2844 """"""""""""""""""""""
2845
2846 When components of vertex elements are identified this way, these
2847 values are each assumed to be a float32 signed distance to a plane.
2848 Primitive setup only invokes rasterization on pixels for which
2849 the interpolated plane distances are >= 0. Multiple clip planes
2850 can be implemented simultaneously, by annotating multiple
2851 components of one or more vertex elements with the above specified
2852 semantic. The limits on both clip and cull distances are bound
2853 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2854 the maximum number of components that can be used to hold the
2855 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2856 which specifies the maximum number of registers which can be
2857 annotated with those semantics.
2858
2859 TGSI_SEMANTIC_SAMPLEID
2860 """"""""""""""""""""""
2861
2862 For fragment shaders, this semantic label indicates that a system value
2863 contains the current sample id (i.e. gl_SampleID).
2864 This is an integer value, and only the X component is used.
2865
2866 TGSI_SEMANTIC_SAMPLEPOS
2867 """""""""""""""""""""""
2868
2869 For fragment shaders, this semantic label indicates that a system value
2870 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2871 and Y values are used.
2872
2873 TGSI_SEMANTIC_SAMPLEMASK
2874 """"""""""""""""""""""""
2875
2876 For fragment shaders, this semantic label indicates that an output contains
2877 the sample mask used to disable further sample processing
2878 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2879
2880 TGSI_SEMANTIC_INVOCATIONID
2881 """"""""""""""""""""""""""
2882
2883 For geometry shaders, this semantic label indicates that a system value
2884 contains the current invocation id (i.e. gl_InvocationID).
2885 This is an integer value, and only the X component is used.
2886
2887 TGSI_SEMANTIC_INSTANCEID
2888 """"""""""""""""""""""""
2889
2890 For vertex shaders, this semantic label indicates that a system value contains
2891 the current instance id (i.e. gl_InstanceID). It does not include the base
2892 instance. This is an integer value, and only the X component is used.
2893
2894 TGSI_SEMANTIC_VERTEXID
2895 """"""""""""""""""""""
2896
2897 For vertex shaders, this semantic label indicates that a system value contains
2898 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
2899 base vertex. This is an integer value, and only the X component is used.
2900
2901 TGSI_SEMANTIC_VERTEXID_NOBASE
2902 """""""""""""""""""""""""""""""
2903
2904 For vertex shaders, this semantic label indicates that a system value contains
2905 the current vertex id without including the base vertex (this corresponds to
2906 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
2907 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
2908 is used.
2909
2910 TGSI_SEMANTIC_BASEVERTEX
2911 """"""""""""""""""""""""
2912
2913 For vertex shaders, this semantic label indicates that a system value contains
2914 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
2915 this contains the first (or start) value instead.
2916 This is an integer value, and only the X component is used.
2917
2918 TGSI_SEMANTIC_PRIMID
2919 """"""""""""""""""""
2920
2921 For geometry and fragment shaders, this semantic label indicates the value
2922 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
2923 and only the X component is used.
2924 FIXME: This right now can be either a ordinary input or a system value...
2925
2926
2927 TGSI_SEMANTIC_PATCH
2928 """""""""""""""""""
2929
2930 For tessellation evaluation/control shaders, this semantic label indicates a
2931 generic per-patch attribute. Such semantics will not implicitly be per-vertex
2932 arrays.
2933
2934 TGSI_SEMANTIC_TESSCOORD
2935 """""""""""""""""""""""
2936
2937 For tessellation evaluation shaders, this semantic label indicates the
2938 coordinates of the vertex being processed. This is available in XYZ; W is
2939 undefined.
2940
2941 TGSI_SEMANTIC_TESSOUTER
2942 """""""""""""""""""""""
2943
2944 For tessellation evaluation/control shaders, this semantic label indicates the
2945 outer tessellation levels of the patch. Isoline tessellation will only have XY
2946 defined, triangle will have XYZ and quads will have XYZW defined. This
2947 corresponds to gl_TessLevelOuter.
2948
2949 TGSI_SEMANTIC_TESSINNER
2950 """""""""""""""""""""""
2951
2952 For tessellation evaluation/control shaders, this semantic label indicates the
2953 inner tessellation levels of the patch. The X value is only defined for
2954 triangle tessellation, while quads will have XY defined. This is entirely
2955 undefined for isoline tessellation.
2956
2957 TGSI_SEMANTIC_VERTICESIN
2958 """"""""""""""""""""""""
2959
2960 For tessellation evaluation/control shaders, this semantic label indicates the
2961 number of vertices provided in the input patch. Only the X value is defined.
2962
2963 TGSI_SEMANTIC_HELPER_INVOCATION
2964 """""""""""""""""""""""""""""""
2965
2966 For fragment shaders, this semantic indicates whether the current
2967 invocation is covered or not. Helper invocations are created in order
2968 to properly compute derivatives, however it may be desirable to skip
2969 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
2970
2971 TGSI_SEMANTIC_BASEINSTANCE
2972 """"""""""""""""""""""""""
2973
2974 For vertex shaders, the base instance argument supplied for this
2975 draw. This is an integer value, and only the X component is used.
2976
2977 TGSI_SEMANTIC_DRAWID
2978 """"""""""""""""""""
2979
2980 For vertex shaders, the zero-based index of the current draw in a
2981 ``glMultiDraw*`` invocation. This is an integer value, and only the X
2982 component is used.
2983
2984
2985 Declaration Interpolate
2986 ^^^^^^^^^^^^^^^^^^^^^^^
2987
2988 This token is only valid for fragment shader INPUT declarations.
2989
2990 The Interpolate field specifes the way input is being interpolated by
2991 the rasteriser and is one of TGSI_INTERPOLATE_*.
2992
2993 The Location field specifies the location inside the pixel that the
2994 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2995 when per-sample shading is enabled, the implementation may choose to
2996 interpolate at the sample irrespective of the Location field.
2997
2998 The CylindricalWrap bitfield specifies which register components
2999 should be subject to cylindrical wrapping when interpolating by the
3000 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3001 should be interpolated according to cylindrical wrapping rules.
3002
3003
3004 Declaration Sampler View
3005 ^^^^^^^^^^^^^^^^^^^^^^^^
3006
3007 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3008
3009 DCL SVIEW[#], resource, type(s)
3010
3011 Declares a shader input sampler view and assigns it to a SVIEW[#]
3012 register.
3013
3014 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3015
3016 type must be 1 or 4 entries (if specifying on a per-component
3017 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3018
3019 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3020 which take an explicit SVIEW[#] source register), there may be optionally
3021 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3022 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3023 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3024 But note in particular that some drivers need to know the sampler type
3025 (float/int/unsigned) in order to generate the correct code, so cases
3026 where integer textures are sampled, SVIEW[#] declarations should be
3027 used.
3028
3029 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3030 in the same shader.
3031
3032 Declaration Resource
3033 ^^^^^^^^^^^^^^^^^^^^
3034
3035 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3036
3037 DCL RES[#], resource [, WR] [, RAW]
3038
3039 Declares a shader input resource and assigns it to a RES[#]
3040 register.
3041
3042 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3043 2DArray.
3044
3045 If the RAW keyword is not specified, the texture data will be
3046 subject to conversion, swizzling and scaling as required to yield
3047 the specified data type from the physical data format of the bound
3048 resource.
3049
3050 If the RAW keyword is specified, no channel conversion will be
3051 performed: the values read for each of the channels (X,Y,Z,W) will
3052 correspond to consecutive words in the same order and format
3053 they're found in memory. No element-to-address conversion will be
3054 performed either: the value of the provided X coordinate will be
3055 interpreted in byte units instead of texel units. The result of
3056 accessing a misaligned address is undefined.
3057
3058 Usage of the STORE opcode is only allowed if the WR (writable) flag
3059 is set.
3060
3061
3062 Properties
3063 ^^^^^^^^^^^^^^^^^^^^^^^^
3064
3065 Properties are general directives that apply to the whole TGSI program.
3066
3067 FS_COORD_ORIGIN
3068 """""""""""""""
3069
3070 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3071 The default value is UPPER_LEFT.
3072
3073 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3074 increase downward and rightward.
3075 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3076 increase upward and rightward.
3077
3078 OpenGL defaults to LOWER_LEFT, and is configurable with the
3079 GL_ARB_fragment_coord_conventions extension.
3080
3081 DirectX 9/10 use UPPER_LEFT.
3082
3083 FS_COORD_PIXEL_CENTER
3084 """""""""""""""""""""
3085
3086 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3087 The default value is HALF_INTEGER.
3088
3089 If HALF_INTEGER, the fractionary part of the position will be 0.5
3090 If INTEGER, the fractionary part of the position will be 0.0
3091
3092 Note that this does not affect the set of fragments generated by
3093 rasterization, which is instead controlled by half_pixel_center in the
3094 rasterizer.
3095
3096 OpenGL defaults to HALF_INTEGER, and is configurable with the
3097 GL_ARB_fragment_coord_conventions extension.
3098
3099 DirectX 9 uses INTEGER.
3100 DirectX 10 uses HALF_INTEGER.
3101
3102 FS_COLOR0_WRITES_ALL_CBUFS
3103 """"""""""""""""""""""""""
3104 Specifies that writes to the fragment shader color 0 are replicated to all
3105 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3106 fragData is directed to a single color buffer, but fragColor is broadcast.
3107
3108 VS_PROHIBIT_UCPS
3109 """"""""""""""""""""""""""
3110 If this property is set on the program bound to the shader stage before the
3111 fragment shader, user clip planes should have no effect (be disabled) even if
3112 that shader does not write to any clip distance outputs and the rasterizer's
3113 clip_plane_enable is non-zero.
3114 This property is only supported by drivers that also support shader clip
3115 distance outputs.
3116 This is useful for APIs that don't have UCPs and where clip distances written
3117 by a shader cannot be disabled.
3118
3119 GS_INVOCATIONS
3120 """"""""""""""
3121
3122 Specifies the number of times a geometry shader should be executed for each
3123 input primitive. Each invocation will have a different
3124 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3125 be 1.
3126
3127 VS_WINDOW_SPACE_POSITION
3128 """"""""""""""""""""""""""
3129 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3130 is assumed to contain window space coordinates.
3131 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3132 directly taken from the 4-th component of the shader output.
3133 Naturally, clipping is not performed on window coordinates either.
3134 The effect of this property is undefined if a geometry or tessellation shader
3135 are in use.
3136
3137 TCS_VERTICES_OUT
3138 """"""""""""""""
3139
3140 The number of vertices written by the tessellation control shader. This
3141 effectively defines the patch input size of the tessellation evaluation shader
3142 as well.
3143
3144 TES_PRIM_MODE
3145 """""""""""""
3146
3147 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3148 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3149 separate isolines settings, the regular lines is assumed to mean isolines.)
3150
3151 TES_SPACING
3152 """""""""""
3153
3154 This sets the spacing mode of the tessellation generator, one of
3155 ``PIPE_TESS_SPACING_*``.
3156
3157 TES_VERTEX_ORDER_CW
3158 """""""""""""""""""
3159
3160 This sets the vertex order to be clockwise if the value is 1, or
3161 counter-clockwise if set to 0.
3162
3163 TES_POINT_MODE
3164 """"""""""""""
3165
3166 If set to a non-zero value, this turns on point mode for the tessellator,
3167 which means that points will be generated instead of primitives.
3168
3169 NUM_CLIPDIST_ENABLED
3170 """"""""""""""""
3171
3172 How many clip distance scalar outputs are enabled.
3173
3174 NUM_CULLDIST_ENABLED
3175 """"""""""""""""
3176
3177 How many cull distance scalar outputs are enabled.
3178
3179
3180 Texture Sampling and Texture Formats
3181 ------------------------------------
3182
3183 This table shows how texture image components are returned as (x,y,z,w) tuples
3184 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3185 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3186 well.
3187
3188 +--------------------+--------------+--------------------+--------------+
3189 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3190 +====================+==============+====================+==============+
3191 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3192 +--------------------+--------------+--------------------+--------------+
3193 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3194 +--------------------+--------------+--------------------+--------------+
3195 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3196 +--------------------+--------------+--------------------+--------------+
3197 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3198 +--------------------+--------------+--------------------+--------------+
3199 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3200 +--------------------+--------------+--------------------+--------------+
3201 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3202 +--------------------+--------------+--------------------+--------------+
3203 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3204 +--------------------+--------------+--------------------+--------------+
3205 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3206 +--------------------+--------------+--------------------+--------------+
3207 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3208 | | | [#envmap-bumpmap]_ | |
3209 +--------------------+--------------+--------------------+--------------+
3210 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3211 | | | [#depth-tex-mode]_ | |
3212 +--------------------+--------------+--------------------+--------------+
3213 | S | (s, s, s, s) | unknown | unknown |
3214 +--------------------+--------------+--------------------+--------------+
3215
3216 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3217 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3218 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.