gallium: add opcode and types for 64-bit integers. (v3)
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = (int) \lfloor src.x\rfloor
52
53 dst.y = (int) \lfloor src.y\rfloor
54
55 dst.z = (int) \lfloor src.z\rfloor
56
57 dst.w = (int) \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: FMA - Fused Multiply-Add
276
277 Perform a * b + c with no intermediate rounding step.
278
279 .. math::
280
281 dst.x = src0.x \times src1.x + src2.x
282
283 dst.y = src0.y \times src1.y + src2.y
284
285 dst.z = src0.z \times src1.z + src2.z
286
287 dst.w = src0.w \times src1.w + src2.w
288
289
290 .. opcode:: DP2A - 2-component Dot Product And Add
291
292 .. math::
293
294 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
301
302
303 .. opcode:: FRC - Fraction
304
305 .. math::
306
307 dst.x = src.x - \lfloor src.x\rfloor
308
309 dst.y = src.y - \lfloor src.y\rfloor
310
311 dst.z = src.z - \lfloor src.z\rfloor
312
313 dst.w = src.w - \lfloor src.w\rfloor
314
315
316 .. opcode:: CLAMP - Clamp
317
318 .. math::
319
320 dst.x = clamp(src0.x, src1.x, src2.x)
321
322 dst.y = clamp(src0.y, src1.y, src2.y)
323
324 dst.z = clamp(src0.z, src1.z, src2.z)
325
326 dst.w = clamp(src0.w, src1.w, src2.w)
327
328
329 .. opcode:: FLR - Floor
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: DPH - Homogeneous Dot Product
408
409 This instruction replicates its result.
410
411 .. math::
412
413 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
414
415
416 .. opcode:: COS - Cosine
417
418 This instruction replicates its result.
419
420 .. math::
421
422 dst = \cos{src.x}
423
424
425 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
426
427 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
428 advertised. When it is, the fine version guarantees one derivative per row
429 while DDX is allowed to be the same for the entire 2x2 quad.
430
431 .. math::
432
433 dst.x = partialx(src.x)
434
435 dst.y = partialx(src.y)
436
437 dst.z = partialx(src.z)
438
439 dst.w = partialx(src.w)
440
441
442 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
443
444 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
445 advertised. When it is, the fine version guarantees one derivative per column
446 while DDY is allowed to be the same for the entire 2x2 quad.
447
448 .. math::
449
450 dst.x = partialy(src.x)
451
452 dst.y = partialy(src.y)
453
454 dst.z = partialy(src.z)
455
456 dst.w = partialy(src.w)
457
458
459 .. opcode:: PK2H - Pack Two 16-bit Floats
460
461 This instruction replicates its result.
462
463 .. math::
464
465 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
466
467
468 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
469
470 TBD
471
472
473 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
474
475 TBD
476
477
478 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
479
480 TBD
481
482
483 .. opcode:: SEQ - Set On Equal
484
485 .. math::
486
487 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
488
489 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
490
491 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
492
493 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
494
495
496 .. opcode:: SGT - Set On Greater Than
497
498 .. math::
499
500 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
501
502 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
503
504 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
505
506 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
507
508
509 .. opcode:: SIN - Sine
510
511 This instruction replicates its result.
512
513 .. math::
514
515 dst = \sin{src.x}
516
517
518 .. opcode:: SLE - Set On Less Equal Than
519
520 .. math::
521
522 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
523
524 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
525
526 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
527
528 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
529
530
531 .. opcode:: SNE - Set On Not Equal
532
533 .. math::
534
535 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
536
537 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
538
539 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
540
541 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
542
543
544 .. opcode:: TEX - Texture Lookup
545
546 for array textures src0.y contains the slice for 1D,
547 and src0.z contain the slice for 2D.
548
549 for shadow textures with no arrays (and not cube map),
550 src0.z contains the reference value.
551
552 for shadow textures with arrays, src0.z contains
553 the reference value for 1D arrays, and src0.w contains
554 the reference value for 2D arrays and cube maps.
555
556 for cube map array shadow textures, the reference value
557 cannot be passed in src0.w, and TEX2 must be used instead.
558
559 .. math::
560
561 coord = src0
562
563 shadow_ref = src0.z or src0.w (optional)
564
565 unit = src1
566
567 dst = texture\_sample(unit, coord, shadow_ref)
568
569
570 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
571
572 this is the same as TEX, but uses another reg to encode the
573 reference value.
574
575 .. math::
576
577 coord = src0
578
579 shadow_ref = src1.x
580
581 unit = src2
582
583 dst = texture\_sample(unit, coord, shadow_ref)
584
585
586
587
588 .. opcode:: TXD - Texture Lookup with Derivatives
589
590 .. math::
591
592 coord = src0
593
594 ddx = src1
595
596 ddy = src2
597
598 unit = src3
599
600 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
601
602
603 .. opcode:: TXP - Projective Texture Lookup
604
605 .. math::
606
607 coord.x = src0.x / src0.w
608
609 coord.y = src0.y / src0.w
610
611 coord.z = src0.z / src0.w
612
613 coord.w = src0.w
614
615 unit = src1
616
617 dst = texture\_sample(unit, coord)
618
619
620 .. opcode:: UP2H - Unpack Two 16-Bit Floats
621
622 .. math::
623
624 dst.x = f16\_to\_f32(src0.x \& 0xffff)
625
626 dst.y = f16\_to\_f32(src0.x >> 16)
627
628 dst.z = f16\_to\_f32(src0.x \& 0xffff)
629
630 dst.w = f16\_to\_f32(src0.x >> 16)
631
632 .. note::
633
634 Considered for removal.
635
636 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
637
638 TBD
639
640 .. note::
641
642 Considered for removal.
643
644 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
645
646 TBD
647
648 .. note::
649
650 Considered for removal.
651
652 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
653
654 TBD
655
656 .. note::
657
658 Considered for removal.
659
660
661 .. opcode:: ARR - Address Register Load With Round
662
663 .. math::
664
665 dst.x = (int) round(src.x)
666
667 dst.y = (int) round(src.y)
668
669 dst.z = (int) round(src.z)
670
671 dst.w = (int) round(src.w)
672
673
674 .. opcode:: SSG - Set Sign
675
676 .. math::
677
678 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
679
680 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
681
682 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
683
684 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
685
686
687 .. opcode:: CMP - Compare
688
689 .. math::
690
691 dst.x = (src0.x < 0) ? src1.x : src2.x
692
693 dst.y = (src0.y < 0) ? src1.y : src2.y
694
695 dst.z = (src0.z < 0) ? src1.z : src2.z
696
697 dst.w = (src0.w < 0) ? src1.w : src2.w
698
699
700 .. opcode:: KILL_IF - Conditional Discard
701
702 Conditional discard. Allowed in fragment shaders only.
703
704 .. math::
705
706 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
707 discard
708 endif
709
710
711 .. opcode:: KILL - Discard
712
713 Unconditional discard. Allowed in fragment shaders only.
714
715
716 .. opcode:: SCS - Sine Cosine
717
718 .. math::
719
720 dst.x = \cos{src.x}
721
722 dst.y = \sin{src.x}
723
724 dst.z = 0
725
726 dst.w = 1
727
728
729 .. opcode:: TXB - Texture Lookup With Bias
730
731 for cube map array textures and shadow cube maps, the bias value
732 cannot be passed in src0.w, and TXB2 must be used instead.
733
734 if the target is a shadow texture, the reference value is always
735 in src.z (this prevents shadow 3d and shadow 2d arrays from
736 using this instruction, but this is not needed).
737
738 .. math::
739
740 coord.x = src0.x
741
742 coord.y = src0.y
743
744 coord.z = src0.z
745
746 coord.w = none
747
748 bias = src0.w
749
750 unit = src1
751
752 dst = texture\_sample(unit, coord, bias)
753
754
755 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
756
757 this is the same as TXB, but uses another reg to encode the
758 lod bias value for cube map arrays and shadow cube maps.
759 Presumably shadow 2d arrays and shadow 3d targets could use
760 this encoding too, but this is not legal.
761
762 shadow cube map arrays are neither possible nor required.
763
764 .. math::
765
766 coord = src0
767
768 bias = src1.x
769
770 unit = src2
771
772 dst = texture\_sample(unit, coord, bias)
773
774
775 .. opcode:: DIV - Divide
776
777 .. math::
778
779 dst.x = \frac{src0.x}{src1.x}
780
781 dst.y = \frac{src0.y}{src1.y}
782
783 dst.z = \frac{src0.z}{src1.z}
784
785 dst.w = \frac{src0.w}{src1.w}
786
787
788 .. opcode:: DP2 - 2-component Dot Product
789
790 This instruction replicates its result.
791
792 .. math::
793
794 dst = src0.x \times src1.x + src0.y \times src1.y
795
796
797 .. opcode:: TXL - Texture Lookup With explicit LOD
798
799 for cube map array textures, the explicit lod value
800 cannot be passed in src0.w, and TXL2 must be used instead.
801
802 if the target is a shadow texture, the reference value is always
803 in src.z (this prevents shadow 3d / 2d array / cube targets from
804 using this instruction, but this is not needed).
805
806 .. math::
807
808 coord.x = src0.x
809
810 coord.y = src0.y
811
812 coord.z = src0.z
813
814 coord.w = none
815
816 lod = src0.w
817
818 unit = src1
819
820 dst = texture\_sample(unit, coord, lod)
821
822
823 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
824
825 this is the same as TXL, but uses another reg to encode the
826 explicit lod value.
827 Presumably shadow 3d / 2d array / cube targets could use
828 this encoding too, but this is not legal.
829
830 shadow cube map arrays are neither possible nor required.
831
832 .. math::
833
834 coord = src0
835
836 lod = src1.x
837
838 unit = src2
839
840 dst = texture\_sample(unit, coord, lod)
841
842
843 .. opcode:: PUSHA - Push Address Register On Stack
844
845 push(src.x)
846 push(src.y)
847 push(src.z)
848 push(src.w)
849
850 .. note::
851
852 Considered for cleanup.
853
854 .. note::
855
856 Considered for removal.
857
858 .. opcode:: POPA - Pop Address Register From Stack
859
860 dst.w = pop()
861 dst.z = pop()
862 dst.y = pop()
863 dst.x = pop()
864
865 .. note::
866
867 Considered for cleanup.
868
869 .. note::
870
871 Considered for removal.
872
873
874 .. opcode:: CALLNZ - Subroutine Call If Not Zero
875
876 TBD
877
878 .. note::
879
880 Considered for cleanup.
881
882 .. note::
883
884 Considered for removal.
885
886
887 Compute ISA
888 ^^^^^^^^^^^^^^^^^^^^^^^^
889
890 These opcodes are primarily provided for special-use computational shaders.
891 Support for these opcodes indicated by a special pipe capability bit (TBD).
892
893 XXX doesn't look like most of the opcodes really belong here.
894
895 .. opcode:: CEIL - Ceiling
896
897 .. math::
898
899 dst.x = \lceil src.x\rceil
900
901 dst.y = \lceil src.y\rceil
902
903 dst.z = \lceil src.z\rceil
904
905 dst.w = \lceil src.w\rceil
906
907
908 .. opcode:: TRUNC - Truncate
909
910 .. math::
911
912 dst.x = trunc(src.x)
913
914 dst.y = trunc(src.y)
915
916 dst.z = trunc(src.z)
917
918 dst.w = trunc(src.w)
919
920
921 .. opcode:: MOD - Modulus
922
923 .. math::
924
925 dst.x = src0.x \bmod src1.x
926
927 dst.y = src0.y \bmod src1.y
928
929 dst.z = src0.z \bmod src1.z
930
931 dst.w = src0.w \bmod src1.w
932
933
934 .. opcode:: UARL - Integer Address Register Load
935
936 Moves the contents of the source register, assumed to be an integer, into the
937 destination register, which is assumed to be an address (ADDR) register.
938
939
940 .. opcode:: SAD - Sum Of Absolute Differences
941
942 .. math::
943
944 dst.x = |src0.x - src1.x| + src2.x
945
946 dst.y = |src0.y - src1.y| + src2.y
947
948 dst.z = |src0.z - src1.z| + src2.z
949
950 dst.w = |src0.w - src1.w| + src2.w
951
952
953 .. opcode:: TXF - Texel Fetch
954
955 As per NV_gpu_shader4, extract a single texel from a specified texture
956 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
957 four-component signed integer vector used to identify the single texel
958 accessed. 3 components + level. Just like texture instructions, an optional
959 offset vector is provided, which is subject to various driver restrictions
960 (regarding range, source of offsets).
961 TXF(uint_vec coord, int_vec offset).
962
963
964 .. opcode:: TXQ - Texture Size Query
965
966 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
967 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
968 depth), 1D array (width, layers), 2D array (width, height, layers).
969 Also return the number of accessible levels (last_level - first_level + 1)
970 in W.
971
972 For components which don't return a resource dimension, their value
973 is undefined.
974
975 .. math::
976
977 lod = src0.x
978
979 dst.x = texture\_width(unit, lod)
980
981 dst.y = texture\_height(unit, lod)
982
983 dst.z = texture\_depth(unit, lod)
984
985 dst.w = texture\_levels(unit)
986
987
988 .. opcode:: TXQS - Texture Samples Query
989
990 This retrieves the number of samples in the texture, and stores it
991 into the x component. The other components are undefined.
992
993 .. math::
994
995 dst.x = texture\_samples(unit)
996
997
998 .. opcode:: TG4 - Texture Gather
999
1000 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
1001 filtering operation and packs them into a single register. Only works with
1002 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
1003 addressing modes of the sampler and the top level of any mip pyramid are
1004 used. Set W to zero. It behaves like the TEX instruction, but a filtered
1005 sample is not generated. The four samples that contribute to filtering are
1006 placed into xyzw in clockwise order, starting with the (u,v) texture
1007 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
1008 where the magnitude of the deltas are half a texel.
1009
1010 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1011 depth compares, single component selection, and a non-constant offset. It
1012 doesn't allow support for the GL independent offset to get i0,j0. This would
1013 require another CAP is hw can do it natively. For now we lower that before
1014 TGSI.
1015
1016 .. math::
1017
1018 coord = src0
1019
1020 component = src1
1021
1022 dst = texture\_gather4 (unit, coord, component)
1023
1024 (with SM5 - cube array shadow)
1025
1026 .. math::
1027
1028 coord = src0
1029
1030 compare = src1
1031
1032 dst = texture\_gather (uint, coord, compare)
1033
1034 .. opcode:: LODQ - level of detail query
1035
1036 Compute the LOD information that the texture pipe would use to access the
1037 texture. The Y component contains the computed LOD lambda_prime. The X
1038 component contains the LOD that will be accessed, based on min/max lod's
1039 and mipmap filters.
1040
1041 .. math::
1042
1043 coord = src0
1044
1045 dst.xy = lodq(uint, coord);
1046
1047 Integer ISA
1048 ^^^^^^^^^^^^^^^^^^^^^^^^
1049 These opcodes are used for integer operations.
1050 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1051
1052
1053 .. opcode:: I2F - Signed Integer To Float
1054
1055 Rounding is unspecified (round to nearest even suggested).
1056
1057 .. math::
1058
1059 dst.x = (float) src.x
1060
1061 dst.y = (float) src.y
1062
1063 dst.z = (float) src.z
1064
1065 dst.w = (float) src.w
1066
1067
1068 .. opcode:: U2F - Unsigned Integer To Float
1069
1070 Rounding is unspecified (round to nearest even suggested).
1071
1072 .. math::
1073
1074 dst.x = (float) src.x
1075
1076 dst.y = (float) src.y
1077
1078 dst.z = (float) src.z
1079
1080 dst.w = (float) src.w
1081
1082
1083 .. opcode:: F2I - Float to Signed Integer
1084
1085 Rounding is towards zero (truncate).
1086 Values outside signed range (including NaNs) produce undefined results.
1087
1088 .. math::
1089
1090 dst.x = (int) src.x
1091
1092 dst.y = (int) src.y
1093
1094 dst.z = (int) src.z
1095
1096 dst.w = (int) src.w
1097
1098
1099 .. opcode:: F2U - Float to Unsigned Integer
1100
1101 Rounding is towards zero (truncate).
1102 Values outside unsigned range (including NaNs) produce undefined results.
1103
1104 .. math::
1105
1106 dst.x = (unsigned) src.x
1107
1108 dst.y = (unsigned) src.y
1109
1110 dst.z = (unsigned) src.z
1111
1112 dst.w = (unsigned) src.w
1113
1114
1115 .. opcode:: UADD - Integer Add
1116
1117 This instruction works the same for signed and unsigned integers.
1118 The low 32bit of the result is returned.
1119
1120 .. math::
1121
1122 dst.x = src0.x + src1.x
1123
1124 dst.y = src0.y + src1.y
1125
1126 dst.z = src0.z + src1.z
1127
1128 dst.w = src0.w + src1.w
1129
1130
1131 .. opcode:: UMAD - Integer Multiply And Add
1132
1133 This instruction works the same for signed and unsigned integers.
1134 The multiplication returns the low 32bit (as does the result itself).
1135
1136 .. math::
1137
1138 dst.x = src0.x \times src1.x + src2.x
1139
1140 dst.y = src0.y \times src1.y + src2.y
1141
1142 dst.z = src0.z \times src1.z + src2.z
1143
1144 dst.w = src0.w \times src1.w + src2.w
1145
1146
1147 .. opcode:: UMUL - Integer Multiply
1148
1149 This instruction works the same for signed and unsigned integers.
1150 The low 32bit of the result is returned.
1151
1152 .. math::
1153
1154 dst.x = src0.x \times src1.x
1155
1156 dst.y = src0.y \times src1.y
1157
1158 dst.z = src0.z \times src1.z
1159
1160 dst.w = src0.w \times src1.w
1161
1162
1163 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1164
1165 The high 32bits of the multiplication of 2 signed integers are returned.
1166
1167 .. math::
1168
1169 dst.x = (src0.x \times src1.x) >> 32
1170
1171 dst.y = (src0.y \times src1.y) >> 32
1172
1173 dst.z = (src0.z \times src1.z) >> 32
1174
1175 dst.w = (src0.w \times src1.w) >> 32
1176
1177
1178 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1179
1180 The high 32bits of the multiplication of 2 unsigned integers are returned.
1181
1182 .. math::
1183
1184 dst.x = (src0.x \times src1.x) >> 32
1185
1186 dst.y = (src0.y \times src1.y) >> 32
1187
1188 dst.z = (src0.z \times src1.z) >> 32
1189
1190 dst.w = (src0.w \times src1.w) >> 32
1191
1192
1193 .. opcode:: IDIV - Signed Integer Division
1194
1195 TBD: behavior for division by zero.
1196
1197 .. math::
1198
1199 dst.x = src0.x \ src1.x
1200
1201 dst.y = src0.y \ src1.y
1202
1203 dst.z = src0.z \ src1.z
1204
1205 dst.w = src0.w \ src1.w
1206
1207
1208 .. opcode:: UDIV - Unsigned Integer Division
1209
1210 For division by zero, 0xffffffff is returned.
1211
1212 .. math::
1213
1214 dst.x = src0.x \ src1.x
1215
1216 dst.y = src0.y \ src1.y
1217
1218 dst.z = src0.z \ src1.z
1219
1220 dst.w = src0.w \ src1.w
1221
1222
1223 .. opcode:: UMOD - Unsigned Integer Remainder
1224
1225 If second arg is zero, 0xffffffff is returned.
1226
1227 .. math::
1228
1229 dst.x = src0.x \ src1.x
1230
1231 dst.y = src0.y \ src1.y
1232
1233 dst.z = src0.z \ src1.z
1234
1235 dst.w = src0.w \ src1.w
1236
1237
1238 .. opcode:: NOT - Bitwise Not
1239
1240 .. math::
1241
1242 dst.x = \sim src.x
1243
1244 dst.y = \sim src.y
1245
1246 dst.z = \sim src.z
1247
1248 dst.w = \sim src.w
1249
1250
1251 .. opcode:: AND - Bitwise And
1252
1253 .. math::
1254
1255 dst.x = src0.x \& src1.x
1256
1257 dst.y = src0.y \& src1.y
1258
1259 dst.z = src0.z \& src1.z
1260
1261 dst.w = src0.w \& src1.w
1262
1263
1264 .. opcode:: OR - Bitwise Or
1265
1266 .. math::
1267
1268 dst.x = src0.x | src1.x
1269
1270 dst.y = src0.y | src1.y
1271
1272 dst.z = src0.z | src1.z
1273
1274 dst.w = src0.w | src1.w
1275
1276
1277 .. opcode:: XOR - Bitwise Xor
1278
1279 .. math::
1280
1281 dst.x = src0.x \oplus src1.x
1282
1283 dst.y = src0.y \oplus src1.y
1284
1285 dst.z = src0.z \oplus src1.z
1286
1287 dst.w = src0.w \oplus src1.w
1288
1289
1290 .. opcode:: IMAX - Maximum of Signed Integers
1291
1292 .. math::
1293
1294 dst.x = max(src0.x, src1.x)
1295
1296 dst.y = max(src0.y, src1.y)
1297
1298 dst.z = max(src0.z, src1.z)
1299
1300 dst.w = max(src0.w, src1.w)
1301
1302
1303 .. opcode:: UMAX - Maximum of Unsigned Integers
1304
1305 .. math::
1306
1307 dst.x = max(src0.x, src1.x)
1308
1309 dst.y = max(src0.y, src1.y)
1310
1311 dst.z = max(src0.z, src1.z)
1312
1313 dst.w = max(src0.w, src1.w)
1314
1315
1316 .. opcode:: IMIN - Minimum of Signed Integers
1317
1318 .. math::
1319
1320 dst.x = min(src0.x, src1.x)
1321
1322 dst.y = min(src0.y, src1.y)
1323
1324 dst.z = min(src0.z, src1.z)
1325
1326 dst.w = min(src0.w, src1.w)
1327
1328
1329 .. opcode:: UMIN - Minimum of Unsigned Integers
1330
1331 .. math::
1332
1333 dst.x = min(src0.x, src1.x)
1334
1335 dst.y = min(src0.y, src1.y)
1336
1337 dst.z = min(src0.z, src1.z)
1338
1339 dst.w = min(src0.w, src1.w)
1340
1341
1342 .. opcode:: SHL - Shift Left
1343
1344 The shift count is masked with 0x1f before the shift is applied.
1345
1346 .. math::
1347
1348 dst.x = src0.x << (0x1f \& src1.x)
1349
1350 dst.y = src0.y << (0x1f \& src1.y)
1351
1352 dst.z = src0.z << (0x1f \& src1.z)
1353
1354 dst.w = src0.w << (0x1f \& src1.w)
1355
1356
1357 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1358
1359 The shift count is masked with 0x1f before the shift is applied.
1360
1361 .. math::
1362
1363 dst.x = src0.x >> (0x1f \& src1.x)
1364
1365 dst.y = src0.y >> (0x1f \& src1.y)
1366
1367 dst.z = src0.z >> (0x1f \& src1.z)
1368
1369 dst.w = src0.w >> (0x1f \& src1.w)
1370
1371
1372 .. opcode:: USHR - Logical Shift Right
1373
1374 The shift count is masked with 0x1f before the shift is applied.
1375
1376 .. math::
1377
1378 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1379
1380 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1381
1382 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1383
1384 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1385
1386
1387 .. opcode:: UCMP - Integer Conditional Move
1388
1389 .. math::
1390
1391 dst.x = src0.x ? src1.x : src2.x
1392
1393 dst.y = src0.y ? src1.y : src2.y
1394
1395 dst.z = src0.z ? src1.z : src2.z
1396
1397 dst.w = src0.w ? src1.w : src2.w
1398
1399
1400
1401 .. opcode:: ISSG - Integer Set Sign
1402
1403 .. math::
1404
1405 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1406
1407 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1408
1409 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1410
1411 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1412
1413
1414
1415 .. opcode:: FSLT - Float Set On Less Than (ordered)
1416
1417 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1418
1419 .. math::
1420
1421 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1422
1423 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1424
1425 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1426
1427 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1428
1429
1430 .. opcode:: ISLT - Signed Integer Set On Less Than
1431
1432 .. math::
1433
1434 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1435
1436 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1437
1438 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1439
1440 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1441
1442
1443 .. opcode:: USLT - Unsigned Integer Set On Less Than
1444
1445 .. math::
1446
1447 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1448
1449 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1450
1451 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1452
1453 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1454
1455
1456 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1457
1458 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1459
1460 .. math::
1461
1462 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1463
1464 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1465
1466 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1467
1468 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1469
1470
1471 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1472
1473 .. math::
1474
1475 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1476
1477 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1478
1479 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1480
1481 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1482
1483
1484 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1485
1486 .. math::
1487
1488 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1489
1490 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1491
1492 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1493
1494 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1495
1496
1497 .. opcode:: FSEQ - Float Set On Equal (ordered)
1498
1499 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1500
1501 .. math::
1502
1503 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1504
1505 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1506
1507 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1508
1509 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1510
1511
1512 .. opcode:: USEQ - Integer Set On Equal
1513
1514 .. math::
1515
1516 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1517
1518 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1519
1520 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1521
1522 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1523
1524
1525 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1526
1527 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1528
1529 .. math::
1530
1531 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1532
1533 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1534
1535 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1536
1537 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1538
1539
1540 .. opcode:: USNE - Integer Set On Not Equal
1541
1542 .. math::
1543
1544 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1545
1546 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1547
1548 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1549
1550 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1551
1552
1553 .. opcode:: INEG - Integer Negate
1554
1555 Two's complement.
1556
1557 .. math::
1558
1559 dst.x = -src.x
1560
1561 dst.y = -src.y
1562
1563 dst.z = -src.z
1564
1565 dst.w = -src.w
1566
1567
1568 .. opcode:: IABS - Integer Absolute Value
1569
1570 .. math::
1571
1572 dst.x = |src.x|
1573
1574 dst.y = |src.y|
1575
1576 dst.z = |src.z|
1577
1578 dst.w = |src.w|
1579
1580 Bitwise ISA
1581 ^^^^^^^^^^^
1582 These opcodes are used for bit-level manipulation of integers.
1583
1584 .. opcode:: IBFE - Signed Bitfield Extract
1585
1586 See SM5 instruction of the same name. Extracts a set of bits from the input,
1587 and sign-extends them if the high bit of the extracted window is set.
1588
1589 Pseudocode::
1590
1591 def ibfe(value, offset, bits):
1592 offset = offset & 0x1f
1593 bits = bits & 0x1f
1594 if bits == 0: return 0
1595 # Note: >> sign-extends
1596 if width + offset < 32:
1597 return (value << (32 - offset - bits)) >> (32 - bits)
1598 else:
1599 return value >> offset
1600
1601 .. opcode:: UBFE - Unsigned Bitfield Extract
1602
1603 See SM5 instruction of the same name. Extracts a set of bits from the input,
1604 without any sign-extension.
1605
1606 Pseudocode::
1607
1608 def ubfe(value, offset, bits):
1609 offset = offset & 0x1f
1610 bits = bits & 0x1f
1611 if bits == 0: return 0
1612 # Note: >> does not sign-extend
1613 if width + offset < 32:
1614 return (value << (32 - offset - bits)) >> (32 - bits)
1615 else:
1616 return value >> offset
1617
1618 .. opcode:: BFI - Bitfield Insert
1619
1620 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1621 the low bits of 'insert'.
1622
1623 Pseudocode::
1624
1625 def bfi(base, insert, offset, bits):
1626 offset = offset & 0x1f
1627 bits = bits & 0x1f
1628 mask = ((1 << bits) - 1) << offset
1629 return ((insert << offset) & mask) | (base & ~mask)
1630
1631 .. opcode:: BREV - Bitfield Reverse
1632
1633 See SM5 instruction BFREV. Reverses the bits of the argument.
1634
1635 .. opcode:: POPC - Population Count
1636
1637 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1638
1639 .. opcode:: LSB - Index of lowest set bit
1640
1641 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1642 bit of the argument. Returns -1 if none are set.
1643
1644 .. opcode:: IMSB - Index of highest non-sign bit
1645
1646 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1647 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1648 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1649 (i.e. for inputs 0 and -1).
1650
1651 .. opcode:: UMSB - Index of highest set bit
1652
1653 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1654 set bit of the argument. Returns -1 if none are set.
1655
1656 Geometry ISA
1657 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1658
1659 These opcodes are only supported in geometry shaders; they have no meaning
1660 in any other type of shader.
1661
1662 .. opcode:: EMIT - Emit
1663
1664 Generate a new vertex for the current primitive into the specified vertex
1665 stream using the values in the output registers.
1666
1667
1668 .. opcode:: ENDPRIM - End Primitive
1669
1670 Complete the current primitive in the specified vertex stream (consisting of
1671 the emitted vertices), and start a new one.
1672
1673
1674 GLSL ISA
1675 ^^^^^^^^^^
1676
1677 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1678 opcodes is determined by a special capability bit, ``GLSL``.
1679 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1680
1681 .. opcode:: CAL - Subroutine Call
1682
1683 push(pc)
1684 pc = target
1685
1686
1687 .. opcode:: RET - Subroutine Call Return
1688
1689 pc = pop()
1690
1691
1692 .. opcode:: CONT - Continue
1693
1694 Unconditionally moves the point of execution to the instruction after the
1695 last bgnloop. The instruction must appear within a bgnloop/endloop.
1696
1697 .. note::
1698
1699 Support for CONT is determined by a special capability bit,
1700 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1701
1702
1703 .. opcode:: BGNLOOP - Begin a Loop
1704
1705 Start a loop. Must have a matching endloop.
1706
1707
1708 .. opcode:: BGNSUB - Begin Subroutine
1709
1710 Starts definition of a subroutine. Must have a matching endsub.
1711
1712
1713 .. opcode:: ENDLOOP - End a Loop
1714
1715 End a loop started with bgnloop.
1716
1717
1718 .. opcode:: ENDSUB - End Subroutine
1719
1720 Ends definition of a subroutine.
1721
1722
1723 .. opcode:: NOP - No Operation
1724
1725 Do nothing.
1726
1727
1728 .. opcode:: BRK - Break
1729
1730 Unconditionally moves the point of execution to the instruction after the
1731 next endloop or endswitch. The instruction must appear within a loop/endloop
1732 or switch/endswitch.
1733
1734
1735 .. opcode:: BREAKC - Break Conditional
1736
1737 Conditionally moves the point of execution to the instruction after the
1738 next endloop or endswitch. The instruction must appear within a loop/endloop
1739 or switch/endswitch.
1740 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1741 as an integer register.
1742
1743 .. note::
1744
1745 Considered for removal as it's quite inconsistent wrt other opcodes
1746 (could emulate with UIF/BRK/ENDIF).
1747
1748
1749 .. opcode:: IF - Float If
1750
1751 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1752
1753 src0.x != 0.0
1754
1755 where src0.x is interpreted as a floating point register.
1756
1757
1758 .. opcode:: UIF - Bitwise If
1759
1760 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1761
1762 src0.x != 0
1763
1764 where src0.x is interpreted as an integer register.
1765
1766
1767 .. opcode:: ELSE - Else
1768
1769 Starts an else block, after an IF or UIF statement.
1770
1771
1772 .. opcode:: ENDIF - End If
1773
1774 Ends an IF or UIF block.
1775
1776
1777 .. opcode:: SWITCH - Switch
1778
1779 Starts a C-style switch expression. The switch consists of one or multiple
1780 CASE statements, and at most one DEFAULT statement. Execution of a statement
1781 ends when a BRK is hit, but just like in C falling through to other cases
1782 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1783 just as last statement, and fallthrough is allowed into/from it.
1784 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1785
1786 Example::
1787
1788 SWITCH src[0].x
1789 CASE src[0].x
1790 (some instructions here)
1791 (optional BRK here)
1792 DEFAULT
1793 (some instructions here)
1794 (optional BRK here)
1795 CASE src[0].x
1796 (some instructions here)
1797 (optional BRK here)
1798 ENDSWITCH
1799
1800
1801 .. opcode:: CASE - Switch case
1802
1803 This represents a switch case label. The src arg must be an integer immediate.
1804
1805
1806 .. opcode:: DEFAULT - Switch default
1807
1808 This represents the default case in the switch, which is taken if no other
1809 case matches.
1810
1811
1812 .. opcode:: ENDSWITCH - End of switch
1813
1814 Ends a switch expression.
1815
1816
1817 Interpolation ISA
1818 ^^^^^^^^^^^^^^^^^
1819
1820 The interpolation instructions allow an input to be interpolated in a
1821 different way than its declaration. This corresponds to the GLSL 4.00
1822 interpolateAt* functions. The first argument of each of these must come from
1823 ``TGSI_FILE_INPUT``.
1824
1825 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1826
1827 Interpolates the varying specified by src0 at the centroid
1828
1829 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1830
1831 Interpolates the varying specified by src0 at the sample id specified by
1832 src1.x (interpreted as an integer)
1833
1834 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1835
1836 Interpolates the varying specified by src0 at the offset src1.xy from the
1837 pixel center (interpreted as floats)
1838
1839
1840 .. _doubleopcodes:
1841
1842 Double ISA
1843 ^^^^^^^^^^^^^^^
1844
1845 The double-precision opcodes reinterpret four-component vectors into
1846 two-component vectors with doubled precision in each component.
1847
1848 .. opcode:: DABS - Absolute
1849
1850 dst.xy = |src0.xy|
1851 dst.zw = |src0.zw|
1852
1853 .. opcode:: DADD - Add
1854
1855 .. math::
1856
1857 dst.xy = src0.xy + src1.xy
1858
1859 dst.zw = src0.zw + src1.zw
1860
1861 .. opcode:: DSEQ - Set on Equal
1862
1863 .. math::
1864
1865 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1866
1867 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1868
1869 .. opcode:: DSNE - Set on Equal
1870
1871 .. math::
1872
1873 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1874
1875 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1876
1877 .. opcode:: DSLT - Set on Less than
1878
1879 .. math::
1880
1881 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1882
1883 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1884
1885 .. opcode:: DSGE - Set on Greater equal
1886
1887 .. math::
1888
1889 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1890
1891 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1892
1893 .. opcode:: DFRAC - Fraction
1894
1895 .. math::
1896
1897 dst.xy = src.xy - \lfloor src.xy\rfloor
1898
1899 dst.zw = src.zw - \lfloor src.zw\rfloor
1900
1901 .. opcode:: DTRUNC - Truncate
1902
1903 .. math::
1904
1905 dst.xy = trunc(src.xy)
1906
1907 dst.zw = trunc(src.zw)
1908
1909 .. opcode:: DCEIL - Ceiling
1910
1911 .. math::
1912
1913 dst.xy = \lceil src.xy\rceil
1914
1915 dst.zw = \lceil src.zw\rceil
1916
1917 .. opcode:: DFLR - Floor
1918
1919 .. math::
1920
1921 dst.xy = \lfloor src.xy\rfloor
1922
1923 dst.zw = \lfloor src.zw\rfloor
1924
1925 .. opcode:: DROUND - Fraction
1926
1927 .. math::
1928
1929 dst.xy = round(src.xy)
1930
1931 dst.zw = round(src.zw)
1932
1933 .. opcode:: DSSG - Set Sign
1934
1935 .. math::
1936
1937 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1938
1939 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1940
1941 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1942
1943 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1944 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1945 :math:`dst1 \times 2^{dst0} = src` .
1946
1947 .. math::
1948
1949 dst0.xy = exp(src.xy)
1950
1951 dst1.xy = frac(src.xy)
1952
1953 dst0.zw = exp(src.zw)
1954
1955 dst1.zw = frac(src.zw)
1956
1957 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1958
1959 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1960 source is an integer.
1961
1962 .. math::
1963
1964 dst.xy = src0.xy \times 2^{src1.x}
1965
1966 dst.zw = src0.zw \times 2^{src1.y}
1967
1968 .. opcode:: DMIN - Minimum
1969
1970 .. math::
1971
1972 dst.xy = min(src0.xy, src1.xy)
1973
1974 dst.zw = min(src0.zw, src1.zw)
1975
1976 .. opcode:: DMAX - Maximum
1977
1978 .. math::
1979
1980 dst.xy = max(src0.xy, src1.xy)
1981
1982 dst.zw = max(src0.zw, src1.zw)
1983
1984 .. opcode:: DMUL - Multiply
1985
1986 .. math::
1987
1988 dst.xy = src0.xy \times src1.xy
1989
1990 dst.zw = src0.zw \times src1.zw
1991
1992
1993 .. opcode:: DMAD - Multiply And Add
1994
1995 .. math::
1996
1997 dst.xy = src0.xy \times src1.xy + src2.xy
1998
1999 dst.zw = src0.zw \times src1.zw + src2.zw
2000
2001
2002 .. opcode:: DFMA - Fused Multiply-Add
2003
2004 Perform a * b + c with no intermediate rounding step.
2005
2006 .. math::
2007
2008 dst.xy = src0.xy \times src1.xy + src2.xy
2009
2010 dst.zw = src0.zw \times src1.zw + src2.zw
2011
2012
2013 .. opcode:: DRCP - Reciprocal
2014
2015 .. math::
2016
2017 dst.xy = \frac{1}{src.xy}
2018
2019 dst.zw = \frac{1}{src.zw}
2020
2021 .. opcode:: DSQRT - Square Root
2022
2023 .. math::
2024
2025 dst.xy = \sqrt{src.xy}
2026
2027 dst.zw = \sqrt{src.zw}
2028
2029 .. opcode:: DRSQ - Reciprocal Square Root
2030
2031 .. math::
2032
2033 dst.xy = \frac{1}{\sqrt{src.xy}}
2034
2035 dst.zw = \frac{1}{\sqrt{src.zw}}
2036
2037 .. opcode:: F2D - Float to Double
2038
2039 .. math::
2040
2041 dst.xy = double(src0.x)
2042
2043 dst.zw = double(src0.y)
2044
2045 .. opcode:: D2F - Double to Float
2046
2047 .. math::
2048
2049 dst.x = float(src0.xy)
2050
2051 dst.y = float(src0.zw)
2052
2053 .. opcode:: I2D - Int to Double
2054
2055 .. math::
2056
2057 dst.xy = double(src0.x)
2058
2059 dst.zw = double(src0.y)
2060
2061 .. opcode:: D2I - Double to Int
2062
2063 .. math::
2064
2065 dst.x = int(src0.xy)
2066
2067 dst.y = int(src0.zw)
2068
2069 .. opcode:: U2D - Unsigned Int to Double
2070
2071 .. math::
2072
2073 dst.xy = double(src0.x)
2074
2075 dst.zw = double(src0.y)
2076
2077 .. opcode:: D2U - Double to Unsigned Int
2078
2079 .. math::
2080
2081 dst.x = unsigned(src0.xy)
2082
2083 dst.y = unsigned(src0.zw)
2084
2085 64-bit Integer ISA
2086 ^^^^^^^^^^^^^^^^^^
2087
2088 The 64-bit integer opcodes reinterpret four-component vectors into
2089 two-component vectors with 64-bits in each component.
2090
2091 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2092
2093 dst.xy = |src0.xy|
2094 dst.zw = |src0.zw|
2095
2096 .. opcode:: I64NEG - 64-bit Integer Negate
2097
2098 Two's complement.
2099
2100 .. math::
2101
2102 dst.xy = -src.xy
2103 dst.zw = -src.zw
2104
2105 .. opcode:: I64SSG - 64-bit Integer Set Sign
2106
2107 .. math::
2108
2109 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2110 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2111
2112 .. opcode:: U64ADD - 64-bit Integer Add
2113
2114 .. math::
2115
2116 dst.xy = src0.xy + src1.xy
2117 dst.zw = src0.zw + src1.zw
2118
2119 .. opcode:: U64MUL - 64-bit Integer Multiply
2120
2121 .. math::
2122
2123 dst.xy = src0.xy * src1.xy
2124 dst.zw = src0.zw * src1.zw
2125
2126 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2127
2128 .. math::
2129
2130 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2131 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2132
2133 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2134
2135 .. math::
2136
2137 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2138 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2139
2140 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2141
2142 .. math::
2143
2144 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2145 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2146
2147 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2148
2149 .. math::
2150
2151 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2152 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2153
2154 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2155
2156 .. math::
2157
2158 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2159 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2160
2161 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2162
2163 .. math::
2164
2165 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2166 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2167
2168 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2169
2170 .. math::
2171
2172 dst.xy = min(src0.xy, src1.xy)
2173 dst.zw = min(src0.zw, src1.zw)
2174
2175 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2176
2177 .. math::
2178
2179 dst.xy = min(src0.xy, src1.xy)
2180 dst.zw = min(src0.zw, src1.zw)
2181
2182 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2183
2184 .. math::
2185
2186 dst.xy = max(src0.xy, src1.xy)
2187 dst.zw = max(src0.zw, src1.zw)
2188
2189 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2190
2191 .. math::
2192
2193 dst.xy = max(src0.xy, src1.xy)
2194 dst.zw = max(src0.zw, src1.zw)
2195
2196 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2197
2198 The shift count is masked with 0x3f before the shift is applied.
2199
2200 .. math::
2201
2202 dst.xy = src0.xy << (0x3f \& src1.x)
2203 dst.zw = src0.zw << (0x3f \& src1.y)
2204
2205 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2206
2207 The shift count is masked with 0x3f before the shift is applied.
2208
2209 .. math::
2210
2211 dst.xy = src0.xy >> (0x3f \& src1.x)
2212 dst.zw = src0.zw >> (0x3f \& src1.y)
2213
2214 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2215
2216 The shift count is masked with 0x3f before the shift is applied.
2217
2218 .. math::
2219
2220 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2221 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2222
2223 .. opcode:: I64DIV - 64-bit Signed Integer Division
2224
2225 .. math::
2226
2227 dst.xy = src0.xy \ src1.xy
2228 dst.zw = src0.zw \ src1.zw
2229
2230 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2231
2232 .. math::
2233
2234 dst.xy = src0.xy \ src1.xy
2235 dst.zw = src0.zw \ src1.zw
2236
2237 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2238
2239 .. math::
2240
2241 dst.xy = src0.xy \bmod src1.xy
2242 dst.zw = src0.zw \bmod src1.zw
2243
2244 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2245
2246 .. math::
2247
2248 dst.xy = src0.xy \bmod src1.xy
2249 dst.zw = src0.zw \bmod src1.zw
2250
2251 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2252
2253 .. math::
2254
2255 dst.xy = (uint64_t) src0.x
2256 dst.zw = (uint64_t) src0.y
2257
2258 .. opcode:: F2I64 - Float to 64-bit Int
2259
2260 .. math::
2261
2262 dst.xy = (int64_t) src0.x
2263 dst.zw = (int64_t) src0.y
2264
2265 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2266
2267 This is a zero extension.
2268
2269 .. math::
2270
2271 dst.xy = (uint64_t) src0.x
2272 dst.zw = (uint64_t) src0.y
2273
2274 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2275
2276 This is a sign extension.
2277
2278 .. math::
2279
2280 dst.xy = (int64_t) src0.x
2281 dst.zw = (int64_t) src0.y
2282
2283 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2284
2285 .. math::
2286
2287 dst.xy = (uint64_t) src0.xy
2288 dst.zw = (uint64_t) src0.zw
2289
2290 .. opcode:: D2I64 - Double to 64-bit Int
2291
2292 .. math::
2293
2294 dst.xy = (int64_t) src0.xy
2295 dst.zw = (int64_t) src0.zw
2296
2297 .. opcode:: U642F - 64-bit unsigned integer to float
2298
2299 .. math::
2300
2301 dst.x = (float) src0.xy
2302 dst.y = (float) src0.zw
2303
2304 .. opcode:: I642F - 64-bit Int to Float
2305
2306 .. math::
2307
2308 dst.x = (float) src0.xy
2309 dst.y = (float) src0.zw
2310
2311 .. opcode:: U642D - 64-bit unsigned integer to double
2312
2313 .. math::
2314
2315 dst.xy = (double) src0.xy
2316 dst.zw = (double) src0.zw
2317
2318 .. opcode:: I642D - 64-bit Int to double
2319
2320 .. math::
2321
2322 dst.xy = (double) src0.xy
2323 dst.zw = (double) src0.zw
2324
2325 .. _samplingopcodes:
2326
2327 Resource Sampling Opcodes
2328 ^^^^^^^^^^^^^^^^^^^^^^^^^
2329
2330 Those opcodes follow very closely semantics of the respective Direct3D
2331 instructions. If in doubt double check Direct3D documentation.
2332 Note that the swizzle on SVIEW (src1) determines texel swizzling
2333 after lookup.
2334
2335 .. opcode:: SAMPLE
2336
2337 Using provided address, sample data from the specified texture using the
2338 filtering mode identified by the given sampler. The source data may come from
2339 any resource type other than buffers.
2340
2341 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2342
2343 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2344
2345 .. opcode:: SAMPLE_I
2346
2347 Simplified alternative to the SAMPLE instruction. Using the provided
2348 integer address, SAMPLE_I fetches data from the specified sampler view
2349 without any filtering. The source data may come from any resource type
2350 other than CUBE.
2351
2352 Syntax: ``SAMPLE_I dst, address, sampler_view``
2353
2354 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2355
2356 The 'address' is specified as unsigned integers. If the 'address' is out of
2357 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2358 components. As such the instruction doesn't honor address wrap modes, in
2359 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2360 address.w always provides an unsigned integer mipmap level. If the value is
2361 out of the range then the instruction always returns 0 in all components.
2362 address.yz are ignored for buffers and 1d textures. address.z is ignored
2363 for 1d texture arrays and 2d textures.
2364
2365 For 1D texture arrays address.y provides the array index (also as unsigned
2366 integer). If the value is out of the range of available array indices
2367 [0... (array size - 1)] then the opcode always returns 0 in all components.
2368 For 2D texture arrays address.z provides the array index, otherwise it
2369 exhibits the same behavior as in the case for 1D texture arrays. The exact
2370 semantics of the source address are presented in the table below:
2371
2372 +---------------------------+----+-----+-----+---------+
2373 | resource type | X | Y | Z | W |
2374 +===========================+====+=====+=====+=========+
2375 | ``PIPE_BUFFER`` | x | | | ignored |
2376 +---------------------------+----+-----+-----+---------+
2377 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2378 +---------------------------+----+-----+-----+---------+
2379 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2380 +---------------------------+----+-----+-----+---------+
2381 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2382 +---------------------------+----+-----+-----+---------+
2383 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2384 +---------------------------+----+-----+-----+---------+
2385 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2386 +---------------------------+----+-----+-----+---------+
2387 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2388 +---------------------------+----+-----+-----+---------+
2389 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2390 +---------------------------+----+-----+-----+---------+
2391
2392 Where 'mpl' is a mipmap level and 'idx' is the array index.
2393
2394 .. opcode:: SAMPLE_I_MS
2395
2396 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2397
2398 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2399
2400 .. opcode:: SAMPLE_B
2401
2402 Just like the SAMPLE instruction with the exception that an additional bias
2403 is applied to the level of detail computed as part of the instruction
2404 execution.
2405
2406 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2407
2408 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2409
2410 .. opcode:: SAMPLE_C
2411
2412 Similar to the SAMPLE instruction but it performs a comparison filter. The
2413 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2414 additional float32 operand, reference value, which must be a register with
2415 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2416 current samplers compare_func (in pipe_sampler_state) to compare reference
2417 value against the red component value for the surce resource at each texel
2418 that the currently configured texture filter covers based on the provided
2419 coordinates.
2420
2421 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2422
2423 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2424
2425 .. opcode:: SAMPLE_C_LZ
2426
2427 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2428 for level-zero.
2429
2430 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2431
2432 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2433
2434
2435 .. opcode:: SAMPLE_D
2436
2437 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2438 the source address in the x direction and the y direction are provided by
2439 extra parameters.
2440
2441 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2442
2443 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2444
2445 .. opcode:: SAMPLE_L
2446
2447 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2448 directly as a scalar value, representing no anisotropy.
2449
2450 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2451
2452 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2453
2454 .. opcode:: GATHER4
2455
2456 Gathers the four texels to be used in a bi-linear filtering operation and
2457 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2458 and cubemaps arrays. For 2D textures, only the addressing modes of the
2459 sampler and the top level of any mip pyramid are used. Set W to zero. It
2460 behaves like the SAMPLE instruction, but a filtered sample is not
2461 generated. The four samples that contribute to filtering are placed into
2462 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2463 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2464 magnitude of the deltas are half a texel.
2465
2466
2467 .. opcode:: SVIEWINFO
2468
2469 Query the dimensions of a given sampler view. dst receives width, height,
2470 depth or array size and number of mipmap levels as int4. The dst can have a
2471 writemask which will specify what info is the caller interested in.
2472
2473 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2474
2475 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2476
2477 src_mip_level is an unsigned integer scalar. If it's out of range then
2478 returns 0 for width, height and depth/array size but the total number of
2479 mipmap is still returned correctly for the given sampler view. The returned
2480 width, height and depth values are for the mipmap level selected by the
2481 src_mip_level and are in the number of texels. For 1d texture array width
2482 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2483 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2484 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2485 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2486 resinfo allowing swizzling dst values is ignored (due to the interaction
2487 with rcpfloat modifier which requires some swizzle handling in the state
2488 tracker anyway).
2489
2490 .. opcode:: SAMPLE_POS
2491
2492 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2493 indicated where the sample is located. If the resource is not a multi-sample
2494 resource and not a render target, the result is 0.
2495
2496 .. opcode:: SAMPLE_INFO
2497
2498 dst receives number of samples in x. If the resource is not a multi-sample
2499 resource and not a render target, the result is 0.
2500
2501
2502 .. _resourceopcodes:
2503
2504 Resource Access Opcodes
2505 ^^^^^^^^^^^^^^^^^^^^^^^
2506
2507 .. opcode:: LOAD - Fetch data from a shader buffer or image
2508
2509 Syntax: ``LOAD dst, resource, address``
2510
2511 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2512
2513 Using the provided integer address, LOAD fetches data
2514 from the specified buffer or texture without any
2515 filtering.
2516
2517 The 'address' is specified as a vector of unsigned
2518 integers. If the 'address' is out of range the result
2519 is unspecified.
2520
2521 Only the first mipmap level of a resource can be read
2522 from using this instruction.
2523
2524 For 1D or 2D texture arrays, the array index is
2525 provided as an unsigned integer in address.y or
2526 address.z, respectively. address.yz are ignored for
2527 buffers and 1D textures. address.z is ignored for 1D
2528 texture arrays and 2D textures. address.w is always
2529 ignored.
2530
2531 A swizzle suffix may be added to the resource argument
2532 this will cause the resource data to be swizzled accordingly.
2533
2534 .. opcode:: STORE - Write data to a shader resource
2535
2536 Syntax: ``STORE resource, address, src``
2537
2538 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2539
2540 Using the provided integer address, STORE writes data
2541 to the specified buffer or texture.
2542
2543 The 'address' is specified as a vector of unsigned
2544 integers. If the 'address' is out of range the result
2545 is unspecified.
2546
2547 Only the first mipmap level of a resource can be
2548 written to using this instruction.
2549
2550 For 1D or 2D texture arrays, the array index is
2551 provided as an unsigned integer in address.y or
2552 address.z, respectively. address.yz are ignored for
2553 buffers and 1D textures. address.z is ignored for 1D
2554 texture arrays and 2D textures. address.w is always
2555 ignored.
2556
2557 .. opcode:: RESQ - Query information about a resource
2558
2559 Syntax: ``RESQ dst, resource``
2560
2561 Example: ``RESQ TEMP[0], BUFFER[0]``
2562
2563 Returns information about the buffer or image resource. For buffer
2564 resources, the size (in bytes) is returned in the x component. For
2565 image resources, .xyz will contain the width/height/layers of the
2566 image, while .w will contain the number of samples for multi-sampled
2567 images.
2568
2569
2570 .. _threadsyncopcodes:
2571
2572 Inter-thread synchronization opcodes
2573 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2574
2575 These opcodes are intended for communication between threads running
2576 within the same compute grid. For now they're only valid in compute
2577 programs.
2578
2579 .. opcode:: MFENCE - Memory fence
2580
2581 Syntax: ``MFENCE resource``
2582
2583 Example: ``MFENCE RES[0]``
2584
2585 This opcode forces strong ordering between any memory access
2586 operations that affect the specified resource. This means that
2587 previous loads and stores (and only those) will be performed and
2588 visible to other threads before the program execution continues.
2589
2590
2591 .. opcode:: LFENCE - Load memory fence
2592
2593 Syntax: ``LFENCE resource``
2594
2595 Example: ``LFENCE RES[0]``
2596
2597 Similar to MFENCE, but it only affects the ordering of memory loads.
2598
2599
2600 .. opcode:: SFENCE - Store memory fence
2601
2602 Syntax: ``SFENCE resource``
2603
2604 Example: ``SFENCE RES[0]``
2605
2606 Similar to MFENCE, but it only affects the ordering of memory stores.
2607
2608
2609 .. opcode:: BARRIER - Thread group barrier
2610
2611 ``BARRIER``
2612
2613 This opcode suspends the execution of the current thread until all
2614 the remaining threads in the working group reach the same point of
2615 the program. Results are unspecified if any of the remaining
2616 threads terminates or never reaches an executed BARRIER instruction.
2617
2618 .. opcode:: MEMBAR - Memory barrier
2619
2620 ``MEMBAR type``
2621
2622 This opcode waits for the completion of all memory accesses based on
2623 the type passed in. The type is an immediate bitfield with the following
2624 meaning:
2625
2626 Bit 0: Shader storage buffers
2627 Bit 1: Atomic buffers
2628 Bit 2: Images
2629 Bit 3: Shared memory
2630 Bit 4: Thread group
2631
2632 These may be passed in in any combination. An implementation is free to not
2633 distinguish between these as it sees fit. However these map to all the
2634 possibilities made available by GLSL.
2635
2636 .. _atomopcodes:
2637
2638 Atomic opcodes
2639 ^^^^^^^^^^^^^^
2640
2641 These opcodes provide atomic variants of some common arithmetic and
2642 logical operations. In this context atomicity means that another
2643 concurrent memory access operation that affects the same memory
2644 location is guaranteed to be performed strictly before or after the
2645 entire execution of the atomic operation. The resource may be a buffer
2646 or an image. In the case of an image, the offset works the same as for
2647 ``LOAD`` and ``STORE``, specified above. These atomic operations may
2648 only be used with 32-bit integer image formats.
2649
2650 .. opcode:: ATOMUADD - Atomic integer addition
2651
2652 Syntax: ``ATOMUADD dst, resource, offset, src``
2653
2654 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2655
2656 The following operation is performed atomically:
2657
2658 .. math::
2659
2660 dst_x = resource[offset]
2661
2662 resource[offset] = dst_x + src_x
2663
2664
2665 .. opcode:: ATOMXCHG - Atomic exchange
2666
2667 Syntax: ``ATOMXCHG dst, resource, offset, src``
2668
2669 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2670
2671 The following operation is performed atomically:
2672
2673 .. math::
2674
2675 dst_x = resource[offset]
2676
2677 resource[offset] = src_x
2678
2679
2680 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2681
2682 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2683
2684 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2685
2686 The following operation is performed atomically:
2687
2688 .. math::
2689
2690 dst_x = resource[offset]
2691
2692 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2693
2694
2695 .. opcode:: ATOMAND - Atomic bitwise And
2696
2697 Syntax: ``ATOMAND dst, resource, offset, src``
2698
2699 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2700
2701 The following operation is performed atomically:
2702
2703 .. math::
2704
2705 dst_x = resource[offset]
2706
2707 resource[offset] = dst_x \& src_x
2708
2709
2710 .. opcode:: ATOMOR - Atomic bitwise Or
2711
2712 Syntax: ``ATOMOR dst, resource, offset, src``
2713
2714 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2715
2716 The following operation is performed atomically:
2717
2718 .. math::
2719
2720 dst_x = resource[offset]
2721
2722 resource[offset] = dst_x | src_x
2723
2724
2725 .. opcode:: ATOMXOR - Atomic bitwise Xor
2726
2727 Syntax: ``ATOMXOR dst, resource, offset, src``
2728
2729 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2730
2731 The following operation is performed atomically:
2732
2733 .. math::
2734
2735 dst_x = resource[offset]
2736
2737 resource[offset] = dst_x \oplus src_x
2738
2739
2740 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2741
2742 Syntax: ``ATOMUMIN dst, resource, offset, src``
2743
2744 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2745
2746 The following operation is performed atomically:
2747
2748 .. math::
2749
2750 dst_x = resource[offset]
2751
2752 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2753
2754
2755 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2756
2757 Syntax: ``ATOMUMAX dst, resource, offset, src``
2758
2759 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2760
2761 The following operation is performed atomically:
2762
2763 .. math::
2764
2765 dst_x = resource[offset]
2766
2767 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2768
2769
2770 .. opcode:: ATOMIMIN - Atomic signed minimum
2771
2772 Syntax: ``ATOMIMIN dst, resource, offset, src``
2773
2774 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2775
2776 The following operation is performed atomically:
2777
2778 .. math::
2779
2780 dst_x = resource[offset]
2781
2782 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2783
2784
2785 .. opcode:: ATOMIMAX - Atomic signed maximum
2786
2787 Syntax: ``ATOMIMAX dst, resource, offset, src``
2788
2789 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2790
2791 The following operation is performed atomically:
2792
2793 .. math::
2794
2795 dst_x = resource[offset]
2796
2797 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2798
2799
2800 .. _voteopcodes:
2801
2802 Vote opcodes
2803 ^^^^^^^^^^^^
2804
2805 These opcodes compare the given value across the shader invocations
2806 running in the current SIMD group. The details of exactly which
2807 invocations get compared are implementation-defined, and it would be a
2808 correct implementation to only ever consider the current thread's
2809 value. (i.e. SIMD group of 1). The argument is treated as a boolean.
2810
2811 .. opcode:: VOTE_ANY - Value is set in any of the current invocations
2812
2813 .. opcode:: VOTE_ALL - Value is set in all of the current invocations
2814
2815 .. opcode:: VOTE_EQ - Value is the same in all of the current invocations
2816
2817
2818 Explanation of symbols used
2819 ------------------------------
2820
2821
2822 Functions
2823 ^^^^^^^^^^^^^^
2824
2825
2826 :math:`|x|` Absolute value of `x`.
2827
2828 :math:`\lceil x \rceil` Ceiling of `x`.
2829
2830 clamp(x,y,z) Clamp x between y and z.
2831 (x < y) ? y : (x > z) ? z : x
2832
2833 :math:`\lfloor x\rfloor` Floor of `x`.
2834
2835 :math:`\log_2{x}` Logarithm of `x`, base 2.
2836
2837 max(x,y) Maximum of x and y.
2838 (x > y) ? x : y
2839
2840 min(x,y) Minimum of x and y.
2841 (x < y) ? x : y
2842
2843 partialx(x) Derivative of x relative to fragment's X.
2844
2845 partialy(x) Derivative of x relative to fragment's Y.
2846
2847 pop() Pop from stack.
2848
2849 :math:`x^y` `x` to the power `y`.
2850
2851 push(x) Push x on stack.
2852
2853 round(x) Round x.
2854
2855 trunc(x) Truncate x, i.e. drop the fraction bits.
2856
2857
2858 Keywords
2859 ^^^^^^^^^^^^^
2860
2861
2862 discard Discard fragment.
2863
2864 pc Program counter.
2865
2866 target Label of target instruction.
2867
2868
2869 Other tokens
2870 ---------------
2871
2872
2873 Declaration
2874 ^^^^^^^^^^^
2875
2876
2877 Declares a register that is will be referenced as an operand in Instruction
2878 tokens.
2879
2880 File field contains register file that is being declared and is one
2881 of TGSI_FILE.
2882
2883 UsageMask field specifies which of the register components can be accessed
2884 and is one of TGSI_WRITEMASK.
2885
2886 The Local flag specifies that a given value isn't intended for
2887 subroutine parameter passing and, as a result, the implementation
2888 isn't required to give any guarantees of it being preserved across
2889 subroutine boundaries. As it's merely a compiler hint, the
2890 implementation is free to ignore it.
2891
2892 If Dimension flag is set to 1, a Declaration Dimension token follows.
2893
2894 If Semantic flag is set to 1, a Declaration Semantic token follows.
2895
2896 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2897
2898 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2899
2900 If Array flag is set to 1, a Declaration Array token follows.
2901
2902 Array Declaration
2903 ^^^^^^^^^^^^^^^^^^^^^^^^
2904
2905 Declarations can optional have an ArrayID attribute which can be referred by
2906 indirect addressing operands. An ArrayID of zero is reserved and treated as
2907 if no ArrayID is specified.
2908
2909 If an indirect addressing operand refers to a specific declaration by using
2910 an ArrayID only the registers in this declaration are guaranteed to be
2911 accessed, accessing any register outside this declaration results in undefined
2912 behavior. Note that for compatibility the effective index is zero-based and
2913 not relative to the specified declaration
2914
2915 If no ArrayID is specified with an indirect addressing operand the whole
2916 register file might be accessed by this operand. This is strongly discouraged
2917 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2918 This is only legal for TEMP and CONST register files.
2919
2920 Declaration Semantic
2921 ^^^^^^^^^^^^^^^^^^^^^^^^
2922
2923 Vertex and fragment shader input and output registers may be labeled
2924 with semantic information consisting of a name and index.
2925
2926 Follows Declaration token if Semantic bit is set.
2927
2928 Since its purpose is to link a shader with other stages of the pipeline,
2929 it is valid to follow only those Declaration tokens that declare a register
2930 either in INPUT or OUTPUT file.
2931
2932 SemanticName field contains the semantic name of the register being declared.
2933 There is no default value.
2934
2935 SemanticIndex is an optional subscript that can be used to distinguish
2936 different register declarations with the same semantic name. The default value
2937 is 0.
2938
2939 The meanings of the individual semantic names are explained in the following
2940 sections.
2941
2942 TGSI_SEMANTIC_POSITION
2943 """"""""""""""""""""""
2944
2945 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2946 output register which contains the homogeneous vertex position in the clip
2947 space coordinate system. After clipping, the X, Y and Z components of the
2948 vertex will be divided by the W value to get normalized device coordinates.
2949
2950 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2951 fragment shader input (or system value, depending on which one is
2952 supported by the driver) contains the fragment's window position. The X
2953 component starts at zero and always increases from left to right.
2954 The Y component starts at zero and always increases but Y=0 may either
2955 indicate the top of the window or the bottom depending on the fragment
2956 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2957 The Z coordinate ranges from 0 to 1 to represent depth from the front
2958 to the back of the Z buffer. The W component contains the interpolated
2959 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2960 but unlike d3d10 which interpolates the same 1/w but then gives back
2961 the reciprocal of the interpolated value).
2962
2963 Fragment shaders may also declare an output register with
2964 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2965 the fragment shader to change the fragment's Z position.
2966
2967
2968
2969 TGSI_SEMANTIC_COLOR
2970 """""""""""""""""""
2971
2972 For vertex shader outputs or fragment shader inputs/outputs, this
2973 label indicates that the register contains an R,G,B,A color.
2974
2975 Several shader inputs/outputs may contain colors so the semantic index
2976 is used to distinguish them. For example, color[0] may be the diffuse
2977 color while color[1] may be the specular color.
2978
2979 This label is needed so that the flat/smooth shading can be applied
2980 to the right interpolants during rasterization.
2981
2982
2983
2984 TGSI_SEMANTIC_BCOLOR
2985 """"""""""""""""""""
2986
2987 Back-facing colors are only used for back-facing polygons, and are only valid
2988 in vertex shader outputs. After rasterization, all polygons are front-facing
2989 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2990 so all BCOLORs effectively become regular COLORs in the fragment shader.
2991
2992
2993 TGSI_SEMANTIC_FOG
2994 """""""""""""""""
2995
2996 Vertex shader inputs and outputs and fragment shader inputs may be
2997 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2998 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2999 to compute a fog blend factor which is used to blend the normal fragment color
3000 with a constant fog color. But fog coord really is just an ordinary vec4
3001 register like regular semantics.
3002
3003
3004 TGSI_SEMANTIC_PSIZE
3005 """""""""""""""""""
3006
3007 Vertex shader input and output registers may be labeled with
3008 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3009 in the form (S, 0, 0, 1). The point size controls the width or diameter
3010 of points for rasterization. This label cannot be used in fragment
3011 shaders.
3012
3013 When using this semantic, be sure to set the appropriate state in the
3014 :ref:`rasterizer` first.
3015
3016
3017 TGSI_SEMANTIC_TEXCOORD
3018 """"""""""""""""""""""
3019
3020 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3021
3022 Vertex shader outputs and fragment shader inputs may be labeled with
3023 this semantic to make them replaceable by sprite coordinates via the
3024 sprite_coord_enable state in the :ref:`rasterizer`.
3025 The semantic index permitted with this semantic is limited to <= 7.
3026
3027 If the driver does not support TEXCOORD, sprite coordinate replacement
3028 applies to inputs with the GENERIC semantic instead.
3029
3030 The intended use case for this semantic is gl_TexCoord.
3031
3032
3033 TGSI_SEMANTIC_PCOORD
3034 """"""""""""""""""""
3035
3036 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3037
3038 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3039 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3040 the current primitive is a point and point sprites are enabled. Otherwise,
3041 the contents of the register are undefined.
3042
3043 The intended use case for this semantic is gl_PointCoord.
3044
3045
3046 TGSI_SEMANTIC_GENERIC
3047 """""""""""""""""""""
3048
3049 All vertex/fragment shader inputs/outputs not labeled with any other
3050 semantic label can be considered to be generic attributes. Typical
3051 uses of generic inputs/outputs are texcoords and user-defined values.
3052
3053
3054 TGSI_SEMANTIC_NORMAL
3055 """"""""""""""""""""
3056
3057 Indicates that a vertex shader input is a normal vector. This is
3058 typically only used for legacy graphics APIs.
3059
3060
3061 TGSI_SEMANTIC_FACE
3062 """"""""""""""""""
3063
3064 This label applies to fragment shader inputs (or system values,
3065 depending on which one is supported by the driver) and indicates that
3066 the register contains front/back-face information.
3067
3068 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3069 where F will be positive when the fragment belongs to a front-facing polygon,
3070 and negative when the fragment belongs to a back-facing polygon.
3071
3072 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3073 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3074 0 when the fragment belongs to a back-facing polygon.
3075
3076
3077 TGSI_SEMANTIC_EDGEFLAG
3078 """"""""""""""""""""""
3079
3080 For vertex shaders, this sematic label indicates that an input or
3081 output is a boolean edge flag. The register layout is [F, x, x, x]
3082 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3083 simply copies the edge flag input to the edgeflag output.
3084
3085 Edge flags are used to control which lines or points are actually
3086 drawn when the polygon mode converts triangles/quads/polygons into
3087 points or lines.
3088
3089
3090 TGSI_SEMANTIC_STENCIL
3091 """""""""""""""""""""
3092
3093 For fragment shaders, this semantic label indicates that an output
3094 is a writable stencil reference value. Only the Y component is writable.
3095 This allows the fragment shader to change the fragments stencilref value.
3096
3097
3098 TGSI_SEMANTIC_VIEWPORT_INDEX
3099 """"""""""""""""""""""""""""
3100
3101 For geometry shaders, this semantic label indicates that an output
3102 contains the index of the viewport (and scissor) to use.
3103 This is an integer value, and only the X component is used.
3104
3105
3106 TGSI_SEMANTIC_LAYER
3107 """""""""""""""""""
3108
3109 For geometry shaders, this semantic label indicates that an output
3110 contains the layer value to use for the color and depth/stencil surfaces.
3111 This is an integer value, and only the X component is used.
3112 (Also known as rendertarget array index.)
3113
3114
3115 TGSI_SEMANTIC_CULLDIST
3116 """"""""""""""""""""""
3117
3118 Used as distance to plane for performing application-defined culling
3119 of individual primitives against a plane. When components of vertex
3120 elements are given this label, these values are assumed to be a
3121 float32 signed distance to a plane. Primitives will be completely
3122 discarded if the plane distance for all of the vertices in the
3123 primitive are < 0. If a vertex has a cull distance of NaN, that
3124 vertex counts as "out" (as if its < 0);
3125 The limits on both clip and cull distances are bound
3126 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3127 the maximum number of components that can be used to hold the
3128 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3129 which specifies the maximum number of registers which can be
3130 annotated with those semantics.
3131
3132
3133 TGSI_SEMANTIC_CLIPDIST
3134 """"""""""""""""""""""
3135
3136 Note this covers clipping and culling distances.
3137
3138 When components of vertex elements are identified this way, these
3139 values are each assumed to be a float32 signed distance to a plane.
3140
3141 For clip distances:
3142 Primitive setup only invokes rasterization on pixels for which
3143 the interpolated plane distances are >= 0.
3144
3145 For cull distances:
3146 Primitives will be completely discarded if the plane distance
3147 for all of the vertices in the primitive are < 0.
3148 If a vertex has a cull distance of NaN, that vertex counts as "out"
3149 (as if its < 0);
3150
3151 Multiple clip/cull planes can be implemented simultaneously, by
3152 annotating multiple components of one or more vertex elements with
3153 the above specified semantic.
3154 The limits on both clip and cull distances are bound
3155 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3156 the maximum number of components that can be used to hold the
3157 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3158 which specifies the maximum number of registers which can be
3159 annotated with those semantics.
3160 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3161 are used to divide up the 2 x vec4 space between clipping and culling.
3162
3163 TGSI_SEMANTIC_SAMPLEID
3164 """"""""""""""""""""""
3165
3166 For fragment shaders, this semantic label indicates that a system value
3167 contains the current sample id (i.e. gl_SampleID).
3168 This is an integer value, and only the X component is used.
3169
3170 TGSI_SEMANTIC_SAMPLEPOS
3171 """""""""""""""""""""""
3172
3173 For fragment shaders, this semantic label indicates that a system value
3174 contains the current sample's position (i.e. gl_SamplePosition). Only the X
3175 and Y values are used.
3176
3177 TGSI_SEMANTIC_SAMPLEMASK
3178 """"""""""""""""""""""""
3179
3180 For fragment shaders, this semantic label indicates that an output contains
3181 the sample mask used to disable further sample processing
3182 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
3183
3184 TGSI_SEMANTIC_INVOCATIONID
3185 """"""""""""""""""""""""""
3186
3187 For geometry shaders, this semantic label indicates that a system value
3188 contains the current invocation id (i.e. gl_InvocationID).
3189 This is an integer value, and only the X component is used.
3190
3191 TGSI_SEMANTIC_INSTANCEID
3192 """"""""""""""""""""""""
3193
3194 For vertex shaders, this semantic label indicates that a system value contains
3195 the current instance id (i.e. gl_InstanceID). It does not include the base
3196 instance. This is an integer value, and only the X component is used.
3197
3198 TGSI_SEMANTIC_VERTEXID
3199 """"""""""""""""""""""
3200
3201 For vertex shaders, this semantic label indicates that a system value contains
3202 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3203 base vertex. This is an integer value, and only the X component is used.
3204
3205 TGSI_SEMANTIC_VERTEXID_NOBASE
3206 """""""""""""""""""""""""""""""
3207
3208 For vertex shaders, this semantic label indicates that a system value contains
3209 the current vertex id without including the base vertex (this corresponds to
3210 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3211 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3212 is used.
3213
3214 TGSI_SEMANTIC_BASEVERTEX
3215 """"""""""""""""""""""""
3216
3217 For vertex shaders, this semantic label indicates that a system value contains
3218 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3219 this contains the first (or start) value instead.
3220 This is an integer value, and only the X component is used.
3221
3222 TGSI_SEMANTIC_PRIMID
3223 """"""""""""""""""""
3224
3225 For geometry and fragment shaders, this semantic label indicates the value
3226 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3227 and only the X component is used.
3228 FIXME: This right now can be either a ordinary input or a system value...
3229
3230
3231 TGSI_SEMANTIC_PATCH
3232 """""""""""""""""""
3233
3234 For tessellation evaluation/control shaders, this semantic label indicates a
3235 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3236 arrays.
3237
3238 TGSI_SEMANTIC_TESSCOORD
3239 """""""""""""""""""""""
3240
3241 For tessellation evaluation shaders, this semantic label indicates the
3242 coordinates of the vertex being processed. This is available in XYZ; W is
3243 undefined.
3244
3245 TGSI_SEMANTIC_TESSOUTER
3246 """""""""""""""""""""""
3247
3248 For tessellation evaluation/control shaders, this semantic label indicates the
3249 outer tessellation levels of the patch. Isoline tessellation will only have XY
3250 defined, triangle will have XYZ and quads will have XYZW defined. This
3251 corresponds to gl_TessLevelOuter.
3252
3253 TGSI_SEMANTIC_TESSINNER
3254 """""""""""""""""""""""
3255
3256 For tessellation evaluation/control shaders, this semantic label indicates the
3257 inner tessellation levels of the patch. The X value is only defined for
3258 triangle tessellation, while quads will have XY defined. This is entirely
3259 undefined for isoline tessellation.
3260
3261 TGSI_SEMANTIC_VERTICESIN
3262 """"""""""""""""""""""""
3263
3264 For tessellation evaluation/control shaders, this semantic label indicates the
3265 number of vertices provided in the input patch. Only the X value is defined.
3266
3267 TGSI_SEMANTIC_HELPER_INVOCATION
3268 """""""""""""""""""""""""""""""
3269
3270 For fragment shaders, this semantic indicates whether the current
3271 invocation is covered or not. Helper invocations are created in order
3272 to properly compute derivatives, however it may be desirable to skip
3273 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3274
3275 TGSI_SEMANTIC_BASEINSTANCE
3276 """"""""""""""""""""""""""
3277
3278 For vertex shaders, the base instance argument supplied for this
3279 draw. This is an integer value, and only the X component is used.
3280
3281 TGSI_SEMANTIC_DRAWID
3282 """"""""""""""""""""
3283
3284 For vertex shaders, the zero-based index of the current draw in a
3285 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3286 component is used.
3287
3288
3289 TGSI_SEMANTIC_WORK_DIM
3290 """"""""""""""""""""""
3291
3292 For compute shaders started via opencl this retrieves the work_dim
3293 parameter to the clEnqueueNDRangeKernel call with which the shader
3294 was started.
3295
3296
3297 TGSI_SEMANTIC_GRID_SIZE
3298 """""""""""""""""""""""
3299
3300 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3301 of a grid of thread blocks.
3302
3303
3304 TGSI_SEMANTIC_BLOCK_ID
3305 """"""""""""""""""""""
3306
3307 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3308 current block inside of the grid.
3309
3310
3311 TGSI_SEMANTIC_BLOCK_SIZE
3312 """"""""""""""""""""""""
3313
3314 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3315 of a block in threads.
3316
3317
3318 TGSI_SEMANTIC_THREAD_ID
3319 """""""""""""""""""""""
3320
3321 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3322 current thread inside of the block.
3323
3324
3325 Declaration Interpolate
3326 ^^^^^^^^^^^^^^^^^^^^^^^
3327
3328 This token is only valid for fragment shader INPUT declarations.
3329
3330 The Interpolate field specifes the way input is being interpolated by
3331 the rasteriser and is one of TGSI_INTERPOLATE_*.
3332
3333 The Location field specifies the location inside the pixel that the
3334 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3335 when per-sample shading is enabled, the implementation may choose to
3336 interpolate at the sample irrespective of the Location field.
3337
3338 The CylindricalWrap bitfield specifies which register components
3339 should be subject to cylindrical wrapping when interpolating by the
3340 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3341 should be interpolated according to cylindrical wrapping rules.
3342
3343
3344 Declaration Sampler View
3345 ^^^^^^^^^^^^^^^^^^^^^^^^
3346
3347 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3348
3349 DCL SVIEW[#], resource, type(s)
3350
3351 Declares a shader input sampler view and assigns it to a SVIEW[#]
3352 register.
3353
3354 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3355
3356 type must be 1 or 4 entries (if specifying on a per-component
3357 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3358
3359 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3360 which take an explicit SVIEW[#] source register), there may be optionally
3361 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3362 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3363 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3364 But note in particular that some drivers need to know the sampler type
3365 (float/int/unsigned) in order to generate the correct code, so cases
3366 where integer textures are sampled, SVIEW[#] declarations should be
3367 used.
3368
3369 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3370 in the same shader.
3371
3372 Declaration Resource
3373 ^^^^^^^^^^^^^^^^^^^^
3374
3375 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3376
3377 DCL RES[#], resource [, WR] [, RAW]
3378
3379 Declares a shader input resource and assigns it to a RES[#]
3380 register.
3381
3382 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3383 2DArray.
3384
3385 If the RAW keyword is not specified, the texture data will be
3386 subject to conversion, swizzling and scaling as required to yield
3387 the specified data type from the physical data format of the bound
3388 resource.
3389
3390 If the RAW keyword is specified, no channel conversion will be
3391 performed: the values read for each of the channels (X,Y,Z,W) will
3392 correspond to consecutive words in the same order and format
3393 they're found in memory. No element-to-address conversion will be
3394 performed either: the value of the provided X coordinate will be
3395 interpreted in byte units instead of texel units. The result of
3396 accessing a misaligned address is undefined.
3397
3398 Usage of the STORE opcode is only allowed if the WR (writable) flag
3399 is set.
3400
3401
3402 Properties
3403 ^^^^^^^^^^^^^^^^^^^^^^^^
3404
3405 Properties are general directives that apply to the whole TGSI program.
3406
3407 FS_COORD_ORIGIN
3408 """""""""""""""
3409
3410 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3411 The default value is UPPER_LEFT.
3412
3413 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3414 increase downward and rightward.
3415 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3416 increase upward and rightward.
3417
3418 OpenGL defaults to LOWER_LEFT, and is configurable with the
3419 GL_ARB_fragment_coord_conventions extension.
3420
3421 DirectX 9/10 use UPPER_LEFT.
3422
3423 FS_COORD_PIXEL_CENTER
3424 """""""""""""""""""""
3425
3426 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3427 The default value is HALF_INTEGER.
3428
3429 If HALF_INTEGER, the fractionary part of the position will be 0.5
3430 If INTEGER, the fractionary part of the position will be 0.0
3431
3432 Note that this does not affect the set of fragments generated by
3433 rasterization, which is instead controlled by half_pixel_center in the
3434 rasterizer.
3435
3436 OpenGL defaults to HALF_INTEGER, and is configurable with the
3437 GL_ARB_fragment_coord_conventions extension.
3438
3439 DirectX 9 uses INTEGER.
3440 DirectX 10 uses HALF_INTEGER.
3441
3442 FS_COLOR0_WRITES_ALL_CBUFS
3443 """"""""""""""""""""""""""
3444 Specifies that writes to the fragment shader color 0 are replicated to all
3445 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3446 fragData is directed to a single color buffer, but fragColor is broadcast.
3447
3448 VS_PROHIBIT_UCPS
3449 """"""""""""""""""""""""""
3450 If this property is set on the program bound to the shader stage before the
3451 fragment shader, user clip planes should have no effect (be disabled) even if
3452 that shader does not write to any clip distance outputs and the rasterizer's
3453 clip_plane_enable is non-zero.
3454 This property is only supported by drivers that also support shader clip
3455 distance outputs.
3456 This is useful for APIs that don't have UCPs and where clip distances written
3457 by a shader cannot be disabled.
3458
3459 GS_INVOCATIONS
3460 """"""""""""""
3461
3462 Specifies the number of times a geometry shader should be executed for each
3463 input primitive. Each invocation will have a different
3464 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3465 be 1.
3466
3467 VS_WINDOW_SPACE_POSITION
3468 """"""""""""""""""""""""""
3469 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3470 is assumed to contain window space coordinates.
3471 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3472 directly taken from the 4-th component of the shader output.
3473 Naturally, clipping is not performed on window coordinates either.
3474 The effect of this property is undefined if a geometry or tessellation shader
3475 are in use.
3476
3477 TCS_VERTICES_OUT
3478 """"""""""""""""
3479
3480 The number of vertices written by the tessellation control shader. This
3481 effectively defines the patch input size of the tessellation evaluation shader
3482 as well.
3483
3484 TES_PRIM_MODE
3485 """""""""""""
3486
3487 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3488 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3489 separate isolines settings, the regular lines is assumed to mean isolines.)
3490
3491 TES_SPACING
3492 """""""""""
3493
3494 This sets the spacing mode of the tessellation generator, one of
3495 ``PIPE_TESS_SPACING_*``.
3496
3497 TES_VERTEX_ORDER_CW
3498 """""""""""""""""""
3499
3500 This sets the vertex order to be clockwise if the value is 1, or
3501 counter-clockwise if set to 0.
3502
3503 TES_POINT_MODE
3504 """"""""""""""
3505
3506 If set to a non-zero value, this turns on point mode for the tessellator,
3507 which means that points will be generated instead of primitives.
3508
3509 NUM_CLIPDIST_ENABLED
3510 """"""""""""""""
3511
3512 How many clip distance scalar outputs are enabled.
3513
3514 NUM_CULLDIST_ENABLED
3515 """"""""""""""""
3516
3517 How many cull distance scalar outputs are enabled.
3518
3519 FS_EARLY_DEPTH_STENCIL
3520 """"""""""""""""""""""
3521
3522 Whether depth test, stencil test, and occlusion query should run before
3523 the fragment shader (regardless of fragment shader side effects). Corresponds
3524 to GLSL early_fragment_tests.
3525
3526 NEXT_SHADER
3527 """""""""""
3528
3529 Which shader stage will MOST LIKELY follow after this shader when the shader
3530 is bound. This is only a hint to the driver and doesn't have to be precise.
3531 Only set for VS and TES.
3532
3533 TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3534 """""""""""""""""""""""""""""""""""""""""""""""""""
3535
3536 Threads per block in each dimension, if known at compile time. If the block size
3537 is known all three should be at least 1. If it is unknown they should all be set
3538 to 0 or not set.
3539
3540 Texture Sampling and Texture Formats
3541 ------------------------------------
3542
3543 This table shows how texture image components are returned as (x,y,z,w) tuples
3544 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3545 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3546 well.
3547
3548 +--------------------+--------------+--------------------+--------------+
3549 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3550 +====================+==============+====================+==============+
3551 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3552 +--------------------+--------------+--------------------+--------------+
3553 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3554 +--------------------+--------------+--------------------+--------------+
3555 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3556 +--------------------+--------------+--------------------+--------------+
3557 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3558 +--------------------+--------------+--------------------+--------------+
3559 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3560 +--------------------+--------------+--------------------+--------------+
3561 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3562 +--------------------+--------------+--------------------+--------------+
3563 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3564 +--------------------+--------------+--------------------+--------------+
3565 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3566 +--------------------+--------------+--------------------+--------------+
3567 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3568 | | | [#envmap-bumpmap]_ | |
3569 +--------------------+--------------+--------------------+--------------+
3570 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3571 | | | [#depth-tex-mode]_ | |
3572 +--------------------+--------------+--------------------+--------------+
3573 | S | (s, s, s, s) | unknown | unknown |
3574 +--------------------+--------------+--------------------+--------------+
3575
3576 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3577 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3578 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.