tgsi: align the definition of BFI & [UI]BFE with GLSL
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = (int) \lfloor src.x\rfloor
52
53 dst.y = (int) \lfloor src.y\rfloor
54
55 dst.z = (int) \lfloor src.z\rfloor
56
57 dst.w = (int) \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: FMA - Fused Multiply-Add
276
277 Perform a * b + c with no intermediate rounding step.
278
279 .. math::
280
281 dst.x = src0.x \times src1.x + src2.x
282
283 dst.y = src0.y \times src1.y + src2.y
284
285 dst.z = src0.z \times src1.z + src2.z
286
287 dst.w = src0.w \times src1.w + src2.w
288
289
290 .. opcode:: DP2A - 2-component Dot Product And Add
291
292 .. math::
293
294 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
301
302
303 .. opcode:: FRC - Fraction
304
305 .. math::
306
307 dst.x = src.x - \lfloor src.x\rfloor
308
309 dst.y = src.y - \lfloor src.y\rfloor
310
311 dst.z = src.z - \lfloor src.z\rfloor
312
313 dst.w = src.w - \lfloor src.w\rfloor
314
315
316 .. opcode:: CLAMP - Clamp
317
318 .. math::
319
320 dst.x = clamp(src0.x, src1.x, src2.x)
321
322 dst.y = clamp(src0.y, src1.y, src2.y)
323
324 dst.z = clamp(src0.z, src1.z, src2.z)
325
326 dst.w = clamp(src0.w, src1.w, src2.w)
327
328
329 .. opcode:: FLR - Floor
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: DPH - Homogeneous Dot Product
408
409 This instruction replicates its result.
410
411 .. math::
412
413 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
414
415
416 .. opcode:: COS - Cosine
417
418 This instruction replicates its result.
419
420 .. math::
421
422 dst = \cos{src.x}
423
424
425 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
426
427 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
428 advertised. When it is, the fine version guarantees one derivative per row
429 while DDX is allowed to be the same for the entire 2x2 quad.
430
431 .. math::
432
433 dst.x = partialx(src.x)
434
435 dst.y = partialx(src.y)
436
437 dst.z = partialx(src.z)
438
439 dst.w = partialx(src.w)
440
441
442 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
443
444 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
445 advertised. When it is, the fine version guarantees one derivative per column
446 while DDY is allowed to be the same for the entire 2x2 quad.
447
448 .. math::
449
450 dst.x = partialy(src.x)
451
452 dst.y = partialy(src.y)
453
454 dst.z = partialy(src.z)
455
456 dst.w = partialy(src.w)
457
458
459 .. opcode:: PK2H - Pack Two 16-bit Floats
460
461 This instruction replicates its result.
462
463 .. math::
464
465 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
466
467
468 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
469
470 TBD
471
472
473 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
474
475 TBD
476
477
478 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
479
480 TBD
481
482
483 .. opcode:: SEQ - Set On Equal
484
485 .. math::
486
487 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
488
489 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
490
491 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
492
493 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
494
495
496 .. opcode:: SGT - Set On Greater Than
497
498 .. math::
499
500 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
501
502 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
503
504 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
505
506 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
507
508
509 .. opcode:: SIN - Sine
510
511 This instruction replicates its result.
512
513 .. math::
514
515 dst = \sin{src.x}
516
517
518 .. opcode:: SLE - Set On Less Equal Than
519
520 .. math::
521
522 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
523
524 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
525
526 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
527
528 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
529
530
531 .. opcode:: SNE - Set On Not Equal
532
533 .. math::
534
535 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
536
537 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
538
539 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
540
541 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
542
543
544 .. opcode:: TEX - Texture Lookup
545
546 for array textures src0.y contains the slice for 1D,
547 and src0.z contain the slice for 2D.
548
549 for shadow textures with no arrays (and not cube map),
550 src0.z contains the reference value.
551
552 for shadow textures with arrays, src0.z contains
553 the reference value for 1D arrays, and src0.w contains
554 the reference value for 2D arrays and cube maps.
555
556 for cube map array shadow textures, the reference value
557 cannot be passed in src0.w, and TEX2 must be used instead.
558
559 .. math::
560
561 coord = src0
562
563 shadow_ref = src0.z or src0.w (optional)
564
565 unit = src1
566
567 dst = texture\_sample(unit, coord, shadow_ref)
568
569
570 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
571
572 this is the same as TEX, but uses another reg to encode the
573 reference value.
574
575 .. math::
576
577 coord = src0
578
579 shadow_ref = src1.x
580
581 unit = src2
582
583 dst = texture\_sample(unit, coord, shadow_ref)
584
585
586
587
588 .. opcode:: TXD - Texture Lookup with Derivatives
589
590 .. math::
591
592 coord = src0
593
594 ddx = src1
595
596 ddy = src2
597
598 unit = src3
599
600 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
601
602
603 .. opcode:: TXP - Projective Texture Lookup
604
605 .. math::
606
607 coord.x = src0.x / src0.w
608
609 coord.y = src0.y / src0.w
610
611 coord.z = src0.z / src0.w
612
613 coord.w = src0.w
614
615 unit = src1
616
617 dst = texture\_sample(unit, coord)
618
619
620 .. opcode:: UP2H - Unpack Two 16-Bit Floats
621
622 .. math::
623
624 dst.x = f16\_to\_f32(src0.x \& 0xffff)
625
626 dst.y = f16\_to\_f32(src0.x >> 16)
627
628 dst.z = f16\_to\_f32(src0.x \& 0xffff)
629
630 dst.w = f16\_to\_f32(src0.x >> 16)
631
632 .. note::
633
634 Considered for removal.
635
636 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
637
638 TBD
639
640 .. note::
641
642 Considered for removal.
643
644 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
645
646 TBD
647
648 .. note::
649
650 Considered for removal.
651
652 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
653
654 TBD
655
656 .. note::
657
658 Considered for removal.
659
660
661 .. opcode:: ARR - Address Register Load With Round
662
663 .. math::
664
665 dst.x = (int) round(src.x)
666
667 dst.y = (int) round(src.y)
668
669 dst.z = (int) round(src.z)
670
671 dst.w = (int) round(src.w)
672
673
674 .. opcode:: SSG - Set Sign
675
676 .. math::
677
678 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
679
680 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
681
682 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
683
684 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
685
686
687 .. opcode:: CMP - Compare
688
689 .. math::
690
691 dst.x = (src0.x < 0) ? src1.x : src2.x
692
693 dst.y = (src0.y < 0) ? src1.y : src2.y
694
695 dst.z = (src0.z < 0) ? src1.z : src2.z
696
697 dst.w = (src0.w < 0) ? src1.w : src2.w
698
699
700 .. opcode:: KILL_IF - Conditional Discard
701
702 Conditional discard. Allowed in fragment shaders only.
703
704 .. math::
705
706 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
707 discard
708 endif
709
710
711 .. opcode:: KILL - Discard
712
713 Unconditional discard. Allowed in fragment shaders only.
714
715
716 .. opcode:: SCS - Sine Cosine
717
718 .. math::
719
720 dst.x = \cos{src.x}
721
722 dst.y = \sin{src.x}
723
724 dst.z = 0
725
726 dst.w = 1
727
728
729 .. opcode:: TXB - Texture Lookup With Bias
730
731 for cube map array textures and shadow cube maps, the bias value
732 cannot be passed in src0.w, and TXB2 must be used instead.
733
734 if the target is a shadow texture, the reference value is always
735 in src.z (this prevents shadow 3d and shadow 2d arrays from
736 using this instruction, but this is not needed).
737
738 .. math::
739
740 coord.x = src0.x
741
742 coord.y = src0.y
743
744 coord.z = src0.z
745
746 coord.w = none
747
748 bias = src0.w
749
750 unit = src1
751
752 dst = texture\_sample(unit, coord, bias)
753
754
755 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
756
757 this is the same as TXB, but uses another reg to encode the
758 lod bias value for cube map arrays and shadow cube maps.
759 Presumably shadow 2d arrays and shadow 3d targets could use
760 this encoding too, but this is not legal.
761
762 shadow cube map arrays are neither possible nor required.
763
764 .. math::
765
766 coord = src0
767
768 bias = src1.x
769
770 unit = src2
771
772 dst = texture\_sample(unit, coord, bias)
773
774
775 .. opcode:: DIV - Divide
776
777 .. math::
778
779 dst.x = \frac{src0.x}{src1.x}
780
781 dst.y = \frac{src0.y}{src1.y}
782
783 dst.z = \frac{src0.z}{src1.z}
784
785 dst.w = \frac{src0.w}{src1.w}
786
787
788 .. opcode:: DP2 - 2-component Dot Product
789
790 This instruction replicates its result.
791
792 .. math::
793
794 dst = src0.x \times src1.x + src0.y \times src1.y
795
796
797 .. opcode:: TXL - Texture Lookup With explicit LOD
798
799 for cube map array textures, the explicit lod value
800 cannot be passed in src0.w, and TXL2 must be used instead.
801
802 if the target is a shadow texture, the reference value is always
803 in src.z (this prevents shadow 3d / 2d array / cube targets from
804 using this instruction, but this is not needed).
805
806 .. math::
807
808 coord.x = src0.x
809
810 coord.y = src0.y
811
812 coord.z = src0.z
813
814 coord.w = none
815
816 lod = src0.w
817
818 unit = src1
819
820 dst = texture\_sample(unit, coord, lod)
821
822
823 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
824
825 this is the same as TXL, but uses another reg to encode the
826 explicit lod value.
827 Presumably shadow 3d / 2d array / cube targets could use
828 this encoding too, but this is not legal.
829
830 shadow cube map arrays are neither possible nor required.
831
832 .. math::
833
834 coord = src0
835
836 lod = src1.x
837
838 unit = src2
839
840 dst = texture\_sample(unit, coord, lod)
841
842
843 .. opcode:: PUSHA - Push Address Register On Stack
844
845 push(src.x)
846 push(src.y)
847 push(src.z)
848 push(src.w)
849
850 .. note::
851
852 Considered for cleanup.
853
854 .. note::
855
856 Considered for removal.
857
858 .. opcode:: POPA - Pop Address Register From Stack
859
860 dst.w = pop()
861 dst.z = pop()
862 dst.y = pop()
863 dst.x = pop()
864
865 .. note::
866
867 Considered for cleanup.
868
869 .. note::
870
871 Considered for removal.
872
873
874 .. opcode:: CALLNZ - Subroutine Call If Not Zero
875
876 TBD
877
878 .. note::
879
880 Considered for cleanup.
881
882 .. note::
883
884 Considered for removal.
885
886
887 Compute ISA
888 ^^^^^^^^^^^^^^^^^^^^^^^^
889
890 These opcodes are primarily provided for special-use computational shaders.
891 Support for these opcodes indicated by a special pipe capability bit (TBD).
892
893 XXX doesn't look like most of the opcodes really belong here.
894
895 .. opcode:: CEIL - Ceiling
896
897 .. math::
898
899 dst.x = \lceil src.x\rceil
900
901 dst.y = \lceil src.y\rceil
902
903 dst.z = \lceil src.z\rceil
904
905 dst.w = \lceil src.w\rceil
906
907
908 .. opcode:: TRUNC - Truncate
909
910 .. math::
911
912 dst.x = trunc(src.x)
913
914 dst.y = trunc(src.y)
915
916 dst.z = trunc(src.z)
917
918 dst.w = trunc(src.w)
919
920
921 .. opcode:: MOD - Modulus
922
923 .. math::
924
925 dst.x = src0.x \bmod src1.x
926
927 dst.y = src0.y \bmod src1.y
928
929 dst.z = src0.z \bmod src1.z
930
931 dst.w = src0.w \bmod src1.w
932
933
934 .. opcode:: UARL - Integer Address Register Load
935
936 Moves the contents of the source register, assumed to be an integer, into the
937 destination register, which is assumed to be an address (ADDR) register.
938
939
940 .. opcode:: SAD - Sum Of Absolute Differences
941
942 .. math::
943
944 dst.x = |src0.x - src1.x| + src2.x
945
946 dst.y = |src0.y - src1.y| + src2.y
947
948 dst.z = |src0.z - src1.z| + src2.z
949
950 dst.w = |src0.w - src1.w| + src2.w
951
952
953 .. opcode:: TXF - Texel Fetch
954
955 As per NV_gpu_shader4, extract a single texel from a specified texture
956 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
957 four-component signed integer vector used to identify the single texel
958 accessed. 3 components + level. Just like texture instructions, an optional
959 offset vector is provided, which is subject to various driver restrictions
960 (regarding range, source of offsets).
961 TXF(uint_vec coord, int_vec offset).
962
963
964 .. opcode:: TXQ - Texture Size Query
965
966 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
967 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
968 depth), 1D array (width, layers), 2D array (width, height, layers).
969 Also return the number of accessible levels (last_level - first_level + 1)
970 in W.
971
972 For components which don't return a resource dimension, their value
973 is undefined.
974
975 .. math::
976
977 lod = src0.x
978
979 dst.x = texture\_width(unit, lod)
980
981 dst.y = texture\_height(unit, lod)
982
983 dst.z = texture\_depth(unit, lod)
984
985 dst.w = texture\_levels(unit)
986
987
988 .. opcode:: TXQS - Texture Samples Query
989
990 This retrieves the number of samples in the texture, and stores it
991 into the x component. The other components are undefined.
992
993 .. math::
994
995 dst.x = texture\_samples(unit)
996
997
998 .. opcode:: TG4 - Texture Gather
999
1000 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
1001 filtering operation and packs them into a single register. Only works with
1002 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
1003 addressing modes of the sampler and the top level of any mip pyramid are
1004 used. Set W to zero. It behaves like the TEX instruction, but a filtered
1005 sample is not generated. The four samples that contribute to filtering are
1006 placed into xyzw in clockwise order, starting with the (u,v) texture
1007 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
1008 where the magnitude of the deltas are half a texel.
1009
1010 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1011 depth compares, single component selection, and a non-constant offset. It
1012 doesn't allow support for the GL independent offset to get i0,j0. This would
1013 require another CAP is hw can do it natively. For now we lower that before
1014 TGSI.
1015
1016 .. math::
1017
1018 coord = src0
1019
1020 component = src1
1021
1022 dst = texture\_gather4 (unit, coord, component)
1023
1024 (with SM5 - cube array shadow)
1025
1026 .. math::
1027
1028 coord = src0
1029
1030 compare = src1
1031
1032 dst = texture\_gather (uint, coord, compare)
1033
1034 .. opcode:: LODQ - level of detail query
1035
1036 Compute the LOD information that the texture pipe would use to access the
1037 texture. The Y component contains the computed LOD lambda_prime. The X
1038 component contains the LOD that will be accessed, based on min/max lod's
1039 and mipmap filters.
1040
1041 .. math::
1042
1043 coord = src0
1044
1045 dst.xy = lodq(uint, coord);
1046
1047 Integer ISA
1048 ^^^^^^^^^^^^^^^^^^^^^^^^
1049 These opcodes are used for integer operations.
1050 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1051
1052
1053 .. opcode:: I2F - Signed Integer To Float
1054
1055 Rounding is unspecified (round to nearest even suggested).
1056
1057 .. math::
1058
1059 dst.x = (float) src.x
1060
1061 dst.y = (float) src.y
1062
1063 dst.z = (float) src.z
1064
1065 dst.w = (float) src.w
1066
1067
1068 .. opcode:: U2F - Unsigned Integer To Float
1069
1070 Rounding is unspecified (round to nearest even suggested).
1071
1072 .. math::
1073
1074 dst.x = (float) src.x
1075
1076 dst.y = (float) src.y
1077
1078 dst.z = (float) src.z
1079
1080 dst.w = (float) src.w
1081
1082
1083 .. opcode:: F2I - Float to Signed Integer
1084
1085 Rounding is towards zero (truncate).
1086 Values outside signed range (including NaNs) produce undefined results.
1087
1088 .. math::
1089
1090 dst.x = (int) src.x
1091
1092 dst.y = (int) src.y
1093
1094 dst.z = (int) src.z
1095
1096 dst.w = (int) src.w
1097
1098
1099 .. opcode:: F2U - Float to Unsigned Integer
1100
1101 Rounding is towards zero (truncate).
1102 Values outside unsigned range (including NaNs) produce undefined results.
1103
1104 .. math::
1105
1106 dst.x = (unsigned) src.x
1107
1108 dst.y = (unsigned) src.y
1109
1110 dst.z = (unsigned) src.z
1111
1112 dst.w = (unsigned) src.w
1113
1114
1115 .. opcode:: UADD - Integer Add
1116
1117 This instruction works the same for signed and unsigned integers.
1118 The low 32bit of the result is returned.
1119
1120 .. math::
1121
1122 dst.x = src0.x + src1.x
1123
1124 dst.y = src0.y + src1.y
1125
1126 dst.z = src0.z + src1.z
1127
1128 dst.w = src0.w + src1.w
1129
1130
1131 .. opcode:: UMAD - Integer Multiply And Add
1132
1133 This instruction works the same for signed and unsigned integers.
1134 The multiplication returns the low 32bit (as does the result itself).
1135
1136 .. math::
1137
1138 dst.x = src0.x \times src1.x + src2.x
1139
1140 dst.y = src0.y \times src1.y + src2.y
1141
1142 dst.z = src0.z \times src1.z + src2.z
1143
1144 dst.w = src0.w \times src1.w + src2.w
1145
1146
1147 .. opcode:: UMUL - Integer Multiply
1148
1149 This instruction works the same for signed and unsigned integers.
1150 The low 32bit of the result is returned.
1151
1152 .. math::
1153
1154 dst.x = src0.x \times src1.x
1155
1156 dst.y = src0.y \times src1.y
1157
1158 dst.z = src0.z \times src1.z
1159
1160 dst.w = src0.w \times src1.w
1161
1162
1163 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1164
1165 The high 32bits of the multiplication of 2 signed integers are returned.
1166
1167 .. math::
1168
1169 dst.x = (src0.x \times src1.x) >> 32
1170
1171 dst.y = (src0.y \times src1.y) >> 32
1172
1173 dst.z = (src0.z \times src1.z) >> 32
1174
1175 dst.w = (src0.w \times src1.w) >> 32
1176
1177
1178 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1179
1180 The high 32bits of the multiplication of 2 unsigned integers are returned.
1181
1182 .. math::
1183
1184 dst.x = (src0.x \times src1.x) >> 32
1185
1186 dst.y = (src0.y \times src1.y) >> 32
1187
1188 dst.z = (src0.z \times src1.z) >> 32
1189
1190 dst.w = (src0.w \times src1.w) >> 32
1191
1192
1193 .. opcode:: IDIV - Signed Integer Division
1194
1195 TBD: behavior for division by zero.
1196
1197 .. math::
1198
1199 dst.x = src0.x \ src1.x
1200
1201 dst.y = src0.y \ src1.y
1202
1203 dst.z = src0.z \ src1.z
1204
1205 dst.w = src0.w \ src1.w
1206
1207
1208 .. opcode:: UDIV - Unsigned Integer Division
1209
1210 For division by zero, 0xffffffff is returned.
1211
1212 .. math::
1213
1214 dst.x = src0.x \ src1.x
1215
1216 dst.y = src0.y \ src1.y
1217
1218 dst.z = src0.z \ src1.z
1219
1220 dst.w = src0.w \ src1.w
1221
1222
1223 .. opcode:: UMOD - Unsigned Integer Remainder
1224
1225 If second arg is zero, 0xffffffff is returned.
1226
1227 .. math::
1228
1229 dst.x = src0.x \ src1.x
1230
1231 dst.y = src0.y \ src1.y
1232
1233 dst.z = src0.z \ src1.z
1234
1235 dst.w = src0.w \ src1.w
1236
1237
1238 .. opcode:: NOT - Bitwise Not
1239
1240 .. math::
1241
1242 dst.x = \sim src.x
1243
1244 dst.y = \sim src.y
1245
1246 dst.z = \sim src.z
1247
1248 dst.w = \sim src.w
1249
1250
1251 .. opcode:: AND - Bitwise And
1252
1253 .. math::
1254
1255 dst.x = src0.x \& src1.x
1256
1257 dst.y = src0.y \& src1.y
1258
1259 dst.z = src0.z \& src1.z
1260
1261 dst.w = src0.w \& src1.w
1262
1263
1264 .. opcode:: OR - Bitwise Or
1265
1266 .. math::
1267
1268 dst.x = src0.x | src1.x
1269
1270 dst.y = src0.y | src1.y
1271
1272 dst.z = src0.z | src1.z
1273
1274 dst.w = src0.w | src1.w
1275
1276
1277 .. opcode:: XOR - Bitwise Xor
1278
1279 .. math::
1280
1281 dst.x = src0.x \oplus src1.x
1282
1283 dst.y = src0.y \oplus src1.y
1284
1285 dst.z = src0.z \oplus src1.z
1286
1287 dst.w = src0.w \oplus src1.w
1288
1289
1290 .. opcode:: IMAX - Maximum of Signed Integers
1291
1292 .. math::
1293
1294 dst.x = max(src0.x, src1.x)
1295
1296 dst.y = max(src0.y, src1.y)
1297
1298 dst.z = max(src0.z, src1.z)
1299
1300 dst.w = max(src0.w, src1.w)
1301
1302
1303 .. opcode:: UMAX - Maximum of Unsigned Integers
1304
1305 .. math::
1306
1307 dst.x = max(src0.x, src1.x)
1308
1309 dst.y = max(src0.y, src1.y)
1310
1311 dst.z = max(src0.z, src1.z)
1312
1313 dst.w = max(src0.w, src1.w)
1314
1315
1316 .. opcode:: IMIN - Minimum of Signed Integers
1317
1318 .. math::
1319
1320 dst.x = min(src0.x, src1.x)
1321
1322 dst.y = min(src0.y, src1.y)
1323
1324 dst.z = min(src0.z, src1.z)
1325
1326 dst.w = min(src0.w, src1.w)
1327
1328
1329 .. opcode:: UMIN - Minimum of Unsigned Integers
1330
1331 .. math::
1332
1333 dst.x = min(src0.x, src1.x)
1334
1335 dst.y = min(src0.y, src1.y)
1336
1337 dst.z = min(src0.z, src1.z)
1338
1339 dst.w = min(src0.w, src1.w)
1340
1341
1342 .. opcode:: SHL - Shift Left
1343
1344 The shift count is masked with 0x1f before the shift is applied.
1345
1346 .. math::
1347
1348 dst.x = src0.x << (0x1f \& src1.x)
1349
1350 dst.y = src0.y << (0x1f \& src1.y)
1351
1352 dst.z = src0.z << (0x1f \& src1.z)
1353
1354 dst.w = src0.w << (0x1f \& src1.w)
1355
1356
1357 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1358
1359 The shift count is masked with 0x1f before the shift is applied.
1360
1361 .. math::
1362
1363 dst.x = src0.x >> (0x1f \& src1.x)
1364
1365 dst.y = src0.y >> (0x1f \& src1.y)
1366
1367 dst.z = src0.z >> (0x1f \& src1.z)
1368
1369 dst.w = src0.w >> (0x1f \& src1.w)
1370
1371
1372 .. opcode:: USHR - Logical Shift Right
1373
1374 The shift count is masked with 0x1f before the shift is applied.
1375
1376 .. math::
1377
1378 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1379
1380 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1381
1382 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1383
1384 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1385
1386
1387 .. opcode:: UCMP - Integer Conditional Move
1388
1389 .. math::
1390
1391 dst.x = src0.x ? src1.x : src2.x
1392
1393 dst.y = src0.y ? src1.y : src2.y
1394
1395 dst.z = src0.z ? src1.z : src2.z
1396
1397 dst.w = src0.w ? src1.w : src2.w
1398
1399
1400
1401 .. opcode:: ISSG - Integer Set Sign
1402
1403 .. math::
1404
1405 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1406
1407 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1408
1409 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1410
1411 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1412
1413
1414
1415 .. opcode:: FSLT - Float Set On Less Than (ordered)
1416
1417 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1418
1419 .. math::
1420
1421 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1422
1423 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1424
1425 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1426
1427 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1428
1429
1430 .. opcode:: ISLT - Signed Integer Set On Less Than
1431
1432 .. math::
1433
1434 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1435
1436 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1437
1438 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1439
1440 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1441
1442
1443 .. opcode:: USLT - Unsigned Integer Set On Less Than
1444
1445 .. math::
1446
1447 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1448
1449 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1450
1451 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1452
1453 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1454
1455
1456 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1457
1458 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1459
1460 .. math::
1461
1462 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1463
1464 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1465
1466 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1467
1468 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1469
1470
1471 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1472
1473 .. math::
1474
1475 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1476
1477 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1478
1479 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1480
1481 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1482
1483
1484 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1485
1486 .. math::
1487
1488 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1489
1490 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1491
1492 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1493
1494 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1495
1496
1497 .. opcode:: FSEQ - Float Set On Equal (ordered)
1498
1499 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1500
1501 .. math::
1502
1503 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1504
1505 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1506
1507 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1508
1509 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1510
1511
1512 .. opcode:: USEQ - Integer Set On Equal
1513
1514 .. math::
1515
1516 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1517
1518 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1519
1520 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1521
1522 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1523
1524
1525 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1526
1527 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1528
1529 .. math::
1530
1531 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1532
1533 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1534
1535 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1536
1537 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1538
1539
1540 .. opcode:: USNE - Integer Set On Not Equal
1541
1542 .. math::
1543
1544 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1545
1546 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1547
1548 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1549
1550 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1551
1552
1553 .. opcode:: INEG - Integer Negate
1554
1555 Two's complement.
1556
1557 .. math::
1558
1559 dst.x = -src.x
1560
1561 dst.y = -src.y
1562
1563 dst.z = -src.z
1564
1565 dst.w = -src.w
1566
1567
1568 .. opcode:: IABS - Integer Absolute Value
1569
1570 .. math::
1571
1572 dst.x = |src.x|
1573
1574 dst.y = |src.y|
1575
1576 dst.z = |src.z|
1577
1578 dst.w = |src.w|
1579
1580 Bitwise ISA
1581 ^^^^^^^^^^^
1582 These opcodes are used for bit-level manipulation of integers.
1583
1584 .. opcode:: IBFE - Signed Bitfield Extract
1585
1586 Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1587 sign-extends them if the high bit of the extracted window is set.
1588
1589 Pseudocode::
1590
1591 def ibfe(value, offset, bits):
1592 if offset < 0 or bits < 0 or offset + bits > 32:
1593 return undefined
1594 if bits == 0: return 0
1595 # Note: >> sign-extends
1596 return (value << (32 - offset - bits)) >> (32 - bits)
1597
1598 .. opcode:: UBFE - Unsigned Bitfield Extract
1599
1600 Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1601 any sign-extension.
1602
1603 Pseudocode::
1604
1605 def ubfe(value, offset, bits):
1606 if offset < 0 or bits < 0 or offset + bits > 32:
1607 return undefined
1608 if bits == 0: return 0
1609 # Note: >> does not sign-extend
1610 return (value << (32 - offset - bits)) >> (32 - bits)
1611
1612 .. opcode:: BFI - Bitfield Insert
1613
1614 Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1615 of 'insert'.
1616
1617 Pseudocode::
1618
1619 def bfi(base, insert, offset, bits):
1620 if offset < 0 or bits < 0 or offset + bits > 32:
1621 return undefined
1622 # << defined such that mask == ~0 when bits == 32, offset == 0
1623 mask = ((1 << bits) - 1) << offset
1624 return ((insert << offset) & mask) | (base & ~mask)
1625
1626 .. opcode:: BREV - Bitfield Reverse
1627
1628 See SM5 instruction BFREV. Reverses the bits of the argument.
1629
1630 .. opcode:: POPC - Population Count
1631
1632 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1633
1634 .. opcode:: LSB - Index of lowest set bit
1635
1636 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1637 bit of the argument. Returns -1 if none are set.
1638
1639 .. opcode:: IMSB - Index of highest non-sign bit
1640
1641 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1642 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1643 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1644 (i.e. for inputs 0 and -1).
1645
1646 .. opcode:: UMSB - Index of highest set bit
1647
1648 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1649 set bit of the argument. Returns -1 if none are set.
1650
1651 Geometry ISA
1652 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1653
1654 These opcodes are only supported in geometry shaders; they have no meaning
1655 in any other type of shader.
1656
1657 .. opcode:: EMIT - Emit
1658
1659 Generate a new vertex for the current primitive into the specified vertex
1660 stream using the values in the output registers.
1661
1662
1663 .. opcode:: ENDPRIM - End Primitive
1664
1665 Complete the current primitive in the specified vertex stream (consisting of
1666 the emitted vertices), and start a new one.
1667
1668
1669 GLSL ISA
1670 ^^^^^^^^^^
1671
1672 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1673 opcodes is determined by a special capability bit, ``GLSL``.
1674 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1675
1676 .. opcode:: CAL - Subroutine Call
1677
1678 push(pc)
1679 pc = target
1680
1681
1682 .. opcode:: RET - Subroutine Call Return
1683
1684 pc = pop()
1685
1686
1687 .. opcode:: CONT - Continue
1688
1689 Unconditionally moves the point of execution to the instruction after the
1690 last bgnloop. The instruction must appear within a bgnloop/endloop.
1691
1692 .. note::
1693
1694 Support for CONT is determined by a special capability bit,
1695 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1696
1697
1698 .. opcode:: BGNLOOP - Begin a Loop
1699
1700 Start a loop. Must have a matching endloop.
1701
1702
1703 .. opcode:: BGNSUB - Begin Subroutine
1704
1705 Starts definition of a subroutine. Must have a matching endsub.
1706
1707
1708 .. opcode:: ENDLOOP - End a Loop
1709
1710 End a loop started with bgnloop.
1711
1712
1713 .. opcode:: ENDSUB - End Subroutine
1714
1715 Ends definition of a subroutine.
1716
1717
1718 .. opcode:: NOP - No Operation
1719
1720 Do nothing.
1721
1722
1723 .. opcode:: BRK - Break
1724
1725 Unconditionally moves the point of execution to the instruction after the
1726 next endloop or endswitch. The instruction must appear within a loop/endloop
1727 or switch/endswitch.
1728
1729
1730 .. opcode:: BREAKC - Break Conditional
1731
1732 Conditionally moves the point of execution to the instruction after the
1733 next endloop or endswitch. The instruction must appear within a loop/endloop
1734 or switch/endswitch.
1735 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1736 as an integer register.
1737
1738 .. note::
1739
1740 Considered for removal as it's quite inconsistent wrt other opcodes
1741 (could emulate with UIF/BRK/ENDIF).
1742
1743
1744 .. opcode:: IF - Float If
1745
1746 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1747
1748 src0.x != 0.0
1749
1750 where src0.x is interpreted as a floating point register.
1751
1752
1753 .. opcode:: UIF - Bitwise If
1754
1755 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1756
1757 src0.x != 0
1758
1759 where src0.x is interpreted as an integer register.
1760
1761
1762 .. opcode:: ELSE - Else
1763
1764 Starts an else block, after an IF or UIF statement.
1765
1766
1767 .. opcode:: ENDIF - End If
1768
1769 Ends an IF or UIF block.
1770
1771
1772 .. opcode:: SWITCH - Switch
1773
1774 Starts a C-style switch expression. The switch consists of one or multiple
1775 CASE statements, and at most one DEFAULT statement. Execution of a statement
1776 ends when a BRK is hit, but just like in C falling through to other cases
1777 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1778 just as last statement, and fallthrough is allowed into/from it.
1779 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1780
1781 Example::
1782
1783 SWITCH src[0].x
1784 CASE src[0].x
1785 (some instructions here)
1786 (optional BRK here)
1787 DEFAULT
1788 (some instructions here)
1789 (optional BRK here)
1790 CASE src[0].x
1791 (some instructions here)
1792 (optional BRK here)
1793 ENDSWITCH
1794
1795
1796 .. opcode:: CASE - Switch case
1797
1798 This represents a switch case label. The src arg must be an integer immediate.
1799
1800
1801 .. opcode:: DEFAULT - Switch default
1802
1803 This represents the default case in the switch, which is taken if no other
1804 case matches.
1805
1806
1807 .. opcode:: ENDSWITCH - End of switch
1808
1809 Ends a switch expression.
1810
1811
1812 Interpolation ISA
1813 ^^^^^^^^^^^^^^^^^
1814
1815 The interpolation instructions allow an input to be interpolated in a
1816 different way than its declaration. This corresponds to the GLSL 4.00
1817 interpolateAt* functions. The first argument of each of these must come from
1818 ``TGSI_FILE_INPUT``.
1819
1820 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1821
1822 Interpolates the varying specified by src0 at the centroid
1823
1824 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1825
1826 Interpolates the varying specified by src0 at the sample id specified by
1827 src1.x (interpreted as an integer)
1828
1829 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1830
1831 Interpolates the varying specified by src0 at the offset src1.xy from the
1832 pixel center (interpreted as floats)
1833
1834
1835 .. _doubleopcodes:
1836
1837 Double ISA
1838 ^^^^^^^^^^^^^^^
1839
1840 The double-precision opcodes reinterpret four-component vectors into
1841 two-component vectors with doubled precision in each component.
1842
1843 .. opcode:: DABS - Absolute
1844
1845 dst.xy = |src0.xy|
1846 dst.zw = |src0.zw|
1847
1848 .. opcode:: DADD - Add
1849
1850 .. math::
1851
1852 dst.xy = src0.xy + src1.xy
1853
1854 dst.zw = src0.zw + src1.zw
1855
1856 .. opcode:: DSEQ - Set on Equal
1857
1858 .. math::
1859
1860 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1861
1862 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1863
1864 .. opcode:: DSNE - Set on Equal
1865
1866 .. math::
1867
1868 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1869
1870 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1871
1872 .. opcode:: DSLT - Set on Less than
1873
1874 .. math::
1875
1876 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1877
1878 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1879
1880 .. opcode:: DSGE - Set on Greater equal
1881
1882 .. math::
1883
1884 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1885
1886 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1887
1888 .. opcode:: DFRAC - Fraction
1889
1890 .. math::
1891
1892 dst.xy = src.xy - \lfloor src.xy\rfloor
1893
1894 dst.zw = src.zw - \lfloor src.zw\rfloor
1895
1896 .. opcode:: DTRUNC - Truncate
1897
1898 .. math::
1899
1900 dst.xy = trunc(src.xy)
1901
1902 dst.zw = trunc(src.zw)
1903
1904 .. opcode:: DCEIL - Ceiling
1905
1906 .. math::
1907
1908 dst.xy = \lceil src.xy\rceil
1909
1910 dst.zw = \lceil src.zw\rceil
1911
1912 .. opcode:: DFLR - Floor
1913
1914 .. math::
1915
1916 dst.xy = \lfloor src.xy\rfloor
1917
1918 dst.zw = \lfloor src.zw\rfloor
1919
1920 .. opcode:: DROUND - Fraction
1921
1922 .. math::
1923
1924 dst.xy = round(src.xy)
1925
1926 dst.zw = round(src.zw)
1927
1928 .. opcode:: DSSG - Set Sign
1929
1930 .. math::
1931
1932 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1933
1934 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1935
1936 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1937
1938 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1939 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1940 :math:`dst1 \times 2^{dst0} = src` .
1941
1942 .. math::
1943
1944 dst0.xy = exp(src.xy)
1945
1946 dst1.xy = frac(src.xy)
1947
1948 dst0.zw = exp(src.zw)
1949
1950 dst1.zw = frac(src.zw)
1951
1952 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1953
1954 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1955 source is an integer.
1956
1957 .. math::
1958
1959 dst.xy = src0.xy \times 2^{src1.x}
1960
1961 dst.zw = src0.zw \times 2^{src1.y}
1962
1963 .. opcode:: DMIN - Minimum
1964
1965 .. math::
1966
1967 dst.xy = min(src0.xy, src1.xy)
1968
1969 dst.zw = min(src0.zw, src1.zw)
1970
1971 .. opcode:: DMAX - Maximum
1972
1973 .. math::
1974
1975 dst.xy = max(src0.xy, src1.xy)
1976
1977 dst.zw = max(src0.zw, src1.zw)
1978
1979 .. opcode:: DMUL - Multiply
1980
1981 .. math::
1982
1983 dst.xy = src0.xy \times src1.xy
1984
1985 dst.zw = src0.zw \times src1.zw
1986
1987
1988 .. opcode:: DMAD - Multiply And Add
1989
1990 .. math::
1991
1992 dst.xy = src0.xy \times src1.xy + src2.xy
1993
1994 dst.zw = src0.zw \times src1.zw + src2.zw
1995
1996
1997 .. opcode:: DFMA - Fused Multiply-Add
1998
1999 Perform a * b + c with no intermediate rounding step.
2000
2001 .. math::
2002
2003 dst.xy = src0.xy \times src1.xy + src2.xy
2004
2005 dst.zw = src0.zw \times src1.zw + src2.zw
2006
2007
2008 .. opcode:: DRCP - Reciprocal
2009
2010 .. math::
2011
2012 dst.xy = \frac{1}{src.xy}
2013
2014 dst.zw = \frac{1}{src.zw}
2015
2016 .. opcode:: DSQRT - Square Root
2017
2018 .. math::
2019
2020 dst.xy = \sqrt{src.xy}
2021
2022 dst.zw = \sqrt{src.zw}
2023
2024 .. opcode:: DRSQ - Reciprocal Square Root
2025
2026 .. math::
2027
2028 dst.xy = \frac{1}{\sqrt{src.xy}}
2029
2030 dst.zw = \frac{1}{\sqrt{src.zw}}
2031
2032 .. opcode:: F2D - Float to Double
2033
2034 .. math::
2035
2036 dst.xy = double(src0.x)
2037
2038 dst.zw = double(src0.y)
2039
2040 .. opcode:: D2F - Double to Float
2041
2042 .. math::
2043
2044 dst.x = float(src0.xy)
2045
2046 dst.y = float(src0.zw)
2047
2048 .. opcode:: I2D - Int to Double
2049
2050 .. math::
2051
2052 dst.xy = double(src0.x)
2053
2054 dst.zw = double(src0.y)
2055
2056 .. opcode:: D2I - Double to Int
2057
2058 .. math::
2059
2060 dst.x = int(src0.xy)
2061
2062 dst.y = int(src0.zw)
2063
2064 .. opcode:: U2D - Unsigned Int to Double
2065
2066 .. math::
2067
2068 dst.xy = double(src0.x)
2069
2070 dst.zw = double(src0.y)
2071
2072 .. opcode:: D2U - Double to Unsigned Int
2073
2074 .. math::
2075
2076 dst.x = unsigned(src0.xy)
2077
2078 dst.y = unsigned(src0.zw)
2079
2080 64-bit Integer ISA
2081 ^^^^^^^^^^^^^^^^^^
2082
2083 The 64-bit integer opcodes reinterpret four-component vectors into
2084 two-component vectors with 64-bits in each component.
2085
2086 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2087
2088 dst.xy = |src0.xy|
2089 dst.zw = |src0.zw|
2090
2091 .. opcode:: I64NEG - 64-bit Integer Negate
2092
2093 Two's complement.
2094
2095 .. math::
2096
2097 dst.xy = -src.xy
2098 dst.zw = -src.zw
2099
2100 .. opcode:: I64SSG - 64-bit Integer Set Sign
2101
2102 .. math::
2103
2104 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2105 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2106
2107 .. opcode:: U64ADD - 64-bit Integer Add
2108
2109 .. math::
2110
2111 dst.xy = src0.xy + src1.xy
2112 dst.zw = src0.zw + src1.zw
2113
2114 .. opcode:: U64MUL - 64-bit Integer Multiply
2115
2116 .. math::
2117
2118 dst.xy = src0.xy * src1.xy
2119 dst.zw = src0.zw * src1.zw
2120
2121 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2122
2123 .. math::
2124
2125 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2126 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2127
2128 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2129
2130 .. math::
2131
2132 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2133 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2134
2135 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2136
2137 .. math::
2138
2139 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2140 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2141
2142 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2143
2144 .. math::
2145
2146 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2147 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2148
2149 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2150
2151 .. math::
2152
2153 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2154 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2155
2156 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2157
2158 .. math::
2159
2160 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2161 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2162
2163 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2164
2165 .. math::
2166
2167 dst.xy = min(src0.xy, src1.xy)
2168 dst.zw = min(src0.zw, src1.zw)
2169
2170 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2171
2172 .. math::
2173
2174 dst.xy = min(src0.xy, src1.xy)
2175 dst.zw = min(src0.zw, src1.zw)
2176
2177 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2178
2179 .. math::
2180
2181 dst.xy = max(src0.xy, src1.xy)
2182 dst.zw = max(src0.zw, src1.zw)
2183
2184 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2185
2186 .. math::
2187
2188 dst.xy = max(src0.xy, src1.xy)
2189 dst.zw = max(src0.zw, src1.zw)
2190
2191 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2192
2193 The shift count is masked with 0x3f before the shift is applied.
2194
2195 .. math::
2196
2197 dst.xy = src0.xy << (0x3f \& src1.x)
2198 dst.zw = src0.zw << (0x3f \& src1.y)
2199
2200 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2201
2202 The shift count is masked with 0x3f before the shift is applied.
2203
2204 .. math::
2205
2206 dst.xy = src0.xy >> (0x3f \& src1.x)
2207 dst.zw = src0.zw >> (0x3f \& src1.y)
2208
2209 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2210
2211 The shift count is masked with 0x3f before the shift is applied.
2212
2213 .. math::
2214
2215 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2216 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2217
2218 .. opcode:: I64DIV - 64-bit Signed Integer Division
2219
2220 .. math::
2221
2222 dst.xy = src0.xy \ src1.xy
2223 dst.zw = src0.zw \ src1.zw
2224
2225 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2226
2227 .. math::
2228
2229 dst.xy = src0.xy \ src1.xy
2230 dst.zw = src0.zw \ src1.zw
2231
2232 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2233
2234 .. math::
2235
2236 dst.xy = src0.xy \bmod src1.xy
2237 dst.zw = src0.zw \bmod src1.zw
2238
2239 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2240
2241 .. math::
2242
2243 dst.xy = src0.xy \bmod src1.xy
2244 dst.zw = src0.zw \bmod src1.zw
2245
2246 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2247
2248 .. math::
2249
2250 dst.xy = (uint64_t) src0.x
2251 dst.zw = (uint64_t) src0.y
2252
2253 .. opcode:: F2I64 - Float to 64-bit Int
2254
2255 .. math::
2256
2257 dst.xy = (int64_t) src0.x
2258 dst.zw = (int64_t) src0.y
2259
2260 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2261
2262 This is a zero extension.
2263
2264 .. math::
2265
2266 dst.xy = (uint64_t) src0.x
2267 dst.zw = (uint64_t) src0.y
2268
2269 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2270
2271 This is a sign extension.
2272
2273 .. math::
2274
2275 dst.xy = (int64_t) src0.x
2276 dst.zw = (int64_t) src0.y
2277
2278 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2279
2280 .. math::
2281
2282 dst.xy = (uint64_t) src0.xy
2283 dst.zw = (uint64_t) src0.zw
2284
2285 .. opcode:: D2I64 - Double to 64-bit Int
2286
2287 .. math::
2288
2289 dst.xy = (int64_t) src0.xy
2290 dst.zw = (int64_t) src0.zw
2291
2292 .. opcode:: U642F - 64-bit unsigned integer to float
2293
2294 .. math::
2295
2296 dst.x = (float) src0.xy
2297 dst.y = (float) src0.zw
2298
2299 .. opcode:: I642F - 64-bit Int to Float
2300
2301 .. math::
2302
2303 dst.x = (float) src0.xy
2304 dst.y = (float) src0.zw
2305
2306 .. opcode:: U642D - 64-bit unsigned integer to double
2307
2308 .. math::
2309
2310 dst.xy = (double) src0.xy
2311 dst.zw = (double) src0.zw
2312
2313 .. opcode:: I642D - 64-bit Int to double
2314
2315 .. math::
2316
2317 dst.xy = (double) src0.xy
2318 dst.zw = (double) src0.zw
2319
2320 .. _samplingopcodes:
2321
2322 Resource Sampling Opcodes
2323 ^^^^^^^^^^^^^^^^^^^^^^^^^
2324
2325 Those opcodes follow very closely semantics of the respective Direct3D
2326 instructions. If in doubt double check Direct3D documentation.
2327 Note that the swizzle on SVIEW (src1) determines texel swizzling
2328 after lookup.
2329
2330 .. opcode:: SAMPLE
2331
2332 Using provided address, sample data from the specified texture using the
2333 filtering mode identified by the given sampler. The source data may come from
2334 any resource type other than buffers.
2335
2336 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2337
2338 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2339
2340 .. opcode:: SAMPLE_I
2341
2342 Simplified alternative to the SAMPLE instruction. Using the provided
2343 integer address, SAMPLE_I fetches data from the specified sampler view
2344 without any filtering. The source data may come from any resource type
2345 other than CUBE.
2346
2347 Syntax: ``SAMPLE_I dst, address, sampler_view``
2348
2349 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2350
2351 The 'address' is specified as unsigned integers. If the 'address' is out of
2352 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2353 components. As such the instruction doesn't honor address wrap modes, in
2354 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2355 address.w always provides an unsigned integer mipmap level. If the value is
2356 out of the range then the instruction always returns 0 in all components.
2357 address.yz are ignored for buffers and 1d textures. address.z is ignored
2358 for 1d texture arrays and 2d textures.
2359
2360 For 1D texture arrays address.y provides the array index (also as unsigned
2361 integer). If the value is out of the range of available array indices
2362 [0... (array size - 1)] then the opcode always returns 0 in all components.
2363 For 2D texture arrays address.z provides the array index, otherwise it
2364 exhibits the same behavior as in the case for 1D texture arrays. The exact
2365 semantics of the source address are presented in the table below:
2366
2367 +---------------------------+----+-----+-----+---------+
2368 | resource type | X | Y | Z | W |
2369 +===========================+====+=====+=====+=========+
2370 | ``PIPE_BUFFER`` | x | | | ignored |
2371 +---------------------------+----+-----+-----+---------+
2372 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2373 +---------------------------+----+-----+-----+---------+
2374 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2375 +---------------------------+----+-----+-----+---------+
2376 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2377 +---------------------------+----+-----+-----+---------+
2378 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2379 +---------------------------+----+-----+-----+---------+
2380 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2381 +---------------------------+----+-----+-----+---------+
2382 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2383 +---------------------------+----+-----+-----+---------+
2384 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2385 +---------------------------+----+-----+-----+---------+
2386
2387 Where 'mpl' is a mipmap level and 'idx' is the array index.
2388
2389 .. opcode:: SAMPLE_I_MS
2390
2391 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2392
2393 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2394
2395 .. opcode:: SAMPLE_B
2396
2397 Just like the SAMPLE instruction with the exception that an additional bias
2398 is applied to the level of detail computed as part of the instruction
2399 execution.
2400
2401 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2402
2403 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2404
2405 .. opcode:: SAMPLE_C
2406
2407 Similar to the SAMPLE instruction but it performs a comparison filter. The
2408 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2409 additional float32 operand, reference value, which must be a register with
2410 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2411 current samplers compare_func (in pipe_sampler_state) to compare reference
2412 value against the red component value for the surce resource at each texel
2413 that the currently configured texture filter covers based on the provided
2414 coordinates.
2415
2416 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2417
2418 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2419
2420 .. opcode:: SAMPLE_C_LZ
2421
2422 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2423 for level-zero.
2424
2425 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2426
2427 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2428
2429
2430 .. opcode:: SAMPLE_D
2431
2432 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2433 the source address in the x direction and the y direction are provided by
2434 extra parameters.
2435
2436 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2437
2438 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2439
2440 .. opcode:: SAMPLE_L
2441
2442 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2443 directly as a scalar value, representing no anisotropy.
2444
2445 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2446
2447 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2448
2449 .. opcode:: GATHER4
2450
2451 Gathers the four texels to be used in a bi-linear filtering operation and
2452 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2453 and cubemaps arrays. For 2D textures, only the addressing modes of the
2454 sampler and the top level of any mip pyramid are used. Set W to zero. It
2455 behaves like the SAMPLE instruction, but a filtered sample is not
2456 generated. The four samples that contribute to filtering are placed into
2457 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2458 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2459 magnitude of the deltas are half a texel.
2460
2461
2462 .. opcode:: SVIEWINFO
2463
2464 Query the dimensions of a given sampler view. dst receives width, height,
2465 depth or array size and number of mipmap levels as int4. The dst can have a
2466 writemask which will specify what info is the caller interested in.
2467
2468 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2469
2470 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2471
2472 src_mip_level is an unsigned integer scalar. If it's out of range then
2473 returns 0 for width, height and depth/array size but the total number of
2474 mipmap is still returned correctly for the given sampler view. The returned
2475 width, height and depth values are for the mipmap level selected by the
2476 src_mip_level and are in the number of texels. For 1d texture array width
2477 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2478 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2479 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2480 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2481 resinfo allowing swizzling dst values is ignored (due to the interaction
2482 with rcpfloat modifier which requires some swizzle handling in the state
2483 tracker anyway).
2484
2485 .. opcode:: SAMPLE_POS
2486
2487 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2488 indicated where the sample is located. If the resource is not a multi-sample
2489 resource and not a render target, the result is 0.
2490
2491 .. opcode:: SAMPLE_INFO
2492
2493 dst receives number of samples in x. If the resource is not a multi-sample
2494 resource and not a render target, the result is 0.
2495
2496
2497 .. _resourceopcodes:
2498
2499 Resource Access Opcodes
2500 ^^^^^^^^^^^^^^^^^^^^^^^
2501
2502 .. opcode:: LOAD - Fetch data from a shader buffer or image
2503
2504 Syntax: ``LOAD dst, resource, address``
2505
2506 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2507
2508 Using the provided integer address, LOAD fetches data
2509 from the specified buffer or texture without any
2510 filtering.
2511
2512 The 'address' is specified as a vector of unsigned
2513 integers. If the 'address' is out of range the result
2514 is unspecified.
2515
2516 Only the first mipmap level of a resource can be read
2517 from using this instruction.
2518
2519 For 1D or 2D texture arrays, the array index is
2520 provided as an unsigned integer in address.y or
2521 address.z, respectively. address.yz are ignored for
2522 buffers and 1D textures. address.z is ignored for 1D
2523 texture arrays and 2D textures. address.w is always
2524 ignored.
2525
2526 A swizzle suffix may be added to the resource argument
2527 this will cause the resource data to be swizzled accordingly.
2528
2529 .. opcode:: STORE - Write data to a shader resource
2530
2531 Syntax: ``STORE resource, address, src``
2532
2533 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2534
2535 Using the provided integer address, STORE writes data
2536 to the specified buffer or texture.
2537
2538 The 'address' is specified as a vector of unsigned
2539 integers. If the 'address' is out of range the result
2540 is unspecified.
2541
2542 Only the first mipmap level of a resource can be
2543 written to using this instruction.
2544
2545 For 1D or 2D texture arrays, the array index is
2546 provided as an unsigned integer in address.y or
2547 address.z, respectively. address.yz are ignored for
2548 buffers and 1D textures. address.z is ignored for 1D
2549 texture arrays and 2D textures. address.w is always
2550 ignored.
2551
2552 .. opcode:: RESQ - Query information about a resource
2553
2554 Syntax: ``RESQ dst, resource``
2555
2556 Example: ``RESQ TEMP[0], BUFFER[0]``
2557
2558 Returns information about the buffer or image resource. For buffer
2559 resources, the size (in bytes) is returned in the x component. For
2560 image resources, .xyz will contain the width/height/layers of the
2561 image, while .w will contain the number of samples for multi-sampled
2562 images.
2563
2564
2565 .. _threadsyncopcodes:
2566
2567 Inter-thread synchronization opcodes
2568 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2569
2570 These opcodes are intended for communication between threads running
2571 within the same compute grid. For now they're only valid in compute
2572 programs.
2573
2574 .. opcode:: MFENCE - Memory fence
2575
2576 Syntax: ``MFENCE resource``
2577
2578 Example: ``MFENCE RES[0]``
2579
2580 This opcode forces strong ordering between any memory access
2581 operations that affect the specified resource. This means that
2582 previous loads and stores (and only those) will be performed and
2583 visible to other threads before the program execution continues.
2584
2585
2586 .. opcode:: LFENCE - Load memory fence
2587
2588 Syntax: ``LFENCE resource``
2589
2590 Example: ``LFENCE RES[0]``
2591
2592 Similar to MFENCE, but it only affects the ordering of memory loads.
2593
2594
2595 .. opcode:: SFENCE - Store memory fence
2596
2597 Syntax: ``SFENCE resource``
2598
2599 Example: ``SFENCE RES[0]``
2600
2601 Similar to MFENCE, but it only affects the ordering of memory stores.
2602
2603
2604 .. opcode:: BARRIER - Thread group barrier
2605
2606 ``BARRIER``
2607
2608 This opcode suspends the execution of the current thread until all
2609 the remaining threads in the working group reach the same point of
2610 the program. Results are unspecified if any of the remaining
2611 threads terminates or never reaches an executed BARRIER instruction.
2612
2613 .. opcode:: MEMBAR - Memory barrier
2614
2615 ``MEMBAR type``
2616
2617 This opcode waits for the completion of all memory accesses based on
2618 the type passed in. The type is an immediate bitfield with the following
2619 meaning:
2620
2621 Bit 0: Shader storage buffers
2622 Bit 1: Atomic buffers
2623 Bit 2: Images
2624 Bit 3: Shared memory
2625 Bit 4: Thread group
2626
2627 These may be passed in in any combination. An implementation is free to not
2628 distinguish between these as it sees fit. However these map to all the
2629 possibilities made available by GLSL.
2630
2631 .. _atomopcodes:
2632
2633 Atomic opcodes
2634 ^^^^^^^^^^^^^^
2635
2636 These opcodes provide atomic variants of some common arithmetic and
2637 logical operations. In this context atomicity means that another
2638 concurrent memory access operation that affects the same memory
2639 location is guaranteed to be performed strictly before or after the
2640 entire execution of the atomic operation. The resource may be a buffer
2641 or an image. In the case of an image, the offset works the same as for
2642 ``LOAD`` and ``STORE``, specified above. These atomic operations may
2643 only be used with 32-bit integer image formats.
2644
2645 .. opcode:: ATOMUADD - Atomic integer addition
2646
2647 Syntax: ``ATOMUADD dst, resource, offset, src``
2648
2649 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2650
2651 The following operation is performed atomically:
2652
2653 .. math::
2654
2655 dst_x = resource[offset]
2656
2657 resource[offset] = dst_x + src_x
2658
2659
2660 .. opcode:: ATOMXCHG - Atomic exchange
2661
2662 Syntax: ``ATOMXCHG dst, resource, offset, src``
2663
2664 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2665
2666 The following operation is performed atomically:
2667
2668 .. math::
2669
2670 dst_x = resource[offset]
2671
2672 resource[offset] = src_x
2673
2674
2675 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2676
2677 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2678
2679 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2680
2681 The following operation is performed atomically:
2682
2683 .. math::
2684
2685 dst_x = resource[offset]
2686
2687 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2688
2689
2690 .. opcode:: ATOMAND - Atomic bitwise And
2691
2692 Syntax: ``ATOMAND dst, resource, offset, src``
2693
2694 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2695
2696 The following operation is performed atomically:
2697
2698 .. math::
2699
2700 dst_x = resource[offset]
2701
2702 resource[offset] = dst_x \& src_x
2703
2704
2705 .. opcode:: ATOMOR - Atomic bitwise Or
2706
2707 Syntax: ``ATOMOR dst, resource, offset, src``
2708
2709 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2710
2711 The following operation is performed atomically:
2712
2713 .. math::
2714
2715 dst_x = resource[offset]
2716
2717 resource[offset] = dst_x | src_x
2718
2719
2720 .. opcode:: ATOMXOR - Atomic bitwise Xor
2721
2722 Syntax: ``ATOMXOR dst, resource, offset, src``
2723
2724 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2725
2726 The following operation is performed atomically:
2727
2728 .. math::
2729
2730 dst_x = resource[offset]
2731
2732 resource[offset] = dst_x \oplus src_x
2733
2734
2735 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2736
2737 Syntax: ``ATOMUMIN dst, resource, offset, src``
2738
2739 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2740
2741 The following operation is performed atomically:
2742
2743 .. math::
2744
2745 dst_x = resource[offset]
2746
2747 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2748
2749
2750 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2751
2752 Syntax: ``ATOMUMAX dst, resource, offset, src``
2753
2754 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2755
2756 The following operation is performed atomically:
2757
2758 .. math::
2759
2760 dst_x = resource[offset]
2761
2762 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2763
2764
2765 .. opcode:: ATOMIMIN - Atomic signed minimum
2766
2767 Syntax: ``ATOMIMIN dst, resource, offset, src``
2768
2769 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2770
2771 The following operation is performed atomically:
2772
2773 .. math::
2774
2775 dst_x = resource[offset]
2776
2777 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2778
2779
2780 .. opcode:: ATOMIMAX - Atomic signed maximum
2781
2782 Syntax: ``ATOMIMAX dst, resource, offset, src``
2783
2784 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2785
2786 The following operation is performed atomically:
2787
2788 .. math::
2789
2790 dst_x = resource[offset]
2791
2792 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2793
2794
2795 .. _voteopcodes:
2796
2797 Vote opcodes
2798 ^^^^^^^^^^^^
2799
2800 These opcodes compare the given value across the shader invocations
2801 running in the current SIMD group. The details of exactly which
2802 invocations get compared are implementation-defined, and it would be a
2803 correct implementation to only ever consider the current thread's
2804 value. (i.e. SIMD group of 1). The argument is treated as a boolean.
2805
2806 .. opcode:: VOTE_ANY - Value is set in any of the current invocations
2807
2808 .. opcode:: VOTE_ALL - Value is set in all of the current invocations
2809
2810 .. opcode:: VOTE_EQ - Value is the same in all of the current invocations
2811
2812
2813 Explanation of symbols used
2814 ------------------------------
2815
2816
2817 Functions
2818 ^^^^^^^^^^^^^^
2819
2820
2821 :math:`|x|` Absolute value of `x`.
2822
2823 :math:`\lceil x \rceil` Ceiling of `x`.
2824
2825 clamp(x,y,z) Clamp x between y and z.
2826 (x < y) ? y : (x > z) ? z : x
2827
2828 :math:`\lfloor x\rfloor` Floor of `x`.
2829
2830 :math:`\log_2{x}` Logarithm of `x`, base 2.
2831
2832 max(x,y) Maximum of x and y.
2833 (x > y) ? x : y
2834
2835 min(x,y) Minimum of x and y.
2836 (x < y) ? x : y
2837
2838 partialx(x) Derivative of x relative to fragment's X.
2839
2840 partialy(x) Derivative of x relative to fragment's Y.
2841
2842 pop() Pop from stack.
2843
2844 :math:`x^y` `x` to the power `y`.
2845
2846 push(x) Push x on stack.
2847
2848 round(x) Round x.
2849
2850 trunc(x) Truncate x, i.e. drop the fraction bits.
2851
2852
2853 Keywords
2854 ^^^^^^^^^^^^^
2855
2856
2857 discard Discard fragment.
2858
2859 pc Program counter.
2860
2861 target Label of target instruction.
2862
2863
2864 Other tokens
2865 ---------------
2866
2867
2868 Declaration
2869 ^^^^^^^^^^^
2870
2871
2872 Declares a register that is will be referenced as an operand in Instruction
2873 tokens.
2874
2875 File field contains register file that is being declared and is one
2876 of TGSI_FILE.
2877
2878 UsageMask field specifies which of the register components can be accessed
2879 and is one of TGSI_WRITEMASK.
2880
2881 The Local flag specifies that a given value isn't intended for
2882 subroutine parameter passing and, as a result, the implementation
2883 isn't required to give any guarantees of it being preserved across
2884 subroutine boundaries. As it's merely a compiler hint, the
2885 implementation is free to ignore it.
2886
2887 If Dimension flag is set to 1, a Declaration Dimension token follows.
2888
2889 If Semantic flag is set to 1, a Declaration Semantic token follows.
2890
2891 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2892
2893 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2894
2895 If Array flag is set to 1, a Declaration Array token follows.
2896
2897 Array Declaration
2898 ^^^^^^^^^^^^^^^^^^^^^^^^
2899
2900 Declarations can optional have an ArrayID attribute which can be referred by
2901 indirect addressing operands. An ArrayID of zero is reserved and treated as
2902 if no ArrayID is specified.
2903
2904 If an indirect addressing operand refers to a specific declaration by using
2905 an ArrayID only the registers in this declaration are guaranteed to be
2906 accessed, accessing any register outside this declaration results in undefined
2907 behavior. Note that for compatibility the effective index is zero-based and
2908 not relative to the specified declaration
2909
2910 If no ArrayID is specified with an indirect addressing operand the whole
2911 register file might be accessed by this operand. This is strongly discouraged
2912 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2913 This is only legal for TEMP and CONST register files.
2914
2915 Declaration Semantic
2916 ^^^^^^^^^^^^^^^^^^^^^^^^
2917
2918 Vertex and fragment shader input and output registers may be labeled
2919 with semantic information consisting of a name and index.
2920
2921 Follows Declaration token if Semantic bit is set.
2922
2923 Since its purpose is to link a shader with other stages of the pipeline,
2924 it is valid to follow only those Declaration tokens that declare a register
2925 either in INPUT or OUTPUT file.
2926
2927 SemanticName field contains the semantic name of the register being declared.
2928 There is no default value.
2929
2930 SemanticIndex is an optional subscript that can be used to distinguish
2931 different register declarations with the same semantic name. The default value
2932 is 0.
2933
2934 The meanings of the individual semantic names are explained in the following
2935 sections.
2936
2937 TGSI_SEMANTIC_POSITION
2938 """"""""""""""""""""""
2939
2940 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2941 output register which contains the homogeneous vertex position in the clip
2942 space coordinate system. After clipping, the X, Y and Z components of the
2943 vertex will be divided by the W value to get normalized device coordinates.
2944
2945 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2946 fragment shader input (or system value, depending on which one is
2947 supported by the driver) contains the fragment's window position. The X
2948 component starts at zero and always increases from left to right.
2949 The Y component starts at zero and always increases but Y=0 may either
2950 indicate the top of the window or the bottom depending on the fragment
2951 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2952 The Z coordinate ranges from 0 to 1 to represent depth from the front
2953 to the back of the Z buffer. The W component contains the interpolated
2954 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2955 but unlike d3d10 which interpolates the same 1/w but then gives back
2956 the reciprocal of the interpolated value).
2957
2958 Fragment shaders may also declare an output register with
2959 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2960 the fragment shader to change the fragment's Z position.
2961
2962
2963
2964 TGSI_SEMANTIC_COLOR
2965 """""""""""""""""""
2966
2967 For vertex shader outputs or fragment shader inputs/outputs, this
2968 label indicates that the register contains an R,G,B,A color.
2969
2970 Several shader inputs/outputs may contain colors so the semantic index
2971 is used to distinguish them. For example, color[0] may be the diffuse
2972 color while color[1] may be the specular color.
2973
2974 This label is needed so that the flat/smooth shading can be applied
2975 to the right interpolants during rasterization.
2976
2977
2978
2979 TGSI_SEMANTIC_BCOLOR
2980 """"""""""""""""""""
2981
2982 Back-facing colors are only used for back-facing polygons, and are only valid
2983 in vertex shader outputs. After rasterization, all polygons are front-facing
2984 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2985 so all BCOLORs effectively become regular COLORs in the fragment shader.
2986
2987
2988 TGSI_SEMANTIC_FOG
2989 """""""""""""""""
2990
2991 Vertex shader inputs and outputs and fragment shader inputs may be
2992 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2993 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2994 to compute a fog blend factor which is used to blend the normal fragment color
2995 with a constant fog color. But fog coord really is just an ordinary vec4
2996 register like regular semantics.
2997
2998
2999 TGSI_SEMANTIC_PSIZE
3000 """""""""""""""""""
3001
3002 Vertex shader input and output registers may be labeled with
3003 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3004 in the form (S, 0, 0, 1). The point size controls the width or diameter
3005 of points for rasterization. This label cannot be used in fragment
3006 shaders.
3007
3008 When using this semantic, be sure to set the appropriate state in the
3009 :ref:`rasterizer` first.
3010
3011
3012 TGSI_SEMANTIC_TEXCOORD
3013 """"""""""""""""""""""
3014
3015 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3016
3017 Vertex shader outputs and fragment shader inputs may be labeled with
3018 this semantic to make them replaceable by sprite coordinates via the
3019 sprite_coord_enable state in the :ref:`rasterizer`.
3020 The semantic index permitted with this semantic is limited to <= 7.
3021
3022 If the driver does not support TEXCOORD, sprite coordinate replacement
3023 applies to inputs with the GENERIC semantic instead.
3024
3025 The intended use case for this semantic is gl_TexCoord.
3026
3027
3028 TGSI_SEMANTIC_PCOORD
3029 """"""""""""""""""""
3030
3031 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3032
3033 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3034 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3035 the current primitive is a point and point sprites are enabled. Otherwise,
3036 the contents of the register are undefined.
3037
3038 The intended use case for this semantic is gl_PointCoord.
3039
3040
3041 TGSI_SEMANTIC_GENERIC
3042 """""""""""""""""""""
3043
3044 All vertex/fragment shader inputs/outputs not labeled with any other
3045 semantic label can be considered to be generic attributes. Typical
3046 uses of generic inputs/outputs are texcoords and user-defined values.
3047
3048
3049 TGSI_SEMANTIC_NORMAL
3050 """"""""""""""""""""
3051
3052 Indicates that a vertex shader input is a normal vector. This is
3053 typically only used for legacy graphics APIs.
3054
3055
3056 TGSI_SEMANTIC_FACE
3057 """"""""""""""""""
3058
3059 This label applies to fragment shader inputs (or system values,
3060 depending on which one is supported by the driver) and indicates that
3061 the register contains front/back-face information.
3062
3063 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3064 where F will be positive when the fragment belongs to a front-facing polygon,
3065 and negative when the fragment belongs to a back-facing polygon.
3066
3067 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3068 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3069 0 when the fragment belongs to a back-facing polygon.
3070
3071
3072 TGSI_SEMANTIC_EDGEFLAG
3073 """"""""""""""""""""""
3074
3075 For vertex shaders, this sematic label indicates that an input or
3076 output is a boolean edge flag. The register layout is [F, x, x, x]
3077 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3078 simply copies the edge flag input to the edgeflag output.
3079
3080 Edge flags are used to control which lines or points are actually
3081 drawn when the polygon mode converts triangles/quads/polygons into
3082 points or lines.
3083
3084
3085 TGSI_SEMANTIC_STENCIL
3086 """""""""""""""""""""
3087
3088 For fragment shaders, this semantic label indicates that an output
3089 is a writable stencil reference value. Only the Y component is writable.
3090 This allows the fragment shader to change the fragments stencilref value.
3091
3092
3093 TGSI_SEMANTIC_VIEWPORT_INDEX
3094 """"""""""""""""""""""""""""
3095
3096 For geometry shaders, this semantic label indicates that an output
3097 contains the index of the viewport (and scissor) to use.
3098 This is an integer value, and only the X component is used.
3099
3100
3101 TGSI_SEMANTIC_LAYER
3102 """""""""""""""""""
3103
3104 For geometry shaders, this semantic label indicates that an output
3105 contains the layer value to use for the color and depth/stencil surfaces.
3106 This is an integer value, and only the X component is used.
3107 (Also known as rendertarget array index.)
3108
3109
3110 TGSI_SEMANTIC_CULLDIST
3111 """"""""""""""""""""""
3112
3113 Used as distance to plane for performing application-defined culling
3114 of individual primitives against a plane. When components of vertex
3115 elements are given this label, these values are assumed to be a
3116 float32 signed distance to a plane. Primitives will be completely
3117 discarded if the plane distance for all of the vertices in the
3118 primitive are < 0. If a vertex has a cull distance of NaN, that
3119 vertex counts as "out" (as if its < 0);
3120 The limits on both clip and cull distances are bound
3121 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3122 the maximum number of components that can be used to hold the
3123 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3124 which specifies the maximum number of registers which can be
3125 annotated with those semantics.
3126
3127
3128 TGSI_SEMANTIC_CLIPDIST
3129 """"""""""""""""""""""
3130
3131 Note this covers clipping and culling distances.
3132
3133 When components of vertex elements are identified this way, these
3134 values are each assumed to be a float32 signed distance to a plane.
3135
3136 For clip distances:
3137 Primitive setup only invokes rasterization on pixels for which
3138 the interpolated plane distances are >= 0.
3139
3140 For cull distances:
3141 Primitives will be completely discarded if the plane distance
3142 for all of the vertices in the primitive are < 0.
3143 If a vertex has a cull distance of NaN, that vertex counts as "out"
3144 (as if its < 0);
3145
3146 Multiple clip/cull planes can be implemented simultaneously, by
3147 annotating multiple components of one or more vertex elements with
3148 the above specified semantic.
3149 The limits on both clip and cull distances are bound
3150 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3151 the maximum number of components that can be used to hold the
3152 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3153 which specifies the maximum number of registers which can be
3154 annotated with those semantics.
3155 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3156 are used to divide up the 2 x vec4 space between clipping and culling.
3157
3158 TGSI_SEMANTIC_SAMPLEID
3159 """"""""""""""""""""""
3160
3161 For fragment shaders, this semantic label indicates that a system value
3162 contains the current sample id (i.e. gl_SampleID).
3163 This is an integer value, and only the X component is used.
3164
3165 TGSI_SEMANTIC_SAMPLEPOS
3166 """""""""""""""""""""""
3167
3168 For fragment shaders, this semantic label indicates that a system value
3169 contains the current sample's position (i.e. gl_SamplePosition). Only the X
3170 and Y values are used.
3171
3172 TGSI_SEMANTIC_SAMPLEMASK
3173 """"""""""""""""""""""""
3174
3175 For fragment shaders, this semantic label indicates that an output contains
3176 the sample mask used to disable further sample processing
3177 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
3178
3179 TGSI_SEMANTIC_INVOCATIONID
3180 """"""""""""""""""""""""""
3181
3182 For geometry shaders, this semantic label indicates that a system value
3183 contains the current invocation id (i.e. gl_InvocationID).
3184 This is an integer value, and only the X component is used.
3185
3186 TGSI_SEMANTIC_INSTANCEID
3187 """"""""""""""""""""""""
3188
3189 For vertex shaders, this semantic label indicates that a system value contains
3190 the current instance id (i.e. gl_InstanceID). It does not include the base
3191 instance. This is an integer value, and only the X component is used.
3192
3193 TGSI_SEMANTIC_VERTEXID
3194 """"""""""""""""""""""
3195
3196 For vertex shaders, this semantic label indicates that a system value contains
3197 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3198 base vertex. This is an integer value, and only the X component is used.
3199
3200 TGSI_SEMANTIC_VERTEXID_NOBASE
3201 """""""""""""""""""""""""""""""
3202
3203 For vertex shaders, this semantic label indicates that a system value contains
3204 the current vertex id without including the base vertex (this corresponds to
3205 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3206 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3207 is used.
3208
3209 TGSI_SEMANTIC_BASEVERTEX
3210 """"""""""""""""""""""""
3211
3212 For vertex shaders, this semantic label indicates that a system value contains
3213 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3214 this contains the first (or start) value instead.
3215 This is an integer value, and only the X component is used.
3216
3217 TGSI_SEMANTIC_PRIMID
3218 """"""""""""""""""""
3219
3220 For geometry and fragment shaders, this semantic label indicates the value
3221 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3222 and only the X component is used.
3223 FIXME: This right now can be either a ordinary input or a system value...
3224
3225
3226 TGSI_SEMANTIC_PATCH
3227 """""""""""""""""""
3228
3229 For tessellation evaluation/control shaders, this semantic label indicates a
3230 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3231 arrays.
3232
3233 TGSI_SEMANTIC_TESSCOORD
3234 """""""""""""""""""""""
3235
3236 For tessellation evaluation shaders, this semantic label indicates the
3237 coordinates of the vertex being processed. This is available in XYZ; W is
3238 undefined.
3239
3240 TGSI_SEMANTIC_TESSOUTER
3241 """""""""""""""""""""""
3242
3243 For tessellation evaluation/control shaders, this semantic label indicates the
3244 outer tessellation levels of the patch. Isoline tessellation will only have XY
3245 defined, triangle will have XYZ and quads will have XYZW defined. This
3246 corresponds to gl_TessLevelOuter.
3247
3248 TGSI_SEMANTIC_TESSINNER
3249 """""""""""""""""""""""
3250
3251 For tessellation evaluation/control shaders, this semantic label indicates the
3252 inner tessellation levels of the patch. The X value is only defined for
3253 triangle tessellation, while quads will have XY defined. This is entirely
3254 undefined for isoline tessellation.
3255
3256 TGSI_SEMANTIC_VERTICESIN
3257 """"""""""""""""""""""""
3258
3259 For tessellation evaluation/control shaders, this semantic label indicates the
3260 number of vertices provided in the input patch. Only the X value is defined.
3261
3262 TGSI_SEMANTIC_HELPER_INVOCATION
3263 """""""""""""""""""""""""""""""
3264
3265 For fragment shaders, this semantic indicates whether the current
3266 invocation is covered or not. Helper invocations are created in order
3267 to properly compute derivatives, however it may be desirable to skip
3268 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3269
3270 TGSI_SEMANTIC_BASEINSTANCE
3271 """"""""""""""""""""""""""
3272
3273 For vertex shaders, the base instance argument supplied for this
3274 draw. This is an integer value, and only the X component is used.
3275
3276 TGSI_SEMANTIC_DRAWID
3277 """"""""""""""""""""
3278
3279 For vertex shaders, the zero-based index of the current draw in a
3280 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3281 component is used.
3282
3283
3284 TGSI_SEMANTIC_WORK_DIM
3285 """"""""""""""""""""""
3286
3287 For compute shaders started via opencl this retrieves the work_dim
3288 parameter to the clEnqueueNDRangeKernel call with which the shader
3289 was started.
3290
3291
3292 TGSI_SEMANTIC_GRID_SIZE
3293 """""""""""""""""""""""
3294
3295 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3296 of a grid of thread blocks.
3297
3298
3299 TGSI_SEMANTIC_BLOCK_ID
3300 """"""""""""""""""""""
3301
3302 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3303 current block inside of the grid.
3304
3305
3306 TGSI_SEMANTIC_BLOCK_SIZE
3307 """"""""""""""""""""""""
3308
3309 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3310 of a block in threads.
3311
3312
3313 TGSI_SEMANTIC_THREAD_ID
3314 """""""""""""""""""""""
3315
3316 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3317 current thread inside of the block.
3318
3319
3320 Declaration Interpolate
3321 ^^^^^^^^^^^^^^^^^^^^^^^
3322
3323 This token is only valid for fragment shader INPUT declarations.
3324
3325 The Interpolate field specifes the way input is being interpolated by
3326 the rasteriser and is one of TGSI_INTERPOLATE_*.
3327
3328 The Location field specifies the location inside the pixel that the
3329 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3330 when per-sample shading is enabled, the implementation may choose to
3331 interpolate at the sample irrespective of the Location field.
3332
3333 The CylindricalWrap bitfield specifies which register components
3334 should be subject to cylindrical wrapping when interpolating by the
3335 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3336 should be interpolated according to cylindrical wrapping rules.
3337
3338
3339 Declaration Sampler View
3340 ^^^^^^^^^^^^^^^^^^^^^^^^
3341
3342 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3343
3344 DCL SVIEW[#], resource, type(s)
3345
3346 Declares a shader input sampler view and assigns it to a SVIEW[#]
3347 register.
3348
3349 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3350
3351 type must be 1 or 4 entries (if specifying on a per-component
3352 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3353
3354 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3355 which take an explicit SVIEW[#] source register), there may be optionally
3356 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3357 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3358 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3359 But note in particular that some drivers need to know the sampler type
3360 (float/int/unsigned) in order to generate the correct code, so cases
3361 where integer textures are sampled, SVIEW[#] declarations should be
3362 used.
3363
3364 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3365 in the same shader.
3366
3367 Declaration Resource
3368 ^^^^^^^^^^^^^^^^^^^^
3369
3370 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3371
3372 DCL RES[#], resource [, WR] [, RAW]
3373
3374 Declares a shader input resource and assigns it to a RES[#]
3375 register.
3376
3377 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3378 2DArray.
3379
3380 If the RAW keyword is not specified, the texture data will be
3381 subject to conversion, swizzling and scaling as required to yield
3382 the specified data type from the physical data format of the bound
3383 resource.
3384
3385 If the RAW keyword is specified, no channel conversion will be
3386 performed: the values read for each of the channels (X,Y,Z,W) will
3387 correspond to consecutive words in the same order and format
3388 they're found in memory. No element-to-address conversion will be
3389 performed either: the value of the provided X coordinate will be
3390 interpreted in byte units instead of texel units. The result of
3391 accessing a misaligned address is undefined.
3392
3393 Usage of the STORE opcode is only allowed if the WR (writable) flag
3394 is set.
3395
3396
3397 Properties
3398 ^^^^^^^^^^^^^^^^^^^^^^^^
3399
3400 Properties are general directives that apply to the whole TGSI program.
3401
3402 FS_COORD_ORIGIN
3403 """""""""""""""
3404
3405 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3406 The default value is UPPER_LEFT.
3407
3408 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3409 increase downward and rightward.
3410 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3411 increase upward and rightward.
3412
3413 OpenGL defaults to LOWER_LEFT, and is configurable with the
3414 GL_ARB_fragment_coord_conventions extension.
3415
3416 DirectX 9/10 use UPPER_LEFT.
3417
3418 FS_COORD_PIXEL_CENTER
3419 """""""""""""""""""""
3420
3421 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3422 The default value is HALF_INTEGER.
3423
3424 If HALF_INTEGER, the fractionary part of the position will be 0.5
3425 If INTEGER, the fractionary part of the position will be 0.0
3426
3427 Note that this does not affect the set of fragments generated by
3428 rasterization, which is instead controlled by half_pixel_center in the
3429 rasterizer.
3430
3431 OpenGL defaults to HALF_INTEGER, and is configurable with the
3432 GL_ARB_fragment_coord_conventions extension.
3433
3434 DirectX 9 uses INTEGER.
3435 DirectX 10 uses HALF_INTEGER.
3436
3437 FS_COLOR0_WRITES_ALL_CBUFS
3438 """"""""""""""""""""""""""
3439 Specifies that writes to the fragment shader color 0 are replicated to all
3440 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3441 fragData is directed to a single color buffer, but fragColor is broadcast.
3442
3443 VS_PROHIBIT_UCPS
3444 """"""""""""""""""""""""""
3445 If this property is set on the program bound to the shader stage before the
3446 fragment shader, user clip planes should have no effect (be disabled) even if
3447 that shader does not write to any clip distance outputs and the rasterizer's
3448 clip_plane_enable is non-zero.
3449 This property is only supported by drivers that also support shader clip
3450 distance outputs.
3451 This is useful for APIs that don't have UCPs and where clip distances written
3452 by a shader cannot be disabled.
3453
3454 GS_INVOCATIONS
3455 """"""""""""""
3456
3457 Specifies the number of times a geometry shader should be executed for each
3458 input primitive. Each invocation will have a different
3459 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3460 be 1.
3461
3462 VS_WINDOW_SPACE_POSITION
3463 """"""""""""""""""""""""""
3464 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3465 is assumed to contain window space coordinates.
3466 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3467 directly taken from the 4-th component of the shader output.
3468 Naturally, clipping is not performed on window coordinates either.
3469 The effect of this property is undefined if a geometry or tessellation shader
3470 are in use.
3471
3472 TCS_VERTICES_OUT
3473 """"""""""""""""
3474
3475 The number of vertices written by the tessellation control shader. This
3476 effectively defines the patch input size of the tessellation evaluation shader
3477 as well.
3478
3479 TES_PRIM_MODE
3480 """""""""""""
3481
3482 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3483 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3484 separate isolines settings, the regular lines is assumed to mean isolines.)
3485
3486 TES_SPACING
3487 """""""""""
3488
3489 This sets the spacing mode of the tessellation generator, one of
3490 ``PIPE_TESS_SPACING_*``.
3491
3492 TES_VERTEX_ORDER_CW
3493 """""""""""""""""""
3494
3495 This sets the vertex order to be clockwise if the value is 1, or
3496 counter-clockwise if set to 0.
3497
3498 TES_POINT_MODE
3499 """"""""""""""
3500
3501 If set to a non-zero value, this turns on point mode for the tessellator,
3502 which means that points will be generated instead of primitives.
3503
3504 NUM_CLIPDIST_ENABLED
3505 """"""""""""""""
3506
3507 How many clip distance scalar outputs are enabled.
3508
3509 NUM_CULLDIST_ENABLED
3510 """"""""""""""""
3511
3512 How many cull distance scalar outputs are enabled.
3513
3514 FS_EARLY_DEPTH_STENCIL
3515 """"""""""""""""""""""
3516
3517 Whether depth test, stencil test, and occlusion query should run before
3518 the fragment shader (regardless of fragment shader side effects). Corresponds
3519 to GLSL early_fragment_tests.
3520
3521 NEXT_SHADER
3522 """""""""""
3523
3524 Which shader stage will MOST LIKELY follow after this shader when the shader
3525 is bound. This is only a hint to the driver and doesn't have to be precise.
3526 Only set for VS and TES.
3527
3528 TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3529 """""""""""""""""""""""""""""""""""""""""""""""""""
3530
3531 Threads per block in each dimension, if known at compile time. If the block size
3532 is known all three should be at least 1. If it is unknown they should all be set
3533 to 0 or not set.
3534
3535 Texture Sampling and Texture Formats
3536 ------------------------------------
3537
3538 This table shows how texture image components are returned as (x,y,z,w) tuples
3539 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3540 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3541 well.
3542
3543 +--------------------+--------------+--------------------+--------------+
3544 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3545 +====================+==============+====================+==============+
3546 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3547 +--------------------+--------------+--------------------+--------------+
3548 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3549 +--------------------+--------------+--------------------+--------------+
3550 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3551 +--------------------+--------------+--------------------+--------------+
3552 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3553 +--------------------+--------------+--------------------+--------------+
3554 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3555 +--------------------+--------------+--------------------+--------------+
3556 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3557 +--------------------+--------------+--------------------+--------------+
3558 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3559 +--------------------+--------------+--------------------+--------------+
3560 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3561 +--------------------+--------------+--------------------+--------------+
3562 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3563 | | | [#envmap-bumpmap]_ | |
3564 +--------------------+--------------+--------------------+--------------+
3565 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3566 | | | [#depth-tex-mode]_ | |
3567 +--------------------+--------------+--------------------+--------------+
3568 | S | (s, s, s, s) | unknown | unknown |
3569 +--------------------+--------------+--------------------+--------------+
3570
3571 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3572 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3573 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.