gallium: add double opcodes and TGSI execution (v4.2)
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = (int) \lfloor src.x\rfloor
52
53 dst.y = (int) \lfloor src.y\rfloor
54
55 dst.z = (int) \lfloor src.z\rfloor
56
57 dst.w = (int) \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: DP2A - 2-component Dot Product And Add
276
277 .. math::
278
279 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
280
281 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
282
283 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287
288 .. opcode:: FRC - Fraction
289
290 .. math::
291
292 dst.x = src.x - \lfloor src.x\rfloor
293
294 dst.y = src.y - \lfloor src.y\rfloor
295
296 dst.z = src.z - \lfloor src.z\rfloor
297
298 dst.w = src.w - \lfloor src.w\rfloor
299
300
301 .. opcode:: CLAMP - Clamp
302
303 .. math::
304
305 dst.x = clamp(src0.x, src1.x, src2.x)
306
307 dst.y = clamp(src0.y, src1.y, src2.y)
308
309 dst.z = clamp(src0.z, src1.z, src2.z)
310
311 dst.w = clamp(src0.w, src1.w, src2.w)
312
313
314 .. opcode:: FLR - Floor
315
316 .. math::
317
318 dst.x = \lfloor src.x\rfloor
319
320 dst.y = \lfloor src.y\rfloor
321
322 dst.z = \lfloor src.z\rfloor
323
324 dst.w = \lfloor src.w\rfloor
325
326
327 .. opcode:: ROUND - Round
328
329 .. math::
330
331 dst.x = round(src.x)
332
333 dst.y = round(src.y)
334
335 dst.z = round(src.z)
336
337 dst.w = round(src.w)
338
339
340 .. opcode:: EX2 - Exponential Base 2
341
342 This instruction replicates its result.
343
344 .. math::
345
346 dst = 2^{src.x}
347
348
349 .. opcode:: LG2 - Logarithm Base 2
350
351 This instruction replicates its result.
352
353 .. math::
354
355 dst = \log_2{src.x}
356
357
358 .. opcode:: POW - Power
359
360 This instruction replicates its result.
361
362 .. math::
363
364 dst = src0.x^{src1.x}
365
366 .. opcode:: XPD - Cross Product
367
368 .. math::
369
370 dst.x = src0.y \times src1.z - src1.y \times src0.z
371
372 dst.y = src0.z \times src1.x - src1.z \times src0.x
373
374 dst.z = src0.x \times src1.y - src1.x \times src0.y
375
376 dst.w = 1
377
378
379 .. opcode:: ABS - Absolute
380
381 .. math::
382
383 dst.x = |src.x|
384
385 dst.y = |src.y|
386
387 dst.z = |src.z|
388
389 dst.w = |src.w|
390
391
392 .. opcode:: DPH - Homogeneous Dot Product
393
394 This instruction replicates its result.
395
396 .. math::
397
398 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
399
400
401 .. opcode:: COS - Cosine
402
403 This instruction replicates its result.
404
405 .. math::
406
407 dst = \cos{src.x}
408
409
410 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
411
412 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
413 advertised. When it is, the fine version guarantees one derivative per row
414 while DDX is allowed to be the same for the entire 2x2 quad.
415
416 .. math::
417
418 dst.x = partialx(src.x)
419
420 dst.y = partialx(src.y)
421
422 dst.z = partialx(src.z)
423
424 dst.w = partialx(src.w)
425
426
427 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
428
429 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
430 advertised. When it is, the fine version guarantees one derivative per column
431 while DDY is allowed to be the same for the entire 2x2 quad.
432
433 .. math::
434
435 dst.x = partialy(src.x)
436
437 dst.y = partialy(src.y)
438
439 dst.z = partialy(src.z)
440
441 dst.w = partialy(src.w)
442
443
444 .. opcode:: PK2H - Pack Two 16-bit Floats
445
446 TBD
447
448
449 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
450
451 TBD
452
453
454 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
455
456 TBD
457
458
459 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
460
461 TBD
462
463
464 .. opcode:: SEQ - Set On Equal
465
466 .. math::
467
468 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
469
470 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
471
472 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
473
474 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
475
476
477 .. opcode:: SGT - Set On Greater Than
478
479 .. math::
480
481 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
482
483 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
484
485 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
486
487 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
488
489
490 .. opcode:: SIN - Sine
491
492 This instruction replicates its result.
493
494 .. math::
495
496 dst = \sin{src.x}
497
498
499 .. opcode:: SLE - Set On Less Equal Than
500
501 .. math::
502
503 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
504
505 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
506
507 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
508
509 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
510
511
512 .. opcode:: SNE - Set On Not Equal
513
514 .. math::
515
516 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
517
518 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
519
520 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
521
522 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
523
524
525 .. opcode:: TEX - Texture Lookup
526
527 for array textures src0.y contains the slice for 1D,
528 and src0.z contain the slice for 2D.
529
530 for shadow textures with no arrays (and not cube map),
531 src0.z contains the reference value.
532
533 for shadow textures with arrays, src0.z contains
534 the reference value for 1D arrays, and src0.w contains
535 the reference value for 2D arrays and cube maps.
536
537 for cube map array shadow textures, the reference value
538 cannot be passed in src0.w, and TEX2 must be used instead.
539
540 .. math::
541
542 coord = src0
543
544 shadow_ref = src0.z or src0.w (optional)
545
546 unit = src1
547
548 dst = texture\_sample(unit, coord, shadow_ref)
549
550
551 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
552
553 this is the same as TEX, but uses another reg to encode the
554 reference value.
555
556 .. math::
557
558 coord = src0
559
560 shadow_ref = src1.x
561
562 unit = src2
563
564 dst = texture\_sample(unit, coord, shadow_ref)
565
566
567
568
569 .. opcode:: TXD - Texture Lookup with Derivatives
570
571 .. math::
572
573 coord = src0
574
575 ddx = src1
576
577 ddy = src2
578
579 unit = src3
580
581 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
582
583
584 .. opcode:: TXP - Projective Texture Lookup
585
586 .. math::
587
588 coord.x = src0.x / src0.w
589
590 coord.y = src0.y / src0.w
591
592 coord.z = src0.z / src0.w
593
594 coord.w = src0.w
595
596 unit = src1
597
598 dst = texture\_sample(unit, coord)
599
600
601 .. opcode:: UP2H - Unpack Two 16-Bit Floats
602
603 TBD
604
605 .. note::
606
607 Considered for removal.
608
609 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
610
611 TBD
612
613 .. note::
614
615 Considered for removal.
616
617 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
618
619 TBD
620
621 .. note::
622
623 Considered for removal.
624
625 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
626
627 TBD
628
629 .. note::
630
631 Considered for removal.
632
633
634 .. opcode:: ARR - Address Register Load With Round
635
636 .. math::
637
638 dst.x = (int) round(src.x)
639
640 dst.y = (int) round(src.y)
641
642 dst.z = (int) round(src.z)
643
644 dst.w = (int) round(src.w)
645
646
647 .. opcode:: SSG - Set Sign
648
649 .. math::
650
651 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
652
653 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
654
655 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
656
657 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
658
659
660 .. opcode:: CMP - Compare
661
662 .. math::
663
664 dst.x = (src0.x < 0) ? src1.x : src2.x
665
666 dst.y = (src0.y < 0) ? src1.y : src2.y
667
668 dst.z = (src0.z < 0) ? src1.z : src2.z
669
670 dst.w = (src0.w < 0) ? src1.w : src2.w
671
672
673 .. opcode:: KILL_IF - Conditional Discard
674
675 Conditional discard. Allowed in fragment shaders only.
676
677 .. math::
678
679 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
680 discard
681 endif
682
683
684 .. opcode:: KILL - Discard
685
686 Unconditional discard. Allowed in fragment shaders only.
687
688
689 .. opcode:: SCS - Sine Cosine
690
691 .. math::
692
693 dst.x = \cos{src.x}
694
695 dst.y = \sin{src.x}
696
697 dst.z = 0
698
699 dst.w = 1
700
701
702 .. opcode:: TXB - Texture Lookup With Bias
703
704 for cube map array textures and shadow cube maps, the bias value
705 cannot be passed in src0.w, and TXB2 must be used instead.
706
707 if the target is a shadow texture, the reference value is always
708 in src.z (this prevents shadow 3d and shadow 2d arrays from
709 using this instruction, but this is not needed).
710
711 .. math::
712
713 coord.x = src0.x
714
715 coord.y = src0.y
716
717 coord.z = src0.z
718
719 coord.w = none
720
721 bias = src0.w
722
723 unit = src1
724
725 dst = texture\_sample(unit, coord, bias)
726
727
728 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
729
730 this is the same as TXB, but uses another reg to encode the
731 lod bias value for cube map arrays and shadow cube maps.
732 Presumably shadow 2d arrays and shadow 3d targets could use
733 this encoding too, but this is not legal.
734
735 shadow cube map arrays are neither possible nor required.
736
737 .. math::
738
739 coord = src0
740
741 bias = src1.x
742
743 unit = src2
744
745 dst = texture\_sample(unit, coord, bias)
746
747
748 .. opcode:: DIV - Divide
749
750 .. math::
751
752 dst.x = \frac{src0.x}{src1.x}
753
754 dst.y = \frac{src0.y}{src1.y}
755
756 dst.z = \frac{src0.z}{src1.z}
757
758 dst.w = \frac{src0.w}{src1.w}
759
760
761 .. opcode:: DP2 - 2-component Dot Product
762
763 This instruction replicates its result.
764
765 .. math::
766
767 dst = src0.x \times src1.x + src0.y \times src1.y
768
769
770 .. opcode:: TXL - Texture Lookup With explicit LOD
771
772 for cube map array textures, the explicit lod value
773 cannot be passed in src0.w, and TXL2 must be used instead.
774
775 if the target is a shadow texture, the reference value is always
776 in src.z (this prevents shadow 3d / 2d array / cube targets from
777 using this instruction, but this is not needed).
778
779 .. math::
780
781 coord.x = src0.x
782
783 coord.y = src0.y
784
785 coord.z = src0.z
786
787 coord.w = none
788
789 lod = src0.w
790
791 unit = src1
792
793 dst = texture\_sample(unit, coord, lod)
794
795
796 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
797
798 this is the same as TXL, but uses another reg to encode the
799 explicit lod value.
800 Presumably shadow 3d / 2d array / cube targets could use
801 this encoding too, but this is not legal.
802
803 shadow cube map arrays are neither possible nor required.
804
805 .. math::
806
807 coord = src0
808
809 lod = src1.x
810
811 unit = src2
812
813 dst = texture\_sample(unit, coord, lod)
814
815
816 .. opcode:: PUSHA - Push Address Register On Stack
817
818 push(src.x)
819 push(src.y)
820 push(src.z)
821 push(src.w)
822
823 .. note::
824
825 Considered for cleanup.
826
827 .. note::
828
829 Considered for removal.
830
831 .. opcode:: POPA - Pop Address Register From Stack
832
833 dst.w = pop()
834 dst.z = pop()
835 dst.y = pop()
836 dst.x = pop()
837
838 .. note::
839
840 Considered for cleanup.
841
842 .. note::
843
844 Considered for removal.
845
846
847 .. opcode:: CALLNZ - Subroutine Call If Not Zero
848
849 TBD
850
851 .. note::
852
853 Considered for cleanup.
854
855 .. note::
856
857 Considered for removal.
858
859
860 Compute ISA
861 ^^^^^^^^^^^^^^^^^^^^^^^^
862
863 These opcodes are primarily provided for special-use computational shaders.
864 Support for these opcodes indicated by a special pipe capability bit (TBD).
865
866 XXX doesn't look like most of the opcodes really belong here.
867
868 .. opcode:: CEIL - Ceiling
869
870 .. math::
871
872 dst.x = \lceil src.x\rceil
873
874 dst.y = \lceil src.y\rceil
875
876 dst.z = \lceil src.z\rceil
877
878 dst.w = \lceil src.w\rceil
879
880
881 .. opcode:: TRUNC - Truncate
882
883 .. math::
884
885 dst.x = trunc(src.x)
886
887 dst.y = trunc(src.y)
888
889 dst.z = trunc(src.z)
890
891 dst.w = trunc(src.w)
892
893
894 .. opcode:: MOD - Modulus
895
896 .. math::
897
898 dst.x = src0.x \bmod src1.x
899
900 dst.y = src0.y \bmod src1.y
901
902 dst.z = src0.z \bmod src1.z
903
904 dst.w = src0.w \bmod src1.w
905
906
907 .. opcode:: UARL - Integer Address Register Load
908
909 Moves the contents of the source register, assumed to be an integer, into the
910 destination register, which is assumed to be an address (ADDR) register.
911
912
913 .. opcode:: SAD - Sum Of Absolute Differences
914
915 .. math::
916
917 dst.x = |src0.x - src1.x| + src2.x
918
919 dst.y = |src0.y - src1.y| + src2.y
920
921 dst.z = |src0.z - src1.z| + src2.z
922
923 dst.w = |src0.w - src1.w| + src2.w
924
925
926 .. opcode:: TXF - Texel Fetch
927
928 As per NV_gpu_shader4, extract a single texel from a specified texture
929 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
930 four-component signed integer vector used to identify the single texel
931 accessed. 3 components + level. Just like texture instructions, an optional
932 offset vector is provided, which is subject to various driver restrictions
933 (regarding range, source of offsets).
934 TXF(uint_vec coord, int_vec offset).
935
936
937 .. opcode:: TXQ - Texture Size Query
938
939 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
940 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
941 depth), 1D array (width, layers), 2D array (width, height, layers).
942 Also return the number of accessible levels (last_level - first_level + 1)
943 in W.
944
945 For components which don't return a resource dimension, their value
946 is undefined.
947
948
949 .. math::
950
951 lod = src0.x
952
953 dst.x = texture\_width(unit, lod)
954
955 dst.y = texture\_height(unit, lod)
956
957 dst.z = texture\_depth(unit, lod)
958
959 dst.w = texture\_levels(unit)
960
961 .. opcode:: TG4 - Texture Gather
962
963 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
964 filtering operation and packs them into a single register. Only works with
965 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
966 addressing modes of the sampler and the top level of any mip pyramid are
967 used. Set W to zero. It behaves like the TEX instruction, but a filtered
968 sample is not generated. The four samples that contribute to filtering are
969 placed into xyzw in clockwise order, starting with the (u,v) texture
970 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
971 where the magnitude of the deltas are half a texel.
972
973 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
974 depth compares, single component selection, and a non-constant offset. It
975 doesn't allow support for the GL independent offset to get i0,j0. This would
976 require another CAP is hw can do it natively. For now we lower that before
977 TGSI.
978
979 .. math::
980
981 coord = src0
982
983 component = src1
984
985 dst = texture\_gather4 (unit, coord, component)
986
987 (with SM5 - cube array shadow)
988
989 .. math::
990
991 coord = src0
992
993 compare = src1
994
995 dst = texture\_gather (uint, coord, compare)
996
997 .. opcode:: LODQ - level of detail query
998
999 Compute the LOD information that the texture pipe would use to access the
1000 texture. The Y component contains the computed LOD lambda_prime. The X
1001 component contains the LOD that will be accessed, based on min/max lod's
1002 and mipmap filters.
1003
1004 .. math::
1005
1006 coord = src0
1007
1008 dst.xy = lodq(uint, coord);
1009
1010 Integer ISA
1011 ^^^^^^^^^^^^^^^^^^^^^^^^
1012 These opcodes are used for integer operations.
1013 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1014
1015
1016 .. opcode:: I2F - Signed Integer To Float
1017
1018 Rounding is unspecified (round to nearest even suggested).
1019
1020 .. math::
1021
1022 dst.x = (float) src.x
1023
1024 dst.y = (float) src.y
1025
1026 dst.z = (float) src.z
1027
1028 dst.w = (float) src.w
1029
1030
1031 .. opcode:: U2F - Unsigned Integer To Float
1032
1033 Rounding is unspecified (round to nearest even suggested).
1034
1035 .. math::
1036
1037 dst.x = (float) src.x
1038
1039 dst.y = (float) src.y
1040
1041 dst.z = (float) src.z
1042
1043 dst.w = (float) src.w
1044
1045
1046 .. opcode:: F2I - Float to Signed Integer
1047
1048 Rounding is towards zero (truncate).
1049 Values outside signed range (including NaNs) produce undefined results.
1050
1051 .. math::
1052
1053 dst.x = (int) src.x
1054
1055 dst.y = (int) src.y
1056
1057 dst.z = (int) src.z
1058
1059 dst.w = (int) src.w
1060
1061
1062 .. opcode:: F2U - Float to Unsigned Integer
1063
1064 Rounding is towards zero (truncate).
1065 Values outside unsigned range (including NaNs) produce undefined results.
1066
1067 .. math::
1068
1069 dst.x = (unsigned) src.x
1070
1071 dst.y = (unsigned) src.y
1072
1073 dst.z = (unsigned) src.z
1074
1075 dst.w = (unsigned) src.w
1076
1077
1078 .. opcode:: UADD - Integer Add
1079
1080 This instruction works the same for signed and unsigned integers.
1081 The low 32bit of the result is returned.
1082
1083 .. math::
1084
1085 dst.x = src0.x + src1.x
1086
1087 dst.y = src0.y + src1.y
1088
1089 dst.z = src0.z + src1.z
1090
1091 dst.w = src0.w + src1.w
1092
1093
1094 .. opcode:: UMAD - Integer Multiply And Add
1095
1096 This instruction works the same for signed and unsigned integers.
1097 The multiplication returns the low 32bit (as does the result itself).
1098
1099 .. math::
1100
1101 dst.x = src0.x \times src1.x + src2.x
1102
1103 dst.y = src0.y \times src1.y + src2.y
1104
1105 dst.z = src0.z \times src1.z + src2.z
1106
1107 dst.w = src0.w \times src1.w + src2.w
1108
1109
1110 .. opcode:: UMUL - Integer Multiply
1111
1112 This instruction works the same for signed and unsigned integers.
1113 The low 32bit of the result is returned.
1114
1115 .. math::
1116
1117 dst.x = src0.x \times src1.x
1118
1119 dst.y = src0.y \times src1.y
1120
1121 dst.z = src0.z \times src1.z
1122
1123 dst.w = src0.w \times src1.w
1124
1125
1126 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1127
1128 The high 32bits of the multiplication of 2 signed integers are returned.
1129
1130 .. math::
1131
1132 dst.x = (src0.x \times src1.x) >> 32
1133
1134 dst.y = (src0.y \times src1.y) >> 32
1135
1136 dst.z = (src0.z \times src1.z) >> 32
1137
1138 dst.w = (src0.w \times src1.w) >> 32
1139
1140
1141 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1142
1143 The high 32bits of the multiplication of 2 unsigned integers are returned.
1144
1145 .. math::
1146
1147 dst.x = (src0.x \times src1.x) >> 32
1148
1149 dst.y = (src0.y \times src1.y) >> 32
1150
1151 dst.z = (src0.z \times src1.z) >> 32
1152
1153 dst.w = (src0.w \times src1.w) >> 32
1154
1155
1156 .. opcode:: IDIV - Signed Integer Division
1157
1158 TBD: behavior for division by zero.
1159
1160 .. math::
1161
1162 dst.x = src0.x \ src1.x
1163
1164 dst.y = src0.y \ src1.y
1165
1166 dst.z = src0.z \ src1.z
1167
1168 dst.w = src0.w \ src1.w
1169
1170
1171 .. opcode:: UDIV - Unsigned Integer Division
1172
1173 For division by zero, 0xffffffff is returned.
1174
1175 .. math::
1176
1177 dst.x = src0.x \ src1.x
1178
1179 dst.y = src0.y \ src1.y
1180
1181 dst.z = src0.z \ src1.z
1182
1183 dst.w = src0.w \ src1.w
1184
1185
1186 .. opcode:: UMOD - Unsigned Integer Remainder
1187
1188 If second arg is zero, 0xffffffff is returned.
1189
1190 .. math::
1191
1192 dst.x = src0.x \ src1.x
1193
1194 dst.y = src0.y \ src1.y
1195
1196 dst.z = src0.z \ src1.z
1197
1198 dst.w = src0.w \ src1.w
1199
1200
1201 .. opcode:: NOT - Bitwise Not
1202
1203 .. math::
1204
1205 dst.x = \sim src.x
1206
1207 dst.y = \sim src.y
1208
1209 dst.z = \sim src.z
1210
1211 dst.w = \sim src.w
1212
1213
1214 .. opcode:: AND - Bitwise And
1215
1216 .. math::
1217
1218 dst.x = src0.x \& src1.x
1219
1220 dst.y = src0.y \& src1.y
1221
1222 dst.z = src0.z \& src1.z
1223
1224 dst.w = src0.w \& src1.w
1225
1226
1227 .. opcode:: OR - Bitwise Or
1228
1229 .. math::
1230
1231 dst.x = src0.x | src1.x
1232
1233 dst.y = src0.y | src1.y
1234
1235 dst.z = src0.z | src1.z
1236
1237 dst.w = src0.w | src1.w
1238
1239
1240 .. opcode:: XOR - Bitwise Xor
1241
1242 .. math::
1243
1244 dst.x = src0.x \oplus src1.x
1245
1246 dst.y = src0.y \oplus src1.y
1247
1248 dst.z = src0.z \oplus src1.z
1249
1250 dst.w = src0.w \oplus src1.w
1251
1252
1253 .. opcode:: IMAX - Maximum of Signed Integers
1254
1255 .. math::
1256
1257 dst.x = max(src0.x, src1.x)
1258
1259 dst.y = max(src0.y, src1.y)
1260
1261 dst.z = max(src0.z, src1.z)
1262
1263 dst.w = max(src0.w, src1.w)
1264
1265
1266 .. opcode:: UMAX - Maximum of Unsigned Integers
1267
1268 .. math::
1269
1270 dst.x = max(src0.x, src1.x)
1271
1272 dst.y = max(src0.y, src1.y)
1273
1274 dst.z = max(src0.z, src1.z)
1275
1276 dst.w = max(src0.w, src1.w)
1277
1278
1279 .. opcode:: IMIN - Minimum of Signed Integers
1280
1281 .. math::
1282
1283 dst.x = min(src0.x, src1.x)
1284
1285 dst.y = min(src0.y, src1.y)
1286
1287 dst.z = min(src0.z, src1.z)
1288
1289 dst.w = min(src0.w, src1.w)
1290
1291
1292 .. opcode:: UMIN - Minimum of Unsigned Integers
1293
1294 .. math::
1295
1296 dst.x = min(src0.x, src1.x)
1297
1298 dst.y = min(src0.y, src1.y)
1299
1300 dst.z = min(src0.z, src1.z)
1301
1302 dst.w = min(src0.w, src1.w)
1303
1304
1305 .. opcode:: SHL - Shift Left
1306
1307 The shift count is masked with 0x1f before the shift is applied.
1308
1309 .. math::
1310
1311 dst.x = src0.x << (0x1f \& src1.x)
1312
1313 dst.y = src0.y << (0x1f \& src1.y)
1314
1315 dst.z = src0.z << (0x1f \& src1.z)
1316
1317 dst.w = src0.w << (0x1f \& src1.w)
1318
1319
1320 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1321
1322 The shift count is masked with 0x1f before the shift is applied.
1323
1324 .. math::
1325
1326 dst.x = src0.x >> (0x1f \& src1.x)
1327
1328 dst.y = src0.y >> (0x1f \& src1.y)
1329
1330 dst.z = src0.z >> (0x1f \& src1.z)
1331
1332 dst.w = src0.w >> (0x1f \& src1.w)
1333
1334
1335 .. opcode:: USHR - Logical Shift Right
1336
1337 The shift count is masked with 0x1f before the shift is applied.
1338
1339 .. math::
1340
1341 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1342
1343 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1344
1345 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1346
1347 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1348
1349
1350 .. opcode:: UCMP - Integer Conditional Move
1351
1352 .. math::
1353
1354 dst.x = src0.x ? src1.x : src2.x
1355
1356 dst.y = src0.y ? src1.y : src2.y
1357
1358 dst.z = src0.z ? src1.z : src2.z
1359
1360 dst.w = src0.w ? src1.w : src2.w
1361
1362
1363
1364 .. opcode:: ISSG - Integer Set Sign
1365
1366 .. math::
1367
1368 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1369
1370 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1371
1372 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1373
1374 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1375
1376
1377
1378 .. opcode:: FSLT - Float Set On Less Than (ordered)
1379
1380 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1381
1382 .. math::
1383
1384 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1385
1386 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1387
1388 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1389
1390 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1391
1392
1393 .. opcode:: ISLT - Signed Integer Set On Less Than
1394
1395 .. math::
1396
1397 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1398
1399 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1400
1401 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1402
1403 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1404
1405
1406 .. opcode:: USLT - Unsigned Integer Set On Less Than
1407
1408 .. math::
1409
1410 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1411
1412 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1413
1414 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1415
1416 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1417
1418
1419 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1420
1421 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1422
1423 .. math::
1424
1425 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1426
1427 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1428
1429 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1430
1431 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1432
1433
1434 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1435
1436 .. math::
1437
1438 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1439
1440 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1441
1442 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1443
1444 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1445
1446
1447 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1448
1449 .. math::
1450
1451 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1452
1453 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1454
1455 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1456
1457 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1458
1459
1460 .. opcode:: FSEQ - Float Set On Equal (ordered)
1461
1462 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1463
1464 .. math::
1465
1466 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1467
1468 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1469
1470 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1471
1472 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1473
1474
1475 .. opcode:: USEQ - Integer Set On Equal
1476
1477 .. math::
1478
1479 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1480
1481 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1482
1483 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1484
1485 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1486
1487
1488 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1489
1490 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1491
1492 .. math::
1493
1494 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1495
1496 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1497
1498 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1499
1500 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1501
1502
1503 .. opcode:: USNE - Integer Set On Not Equal
1504
1505 .. math::
1506
1507 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1508
1509 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1510
1511 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1512
1513 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1514
1515
1516 .. opcode:: INEG - Integer Negate
1517
1518 Two's complement.
1519
1520 .. math::
1521
1522 dst.x = -src.x
1523
1524 dst.y = -src.y
1525
1526 dst.z = -src.z
1527
1528 dst.w = -src.w
1529
1530
1531 .. opcode:: IABS - Integer Absolute Value
1532
1533 .. math::
1534
1535 dst.x = |src.x|
1536
1537 dst.y = |src.y|
1538
1539 dst.z = |src.z|
1540
1541 dst.w = |src.w|
1542
1543 Bitwise ISA
1544 ^^^^^^^^^^^
1545 These opcodes are used for bit-level manipulation of integers.
1546
1547 .. opcode:: IBFE - Signed Bitfield Extract
1548
1549 See SM5 instruction of the same name. Extracts a set of bits from the input,
1550 and sign-extends them if the high bit of the extracted window is set.
1551
1552 Pseudocode::
1553
1554 def ibfe(value, offset, bits):
1555 offset = offset & 0x1f
1556 bits = bits & 0x1f
1557 if bits == 0: return 0
1558 # Note: >> sign-extends
1559 if width + offset < 32:
1560 return (value << (32 - offset - bits)) >> (32 - bits)
1561 else:
1562 return value >> offset
1563
1564 .. opcode:: UBFE - Unsigned Bitfield Extract
1565
1566 See SM5 instruction of the same name. Extracts a set of bits from the input,
1567 without any sign-extension.
1568
1569 Pseudocode::
1570
1571 def ubfe(value, offset, bits):
1572 offset = offset & 0x1f
1573 bits = bits & 0x1f
1574 if bits == 0: return 0
1575 # Note: >> does not sign-extend
1576 if width + offset < 32:
1577 return (value << (32 - offset - bits)) >> (32 - bits)
1578 else:
1579 return value >> offset
1580
1581 .. opcode:: BFI - Bitfield Insert
1582
1583 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1584 the low bits of 'insert'.
1585
1586 Pseudocode::
1587
1588 def bfi(base, insert, offset, bits):
1589 offset = offset & 0x1f
1590 bits = bits & 0x1f
1591 mask = ((1 << bits) - 1) << offset
1592 return ((insert << offset) & mask) | (base & ~mask)
1593
1594 .. opcode:: BREV - Bitfield Reverse
1595
1596 See SM5 instruction BFREV. Reverses the bits of the argument.
1597
1598 .. opcode:: POPC - Population Count
1599
1600 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1601
1602 .. opcode:: LSB - Index of lowest set bit
1603
1604 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1605 bit of the argument. Returns -1 if none are set.
1606
1607 .. opcode:: IMSB - Index of highest non-sign bit
1608
1609 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1610 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1611 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1612 (i.e. for inputs 0 and -1).
1613
1614 .. opcode:: UMSB - Index of highest set bit
1615
1616 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1617 set bit of the argument. Returns -1 if none are set.
1618
1619 Geometry ISA
1620 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1621
1622 These opcodes are only supported in geometry shaders; they have no meaning
1623 in any other type of shader.
1624
1625 .. opcode:: EMIT - Emit
1626
1627 Generate a new vertex for the current primitive into the specified vertex
1628 stream using the values in the output registers.
1629
1630
1631 .. opcode:: ENDPRIM - End Primitive
1632
1633 Complete the current primitive in the specified vertex stream (consisting of
1634 the emitted vertices), and start a new one.
1635
1636
1637 GLSL ISA
1638 ^^^^^^^^^^
1639
1640 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1641 opcodes is determined by a special capability bit, ``GLSL``.
1642 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1643
1644 .. opcode:: CAL - Subroutine Call
1645
1646 push(pc)
1647 pc = target
1648
1649
1650 .. opcode:: RET - Subroutine Call Return
1651
1652 pc = pop()
1653
1654
1655 .. opcode:: CONT - Continue
1656
1657 Unconditionally moves the point of execution to the instruction after the
1658 last bgnloop. The instruction must appear within a bgnloop/endloop.
1659
1660 .. note::
1661
1662 Support for CONT is determined by a special capability bit,
1663 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1664
1665
1666 .. opcode:: BGNLOOP - Begin a Loop
1667
1668 Start a loop. Must have a matching endloop.
1669
1670
1671 .. opcode:: BGNSUB - Begin Subroutine
1672
1673 Starts definition of a subroutine. Must have a matching endsub.
1674
1675
1676 .. opcode:: ENDLOOP - End a Loop
1677
1678 End a loop started with bgnloop.
1679
1680
1681 .. opcode:: ENDSUB - End Subroutine
1682
1683 Ends definition of a subroutine.
1684
1685
1686 .. opcode:: NOP - No Operation
1687
1688 Do nothing.
1689
1690
1691 .. opcode:: BRK - Break
1692
1693 Unconditionally moves the point of execution to the instruction after the
1694 next endloop or endswitch. The instruction must appear within a loop/endloop
1695 or switch/endswitch.
1696
1697
1698 .. opcode:: BREAKC - Break Conditional
1699
1700 Conditionally moves the point of execution to the instruction after the
1701 next endloop or endswitch. The instruction must appear within a loop/endloop
1702 or switch/endswitch.
1703 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1704 as an integer register.
1705
1706 .. note::
1707
1708 Considered for removal as it's quite inconsistent wrt other opcodes
1709 (could emulate with UIF/BRK/ENDIF).
1710
1711
1712 .. opcode:: IF - Float If
1713
1714 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1715
1716 src0.x != 0.0
1717
1718 where src0.x is interpreted as a floating point register.
1719
1720
1721 .. opcode:: UIF - Bitwise If
1722
1723 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1724
1725 src0.x != 0
1726
1727 where src0.x is interpreted as an integer register.
1728
1729
1730 .. opcode:: ELSE - Else
1731
1732 Starts an else block, after an IF or UIF statement.
1733
1734
1735 .. opcode:: ENDIF - End If
1736
1737 Ends an IF or UIF block.
1738
1739
1740 .. opcode:: SWITCH - Switch
1741
1742 Starts a C-style switch expression. The switch consists of one or multiple
1743 CASE statements, and at most one DEFAULT statement. Execution of a statement
1744 ends when a BRK is hit, but just like in C falling through to other cases
1745 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1746 just as last statement, and fallthrough is allowed into/from it.
1747 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1748
1749 Example::
1750
1751 SWITCH src[0].x
1752 CASE src[0].x
1753 (some instructions here)
1754 (optional BRK here)
1755 DEFAULT
1756 (some instructions here)
1757 (optional BRK here)
1758 CASE src[0].x
1759 (some instructions here)
1760 (optional BRK here)
1761 ENDSWITCH
1762
1763
1764 .. opcode:: CASE - Switch case
1765
1766 This represents a switch case label. The src arg must be an integer immediate.
1767
1768
1769 .. opcode:: DEFAULT - Switch default
1770
1771 This represents the default case in the switch, which is taken if no other
1772 case matches.
1773
1774
1775 .. opcode:: ENDSWITCH - End of switch
1776
1777 Ends a switch expression.
1778
1779
1780 Interpolation ISA
1781 ^^^^^^^^^^^^^^^^^
1782
1783 The interpolation instructions allow an input to be interpolated in a
1784 different way than its declaration. This corresponds to the GLSL 4.00
1785 interpolateAt* functions. The first argument of each of these must come from
1786 ``TGSI_FILE_INPUT``.
1787
1788 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1789
1790 Interpolates the varying specified by src0 at the centroid
1791
1792 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1793
1794 Interpolates the varying specified by src0 at the sample id specified by
1795 src1.x (interpreted as an integer)
1796
1797 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1798
1799 Interpolates the varying specified by src0 at the offset src1.xy from the
1800 pixel center (interpreted as floats)
1801
1802
1803 .. _doubleopcodes:
1804
1805 Double ISA
1806 ^^^^^^^^^^^^^^^
1807
1808 The double-precision opcodes reinterpret four-component vectors into
1809 two-component vectors with doubled precision in each component.
1810
1811 .. opcode:: DABS - Absolute
1812
1813 dst.xy = |src0.xy|
1814 dst.zw = |src0.zw|
1815
1816 .. opcode:: DADD - Add
1817
1818 .. math::
1819
1820 dst.xy = src0.xy + src1.xy
1821
1822 dst.zw = src0.zw + src1.zw
1823
1824 .. opcode:: DSEQ - Set on Equal
1825
1826 .. math::
1827
1828 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1829
1830 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1831
1832 .. opcode:: DSNE - Set on Equal
1833
1834 .. math::
1835
1836 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1837
1838 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1839
1840 .. opcode:: DSLT - Set on Less than
1841
1842 .. math::
1843
1844 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1845
1846 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1847
1848 .. opcode:: DSGE - Set on Greater equal
1849
1850 .. math::
1851
1852 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1853
1854 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1855
1856 .. opcode:: DFRAC - Fraction
1857
1858 .. math::
1859
1860 dst.xy = src.xy - \lfloor src.xy\rfloor
1861
1862 dst.zw = src.zw - \lfloor src.zw\rfloor
1863
1864
1865 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1866
1867 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1868 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1869 :math:`dst1 \times 2^{dst0} = src` .
1870
1871 .. math::
1872
1873 dst0.xy = exp(src.xy)
1874
1875 dst1.xy = frac(src.xy)
1876
1877 dst0.zw = exp(src.zw)
1878
1879 dst1.zw = frac(src.zw)
1880
1881 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1882
1883 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1884 source is an integer.
1885
1886 .. math::
1887
1888 dst.xy = src0.xy \times 2^{src1.x}
1889
1890 dst.zw = src0.zw \times 2^{src1.y}
1891
1892 .. opcode:: DMIN - Minimum
1893
1894 .. math::
1895
1896 dst.xy = min(src0.xy, src1.xy)
1897
1898 dst.zw = min(src0.zw, src1.zw)
1899
1900 .. opcode:: DMAX - Maximum
1901
1902 .. math::
1903
1904 dst.xy = max(src0.xy, src1.xy)
1905
1906 dst.zw = max(src0.zw, src1.zw)
1907
1908 .. opcode:: DMUL - Multiply
1909
1910 .. math::
1911
1912 dst.xy = src0.xy \times src1.xy
1913
1914 dst.zw = src0.zw \times src1.zw
1915
1916
1917 .. opcode:: DMAD - Multiply And Add
1918
1919 .. math::
1920
1921 dst.xy = src0.xy \times src1.xy + src2.xy
1922
1923 dst.zw = src0.zw \times src1.zw + src2.zw
1924
1925
1926 .. opcode:: DRCP - Reciprocal
1927
1928 .. math::
1929
1930 dst.xy = \frac{1}{src.xy}
1931
1932 dst.zw = \frac{1}{src.zw}
1933
1934 .. opcode:: DSQRT - Square Root
1935
1936 .. math::
1937
1938 dst.xy = \sqrt{src.xy}
1939
1940 dst.zw = \sqrt{src.zw}
1941
1942 .. opcode:: DRSQ - Reciprocal Square Root
1943
1944 .. math::
1945
1946 dst.xy = \frac{1}{\sqrt{src.xy}}
1947
1948 dst.zw = \frac{1}{\sqrt{src.zw}}
1949
1950 .. opcode:: F2D - Float to Double
1951
1952 .. math::
1953
1954 dst.xy = double(src0.x)
1955
1956 dst.zw = double(src0.y)
1957
1958 .. opcode:: D2F - Double to Float
1959
1960 .. math::
1961
1962 dst.x = float(src0.xy)
1963
1964 dst.y = float(src0.zw)
1965
1966 .. opcode:: I2D - Int to Double
1967
1968 .. math::
1969
1970 dst.xy = double(src0.x)
1971
1972 dst.zw = double(src0.y)
1973
1974 .. opcode:: D2I - Double to Int
1975
1976 .. math::
1977
1978 dst.x = int(src0.xy)
1979
1980 dst.y = int(src0.zw)
1981
1982 .. opcode:: U2D - Unsigned Int to Double
1983
1984 .. math::
1985
1986 dst.xy = double(src0.x)
1987
1988 dst.zw = double(src0.y)
1989
1990 .. opcode:: D2U - Double to Unsigned Int
1991
1992 .. math::
1993
1994 dst.x = unsigned(src0.xy)
1995
1996 dst.y = unsigned(src0.zw)
1997
1998 .. _samplingopcodes:
1999
2000 Resource Sampling Opcodes
2001 ^^^^^^^^^^^^^^^^^^^^^^^^^
2002
2003 Those opcodes follow very closely semantics of the respective Direct3D
2004 instructions. If in doubt double check Direct3D documentation.
2005 Note that the swizzle on SVIEW (src1) determines texel swizzling
2006 after lookup.
2007
2008 .. opcode:: SAMPLE
2009
2010 Using provided address, sample data from the specified texture using the
2011 filtering mode identified by the gven sampler. The source data may come from
2012 any resource type other than buffers.
2013
2014 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2015
2016 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2017
2018 .. opcode:: SAMPLE_I
2019
2020 Simplified alternative to the SAMPLE instruction. Using the provided
2021 integer address, SAMPLE_I fetches data from the specified sampler view
2022 without any filtering. The source data may come from any resource type
2023 other than CUBE.
2024
2025 Syntax: ``SAMPLE_I dst, address, sampler_view``
2026
2027 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2028
2029 The 'address' is specified as unsigned integers. If the 'address' is out of
2030 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2031 components. As such the instruction doesn't honor address wrap modes, in
2032 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2033 address.w always provides an unsigned integer mipmap level. If the value is
2034 out of the range then the instruction always returns 0 in all components.
2035 address.yz are ignored for buffers and 1d textures. address.z is ignored
2036 for 1d texture arrays and 2d textures.
2037
2038 For 1D texture arrays address.y provides the array index (also as unsigned
2039 integer). If the value is out of the range of available array indices
2040 [0... (array size - 1)] then the opcode always returns 0 in all components.
2041 For 2D texture arrays address.z provides the array index, otherwise it
2042 exhibits the same behavior as in the case for 1D texture arrays. The exact
2043 semantics of the source address are presented in the table below:
2044
2045 +---------------------------+----+-----+-----+---------+
2046 | resource type | X | Y | Z | W |
2047 +===========================+====+=====+=====+=========+
2048 | ``PIPE_BUFFER`` | x | | | ignored |
2049 +---------------------------+----+-----+-----+---------+
2050 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2051 +---------------------------+----+-----+-----+---------+
2052 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2053 +---------------------------+----+-----+-----+---------+
2054 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2055 +---------------------------+----+-----+-----+---------+
2056 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2057 +---------------------------+----+-----+-----+---------+
2058 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2059 +---------------------------+----+-----+-----+---------+
2060 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2061 +---------------------------+----+-----+-----+---------+
2062 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2063 +---------------------------+----+-----+-----+---------+
2064
2065 Where 'mpl' is a mipmap level and 'idx' is the array index.
2066
2067 .. opcode:: SAMPLE_I_MS
2068
2069 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2070
2071 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2072
2073 .. opcode:: SAMPLE_B
2074
2075 Just like the SAMPLE instruction with the exception that an additional bias
2076 is applied to the level of detail computed as part of the instruction
2077 execution.
2078
2079 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2080
2081 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2082
2083 .. opcode:: SAMPLE_C
2084
2085 Similar to the SAMPLE instruction but it performs a comparison filter. The
2086 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2087 additional float32 operand, reference value, which must be a register with
2088 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2089 current samplers compare_func (in pipe_sampler_state) to compare reference
2090 value against the red component value for the surce resource at each texel
2091 that the currently configured texture filter covers based on the provided
2092 coordinates.
2093
2094 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2095
2096 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2097
2098 .. opcode:: SAMPLE_C_LZ
2099
2100 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2101 for level-zero.
2102
2103 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2104
2105 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2106
2107
2108 .. opcode:: SAMPLE_D
2109
2110 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2111 the source address in the x direction and the y direction are provided by
2112 extra parameters.
2113
2114 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2115
2116 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2117
2118 .. opcode:: SAMPLE_L
2119
2120 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2121 directly as a scalar value, representing no anisotropy.
2122
2123 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2124
2125 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2126
2127 .. opcode:: GATHER4
2128
2129 Gathers the four texels to be used in a bi-linear filtering operation and
2130 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2131 and cubemaps arrays. For 2D textures, only the addressing modes of the
2132 sampler and the top level of any mip pyramid are used. Set W to zero. It
2133 behaves like the SAMPLE instruction, but a filtered sample is not
2134 generated. The four samples that contribute to filtering are placed into
2135 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2136 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2137 magnitude of the deltas are half a texel.
2138
2139
2140 .. opcode:: SVIEWINFO
2141
2142 Query the dimensions of a given sampler view. dst receives width, height,
2143 depth or array size and number of mipmap levels as int4. The dst can have a
2144 writemask which will specify what info is the caller interested in.
2145
2146 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2147
2148 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2149
2150 src_mip_level is an unsigned integer scalar. If it's out of range then
2151 returns 0 for width, height and depth/array size but the total number of
2152 mipmap is still returned correctly for the given sampler view. The returned
2153 width, height and depth values are for the mipmap level selected by the
2154 src_mip_level and are in the number of texels. For 1d texture array width
2155 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2156 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2157 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2158 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2159 resinfo allowing swizzling dst values is ignored (due to the interaction
2160 with rcpfloat modifier which requires some swizzle handling in the state
2161 tracker anyway).
2162
2163 .. opcode:: SAMPLE_POS
2164
2165 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2166 indicated where the sample is located. If the resource is not a multi-sample
2167 resource and not a render target, the result is 0.
2168
2169 .. opcode:: SAMPLE_INFO
2170
2171 dst receives number of samples in x. If the resource is not a multi-sample
2172 resource and not a render target, the result is 0.
2173
2174
2175 .. _resourceopcodes:
2176
2177 Resource Access Opcodes
2178 ^^^^^^^^^^^^^^^^^^^^^^^
2179
2180 .. opcode:: LOAD - Fetch data from a shader resource
2181
2182 Syntax: ``LOAD dst, resource, address``
2183
2184 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2185
2186 Using the provided integer address, LOAD fetches data
2187 from the specified buffer or texture without any
2188 filtering.
2189
2190 The 'address' is specified as a vector of unsigned
2191 integers. If the 'address' is out of range the result
2192 is unspecified.
2193
2194 Only the first mipmap level of a resource can be read
2195 from using this instruction.
2196
2197 For 1D or 2D texture arrays, the array index is
2198 provided as an unsigned integer in address.y or
2199 address.z, respectively. address.yz are ignored for
2200 buffers and 1D textures. address.z is ignored for 1D
2201 texture arrays and 2D textures. address.w is always
2202 ignored.
2203
2204 .. opcode:: STORE - Write data to a shader resource
2205
2206 Syntax: ``STORE resource, address, src``
2207
2208 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2209
2210 Using the provided integer address, STORE writes data
2211 to the specified buffer or texture.
2212
2213 The 'address' is specified as a vector of unsigned
2214 integers. If the 'address' is out of range the result
2215 is unspecified.
2216
2217 Only the first mipmap level of a resource can be
2218 written to using this instruction.
2219
2220 For 1D or 2D texture arrays, the array index is
2221 provided as an unsigned integer in address.y or
2222 address.z, respectively. address.yz are ignored for
2223 buffers and 1D textures. address.z is ignored for 1D
2224 texture arrays and 2D textures. address.w is always
2225 ignored.
2226
2227
2228 .. _threadsyncopcodes:
2229
2230 Inter-thread synchronization opcodes
2231 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2232
2233 These opcodes are intended for communication between threads running
2234 within the same compute grid. For now they're only valid in compute
2235 programs.
2236
2237 .. opcode:: MFENCE - Memory fence
2238
2239 Syntax: ``MFENCE resource``
2240
2241 Example: ``MFENCE RES[0]``
2242
2243 This opcode forces strong ordering between any memory access
2244 operations that affect the specified resource. This means that
2245 previous loads and stores (and only those) will be performed and
2246 visible to other threads before the program execution continues.
2247
2248
2249 .. opcode:: LFENCE - Load memory fence
2250
2251 Syntax: ``LFENCE resource``
2252
2253 Example: ``LFENCE RES[0]``
2254
2255 Similar to MFENCE, but it only affects the ordering of memory loads.
2256
2257
2258 .. opcode:: SFENCE - Store memory fence
2259
2260 Syntax: ``SFENCE resource``
2261
2262 Example: ``SFENCE RES[0]``
2263
2264 Similar to MFENCE, but it only affects the ordering of memory stores.
2265
2266
2267 .. opcode:: BARRIER - Thread group barrier
2268
2269 ``BARRIER``
2270
2271 This opcode suspends the execution of the current thread until all
2272 the remaining threads in the working group reach the same point of
2273 the program. Results are unspecified if any of the remaining
2274 threads terminates or never reaches an executed BARRIER instruction.
2275
2276
2277 .. _atomopcodes:
2278
2279 Atomic opcodes
2280 ^^^^^^^^^^^^^^
2281
2282 These opcodes provide atomic variants of some common arithmetic and
2283 logical operations. In this context atomicity means that another
2284 concurrent memory access operation that affects the same memory
2285 location is guaranteed to be performed strictly before or after the
2286 entire execution of the atomic operation.
2287
2288 For the moment they're only valid in compute programs.
2289
2290 .. opcode:: ATOMUADD - Atomic integer addition
2291
2292 Syntax: ``ATOMUADD dst, resource, offset, src``
2293
2294 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2295
2296 The following operation is performed atomically on each component:
2297
2298 .. math::
2299
2300 dst_i = resource[offset]_i
2301
2302 resource[offset]_i = dst_i + src_i
2303
2304
2305 .. opcode:: ATOMXCHG - Atomic exchange
2306
2307 Syntax: ``ATOMXCHG dst, resource, offset, src``
2308
2309 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2310
2311 The following operation is performed atomically on each component:
2312
2313 .. math::
2314
2315 dst_i = resource[offset]_i
2316
2317 resource[offset]_i = src_i
2318
2319
2320 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2321
2322 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2323
2324 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2325
2326 The following operation is performed atomically on each component:
2327
2328 .. math::
2329
2330 dst_i = resource[offset]_i
2331
2332 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2333
2334
2335 .. opcode:: ATOMAND - Atomic bitwise And
2336
2337 Syntax: ``ATOMAND dst, resource, offset, src``
2338
2339 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2340
2341 The following operation is performed atomically on each component:
2342
2343 .. math::
2344
2345 dst_i = resource[offset]_i
2346
2347 resource[offset]_i = dst_i \& src_i
2348
2349
2350 .. opcode:: ATOMOR - Atomic bitwise Or
2351
2352 Syntax: ``ATOMOR dst, resource, offset, src``
2353
2354 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2355
2356 The following operation is performed atomically on each component:
2357
2358 .. math::
2359
2360 dst_i = resource[offset]_i
2361
2362 resource[offset]_i = dst_i | src_i
2363
2364
2365 .. opcode:: ATOMXOR - Atomic bitwise Xor
2366
2367 Syntax: ``ATOMXOR dst, resource, offset, src``
2368
2369 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2370
2371 The following operation is performed atomically on each component:
2372
2373 .. math::
2374
2375 dst_i = resource[offset]_i
2376
2377 resource[offset]_i = dst_i \oplus src_i
2378
2379
2380 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2381
2382 Syntax: ``ATOMUMIN dst, resource, offset, src``
2383
2384 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2385
2386 The following operation is performed atomically on each component:
2387
2388 .. math::
2389
2390 dst_i = resource[offset]_i
2391
2392 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2393
2394
2395 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2396
2397 Syntax: ``ATOMUMAX dst, resource, offset, src``
2398
2399 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2400
2401 The following operation is performed atomically on each component:
2402
2403 .. math::
2404
2405 dst_i = resource[offset]_i
2406
2407 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2408
2409
2410 .. opcode:: ATOMIMIN - Atomic signed minimum
2411
2412 Syntax: ``ATOMIMIN dst, resource, offset, src``
2413
2414 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2415
2416 The following operation is performed atomically on each component:
2417
2418 .. math::
2419
2420 dst_i = resource[offset]_i
2421
2422 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2423
2424
2425 .. opcode:: ATOMIMAX - Atomic signed maximum
2426
2427 Syntax: ``ATOMIMAX dst, resource, offset, src``
2428
2429 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2430
2431 The following operation is performed atomically on each component:
2432
2433 .. math::
2434
2435 dst_i = resource[offset]_i
2436
2437 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2438
2439
2440
2441 Explanation of symbols used
2442 ------------------------------
2443
2444
2445 Functions
2446 ^^^^^^^^^^^^^^
2447
2448
2449 :math:`|x|` Absolute value of `x`.
2450
2451 :math:`\lceil x \rceil` Ceiling of `x`.
2452
2453 clamp(x,y,z) Clamp x between y and z.
2454 (x < y) ? y : (x > z) ? z : x
2455
2456 :math:`\lfloor x\rfloor` Floor of `x`.
2457
2458 :math:`\log_2{x}` Logarithm of `x`, base 2.
2459
2460 max(x,y) Maximum of x and y.
2461 (x > y) ? x : y
2462
2463 min(x,y) Minimum of x and y.
2464 (x < y) ? x : y
2465
2466 partialx(x) Derivative of x relative to fragment's X.
2467
2468 partialy(x) Derivative of x relative to fragment's Y.
2469
2470 pop() Pop from stack.
2471
2472 :math:`x^y` `x` to the power `y`.
2473
2474 push(x) Push x on stack.
2475
2476 round(x) Round x.
2477
2478 trunc(x) Truncate x, i.e. drop the fraction bits.
2479
2480
2481 Keywords
2482 ^^^^^^^^^^^^^
2483
2484
2485 discard Discard fragment.
2486
2487 pc Program counter.
2488
2489 target Label of target instruction.
2490
2491
2492 Other tokens
2493 ---------------
2494
2495
2496 Declaration
2497 ^^^^^^^^^^^
2498
2499
2500 Declares a register that is will be referenced as an operand in Instruction
2501 tokens.
2502
2503 File field contains register file that is being declared and is one
2504 of TGSI_FILE.
2505
2506 UsageMask field specifies which of the register components can be accessed
2507 and is one of TGSI_WRITEMASK.
2508
2509 The Local flag specifies that a given value isn't intended for
2510 subroutine parameter passing and, as a result, the implementation
2511 isn't required to give any guarantees of it being preserved across
2512 subroutine boundaries. As it's merely a compiler hint, the
2513 implementation is free to ignore it.
2514
2515 If Dimension flag is set to 1, a Declaration Dimension token follows.
2516
2517 If Semantic flag is set to 1, a Declaration Semantic token follows.
2518
2519 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2520
2521 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2522
2523 If Array flag is set to 1, a Declaration Array token follows.
2524
2525 Array Declaration
2526 ^^^^^^^^^^^^^^^^^^^^^^^^
2527
2528 Declarations can optional have an ArrayID attribute which can be referred by
2529 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2530 if no ArrayID is specified.
2531
2532 If an indirect addressing operand refers to a specific declaration by using
2533 an ArrayID only the registers in this declaration are guaranteed to be
2534 accessed, accessing any register outside this declaration results in undefined
2535 behavior. Note that for compatibility the effective index is zero-based and
2536 not relative to the specified declaration
2537
2538 If no ArrayID is specified with an indirect addressing operand the whole
2539 register file might be accessed by this operand. This is strongly discouraged
2540 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2541
2542 Declaration Semantic
2543 ^^^^^^^^^^^^^^^^^^^^^^^^
2544
2545 Vertex and fragment shader input and output registers may be labeled
2546 with semantic information consisting of a name and index.
2547
2548 Follows Declaration token if Semantic bit is set.
2549
2550 Since its purpose is to link a shader with other stages of the pipeline,
2551 it is valid to follow only those Declaration tokens that declare a register
2552 either in INPUT or OUTPUT file.
2553
2554 SemanticName field contains the semantic name of the register being declared.
2555 There is no default value.
2556
2557 SemanticIndex is an optional subscript that can be used to distinguish
2558 different register declarations with the same semantic name. The default value
2559 is 0.
2560
2561 The meanings of the individual semantic names are explained in the following
2562 sections.
2563
2564 TGSI_SEMANTIC_POSITION
2565 """"""""""""""""""""""
2566
2567 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2568 output register which contains the homogeneous vertex position in the clip
2569 space coordinate system. After clipping, the X, Y and Z components of the
2570 vertex will be divided by the W value to get normalized device coordinates.
2571
2572 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2573 fragment shader input contains the fragment's window position. The X
2574 component starts at zero and always increases from left to right.
2575 The Y component starts at zero and always increases but Y=0 may either
2576 indicate the top of the window or the bottom depending on the fragment
2577 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2578 The Z coordinate ranges from 0 to 1 to represent depth from the front
2579 to the back of the Z buffer. The W component contains the interpolated
2580 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2581 but unlike d3d10 which interpolates the same 1/w but then gives back
2582 the reciprocal of the interpolated value).
2583
2584 Fragment shaders may also declare an output register with
2585 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2586 the fragment shader to change the fragment's Z position.
2587
2588
2589
2590 TGSI_SEMANTIC_COLOR
2591 """""""""""""""""""
2592
2593 For vertex shader outputs or fragment shader inputs/outputs, this
2594 label indicates that the resister contains an R,G,B,A color.
2595
2596 Several shader inputs/outputs may contain colors so the semantic index
2597 is used to distinguish them. For example, color[0] may be the diffuse
2598 color while color[1] may be the specular color.
2599
2600 This label is needed so that the flat/smooth shading can be applied
2601 to the right interpolants during rasterization.
2602
2603
2604
2605 TGSI_SEMANTIC_BCOLOR
2606 """"""""""""""""""""
2607
2608 Back-facing colors are only used for back-facing polygons, and are only valid
2609 in vertex shader outputs. After rasterization, all polygons are front-facing
2610 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2611 so all BCOLORs effectively become regular COLORs in the fragment shader.
2612
2613
2614 TGSI_SEMANTIC_FOG
2615 """""""""""""""""
2616
2617 Vertex shader inputs and outputs and fragment shader inputs may be
2618 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2619 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2620 to compute a fog blend factor which is used to blend the normal fragment color
2621 with a constant fog color. But fog coord really is just an ordinary vec4
2622 register like regular semantics.
2623
2624
2625 TGSI_SEMANTIC_PSIZE
2626 """""""""""""""""""
2627
2628 Vertex shader input and output registers may be labeled with
2629 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2630 in the form (S, 0, 0, 1). The point size controls the width or diameter
2631 of points for rasterization. This label cannot be used in fragment
2632 shaders.
2633
2634 When using this semantic, be sure to set the appropriate state in the
2635 :ref:`rasterizer` first.
2636
2637
2638 TGSI_SEMANTIC_TEXCOORD
2639 """"""""""""""""""""""
2640
2641 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2642
2643 Vertex shader outputs and fragment shader inputs may be labeled with
2644 this semantic to make them replaceable by sprite coordinates via the
2645 sprite_coord_enable state in the :ref:`rasterizer`.
2646 The semantic index permitted with this semantic is limited to <= 7.
2647
2648 If the driver does not support TEXCOORD, sprite coordinate replacement
2649 applies to inputs with the GENERIC semantic instead.
2650
2651 The intended use case for this semantic is gl_TexCoord.
2652
2653
2654 TGSI_SEMANTIC_PCOORD
2655 """"""""""""""""""""
2656
2657 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2658
2659 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2660 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2661 the current primitive is a point and point sprites are enabled. Otherwise,
2662 the contents of the register are undefined.
2663
2664 The intended use case for this semantic is gl_PointCoord.
2665
2666
2667 TGSI_SEMANTIC_GENERIC
2668 """""""""""""""""""""
2669
2670 All vertex/fragment shader inputs/outputs not labeled with any other
2671 semantic label can be considered to be generic attributes. Typical
2672 uses of generic inputs/outputs are texcoords and user-defined values.
2673
2674
2675 TGSI_SEMANTIC_NORMAL
2676 """"""""""""""""""""
2677
2678 Indicates that a vertex shader input is a normal vector. This is
2679 typically only used for legacy graphics APIs.
2680
2681
2682 TGSI_SEMANTIC_FACE
2683 """"""""""""""""""
2684
2685 This label applies to fragment shader inputs only and indicates that
2686 the register contains front/back-face information of the form (F, 0,
2687 0, 1). The first component will be positive when the fragment belongs
2688 to a front-facing polygon, and negative when the fragment belongs to a
2689 back-facing polygon.
2690
2691
2692 TGSI_SEMANTIC_EDGEFLAG
2693 """"""""""""""""""""""
2694
2695 For vertex shaders, this sematic label indicates that an input or
2696 output is a boolean edge flag. The register layout is [F, x, x, x]
2697 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2698 simply copies the edge flag input to the edgeflag output.
2699
2700 Edge flags are used to control which lines or points are actually
2701 drawn when the polygon mode converts triangles/quads/polygons into
2702 points or lines.
2703
2704
2705 TGSI_SEMANTIC_STENCIL
2706 """""""""""""""""""""
2707
2708 For fragment shaders, this semantic label indicates that an output
2709 is a writable stencil reference value. Only the Y component is writable.
2710 This allows the fragment shader to change the fragments stencilref value.
2711
2712
2713 TGSI_SEMANTIC_VIEWPORT_INDEX
2714 """"""""""""""""""""""""""""
2715
2716 For geometry shaders, this semantic label indicates that an output
2717 contains the index of the viewport (and scissor) to use.
2718 This is an integer value, and only the X component is used.
2719
2720
2721 TGSI_SEMANTIC_LAYER
2722 """""""""""""""""""
2723
2724 For geometry shaders, this semantic label indicates that an output
2725 contains the layer value to use for the color and depth/stencil surfaces.
2726 This is an integer value, and only the X component is used.
2727 (Also known as rendertarget array index.)
2728
2729
2730 TGSI_SEMANTIC_CULLDIST
2731 """"""""""""""""""""""
2732
2733 Used as distance to plane for performing application-defined culling
2734 of individual primitives against a plane. When components of vertex
2735 elements are given this label, these values are assumed to be a
2736 float32 signed distance to a plane. Primitives will be completely
2737 discarded if the plane distance for all of the vertices in the
2738 primitive are < 0. If a vertex has a cull distance of NaN, that
2739 vertex counts as "out" (as if its < 0);
2740 The limits on both clip and cull distances are bound
2741 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2742 the maximum number of components that can be used to hold the
2743 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2744 which specifies the maximum number of registers which can be
2745 annotated with those semantics.
2746
2747
2748 TGSI_SEMANTIC_CLIPDIST
2749 """"""""""""""""""""""
2750
2751 When components of vertex elements are identified this way, these
2752 values are each assumed to be a float32 signed distance to a plane.
2753 Primitive setup only invokes rasterization on pixels for which
2754 the interpolated plane distances are >= 0. Multiple clip planes
2755 can be implemented simultaneously, by annotating multiple
2756 components of one or more vertex elements with the above specified
2757 semantic. The limits on both clip and cull distances are bound
2758 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2759 the maximum number of components that can be used to hold the
2760 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2761 which specifies the maximum number of registers which can be
2762 annotated with those semantics.
2763
2764 TGSI_SEMANTIC_SAMPLEID
2765 """"""""""""""""""""""
2766
2767 For fragment shaders, this semantic label indicates that a system value
2768 contains the current sample id (i.e. gl_SampleID).
2769 This is an integer value, and only the X component is used.
2770
2771 TGSI_SEMANTIC_SAMPLEPOS
2772 """""""""""""""""""""""
2773
2774 For fragment shaders, this semantic label indicates that a system value
2775 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2776 and Y values are used.
2777
2778 TGSI_SEMANTIC_SAMPLEMASK
2779 """"""""""""""""""""""""
2780
2781 For fragment shaders, this semantic label indicates that an output contains
2782 the sample mask used to disable further sample processing
2783 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2784
2785 TGSI_SEMANTIC_INVOCATIONID
2786 """"""""""""""""""""""""""
2787
2788 For geometry shaders, this semantic label indicates that a system value
2789 contains the current invocation id (i.e. gl_InvocationID).
2790 This is an integer value, and only the X component is used.
2791
2792 TGSI_SEMANTIC_INSTANCEID
2793 """"""""""""""""""""""""
2794
2795 For vertex shaders, this semantic label indicates that a system value contains
2796 the current instance id (i.e. gl_InstanceID). It does not include the base
2797 instance. This is an integer value, and only the X component is used.
2798
2799 TGSI_SEMANTIC_VERTEXID
2800 """"""""""""""""""""""
2801
2802 For vertex shaders, this semantic label indicates that a system value contains
2803 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
2804 base vertex. This is an integer value, and only the X component is used.
2805
2806 TGSI_SEMANTIC_VERTEXID_NOBASE
2807 """""""""""""""""""""""""""""""
2808
2809 For vertex shaders, this semantic label indicates that a system value contains
2810 the current vertex id without including the base vertex (this corresponds to
2811 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
2812 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
2813 is used.
2814
2815 TGSI_SEMANTIC_BASEVERTEX
2816 """"""""""""""""""""""""
2817
2818 For vertex shaders, this semantic label indicates that a system value contains
2819 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
2820 this contains the first (or start) value instead.
2821 This is an integer value, and only the X component is used.
2822
2823 TGSI_SEMANTIC_PRIMID
2824 """"""""""""""""""""
2825
2826 For geometry and fragment shaders, this semantic label indicates the value
2827 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
2828 and only the X component is used.
2829 FIXME: This right now can be either a ordinary input or a system value...
2830
2831
2832 Declaration Interpolate
2833 ^^^^^^^^^^^^^^^^^^^^^^^
2834
2835 This token is only valid for fragment shader INPUT declarations.
2836
2837 The Interpolate field specifes the way input is being interpolated by
2838 the rasteriser and is one of TGSI_INTERPOLATE_*.
2839
2840 The Location field specifies the location inside the pixel that the
2841 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2842 when per-sample shading is enabled, the implementation may choose to
2843 interpolate at the sample irrespective of the Location field.
2844
2845 The CylindricalWrap bitfield specifies which register components
2846 should be subject to cylindrical wrapping when interpolating by the
2847 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2848 should be interpolated according to cylindrical wrapping rules.
2849
2850
2851 Declaration Sampler View
2852 ^^^^^^^^^^^^^^^^^^^^^^^^
2853
2854 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2855
2856 DCL SVIEW[#], resource, type(s)
2857
2858 Declares a shader input sampler view and assigns it to a SVIEW[#]
2859 register.
2860
2861 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2862
2863 type must be 1 or 4 entries (if specifying on a per-component
2864 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2865
2866
2867 Declaration Resource
2868 ^^^^^^^^^^^^^^^^^^^^
2869
2870 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2871
2872 DCL RES[#], resource [, WR] [, RAW]
2873
2874 Declares a shader input resource and assigns it to a RES[#]
2875 register.
2876
2877 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2878 2DArray.
2879
2880 If the RAW keyword is not specified, the texture data will be
2881 subject to conversion, swizzling and scaling as required to yield
2882 the specified data type from the physical data format of the bound
2883 resource.
2884
2885 If the RAW keyword is specified, no channel conversion will be
2886 performed: the values read for each of the channels (X,Y,Z,W) will
2887 correspond to consecutive words in the same order and format
2888 they're found in memory. No element-to-address conversion will be
2889 performed either: the value of the provided X coordinate will be
2890 interpreted in byte units instead of texel units. The result of
2891 accessing a misaligned address is undefined.
2892
2893 Usage of the STORE opcode is only allowed if the WR (writable) flag
2894 is set.
2895
2896
2897 Properties
2898 ^^^^^^^^^^^^^^^^^^^^^^^^
2899
2900 Properties are general directives that apply to the whole TGSI program.
2901
2902 FS_COORD_ORIGIN
2903 """""""""""""""
2904
2905 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2906 The default value is UPPER_LEFT.
2907
2908 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2909 increase downward and rightward.
2910 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2911 increase upward and rightward.
2912
2913 OpenGL defaults to LOWER_LEFT, and is configurable with the
2914 GL_ARB_fragment_coord_conventions extension.
2915
2916 DirectX 9/10 use UPPER_LEFT.
2917
2918 FS_COORD_PIXEL_CENTER
2919 """""""""""""""""""""
2920
2921 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2922 The default value is HALF_INTEGER.
2923
2924 If HALF_INTEGER, the fractionary part of the position will be 0.5
2925 If INTEGER, the fractionary part of the position will be 0.0
2926
2927 Note that this does not affect the set of fragments generated by
2928 rasterization, which is instead controlled by half_pixel_center in the
2929 rasterizer.
2930
2931 OpenGL defaults to HALF_INTEGER, and is configurable with the
2932 GL_ARB_fragment_coord_conventions extension.
2933
2934 DirectX 9 uses INTEGER.
2935 DirectX 10 uses HALF_INTEGER.
2936
2937 FS_COLOR0_WRITES_ALL_CBUFS
2938 """"""""""""""""""""""""""
2939 Specifies that writes to the fragment shader color 0 are replicated to all
2940 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2941 fragData is directed to a single color buffer, but fragColor is broadcast.
2942
2943 VS_PROHIBIT_UCPS
2944 """"""""""""""""""""""""""
2945 If this property is set on the program bound to the shader stage before the
2946 fragment shader, user clip planes should have no effect (be disabled) even if
2947 that shader does not write to any clip distance outputs and the rasterizer's
2948 clip_plane_enable is non-zero.
2949 This property is only supported by drivers that also support shader clip
2950 distance outputs.
2951 This is useful for APIs that don't have UCPs and where clip distances written
2952 by a shader cannot be disabled.
2953
2954 GS_INVOCATIONS
2955 """"""""""""""
2956
2957 Specifies the number of times a geometry shader should be executed for each
2958 input primitive. Each invocation will have a different
2959 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2960 be 1.
2961
2962 VS_WINDOW_SPACE_POSITION
2963 """"""""""""""""""""""""""
2964 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2965 is assumed to contain window space coordinates.
2966 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2967 directly taken from the 4-th component of the shader output.
2968 Naturally, clipping is not performed on window coordinates either.
2969 The effect of this property is undefined if a geometry or tessellation shader
2970 are in use.
2971
2972 Texture Sampling and Texture Formats
2973 ------------------------------------
2974
2975 This table shows how texture image components are returned as (x,y,z,w) tuples
2976 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2977 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2978 well.
2979
2980 +--------------------+--------------+--------------------+--------------+
2981 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2982 +====================+==============+====================+==============+
2983 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2984 +--------------------+--------------+--------------------+--------------+
2985 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2986 +--------------------+--------------+--------------------+--------------+
2987 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2988 +--------------------+--------------+--------------------+--------------+
2989 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2990 +--------------------+--------------+--------------------+--------------+
2991 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2992 +--------------------+--------------+--------------------+--------------+
2993 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2994 +--------------------+--------------+--------------------+--------------+
2995 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2996 +--------------------+--------------+--------------------+--------------+
2997 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2998 +--------------------+--------------+--------------------+--------------+
2999 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3000 | | | [#envmap-bumpmap]_ | |
3001 +--------------------+--------------+--------------------+--------------+
3002 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3003 | | | [#depth-tex-mode]_ | |
3004 +--------------------+--------------+--------------------+--------------+
3005 | S | (s, s, s, s) | unknown | unknown |
3006 +--------------------+--------------+--------------------+--------------+
3007
3008 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3009 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3010 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.