gallium: remove TGSI opcode DPH
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate and precise modifier
30 on instructions).
31
32 For arithmetic instruction having a precise modifier certain optimizations
33 which may alter the result are disallowed. Example: *add(mul(a,b),c)* can't be
34 optimized to TGSI_OPCODE_MAD, because some hardware only supports the fused
35 MAD instruction.
36
37 For inputs which have a floating point type, both absolute value and
38 negation modifiers are supported (with absolute value being applied
39 first). The only source of TGSI_OPCODE_MOV and the second and third
40 sources of TGSI_OPCODE_UCMP are considered to have float type for
41 applying modifiers.
42
43 For inputs which have signed or unsigned type only the negate modifier is
44 supported.
45
46 Instruction Set
47 ---------------
48
49 Core ISA
50 ^^^^^^^^^^^^^^^^^^^^^^^^^
51
52 These opcodes are guaranteed to be available regardless of the driver being
53 used.
54
55 .. opcode:: ARL - Address Register Load
56
57 .. math::
58
59 dst.x = (int) \lfloor src.x\rfloor
60
61 dst.y = (int) \lfloor src.y\rfloor
62
63 dst.z = (int) \lfloor src.z\rfloor
64
65 dst.w = (int) \lfloor src.w\rfloor
66
67
68 .. opcode:: MOV - Move
69
70 .. math::
71
72 dst.x = src.x
73
74 dst.y = src.y
75
76 dst.z = src.z
77
78 dst.w = src.w
79
80
81 .. opcode:: LIT - Light Coefficients
82
83 .. math::
84
85 dst.x &= 1 \\
86 dst.y &= max(src.x, 0) \\
87 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
88 dst.w &= 1
89
90
91 .. opcode:: RCP - Reciprocal
92
93 This instruction replicates its result.
94
95 .. math::
96
97 dst = \frac{1}{src.x}
98
99
100 .. opcode:: RSQ - Reciprocal Square Root
101
102 This instruction replicates its result. The results are undefined for src <= 0.
103
104 .. math::
105
106 dst = \frac{1}{\sqrt{src.x}}
107
108
109 .. opcode:: SQRT - Square Root
110
111 This instruction replicates its result. The results are undefined for src < 0.
112
113 .. math::
114
115 dst = {\sqrt{src.x}}
116
117
118 .. opcode:: EXP - Approximate Exponential Base 2
119
120 .. math::
121
122 dst.x &= 2^{\lfloor src.x\rfloor} \\
123 dst.y &= src.x - \lfloor src.x\rfloor \\
124 dst.z &= 2^{src.x} \\
125 dst.w &= 1
126
127
128 .. opcode:: LOG - Approximate Logarithm Base 2
129
130 .. math::
131
132 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
133 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
134 dst.z &= \log_2{|src.x|} \\
135 dst.w &= 1
136
137
138 .. opcode:: MUL - Multiply
139
140 .. math::
141
142 dst.x = src0.x \times src1.x
143
144 dst.y = src0.y \times src1.y
145
146 dst.z = src0.z \times src1.z
147
148 dst.w = src0.w \times src1.w
149
150
151 .. opcode:: ADD - Add
152
153 .. math::
154
155 dst.x = src0.x + src1.x
156
157 dst.y = src0.y + src1.y
158
159 dst.z = src0.z + src1.z
160
161 dst.w = src0.w + src1.w
162
163
164 .. opcode:: DP3 - 3-component Dot Product
165
166 This instruction replicates its result.
167
168 .. math::
169
170 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
171
172
173 .. opcode:: DP4 - 4-component Dot Product
174
175 This instruction replicates its result.
176
177 .. math::
178
179 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
180
181
182 .. opcode:: DST - Distance Vector
183
184 .. math::
185
186 dst.x &= 1\\
187 dst.y &= src0.y \times src1.y\\
188 dst.z &= src0.z\\
189 dst.w &= src1.w
190
191
192 .. opcode:: MIN - Minimum
193
194 .. math::
195
196 dst.x = min(src0.x, src1.x)
197
198 dst.y = min(src0.y, src1.y)
199
200 dst.z = min(src0.z, src1.z)
201
202 dst.w = min(src0.w, src1.w)
203
204
205 .. opcode:: MAX - Maximum
206
207 .. math::
208
209 dst.x = max(src0.x, src1.x)
210
211 dst.y = max(src0.y, src1.y)
212
213 dst.z = max(src0.z, src1.z)
214
215 dst.w = max(src0.w, src1.w)
216
217
218 .. opcode:: SLT - Set On Less Than
219
220 .. math::
221
222 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
223
224 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
225
226 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
227
228 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
229
230
231 .. opcode:: SGE - Set On Greater Equal Than
232
233 .. math::
234
235 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
236
237 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
238
239 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
240
241 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
242
243
244 .. opcode:: MAD - Multiply And Add
245
246 Perform a * b + c. The implementation is free to decide whether there is an
247 intermediate rounding step or not.
248
249 .. math::
250
251 dst.x = src0.x \times src1.x + src2.x
252
253 dst.y = src0.y \times src1.y + src2.y
254
255 dst.z = src0.z \times src1.z + src2.z
256
257 dst.w = src0.w \times src1.w + src2.w
258
259
260 .. opcode:: LRP - Linear Interpolate
261
262 .. math::
263
264 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
265
266 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
267
268 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
269
270 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
271
272
273 .. opcode:: FMA - Fused Multiply-Add
274
275 Perform a * b + c with no intermediate rounding step.
276
277 .. math::
278
279 dst.x = src0.x \times src1.x + src2.x
280
281 dst.y = src0.y \times src1.y + src2.y
282
283 dst.z = src0.z \times src1.z + src2.z
284
285 dst.w = src0.w \times src1.w + src2.w
286
287
288 .. opcode:: FRC - Fraction
289
290 .. math::
291
292 dst.x = src.x - \lfloor src.x\rfloor
293
294 dst.y = src.y - \lfloor src.y\rfloor
295
296 dst.z = src.z - \lfloor src.z\rfloor
297
298 dst.w = src.w - \lfloor src.w\rfloor
299
300
301 .. opcode:: FLR - Floor
302
303 .. math::
304
305 dst.x = \lfloor src.x\rfloor
306
307 dst.y = \lfloor src.y\rfloor
308
309 dst.z = \lfloor src.z\rfloor
310
311 dst.w = \lfloor src.w\rfloor
312
313
314 .. opcode:: ROUND - Round
315
316 .. math::
317
318 dst.x = round(src.x)
319
320 dst.y = round(src.y)
321
322 dst.z = round(src.z)
323
324 dst.w = round(src.w)
325
326
327 .. opcode:: EX2 - Exponential Base 2
328
329 This instruction replicates its result.
330
331 .. math::
332
333 dst = 2^{src.x}
334
335
336 .. opcode:: LG2 - Logarithm Base 2
337
338 This instruction replicates its result.
339
340 .. math::
341
342 dst = \log_2{src.x}
343
344
345 .. opcode:: POW - Power
346
347 This instruction replicates its result.
348
349 .. math::
350
351 dst = src0.x^{src1.x}
352
353 .. opcode:: XPD - Cross Product
354
355 .. math::
356
357 dst.x = src0.y \times src1.z - src1.y \times src0.z
358
359 dst.y = src0.z \times src1.x - src1.z \times src0.x
360
361 dst.z = src0.x \times src1.y - src1.x \times src0.y
362
363 dst.w = 1
364
365
366 .. opcode:: COS - Cosine
367
368 This instruction replicates its result.
369
370 .. math::
371
372 dst = \cos{src.x}
373
374
375 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
376
377 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
378 advertised. When it is, the fine version guarantees one derivative per row
379 while DDX is allowed to be the same for the entire 2x2 quad.
380
381 .. math::
382
383 dst.x = partialx(src.x)
384
385 dst.y = partialx(src.y)
386
387 dst.z = partialx(src.z)
388
389 dst.w = partialx(src.w)
390
391
392 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
393
394 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
395 advertised. When it is, the fine version guarantees one derivative per column
396 while DDY is allowed to be the same for the entire 2x2 quad.
397
398 .. math::
399
400 dst.x = partialy(src.x)
401
402 dst.y = partialy(src.y)
403
404 dst.z = partialy(src.z)
405
406 dst.w = partialy(src.w)
407
408
409 .. opcode:: PK2H - Pack Two 16-bit Floats
410
411 This instruction replicates its result.
412
413 .. math::
414
415 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
416
417
418 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
419
420 TBD
421
422
423 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
424
425 TBD
426
427
428 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
429
430 TBD
431
432
433 .. opcode:: SEQ - Set On Equal
434
435 .. math::
436
437 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
438
439 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
440
441 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
442
443 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
444
445
446 .. opcode:: SGT - Set On Greater Than
447
448 .. math::
449
450 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
451
452 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
453
454 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
455
456 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
457
458
459 .. opcode:: SIN - Sine
460
461 This instruction replicates its result.
462
463 .. math::
464
465 dst = \sin{src.x}
466
467
468 .. opcode:: SLE - Set On Less Equal Than
469
470 .. math::
471
472 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
473
474 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
475
476 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
477
478 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
479
480
481 .. opcode:: SNE - Set On Not Equal
482
483 .. math::
484
485 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
486
487 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
488
489 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
490
491 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
492
493
494 .. opcode:: TEX - Texture Lookup
495
496 for array textures src0.y contains the slice for 1D,
497 and src0.z contain the slice for 2D.
498
499 for shadow textures with no arrays (and not cube map),
500 src0.z contains the reference value.
501
502 for shadow textures with arrays, src0.z contains
503 the reference value for 1D arrays, and src0.w contains
504 the reference value for 2D arrays and cube maps.
505
506 for cube map array shadow textures, the reference value
507 cannot be passed in src0.w, and TEX2 must be used instead.
508
509 .. math::
510
511 coord = src0
512
513 shadow_ref = src0.z or src0.w (optional)
514
515 unit = src1
516
517 dst = texture\_sample(unit, coord, shadow_ref)
518
519
520 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
521
522 this is the same as TEX, but uses another reg to encode the
523 reference value.
524
525 .. math::
526
527 coord = src0
528
529 shadow_ref = src1.x
530
531 unit = src2
532
533 dst = texture\_sample(unit, coord, shadow_ref)
534
535
536
537
538 .. opcode:: TXD - Texture Lookup with Derivatives
539
540 .. math::
541
542 coord = src0
543
544 ddx = src1
545
546 ddy = src2
547
548 unit = src3
549
550 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
551
552
553 .. opcode:: TXP - Projective Texture Lookup
554
555 .. math::
556
557 coord.x = src0.x / src0.w
558
559 coord.y = src0.y / src0.w
560
561 coord.z = src0.z / src0.w
562
563 coord.w = src0.w
564
565 unit = src1
566
567 dst = texture\_sample(unit, coord)
568
569
570 .. opcode:: UP2H - Unpack Two 16-Bit Floats
571
572 .. math::
573
574 dst.x = f16\_to\_f32(src0.x \& 0xffff)
575
576 dst.y = f16\_to\_f32(src0.x >> 16)
577
578 dst.z = f16\_to\_f32(src0.x \& 0xffff)
579
580 dst.w = f16\_to\_f32(src0.x >> 16)
581
582 .. note::
583
584 Considered for removal.
585
586 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
587
588 TBD
589
590 .. note::
591
592 Considered for removal.
593
594 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
595
596 TBD
597
598 .. note::
599
600 Considered for removal.
601
602 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
603
604 TBD
605
606 .. note::
607
608 Considered for removal.
609
610
611 .. opcode:: ARR - Address Register Load With Round
612
613 .. math::
614
615 dst.x = (int) round(src.x)
616
617 dst.y = (int) round(src.y)
618
619 dst.z = (int) round(src.z)
620
621 dst.w = (int) round(src.w)
622
623
624 .. opcode:: SSG - Set Sign
625
626 .. math::
627
628 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
629
630 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
631
632 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
633
634 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
635
636
637 .. opcode:: CMP - Compare
638
639 .. math::
640
641 dst.x = (src0.x < 0) ? src1.x : src2.x
642
643 dst.y = (src0.y < 0) ? src1.y : src2.y
644
645 dst.z = (src0.z < 0) ? src1.z : src2.z
646
647 dst.w = (src0.w < 0) ? src1.w : src2.w
648
649
650 .. opcode:: KILL_IF - Conditional Discard
651
652 Conditional discard. Allowed in fragment shaders only.
653
654 .. math::
655
656 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
657 discard
658 endif
659
660
661 .. opcode:: KILL - Discard
662
663 Unconditional discard. Allowed in fragment shaders only.
664
665
666 .. opcode:: SCS - Sine Cosine
667
668 .. math::
669
670 dst.x = \cos{src.x}
671
672 dst.y = \sin{src.x}
673
674 dst.z = 0
675
676 dst.w = 1
677
678
679 .. opcode:: TXB - Texture Lookup With Bias
680
681 for cube map array textures and shadow cube maps, the bias value
682 cannot be passed in src0.w, and TXB2 must be used instead.
683
684 if the target is a shadow texture, the reference value is always
685 in src.z (this prevents shadow 3d and shadow 2d arrays from
686 using this instruction, but this is not needed).
687
688 .. math::
689
690 coord.x = src0.x
691
692 coord.y = src0.y
693
694 coord.z = src0.z
695
696 coord.w = none
697
698 bias = src0.w
699
700 unit = src1
701
702 dst = texture\_sample(unit, coord, bias)
703
704
705 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
706
707 this is the same as TXB, but uses another reg to encode the
708 lod bias value for cube map arrays and shadow cube maps.
709 Presumably shadow 2d arrays and shadow 3d targets could use
710 this encoding too, but this is not legal.
711
712 shadow cube map arrays are neither possible nor required.
713
714 .. math::
715
716 coord = src0
717
718 bias = src1.x
719
720 unit = src2
721
722 dst = texture\_sample(unit, coord, bias)
723
724
725 .. opcode:: DIV - Divide
726
727 .. math::
728
729 dst.x = \frac{src0.x}{src1.x}
730
731 dst.y = \frac{src0.y}{src1.y}
732
733 dst.z = \frac{src0.z}{src1.z}
734
735 dst.w = \frac{src0.w}{src1.w}
736
737
738 .. opcode:: DP2 - 2-component Dot Product
739
740 This instruction replicates its result.
741
742 .. math::
743
744 dst = src0.x \times src1.x + src0.y \times src1.y
745
746
747 .. opcode:: TEX_LZ - Texture Lookup With LOD = 0
748
749 This is the same as TXL with LOD = 0. Like every texture opcode, it obeys
750 pipe_sampler_view::u.tex.first_level and pipe_sampler_state::min_lod.
751 There is no way to override those two in shaders.
752
753 .. math::
754
755 coord.x = src0.x
756
757 coord.y = src0.y
758
759 coord.z = src0.z
760
761 coord.w = none
762
763 lod = 0
764
765 unit = src1
766
767 dst = texture\_sample(unit, coord, lod)
768
769
770 .. opcode:: TXL - Texture Lookup With explicit LOD
771
772 for cube map array textures, the explicit lod value
773 cannot be passed in src0.w, and TXL2 must be used instead.
774
775 if the target is a shadow texture, the reference value is always
776 in src.z (this prevents shadow 3d / 2d array / cube targets from
777 using this instruction, but this is not needed).
778
779 .. math::
780
781 coord.x = src0.x
782
783 coord.y = src0.y
784
785 coord.z = src0.z
786
787 coord.w = none
788
789 lod = src0.w
790
791 unit = src1
792
793 dst = texture\_sample(unit, coord, lod)
794
795
796 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
797
798 this is the same as TXL, but uses another reg to encode the
799 explicit lod value.
800 Presumably shadow 3d / 2d array / cube targets could use
801 this encoding too, but this is not legal.
802
803 shadow cube map arrays are neither possible nor required.
804
805 .. math::
806
807 coord = src0
808
809 lod = src1.x
810
811 unit = src2
812
813 dst = texture\_sample(unit, coord, lod)
814
815
816 Compute ISA
817 ^^^^^^^^^^^^^^^^^^^^^^^^
818
819 These opcodes are primarily provided for special-use computational shaders.
820 Support for these opcodes indicated by a special pipe capability bit (TBD).
821
822 XXX doesn't look like most of the opcodes really belong here.
823
824 .. opcode:: CEIL - Ceiling
825
826 .. math::
827
828 dst.x = \lceil src.x\rceil
829
830 dst.y = \lceil src.y\rceil
831
832 dst.z = \lceil src.z\rceil
833
834 dst.w = \lceil src.w\rceil
835
836
837 .. opcode:: TRUNC - Truncate
838
839 .. math::
840
841 dst.x = trunc(src.x)
842
843 dst.y = trunc(src.y)
844
845 dst.z = trunc(src.z)
846
847 dst.w = trunc(src.w)
848
849
850 .. opcode:: MOD - Modulus
851
852 .. math::
853
854 dst.x = src0.x \bmod src1.x
855
856 dst.y = src0.y \bmod src1.y
857
858 dst.z = src0.z \bmod src1.z
859
860 dst.w = src0.w \bmod src1.w
861
862
863 .. opcode:: UARL - Integer Address Register Load
864
865 Moves the contents of the source register, assumed to be an integer, into the
866 destination register, which is assumed to be an address (ADDR) register.
867
868
869 .. opcode:: TXF - Texel Fetch
870
871 As per NV_gpu_shader4, extract a single texel from a specified texture
872 image or PIPE_BUFFER resource. The source sampler may not be a CUBE or
873 SHADOW. src 0 is a
874 four-component signed integer vector used to identify the single texel
875 accessed. 3 components + level. If the texture is multisampled, then
876 the fourth component indicates the sample, not the mipmap level.
877 Just like texture instructions, an optional
878 offset vector is provided, which is subject to various driver restrictions
879 (regarding range, source of offsets). This instruction ignores the sampler
880 state.
881
882 TXF(uint_vec coord, int_vec offset).
883
884
885 .. opcode:: TXQ - Texture Size Query
886
887 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
888 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
889 depth), 1D array (width, layers), 2D array (width, height, layers).
890 Also return the number of accessible levels (last_level - first_level + 1)
891 in W.
892
893 For components which don't return a resource dimension, their value
894 is undefined.
895
896 .. math::
897
898 lod = src0.x
899
900 dst.x = texture\_width(unit, lod)
901
902 dst.y = texture\_height(unit, lod)
903
904 dst.z = texture\_depth(unit, lod)
905
906 dst.w = texture\_levels(unit)
907
908
909 .. opcode:: TXQS - Texture Samples Query
910
911 This retrieves the number of samples in the texture, and stores it
912 into the x component as an unsigned integer. The other components are
913 undefined. If the texture is not multisampled, this function returns
914 (1, undef, undef, undef).
915
916 .. math::
917
918 dst.x = texture\_samples(unit)
919
920
921 .. opcode:: TG4 - Texture Gather
922
923 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
924 filtering operation and packs them into a single register. Only works with
925 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
926 addressing modes of the sampler and the top level of any mip pyramid are
927 used. Set W to zero. It behaves like the TEX instruction, but a filtered
928 sample is not generated. The four samples that contribute to filtering are
929 placed into xyzw in clockwise order, starting with the (u,v) texture
930 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
931 where the magnitude of the deltas are half a texel.
932
933 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
934 depth compares, single component selection, and a non-constant offset. It
935 doesn't allow support for the GL independent offset to get i0,j0. This would
936 require another CAP is hw can do it natively. For now we lower that before
937 TGSI.
938
939 .. math::
940
941 coord = src0
942
943 component = src1
944
945 dst = texture\_gather4 (unit, coord, component)
946
947 (with SM5 - cube array shadow)
948
949 .. math::
950
951 coord = src0
952
953 compare = src1
954
955 dst = texture\_gather (uint, coord, compare)
956
957 .. opcode:: LODQ - level of detail query
958
959 Compute the LOD information that the texture pipe would use to access the
960 texture. The Y component contains the computed LOD lambda_prime. The X
961 component contains the LOD that will be accessed, based on min/max lod's
962 and mipmap filters.
963
964 .. math::
965
966 coord = src0
967
968 dst.xy = lodq(uint, coord);
969
970 .. opcode:: CLOCK - retrieve the current shader time
971
972 Invoking this instruction multiple times in the same shader should
973 cause monotonically increasing values to be returned. The values
974 are implicitly 64-bit, so if fewer than 64 bits of precision are
975 available, to provide expected wraparound semantics, the value
976 should be shifted up so that the most significant bit of the time
977 is the most significant bit of the 64-bit value.
978
979 .. math::
980
981 dst.xy = clock()
982
983
984 Integer ISA
985 ^^^^^^^^^^^^^^^^^^^^^^^^
986 These opcodes are used for integer operations.
987 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
988
989
990 .. opcode:: I2F - Signed Integer To Float
991
992 Rounding is unspecified (round to nearest even suggested).
993
994 .. math::
995
996 dst.x = (float) src.x
997
998 dst.y = (float) src.y
999
1000 dst.z = (float) src.z
1001
1002 dst.w = (float) src.w
1003
1004
1005 .. opcode:: U2F - Unsigned Integer To Float
1006
1007 Rounding is unspecified (round to nearest even suggested).
1008
1009 .. math::
1010
1011 dst.x = (float) src.x
1012
1013 dst.y = (float) src.y
1014
1015 dst.z = (float) src.z
1016
1017 dst.w = (float) src.w
1018
1019
1020 .. opcode:: F2I - Float to Signed Integer
1021
1022 Rounding is towards zero (truncate).
1023 Values outside signed range (including NaNs) produce undefined results.
1024
1025 .. math::
1026
1027 dst.x = (int) src.x
1028
1029 dst.y = (int) src.y
1030
1031 dst.z = (int) src.z
1032
1033 dst.w = (int) src.w
1034
1035
1036 .. opcode:: F2U - Float to Unsigned Integer
1037
1038 Rounding is towards zero (truncate).
1039 Values outside unsigned range (including NaNs) produce undefined results.
1040
1041 .. math::
1042
1043 dst.x = (unsigned) src.x
1044
1045 dst.y = (unsigned) src.y
1046
1047 dst.z = (unsigned) src.z
1048
1049 dst.w = (unsigned) src.w
1050
1051
1052 .. opcode:: UADD - Integer Add
1053
1054 This instruction works the same for signed and unsigned integers.
1055 The low 32bit of the result is returned.
1056
1057 .. math::
1058
1059 dst.x = src0.x + src1.x
1060
1061 dst.y = src0.y + src1.y
1062
1063 dst.z = src0.z + src1.z
1064
1065 dst.w = src0.w + src1.w
1066
1067
1068 .. opcode:: UMAD - Integer Multiply And Add
1069
1070 This instruction works the same for signed and unsigned integers.
1071 The multiplication returns the low 32bit (as does the result itself).
1072
1073 .. math::
1074
1075 dst.x = src0.x \times src1.x + src2.x
1076
1077 dst.y = src0.y \times src1.y + src2.y
1078
1079 dst.z = src0.z \times src1.z + src2.z
1080
1081 dst.w = src0.w \times src1.w + src2.w
1082
1083
1084 .. opcode:: UMUL - Integer Multiply
1085
1086 This instruction works the same for signed and unsigned integers.
1087 The low 32bit of the result is returned.
1088
1089 .. math::
1090
1091 dst.x = src0.x \times src1.x
1092
1093 dst.y = src0.y \times src1.y
1094
1095 dst.z = src0.z \times src1.z
1096
1097 dst.w = src0.w \times src1.w
1098
1099
1100 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1101
1102 The high 32bits of the multiplication of 2 signed integers are returned.
1103
1104 .. math::
1105
1106 dst.x = (src0.x \times src1.x) >> 32
1107
1108 dst.y = (src0.y \times src1.y) >> 32
1109
1110 dst.z = (src0.z \times src1.z) >> 32
1111
1112 dst.w = (src0.w \times src1.w) >> 32
1113
1114
1115 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1116
1117 The high 32bits of the multiplication of 2 unsigned integers are returned.
1118
1119 .. math::
1120
1121 dst.x = (src0.x \times src1.x) >> 32
1122
1123 dst.y = (src0.y \times src1.y) >> 32
1124
1125 dst.z = (src0.z \times src1.z) >> 32
1126
1127 dst.w = (src0.w \times src1.w) >> 32
1128
1129
1130 .. opcode:: IDIV - Signed Integer Division
1131
1132 TBD: behavior for division by zero.
1133
1134 .. math::
1135
1136 dst.x = \frac{src0.x}{src1.x}
1137
1138 dst.y = \frac{src0.y}{src1.y}
1139
1140 dst.z = \frac{src0.z}{src1.z}
1141
1142 dst.w = \frac{src0.w}{src1.w}
1143
1144
1145 .. opcode:: UDIV - Unsigned Integer Division
1146
1147 For division by zero, 0xffffffff is returned.
1148
1149 .. math::
1150
1151 dst.x = \frac{src0.x}{src1.x}
1152
1153 dst.y = \frac{src0.y}{src1.y}
1154
1155 dst.z = \frac{src0.z}{src1.z}
1156
1157 dst.w = \frac{src0.w}{src1.w}
1158
1159
1160 .. opcode:: UMOD - Unsigned Integer Remainder
1161
1162 If second arg is zero, 0xffffffff is returned.
1163
1164 .. math::
1165
1166 dst.x = src0.x \bmod src1.x
1167
1168 dst.y = src0.y \bmod src1.y
1169
1170 dst.z = src0.z \bmod src1.z
1171
1172 dst.w = src0.w \bmod src1.w
1173
1174
1175 .. opcode:: NOT - Bitwise Not
1176
1177 .. math::
1178
1179 dst.x = \sim src.x
1180
1181 dst.y = \sim src.y
1182
1183 dst.z = \sim src.z
1184
1185 dst.w = \sim src.w
1186
1187
1188 .. opcode:: AND - Bitwise And
1189
1190 .. math::
1191
1192 dst.x = src0.x \& src1.x
1193
1194 dst.y = src0.y \& src1.y
1195
1196 dst.z = src0.z \& src1.z
1197
1198 dst.w = src0.w \& src1.w
1199
1200
1201 .. opcode:: OR - Bitwise Or
1202
1203 .. math::
1204
1205 dst.x = src0.x | src1.x
1206
1207 dst.y = src0.y | src1.y
1208
1209 dst.z = src0.z | src1.z
1210
1211 dst.w = src0.w | src1.w
1212
1213
1214 .. opcode:: XOR - Bitwise Xor
1215
1216 .. math::
1217
1218 dst.x = src0.x \oplus src1.x
1219
1220 dst.y = src0.y \oplus src1.y
1221
1222 dst.z = src0.z \oplus src1.z
1223
1224 dst.w = src0.w \oplus src1.w
1225
1226
1227 .. opcode:: IMAX - Maximum of Signed Integers
1228
1229 .. math::
1230
1231 dst.x = max(src0.x, src1.x)
1232
1233 dst.y = max(src0.y, src1.y)
1234
1235 dst.z = max(src0.z, src1.z)
1236
1237 dst.w = max(src0.w, src1.w)
1238
1239
1240 .. opcode:: UMAX - Maximum of Unsigned Integers
1241
1242 .. math::
1243
1244 dst.x = max(src0.x, src1.x)
1245
1246 dst.y = max(src0.y, src1.y)
1247
1248 dst.z = max(src0.z, src1.z)
1249
1250 dst.w = max(src0.w, src1.w)
1251
1252
1253 .. opcode:: IMIN - Minimum of Signed Integers
1254
1255 .. math::
1256
1257 dst.x = min(src0.x, src1.x)
1258
1259 dst.y = min(src0.y, src1.y)
1260
1261 dst.z = min(src0.z, src1.z)
1262
1263 dst.w = min(src0.w, src1.w)
1264
1265
1266 .. opcode:: UMIN - Minimum of Unsigned Integers
1267
1268 .. math::
1269
1270 dst.x = min(src0.x, src1.x)
1271
1272 dst.y = min(src0.y, src1.y)
1273
1274 dst.z = min(src0.z, src1.z)
1275
1276 dst.w = min(src0.w, src1.w)
1277
1278
1279 .. opcode:: SHL - Shift Left
1280
1281 The shift count is masked with 0x1f before the shift is applied.
1282
1283 .. math::
1284
1285 dst.x = src0.x << (0x1f \& src1.x)
1286
1287 dst.y = src0.y << (0x1f \& src1.y)
1288
1289 dst.z = src0.z << (0x1f \& src1.z)
1290
1291 dst.w = src0.w << (0x1f \& src1.w)
1292
1293
1294 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1295
1296 The shift count is masked with 0x1f before the shift is applied.
1297
1298 .. math::
1299
1300 dst.x = src0.x >> (0x1f \& src1.x)
1301
1302 dst.y = src0.y >> (0x1f \& src1.y)
1303
1304 dst.z = src0.z >> (0x1f \& src1.z)
1305
1306 dst.w = src0.w >> (0x1f \& src1.w)
1307
1308
1309 .. opcode:: USHR - Logical Shift Right
1310
1311 The shift count is masked with 0x1f before the shift is applied.
1312
1313 .. math::
1314
1315 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1316
1317 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1318
1319 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1320
1321 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1322
1323
1324 .. opcode:: UCMP - Integer Conditional Move
1325
1326 .. math::
1327
1328 dst.x = src0.x ? src1.x : src2.x
1329
1330 dst.y = src0.y ? src1.y : src2.y
1331
1332 dst.z = src0.z ? src1.z : src2.z
1333
1334 dst.w = src0.w ? src1.w : src2.w
1335
1336
1337
1338 .. opcode:: ISSG - Integer Set Sign
1339
1340 .. math::
1341
1342 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1343
1344 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1345
1346 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1347
1348 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1349
1350
1351
1352 .. opcode:: FSLT - Float Set On Less Than (ordered)
1353
1354 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1355
1356 .. math::
1357
1358 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1359
1360 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1361
1362 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1363
1364 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1365
1366
1367 .. opcode:: ISLT - Signed Integer Set On Less Than
1368
1369 .. math::
1370
1371 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1372
1373 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1374
1375 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1376
1377 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1378
1379
1380 .. opcode:: USLT - Unsigned Integer Set On Less Than
1381
1382 .. math::
1383
1384 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1385
1386 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1387
1388 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1389
1390 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1391
1392
1393 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1394
1395 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1396
1397 .. math::
1398
1399 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1400
1401 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1402
1403 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1404
1405 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1406
1407
1408 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1409
1410 .. math::
1411
1412 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1413
1414 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1415
1416 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1417
1418 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1419
1420
1421 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1422
1423 .. math::
1424
1425 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1426
1427 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1428
1429 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1430
1431 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1432
1433
1434 .. opcode:: FSEQ - Float Set On Equal (ordered)
1435
1436 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1437
1438 .. math::
1439
1440 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1441
1442 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1443
1444 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1445
1446 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1447
1448
1449 .. opcode:: USEQ - Integer Set On Equal
1450
1451 .. math::
1452
1453 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1454
1455 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1456
1457 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1458
1459 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1460
1461
1462 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1463
1464 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1465
1466 .. math::
1467
1468 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1469
1470 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1471
1472 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1473
1474 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1475
1476
1477 .. opcode:: USNE - Integer Set On Not Equal
1478
1479 .. math::
1480
1481 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1482
1483 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1484
1485 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1486
1487 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1488
1489
1490 .. opcode:: INEG - Integer Negate
1491
1492 Two's complement.
1493
1494 .. math::
1495
1496 dst.x = -src.x
1497
1498 dst.y = -src.y
1499
1500 dst.z = -src.z
1501
1502 dst.w = -src.w
1503
1504
1505 .. opcode:: IABS - Integer Absolute Value
1506
1507 .. math::
1508
1509 dst.x = |src.x|
1510
1511 dst.y = |src.y|
1512
1513 dst.z = |src.z|
1514
1515 dst.w = |src.w|
1516
1517 Bitwise ISA
1518 ^^^^^^^^^^^
1519 These opcodes are used for bit-level manipulation of integers.
1520
1521 .. opcode:: IBFE - Signed Bitfield Extract
1522
1523 Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1524 sign-extends them if the high bit of the extracted window is set.
1525
1526 Pseudocode::
1527
1528 def ibfe(value, offset, bits):
1529 if offset < 0 or bits < 0 or offset + bits > 32:
1530 return undefined
1531 if bits == 0: return 0
1532 # Note: >> sign-extends
1533 return (value << (32 - offset - bits)) >> (32 - bits)
1534
1535 .. opcode:: UBFE - Unsigned Bitfield Extract
1536
1537 Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1538 any sign-extension.
1539
1540 Pseudocode::
1541
1542 def ubfe(value, offset, bits):
1543 if offset < 0 or bits < 0 or offset + bits > 32:
1544 return undefined
1545 if bits == 0: return 0
1546 # Note: >> does not sign-extend
1547 return (value << (32 - offset - bits)) >> (32 - bits)
1548
1549 .. opcode:: BFI - Bitfield Insert
1550
1551 Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1552 of 'insert'.
1553
1554 Pseudocode::
1555
1556 def bfi(base, insert, offset, bits):
1557 if offset < 0 or bits < 0 or offset + bits > 32:
1558 return undefined
1559 # << defined such that mask == ~0 when bits == 32, offset == 0
1560 mask = ((1 << bits) - 1) << offset
1561 return ((insert << offset) & mask) | (base & ~mask)
1562
1563 .. opcode:: BREV - Bitfield Reverse
1564
1565 See SM5 instruction BFREV. Reverses the bits of the argument.
1566
1567 .. opcode:: POPC - Population Count
1568
1569 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1570
1571 .. opcode:: LSB - Index of lowest set bit
1572
1573 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1574 bit of the argument. Returns -1 if none are set.
1575
1576 .. opcode:: IMSB - Index of highest non-sign bit
1577
1578 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1579 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1580 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1581 (i.e. for inputs 0 and -1).
1582
1583 .. opcode:: UMSB - Index of highest set bit
1584
1585 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1586 set bit of the argument. Returns -1 if none are set.
1587
1588 Geometry ISA
1589 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1590
1591 These opcodes are only supported in geometry shaders; they have no meaning
1592 in any other type of shader.
1593
1594 .. opcode:: EMIT - Emit
1595
1596 Generate a new vertex for the current primitive into the specified vertex
1597 stream using the values in the output registers.
1598
1599
1600 .. opcode:: ENDPRIM - End Primitive
1601
1602 Complete the current primitive in the specified vertex stream (consisting of
1603 the emitted vertices), and start a new one.
1604
1605
1606 GLSL ISA
1607 ^^^^^^^^^^
1608
1609 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1610 opcodes is determined by a special capability bit, ``GLSL``.
1611 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1612
1613 .. opcode:: CAL - Subroutine Call
1614
1615 push(pc)
1616 pc = target
1617
1618
1619 .. opcode:: RET - Subroutine Call Return
1620
1621 pc = pop()
1622
1623
1624 .. opcode:: CONT - Continue
1625
1626 Unconditionally moves the point of execution to the instruction after the
1627 last bgnloop. The instruction must appear within a bgnloop/endloop.
1628
1629 .. note::
1630
1631 Support for CONT is determined by a special capability bit,
1632 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1633
1634
1635 .. opcode:: BGNLOOP - Begin a Loop
1636
1637 Start a loop. Must have a matching endloop.
1638
1639
1640 .. opcode:: BGNSUB - Begin Subroutine
1641
1642 Starts definition of a subroutine. Must have a matching endsub.
1643
1644
1645 .. opcode:: ENDLOOP - End a Loop
1646
1647 End a loop started with bgnloop.
1648
1649
1650 .. opcode:: ENDSUB - End Subroutine
1651
1652 Ends definition of a subroutine.
1653
1654
1655 .. opcode:: NOP - No Operation
1656
1657 Do nothing.
1658
1659
1660 .. opcode:: BRK - Break
1661
1662 Unconditionally moves the point of execution to the instruction after the
1663 next endloop or endswitch. The instruction must appear within a loop/endloop
1664 or switch/endswitch.
1665
1666
1667 .. opcode:: BREAKC - Break Conditional
1668
1669 Conditionally moves the point of execution to the instruction after the
1670 next endloop or endswitch. The instruction must appear within a loop/endloop
1671 or switch/endswitch.
1672 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1673 as an integer register.
1674
1675 .. note::
1676
1677 Considered for removal as it's quite inconsistent wrt other opcodes
1678 (could emulate with UIF/BRK/ENDIF).
1679
1680
1681 .. opcode:: IF - Float If
1682
1683 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1684
1685 src0.x != 0.0
1686
1687 where src0.x is interpreted as a floating point register.
1688
1689
1690 .. opcode:: UIF - Bitwise If
1691
1692 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1693
1694 src0.x != 0
1695
1696 where src0.x is interpreted as an integer register.
1697
1698
1699 .. opcode:: ELSE - Else
1700
1701 Starts an else block, after an IF or UIF statement.
1702
1703
1704 .. opcode:: ENDIF - End If
1705
1706 Ends an IF or UIF block.
1707
1708
1709 .. opcode:: SWITCH - Switch
1710
1711 Starts a C-style switch expression. The switch consists of one or multiple
1712 CASE statements, and at most one DEFAULT statement. Execution of a statement
1713 ends when a BRK is hit, but just like in C falling through to other cases
1714 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1715 just as last statement, and fallthrough is allowed into/from it.
1716 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1717
1718 Example::
1719
1720 SWITCH src[0].x
1721 CASE src[0].x
1722 (some instructions here)
1723 (optional BRK here)
1724 DEFAULT
1725 (some instructions here)
1726 (optional BRK here)
1727 CASE src[0].x
1728 (some instructions here)
1729 (optional BRK here)
1730 ENDSWITCH
1731
1732
1733 .. opcode:: CASE - Switch case
1734
1735 This represents a switch case label. The src arg must be an integer immediate.
1736
1737
1738 .. opcode:: DEFAULT - Switch default
1739
1740 This represents the default case in the switch, which is taken if no other
1741 case matches.
1742
1743
1744 .. opcode:: ENDSWITCH - End of switch
1745
1746 Ends a switch expression.
1747
1748
1749 Interpolation ISA
1750 ^^^^^^^^^^^^^^^^^
1751
1752 The interpolation instructions allow an input to be interpolated in a
1753 different way than its declaration. This corresponds to the GLSL 4.00
1754 interpolateAt* functions. The first argument of each of these must come from
1755 ``TGSI_FILE_INPUT``.
1756
1757 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1758
1759 Interpolates the varying specified by src0 at the centroid
1760
1761 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1762
1763 Interpolates the varying specified by src0 at the sample id specified by
1764 src1.x (interpreted as an integer)
1765
1766 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1767
1768 Interpolates the varying specified by src0 at the offset src1.xy from the
1769 pixel center (interpreted as floats)
1770
1771
1772 .. _doubleopcodes:
1773
1774 Double ISA
1775 ^^^^^^^^^^^^^^^
1776
1777 The double-precision opcodes reinterpret four-component vectors into
1778 two-component vectors with doubled precision in each component.
1779
1780 .. opcode:: DABS - Absolute
1781
1782 .. math::
1783
1784 dst.xy = |src0.xy|
1785
1786 dst.zw = |src0.zw|
1787
1788 .. opcode:: DADD - Add
1789
1790 .. math::
1791
1792 dst.xy = src0.xy + src1.xy
1793
1794 dst.zw = src0.zw + src1.zw
1795
1796 .. opcode:: DSEQ - Set on Equal
1797
1798 .. math::
1799
1800 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1801
1802 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1803
1804 .. opcode:: DSNE - Set on Equal
1805
1806 .. math::
1807
1808 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1809
1810 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1811
1812 .. opcode:: DSLT - Set on Less than
1813
1814 .. math::
1815
1816 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1817
1818 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1819
1820 .. opcode:: DSGE - Set on Greater equal
1821
1822 .. math::
1823
1824 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1825
1826 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1827
1828 .. opcode:: DFRAC - Fraction
1829
1830 .. math::
1831
1832 dst.xy = src.xy - \lfloor src.xy\rfloor
1833
1834 dst.zw = src.zw - \lfloor src.zw\rfloor
1835
1836 .. opcode:: DTRUNC - Truncate
1837
1838 .. math::
1839
1840 dst.xy = trunc(src.xy)
1841
1842 dst.zw = trunc(src.zw)
1843
1844 .. opcode:: DCEIL - Ceiling
1845
1846 .. math::
1847
1848 dst.xy = \lceil src.xy\rceil
1849
1850 dst.zw = \lceil src.zw\rceil
1851
1852 .. opcode:: DFLR - Floor
1853
1854 .. math::
1855
1856 dst.xy = \lfloor src.xy\rfloor
1857
1858 dst.zw = \lfloor src.zw\rfloor
1859
1860 .. opcode:: DROUND - Fraction
1861
1862 .. math::
1863
1864 dst.xy = round(src.xy)
1865
1866 dst.zw = round(src.zw)
1867
1868 .. opcode:: DSSG - Set Sign
1869
1870 .. math::
1871
1872 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1873
1874 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1875
1876 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1877
1878 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1879 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1880 :math:`dst1 \times 2^{dst0} = src` .
1881
1882 .. math::
1883
1884 dst0.xy = exp(src.xy)
1885
1886 dst1.xy = frac(src.xy)
1887
1888 dst0.zw = exp(src.zw)
1889
1890 dst1.zw = frac(src.zw)
1891
1892 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1893
1894 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1895 source is an integer.
1896
1897 .. math::
1898
1899 dst.xy = src0.xy \times 2^{src1.x}
1900
1901 dst.zw = src0.zw \times 2^{src1.y}
1902
1903 .. opcode:: DMIN - Minimum
1904
1905 .. math::
1906
1907 dst.xy = min(src0.xy, src1.xy)
1908
1909 dst.zw = min(src0.zw, src1.zw)
1910
1911 .. opcode:: DMAX - Maximum
1912
1913 .. math::
1914
1915 dst.xy = max(src0.xy, src1.xy)
1916
1917 dst.zw = max(src0.zw, src1.zw)
1918
1919 .. opcode:: DMUL - Multiply
1920
1921 .. math::
1922
1923 dst.xy = src0.xy \times src1.xy
1924
1925 dst.zw = src0.zw \times src1.zw
1926
1927
1928 .. opcode:: DMAD - Multiply And Add
1929
1930 .. math::
1931
1932 dst.xy = src0.xy \times src1.xy + src2.xy
1933
1934 dst.zw = src0.zw \times src1.zw + src2.zw
1935
1936
1937 .. opcode:: DFMA - Fused Multiply-Add
1938
1939 Perform a * b + c with no intermediate rounding step.
1940
1941 .. math::
1942
1943 dst.xy = src0.xy \times src1.xy + src2.xy
1944
1945 dst.zw = src0.zw \times src1.zw + src2.zw
1946
1947
1948 .. opcode:: DDIV - Divide
1949
1950 .. math::
1951
1952 dst.xy = \frac{src0.xy}{src1.xy}
1953
1954 dst.zw = \frac{src0.zw}{src1.zw}
1955
1956
1957 .. opcode:: DRCP - Reciprocal
1958
1959 .. math::
1960
1961 dst.xy = \frac{1}{src.xy}
1962
1963 dst.zw = \frac{1}{src.zw}
1964
1965 .. opcode:: DSQRT - Square Root
1966
1967 .. math::
1968
1969 dst.xy = \sqrt{src.xy}
1970
1971 dst.zw = \sqrt{src.zw}
1972
1973 .. opcode:: DRSQ - Reciprocal Square Root
1974
1975 .. math::
1976
1977 dst.xy = \frac{1}{\sqrt{src.xy}}
1978
1979 dst.zw = \frac{1}{\sqrt{src.zw}}
1980
1981 .. opcode:: F2D - Float to Double
1982
1983 .. math::
1984
1985 dst.xy = double(src0.x)
1986
1987 dst.zw = double(src0.y)
1988
1989 .. opcode:: D2F - Double to Float
1990
1991 .. math::
1992
1993 dst.x = float(src0.xy)
1994
1995 dst.y = float(src0.zw)
1996
1997 .. opcode:: I2D - Int to Double
1998
1999 .. math::
2000
2001 dst.xy = double(src0.x)
2002
2003 dst.zw = double(src0.y)
2004
2005 .. opcode:: D2I - Double to Int
2006
2007 .. math::
2008
2009 dst.x = int(src0.xy)
2010
2011 dst.y = int(src0.zw)
2012
2013 .. opcode:: U2D - Unsigned Int to Double
2014
2015 .. math::
2016
2017 dst.xy = double(src0.x)
2018
2019 dst.zw = double(src0.y)
2020
2021 .. opcode:: D2U - Double to Unsigned Int
2022
2023 .. math::
2024
2025 dst.x = unsigned(src0.xy)
2026
2027 dst.y = unsigned(src0.zw)
2028
2029 64-bit Integer ISA
2030 ^^^^^^^^^^^^^^^^^^
2031
2032 The 64-bit integer opcodes reinterpret four-component vectors into
2033 two-component vectors with 64-bits in each component.
2034
2035 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2036
2037 .. math::
2038
2039 dst.xy = |src0.xy|
2040
2041 dst.zw = |src0.zw|
2042
2043 .. opcode:: I64NEG - 64-bit Integer Negate
2044
2045 Two's complement.
2046
2047 .. math::
2048
2049 dst.xy = -src.xy
2050
2051 dst.zw = -src.zw
2052
2053 .. opcode:: I64SSG - 64-bit Integer Set Sign
2054
2055 .. math::
2056
2057 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2058
2059 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2060
2061 .. opcode:: U64ADD - 64-bit Integer Add
2062
2063 .. math::
2064
2065 dst.xy = src0.xy + src1.xy
2066
2067 dst.zw = src0.zw + src1.zw
2068
2069 .. opcode:: U64MUL - 64-bit Integer Multiply
2070
2071 .. math::
2072
2073 dst.xy = src0.xy * src1.xy
2074
2075 dst.zw = src0.zw * src1.zw
2076
2077 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2078
2079 .. math::
2080
2081 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2082
2083 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2084
2085 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2086
2087 .. math::
2088
2089 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2090
2091 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2092
2093 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2094
2095 .. math::
2096
2097 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2098
2099 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2100
2101 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2102
2103 .. math::
2104
2105 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2106
2107 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2108
2109 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2110
2111 .. math::
2112
2113 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2114
2115 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2116
2117 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2118
2119 .. math::
2120
2121 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2122
2123 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2124
2125 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2126
2127 .. math::
2128
2129 dst.xy = min(src0.xy, src1.xy)
2130
2131 dst.zw = min(src0.zw, src1.zw)
2132
2133 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2134
2135 .. math::
2136
2137 dst.xy = min(src0.xy, src1.xy)
2138
2139 dst.zw = min(src0.zw, src1.zw)
2140
2141 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2142
2143 .. math::
2144
2145 dst.xy = max(src0.xy, src1.xy)
2146
2147 dst.zw = max(src0.zw, src1.zw)
2148
2149 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2150
2151 .. math::
2152
2153 dst.xy = max(src0.xy, src1.xy)
2154
2155 dst.zw = max(src0.zw, src1.zw)
2156
2157 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2158
2159 The shift count is masked with 0x3f before the shift is applied.
2160
2161 .. math::
2162
2163 dst.xy = src0.xy << (0x3f \& src1.x)
2164
2165 dst.zw = src0.zw << (0x3f \& src1.y)
2166
2167 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2168
2169 The shift count is masked with 0x3f before the shift is applied.
2170
2171 .. math::
2172
2173 dst.xy = src0.xy >> (0x3f \& src1.x)
2174
2175 dst.zw = src0.zw >> (0x3f \& src1.y)
2176
2177 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2178
2179 The shift count is masked with 0x3f before the shift is applied.
2180
2181 .. math::
2182
2183 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2184
2185 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2186
2187 .. opcode:: I64DIV - 64-bit Signed Integer Division
2188
2189 .. math::
2190
2191 dst.xy = \frac{src0.xy}{src1.xy}
2192
2193 dst.zw = \frac{src0.zw}{src1.zw}
2194
2195 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2196
2197 .. math::
2198
2199 dst.xy = \frac{src0.xy}{src1.xy}
2200
2201 dst.zw = \frac{src0.zw}{src1.zw}
2202
2203 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2204
2205 .. math::
2206
2207 dst.xy = src0.xy \bmod src1.xy
2208
2209 dst.zw = src0.zw \bmod src1.zw
2210
2211 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2212
2213 .. math::
2214
2215 dst.xy = src0.xy \bmod src1.xy
2216
2217 dst.zw = src0.zw \bmod src1.zw
2218
2219 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2220
2221 .. math::
2222
2223 dst.xy = (uint64_t) src0.x
2224
2225 dst.zw = (uint64_t) src0.y
2226
2227 .. opcode:: F2I64 - Float to 64-bit Int
2228
2229 .. math::
2230
2231 dst.xy = (int64_t) src0.x
2232
2233 dst.zw = (int64_t) src0.y
2234
2235 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2236
2237 This is a zero extension.
2238
2239 .. math::
2240
2241 dst.xy = (uint64_t) src0.x
2242
2243 dst.zw = (uint64_t) src0.y
2244
2245 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2246
2247 This is a sign extension.
2248
2249 .. math::
2250
2251 dst.xy = (int64_t) src0.x
2252
2253 dst.zw = (int64_t) src0.y
2254
2255 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2256
2257 .. math::
2258
2259 dst.xy = (uint64_t) src0.xy
2260
2261 dst.zw = (uint64_t) src0.zw
2262
2263 .. opcode:: D2I64 - Double to 64-bit Int
2264
2265 .. math::
2266
2267 dst.xy = (int64_t) src0.xy
2268
2269 dst.zw = (int64_t) src0.zw
2270
2271 .. opcode:: U642F - 64-bit unsigned integer to float
2272
2273 .. math::
2274
2275 dst.x = (float) src0.xy
2276
2277 dst.y = (float) src0.zw
2278
2279 .. opcode:: I642F - 64-bit Int to Float
2280
2281 .. math::
2282
2283 dst.x = (float) src0.xy
2284
2285 dst.y = (float) src0.zw
2286
2287 .. opcode:: U642D - 64-bit unsigned integer to double
2288
2289 .. math::
2290
2291 dst.xy = (double) src0.xy
2292
2293 dst.zw = (double) src0.zw
2294
2295 .. opcode:: I642D - 64-bit Int to double
2296
2297 .. math::
2298
2299 dst.xy = (double) src0.xy
2300
2301 dst.zw = (double) src0.zw
2302
2303 .. _samplingopcodes:
2304
2305 Resource Sampling Opcodes
2306 ^^^^^^^^^^^^^^^^^^^^^^^^^
2307
2308 Those opcodes follow very closely semantics of the respective Direct3D
2309 instructions. If in doubt double check Direct3D documentation.
2310 Note that the swizzle on SVIEW (src1) determines texel swizzling
2311 after lookup.
2312
2313 .. opcode:: SAMPLE
2314
2315 Using provided address, sample data from the specified texture using the
2316 filtering mode identified by the given sampler. The source data may come from
2317 any resource type other than buffers.
2318
2319 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2320
2321 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2322
2323 .. opcode:: SAMPLE_I
2324
2325 Simplified alternative to the SAMPLE instruction. Using the provided
2326 integer address, SAMPLE_I fetches data from the specified sampler view
2327 without any filtering. The source data may come from any resource type
2328 other than CUBE.
2329
2330 Syntax: ``SAMPLE_I dst, address, sampler_view``
2331
2332 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2333
2334 The 'address' is specified as unsigned integers. If the 'address' is out of
2335 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2336 components. As such the instruction doesn't honor address wrap modes, in
2337 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2338 address.w always provides an unsigned integer mipmap level. If the value is
2339 out of the range then the instruction always returns 0 in all components.
2340 address.yz are ignored for buffers and 1d textures. address.z is ignored
2341 for 1d texture arrays and 2d textures.
2342
2343 For 1D texture arrays address.y provides the array index (also as unsigned
2344 integer). If the value is out of the range of available array indices
2345 [0... (array size - 1)] then the opcode always returns 0 in all components.
2346 For 2D texture arrays address.z provides the array index, otherwise it
2347 exhibits the same behavior as in the case for 1D texture arrays. The exact
2348 semantics of the source address are presented in the table below:
2349
2350 +---------------------------+----+-----+-----+---------+
2351 | resource type | X | Y | Z | W |
2352 +===========================+====+=====+=====+=========+
2353 | ``PIPE_BUFFER`` | x | | | ignored |
2354 +---------------------------+----+-----+-----+---------+
2355 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2356 +---------------------------+----+-----+-----+---------+
2357 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2358 +---------------------------+----+-----+-----+---------+
2359 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2360 +---------------------------+----+-----+-----+---------+
2361 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2362 +---------------------------+----+-----+-----+---------+
2363 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2364 +---------------------------+----+-----+-----+---------+
2365 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2366 +---------------------------+----+-----+-----+---------+
2367 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2368 +---------------------------+----+-----+-----+---------+
2369
2370 Where 'mpl' is a mipmap level and 'idx' is the array index.
2371
2372 .. opcode:: SAMPLE_I_MS
2373
2374 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2375
2376 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2377
2378 .. opcode:: SAMPLE_B
2379
2380 Just like the SAMPLE instruction with the exception that an additional bias
2381 is applied to the level of detail computed as part of the instruction
2382 execution.
2383
2384 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2385
2386 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2387
2388 .. opcode:: SAMPLE_C
2389
2390 Similar to the SAMPLE instruction but it performs a comparison filter. The
2391 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2392 additional float32 operand, reference value, which must be a register with
2393 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2394 current samplers compare_func (in pipe_sampler_state) to compare reference
2395 value against the red component value for the surce resource at each texel
2396 that the currently configured texture filter covers based on the provided
2397 coordinates.
2398
2399 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2400
2401 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2402
2403 .. opcode:: SAMPLE_C_LZ
2404
2405 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2406 for level-zero.
2407
2408 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2409
2410 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2411
2412
2413 .. opcode:: SAMPLE_D
2414
2415 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2416 the source address in the x direction and the y direction are provided by
2417 extra parameters.
2418
2419 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2420
2421 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2422
2423 .. opcode:: SAMPLE_L
2424
2425 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2426 directly as a scalar value, representing no anisotropy.
2427
2428 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2429
2430 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2431
2432 .. opcode:: GATHER4
2433
2434 Gathers the four texels to be used in a bi-linear filtering operation and
2435 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2436 and cubemaps arrays. For 2D textures, only the addressing modes of the
2437 sampler and the top level of any mip pyramid are used. Set W to zero. It
2438 behaves like the SAMPLE instruction, but a filtered sample is not
2439 generated. The four samples that contribute to filtering are placed into
2440 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2441 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2442 magnitude of the deltas are half a texel.
2443
2444
2445 .. opcode:: SVIEWINFO
2446
2447 Query the dimensions of a given sampler view. dst receives width, height,
2448 depth or array size and number of mipmap levels as int4. The dst can have a
2449 writemask which will specify what info is the caller interested in.
2450
2451 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2452
2453 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2454
2455 src_mip_level is an unsigned integer scalar. If it's out of range then
2456 returns 0 for width, height and depth/array size but the total number of
2457 mipmap is still returned correctly for the given sampler view. The returned
2458 width, height and depth values are for the mipmap level selected by the
2459 src_mip_level and are in the number of texels. For 1d texture array width
2460 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2461 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2462 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2463 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2464 resinfo allowing swizzling dst values is ignored (due to the interaction
2465 with rcpfloat modifier which requires some swizzle handling in the state
2466 tracker anyway).
2467
2468 .. opcode:: SAMPLE_POS
2469
2470 Query the position of a sample in the given resource or render target
2471 when per-sample fragment shading is in effect.
2472
2473 Syntax: ``SAMPLE_POS dst, source, sample_index``
2474
2475 dst receives float4 (x, y, undef, undef) indicated where the sample is
2476 located. Sample locations are in the range [0, 1] where 0.5 is the center
2477 of the fragment.
2478
2479 source is either a sampler view (to indicate a shader resource) or temp
2480 register (to indicate the render target). The source register may have
2481 an optional swizzle to apply to the returned result
2482
2483 sample_index is an integer scalar indicating which sample position is to
2484 be queried.
2485
2486 If per-sample shading is not in effect or the source resource or render
2487 target is not multisampled, the result is (0.5, 0.5, undef, undef).
2488
2489 NOTE: no driver has implemented this opcode yet (and no state tracker
2490 emits it). This information is subject to change.
2491
2492 .. opcode:: SAMPLE_INFO
2493
2494 Query the number of samples in a multisampled resource or render target.
2495
2496 Syntax: ``SAMPLE_INFO dst, source``
2497
2498 dst receives int4 (n, 0, 0, 0) where n is the number of samples in a
2499 resource or the render target.
2500
2501 source is either a sampler view (to indicate a shader resource) or temp
2502 register (to indicate the render target). The source register may have
2503 an optional swizzle to apply to the returned result
2504
2505 If per-sample shading is not in effect or the source resource or render
2506 target is not multisampled, the result is (1, 0, 0, 0).
2507
2508 NOTE: no driver has implemented this opcode yet (and no state tracker
2509 emits it). This information is subject to change.
2510
2511 .. _resourceopcodes:
2512
2513 Resource Access Opcodes
2514 ^^^^^^^^^^^^^^^^^^^^^^^
2515
2516 For these opcodes, the resource can be a BUFFER, IMAGE, or MEMORY.
2517
2518 .. opcode:: LOAD - Fetch data from a shader buffer or image
2519
2520 Syntax: ``LOAD dst, resource, address``
2521
2522 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2523
2524 Using the provided integer address, LOAD fetches data
2525 from the specified buffer or texture without any
2526 filtering.
2527
2528 The 'address' is specified as a vector of unsigned
2529 integers. If the 'address' is out of range the result
2530 is unspecified.
2531
2532 Only the first mipmap level of a resource can be read
2533 from using this instruction.
2534
2535 For 1D or 2D texture arrays, the array index is
2536 provided as an unsigned integer in address.y or
2537 address.z, respectively. address.yz are ignored for
2538 buffers and 1D textures. address.z is ignored for 1D
2539 texture arrays and 2D textures. address.w is always
2540 ignored.
2541
2542 A swizzle suffix may be added to the resource argument
2543 this will cause the resource data to be swizzled accordingly.
2544
2545 .. opcode:: STORE - Write data to a shader resource
2546
2547 Syntax: ``STORE resource, address, src``
2548
2549 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2550
2551 Using the provided integer address, STORE writes data
2552 to the specified buffer or texture.
2553
2554 The 'address' is specified as a vector of unsigned
2555 integers. If the 'address' is out of range the result
2556 is unspecified.
2557
2558 Only the first mipmap level of a resource can be
2559 written to using this instruction.
2560
2561 For 1D or 2D texture arrays, the array index is
2562 provided as an unsigned integer in address.y or
2563 address.z, respectively. address.yz are ignored for
2564 buffers and 1D textures. address.z is ignored for 1D
2565 texture arrays and 2D textures. address.w is always
2566 ignored.
2567
2568 .. opcode:: RESQ - Query information about a resource
2569
2570 Syntax: ``RESQ dst, resource``
2571
2572 Example: ``RESQ TEMP[0], BUFFER[0]``
2573
2574 Returns information about the buffer or image resource. For buffer
2575 resources, the size (in bytes) is returned in the x component. For
2576 image resources, .xyz will contain the width/height/layers of the
2577 image, while .w will contain the number of samples for multi-sampled
2578 images.
2579
2580 .. opcode:: FBFETCH - Load data from framebuffer
2581
2582 Syntax: ``FBFETCH dst, output``
2583
2584 Example: ``FBFETCH TEMP[0], OUT[0]``
2585
2586 This is only valid on ``COLOR`` semantic outputs. Returns the color
2587 of the current position in the framebuffer from before this fragment
2588 shader invocation. May return the same value from multiple calls for
2589 a particular output within a single invocation. Note that result may
2590 be undefined if a fragment is drawn multiple times without a blend
2591 barrier in between.
2592
2593
2594 .. _threadsyncopcodes:
2595
2596 Inter-thread synchronization opcodes
2597 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2598
2599 These opcodes are intended for communication between threads running
2600 within the same compute grid. For now they're only valid in compute
2601 programs.
2602
2603 .. opcode:: BARRIER - Thread group barrier
2604
2605 ``BARRIER``
2606
2607 This opcode suspends the execution of the current thread until all
2608 the remaining threads in the working group reach the same point of
2609 the program. Results are unspecified if any of the remaining
2610 threads terminates or never reaches an executed BARRIER instruction.
2611
2612 .. opcode:: MEMBAR - Memory barrier
2613
2614 ``MEMBAR type``
2615
2616 This opcode waits for the completion of all memory accesses based on
2617 the type passed in. The type is an immediate bitfield with the following
2618 meaning:
2619
2620 Bit 0: Shader storage buffers
2621 Bit 1: Atomic buffers
2622 Bit 2: Images
2623 Bit 3: Shared memory
2624 Bit 4: Thread group
2625
2626 These may be passed in in any combination. An implementation is free to not
2627 distinguish between these as it sees fit. However these map to all the
2628 possibilities made available by GLSL.
2629
2630 .. _atomopcodes:
2631
2632 Atomic opcodes
2633 ^^^^^^^^^^^^^^
2634
2635 These opcodes provide atomic variants of some common arithmetic and
2636 logical operations. In this context atomicity means that another
2637 concurrent memory access operation that affects the same memory
2638 location is guaranteed to be performed strictly before or after the
2639 entire execution of the atomic operation. The resource may be a BUFFER,
2640 IMAGE, or MEMORY. In the case of an image, the offset works the same as for
2641 ``LOAD`` and ``STORE``, specified above. These atomic operations may
2642 only be used with 32-bit integer image formats.
2643
2644 .. opcode:: ATOMUADD - Atomic integer addition
2645
2646 Syntax: ``ATOMUADD dst, resource, offset, src``
2647
2648 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2649
2650 The following operation is performed atomically:
2651
2652 .. math::
2653
2654 dst_x = resource[offset]
2655
2656 resource[offset] = dst_x + src_x
2657
2658
2659 .. opcode:: ATOMXCHG - Atomic exchange
2660
2661 Syntax: ``ATOMXCHG dst, resource, offset, src``
2662
2663 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2664
2665 The following operation is performed atomically:
2666
2667 .. math::
2668
2669 dst_x = resource[offset]
2670
2671 resource[offset] = src_x
2672
2673
2674 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2675
2676 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2677
2678 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2679
2680 The following operation is performed atomically:
2681
2682 .. math::
2683
2684 dst_x = resource[offset]
2685
2686 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2687
2688
2689 .. opcode:: ATOMAND - Atomic bitwise And
2690
2691 Syntax: ``ATOMAND dst, resource, offset, src``
2692
2693 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2694
2695 The following operation is performed atomically:
2696
2697 .. math::
2698
2699 dst_x = resource[offset]
2700
2701 resource[offset] = dst_x \& src_x
2702
2703
2704 .. opcode:: ATOMOR - Atomic bitwise Or
2705
2706 Syntax: ``ATOMOR dst, resource, offset, src``
2707
2708 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2709
2710 The following operation is performed atomically:
2711
2712 .. math::
2713
2714 dst_x = resource[offset]
2715
2716 resource[offset] = dst_x | src_x
2717
2718
2719 .. opcode:: ATOMXOR - Atomic bitwise Xor
2720
2721 Syntax: ``ATOMXOR dst, resource, offset, src``
2722
2723 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2724
2725 The following operation is performed atomically:
2726
2727 .. math::
2728
2729 dst_x = resource[offset]
2730
2731 resource[offset] = dst_x \oplus src_x
2732
2733
2734 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2735
2736 Syntax: ``ATOMUMIN dst, resource, offset, src``
2737
2738 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2739
2740 The following operation is performed atomically:
2741
2742 .. math::
2743
2744 dst_x = resource[offset]
2745
2746 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2747
2748
2749 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2750
2751 Syntax: ``ATOMUMAX dst, resource, offset, src``
2752
2753 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2754
2755 The following operation is performed atomically:
2756
2757 .. math::
2758
2759 dst_x = resource[offset]
2760
2761 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2762
2763
2764 .. opcode:: ATOMIMIN - Atomic signed minimum
2765
2766 Syntax: ``ATOMIMIN dst, resource, offset, src``
2767
2768 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2769
2770 The following operation is performed atomically:
2771
2772 .. math::
2773
2774 dst_x = resource[offset]
2775
2776 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2777
2778
2779 .. opcode:: ATOMIMAX - Atomic signed maximum
2780
2781 Syntax: ``ATOMIMAX dst, resource, offset, src``
2782
2783 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2784
2785 The following operation is performed atomically:
2786
2787 .. math::
2788
2789 dst_x = resource[offset]
2790
2791 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2792
2793
2794 .. _interlaneopcodes:
2795
2796 Inter-lane opcodes
2797 ^^^^^^^^^^^^^^^^^^
2798
2799 These opcodes reduce the given value across the shader invocations
2800 running in the current SIMD group. Every thread in the subgroup will receive
2801 the same result. The BALLOT operations accept a single-channel argument that
2802 is treated as a boolean and produce a 64-bit value.
2803
2804 .. opcode:: VOTE_ANY - Value is set in any of the active invocations
2805
2806 Syntax: ``VOTE_ANY dst, value``
2807
2808 Example: ``VOTE_ANY TEMP[0].x, TEMP[1].x``
2809
2810
2811 .. opcode:: VOTE_ALL - Value is set in all of the active invocations
2812
2813 Syntax: ``VOTE_ALL dst, value``
2814
2815 Example: ``VOTE_ALL TEMP[0].x, TEMP[1].x``
2816
2817
2818 .. opcode:: VOTE_EQ - Value is the same in all of the active invocations
2819
2820 Syntax: ``VOTE_EQ dst, value``
2821
2822 Example: ``VOTE_EQ TEMP[0].x, TEMP[1].x``
2823
2824
2825 .. opcode:: BALLOT - Lanemask of whether the value is set in each active
2826 invocation
2827
2828 Syntax: ``BALLOT dst, value``
2829
2830 Example: ``BALLOT TEMP[0].xy, TEMP[1].x``
2831
2832 When the argument is a constant true, this produces a bitmask of active
2833 invocations. In fragment shaders, this can include helper invocations
2834 (invocations whose outputs and writes to memory are discarded, but which
2835 are used to compute derivatives).
2836
2837
2838 .. opcode:: READ_FIRST - Broadcast the value from the first active
2839 invocation to all active lanes
2840
2841 Syntax: ``READ_FIRST dst, value``
2842
2843 Example: ``READ_FIRST TEMP[0], TEMP[1]``
2844
2845
2846 .. opcode:: READ_INVOC - Retrieve the value from the given invocation
2847 (need not be uniform)
2848
2849 Syntax: ``READ_INVOC dst, value, invocation``
2850
2851 Example: ``READ_INVOC TEMP[0].xy, TEMP[1].xy, TEMP[2].x``
2852
2853 invocation.x controls the invocation number to read from for all channels.
2854 The invocation number must be the same across all active invocations in a
2855 sub-group; otherwise, the results are undefined.
2856
2857
2858 Explanation of symbols used
2859 ------------------------------
2860
2861
2862 Functions
2863 ^^^^^^^^^^^^^^
2864
2865
2866 :math:`|x|` Absolute value of `x`.
2867
2868 :math:`\lceil x \rceil` Ceiling of `x`.
2869
2870 clamp(x,y,z) Clamp x between y and z.
2871 (x < y) ? y : (x > z) ? z : x
2872
2873 :math:`\lfloor x\rfloor` Floor of `x`.
2874
2875 :math:`\log_2{x}` Logarithm of `x`, base 2.
2876
2877 max(x,y) Maximum of x and y.
2878 (x > y) ? x : y
2879
2880 min(x,y) Minimum of x and y.
2881 (x < y) ? x : y
2882
2883 partialx(x) Derivative of x relative to fragment's X.
2884
2885 partialy(x) Derivative of x relative to fragment's Y.
2886
2887 pop() Pop from stack.
2888
2889 :math:`x^y` `x` to the power `y`.
2890
2891 push(x) Push x on stack.
2892
2893 round(x) Round x.
2894
2895 trunc(x) Truncate x, i.e. drop the fraction bits.
2896
2897
2898 Keywords
2899 ^^^^^^^^^^^^^
2900
2901
2902 discard Discard fragment.
2903
2904 pc Program counter.
2905
2906 target Label of target instruction.
2907
2908
2909 Other tokens
2910 ---------------
2911
2912
2913 Declaration
2914 ^^^^^^^^^^^
2915
2916
2917 Declares a register that is will be referenced as an operand in Instruction
2918 tokens.
2919
2920 File field contains register file that is being declared and is one
2921 of TGSI_FILE.
2922
2923 UsageMask field specifies which of the register components can be accessed
2924 and is one of TGSI_WRITEMASK.
2925
2926 The Local flag specifies that a given value isn't intended for
2927 subroutine parameter passing and, as a result, the implementation
2928 isn't required to give any guarantees of it being preserved across
2929 subroutine boundaries. As it's merely a compiler hint, the
2930 implementation is free to ignore it.
2931
2932 If Dimension flag is set to 1, a Declaration Dimension token follows.
2933
2934 If Semantic flag is set to 1, a Declaration Semantic token follows.
2935
2936 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2937
2938 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2939
2940 If Array flag is set to 1, a Declaration Array token follows.
2941
2942 Array Declaration
2943 ^^^^^^^^^^^^^^^^^^^^^^^^
2944
2945 Declarations can optional have an ArrayID attribute which can be referred by
2946 indirect addressing operands. An ArrayID of zero is reserved and treated as
2947 if no ArrayID is specified.
2948
2949 If an indirect addressing operand refers to a specific declaration by using
2950 an ArrayID only the registers in this declaration are guaranteed to be
2951 accessed, accessing any register outside this declaration results in undefined
2952 behavior. Note that for compatibility the effective index is zero-based and
2953 not relative to the specified declaration
2954
2955 If no ArrayID is specified with an indirect addressing operand the whole
2956 register file might be accessed by this operand. This is strongly discouraged
2957 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2958 This is only legal for TEMP and CONST register files.
2959
2960 Declaration Semantic
2961 ^^^^^^^^^^^^^^^^^^^^^^^^
2962
2963 Vertex and fragment shader input and output registers may be labeled
2964 with semantic information consisting of a name and index.
2965
2966 Follows Declaration token if Semantic bit is set.
2967
2968 Since its purpose is to link a shader with other stages of the pipeline,
2969 it is valid to follow only those Declaration tokens that declare a register
2970 either in INPUT or OUTPUT file.
2971
2972 SemanticName field contains the semantic name of the register being declared.
2973 There is no default value.
2974
2975 SemanticIndex is an optional subscript that can be used to distinguish
2976 different register declarations with the same semantic name. The default value
2977 is 0.
2978
2979 The meanings of the individual semantic names are explained in the following
2980 sections.
2981
2982 TGSI_SEMANTIC_POSITION
2983 """"""""""""""""""""""
2984
2985 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2986 output register which contains the homogeneous vertex position in the clip
2987 space coordinate system. After clipping, the X, Y and Z components of the
2988 vertex will be divided by the W value to get normalized device coordinates.
2989
2990 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2991 fragment shader input (or system value, depending on which one is
2992 supported by the driver) contains the fragment's window position. The X
2993 component starts at zero and always increases from left to right.
2994 The Y component starts at zero and always increases but Y=0 may either
2995 indicate the top of the window or the bottom depending on the fragment
2996 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2997 The Z coordinate ranges from 0 to 1 to represent depth from the front
2998 to the back of the Z buffer. The W component contains the interpolated
2999 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
3000 but unlike d3d10 which interpolates the same 1/w but then gives back
3001 the reciprocal of the interpolated value).
3002
3003 Fragment shaders may also declare an output register with
3004 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
3005 the fragment shader to change the fragment's Z position.
3006
3007
3008
3009 TGSI_SEMANTIC_COLOR
3010 """""""""""""""""""
3011
3012 For vertex shader outputs or fragment shader inputs/outputs, this
3013 label indicates that the register contains an R,G,B,A color.
3014
3015 Several shader inputs/outputs may contain colors so the semantic index
3016 is used to distinguish them. For example, color[0] may be the diffuse
3017 color while color[1] may be the specular color.
3018
3019 This label is needed so that the flat/smooth shading can be applied
3020 to the right interpolants during rasterization.
3021
3022
3023
3024 TGSI_SEMANTIC_BCOLOR
3025 """"""""""""""""""""
3026
3027 Back-facing colors are only used for back-facing polygons, and are only valid
3028 in vertex shader outputs. After rasterization, all polygons are front-facing
3029 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
3030 so all BCOLORs effectively become regular COLORs in the fragment shader.
3031
3032
3033 TGSI_SEMANTIC_FOG
3034 """""""""""""""""
3035
3036 Vertex shader inputs and outputs and fragment shader inputs may be
3037 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
3038 a fog coordinate. Typically, the fragment shader will use the fog coordinate
3039 to compute a fog blend factor which is used to blend the normal fragment color
3040 with a constant fog color. But fog coord really is just an ordinary vec4
3041 register like regular semantics.
3042
3043
3044 TGSI_SEMANTIC_PSIZE
3045 """""""""""""""""""
3046
3047 Vertex shader input and output registers may be labeled with
3048 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3049 in the form (S, 0, 0, 1). The point size controls the width or diameter
3050 of points for rasterization. This label cannot be used in fragment
3051 shaders.
3052
3053 When using this semantic, be sure to set the appropriate state in the
3054 :ref:`rasterizer` first.
3055
3056
3057 TGSI_SEMANTIC_TEXCOORD
3058 """"""""""""""""""""""
3059
3060 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3061
3062 Vertex shader outputs and fragment shader inputs may be labeled with
3063 this semantic to make them replaceable by sprite coordinates via the
3064 sprite_coord_enable state in the :ref:`rasterizer`.
3065 The semantic index permitted with this semantic is limited to <= 7.
3066
3067 If the driver does not support TEXCOORD, sprite coordinate replacement
3068 applies to inputs with the GENERIC semantic instead.
3069
3070 The intended use case for this semantic is gl_TexCoord.
3071
3072
3073 TGSI_SEMANTIC_PCOORD
3074 """"""""""""""""""""
3075
3076 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3077
3078 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3079 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3080 the current primitive is a point and point sprites are enabled. Otherwise,
3081 the contents of the register are undefined.
3082
3083 The intended use case for this semantic is gl_PointCoord.
3084
3085
3086 TGSI_SEMANTIC_GENERIC
3087 """""""""""""""""""""
3088
3089 All vertex/fragment shader inputs/outputs not labeled with any other
3090 semantic label can be considered to be generic attributes. Typical
3091 uses of generic inputs/outputs are texcoords and user-defined values.
3092
3093
3094 TGSI_SEMANTIC_NORMAL
3095 """"""""""""""""""""
3096
3097 Indicates that a vertex shader input is a normal vector. This is
3098 typically only used for legacy graphics APIs.
3099
3100
3101 TGSI_SEMANTIC_FACE
3102 """"""""""""""""""
3103
3104 This label applies to fragment shader inputs (or system values,
3105 depending on which one is supported by the driver) and indicates that
3106 the register contains front/back-face information.
3107
3108 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3109 where F will be positive when the fragment belongs to a front-facing polygon,
3110 and negative when the fragment belongs to a back-facing polygon.
3111
3112 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3113 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3114 0 when the fragment belongs to a back-facing polygon.
3115
3116
3117 TGSI_SEMANTIC_EDGEFLAG
3118 """"""""""""""""""""""
3119
3120 For vertex shaders, this sematic label indicates that an input or
3121 output is a boolean edge flag. The register layout is [F, x, x, x]
3122 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3123 simply copies the edge flag input to the edgeflag output.
3124
3125 Edge flags are used to control which lines or points are actually
3126 drawn when the polygon mode converts triangles/quads/polygons into
3127 points or lines.
3128
3129
3130 TGSI_SEMANTIC_STENCIL
3131 """""""""""""""""""""
3132
3133 For fragment shaders, this semantic label indicates that an output
3134 is a writable stencil reference value. Only the Y component is writable.
3135 This allows the fragment shader to change the fragments stencilref value.
3136
3137
3138 TGSI_SEMANTIC_VIEWPORT_INDEX
3139 """"""""""""""""""""""""""""
3140
3141 For geometry shaders, this semantic label indicates that an output
3142 contains the index of the viewport (and scissor) to use.
3143 This is an integer value, and only the X component is used.
3144
3145 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3146 supported, then this semantic label can also be used in vertex or
3147 tessellation evaluation shaders, respectively. Only the value written in the
3148 last vertex processing stage is used.
3149
3150
3151 TGSI_SEMANTIC_LAYER
3152 """""""""""""""""""
3153
3154 For geometry shaders, this semantic label indicates that an output
3155 contains the layer value to use for the color and depth/stencil surfaces.
3156 This is an integer value, and only the X component is used.
3157 (Also known as rendertarget array index.)
3158
3159 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3160 supported, then this semantic label can also be used in vertex or
3161 tessellation evaluation shaders, respectively. Only the value written in the
3162 last vertex processing stage is used.
3163
3164
3165 TGSI_SEMANTIC_CULLDIST
3166 """"""""""""""""""""""
3167
3168 Used as distance to plane for performing application-defined culling
3169 of individual primitives against a plane. When components of vertex
3170 elements are given this label, these values are assumed to be a
3171 float32 signed distance to a plane. Primitives will be completely
3172 discarded if the plane distance for all of the vertices in the
3173 primitive are < 0. If a vertex has a cull distance of NaN, that
3174 vertex counts as "out" (as if its < 0);
3175 The limits on both clip and cull distances are bound
3176 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3177 the maximum number of components that can be used to hold the
3178 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3179 which specifies the maximum number of registers which can be
3180 annotated with those semantics.
3181
3182
3183 TGSI_SEMANTIC_CLIPDIST
3184 """"""""""""""""""""""
3185
3186 Note this covers clipping and culling distances.
3187
3188 When components of vertex elements are identified this way, these
3189 values are each assumed to be a float32 signed distance to a plane.
3190
3191 For clip distances:
3192 Primitive setup only invokes rasterization on pixels for which
3193 the interpolated plane distances are >= 0.
3194
3195 For cull distances:
3196 Primitives will be completely discarded if the plane distance
3197 for all of the vertices in the primitive are < 0.
3198 If a vertex has a cull distance of NaN, that vertex counts as "out"
3199 (as if its < 0);
3200
3201 Multiple clip/cull planes can be implemented simultaneously, by
3202 annotating multiple components of one or more vertex elements with
3203 the above specified semantic.
3204 The limits on both clip and cull distances are bound
3205 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3206 the maximum number of components that can be used to hold the
3207 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3208 which specifies the maximum number of registers which can be
3209 annotated with those semantics.
3210 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3211 are used to divide up the 2 x vec4 space between clipping and culling.
3212
3213 TGSI_SEMANTIC_SAMPLEID
3214 """"""""""""""""""""""
3215
3216 For fragment shaders, this semantic label indicates that a system value
3217 contains the current sample id (i.e. gl_SampleID) as an unsigned int.
3218 Only the X component is used. If per-sample shading is not enabled,
3219 the result is (0, undef, undef, undef).
3220
3221 Note that if the fragment shader uses this system value, the fragment
3222 shader is automatically executed at per sample frequency.
3223
3224 TGSI_SEMANTIC_SAMPLEPOS
3225 """""""""""""""""""""""
3226
3227 For fragment shaders, this semantic label indicates that a system
3228 value contains the current sample's position as float4(x, y, undef, undef)
3229 in the render target (i.e. gl_SamplePosition) when per-fragment shading
3230 is in effect. Position values are in the range [0, 1] where 0.5 is
3231 the center of the fragment.
3232
3233 Note that if the fragment shader uses this system value, the fragment
3234 shader is automatically executed at per sample frequency.
3235
3236 TGSI_SEMANTIC_SAMPLEMASK
3237 """"""""""""""""""""""""
3238
3239 For fragment shaders, this semantic label can be applied to either a
3240 shader system value input or output.
3241
3242 For a system value, the sample mask indicates the set of samples covered by
3243 the current primitive. If MSAA is not enabled, the value is (1, 0, 0, 0).
3244
3245 For an output, the sample mask is used to disable further sample processing.
3246
3247 For both, the register type is uint[4] but only the X component is used
3248 (i.e. gl_SampleMask[0]). Each bit corresponds to one sample position (up
3249 to 32x MSAA is supported).
3250
3251 TGSI_SEMANTIC_INVOCATIONID
3252 """"""""""""""""""""""""""
3253
3254 For geometry shaders, this semantic label indicates that a system value
3255 contains the current invocation id (i.e. gl_InvocationID).
3256 This is an integer value, and only the X component is used.
3257
3258 TGSI_SEMANTIC_INSTANCEID
3259 """"""""""""""""""""""""
3260
3261 For vertex shaders, this semantic label indicates that a system value contains
3262 the current instance id (i.e. gl_InstanceID). It does not include the base
3263 instance. This is an integer value, and only the X component is used.
3264
3265 TGSI_SEMANTIC_VERTEXID
3266 """"""""""""""""""""""
3267
3268 For vertex shaders, this semantic label indicates that a system value contains
3269 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3270 base vertex. This is an integer value, and only the X component is used.
3271
3272 TGSI_SEMANTIC_VERTEXID_NOBASE
3273 """""""""""""""""""""""""""""""
3274
3275 For vertex shaders, this semantic label indicates that a system value contains
3276 the current vertex id without including the base vertex (this corresponds to
3277 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3278 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3279 is used.
3280
3281 TGSI_SEMANTIC_BASEVERTEX
3282 """"""""""""""""""""""""
3283
3284 For vertex shaders, this semantic label indicates that a system value contains
3285 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3286 this contains the first (or start) value instead.
3287 This is an integer value, and only the X component is used.
3288
3289 TGSI_SEMANTIC_PRIMID
3290 """"""""""""""""""""
3291
3292 For geometry and fragment shaders, this semantic label indicates the value
3293 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3294 and only the X component is used.
3295 FIXME: This right now can be either a ordinary input or a system value...
3296
3297
3298 TGSI_SEMANTIC_PATCH
3299 """""""""""""""""""
3300
3301 For tessellation evaluation/control shaders, this semantic label indicates a
3302 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3303 arrays.
3304
3305 TGSI_SEMANTIC_TESSCOORD
3306 """""""""""""""""""""""
3307
3308 For tessellation evaluation shaders, this semantic label indicates the
3309 coordinates of the vertex being processed. This is available in XYZ; W is
3310 undefined.
3311
3312 TGSI_SEMANTIC_TESSOUTER
3313 """""""""""""""""""""""
3314
3315 For tessellation evaluation/control shaders, this semantic label indicates the
3316 outer tessellation levels of the patch. Isoline tessellation will only have XY
3317 defined, triangle will have XYZ and quads will have XYZW defined. This
3318 corresponds to gl_TessLevelOuter.
3319
3320 TGSI_SEMANTIC_TESSINNER
3321 """""""""""""""""""""""
3322
3323 For tessellation evaluation/control shaders, this semantic label indicates the
3324 inner tessellation levels of the patch. The X value is only defined for
3325 triangle tessellation, while quads will have XY defined. This is entirely
3326 undefined for isoline tessellation.
3327
3328 TGSI_SEMANTIC_VERTICESIN
3329 """"""""""""""""""""""""
3330
3331 For tessellation evaluation/control shaders, this semantic label indicates the
3332 number of vertices provided in the input patch. Only the X value is defined.
3333
3334 TGSI_SEMANTIC_HELPER_INVOCATION
3335 """""""""""""""""""""""""""""""
3336
3337 For fragment shaders, this semantic indicates whether the current
3338 invocation is covered or not. Helper invocations are created in order
3339 to properly compute derivatives, however it may be desirable to skip
3340 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3341
3342 TGSI_SEMANTIC_BASEINSTANCE
3343 """"""""""""""""""""""""""
3344
3345 For vertex shaders, the base instance argument supplied for this
3346 draw. This is an integer value, and only the X component is used.
3347
3348 TGSI_SEMANTIC_DRAWID
3349 """"""""""""""""""""
3350
3351 For vertex shaders, the zero-based index of the current draw in a
3352 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3353 component is used.
3354
3355
3356 TGSI_SEMANTIC_WORK_DIM
3357 """"""""""""""""""""""
3358
3359 For compute shaders started via opencl this retrieves the work_dim
3360 parameter to the clEnqueueNDRangeKernel call with which the shader
3361 was started.
3362
3363
3364 TGSI_SEMANTIC_GRID_SIZE
3365 """""""""""""""""""""""
3366
3367 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3368 of a grid of thread blocks.
3369
3370
3371 TGSI_SEMANTIC_BLOCK_ID
3372 """"""""""""""""""""""
3373
3374 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3375 current block inside of the grid.
3376
3377
3378 TGSI_SEMANTIC_BLOCK_SIZE
3379 """"""""""""""""""""""""
3380
3381 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3382 of a block in threads.
3383
3384
3385 TGSI_SEMANTIC_THREAD_ID
3386 """""""""""""""""""""""
3387
3388 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3389 current thread inside of the block.
3390
3391
3392 TGSI_SEMANTIC_SUBGROUP_SIZE
3393 """""""""""""""""""""""""""
3394
3395 This semantic indicates the subgroup size for the current invocation. This is
3396 an integer of at most 64, as it indicates the width of lanemasks. It does not
3397 depend on the number of invocations that are active.
3398
3399
3400 TGSI_SEMANTIC_SUBGROUP_INVOCATION
3401 """""""""""""""""""""""""""""""""
3402
3403 The index of the current invocation within its subgroup.
3404
3405
3406 TGSI_SEMANTIC_SUBGROUP_EQ_MASK
3407 """"""""""""""""""""""""""""""
3408
3409 A bit mask of ``bit index == TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3410 ``1 << subgroup_invocation`` in arbitrary precision arithmetic.
3411
3412
3413 TGSI_SEMANTIC_SUBGROUP_GE_MASK
3414 """"""""""""""""""""""""""""""
3415
3416 A bit mask of ``bit index >= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3417 ``((1 << (subgroup_size - subgroup_invocation)) - 1) << subgroup_invocation``
3418 in arbitrary precision arithmetic.
3419
3420
3421 TGSI_SEMANTIC_SUBGROUP_GT_MASK
3422 """"""""""""""""""""""""""""""
3423
3424 A bit mask of ``bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3425 ``((1 << (subgroup_size - subgroup_invocation - 1)) - 1) << (subgroup_invocation + 1)``
3426 in arbitrary precision arithmetic.
3427
3428
3429 TGSI_SEMANTIC_SUBGROUP_LE_MASK
3430 """"""""""""""""""""""""""""""
3431
3432 A bit mask of ``bit index <= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3433 ``(1 << (subgroup_invocation + 1)) - 1`` in arbitrary precision arithmetic.
3434
3435
3436 TGSI_SEMANTIC_SUBGROUP_LT_MASK
3437 """"""""""""""""""""""""""""""
3438
3439 A bit mask of ``bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3440 ``(1 << subgroup_invocation) - 1`` in arbitrary precision arithmetic.
3441
3442
3443 Declaration Interpolate
3444 ^^^^^^^^^^^^^^^^^^^^^^^
3445
3446 This token is only valid for fragment shader INPUT declarations.
3447
3448 The Interpolate field specifes the way input is being interpolated by
3449 the rasteriser and is one of TGSI_INTERPOLATE_*.
3450
3451 The Location field specifies the location inside the pixel that the
3452 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3453 when per-sample shading is enabled, the implementation may choose to
3454 interpolate at the sample irrespective of the Location field.
3455
3456 The CylindricalWrap bitfield specifies which register components
3457 should be subject to cylindrical wrapping when interpolating by the
3458 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3459 should be interpolated according to cylindrical wrapping rules.
3460
3461
3462 Declaration Sampler View
3463 ^^^^^^^^^^^^^^^^^^^^^^^^
3464
3465 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3466
3467 DCL SVIEW[#], resource, type(s)
3468
3469 Declares a shader input sampler view and assigns it to a SVIEW[#]
3470 register.
3471
3472 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3473
3474 type must be 1 or 4 entries (if specifying on a per-component
3475 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3476
3477 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3478 which take an explicit SVIEW[#] source register), there may be optionally
3479 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3480 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3481 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3482 But note in particular that some drivers need to know the sampler type
3483 (float/int/unsigned) in order to generate the correct code, so cases
3484 where integer textures are sampled, SVIEW[#] declarations should be
3485 used.
3486
3487 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3488 in the same shader.
3489
3490 Declaration Resource
3491 ^^^^^^^^^^^^^^^^^^^^
3492
3493 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3494
3495 DCL RES[#], resource [, WR] [, RAW]
3496
3497 Declares a shader input resource and assigns it to a RES[#]
3498 register.
3499
3500 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3501 2DArray.
3502
3503 If the RAW keyword is not specified, the texture data will be
3504 subject to conversion, swizzling and scaling as required to yield
3505 the specified data type from the physical data format of the bound
3506 resource.
3507
3508 If the RAW keyword is specified, no channel conversion will be
3509 performed: the values read for each of the channels (X,Y,Z,W) will
3510 correspond to consecutive words in the same order and format
3511 they're found in memory. No element-to-address conversion will be
3512 performed either: the value of the provided X coordinate will be
3513 interpreted in byte units instead of texel units. The result of
3514 accessing a misaligned address is undefined.
3515
3516 Usage of the STORE opcode is only allowed if the WR (writable) flag
3517 is set.
3518
3519
3520 Properties
3521 ^^^^^^^^^^^^^^^^^^^^^^^^
3522
3523 Properties are general directives that apply to the whole TGSI program.
3524
3525 FS_COORD_ORIGIN
3526 """""""""""""""
3527
3528 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3529 The default value is UPPER_LEFT.
3530
3531 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3532 increase downward and rightward.
3533 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3534 increase upward and rightward.
3535
3536 OpenGL defaults to LOWER_LEFT, and is configurable with the
3537 GL_ARB_fragment_coord_conventions extension.
3538
3539 DirectX 9/10 use UPPER_LEFT.
3540
3541 FS_COORD_PIXEL_CENTER
3542 """""""""""""""""""""
3543
3544 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3545 The default value is HALF_INTEGER.
3546
3547 If HALF_INTEGER, the fractionary part of the position will be 0.5
3548 If INTEGER, the fractionary part of the position will be 0.0
3549
3550 Note that this does not affect the set of fragments generated by
3551 rasterization, which is instead controlled by half_pixel_center in the
3552 rasterizer.
3553
3554 OpenGL defaults to HALF_INTEGER, and is configurable with the
3555 GL_ARB_fragment_coord_conventions extension.
3556
3557 DirectX 9 uses INTEGER.
3558 DirectX 10 uses HALF_INTEGER.
3559
3560 FS_COLOR0_WRITES_ALL_CBUFS
3561 """"""""""""""""""""""""""
3562 Specifies that writes to the fragment shader color 0 are replicated to all
3563 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3564 fragData is directed to a single color buffer, but fragColor is broadcast.
3565
3566 VS_PROHIBIT_UCPS
3567 """"""""""""""""""""""""""
3568 If this property is set on the program bound to the shader stage before the
3569 fragment shader, user clip planes should have no effect (be disabled) even if
3570 that shader does not write to any clip distance outputs and the rasterizer's
3571 clip_plane_enable is non-zero.
3572 This property is only supported by drivers that also support shader clip
3573 distance outputs.
3574 This is useful for APIs that don't have UCPs and where clip distances written
3575 by a shader cannot be disabled.
3576
3577 GS_INVOCATIONS
3578 """"""""""""""
3579
3580 Specifies the number of times a geometry shader should be executed for each
3581 input primitive. Each invocation will have a different
3582 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3583 be 1.
3584
3585 VS_WINDOW_SPACE_POSITION
3586 """"""""""""""""""""""""""
3587 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3588 is assumed to contain window space coordinates.
3589 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3590 directly taken from the 4-th component of the shader output.
3591 Naturally, clipping is not performed on window coordinates either.
3592 The effect of this property is undefined if a geometry or tessellation shader
3593 are in use.
3594
3595 TCS_VERTICES_OUT
3596 """"""""""""""""
3597
3598 The number of vertices written by the tessellation control shader. This
3599 effectively defines the patch input size of the tessellation evaluation shader
3600 as well.
3601
3602 TES_PRIM_MODE
3603 """""""""""""
3604
3605 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3606 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3607 separate isolines settings, the regular lines is assumed to mean isolines.)
3608
3609 TES_SPACING
3610 """""""""""
3611
3612 This sets the spacing mode of the tessellation generator, one of
3613 ``PIPE_TESS_SPACING_*``.
3614
3615 TES_VERTEX_ORDER_CW
3616 """""""""""""""""""
3617
3618 This sets the vertex order to be clockwise if the value is 1, or
3619 counter-clockwise if set to 0.
3620
3621 TES_POINT_MODE
3622 """"""""""""""
3623
3624 If set to a non-zero value, this turns on point mode for the tessellator,
3625 which means that points will be generated instead of primitives.
3626
3627 NUM_CLIPDIST_ENABLED
3628 """"""""""""""""""""
3629
3630 How many clip distance scalar outputs are enabled.
3631
3632 NUM_CULLDIST_ENABLED
3633 """"""""""""""""""""
3634
3635 How many cull distance scalar outputs are enabled.
3636
3637 FS_EARLY_DEPTH_STENCIL
3638 """"""""""""""""""""""
3639
3640 Whether depth test, stencil test, and occlusion query should run before
3641 the fragment shader (regardless of fragment shader side effects). Corresponds
3642 to GLSL early_fragment_tests.
3643
3644 NEXT_SHADER
3645 """""""""""
3646
3647 Which shader stage will MOST LIKELY follow after this shader when the shader
3648 is bound. This is only a hint to the driver and doesn't have to be precise.
3649 Only set for VS and TES.
3650
3651 CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3652 """""""""""""""""""""""""""""""""""""
3653
3654 Threads per block in each dimension, if known at compile time. If the block size
3655 is known all three should be at least 1. If it is unknown they should all be set
3656 to 0 or not set.
3657
3658 MUL_ZERO_WINS
3659 """""""""""""
3660
3661 The MUL TGSI operation (FP32 multiplication) will return 0 if either
3662 of the operands are equal to 0. That means that 0 * Inf = 0. This
3663 should be set the same way for an entire pipeline. Note that this
3664 applies not only to the literal MUL TGSI opcode, but all FP32
3665 multiplications implied by other operations, such as MAD, FMA, DP2,
3666 DP3, DP4, DST, LOG, LRP, XPD, and possibly others. If there is a
3667 mismatch between shaders, then it is unspecified whether this behavior
3668 will be enabled.
3669
3670 FS_POST_DEPTH_COVERAGE
3671 """"""""""""""""""""""
3672
3673 When enabled, the input for TGSI_SEMANTIC_SAMPLEMASK will exclude samples
3674 that have failed the depth/stencil tests. This is only valid when
3675 FS_EARLY_DEPTH_STENCIL is also specified.
3676
3677
3678 Texture Sampling and Texture Formats
3679 ------------------------------------
3680
3681 This table shows how texture image components are returned as (x,y,z,w) tuples
3682 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3683 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3684 well.
3685
3686 +--------------------+--------------+--------------------+--------------+
3687 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3688 +====================+==============+====================+==============+
3689 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3690 +--------------------+--------------+--------------------+--------------+
3691 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3692 +--------------------+--------------+--------------------+--------------+
3693 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3694 +--------------------+--------------+--------------------+--------------+
3695 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3696 +--------------------+--------------+--------------------+--------------+
3697 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3698 +--------------------+--------------+--------------------+--------------+
3699 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3700 +--------------------+--------------+--------------------+--------------+
3701 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3702 +--------------------+--------------+--------------------+--------------+
3703 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3704 +--------------------+--------------+--------------------+--------------+
3705 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3706 | | | [#envmap-bumpmap]_ | |
3707 +--------------------+--------------+--------------------+--------------+
3708 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3709 | | | [#depth-tex-mode]_ | |
3710 +--------------------+--------------+--------------------+--------------+
3711 | S | (s, s, s, s) | unknown | unknown |
3712 +--------------------+--------------+--------------------+--------------+
3713
3714 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3715 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3716 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.