gallium: remove TGSI opcodes PUSHA, POPA, SAD, TXQ_LZ
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate and precise modifier
30 on instructions).
31
32 For arithmetic instruction having a precise modifier certain optimizations
33 which may alter the result are disallowed. Example: *add(mul(a,b),c)* can't be
34 optimized to TGSI_OPCODE_MAD, because some hardware only supports the fused
35 MAD instruction.
36
37 For inputs which have a floating point type, both absolute value and
38 negation modifiers are supported (with absolute value being applied
39 first). The only source of TGSI_OPCODE_MOV and the second and third
40 sources of TGSI_OPCODE_UCMP are considered to have float type for
41 applying modifiers.
42
43 For inputs which have signed or unsigned type only the negate modifier is
44 supported.
45
46 Instruction Set
47 ---------------
48
49 Core ISA
50 ^^^^^^^^^^^^^^^^^^^^^^^^^
51
52 These opcodes are guaranteed to be available regardless of the driver being
53 used.
54
55 .. opcode:: ARL - Address Register Load
56
57 .. math::
58
59 dst.x = (int) \lfloor src.x\rfloor
60
61 dst.y = (int) \lfloor src.y\rfloor
62
63 dst.z = (int) \lfloor src.z\rfloor
64
65 dst.w = (int) \lfloor src.w\rfloor
66
67
68 .. opcode:: MOV - Move
69
70 .. math::
71
72 dst.x = src.x
73
74 dst.y = src.y
75
76 dst.z = src.z
77
78 dst.w = src.w
79
80
81 .. opcode:: LIT - Light Coefficients
82
83 .. math::
84
85 dst.x &= 1 \\
86 dst.y &= max(src.x, 0) \\
87 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
88 dst.w &= 1
89
90
91 .. opcode:: RCP - Reciprocal
92
93 This instruction replicates its result.
94
95 .. math::
96
97 dst = \frac{1}{src.x}
98
99
100 .. opcode:: RSQ - Reciprocal Square Root
101
102 This instruction replicates its result. The results are undefined for src <= 0.
103
104 .. math::
105
106 dst = \frac{1}{\sqrt{src.x}}
107
108
109 .. opcode:: SQRT - Square Root
110
111 This instruction replicates its result. The results are undefined for src < 0.
112
113 .. math::
114
115 dst = {\sqrt{src.x}}
116
117
118 .. opcode:: EXP - Approximate Exponential Base 2
119
120 .. math::
121
122 dst.x &= 2^{\lfloor src.x\rfloor} \\
123 dst.y &= src.x - \lfloor src.x\rfloor \\
124 dst.z &= 2^{src.x} \\
125 dst.w &= 1
126
127
128 .. opcode:: LOG - Approximate Logarithm Base 2
129
130 .. math::
131
132 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
133 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
134 dst.z &= \log_2{|src.x|} \\
135 dst.w &= 1
136
137
138 .. opcode:: MUL - Multiply
139
140 .. math::
141
142 dst.x = src0.x \times src1.x
143
144 dst.y = src0.y \times src1.y
145
146 dst.z = src0.z \times src1.z
147
148 dst.w = src0.w \times src1.w
149
150
151 .. opcode:: ADD - Add
152
153 .. math::
154
155 dst.x = src0.x + src1.x
156
157 dst.y = src0.y + src1.y
158
159 dst.z = src0.z + src1.z
160
161 dst.w = src0.w + src1.w
162
163
164 .. opcode:: DP3 - 3-component Dot Product
165
166 This instruction replicates its result.
167
168 .. math::
169
170 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
171
172
173 .. opcode:: DP4 - 4-component Dot Product
174
175 This instruction replicates its result.
176
177 .. math::
178
179 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
180
181
182 .. opcode:: DST - Distance Vector
183
184 .. math::
185
186 dst.x &= 1\\
187 dst.y &= src0.y \times src1.y\\
188 dst.z &= src0.z\\
189 dst.w &= src1.w
190
191
192 .. opcode:: MIN - Minimum
193
194 .. math::
195
196 dst.x = min(src0.x, src1.x)
197
198 dst.y = min(src0.y, src1.y)
199
200 dst.z = min(src0.z, src1.z)
201
202 dst.w = min(src0.w, src1.w)
203
204
205 .. opcode:: MAX - Maximum
206
207 .. math::
208
209 dst.x = max(src0.x, src1.x)
210
211 dst.y = max(src0.y, src1.y)
212
213 dst.z = max(src0.z, src1.z)
214
215 dst.w = max(src0.w, src1.w)
216
217
218 .. opcode:: SLT - Set On Less Than
219
220 .. math::
221
222 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
223
224 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
225
226 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
227
228 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
229
230
231 .. opcode:: SGE - Set On Greater Equal Than
232
233 .. math::
234
235 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
236
237 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
238
239 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
240
241 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
242
243
244 .. opcode:: MAD - Multiply And Add
245
246 Perform a * b + c. The implementation is free to decide whether there is an
247 intermediate rounding step or not.
248
249 .. math::
250
251 dst.x = src0.x \times src1.x + src2.x
252
253 dst.y = src0.y \times src1.y + src2.y
254
255 dst.z = src0.z \times src1.z + src2.z
256
257 dst.w = src0.w \times src1.w + src2.w
258
259
260 .. opcode:: LRP - Linear Interpolate
261
262 .. math::
263
264 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
265
266 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
267
268 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
269
270 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
271
272
273 .. opcode:: FMA - Fused Multiply-Add
274
275 Perform a * b + c with no intermediate rounding step.
276
277 .. math::
278
279 dst.x = src0.x \times src1.x + src2.x
280
281 dst.y = src0.y \times src1.y + src2.y
282
283 dst.z = src0.z \times src1.z + src2.z
284
285 dst.w = src0.w \times src1.w + src2.w
286
287
288 .. opcode:: DP2A - 2-component Dot Product And Add
289
290 .. math::
291
292 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
293
294 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300
301 .. opcode:: FRC - Fraction
302
303 .. math::
304
305 dst.x = src.x - \lfloor src.x\rfloor
306
307 dst.y = src.y - \lfloor src.y\rfloor
308
309 dst.z = src.z - \lfloor src.z\rfloor
310
311 dst.w = src.w - \lfloor src.w\rfloor
312
313
314 .. opcode:: FLR - Floor
315
316 .. math::
317
318 dst.x = \lfloor src.x\rfloor
319
320 dst.y = \lfloor src.y\rfloor
321
322 dst.z = \lfloor src.z\rfloor
323
324 dst.w = \lfloor src.w\rfloor
325
326
327 .. opcode:: ROUND - Round
328
329 .. math::
330
331 dst.x = round(src.x)
332
333 dst.y = round(src.y)
334
335 dst.z = round(src.z)
336
337 dst.w = round(src.w)
338
339
340 .. opcode:: EX2 - Exponential Base 2
341
342 This instruction replicates its result.
343
344 .. math::
345
346 dst = 2^{src.x}
347
348
349 .. opcode:: LG2 - Logarithm Base 2
350
351 This instruction replicates its result.
352
353 .. math::
354
355 dst = \log_2{src.x}
356
357
358 .. opcode:: POW - Power
359
360 This instruction replicates its result.
361
362 .. math::
363
364 dst = src0.x^{src1.x}
365
366 .. opcode:: XPD - Cross Product
367
368 .. math::
369
370 dst.x = src0.y \times src1.z - src1.y \times src0.z
371
372 dst.y = src0.z \times src1.x - src1.z \times src0.x
373
374 dst.z = src0.x \times src1.y - src1.x \times src0.y
375
376 dst.w = 1
377
378
379 .. opcode:: DPH - Homogeneous Dot Product
380
381 This instruction replicates its result.
382
383 .. math::
384
385 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
386
387
388 .. opcode:: COS - Cosine
389
390 This instruction replicates its result.
391
392 .. math::
393
394 dst = \cos{src.x}
395
396
397 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
398
399 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
400 advertised. When it is, the fine version guarantees one derivative per row
401 while DDX is allowed to be the same for the entire 2x2 quad.
402
403 .. math::
404
405 dst.x = partialx(src.x)
406
407 dst.y = partialx(src.y)
408
409 dst.z = partialx(src.z)
410
411 dst.w = partialx(src.w)
412
413
414 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
415
416 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
417 advertised. When it is, the fine version guarantees one derivative per column
418 while DDY is allowed to be the same for the entire 2x2 quad.
419
420 .. math::
421
422 dst.x = partialy(src.x)
423
424 dst.y = partialy(src.y)
425
426 dst.z = partialy(src.z)
427
428 dst.w = partialy(src.w)
429
430
431 .. opcode:: PK2H - Pack Two 16-bit Floats
432
433 This instruction replicates its result.
434
435 .. math::
436
437 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
438
439
440 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
441
442 TBD
443
444
445 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
446
447 TBD
448
449
450 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
451
452 TBD
453
454
455 .. opcode:: SEQ - Set On Equal
456
457 .. math::
458
459 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
460
461 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
462
463 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
464
465 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
466
467
468 .. opcode:: SGT - Set On Greater Than
469
470 .. math::
471
472 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
473
474 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
475
476 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
477
478 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
479
480
481 .. opcode:: SIN - Sine
482
483 This instruction replicates its result.
484
485 .. math::
486
487 dst = \sin{src.x}
488
489
490 .. opcode:: SLE - Set On Less Equal Than
491
492 .. math::
493
494 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
495
496 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
497
498 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
499
500 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
501
502
503 .. opcode:: SNE - Set On Not Equal
504
505 .. math::
506
507 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
508
509 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
510
511 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
512
513 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
514
515
516 .. opcode:: TEX - Texture Lookup
517
518 for array textures src0.y contains the slice for 1D,
519 and src0.z contain the slice for 2D.
520
521 for shadow textures with no arrays (and not cube map),
522 src0.z contains the reference value.
523
524 for shadow textures with arrays, src0.z contains
525 the reference value for 1D arrays, and src0.w contains
526 the reference value for 2D arrays and cube maps.
527
528 for cube map array shadow textures, the reference value
529 cannot be passed in src0.w, and TEX2 must be used instead.
530
531 .. math::
532
533 coord = src0
534
535 shadow_ref = src0.z or src0.w (optional)
536
537 unit = src1
538
539 dst = texture\_sample(unit, coord, shadow_ref)
540
541
542 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
543
544 this is the same as TEX, but uses another reg to encode the
545 reference value.
546
547 .. math::
548
549 coord = src0
550
551 shadow_ref = src1.x
552
553 unit = src2
554
555 dst = texture\_sample(unit, coord, shadow_ref)
556
557
558
559
560 .. opcode:: TXD - Texture Lookup with Derivatives
561
562 .. math::
563
564 coord = src0
565
566 ddx = src1
567
568 ddy = src2
569
570 unit = src3
571
572 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
573
574
575 .. opcode:: TXP - Projective Texture Lookup
576
577 .. math::
578
579 coord.x = src0.x / src0.w
580
581 coord.y = src0.y / src0.w
582
583 coord.z = src0.z / src0.w
584
585 coord.w = src0.w
586
587 unit = src1
588
589 dst = texture\_sample(unit, coord)
590
591
592 .. opcode:: UP2H - Unpack Two 16-Bit Floats
593
594 .. math::
595
596 dst.x = f16\_to\_f32(src0.x \& 0xffff)
597
598 dst.y = f16\_to\_f32(src0.x >> 16)
599
600 dst.z = f16\_to\_f32(src0.x \& 0xffff)
601
602 dst.w = f16\_to\_f32(src0.x >> 16)
603
604 .. note::
605
606 Considered for removal.
607
608 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
609
610 TBD
611
612 .. note::
613
614 Considered for removal.
615
616 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
617
618 TBD
619
620 .. note::
621
622 Considered for removal.
623
624 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
625
626 TBD
627
628 .. note::
629
630 Considered for removal.
631
632
633 .. opcode:: ARR - Address Register Load With Round
634
635 .. math::
636
637 dst.x = (int) round(src.x)
638
639 dst.y = (int) round(src.y)
640
641 dst.z = (int) round(src.z)
642
643 dst.w = (int) round(src.w)
644
645
646 .. opcode:: SSG - Set Sign
647
648 .. math::
649
650 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
651
652 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
653
654 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
655
656 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
657
658
659 .. opcode:: CMP - Compare
660
661 .. math::
662
663 dst.x = (src0.x < 0) ? src1.x : src2.x
664
665 dst.y = (src0.y < 0) ? src1.y : src2.y
666
667 dst.z = (src0.z < 0) ? src1.z : src2.z
668
669 dst.w = (src0.w < 0) ? src1.w : src2.w
670
671
672 .. opcode:: KILL_IF - Conditional Discard
673
674 Conditional discard. Allowed in fragment shaders only.
675
676 .. math::
677
678 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
679 discard
680 endif
681
682
683 .. opcode:: KILL - Discard
684
685 Unconditional discard. Allowed in fragment shaders only.
686
687
688 .. opcode:: SCS - Sine Cosine
689
690 .. math::
691
692 dst.x = \cos{src.x}
693
694 dst.y = \sin{src.x}
695
696 dst.z = 0
697
698 dst.w = 1
699
700
701 .. opcode:: TXB - Texture Lookup With Bias
702
703 for cube map array textures and shadow cube maps, the bias value
704 cannot be passed in src0.w, and TXB2 must be used instead.
705
706 if the target is a shadow texture, the reference value is always
707 in src.z (this prevents shadow 3d and shadow 2d arrays from
708 using this instruction, but this is not needed).
709
710 .. math::
711
712 coord.x = src0.x
713
714 coord.y = src0.y
715
716 coord.z = src0.z
717
718 coord.w = none
719
720 bias = src0.w
721
722 unit = src1
723
724 dst = texture\_sample(unit, coord, bias)
725
726
727 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
728
729 this is the same as TXB, but uses another reg to encode the
730 lod bias value for cube map arrays and shadow cube maps.
731 Presumably shadow 2d arrays and shadow 3d targets could use
732 this encoding too, but this is not legal.
733
734 shadow cube map arrays are neither possible nor required.
735
736 .. math::
737
738 coord = src0
739
740 bias = src1.x
741
742 unit = src2
743
744 dst = texture\_sample(unit, coord, bias)
745
746
747 .. opcode:: DIV - Divide
748
749 .. math::
750
751 dst.x = \frac{src0.x}{src1.x}
752
753 dst.y = \frac{src0.y}{src1.y}
754
755 dst.z = \frac{src0.z}{src1.z}
756
757 dst.w = \frac{src0.w}{src1.w}
758
759
760 .. opcode:: DP2 - 2-component Dot Product
761
762 This instruction replicates its result.
763
764 .. math::
765
766 dst = src0.x \times src1.x + src0.y \times src1.y
767
768
769 .. opcode:: TEX_LZ - Texture Lookup With LOD = 0
770
771 This is the same as TXL with LOD = 0. Like every texture opcode, it obeys
772 pipe_sampler_view::u.tex.first_level and pipe_sampler_state::min_lod.
773 There is no way to override those two in shaders.
774
775 .. math::
776
777 coord.x = src0.x
778
779 coord.y = src0.y
780
781 coord.z = src0.z
782
783 coord.w = none
784
785 lod = 0
786
787 unit = src1
788
789 dst = texture\_sample(unit, coord, lod)
790
791
792 .. opcode:: TXL - Texture Lookup With explicit LOD
793
794 for cube map array textures, the explicit lod value
795 cannot be passed in src0.w, and TXL2 must be used instead.
796
797 if the target is a shadow texture, the reference value is always
798 in src.z (this prevents shadow 3d / 2d array / cube targets from
799 using this instruction, but this is not needed).
800
801 .. math::
802
803 coord.x = src0.x
804
805 coord.y = src0.y
806
807 coord.z = src0.z
808
809 coord.w = none
810
811 lod = src0.w
812
813 unit = src1
814
815 dst = texture\_sample(unit, coord, lod)
816
817
818 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
819
820 this is the same as TXL, but uses another reg to encode the
821 explicit lod value.
822 Presumably shadow 3d / 2d array / cube targets could use
823 this encoding too, but this is not legal.
824
825 shadow cube map arrays are neither possible nor required.
826
827 .. math::
828
829 coord = src0
830
831 lod = src1.x
832
833 unit = src2
834
835 dst = texture\_sample(unit, coord, lod)
836
837
838 .. opcode:: CALLNZ - Subroutine Call If Not Zero
839
840 TBD
841
842 .. note::
843
844 Considered for cleanup.
845
846 .. note::
847
848 Considered for removal.
849
850
851 Compute ISA
852 ^^^^^^^^^^^^^^^^^^^^^^^^
853
854 These opcodes are primarily provided for special-use computational shaders.
855 Support for these opcodes indicated by a special pipe capability bit (TBD).
856
857 XXX doesn't look like most of the opcodes really belong here.
858
859 .. opcode:: CEIL - Ceiling
860
861 .. math::
862
863 dst.x = \lceil src.x\rceil
864
865 dst.y = \lceil src.y\rceil
866
867 dst.z = \lceil src.z\rceil
868
869 dst.w = \lceil src.w\rceil
870
871
872 .. opcode:: TRUNC - Truncate
873
874 .. math::
875
876 dst.x = trunc(src.x)
877
878 dst.y = trunc(src.y)
879
880 dst.z = trunc(src.z)
881
882 dst.w = trunc(src.w)
883
884
885 .. opcode:: MOD - Modulus
886
887 .. math::
888
889 dst.x = src0.x \bmod src1.x
890
891 dst.y = src0.y \bmod src1.y
892
893 dst.z = src0.z \bmod src1.z
894
895 dst.w = src0.w \bmod src1.w
896
897
898 .. opcode:: UARL - Integer Address Register Load
899
900 Moves the contents of the source register, assumed to be an integer, into the
901 destination register, which is assumed to be an address (ADDR) register.
902
903
904 .. opcode:: TXF - Texel Fetch
905
906 As per NV_gpu_shader4, extract a single texel from a specified texture
907 image or PIPE_BUFFER resource. The source sampler may not be a CUBE or
908 SHADOW. src 0 is a
909 four-component signed integer vector used to identify the single texel
910 accessed. 3 components + level. If the texture is multisampled, then
911 the fourth component indicates the sample, not the mipmap level.
912 Just like texture instructions, an optional
913 offset vector is provided, which is subject to various driver restrictions
914 (regarding range, source of offsets). This instruction ignores the sampler
915 state.
916
917 TXF(uint_vec coord, int_vec offset).
918
919
920 .. opcode:: TXQ - Texture Size Query
921
922 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
923 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
924 depth), 1D array (width, layers), 2D array (width, height, layers).
925 Also return the number of accessible levels (last_level - first_level + 1)
926 in W.
927
928 For components which don't return a resource dimension, their value
929 is undefined.
930
931 .. math::
932
933 lod = src0.x
934
935 dst.x = texture\_width(unit, lod)
936
937 dst.y = texture\_height(unit, lod)
938
939 dst.z = texture\_depth(unit, lod)
940
941 dst.w = texture\_levels(unit)
942
943
944 .. opcode:: TXQS - Texture Samples Query
945
946 This retrieves the number of samples in the texture, and stores it
947 into the x component as an unsigned integer. The other components are
948 undefined. If the texture is not multisampled, this function returns
949 (1, undef, undef, undef).
950
951 .. math::
952
953 dst.x = texture\_samples(unit)
954
955
956 .. opcode:: TG4 - Texture Gather
957
958 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
959 filtering operation and packs them into a single register. Only works with
960 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
961 addressing modes of the sampler and the top level of any mip pyramid are
962 used. Set W to zero. It behaves like the TEX instruction, but a filtered
963 sample is not generated. The four samples that contribute to filtering are
964 placed into xyzw in clockwise order, starting with the (u,v) texture
965 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
966 where the magnitude of the deltas are half a texel.
967
968 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
969 depth compares, single component selection, and a non-constant offset. It
970 doesn't allow support for the GL independent offset to get i0,j0. This would
971 require another CAP is hw can do it natively. For now we lower that before
972 TGSI.
973
974 .. math::
975
976 coord = src0
977
978 component = src1
979
980 dst = texture\_gather4 (unit, coord, component)
981
982 (with SM5 - cube array shadow)
983
984 .. math::
985
986 coord = src0
987
988 compare = src1
989
990 dst = texture\_gather (uint, coord, compare)
991
992 .. opcode:: LODQ - level of detail query
993
994 Compute the LOD information that the texture pipe would use to access the
995 texture. The Y component contains the computed LOD lambda_prime. The X
996 component contains the LOD that will be accessed, based on min/max lod's
997 and mipmap filters.
998
999 .. math::
1000
1001 coord = src0
1002
1003 dst.xy = lodq(uint, coord);
1004
1005 .. opcode:: CLOCK - retrieve the current shader time
1006
1007 Invoking this instruction multiple times in the same shader should
1008 cause monotonically increasing values to be returned. The values
1009 are implicitly 64-bit, so if fewer than 64 bits of precision are
1010 available, to provide expected wraparound semantics, the value
1011 should be shifted up so that the most significant bit of the time
1012 is the most significant bit of the 64-bit value.
1013
1014 .. math::
1015
1016 dst.xy = clock()
1017
1018
1019 Integer ISA
1020 ^^^^^^^^^^^^^^^^^^^^^^^^
1021 These opcodes are used for integer operations.
1022 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1023
1024
1025 .. opcode:: I2F - Signed Integer To Float
1026
1027 Rounding is unspecified (round to nearest even suggested).
1028
1029 .. math::
1030
1031 dst.x = (float) src.x
1032
1033 dst.y = (float) src.y
1034
1035 dst.z = (float) src.z
1036
1037 dst.w = (float) src.w
1038
1039
1040 .. opcode:: U2F - Unsigned Integer To Float
1041
1042 Rounding is unspecified (round to nearest even suggested).
1043
1044 .. math::
1045
1046 dst.x = (float) src.x
1047
1048 dst.y = (float) src.y
1049
1050 dst.z = (float) src.z
1051
1052 dst.w = (float) src.w
1053
1054
1055 .. opcode:: F2I - Float to Signed Integer
1056
1057 Rounding is towards zero (truncate).
1058 Values outside signed range (including NaNs) produce undefined results.
1059
1060 .. math::
1061
1062 dst.x = (int) src.x
1063
1064 dst.y = (int) src.y
1065
1066 dst.z = (int) src.z
1067
1068 dst.w = (int) src.w
1069
1070
1071 .. opcode:: F2U - Float to Unsigned Integer
1072
1073 Rounding is towards zero (truncate).
1074 Values outside unsigned range (including NaNs) produce undefined results.
1075
1076 .. math::
1077
1078 dst.x = (unsigned) src.x
1079
1080 dst.y = (unsigned) src.y
1081
1082 dst.z = (unsigned) src.z
1083
1084 dst.w = (unsigned) src.w
1085
1086
1087 .. opcode:: UADD - Integer Add
1088
1089 This instruction works the same for signed and unsigned integers.
1090 The low 32bit of the result is returned.
1091
1092 .. math::
1093
1094 dst.x = src0.x + src1.x
1095
1096 dst.y = src0.y + src1.y
1097
1098 dst.z = src0.z + src1.z
1099
1100 dst.w = src0.w + src1.w
1101
1102
1103 .. opcode:: UMAD - Integer Multiply And Add
1104
1105 This instruction works the same for signed and unsigned integers.
1106 The multiplication returns the low 32bit (as does the result itself).
1107
1108 .. math::
1109
1110 dst.x = src0.x \times src1.x + src2.x
1111
1112 dst.y = src0.y \times src1.y + src2.y
1113
1114 dst.z = src0.z \times src1.z + src2.z
1115
1116 dst.w = src0.w \times src1.w + src2.w
1117
1118
1119 .. opcode:: UMUL - Integer Multiply
1120
1121 This instruction works the same for signed and unsigned integers.
1122 The low 32bit of the result is returned.
1123
1124 .. math::
1125
1126 dst.x = src0.x \times src1.x
1127
1128 dst.y = src0.y \times src1.y
1129
1130 dst.z = src0.z \times src1.z
1131
1132 dst.w = src0.w \times src1.w
1133
1134
1135 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1136
1137 The high 32bits of the multiplication of 2 signed integers are returned.
1138
1139 .. math::
1140
1141 dst.x = (src0.x \times src1.x) >> 32
1142
1143 dst.y = (src0.y \times src1.y) >> 32
1144
1145 dst.z = (src0.z \times src1.z) >> 32
1146
1147 dst.w = (src0.w \times src1.w) >> 32
1148
1149
1150 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1151
1152 The high 32bits of the multiplication of 2 unsigned integers are returned.
1153
1154 .. math::
1155
1156 dst.x = (src0.x \times src1.x) >> 32
1157
1158 dst.y = (src0.y \times src1.y) >> 32
1159
1160 dst.z = (src0.z \times src1.z) >> 32
1161
1162 dst.w = (src0.w \times src1.w) >> 32
1163
1164
1165 .. opcode:: IDIV - Signed Integer Division
1166
1167 TBD: behavior for division by zero.
1168
1169 .. math::
1170
1171 dst.x = \frac{src0.x}{src1.x}
1172
1173 dst.y = \frac{src0.y}{src1.y}
1174
1175 dst.z = \frac{src0.z}{src1.z}
1176
1177 dst.w = \frac{src0.w}{src1.w}
1178
1179
1180 .. opcode:: UDIV - Unsigned Integer Division
1181
1182 For division by zero, 0xffffffff is returned.
1183
1184 .. math::
1185
1186 dst.x = \frac{src0.x}{src1.x}
1187
1188 dst.y = \frac{src0.y}{src1.y}
1189
1190 dst.z = \frac{src0.z}{src1.z}
1191
1192 dst.w = \frac{src0.w}{src1.w}
1193
1194
1195 .. opcode:: UMOD - Unsigned Integer Remainder
1196
1197 If second arg is zero, 0xffffffff is returned.
1198
1199 .. math::
1200
1201 dst.x = src0.x \bmod src1.x
1202
1203 dst.y = src0.y \bmod src1.y
1204
1205 dst.z = src0.z \bmod src1.z
1206
1207 dst.w = src0.w \bmod src1.w
1208
1209
1210 .. opcode:: NOT - Bitwise Not
1211
1212 .. math::
1213
1214 dst.x = \sim src.x
1215
1216 dst.y = \sim src.y
1217
1218 dst.z = \sim src.z
1219
1220 dst.w = \sim src.w
1221
1222
1223 .. opcode:: AND - Bitwise And
1224
1225 .. math::
1226
1227 dst.x = src0.x \& src1.x
1228
1229 dst.y = src0.y \& src1.y
1230
1231 dst.z = src0.z \& src1.z
1232
1233 dst.w = src0.w \& src1.w
1234
1235
1236 .. opcode:: OR - Bitwise Or
1237
1238 .. math::
1239
1240 dst.x = src0.x | src1.x
1241
1242 dst.y = src0.y | src1.y
1243
1244 dst.z = src0.z | src1.z
1245
1246 dst.w = src0.w | src1.w
1247
1248
1249 .. opcode:: XOR - Bitwise Xor
1250
1251 .. math::
1252
1253 dst.x = src0.x \oplus src1.x
1254
1255 dst.y = src0.y \oplus src1.y
1256
1257 dst.z = src0.z \oplus src1.z
1258
1259 dst.w = src0.w \oplus src1.w
1260
1261
1262 .. opcode:: IMAX - Maximum of Signed Integers
1263
1264 .. math::
1265
1266 dst.x = max(src0.x, src1.x)
1267
1268 dst.y = max(src0.y, src1.y)
1269
1270 dst.z = max(src0.z, src1.z)
1271
1272 dst.w = max(src0.w, src1.w)
1273
1274
1275 .. opcode:: UMAX - Maximum of Unsigned Integers
1276
1277 .. math::
1278
1279 dst.x = max(src0.x, src1.x)
1280
1281 dst.y = max(src0.y, src1.y)
1282
1283 dst.z = max(src0.z, src1.z)
1284
1285 dst.w = max(src0.w, src1.w)
1286
1287
1288 .. opcode:: IMIN - Minimum of Signed Integers
1289
1290 .. math::
1291
1292 dst.x = min(src0.x, src1.x)
1293
1294 dst.y = min(src0.y, src1.y)
1295
1296 dst.z = min(src0.z, src1.z)
1297
1298 dst.w = min(src0.w, src1.w)
1299
1300
1301 .. opcode:: UMIN - Minimum of Unsigned Integers
1302
1303 .. math::
1304
1305 dst.x = min(src0.x, src1.x)
1306
1307 dst.y = min(src0.y, src1.y)
1308
1309 dst.z = min(src0.z, src1.z)
1310
1311 dst.w = min(src0.w, src1.w)
1312
1313
1314 .. opcode:: SHL - Shift Left
1315
1316 The shift count is masked with 0x1f before the shift is applied.
1317
1318 .. math::
1319
1320 dst.x = src0.x << (0x1f \& src1.x)
1321
1322 dst.y = src0.y << (0x1f \& src1.y)
1323
1324 dst.z = src0.z << (0x1f \& src1.z)
1325
1326 dst.w = src0.w << (0x1f \& src1.w)
1327
1328
1329 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1330
1331 The shift count is masked with 0x1f before the shift is applied.
1332
1333 .. math::
1334
1335 dst.x = src0.x >> (0x1f \& src1.x)
1336
1337 dst.y = src0.y >> (0x1f \& src1.y)
1338
1339 dst.z = src0.z >> (0x1f \& src1.z)
1340
1341 dst.w = src0.w >> (0x1f \& src1.w)
1342
1343
1344 .. opcode:: USHR - Logical Shift Right
1345
1346 The shift count is masked with 0x1f before the shift is applied.
1347
1348 .. math::
1349
1350 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1351
1352 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1353
1354 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1355
1356 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1357
1358
1359 .. opcode:: UCMP - Integer Conditional Move
1360
1361 .. math::
1362
1363 dst.x = src0.x ? src1.x : src2.x
1364
1365 dst.y = src0.y ? src1.y : src2.y
1366
1367 dst.z = src0.z ? src1.z : src2.z
1368
1369 dst.w = src0.w ? src1.w : src2.w
1370
1371
1372
1373 .. opcode:: ISSG - Integer Set Sign
1374
1375 .. math::
1376
1377 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1378
1379 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1380
1381 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1382
1383 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1384
1385
1386
1387 .. opcode:: FSLT - Float Set On Less Than (ordered)
1388
1389 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1390
1391 .. math::
1392
1393 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1394
1395 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1396
1397 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1398
1399 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1400
1401
1402 .. opcode:: ISLT - Signed Integer Set On Less Than
1403
1404 .. math::
1405
1406 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1407
1408 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1409
1410 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1411
1412 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1413
1414
1415 .. opcode:: USLT - Unsigned Integer Set On Less Than
1416
1417 .. math::
1418
1419 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1420
1421 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1422
1423 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1424
1425 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1426
1427
1428 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1429
1430 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1431
1432 .. math::
1433
1434 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1435
1436 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1437
1438 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1439
1440 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1441
1442
1443 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1444
1445 .. math::
1446
1447 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1448
1449 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1450
1451 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1452
1453 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1454
1455
1456 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1457
1458 .. math::
1459
1460 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1461
1462 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1463
1464 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1465
1466 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1467
1468
1469 .. opcode:: FSEQ - Float Set On Equal (ordered)
1470
1471 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1472
1473 .. math::
1474
1475 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1476
1477 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1478
1479 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1480
1481 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1482
1483
1484 .. opcode:: USEQ - Integer Set On Equal
1485
1486 .. math::
1487
1488 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1489
1490 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1491
1492 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1493
1494 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1495
1496
1497 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1498
1499 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1500
1501 .. math::
1502
1503 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1504
1505 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1506
1507 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1508
1509 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1510
1511
1512 .. opcode:: USNE - Integer Set On Not Equal
1513
1514 .. math::
1515
1516 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1517
1518 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1519
1520 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1521
1522 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1523
1524
1525 .. opcode:: INEG - Integer Negate
1526
1527 Two's complement.
1528
1529 .. math::
1530
1531 dst.x = -src.x
1532
1533 dst.y = -src.y
1534
1535 dst.z = -src.z
1536
1537 dst.w = -src.w
1538
1539
1540 .. opcode:: IABS - Integer Absolute Value
1541
1542 .. math::
1543
1544 dst.x = |src.x|
1545
1546 dst.y = |src.y|
1547
1548 dst.z = |src.z|
1549
1550 dst.w = |src.w|
1551
1552 Bitwise ISA
1553 ^^^^^^^^^^^
1554 These opcodes are used for bit-level manipulation of integers.
1555
1556 .. opcode:: IBFE - Signed Bitfield Extract
1557
1558 Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1559 sign-extends them if the high bit of the extracted window is set.
1560
1561 Pseudocode::
1562
1563 def ibfe(value, offset, bits):
1564 if offset < 0 or bits < 0 or offset + bits > 32:
1565 return undefined
1566 if bits == 0: return 0
1567 # Note: >> sign-extends
1568 return (value << (32 - offset - bits)) >> (32 - bits)
1569
1570 .. opcode:: UBFE - Unsigned Bitfield Extract
1571
1572 Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1573 any sign-extension.
1574
1575 Pseudocode::
1576
1577 def ubfe(value, offset, bits):
1578 if offset < 0 or bits < 0 or offset + bits > 32:
1579 return undefined
1580 if bits == 0: return 0
1581 # Note: >> does not sign-extend
1582 return (value << (32 - offset - bits)) >> (32 - bits)
1583
1584 .. opcode:: BFI - Bitfield Insert
1585
1586 Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1587 of 'insert'.
1588
1589 Pseudocode::
1590
1591 def bfi(base, insert, offset, bits):
1592 if offset < 0 or bits < 0 or offset + bits > 32:
1593 return undefined
1594 # << defined such that mask == ~0 when bits == 32, offset == 0
1595 mask = ((1 << bits) - 1) << offset
1596 return ((insert << offset) & mask) | (base & ~mask)
1597
1598 .. opcode:: BREV - Bitfield Reverse
1599
1600 See SM5 instruction BFREV. Reverses the bits of the argument.
1601
1602 .. opcode:: POPC - Population Count
1603
1604 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1605
1606 .. opcode:: LSB - Index of lowest set bit
1607
1608 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1609 bit of the argument. Returns -1 if none are set.
1610
1611 .. opcode:: IMSB - Index of highest non-sign bit
1612
1613 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1614 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1615 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1616 (i.e. for inputs 0 and -1).
1617
1618 .. opcode:: UMSB - Index of highest set bit
1619
1620 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1621 set bit of the argument. Returns -1 if none are set.
1622
1623 Geometry ISA
1624 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1625
1626 These opcodes are only supported in geometry shaders; they have no meaning
1627 in any other type of shader.
1628
1629 .. opcode:: EMIT - Emit
1630
1631 Generate a new vertex for the current primitive into the specified vertex
1632 stream using the values in the output registers.
1633
1634
1635 .. opcode:: ENDPRIM - End Primitive
1636
1637 Complete the current primitive in the specified vertex stream (consisting of
1638 the emitted vertices), and start a new one.
1639
1640
1641 GLSL ISA
1642 ^^^^^^^^^^
1643
1644 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1645 opcodes is determined by a special capability bit, ``GLSL``.
1646 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1647
1648 .. opcode:: CAL - Subroutine Call
1649
1650 push(pc)
1651 pc = target
1652
1653
1654 .. opcode:: RET - Subroutine Call Return
1655
1656 pc = pop()
1657
1658
1659 .. opcode:: CONT - Continue
1660
1661 Unconditionally moves the point of execution to the instruction after the
1662 last bgnloop. The instruction must appear within a bgnloop/endloop.
1663
1664 .. note::
1665
1666 Support for CONT is determined by a special capability bit,
1667 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1668
1669
1670 .. opcode:: BGNLOOP - Begin a Loop
1671
1672 Start a loop. Must have a matching endloop.
1673
1674
1675 .. opcode:: BGNSUB - Begin Subroutine
1676
1677 Starts definition of a subroutine. Must have a matching endsub.
1678
1679
1680 .. opcode:: ENDLOOP - End a Loop
1681
1682 End a loop started with bgnloop.
1683
1684
1685 .. opcode:: ENDSUB - End Subroutine
1686
1687 Ends definition of a subroutine.
1688
1689
1690 .. opcode:: NOP - No Operation
1691
1692 Do nothing.
1693
1694
1695 .. opcode:: BRK - Break
1696
1697 Unconditionally moves the point of execution to the instruction after the
1698 next endloop or endswitch. The instruction must appear within a loop/endloop
1699 or switch/endswitch.
1700
1701
1702 .. opcode:: BREAKC - Break Conditional
1703
1704 Conditionally moves the point of execution to the instruction after the
1705 next endloop or endswitch. The instruction must appear within a loop/endloop
1706 or switch/endswitch.
1707 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1708 as an integer register.
1709
1710 .. note::
1711
1712 Considered for removal as it's quite inconsistent wrt other opcodes
1713 (could emulate with UIF/BRK/ENDIF).
1714
1715
1716 .. opcode:: IF - Float If
1717
1718 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1719
1720 src0.x != 0.0
1721
1722 where src0.x is interpreted as a floating point register.
1723
1724
1725 .. opcode:: UIF - Bitwise If
1726
1727 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1728
1729 src0.x != 0
1730
1731 where src0.x is interpreted as an integer register.
1732
1733
1734 .. opcode:: ELSE - Else
1735
1736 Starts an else block, after an IF or UIF statement.
1737
1738
1739 .. opcode:: ENDIF - End If
1740
1741 Ends an IF or UIF block.
1742
1743
1744 .. opcode:: SWITCH - Switch
1745
1746 Starts a C-style switch expression. The switch consists of one or multiple
1747 CASE statements, and at most one DEFAULT statement. Execution of a statement
1748 ends when a BRK is hit, but just like in C falling through to other cases
1749 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1750 just as last statement, and fallthrough is allowed into/from it.
1751 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1752
1753 Example::
1754
1755 SWITCH src[0].x
1756 CASE src[0].x
1757 (some instructions here)
1758 (optional BRK here)
1759 DEFAULT
1760 (some instructions here)
1761 (optional BRK here)
1762 CASE src[0].x
1763 (some instructions here)
1764 (optional BRK here)
1765 ENDSWITCH
1766
1767
1768 .. opcode:: CASE - Switch case
1769
1770 This represents a switch case label. The src arg must be an integer immediate.
1771
1772
1773 .. opcode:: DEFAULT - Switch default
1774
1775 This represents the default case in the switch, which is taken if no other
1776 case matches.
1777
1778
1779 .. opcode:: ENDSWITCH - End of switch
1780
1781 Ends a switch expression.
1782
1783
1784 Interpolation ISA
1785 ^^^^^^^^^^^^^^^^^
1786
1787 The interpolation instructions allow an input to be interpolated in a
1788 different way than its declaration. This corresponds to the GLSL 4.00
1789 interpolateAt* functions. The first argument of each of these must come from
1790 ``TGSI_FILE_INPUT``.
1791
1792 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1793
1794 Interpolates the varying specified by src0 at the centroid
1795
1796 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1797
1798 Interpolates the varying specified by src0 at the sample id specified by
1799 src1.x (interpreted as an integer)
1800
1801 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1802
1803 Interpolates the varying specified by src0 at the offset src1.xy from the
1804 pixel center (interpreted as floats)
1805
1806
1807 .. _doubleopcodes:
1808
1809 Double ISA
1810 ^^^^^^^^^^^^^^^
1811
1812 The double-precision opcodes reinterpret four-component vectors into
1813 two-component vectors with doubled precision in each component.
1814
1815 .. opcode:: DABS - Absolute
1816
1817 .. math::
1818
1819 dst.xy = |src0.xy|
1820
1821 dst.zw = |src0.zw|
1822
1823 .. opcode:: DADD - Add
1824
1825 .. math::
1826
1827 dst.xy = src0.xy + src1.xy
1828
1829 dst.zw = src0.zw + src1.zw
1830
1831 .. opcode:: DSEQ - Set on Equal
1832
1833 .. math::
1834
1835 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1836
1837 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1838
1839 .. opcode:: DSNE - Set on Equal
1840
1841 .. math::
1842
1843 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1844
1845 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1846
1847 .. opcode:: DSLT - Set on Less than
1848
1849 .. math::
1850
1851 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1852
1853 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1854
1855 .. opcode:: DSGE - Set on Greater equal
1856
1857 .. math::
1858
1859 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1860
1861 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1862
1863 .. opcode:: DFRAC - Fraction
1864
1865 .. math::
1866
1867 dst.xy = src.xy - \lfloor src.xy\rfloor
1868
1869 dst.zw = src.zw - \lfloor src.zw\rfloor
1870
1871 .. opcode:: DTRUNC - Truncate
1872
1873 .. math::
1874
1875 dst.xy = trunc(src.xy)
1876
1877 dst.zw = trunc(src.zw)
1878
1879 .. opcode:: DCEIL - Ceiling
1880
1881 .. math::
1882
1883 dst.xy = \lceil src.xy\rceil
1884
1885 dst.zw = \lceil src.zw\rceil
1886
1887 .. opcode:: DFLR - Floor
1888
1889 .. math::
1890
1891 dst.xy = \lfloor src.xy\rfloor
1892
1893 dst.zw = \lfloor src.zw\rfloor
1894
1895 .. opcode:: DROUND - Fraction
1896
1897 .. math::
1898
1899 dst.xy = round(src.xy)
1900
1901 dst.zw = round(src.zw)
1902
1903 .. opcode:: DSSG - Set Sign
1904
1905 .. math::
1906
1907 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1908
1909 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1910
1911 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1912
1913 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1914 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1915 :math:`dst1 \times 2^{dst0} = src` .
1916
1917 .. math::
1918
1919 dst0.xy = exp(src.xy)
1920
1921 dst1.xy = frac(src.xy)
1922
1923 dst0.zw = exp(src.zw)
1924
1925 dst1.zw = frac(src.zw)
1926
1927 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1928
1929 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1930 source is an integer.
1931
1932 .. math::
1933
1934 dst.xy = src0.xy \times 2^{src1.x}
1935
1936 dst.zw = src0.zw \times 2^{src1.y}
1937
1938 .. opcode:: DMIN - Minimum
1939
1940 .. math::
1941
1942 dst.xy = min(src0.xy, src1.xy)
1943
1944 dst.zw = min(src0.zw, src1.zw)
1945
1946 .. opcode:: DMAX - Maximum
1947
1948 .. math::
1949
1950 dst.xy = max(src0.xy, src1.xy)
1951
1952 dst.zw = max(src0.zw, src1.zw)
1953
1954 .. opcode:: DMUL - Multiply
1955
1956 .. math::
1957
1958 dst.xy = src0.xy \times src1.xy
1959
1960 dst.zw = src0.zw \times src1.zw
1961
1962
1963 .. opcode:: DMAD - Multiply And Add
1964
1965 .. math::
1966
1967 dst.xy = src0.xy \times src1.xy + src2.xy
1968
1969 dst.zw = src0.zw \times src1.zw + src2.zw
1970
1971
1972 .. opcode:: DFMA - Fused Multiply-Add
1973
1974 Perform a * b + c with no intermediate rounding step.
1975
1976 .. math::
1977
1978 dst.xy = src0.xy \times src1.xy + src2.xy
1979
1980 dst.zw = src0.zw \times src1.zw + src2.zw
1981
1982
1983 .. opcode:: DDIV - Divide
1984
1985 .. math::
1986
1987 dst.xy = \frac{src0.xy}{src1.xy}
1988
1989 dst.zw = \frac{src0.zw}{src1.zw}
1990
1991
1992 .. opcode:: DRCP - Reciprocal
1993
1994 .. math::
1995
1996 dst.xy = \frac{1}{src.xy}
1997
1998 dst.zw = \frac{1}{src.zw}
1999
2000 .. opcode:: DSQRT - Square Root
2001
2002 .. math::
2003
2004 dst.xy = \sqrt{src.xy}
2005
2006 dst.zw = \sqrt{src.zw}
2007
2008 .. opcode:: DRSQ - Reciprocal Square Root
2009
2010 .. math::
2011
2012 dst.xy = \frac{1}{\sqrt{src.xy}}
2013
2014 dst.zw = \frac{1}{\sqrt{src.zw}}
2015
2016 .. opcode:: F2D - Float to Double
2017
2018 .. math::
2019
2020 dst.xy = double(src0.x)
2021
2022 dst.zw = double(src0.y)
2023
2024 .. opcode:: D2F - Double to Float
2025
2026 .. math::
2027
2028 dst.x = float(src0.xy)
2029
2030 dst.y = float(src0.zw)
2031
2032 .. opcode:: I2D - Int to Double
2033
2034 .. math::
2035
2036 dst.xy = double(src0.x)
2037
2038 dst.zw = double(src0.y)
2039
2040 .. opcode:: D2I - Double to Int
2041
2042 .. math::
2043
2044 dst.x = int(src0.xy)
2045
2046 dst.y = int(src0.zw)
2047
2048 .. opcode:: U2D - Unsigned Int to Double
2049
2050 .. math::
2051
2052 dst.xy = double(src0.x)
2053
2054 dst.zw = double(src0.y)
2055
2056 .. opcode:: D2U - Double to Unsigned Int
2057
2058 .. math::
2059
2060 dst.x = unsigned(src0.xy)
2061
2062 dst.y = unsigned(src0.zw)
2063
2064 64-bit Integer ISA
2065 ^^^^^^^^^^^^^^^^^^
2066
2067 The 64-bit integer opcodes reinterpret four-component vectors into
2068 two-component vectors with 64-bits in each component.
2069
2070 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2071
2072 .. math::
2073
2074 dst.xy = |src0.xy|
2075
2076 dst.zw = |src0.zw|
2077
2078 .. opcode:: I64NEG - 64-bit Integer Negate
2079
2080 Two's complement.
2081
2082 .. math::
2083
2084 dst.xy = -src.xy
2085
2086 dst.zw = -src.zw
2087
2088 .. opcode:: I64SSG - 64-bit Integer Set Sign
2089
2090 .. math::
2091
2092 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2093
2094 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2095
2096 .. opcode:: U64ADD - 64-bit Integer Add
2097
2098 .. math::
2099
2100 dst.xy = src0.xy + src1.xy
2101
2102 dst.zw = src0.zw + src1.zw
2103
2104 .. opcode:: U64MUL - 64-bit Integer Multiply
2105
2106 .. math::
2107
2108 dst.xy = src0.xy * src1.xy
2109
2110 dst.zw = src0.zw * src1.zw
2111
2112 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2113
2114 .. math::
2115
2116 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2117
2118 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2119
2120 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2121
2122 .. math::
2123
2124 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2125
2126 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2127
2128 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2129
2130 .. math::
2131
2132 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2133
2134 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2135
2136 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2137
2138 .. math::
2139
2140 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2141
2142 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2143
2144 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2145
2146 .. math::
2147
2148 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2149
2150 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2151
2152 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2153
2154 .. math::
2155
2156 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2157
2158 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2159
2160 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2161
2162 .. math::
2163
2164 dst.xy = min(src0.xy, src1.xy)
2165
2166 dst.zw = min(src0.zw, src1.zw)
2167
2168 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2169
2170 .. math::
2171
2172 dst.xy = min(src0.xy, src1.xy)
2173
2174 dst.zw = min(src0.zw, src1.zw)
2175
2176 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2177
2178 .. math::
2179
2180 dst.xy = max(src0.xy, src1.xy)
2181
2182 dst.zw = max(src0.zw, src1.zw)
2183
2184 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2185
2186 .. math::
2187
2188 dst.xy = max(src0.xy, src1.xy)
2189
2190 dst.zw = max(src0.zw, src1.zw)
2191
2192 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2193
2194 The shift count is masked with 0x3f before the shift is applied.
2195
2196 .. math::
2197
2198 dst.xy = src0.xy << (0x3f \& src1.x)
2199
2200 dst.zw = src0.zw << (0x3f \& src1.y)
2201
2202 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2203
2204 The shift count is masked with 0x3f before the shift is applied.
2205
2206 .. math::
2207
2208 dst.xy = src0.xy >> (0x3f \& src1.x)
2209
2210 dst.zw = src0.zw >> (0x3f \& src1.y)
2211
2212 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2213
2214 The shift count is masked with 0x3f before the shift is applied.
2215
2216 .. math::
2217
2218 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2219
2220 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2221
2222 .. opcode:: I64DIV - 64-bit Signed Integer Division
2223
2224 .. math::
2225
2226 dst.xy = \frac{src0.xy}{src1.xy}
2227
2228 dst.zw = \frac{src0.zw}{src1.zw}
2229
2230 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2231
2232 .. math::
2233
2234 dst.xy = \frac{src0.xy}{src1.xy}
2235
2236 dst.zw = \frac{src0.zw}{src1.zw}
2237
2238 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2239
2240 .. math::
2241
2242 dst.xy = src0.xy \bmod src1.xy
2243
2244 dst.zw = src0.zw \bmod src1.zw
2245
2246 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2247
2248 .. math::
2249
2250 dst.xy = src0.xy \bmod src1.xy
2251
2252 dst.zw = src0.zw \bmod src1.zw
2253
2254 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2255
2256 .. math::
2257
2258 dst.xy = (uint64_t) src0.x
2259
2260 dst.zw = (uint64_t) src0.y
2261
2262 .. opcode:: F2I64 - Float to 64-bit Int
2263
2264 .. math::
2265
2266 dst.xy = (int64_t) src0.x
2267
2268 dst.zw = (int64_t) src0.y
2269
2270 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2271
2272 This is a zero extension.
2273
2274 .. math::
2275
2276 dst.xy = (uint64_t) src0.x
2277
2278 dst.zw = (uint64_t) src0.y
2279
2280 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2281
2282 This is a sign extension.
2283
2284 .. math::
2285
2286 dst.xy = (int64_t) src0.x
2287
2288 dst.zw = (int64_t) src0.y
2289
2290 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2291
2292 .. math::
2293
2294 dst.xy = (uint64_t) src0.xy
2295
2296 dst.zw = (uint64_t) src0.zw
2297
2298 .. opcode:: D2I64 - Double to 64-bit Int
2299
2300 .. math::
2301
2302 dst.xy = (int64_t) src0.xy
2303
2304 dst.zw = (int64_t) src0.zw
2305
2306 .. opcode:: U642F - 64-bit unsigned integer to float
2307
2308 .. math::
2309
2310 dst.x = (float) src0.xy
2311
2312 dst.y = (float) src0.zw
2313
2314 .. opcode:: I642F - 64-bit Int to Float
2315
2316 .. math::
2317
2318 dst.x = (float) src0.xy
2319
2320 dst.y = (float) src0.zw
2321
2322 .. opcode:: U642D - 64-bit unsigned integer to double
2323
2324 .. math::
2325
2326 dst.xy = (double) src0.xy
2327
2328 dst.zw = (double) src0.zw
2329
2330 .. opcode:: I642D - 64-bit Int to double
2331
2332 .. math::
2333
2334 dst.xy = (double) src0.xy
2335
2336 dst.zw = (double) src0.zw
2337
2338 .. _samplingopcodes:
2339
2340 Resource Sampling Opcodes
2341 ^^^^^^^^^^^^^^^^^^^^^^^^^
2342
2343 Those opcodes follow very closely semantics of the respective Direct3D
2344 instructions. If in doubt double check Direct3D documentation.
2345 Note that the swizzle on SVIEW (src1) determines texel swizzling
2346 after lookup.
2347
2348 .. opcode:: SAMPLE
2349
2350 Using provided address, sample data from the specified texture using the
2351 filtering mode identified by the given sampler. The source data may come from
2352 any resource type other than buffers.
2353
2354 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2355
2356 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2357
2358 .. opcode:: SAMPLE_I
2359
2360 Simplified alternative to the SAMPLE instruction. Using the provided
2361 integer address, SAMPLE_I fetches data from the specified sampler view
2362 without any filtering. The source data may come from any resource type
2363 other than CUBE.
2364
2365 Syntax: ``SAMPLE_I dst, address, sampler_view``
2366
2367 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2368
2369 The 'address' is specified as unsigned integers. If the 'address' is out of
2370 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2371 components. As such the instruction doesn't honor address wrap modes, in
2372 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2373 address.w always provides an unsigned integer mipmap level. If the value is
2374 out of the range then the instruction always returns 0 in all components.
2375 address.yz are ignored for buffers and 1d textures. address.z is ignored
2376 for 1d texture arrays and 2d textures.
2377
2378 For 1D texture arrays address.y provides the array index (also as unsigned
2379 integer). If the value is out of the range of available array indices
2380 [0... (array size - 1)] then the opcode always returns 0 in all components.
2381 For 2D texture arrays address.z provides the array index, otherwise it
2382 exhibits the same behavior as in the case for 1D texture arrays. The exact
2383 semantics of the source address are presented in the table below:
2384
2385 +---------------------------+----+-----+-----+---------+
2386 | resource type | X | Y | Z | W |
2387 +===========================+====+=====+=====+=========+
2388 | ``PIPE_BUFFER`` | x | | | ignored |
2389 +---------------------------+----+-----+-----+---------+
2390 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2391 +---------------------------+----+-----+-----+---------+
2392 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2393 +---------------------------+----+-----+-----+---------+
2394 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2395 +---------------------------+----+-----+-----+---------+
2396 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2397 +---------------------------+----+-----+-----+---------+
2398 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2399 +---------------------------+----+-----+-----+---------+
2400 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2401 +---------------------------+----+-----+-----+---------+
2402 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2403 +---------------------------+----+-----+-----+---------+
2404
2405 Where 'mpl' is a mipmap level and 'idx' is the array index.
2406
2407 .. opcode:: SAMPLE_I_MS
2408
2409 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2410
2411 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2412
2413 .. opcode:: SAMPLE_B
2414
2415 Just like the SAMPLE instruction with the exception that an additional bias
2416 is applied to the level of detail computed as part of the instruction
2417 execution.
2418
2419 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2420
2421 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2422
2423 .. opcode:: SAMPLE_C
2424
2425 Similar to the SAMPLE instruction but it performs a comparison filter. The
2426 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2427 additional float32 operand, reference value, which must be a register with
2428 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2429 current samplers compare_func (in pipe_sampler_state) to compare reference
2430 value against the red component value for the surce resource at each texel
2431 that the currently configured texture filter covers based on the provided
2432 coordinates.
2433
2434 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2435
2436 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2437
2438 .. opcode:: SAMPLE_C_LZ
2439
2440 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2441 for level-zero.
2442
2443 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2444
2445 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2446
2447
2448 .. opcode:: SAMPLE_D
2449
2450 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2451 the source address in the x direction and the y direction are provided by
2452 extra parameters.
2453
2454 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2455
2456 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2457
2458 .. opcode:: SAMPLE_L
2459
2460 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2461 directly as a scalar value, representing no anisotropy.
2462
2463 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2464
2465 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2466
2467 .. opcode:: GATHER4
2468
2469 Gathers the four texels to be used in a bi-linear filtering operation and
2470 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2471 and cubemaps arrays. For 2D textures, only the addressing modes of the
2472 sampler and the top level of any mip pyramid are used. Set W to zero. It
2473 behaves like the SAMPLE instruction, but a filtered sample is not
2474 generated. The four samples that contribute to filtering are placed into
2475 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2476 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2477 magnitude of the deltas are half a texel.
2478
2479
2480 .. opcode:: SVIEWINFO
2481
2482 Query the dimensions of a given sampler view. dst receives width, height,
2483 depth or array size and number of mipmap levels as int4. The dst can have a
2484 writemask which will specify what info is the caller interested in.
2485
2486 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2487
2488 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2489
2490 src_mip_level is an unsigned integer scalar. If it's out of range then
2491 returns 0 for width, height and depth/array size but the total number of
2492 mipmap is still returned correctly for the given sampler view. The returned
2493 width, height and depth values are for the mipmap level selected by the
2494 src_mip_level and are in the number of texels. For 1d texture array width
2495 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2496 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2497 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2498 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2499 resinfo allowing swizzling dst values is ignored (due to the interaction
2500 with rcpfloat modifier which requires some swizzle handling in the state
2501 tracker anyway).
2502
2503 .. opcode:: SAMPLE_POS
2504
2505 Query the position of a sample in the given resource or render target
2506 when per-sample fragment shading is in effect.
2507
2508 Syntax: ``SAMPLE_POS dst, source, sample_index``
2509
2510 dst receives float4 (x, y, undef, undef) indicated where the sample is
2511 located. Sample locations are in the range [0, 1] where 0.5 is the center
2512 of the fragment.
2513
2514 source is either a sampler view (to indicate a shader resource) or temp
2515 register (to indicate the render target). The source register may have
2516 an optional swizzle to apply to the returned result
2517
2518 sample_index is an integer scalar indicating which sample position is to
2519 be queried.
2520
2521 If per-sample shading is not in effect or the source resource or render
2522 target is not multisampled, the result is (0.5, 0.5, undef, undef).
2523
2524 NOTE: no driver has implemented this opcode yet (and no state tracker
2525 emits it). This information is subject to change.
2526
2527 .. opcode:: SAMPLE_INFO
2528
2529 Query the number of samples in a multisampled resource or render target.
2530
2531 Syntax: ``SAMPLE_INFO dst, source``
2532
2533 dst receives int4 (n, 0, 0, 0) where n is the number of samples in a
2534 resource or the render target.
2535
2536 source is either a sampler view (to indicate a shader resource) or temp
2537 register (to indicate the render target). The source register may have
2538 an optional swizzle to apply to the returned result
2539
2540 If per-sample shading is not in effect or the source resource or render
2541 target is not multisampled, the result is (1, 0, 0, 0).
2542
2543 NOTE: no driver has implemented this opcode yet (and no state tracker
2544 emits it). This information is subject to change.
2545
2546 .. _resourceopcodes:
2547
2548 Resource Access Opcodes
2549 ^^^^^^^^^^^^^^^^^^^^^^^
2550
2551 For these opcodes, the resource can be a BUFFER, IMAGE, or MEMORY.
2552
2553 .. opcode:: LOAD - Fetch data from a shader buffer or image
2554
2555 Syntax: ``LOAD dst, resource, address``
2556
2557 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2558
2559 Using the provided integer address, LOAD fetches data
2560 from the specified buffer or texture without any
2561 filtering.
2562
2563 The 'address' is specified as a vector of unsigned
2564 integers. If the 'address' is out of range the result
2565 is unspecified.
2566
2567 Only the first mipmap level of a resource can be read
2568 from using this instruction.
2569
2570 For 1D or 2D texture arrays, the array index is
2571 provided as an unsigned integer in address.y or
2572 address.z, respectively. address.yz are ignored for
2573 buffers and 1D textures. address.z is ignored for 1D
2574 texture arrays and 2D textures. address.w is always
2575 ignored.
2576
2577 A swizzle suffix may be added to the resource argument
2578 this will cause the resource data to be swizzled accordingly.
2579
2580 .. opcode:: STORE - Write data to a shader resource
2581
2582 Syntax: ``STORE resource, address, src``
2583
2584 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2585
2586 Using the provided integer address, STORE writes data
2587 to the specified buffer or texture.
2588
2589 The 'address' is specified as a vector of unsigned
2590 integers. If the 'address' is out of range the result
2591 is unspecified.
2592
2593 Only the first mipmap level of a resource can be
2594 written to using this instruction.
2595
2596 For 1D or 2D texture arrays, the array index is
2597 provided as an unsigned integer in address.y or
2598 address.z, respectively. address.yz are ignored for
2599 buffers and 1D textures. address.z is ignored for 1D
2600 texture arrays and 2D textures. address.w is always
2601 ignored.
2602
2603 .. opcode:: RESQ - Query information about a resource
2604
2605 Syntax: ``RESQ dst, resource``
2606
2607 Example: ``RESQ TEMP[0], BUFFER[0]``
2608
2609 Returns information about the buffer or image resource. For buffer
2610 resources, the size (in bytes) is returned in the x component. For
2611 image resources, .xyz will contain the width/height/layers of the
2612 image, while .w will contain the number of samples for multi-sampled
2613 images.
2614
2615 .. opcode:: FBFETCH - Load data from framebuffer
2616
2617 Syntax: ``FBFETCH dst, output``
2618
2619 Example: ``FBFETCH TEMP[0], OUT[0]``
2620
2621 This is only valid on ``COLOR`` semantic outputs. Returns the color
2622 of the current position in the framebuffer from before this fragment
2623 shader invocation. May return the same value from multiple calls for
2624 a particular output within a single invocation. Note that result may
2625 be undefined if a fragment is drawn multiple times without a blend
2626 barrier in between.
2627
2628
2629 .. _threadsyncopcodes:
2630
2631 Inter-thread synchronization opcodes
2632 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2633
2634 These opcodes are intended for communication between threads running
2635 within the same compute grid. For now they're only valid in compute
2636 programs.
2637
2638 .. opcode:: MFENCE - Memory fence
2639
2640 Syntax: ``MFENCE resource``
2641
2642 Example: ``MFENCE RES[0]``
2643
2644 This opcode forces strong ordering between any memory access
2645 operations that affect the specified resource. This means that
2646 previous loads and stores (and only those) will be performed and
2647 visible to other threads before the program execution continues.
2648
2649
2650 .. opcode:: LFENCE - Load memory fence
2651
2652 Syntax: ``LFENCE resource``
2653
2654 Example: ``LFENCE RES[0]``
2655
2656 Similar to MFENCE, but it only affects the ordering of memory loads.
2657
2658
2659 .. opcode:: SFENCE - Store memory fence
2660
2661 Syntax: ``SFENCE resource``
2662
2663 Example: ``SFENCE RES[0]``
2664
2665 Similar to MFENCE, but it only affects the ordering of memory stores.
2666
2667
2668 .. opcode:: BARRIER - Thread group barrier
2669
2670 ``BARRIER``
2671
2672 This opcode suspends the execution of the current thread until all
2673 the remaining threads in the working group reach the same point of
2674 the program. Results are unspecified if any of the remaining
2675 threads terminates or never reaches an executed BARRIER instruction.
2676
2677 .. opcode:: MEMBAR - Memory barrier
2678
2679 ``MEMBAR type``
2680
2681 This opcode waits for the completion of all memory accesses based on
2682 the type passed in. The type is an immediate bitfield with the following
2683 meaning:
2684
2685 Bit 0: Shader storage buffers
2686 Bit 1: Atomic buffers
2687 Bit 2: Images
2688 Bit 3: Shared memory
2689 Bit 4: Thread group
2690
2691 These may be passed in in any combination. An implementation is free to not
2692 distinguish between these as it sees fit. However these map to all the
2693 possibilities made available by GLSL.
2694
2695 .. _atomopcodes:
2696
2697 Atomic opcodes
2698 ^^^^^^^^^^^^^^
2699
2700 These opcodes provide atomic variants of some common arithmetic and
2701 logical operations. In this context atomicity means that another
2702 concurrent memory access operation that affects the same memory
2703 location is guaranteed to be performed strictly before or after the
2704 entire execution of the atomic operation. The resource may be a BUFFER,
2705 IMAGE, or MEMORY. In the case of an image, the offset works the same as for
2706 ``LOAD`` and ``STORE``, specified above. These atomic operations may
2707 only be used with 32-bit integer image formats.
2708
2709 .. opcode:: ATOMUADD - Atomic integer addition
2710
2711 Syntax: ``ATOMUADD dst, resource, offset, src``
2712
2713 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2714
2715 The following operation is performed atomically:
2716
2717 .. math::
2718
2719 dst_x = resource[offset]
2720
2721 resource[offset] = dst_x + src_x
2722
2723
2724 .. opcode:: ATOMXCHG - Atomic exchange
2725
2726 Syntax: ``ATOMXCHG dst, resource, offset, src``
2727
2728 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2729
2730 The following operation is performed atomically:
2731
2732 .. math::
2733
2734 dst_x = resource[offset]
2735
2736 resource[offset] = src_x
2737
2738
2739 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2740
2741 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2742
2743 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2744
2745 The following operation is performed atomically:
2746
2747 .. math::
2748
2749 dst_x = resource[offset]
2750
2751 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2752
2753
2754 .. opcode:: ATOMAND - Atomic bitwise And
2755
2756 Syntax: ``ATOMAND dst, resource, offset, src``
2757
2758 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2759
2760 The following operation is performed atomically:
2761
2762 .. math::
2763
2764 dst_x = resource[offset]
2765
2766 resource[offset] = dst_x \& src_x
2767
2768
2769 .. opcode:: ATOMOR - Atomic bitwise Or
2770
2771 Syntax: ``ATOMOR dst, resource, offset, src``
2772
2773 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2774
2775 The following operation is performed atomically:
2776
2777 .. math::
2778
2779 dst_x = resource[offset]
2780
2781 resource[offset] = dst_x | src_x
2782
2783
2784 .. opcode:: ATOMXOR - Atomic bitwise Xor
2785
2786 Syntax: ``ATOMXOR dst, resource, offset, src``
2787
2788 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2789
2790 The following operation is performed atomically:
2791
2792 .. math::
2793
2794 dst_x = resource[offset]
2795
2796 resource[offset] = dst_x \oplus src_x
2797
2798
2799 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2800
2801 Syntax: ``ATOMUMIN dst, resource, offset, src``
2802
2803 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2804
2805 The following operation is performed atomically:
2806
2807 .. math::
2808
2809 dst_x = resource[offset]
2810
2811 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2812
2813
2814 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2815
2816 Syntax: ``ATOMUMAX dst, resource, offset, src``
2817
2818 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2819
2820 The following operation is performed atomically:
2821
2822 .. math::
2823
2824 dst_x = resource[offset]
2825
2826 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2827
2828
2829 .. opcode:: ATOMIMIN - Atomic signed minimum
2830
2831 Syntax: ``ATOMIMIN dst, resource, offset, src``
2832
2833 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2834
2835 The following operation is performed atomically:
2836
2837 .. math::
2838
2839 dst_x = resource[offset]
2840
2841 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2842
2843
2844 .. opcode:: ATOMIMAX - Atomic signed maximum
2845
2846 Syntax: ``ATOMIMAX dst, resource, offset, src``
2847
2848 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2849
2850 The following operation is performed atomically:
2851
2852 .. math::
2853
2854 dst_x = resource[offset]
2855
2856 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2857
2858
2859 .. _interlaneopcodes:
2860
2861 Inter-lane opcodes
2862 ^^^^^^^^^^^^^^^^^^
2863
2864 These opcodes reduce the given value across the shader invocations
2865 running in the current SIMD group. Every thread in the subgroup will receive
2866 the same result. The BALLOT operations accept a single-channel argument that
2867 is treated as a boolean and produce a 64-bit value.
2868
2869 .. opcode:: VOTE_ANY - Value is set in any of the active invocations
2870
2871 Syntax: ``VOTE_ANY dst, value``
2872
2873 Example: ``VOTE_ANY TEMP[0].x, TEMP[1].x``
2874
2875
2876 .. opcode:: VOTE_ALL - Value is set in all of the active invocations
2877
2878 Syntax: ``VOTE_ALL dst, value``
2879
2880 Example: ``VOTE_ALL TEMP[0].x, TEMP[1].x``
2881
2882
2883 .. opcode:: VOTE_EQ - Value is the same in all of the active invocations
2884
2885 Syntax: ``VOTE_EQ dst, value``
2886
2887 Example: ``VOTE_EQ TEMP[0].x, TEMP[1].x``
2888
2889
2890 .. opcode:: BALLOT - Lanemask of whether the value is set in each active
2891 invocation
2892
2893 Syntax: ``BALLOT dst, value``
2894
2895 Example: ``BALLOT TEMP[0].xy, TEMP[1].x``
2896
2897 When the argument is a constant true, this produces a bitmask of active
2898 invocations. In fragment shaders, this can include helper invocations
2899 (invocations whose outputs and writes to memory are discarded, but which
2900 are used to compute derivatives).
2901
2902
2903 .. opcode:: READ_FIRST - Broadcast the value from the first active
2904 invocation to all active lanes
2905
2906 Syntax: ``READ_FIRST dst, value``
2907
2908 Example: ``READ_FIRST TEMP[0], TEMP[1]``
2909
2910
2911 .. opcode:: READ_INVOC - Retrieve the value from the given invocation
2912 (need not be uniform)
2913
2914 Syntax: ``READ_INVOC dst, value, invocation``
2915
2916 Example: ``READ_INVOC TEMP[0].xy, TEMP[1].xy, TEMP[2].x``
2917
2918 invocation.x controls the invocation number to read from for all channels.
2919 The invocation number must be the same across all active invocations in a
2920 sub-group; otherwise, the results are undefined.
2921
2922
2923 Explanation of symbols used
2924 ------------------------------
2925
2926
2927 Functions
2928 ^^^^^^^^^^^^^^
2929
2930
2931 :math:`|x|` Absolute value of `x`.
2932
2933 :math:`\lceil x \rceil` Ceiling of `x`.
2934
2935 clamp(x,y,z) Clamp x between y and z.
2936 (x < y) ? y : (x > z) ? z : x
2937
2938 :math:`\lfloor x\rfloor` Floor of `x`.
2939
2940 :math:`\log_2{x}` Logarithm of `x`, base 2.
2941
2942 max(x,y) Maximum of x and y.
2943 (x > y) ? x : y
2944
2945 min(x,y) Minimum of x and y.
2946 (x < y) ? x : y
2947
2948 partialx(x) Derivative of x relative to fragment's X.
2949
2950 partialy(x) Derivative of x relative to fragment's Y.
2951
2952 pop() Pop from stack.
2953
2954 :math:`x^y` `x` to the power `y`.
2955
2956 push(x) Push x on stack.
2957
2958 round(x) Round x.
2959
2960 trunc(x) Truncate x, i.e. drop the fraction bits.
2961
2962
2963 Keywords
2964 ^^^^^^^^^^^^^
2965
2966
2967 discard Discard fragment.
2968
2969 pc Program counter.
2970
2971 target Label of target instruction.
2972
2973
2974 Other tokens
2975 ---------------
2976
2977
2978 Declaration
2979 ^^^^^^^^^^^
2980
2981
2982 Declares a register that is will be referenced as an operand in Instruction
2983 tokens.
2984
2985 File field contains register file that is being declared and is one
2986 of TGSI_FILE.
2987
2988 UsageMask field specifies which of the register components can be accessed
2989 and is one of TGSI_WRITEMASK.
2990
2991 The Local flag specifies that a given value isn't intended for
2992 subroutine parameter passing and, as a result, the implementation
2993 isn't required to give any guarantees of it being preserved across
2994 subroutine boundaries. As it's merely a compiler hint, the
2995 implementation is free to ignore it.
2996
2997 If Dimension flag is set to 1, a Declaration Dimension token follows.
2998
2999 If Semantic flag is set to 1, a Declaration Semantic token follows.
3000
3001 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
3002
3003 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
3004
3005 If Array flag is set to 1, a Declaration Array token follows.
3006
3007 Array Declaration
3008 ^^^^^^^^^^^^^^^^^^^^^^^^
3009
3010 Declarations can optional have an ArrayID attribute which can be referred by
3011 indirect addressing operands. An ArrayID of zero is reserved and treated as
3012 if no ArrayID is specified.
3013
3014 If an indirect addressing operand refers to a specific declaration by using
3015 an ArrayID only the registers in this declaration are guaranteed to be
3016 accessed, accessing any register outside this declaration results in undefined
3017 behavior. Note that for compatibility the effective index is zero-based and
3018 not relative to the specified declaration
3019
3020 If no ArrayID is specified with an indirect addressing operand the whole
3021 register file might be accessed by this operand. This is strongly discouraged
3022 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
3023 This is only legal for TEMP and CONST register files.
3024
3025 Declaration Semantic
3026 ^^^^^^^^^^^^^^^^^^^^^^^^
3027
3028 Vertex and fragment shader input and output registers may be labeled
3029 with semantic information consisting of a name and index.
3030
3031 Follows Declaration token if Semantic bit is set.
3032
3033 Since its purpose is to link a shader with other stages of the pipeline,
3034 it is valid to follow only those Declaration tokens that declare a register
3035 either in INPUT or OUTPUT file.
3036
3037 SemanticName field contains the semantic name of the register being declared.
3038 There is no default value.
3039
3040 SemanticIndex is an optional subscript that can be used to distinguish
3041 different register declarations with the same semantic name. The default value
3042 is 0.
3043
3044 The meanings of the individual semantic names are explained in the following
3045 sections.
3046
3047 TGSI_SEMANTIC_POSITION
3048 """"""""""""""""""""""
3049
3050 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
3051 output register which contains the homogeneous vertex position in the clip
3052 space coordinate system. After clipping, the X, Y and Z components of the
3053 vertex will be divided by the W value to get normalized device coordinates.
3054
3055 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
3056 fragment shader input (or system value, depending on which one is
3057 supported by the driver) contains the fragment's window position. The X
3058 component starts at zero and always increases from left to right.
3059 The Y component starts at zero and always increases but Y=0 may either
3060 indicate the top of the window or the bottom depending on the fragment
3061 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
3062 The Z coordinate ranges from 0 to 1 to represent depth from the front
3063 to the back of the Z buffer. The W component contains the interpolated
3064 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
3065 but unlike d3d10 which interpolates the same 1/w but then gives back
3066 the reciprocal of the interpolated value).
3067
3068 Fragment shaders may also declare an output register with
3069 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
3070 the fragment shader to change the fragment's Z position.
3071
3072
3073
3074 TGSI_SEMANTIC_COLOR
3075 """""""""""""""""""
3076
3077 For vertex shader outputs or fragment shader inputs/outputs, this
3078 label indicates that the register contains an R,G,B,A color.
3079
3080 Several shader inputs/outputs may contain colors so the semantic index
3081 is used to distinguish them. For example, color[0] may be the diffuse
3082 color while color[1] may be the specular color.
3083
3084 This label is needed so that the flat/smooth shading can be applied
3085 to the right interpolants during rasterization.
3086
3087
3088
3089 TGSI_SEMANTIC_BCOLOR
3090 """"""""""""""""""""
3091
3092 Back-facing colors are only used for back-facing polygons, and are only valid
3093 in vertex shader outputs. After rasterization, all polygons are front-facing
3094 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
3095 so all BCOLORs effectively become regular COLORs in the fragment shader.
3096
3097
3098 TGSI_SEMANTIC_FOG
3099 """""""""""""""""
3100
3101 Vertex shader inputs and outputs and fragment shader inputs may be
3102 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
3103 a fog coordinate. Typically, the fragment shader will use the fog coordinate
3104 to compute a fog blend factor which is used to blend the normal fragment color
3105 with a constant fog color. But fog coord really is just an ordinary vec4
3106 register like regular semantics.
3107
3108
3109 TGSI_SEMANTIC_PSIZE
3110 """""""""""""""""""
3111
3112 Vertex shader input and output registers may be labeled with
3113 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3114 in the form (S, 0, 0, 1). The point size controls the width or diameter
3115 of points for rasterization. This label cannot be used in fragment
3116 shaders.
3117
3118 When using this semantic, be sure to set the appropriate state in the
3119 :ref:`rasterizer` first.
3120
3121
3122 TGSI_SEMANTIC_TEXCOORD
3123 """"""""""""""""""""""
3124
3125 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3126
3127 Vertex shader outputs and fragment shader inputs may be labeled with
3128 this semantic to make them replaceable by sprite coordinates via the
3129 sprite_coord_enable state in the :ref:`rasterizer`.
3130 The semantic index permitted with this semantic is limited to <= 7.
3131
3132 If the driver does not support TEXCOORD, sprite coordinate replacement
3133 applies to inputs with the GENERIC semantic instead.
3134
3135 The intended use case for this semantic is gl_TexCoord.
3136
3137
3138 TGSI_SEMANTIC_PCOORD
3139 """"""""""""""""""""
3140
3141 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3142
3143 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3144 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3145 the current primitive is a point and point sprites are enabled. Otherwise,
3146 the contents of the register are undefined.
3147
3148 The intended use case for this semantic is gl_PointCoord.
3149
3150
3151 TGSI_SEMANTIC_GENERIC
3152 """""""""""""""""""""
3153
3154 All vertex/fragment shader inputs/outputs not labeled with any other
3155 semantic label can be considered to be generic attributes. Typical
3156 uses of generic inputs/outputs are texcoords and user-defined values.
3157
3158
3159 TGSI_SEMANTIC_NORMAL
3160 """"""""""""""""""""
3161
3162 Indicates that a vertex shader input is a normal vector. This is
3163 typically only used for legacy graphics APIs.
3164
3165
3166 TGSI_SEMANTIC_FACE
3167 """"""""""""""""""
3168
3169 This label applies to fragment shader inputs (or system values,
3170 depending on which one is supported by the driver) and indicates that
3171 the register contains front/back-face information.
3172
3173 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3174 where F will be positive when the fragment belongs to a front-facing polygon,
3175 and negative when the fragment belongs to a back-facing polygon.
3176
3177 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3178 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3179 0 when the fragment belongs to a back-facing polygon.
3180
3181
3182 TGSI_SEMANTIC_EDGEFLAG
3183 """"""""""""""""""""""
3184
3185 For vertex shaders, this sematic label indicates that an input or
3186 output is a boolean edge flag. The register layout is [F, x, x, x]
3187 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3188 simply copies the edge flag input to the edgeflag output.
3189
3190 Edge flags are used to control which lines or points are actually
3191 drawn when the polygon mode converts triangles/quads/polygons into
3192 points or lines.
3193
3194
3195 TGSI_SEMANTIC_STENCIL
3196 """""""""""""""""""""
3197
3198 For fragment shaders, this semantic label indicates that an output
3199 is a writable stencil reference value. Only the Y component is writable.
3200 This allows the fragment shader to change the fragments stencilref value.
3201
3202
3203 TGSI_SEMANTIC_VIEWPORT_INDEX
3204 """"""""""""""""""""""""""""
3205
3206 For geometry shaders, this semantic label indicates that an output
3207 contains the index of the viewport (and scissor) to use.
3208 This is an integer value, and only the X component is used.
3209
3210 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3211 supported, then this semantic label can also be used in vertex or
3212 tessellation evaluation shaders, respectively. Only the value written in the
3213 last vertex processing stage is used.
3214
3215
3216 TGSI_SEMANTIC_LAYER
3217 """""""""""""""""""
3218
3219 For geometry shaders, this semantic label indicates that an output
3220 contains the layer value to use for the color and depth/stencil surfaces.
3221 This is an integer value, and only the X component is used.
3222 (Also known as rendertarget array index.)
3223
3224 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3225 supported, then this semantic label can also be used in vertex or
3226 tessellation evaluation shaders, respectively. Only the value written in the
3227 last vertex processing stage is used.
3228
3229
3230 TGSI_SEMANTIC_CULLDIST
3231 """"""""""""""""""""""
3232
3233 Used as distance to plane for performing application-defined culling
3234 of individual primitives against a plane. When components of vertex
3235 elements are given this label, these values are assumed to be a
3236 float32 signed distance to a plane. Primitives will be completely
3237 discarded if the plane distance for all of the vertices in the
3238 primitive are < 0. If a vertex has a cull distance of NaN, that
3239 vertex counts as "out" (as if its < 0);
3240 The limits on both clip and cull distances are bound
3241 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3242 the maximum number of components that can be used to hold the
3243 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3244 which specifies the maximum number of registers which can be
3245 annotated with those semantics.
3246
3247
3248 TGSI_SEMANTIC_CLIPDIST
3249 """"""""""""""""""""""
3250
3251 Note this covers clipping and culling distances.
3252
3253 When components of vertex elements are identified this way, these
3254 values are each assumed to be a float32 signed distance to a plane.
3255
3256 For clip distances:
3257 Primitive setup only invokes rasterization on pixels for which
3258 the interpolated plane distances are >= 0.
3259
3260 For cull distances:
3261 Primitives will be completely discarded if the plane distance
3262 for all of the vertices in the primitive are < 0.
3263 If a vertex has a cull distance of NaN, that vertex counts as "out"
3264 (as if its < 0);
3265
3266 Multiple clip/cull planes can be implemented simultaneously, by
3267 annotating multiple components of one or more vertex elements with
3268 the above specified semantic.
3269 The limits on both clip and cull distances are bound
3270 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3271 the maximum number of components that can be used to hold the
3272 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3273 which specifies the maximum number of registers which can be
3274 annotated with those semantics.
3275 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3276 are used to divide up the 2 x vec4 space between clipping and culling.
3277
3278 TGSI_SEMANTIC_SAMPLEID
3279 """"""""""""""""""""""
3280
3281 For fragment shaders, this semantic label indicates that a system value
3282 contains the current sample id (i.e. gl_SampleID) as an unsigned int.
3283 Only the X component is used. If per-sample shading is not enabled,
3284 the result is (0, undef, undef, undef).
3285
3286 Note that if the fragment shader uses this system value, the fragment
3287 shader is automatically executed at per sample frequency.
3288
3289 TGSI_SEMANTIC_SAMPLEPOS
3290 """""""""""""""""""""""
3291
3292 For fragment shaders, this semantic label indicates that a system
3293 value contains the current sample's position as float4(x, y, undef, undef)
3294 in the render target (i.e. gl_SamplePosition) when per-fragment shading
3295 is in effect. Position values are in the range [0, 1] where 0.5 is
3296 the center of the fragment.
3297
3298 Note that if the fragment shader uses this system value, the fragment
3299 shader is automatically executed at per sample frequency.
3300
3301 TGSI_SEMANTIC_SAMPLEMASK
3302 """"""""""""""""""""""""
3303
3304 For fragment shaders, this semantic label can be applied to either a
3305 shader system value input or output.
3306
3307 For a system value, the sample mask indicates the set of samples covered by
3308 the current primitive. If MSAA is not enabled, the value is (1, 0, 0, 0).
3309
3310 For an output, the sample mask is used to disable further sample processing.
3311
3312 For both, the register type is uint[4] but only the X component is used
3313 (i.e. gl_SampleMask[0]). Each bit corresponds to one sample position (up
3314 to 32x MSAA is supported).
3315
3316 TGSI_SEMANTIC_INVOCATIONID
3317 """"""""""""""""""""""""""
3318
3319 For geometry shaders, this semantic label indicates that a system value
3320 contains the current invocation id (i.e. gl_InvocationID).
3321 This is an integer value, and only the X component is used.
3322
3323 TGSI_SEMANTIC_INSTANCEID
3324 """"""""""""""""""""""""
3325
3326 For vertex shaders, this semantic label indicates that a system value contains
3327 the current instance id (i.e. gl_InstanceID). It does not include the base
3328 instance. This is an integer value, and only the X component is used.
3329
3330 TGSI_SEMANTIC_VERTEXID
3331 """"""""""""""""""""""
3332
3333 For vertex shaders, this semantic label indicates that a system value contains
3334 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3335 base vertex. This is an integer value, and only the X component is used.
3336
3337 TGSI_SEMANTIC_VERTEXID_NOBASE
3338 """""""""""""""""""""""""""""""
3339
3340 For vertex shaders, this semantic label indicates that a system value contains
3341 the current vertex id without including the base vertex (this corresponds to
3342 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3343 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3344 is used.
3345
3346 TGSI_SEMANTIC_BASEVERTEX
3347 """"""""""""""""""""""""
3348
3349 For vertex shaders, this semantic label indicates that a system value contains
3350 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3351 this contains the first (or start) value instead.
3352 This is an integer value, and only the X component is used.
3353
3354 TGSI_SEMANTIC_PRIMID
3355 """"""""""""""""""""
3356
3357 For geometry and fragment shaders, this semantic label indicates the value
3358 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3359 and only the X component is used.
3360 FIXME: This right now can be either a ordinary input or a system value...
3361
3362
3363 TGSI_SEMANTIC_PATCH
3364 """""""""""""""""""
3365
3366 For tessellation evaluation/control shaders, this semantic label indicates a
3367 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3368 arrays.
3369
3370 TGSI_SEMANTIC_TESSCOORD
3371 """""""""""""""""""""""
3372
3373 For tessellation evaluation shaders, this semantic label indicates the
3374 coordinates of the vertex being processed. This is available in XYZ; W is
3375 undefined.
3376
3377 TGSI_SEMANTIC_TESSOUTER
3378 """""""""""""""""""""""
3379
3380 For tessellation evaluation/control shaders, this semantic label indicates the
3381 outer tessellation levels of the patch. Isoline tessellation will only have XY
3382 defined, triangle will have XYZ and quads will have XYZW defined. This
3383 corresponds to gl_TessLevelOuter.
3384
3385 TGSI_SEMANTIC_TESSINNER
3386 """""""""""""""""""""""
3387
3388 For tessellation evaluation/control shaders, this semantic label indicates the
3389 inner tessellation levels of the patch. The X value is only defined for
3390 triangle tessellation, while quads will have XY defined. This is entirely
3391 undefined for isoline tessellation.
3392
3393 TGSI_SEMANTIC_VERTICESIN
3394 """"""""""""""""""""""""
3395
3396 For tessellation evaluation/control shaders, this semantic label indicates the
3397 number of vertices provided in the input patch. Only the X value is defined.
3398
3399 TGSI_SEMANTIC_HELPER_INVOCATION
3400 """""""""""""""""""""""""""""""
3401
3402 For fragment shaders, this semantic indicates whether the current
3403 invocation is covered or not. Helper invocations are created in order
3404 to properly compute derivatives, however it may be desirable to skip
3405 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3406
3407 TGSI_SEMANTIC_BASEINSTANCE
3408 """"""""""""""""""""""""""
3409
3410 For vertex shaders, the base instance argument supplied for this
3411 draw. This is an integer value, and only the X component is used.
3412
3413 TGSI_SEMANTIC_DRAWID
3414 """"""""""""""""""""
3415
3416 For vertex shaders, the zero-based index of the current draw in a
3417 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3418 component is used.
3419
3420
3421 TGSI_SEMANTIC_WORK_DIM
3422 """"""""""""""""""""""
3423
3424 For compute shaders started via opencl this retrieves the work_dim
3425 parameter to the clEnqueueNDRangeKernel call with which the shader
3426 was started.
3427
3428
3429 TGSI_SEMANTIC_GRID_SIZE
3430 """""""""""""""""""""""
3431
3432 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3433 of a grid of thread blocks.
3434
3435
3436 TGSI_SEMANTIC_BLOCK_ID
3437 """"""""""""""""""""""
3438
3439 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3440 current block inside of the grid.
3441
3442
3443 TGSI_SEMANTIC_BLOCK_SIZE
3444 """"""""""""""""""""""""
3445
3446 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3447 of a block in threads.
3448
3449
3450 TGSI_SEMANTIC_THREAD_ID
3451 """""""""""""""""""""""
3452
3453 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3454 current thread inside of the block.
3455
3456
3457 TGSI_SEMANTIC_SUBGROUP_SIZE
3458 """""""""""""""""""""""""""
3459
3460 This semantic indicates the subgroup size for the current invocation. This is
3461 an integer of at most 64, as it indicates the width of lanemasks. It does not
3462 depend on the number of invocations that are active.
3463
3464
3465 TGSI_SEMANTIC_SUBGROUP_INVOCATION
3466 """""""""""""""""""""""""""""""""
3467
3468 The index of the current invocation within its subgroup.
3469
3470
3471 TGSI_SEMANTIC_SUBGROUP_EQ_MASK
3472 """"""""""""""""""""""""""""""
3473
3474 A bit mask of ``bit index == TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3475 ``1 << subgroup_invocation`` in arbitrary precision arithmetic.
3476
3477
3478 TGSI_SEMANTIC_SUBGROUP_GE_MASK
3479 """"""""""""""""""""""""""""""
3480
3481 A bit mask of ``bit index >= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3482 ``((1 << (subgroup_size - subgroup_invocation)) - 1) << subgroup_invocation``
3483 in arbitrary precision arithmetic.
3484
3485
3486 TGSI_SEMANTIC_SUBGROUP_GT_MASK
3487 """"""""""""""""""""""""""""""
3488
3489 A bit mask of ``bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3490 ``((1 << (subgroup_size - subgroup_invocation - 1)) - 1) << (subgroup_invocation + 1)``
3491 in arbitrary precision arithmetic.
3492
3493
3494 TGSI_SEMANTIC_SUBGROUP_LE_MASK
3495 """"""""""""""""""""""""""""""
3496
3497 A bit mask of ``bit index <= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3498 ``(1 << (subgroup_invocation + 1)) - 1`` in arbitrary precision arithmetic.
3499
3500
3501 TGSI_SEMANTIC_SUBGROUP_LT_MASK
3502 """"""""""""""""""""""""""""""
3503
3504 A bit mask of ``bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3505 ``(1 << subgroup_invocation) - 1`` in arbitrary precision arithmetic.
3506
3507
3508 Declaration Interpolate
3509 ^^^^^^^^^^^^^^^^^^^^^^^
3510
3511 This token is only valid for fragment shader INPUT declarations.
3512
3513 The Interpolate field specifes the way input is being interpolated by
3514 the rasteriser and is one of TGSI_INTERPOLATE_*.
3515
3516 The Location field specifies the location inside the pixel that the
3517 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3518 when per-sample shading is enabled, the implementation may choose to
3519 interpolate at the sample irrespective of the Location field.
3520
3521 The CylindricalWrap bitfield specifies which register components
3522 should be subject to cylindrical wrapping when interpolating by the
3523 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3524 should be interpolated according to cylindrical wrapping rules.
3525
3526
3527 Declaration Sampler View
3528 ^^^^^^^^^^^^^^^^^^^^^^^^
3529
3530 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3531
3532 DCL SVIEW[#], resource, type(s)
3533
3534 Declares a shader input sampler view and assigns it to a SVIEW[#]
3535 register.
3536
3537 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3538
3539 type must be 1 or 4 entries (if specifying on a per-component
3540 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3541
3542 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3543 which take an explicit SVIEW[#] source register), there may be optionally
3544 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3545 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3546 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3547 But note in particular that some drivers need to know the sampler type
3548 (float/int/unsigned) in order to generate the correct code, so cases
3549 where integer textures are sampled, SVIEW[#] declarations should be
3550 used.
3551
3552 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3553 in the same shader.
3554
3555 Declaration Resource
3556 ^^^^^^^^^^^^^^^^^^^^
3557
3558 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3559
3560 DCL RES[#], resource [, WR] [, RAW]
3561
3562 Declares a shader input resource and assigns it to a RES[#]
3563 register.
3564
3565 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3566 2DArray.
3567
3568 If the RAW keyword is not specified, the texture data will be
3569 subject to conversion, swizzling and scaling as required to yield
3570 the specified data type from the physical data format of the bound
3571 resource.
3572
3573 If the RAW keyword is specified, no channel conversion will be
3574 performed: the values read for each of the channels (X,Y,Z,W) will
3575 correspond to consecutive words in the same order and format
3576 they're found in memory. No element-to-address conversion will be
3577 performed either: the value of the provided X coordinate will be
3578 interpreted in byte units instead of texel units. The result of
3579 accessing a misaligned address is undefined.
3580
3581 Usage of the STORE opcode is only allowed if the WR (writable) flag
3582 is set.
3583
3584
3585 Properties
3586 ^^^^^^^^^^^^^^^^^^^^^^^^
3587
3588 Properties are general directives that apply to the whole TGSI program.
3589
3590 FS_COORD_ORIGIN
3591 """""""""""""""
3592
3593 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3594 The default value is UPPER_LEFT.
3595
3596 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3597 increase downward and rightward.
3598 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3599 increase upward and rightward.
3600
3601 OpenGL defaults to LOWER_LEFT, and is configurable with the
3602 GL_ARB_fragment_coord_conventions extension.
3603
3604 DirectX 9/10 use UPPER_LEFT.
3605
3606 FS_COORD_PIXEL_CENTER
3607 """""""""""""""""""""
3608
3609 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3610 The default value is HALF_INTEGER.
3611
3612 If HALF_INTEGER, the fractionary part of the position will be 0.5
3613 If INTEGER, the fractionary part of the position will be 0.0
3614
3615 Note that this does not affect the set of fragments generated by
3616 rasterization, which is instead controlled by half_pixel_center in the
3617 rasterizer.
3618
3619 OpenGL defaults to HALF_INTEGER, and is configurable with the
3620 GL_ARB_fragment_coord_conventions extension.
3621
3622 DirectX 9 uses INTEGER.
3623 DirectX 10 uses HALF_INTEGER.
3624
3625 FS_COLOR0_WRITES_ALL_CBUFS
3626 """"""""""""""""""""""""""
3627 Specifies that writes to the fragment shader color 0 are replicated to all
3628 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3629 fragData is directed to a single color buffer, but fragColor is broadcast.
3630
3631 VS_PROHIBIT_UCPS
3632 """"""""""""""""""""""""""
3633 If this property is set on the program bound to the shader stage before the
3634 fragment shader, user clip planes should have no effect (be disabled) even if
3635 that shader does not write to any clip distance outputs and the rasterizer's
3636 clip_plane_enable is non-zero.
3637 This property is only supported by drivers that also support shader clip
3638 distance outputs.
3639 This is useful for APIs that don't have UCPs and where clip distances written
3640 by a shader cannot be disabled.
3641
3642 GS_INVOCATIONS
3643 """"""""""""""
3644
3645 Specifies the number of times a geometry shader should be executed for each
3646 input primitive. Each invocation will have a different
3647 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3648 be 1.
3649
3650 VS_WINDOW_SPACE_POSITION
3651 """"""""""""""""""""""""""
3652 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3653 is assumed to contain window space coordinates.
3654 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3655 directly taken from the 4-th component of the shader output.
3656 Naturally, clipping is not performed on window coordinates either.
3657 The effect of this property is undefined if a geometry or tessellation shader
3658 are in use.
3659
3660 TCS_VERTICES_OUT
3661 """"""""""""""""
3662
3663 The number of vertices written by the tessellation control shader. This
3664 effectively defines the patch input size of the tessellation evaluation shader
3665 as well.
3666
3667 TES_PRIM_MODE
3668 """""""""""""
3669
3670 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3671 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3672 separate isolines settings, the regular lines is assumed to mean isolines.)
3673
3674 TES_SPACING
3675 """""""""""
3676
3677 This sets the spacing mode of the tessellation generator, one of
3678 ``PIPE_TESS_SPACING_*``.
3679
3680 TES_VERTEX_ORDER_CW
3681 """""""""""""""""""
3682
3683 This sets the vertex order to be clockwise if the value is 1, or
3684 counter-clockwise if set to 0.
3685
3686 TES_POINT_MODE
3687 """"""""""""""
3688
3689 If set to a non-zero value, this turns on point mode for the tessellator,
3690 which means that points will be generated instead of primitives.
3691
3692 NUM_CLIPDIST_ENABLED
3693 """"""""""""""""""""
3694
3695 How many clip distance scalar outputs are enabled.
3696
3697 NUM_CULLDIST_ENABLED
3698 """"""""""""""""""""
3699
3700 How many cull distance scalar outputs are enabled.
3701
3702 FS_EARLY_DEPTH_STENCIL
3703 """"""""""""""""""""""
3704
3705 Whether depth test, stencil test, and occlusion query should run before
3706 the fragment shader (regardless of fragment shader side effects). Corresponds
3707 to GLSL early_fragment_tests.
3708
3709 NEXT_SHADER
3710 """""""""""
3711
3712 Which shader stage will MOST LIKELY follow after this shader when the shader
3713 is bound. This is only a hint to the driver and doesn't have to be precise.
3714 Only set for VS and TES.
3715
3716 CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3717 """""""""""""""""""""""""""""""""""""
3718
3719 Threads per block in each dimension, if known at compile time. If the block size
3720 is known all three should be at least 1. If it is unknown they should all be set
3721 to 0 or not set.
3722
3723 MUL_ZERO_WINS
3724 """""""""""""
3725
3726 The MUL TGSI operation (FP32 multiplication) will return 0 if either
3727 of the operands are equal to 0. That means that 0 * Inf = 0. This
3728 should be set the same way for an entire pipeline. Note that this
3729 applies not only to the literal MUL TGSI opcode, but all FP32
3730 multiplications implied by other operations, such as MAD, FMA, DP2,
3731 DP3, DP4, DPH, DST, LOG, LRP, XPD, and possibly others. If there is a
3732 mismatch between shaders, then it is unspecified whether this behavior
3733 will be enabled.
3734
3735 FS_POST_DEPTH_COVERAGE
3736 """"""""""""""""""""""
3737
3738 When enabled, the input for TGSI_SEMANTIC_SAMPLEMASK will exclude samples
3739 that have failed the depth/stencil tests. This is only valid when
3740 FS_EARLY_DEPTH_STENCIL is also specified.
3741
3742
3743 Texture Sampling and Texture Formats
3744 ------------------------------------
3745
3746 This table shows how texture image components are returned as (x,y,z,w) tuples
3747 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3748 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3749 well.
3750
3751 +--------------------+--------------+--------------------+--------------+
3752 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3753 +====================+==============+====================+==============+
3754 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3755 +--------------------+--------------+--------------------+--------------+
3756 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3757 +--------------------+--------------+--------------------+--------------+
3758 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3759 +--------------------+--------------+--------------------+--------------+
3760 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3761 +--------------------+--------------+--------------------+--------------+
3762 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3763 +--------------------+--------------+--------------------+--------------+
3764 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3765 +--------------------+--------------+--------------------+--------------+
3766 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3767 +--------------------+--------------+--------------------+--------------+
3768 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3769 +--------------------+--------------+--------------------+--------------+
3770 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3771 | | | [#envmap-bumpmap]_ | |
3772 +--------------------+--------------+--------------------+--------------+
3773 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3774 | | | [#depth-tex-mode]_ | |
3775 +--------------------+--------------+--------------------+--------------+
3776 | S | (s, s, s, s) | unknown | unknown |
3777 +--------------------+--------------+--------------------+--------------+
3778
3779 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3780 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3781 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.