gallium: add LDEXP TGSI instruction and corresponding cap
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate and precise modifier
30 on instructions).
31
32 For arithmetic instruction having a precise modifier certain optimizations
33 which may alter the result are disallowed. Example: *add(mul(a,b),c)* can't be
34 optimized to TGSI_OPCODE_MAD, because some hardware only supports the fused
35 MAD instruction.
36
37 For inputs which have a floating point type, both absolute value and
38 negation modifiers are supported (with absolute value being applied
39 first). The only source of TGSI_OPCODE_MOV and the second and third
40 sources of TGSI_OPCODE_UCMP are considered to have float type for
41 applying modifiers.
42
43 For inputs which have signed or unsigned type only the negate modifier is
44 supported.
45
46 Instruction Set
47 ---------------
48
49 Core ISA
50 ^^^^^^^^^^^^^^^^^^^^^^^^^
51
52 These opcodes are guaranteed to be available regardless of the driver being
53 used.
54
55 .. opcode:: ARL - Address Register Load
56
57 .. math::
58
59 dst.x = (int) \lfloor src.x\rfloor
60
61 dst.y = (int) \lfloor src.y\rfloor
62
63 dst.z = (int) \lfloor src.z\rfloor
64
65 dst.w = (int) \lfloor src.w\rfloor
66
67
68 .. opcode:: MOV - Move
69
70 .. math::
71
72 dst.x = src.x
73
74 dst.y = src.y
75
76 dst.z = src.z
77
78 dst.w = src.w
79
80
81 .. opcode:: LIT - Light Coefficients
82
83 .. math::
84
85 dst.x &= 1 \\
86 dst.y &= max(src.x, 0) \\
87 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
88 dst.w &= 1
89
90
91 .. opcode:: RCP - Reciprocal
92
93 This instruction replicates its result.
94
95 .. math::
96
97 dst = \frac{1}{src.x}
98
99
100 .. opcode:: RSQ - Reciprocal Square Root
101
102 This instruction replicates its result. The results are undefined for src <= 0.
103
104 .. math::
105
106 dst = \frac{1}{\sqrt{src.x}}
107
108
109 .. opcode:: SQRT - Square Root
110
111 This instruction replicates its result. The results are undefined for src < 0.
112
113 .. math::
114
115 dst = {\sqrt{src.x}}
116
117
118 .. opcode:: EXP - Approximate Exponential Base 2
119
120 .. math::
121
122 dst.x &= 2^{\lfloor src.x\rfloor} \\
123 dst.y &= src.x - \lfloor src.x\rfloor \\
124 dst.z &= 2^{src.x} \\
125 dst.w &= 1
126
127
128 .. opcode:: LOG - Approximate Logarithm Base 2
129
130 .. math::
131
132 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
133 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
134 dst.z &= \log_2{|src.x|} \\
135 dst.w &= 1
136
137
138 .. opcode:: MUL - Multiply
139
140 .. math::
141
142 dst.x = src0.x \times src1.x
143
144 dst.y = src0.y \times src1.y
145
146 dst.z = src0.z \times src1.z
147
148 dst.w = src0.w \times src1.w
149
150
151 .. opcode:: ADD - Add
152
153 .. math::
154
155 dst.x = src0.x + src1.x
156
157 dst.y = src0.y + src1.y
158
159 dst.z = src0.z + src1.z
160
161 dst.w = src0.w + src1.w
162
163
164 .. opcode:: DP3 - 3-component Dot Product
165
166 This instruction replicates its result.
167
168 .. math::
169
170 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
171
172
173 .. opcode:: DP4 - 4-component Dot Product
174
175 This instruction replicates its result.
176
177 .. math::
178
179 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
180
181
182 .. opcode:: DST - Distance Vector
183
184 .. math::
185
186 dst.x &= 1\\
187 dst.y &= src0.y \times src1.y\\
188 dst.z &= src0.z\\
189 dst.w &= src1.w
190
191
192 .. opcode:: MIN - Minimum
193
194 .. math::
195
196 dst.x = min(src0.x, src1.x)
197
198 dst.y = min(src0.y, src1.y)
199
200 dst.z = min(src0.z, src1.z)
201
202 dst.w = min(src0.w, src1.w)
203
204
205 .. opcode:: MAX - Maximum
206
207 .. math::
208
209 dst.x = max(src0.x, src1.x)
210
211 dst.y = max(src0.y, src1.y)
212
213 dst.z = max(src0.z, src1.z)
214
215 dst.w = max(src0.w, src1.w)
216
217
218 .. opcode:: SLT - Set On Less Than
219
220 .. math::
221
222 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
223
224 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
225
226 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
227
228 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
229
230
231 .. opcode:: SGE - Set On Greater Equal Than
232
233 .. math::
234
235 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
236
237 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
238
239 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
240
241 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
242
243
244 .. opcode:: MAD - Multiply And Add
245
246 Perform a * b + c. The implementation is free to decide whether there is an
247 intermediate rounding step or not.
248
249 .. math::
250
251 dst.x = src0.x \times src1.x + src2.x
252
253 dst.y = src0.y \times src1.y + src2.y
254
255 dst.z = src0.z \times src1.z + src2.z
256
257 dst.w = src0.w \times src1.w + src2.w
258
259
260 .. opcode:: LRP - Linear Interpolate
261
262 .. math::
263
264 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
265
266 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
267
268 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
269
270 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
271
272
273 .. opcode:: FMA - Fused Multiply-Add
274
275 Perform a * b + c with no intermediate rounding step.
276
277 .. math::
278
279 dst.x = src0.x \times src1.x + src2.x
280
281 dst.y = src0.y \times src1.y + src2.y
282
283 dst.z = src0.z \times src1.z + src2.z
284
285 dst.w = src0.w \times src1.w + src2.w
286
287
288 .. opcode:: FRC - Fraction
289
290 .. math::
291
292 dst.x = src.x - \lfloor src.x\rfloor
293
294 dst.y = src.y - \lfloor src.y\rfloor
295
296 dst.z = src.z - \lfloor src.z\rfloor
297
298 dst.w = src.w - \lfloor src.w\rfloor
299
300
301 .. opcode:: FLR - Floor
302
303 .. math::
304
305 dst.x = \lfloor src.x\rfloor
306
307 dst.y = \lfloor src.y\rfloor
308
309 dst.z = \lfloor src.z\rfloor
310
311 dst.w = \lfloor src.w\rfloor
312
313
314 .. opcode:: ROUND - Round
315
316 .. math::
317
318 dst.x = round(src.x)
319
320 dst.y = round(src.y)
321
322 dst.z = round(src.z)
323
324 dst.w = round(src.w)
325
326
327 .. opcode:: EX2 - Exponential Base 2
328
329 This instruction replicates its result.
330
331 .. math::
332
333 dst = 2^{src.x}
334
335
336 .. opcode:: LG2 - Logarithm Base 2
337
338 This instruction replicates its result.
339
340 .. math::
341
342 dst = \log_2{src.x}
343
344
345 .. opcode:: POW - Power
346
347 This instruction replicates its result.
348
349 .. math::
350
351 dst = src0.x^{src1.x}
352
353
354 .. opcode:: LDEXP - Multiply Number by Integral Power of 2
355
356 src1 is an integer.
357
358 .. math::
359
360 dst.x = src0.x * 2^{src1.x}
361 dst.y = src0.y * 2^{src1.y}
362 dst.z = src0.z * 2^{src1.z}
363 dst.w = src0.w * 2^{src1.w}
364
365
366 .. opcode:: COS - Cosine
367
368 This instruction replicates its result.
369
370 .. math::
371
372 dst = \cos{src.x}
373
374
375 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
376
377 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
378 advertised. When it is, the fine version guarantees one derivative per row
379 while DDX is allowed to be the same for the entire 2x2 quad.
380
381 .. math::
382
383 dst.x = partialx(src.x)
384
385 dst.y = partialx(src.y)
386
387 dst.z = partialx(src.z)
388
389 dst.w = partialx(src.w)
390
391
392 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
393
394 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
395 advertised. When it is, the fine version guarantees one derivative per column
396 while DDY is allowed to be the same for the entire 2x2 quad.
397
398 .. math::
399
400 dst.x = partialy(src.x)
401
402 dst.y = partialy(src.y)
403
404 dst.z = partialy(src.z)
405
406 dst.w = partialy(src.w)
407
408
409 .. opcode:: PK2H - Pack Two 16-bit Floats
410
411 This instruction replicates its result.
412
413 .. math::
414
415 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
416
417
418 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
419
420 TBD
421
422
423 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
424
425 TBD
426
427
428 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
429
430 TBD
431
432
433 .. opcode:: SEQ - Set On Equal
434
435 .. math::
436
437 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
438
439 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
440
441 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
442
443 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
444
445
446 .. opcode:: SGT - Set On Greater Than
447
448 .. math::
449
450 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
451
452 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
453
454 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
455
456 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
457
458
459 .. opcode:: SIN - Sine
460
461 This instruction replicates its result.
462
463 .. math::
464
465 dst = \sin{src.x}
466
467
468 .. opcode:: SLE - Set On Less Equal Than
469
470 .. math::
471
472 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
473
474 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
475
476 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
477
478 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
479
480
481 .. opcode:: SNE - Set On Not Equal
482
483 .. math::
484
485 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
486
487 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
488
489 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
490
491 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
492
493
494 .. opcode:: TEX - Texture Lookup
495
496 for array textures src0.y contains the slice for 1D,
497 and src0.z contain the slice for 2D.
498
499 for shadow textures with no arrays (and not cube map),
500 src0.z contains the reference value.
501
502 for shadow textures with arrays, src0.z contains
503 the reference value for 1D arrays, and src0.w contains
504 the reference value for 2D arrays and cube maps.
505
506 for cube map array shadow textures, the reference value
507 cannot be passed in src0.w, and TEX2 must be used instead.
508
509 .. math::
510
511 coord = src0
512
513 shadow_ref = src0.z or src0.w (optional)
514
515 unit = src1
516
517 dst = texture\_sample(unit, coord, shadow_ref)
518
519
520 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
521
522 this is the same as TEX, but uses another reg to encode the
523 reference value.
524
525 .. math::
526
527 coord = src0
528
529 shadow_ref = src1.x
530
531 unit = src2
532
533 dst = texture\_sample(unit, coord, shadow_ref)
534
535
536
537
538 .. opcode:: TXD - Texture Lookup with Derivatives
539
540 .. math::
541
542 coord = src0
543
544 ddx = src1
545
546 ddy = src2
547
548 unit = src3
549
550 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
551
552
553 .. opcode:: TXP - Projective Texture Lookup
554
555 .. math::
556
557 coord.x = src0.x / src0.w
558
559 coord.y = src0.y / src0.w
560
561 coord.z = src0.z / src0.w
562
563 coord.w = src0.w
564
565 unit = src1
566
567 dst = texture\_sample(unit, coord)
568
569
570 .. opcode:: UP2H - Unpack Two 16-Bit Floats
571
572 .. math::
573
574 dst.x = f16\_to\_f32(src0.x \& 0xffff)
575
576 dst.y = f16\_to\_f32(src0.x >> 16)
577
578 dst.z = f16\_to\_f32(src0.x \& 0xffff)
579
580 dst.w = f16\_to\_f32(src0.x >> 16)
581
582 .. note::
583
584 Considered for removal.
585
586 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
587
588 TBD
589
590 .. note::
591
592 Considered for removal.
593
594 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
595
596 TBD
597
598 .. note::
599
600 Considered for removal.
601
602 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
603
604 TBD
605
606 .. note::
607
608 Considered for removal.
609
610
611 .. opcode:: ARR - Address Register Load With Round
612
613 .. math::
614
615 dst.x = (int) round(src.x)
616
617 dst.y = (int) round(src.y)
618
619 dst.z = (int) round(src.z)
620
621 dst.w = (int) round(src.w)
622
623
624 .. opcode:: SSG - Set Sign
625
626 .. math::
627
628 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
629
630 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
631
632 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
633
634 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
635
636
637 .. opcode:: CMP - Compare
638
639 .. math::
640
641 dst.x = (src0.x < 0) ? src1.x : src2.x
642
643 dst.y = (src0.y < 0) ? src1.y : src2.y
644
645 dst.z = (src0.z < 0) ? src1.z : src2.z
646
647 dst.w = (src0.w < 0) ? src1.w : src2.w
648
649
650 .. opcode:: KILL_IF - Conditional Discard
651
652 Conditional discard. Allowed in fragment shaders only.
653
654 .. math::
655
656 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
657 discard
658 endif
659
660
661 .. opcode:: KILL - Discard
662
663 Unconditional discard. Allowed in fragment shaders only.
664
665
666 .. opcode:: TXB - Texture Lookup With Bias
667
668 for cube map array textures and shadow cube maps, the bias value
669 cannot be passed in src0.w, and TXB2 must be used instead.
670
671 if the target is a shadow texture, the reference value is always
672 in src.z (this prevents shadow 3d and shadow 2d arrays from
673 using this instruction, but this is not needed).
674
675 .. math::
676
677 coord.x = src0.x
678
679 coord.y = src0.y
680
681 coord.z = src0.z
682
683 coord.w = none
684
685 bias = src0.w
686
687 unit = src1
688
689 dst = texture\_sample(unit, coord, bias)
690
691
692 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
693
694 this is the same as TXB, but uses another reg to encode the
695 lod bias value for cube map arrays and shadow cube maps.
696 Presumably shadow 2d arrays and shadow 3d targets could use
697 this encoding too, but this is not legal.
698
699 shadow cube map arrays are neither possible nor required.
700
701 .. math::
702
703 coord = src0
704
705 bias = src1.x
706
707 unit = src2
708
709 dst = texture\_sample(unit, coord, bias)
710
711
712 .. opcode:: DIV - Divide
713
714 .. math::
715
716 dst.x = \frac{src0.x}{src1.x}
717
718 dst.y = \frac{src0.y}{src1.y}
719
720 dst.z = \frac{src0.z}{src1.z}
721
722 dst.w = \frac{src0.w}{src1.w}
723
724
725 .. opcode:: DP2 - 2-component Dot Product
726
727 This instruction replicates its result.
728
729 .. math::
730
731 dst = src0.x \times src1.x + src0.y \times src1.y
732
733
734 .. opcode:: TEX_LZ - Texture Lookup With LOD = 0
735
736 This is the same as TXL with LOD = 0. Like every texture opcode, it obeys
737 pipe_sampler_view::u.tex.first_level and pipe_sampler_state::min_lod.
738 There is no way to override those two in shaders.
739
740 .. math::
741
742 coord.x = src0.x
743
744 coord.y = src0.y
745
746 coord.z = src0.z
747
748 coord.w = none
749
750 lod = 0
751
752 unit = src1
753
754 dst = texture\_sample(unit, coord, lod)
755
756
757 .. opcode:: TXL - Texture Lookup With explicit LOD
758
759 for cube map array textures, the explicit lod value
760 cannot be passed in src0.w, and TXL2 must be used instead.
761
762 if the target is a shadow texture, the reference value is always
763 in src.z (this prevents shadow 3d / 2d array / cube targets from
764 using this instruction, but this is not needed).
765
766 .. math::
767
768 coord.x = src0.x
769
770 coord.y = src0.y
771
772 coord.z = src0.z
773
774 coord.w = none
775
776 lod = src0.w
777
778 unit = src1
779
780 dst = texture\_sample(unit, coord, lod)
781
782
783 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
784
785 this is the same as TXL, but uses another reg to encode the
786 explicit lod value.
787 Presumably shadow 3d / 2d array / cube targets could use
788 this encoding too, but this is not legal.
789
790 shadow cube map arrays are neither possible nor required.
791
792 .. math::
793
794 coord = src0
795
796 lod = src1.x
797
798 unit = src2
799
800 dst = texture\_sample(unit, coord, lod)
801
802
803 Compute ISA
804 ^^^^^^^^^^^^^^^^^^^^^^^^
805
806 These opcodes are primarily provided for special-use computational shaders.
807 Support for these opcodes indicated by a special pipe capability bit (TBD).
808
809 XXX doesn't look like most of the opcodes really belong here.
810
811 .. opcode:: CEIL - Ceiling
812
813 .. math::
814
815 dst.x = \lceil src.x\rceil
816
817 dst.y = \lceil src.y\rceil
818
819 dst.z = \lceil src.z\rceil
820
821 dst.w = \lceil src.w\rceil
822
823
824 .. opcode:: TRUNC - Truncate
825
826 .. math::
827
828 dst.x = trunc(src.x)
829
830 dst.y = trunc(src.y)
831
832 dst.z = trunc(src.z)
833
834 dst.w = trunc(src.w)
835
836
837 .. opcode:: MOD - Modulus
838
839 .. math::
840
841 dst.x = src0.x \bmod src1.x
842
843 dst.y = src0.y \bmod src1.y
844
845 dst.z = src0.z \bmod src1.z
846
847 dst.w = src0.w \bmod src1.w
848
849
850 .. opcode:: UARL - Integer Address Register Load
851
852 Moves the contents of the source register, assumed to be an integer, into the
853 destination register, which is assumed to be an address (ADDR) register.
854
855
856 .. opcode:: TXF - Texel Fetch
857
858 As per NV_gpu_shader4, extract a single texel from a specified texture
859 image or PIPE_BUFFER resource. The source sampler may not be a CUBE or
860 SHADOW. src 0 is a
861 four-component signed integer vector used to identify the single texel
862 accessed. 3 components + level. If the texture is multisampled, then
863 the fourth component indicates the sample, not the mipmap level.
864 Just like texture instructions, an optional
865 offset vector is provided, which is subject to various driver restrictions
866 (regarding range, source of offsets). This instruction ignores the sampler
867 state.
868
869 TXF(uint_vec coord, int_vec offset).
870
871
872 .. opcode:: TXQ - Texture Size Query
873
874 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
875 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
876 depth), 1D array (width, layers), 2D array (width, height, layers).
877 Also return the number of accessible levels (last_level - first_level + 1)
878 in W.
879
880 For components which don't return a resource dimension, their value
881 is undefined.
882
883 .. math::
884
885 lod = src0.x
886
887 dst.x = texture\_width(unit, lod)
888
889 dst.y = texture\_height(unit, lod)
890
891 dst.z = texture\_depth(unit, lod)
892
893 dst.w = texture\_levels(unit)
894
895
896 .. opcode:: TXQS - Texture Samples Query
897
898 This retrieves the number of samples in the texture, and stores it
899 into the x component as an unsigned integer. The other components are
900 undefined. If the texture is not multisampled, this function returns
901 (1, undef, undef, undef).
902
903 .. math::
904
905 dst.x = texture\_samples(unit)
906
907
908 .. opcode:: TG4 - Texture Gather
909
910 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
911 filtering operation and packs them into a single register. Only works with
912 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
913 addressing modes of the sampler and the top level of any mip pyramid are
914 used. Set W to zero. It behaves like the TEX instruction, but a filtered
915 sample is not generated. The four samples that contribute to filtering are
916 placed into xyzw in clockwise order, starting with the (u,v) texture
917 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
918 where the magnitude of the deltas are half a texel.
919
920 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
921 depth compares, single component selection, and a non-constant offset. It
922 doesn't allow support for the GL independent offset to get i0,j0. This would
923 require another CAP is hw can do it natively. For now we lower that before
924 TGSI.
925
926 .. math::
927
928 coord = src0
929
930 component = src1
931
932 dst = texture\_gather4 (unit, coord, component)
933
934 (with SM5 - cube array shadow)
935
936 .. math::
937
938 coord = src0
939
940 compare = src1
941
942 dst = texture\_gather (uint, coord, compare)
943
944 .. opcode:: LODQ - level of detail query
945
946 Compute the LOD information that the texture pipe would use to access the
947 texture. The Y component contains the computed LOD lambda_prime. The X
948 component contains the LOD that will be accessed, based on min/max lod's
949 and mipmap filters.
950
951 .. math::
952
953 coord = src0
954
955 dst.xy = lodq(uint, coord);
956
957 .. opcode:: CLOCK - retrieve the current shader time
958
959 Invoking this instruction multiple times in the same shader should
960 cause monotonically increasing values to be returned. The values
961 are implicitly 64-bit, so if fewer than 64 bits of precision are
962 available, to provide expected wraparound semantics, the value
963 should be shifted up so that the most significant bit of the time
964 is the most significant bit of the 64-bit value.
965
966 .. math::
967
968 dst.xy = clock()
969
970
971 Integer ISA
972 ^^^^^^^^^^^^^^^^^^^^^^^^
973 These opcodes are used for integer operations.
974 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
975
976
977 .. opcode:: I2F - Signed Integer To Float
978
979 Rounding is unspecified (round to nearest even suggested).
980
981 .. math::
982
983 dst.x = (float) src.x
984
985 dst.y = (float) src.y
986
987 dst.z = (float) src.z
988
989 dst.w = (float) src.w
990
991
992 .. opcode:: U2F - Unsigned Integer To Float
993
994 Rounding is unspecified (round to nearest even suggested).
995
996 .. math::
997
998 dst.x = (float) src.x
999
1000 dst.y = (float) src.y
1001
1002 dst.z = (float) src.z
1003
1004 dst.w = (float) src.w
1005
1006
1007 .. opcode:: F2I - Float to Signed Integer
1008
1009 Rounding is towards zero (truncate).
1010 Values outside signed range (including NaNs) produce undefined results.
1011
1012 .. math::
1013
1014 dst.x = (int) src.x
1015
1016 dst.y = (int) src.y
1017
1018 dst.z = (int) src.z
1019
1020 dst.w = (int) src.w
1021
1022
1023 .. opcode:: F2U - Float to Unsigned Integer
1024
1025 Rounding is towards zero (truncate).
1026 Values outside unsigned range (including NaNs) produce undefined results.
1027
1028 .. math::
1029
1030 dst.x = (unsigned) src.x
1031
1032 dst.y = (unsigned) src.y
1033
1034 dst.z = (unsigned) src.z
1035
1036 dst.w = (unsigned) src.w
1037
1038
1039 .. opcode:: UADD - Integer Add
1040
1041 This instruction works the same for signed and unsigned integers.
1042 The low 32bit of the result is returned.
1043
1044 .. math::
1045
1046 dst.x = src0.x + src1.x
1047
1048 dst.y = src0.y + src1.y
1049
1050 dst.z = src0.z + src1.z
1051
1052 dst.w = src0.w + src1.w
1053
1054
1055 .. opcode:: UMAD - Integer Multiply And Add
1056
1057 This instruction works the same for signed and unsigned integers.
1058 The multiplication returns the low 32bit (as does the result itself).
1059
1060 .. math::
1061
1062 dst.x = src0.x \times src1.x + src2.x
1063
1064 dst.y = src0.y \times src1.y + src2.y
1065
1066 dst.z = src0.z \times src1.z + src2.z
1067
1068 dst.w = src0.w \times src1.w + src2.w
1069
1070
1071 .. opcode:: UMUL - Integer Multiply
1072
1073 This instruction works the same for signed and unsigned integers.
1074 The low 32bit of the result is returned.
1075
1076 .. math::
1077
1078 dst.x = src0.x \times src1.x
1079
1080 dst.y = src0.y \times src1.y
1081
1082 dst.z = src0.z \times src1.z
1083
1084 dst.w = src0.w \times src1.w
1085
1086
1087 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1088
1089 The high 32bits of the multiplication of 2 signed integers are returned.
1090
1091 .. math::
1092
1093 dst.x = (src0.x \times src1.x) >> 32
1094
1095 dst.y = (src0.y \times src1.y) >> 32
1096
1097 dst.z = (src0.z \times src1.z) >> 32
1098
1099 dst.w = (src0.w \times src1.w) >> 32
1100
1101
1102 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1103
1104 The high 32bits of the multiplication of 2 unsigned integers are returned.
1105
1106 .. math::
1107
1108 dst.x = (src0.x \times src1.x) >> 32
1109
1110 dst.y = (src0.y \times src1.y) >> 32
1111
1112 dst.z = (src0.z \times src1.z) >> 32
1113
1114 dst.w = (src0.w \times src1.w) >> 32
1115
1116
1117 .. opcode:: IDIV - Signed Integer Division
1118
1119 TBD: behavior for division by zero.
1120
1121 .. math::
1122
1123 dst.x = \frac{src0.x}{src1.x}
1124
1125 dst.y = \frac{src0.y}{src1.y}
1126
1127 dst.z = \frac{src0.z}{src1.z}
1128
1129 dst.w = \frac{src0.w}{src1.w}
1130
1131
1132 .. opcode:: UDIV - Unsigned Integer Division
1133
1134 For division by zero, 0xffffffff is returned.
1135
1136 .. math::
1137
1138 dst.x = \frac{src0.x}{src1.x}
1139
1140 dst.y = \frac{src0.y}{src1.y}
1141
1142 dst.z = \frac{src0.z}{src1.z}
1143
1144 dst.w = \frac{src0.w}{src1.w}
1145
1146
1147 .. opcode:: UMOD - Unsigned Integer Remainder
1148
1149 If second arg is zero, 0xffffffff is returned.
1150
1151 .. math::
1152
1153 dst.x = src0.x \bmod src1.x
1154
1155 dst.y = src0.y \bmod src1.y
1156
1157 dst.z = src0.z \bmod src1.z
1158
1159 dst.w = src0.w \bmod src1.w
1160
1161
1162 .. opcode:: NOT - Bitwise Not
1163
1164 .. math::
1165
1166 dst.x = \sim src.x
1167
1168 dst.y = \sim src.y
1169
1170 dst.z = \sim src.z
1171
1172 dst.w = \sim src.w
1173
1174
1175 .. opcode:: AND - Bitwise And
1176
1177 .. math::
1178
1179 dst.x = src0.x \& src1.x
1180
1181 dst.y = src0.y \& src1.y
1182
1183 dst.z = src0.z \& src1.z
1184
1185 dst.w = src0.w \& src1.w
1186
1187
1188 .. opcode:: OR - Bitwise Or
1189
1190 .. math::
1191
1192 dst.x = src0.x | src1.x
1193
1194 dst.y = src0.y | src1.y
1195
1196 dst.z = src0.z | src1.z
1197
1198 dst.w = src0.w | src1.w
1199
1200
1201 .. opcode:: XOR - Bitwise Xor
1202
1203 .. math::
1204
1205 dst.x = src0.x \oplus src1.x
1206
1207 dst.y = src0.y \oplus src1.y
1208
1209 dst.z = src0.z \oplus src1.z
1210
1211 dst.w = src0.w \oplus src1.w
1212
1213
1214 .. opcode:: IMAX - Maximum of Signed Integers
1215
1216 .. math::
1217
1218 dst.x = max(src0.x, src1.x)
1219
1220 dst.y = max(src0.y, src1.y)
1221
1222 dst.z = max(src0.z, src1.z)
1223
1224 dst.w = max(src0.w, src1.w)
1225
1226
1227 .. opcode:: UMAX - Maximum of Unsigned Integers
1228
1229 .. math::
1230
1231 dst.x = max(src0.x, src1.x)
1232
1233 dst.y = max(src0.y, src1.y)
1234
1235 dst.z = max(src0.z, src1.z)
1236
1237 dst.w = max(src0.w, src1.w)
1238
1239
1240 .. opcode:: IMIN - Minimum of Signed Integers
1241
1242 .. math::
1243
1244 dst.x = min(src0.x, src1.x)
1245
1246 dst.y = min(src0.y, src1.y)
1247
1248 dst.z = min(src0.z, src1.z)
1249
1250 dst.w = min(src0.w, src1.w)
1251
1252
1253 .. opcode:: UMIN - Minimum of Unsigned Integers
1254
1255 .. math::
1256
1257 dst.x = min(src0.x, src1.x)
1258
1259 dst.y = min(src0.y, src1.y)
1260
1261 dst.z = min(src0.z, src1.z)
1262
1263 dst.w = min(src0.w, src1.w)
1264
1265
1266 .. opcode:: SHL - Shift Left
1267
1268 The shift count is masked with 0x1f before the shift is applied.
1269
1270 .. math::
1271
1272 dst.x = src0.x << (0x1f \& src1.x)
1273
1274 dst.y = src0.y << (0x1f \& src1.y)
1275
1276 dst.z = src0.z << (0x1f \& src1.z)
1277
1278 dst.w = src0.w << (0x1f \& src1.w)
1279
1280
1281 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1282
1283 The shift count is masked with 0x1f before the shift is applied.
1284
1285 .. math::
1286
1287 dst.x = src0.x >> (0x1f \& src1.x)
1288
1289 dst.y = src0.y >> (0x1f \& src1.y)
1290
1291 dst.z = src0.z >> (0x1f \& src1.z)
1292
1293 dst.w = src0.w >> (0x1f \& src1.w)
1294
1295
1296 .. opcode:: USHR - Logical Shift Right
1297
1298 The shift count is masked with 0x1f before the shift is applied.
1299
1300 .. math::
1301
1302 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1303
1304 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1305
1306 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1307
1308 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1309
1310
1311 .. opcode:: UCMP - Integer Conditional Move
1312
1313 .. math::
1314
1315 dst.x = src0.x ? src1.x : src2.x
1316
1317 dst.y = src0.y ? src1.y : src2.y
1318
1319 dst.z = src0.z ? src1.z : src2.z
1320
1321 dst.w = src0.w ? src1.w : src2.w
1322
1323
1324
1325 .. opcode:: ISSG - Integer Set Sign
1326
1327 .. math::
1328
1329 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1330
1331 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1332
1333 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1334
1335 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1336
1337
1338
1339 .. opcode:: FSLT - Float Set On Less Than (ordered)
1340
1341 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1342
1343 .. math::
1344
1345 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1346
1347 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1348
1349 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1350
1351 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1352
1353
1354 .. opcode:: ISLT - Signed Integer Set On Less Than
1355
1356 .. math::
1357
1358 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1359
1360 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1361
1362 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1363
1364 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1365
1366
1367 .. opcode:: USLT - Unsigned Integer Set On Less Than
1368
1369 .. math::
1370
1371 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1372
1373 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1374
1375 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1376
1377 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1378
1379
1380 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1381
1382 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1383
1384 .. math::
1385
1386 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1387
1388 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1389
1390 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1391
1392 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1393
1394
1395 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1396
1397 .. math::
1398
1399 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1400
1401 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1402
1403 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1404
1405 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1406
1407
1408 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1409
1410 .. math::
1411
1412 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1413
1414 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1415
1416 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1417
1418 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1419
1420
1421 .. opcode:: FSEQ - Float Set On Equal (ordered)
1422
1423 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1424
1425 .. math::
1426
1427 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1428
1429 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1430
1431 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1432
1433 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1434
1435
1436 .. opcode:: USEQ - Integer Set On Equal
1437
1438 .. math::
1439
1440 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1441
1442 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1443
1444 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1445
1446 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1447
1448
1449 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1450
1451 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1452
1453 .. math::
1454
1455 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1456
1457 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1458
1459 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1460
1461 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1462
1463
1464 .. opcode:: USNE - Integer Set On Not Equal
1465
1466 .. math::
1467
1468 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1469
1470 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1471
1472 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1473
1474 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1475
1476
1477 .. opcode:: INEG - Integer Negate
1478
1479 Two's complement.
1480
1481 .. math::
1482
1483 dst.x = -src.x
1484
1485 dst.y = -src.y
1486
1487 dst.z = -src.z
1488
1489 dst.w = -src.w
1490
1491
1492 .. opcode:: IABS - Integer Absolute Value
1493
1494 .. math::
1495
1496 dst.x = |src.x|
1497
1498 dst.y = |src.y|
1499
1500 dst.z = |src.z|
1501
1502 dst.w = |src.w|
1503
1504 Bitwise ISA
1505 ^^^^^^^^^^^
1506 These opcodes are used for bit-level manipulation of integers.
1507
1508 .. opcode:: IBFE - Signed Bitfield Extract
1509
1510 Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1511 sign-extends them if the high bit of the extracted window is set.
1512
1513 Pseudocode::
1514
1515 def ibfe(value, offset, bits):
1516 if offset < 0 or bits < 0 or offset + bits > 32:
1517 return undefined
1518 if bits == 0: return 0
1519 # Note: >> sign-extends
1520 return (value << (32 - offset - bits)) >> (32 - bits)
1521
1522 .. opcode:: UBFE - Unsigned Bitfield Extract
1523
1524 Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1525 any sign-extension.
1526
1527 Pseudocode::
1528
1529 def ubfe(value, offset, bits):
1530 if offset < 0 or bits < 0 or offset + bits > 32:
1531 return undefined
1532 if bits == 0: return 0
1533 # Note: >> does not sign-extend
1534 return (value << (32 - offset - bits)) >> (32 - bits)
1535
1536 .. opcode:: BFI - Bitfield Insert
1537
1538 Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1539 of 'insert'.
1540
1541 Pseudocode::
1542
1543 def bfi(base, insert, offset, bits):
1544 if offset < 0 or bits < 0 or offset + bits > 32:
1545 return undefined
1546 # << defined such that mask == ~0 when bits == 32, offset == 0
1547 mask = ((1 << bits) - 1) << offset
1548 return ((insert << offset) & mask) | (base & ~mask)
1549
1550 .. opcode:: BREV - Bitfield Reverse
1551
1552 See SM5 instruction BFREV. Reverses the bits of the argument.
1553
1554 .. opcode:: POPC - Population Count
1555
1556 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1557
1558 .. opcode:: LSB - Index of lowest set bit
1559
1560 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1561 bit of the argument. Returns -1 if none are set.
1562
1563 .. opcode:: IMSB - Index of highest non-sign bit
1564
1565 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1566 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1567 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1568 (i.e. for inputs 0 and -1).
1569
1570 .. opcode:: UMSB - Index of highest set bit
1571
1572 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1573 set bit of the argument. Returns -1 if none are set.
1574
1575 Geometry ISA
1576 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1577
1578 These opcodes are only supported in geometry shaders; they have no meaning
1579 in any other type of shader.
1580
1581 .. opcode:: EMIT - Emit
1582
1583 Generate a new vertex for the current primitive into the specified vertex
1584 stream using the values in the output registers.
1585
1586
1587 .. opcode:: ENDPRIM - End Primitive
1588
1589 Complete the current primitive in the specified vertex stream (consisting of
1590 the emitted vertices), and start a new one.
1591
1592
1593 GLSL ISA
1594 ^^^^^^^^^^
1595
1596 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1597 opcodes is determined by a special capability bit, ``GLSL``.
1598 Some require glsl version 1.30 (UIF/SWITCH/CASE/DEFAULT/ENDSWITCH).
1599
1600 .. opcode:: CAL - Subroutine Call
1601
1602 push(pc)
1603 pc = target
1604
1605
1606 .. opcode:: RET - Subroutine Call Return
1607
1608 pc = pop()
1609
1610
1611 .. opcode:: CONT - Continue
1612
1613 Unconditionally moves the point of execution to the instruction after the
1614 last bgnloop. The instruction must appear within a bgnloop/endloop.
1615
1616 .. note::
1617
1618 Support for CONT is determined by a special capability bit,
1619 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1620
1621
1622 .. opcode:: BGNLOOP - Begin a Loop
1623
1624 Start a loop. Must have a matching endloop.
1625
1626
1627 .. opcode:: BGNSUB - Begin Subroutine
1628
1629 Starts definition of a subroutine. Must have a matching endsub.
1630
1631
1632 .. opcode:: ENDLOOP - End a Loop
1633
1634 End a loop started with bgnloop.
1635
1636
1637 .. opcode:: ENDSUB - End Subroutine
1638
1639 Ends definition of a subroutine.
1640
1641
1642 .. opcode:: NOP - No Operation
1643
1644 Do nothing.
1645
1646
1647 .. opcode:: BRK - Break
1648
1649 Unconditionally moves the point of execution to the instruction after the
1650 next endloop or endswitch. The instruction must appear within a loop/endloop
1651 or switch/endswitch.
1652
1653
1654 .. opcode:: IF - Float If
1655
1656 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1657
1658 src0.x != 0.0
1659
1660 where src0.x is interpreted as a floating point register.
1661
1662
1663 .. opcode:: UIF - Bitwise If
1664
1665 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1666
1667 src0.x != 0
1668
1669 where src0.x is interpreted as an integer register.
1670
1671
1672 .. opcode:: ELSE - Else
1673
1674 Starts an else block, after an IF or UIF statement.
1675
1676
1677 .. opcode:: ENDIF - End If
1678
1679 Ends an IF or UIF block.
1680
1681
1682 .. opcode:: SWITCH - Switch
1683
1684 Starts a C-style switch expression. The switch consists of one or multiple
1685 CASE statements, and at most one DEFAULT statement. Execution of a statement
1686 ends when a BRK is hit, but just like in C falling through to other cases
1687 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1688 just as last statement, and fallthrough is allowed into/from it.
1689 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1690
1691 Example::
1692
1693 SWITCH src[0].x
1694 CASE src[0].x
1695 (some instructions here)
1696 (optional BRK here)
1697 DEFAULT
1698 (some instructions here)
1699 (optional BRK here)
1700 CASE src[0].x
1701 (some instructions here)
1702 (optional BRK here)
1703 ENDSWITCH
1704
1705
1706 .. opcode:: CASE - Switch case
1707
1708 This represents a switch case label. The src arg must be an integer immediate.
1709
1710
1711 .. opcode:: DEFAULT - Switch default
1712
1713 This represents the default case in the switch, which is taken if no other
1714 case matches.
1715
1716
1717 .. opcode:: ENDSWITCH - End of switch
1718
1719 Ends a switch expression.
1720
1721
1722 Interpolation ISA
1723 ^^^^^^^^^^^^^^^^^
1724
1725 The interpolation instructions allow an input to be interpolated in a
1726 different way than its declaration. This corresponds to the GLSL 4.00
1727 interpolateAt* functions. The first argument of each of these must come from
1728 ``TGSI_FILE_INPUT``.
1729
1730 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1731
1732 Interpolates the varying specified by src0 at the centroid
1733
1734 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1735
1736 Interpolates the varying specified by src0 at the sample id specified by
1737 src1.x (interpreted as an integer)
1738
1739 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1740
1741 Interpolates the varying specified by src0 at the offset src1.xy from the
1742 pixel center (interpreted as floats)
1743
1744
1745 .. _doubleopcodes:
1746
1747 Double ISA
1748 ^^^^^^^^^^^^^^^
1749
1750 The double-precision opcodes reinterpret four-component vectors into
1751 two-component vectors with doubled precision in each component.
1752
1753 .. opcode:: DABS - Absolute
1754
1755 .. math::
1756
1757 dst.xy = |src0.xy|
1758
1759 dst.zw = |src0.zw|
1760
1761 .. opcode:: DADD - Add
1762
1763 .. math::
1764
1765 dst.xy = src0.xy + src1.xy
1766
1767 dst.zw = src0.zw + src1.zw
1768
1769 .. opcode:: DSEQ - Set on Equal
1770
1771 .. math::
1772
1773 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1774
1775 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1776
1777 .. opcode:: DSNE - Set on Not Equal
1778
1779 .. math::
1780
1781 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1782
1783 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1784
1785 .. opcode:: DSLT - Set on Less than
1786
1787 .. math::
1788
1789 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1790
1791 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1792
1793 .. opcode:: DSGE - Set on Greater equal
1794
1795 .. math::
1796
1797 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1798
1799 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1800
1801 .. opcode:: DFRAC - Fraction
1802
1803 .. math::
1804
1805 dst.xy = src.xy - \lfloor src.xy\rfloor
1806
1807 dst.zw = src.zw - \lfloor src.zw\rfloor
1808
1809 .. opcode:: DTRUNC - Truncate
1810
1811 .. math::
1812
1813 dst.xy = trunc(src.xy)
1814
1815 dst.zw = trunc(src.zw)
1816
1817 .. opcode:: DCEIL - Ceiling
1818
1819 .. math::
1820
1821 dst.xy = \lceil src.xy\rceil
1822
1823 dst.zw = \lceil src.zw\rceil
1824
1825 .. opcode:: DFLR - Floor
1826
1827 .. math::
1828
1829 dst.xy = \lfloor src.xy\rfloor
1830
1831 dst.zw = \lfloor src.zw\rfloor
1832
1833 .. opcode:: DROUND - Fraction
1834
1835 .. math::
1836
1837 dst.xy = round(src.xy)
1838
1839 dst.zw = round(src.zw)
1840
1841 .. opcode:: DSSG - Set Sign
1842
1843 .. math::
1844
1845 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1846
1847 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1848
1849 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1850
1851 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1852 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1853 :math:`dst1 \times 2^{dst0} = src` . The results are replicated across
1854 channels.
1855
1856 .. math::
1857
1858 dst0.xy = dst.zw = frac(src.xy)
1859
1860 dst1 = frac(src.xy)
1861
1862
1863 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1864
1865 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1866 source is an integer.
1867
1868 .. math::
1869
1870 dst.xy = src0.xy \times 2^{src1.x}
1871
1872 dst.zw = src0.zw \times 2^{src1.z}
1873
1874 .. opcode:: DMIN - Minimum
1875
1876 .. math::
1877
1878 dst.xy = min(src0.xy, src1.xy)
1879
1880 dst.zw = min(src0.zw, src1.zw)
1881
1882 .. opcode:: DMAX - Maximum
1883
1884 .. math::
1885
1886 dst.xy = max(src0.xy, src1.xy)
1887
1888 dst.zw = max(src0.zw, src1.zw)
1889
1890 .. opcode:: DMUL - Multiply
1891
1892 .. math::
1893
1894 dst.xy = src0.xy \times src1.xy
1895
1896 dst.zw = src0.zw \times src1.zw
1897
1898
1899 .. opcode:: DMAD - Multiply And Add
1900
1901 .. math::
1902
1903 dst.xy = src0.xy \times src1.xy + src2.xy
1904
1905 dst.zw = src0.zw \times src1.zw + src2.zw
1906
1907
1908 .. opcode:: DFMA - Fused Multiply-Add
1909
1910 Perform a * b + c with no intermediate rounding step.
1911
1912 .. math::
1913
1914 dst.xy = src0.xy \times src1.xy + src2.xy
1915
1916 dst.zw = src0.zw \times src1.zw + src2.zw
1917
1918
1919 .. opcode:: DDIV - Divide
1920
1921 .. math::
1922
1923 dst.xy = \frac{src0.xy}{src1.xy}
1924
1925 dst.zw = \frac{src0.zw}{src1.zw}
1926
1927
1928 .. opcode:: DRCP - Reciprocal
1929
1930 .. math::
1931
1932 dst.xy = \frac{1}{src.xy}
1933
1934 dst.zw = \frac{1}{src.zw}
1935
1936 .. opcode:: DSQRT - Square Root
1937
1938 .. math::
1939
1940 dst.xy = \sqrt{src.xy}
1941
1942 dst.zw = \sqrt{src.zw}
1943
1944 .. opcode:: DRSQ - Reciprocal Square Root
1945
1946 .. math::
1947
1948 dst.xy = \frac{1}{\sqrt{src.xy}}
1949
1950 dst.zw = \frac{1}{\sqrt{src.zw}}
1951
1952 .. opcode:: F2D - Float to Double
1953
1954 .. math::
1955
1956 dst.xy = double(src0.x)
1957
1958 dst.zw = double(src0.y)
1959
1960 .. opcode:: D2F - Double to Float
1961
1962 .. math::
1963
1964 dst.x = float(src0.xy)
1965
1966 dst.y = float(src0.zw)
1967
1968 .. opcode:: I2D - Int to Double
1969
1970 .. math::
1971
1972 dst.xy = double(src0.x)
1973
1974 dst.zw = double(src0.y)
1975
1976 .. opcode:: D2I - Double to Int
1977
1978 .. math::
1979
1980 dst.x = int(src0.xy)
1981
1982 dst.y = int(src0.zw)
1983
1984 .. opcode:: U2D - Unsigned Int to Double
1985
1986 .. math::
1987
1988 dst.xy = double(src0.x)
1989
1990 dst.zw = double(src0.y)
1991
1992 .. opcode:: D2U - Double to Unsigned Int
1993
1994 .. math::
1995
1996 dst.x = unsigned(src0.xy)
1997
1998 dst.y = unsigned(src0.zw)
1999
2000 64-bit Integer ISA
2001 ^^^^^^^^^^^^^^^^^^
2002
2003 The 64-bit integer opcodes reinterpret four-component vectors into
2004 two-component vectors with 64-bits in each component.
2005
2006 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2007
2008 .. math::
2009
2010 dst.xy = |src0.xy|
2011
2012 dst.zw = |src0.zw|
2013
2014 .. opcode:: I64NEG - 64-bit Integer Negate
2015
2016 Two's complement.
2017
2018 .. math::
2019
2020 dst.xy = -src.xy
2021
2022 dst.zw = -src.zw
2023
2024 .. opcode:: I64SSG - 64-bit Integer Set Sign
2025
2026 .. math::
2027
2028 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2029
2030 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2031
2032 .. opcode:: U64ADD - 64-bit Integer Add
2033
2034 .. math::
2035
2036 dst.xy = src0.xy + src1.xy
2037
2038 dst.zw = src0.zw + src1.zw
2039
2040 .. opcode:: U64MUL - 64-bit Integer Multiply
2041
2042 .. math::
2043
2044 dst.xy = src0.xy * src1.xy
2045
2046 dst.zw = src0.zw * src1.zw
2047
2048 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2049
2050 .. math::
2051
2052 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2053
2054 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2055
2056 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2057
2058 .. math::
2059
2060 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2061
2062 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2063
2064 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2065
2066 .. math::
2067
2068 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2069
2070 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2071
2072 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2073
2074 .. math::
2075
2076 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2077
2078 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2079
2080 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2081
2082 .. math::
2083
2084 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2085
2086 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2087
2088 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2089
2090 .. math::
2091
2092 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2093
2094 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2095
2096 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2097
2098 .. math::
2099
2100 dst.xy = min(src0.xy, src1.xy)
2101
2102 dst.zw = min(src0.zw, src1.zw)
2103
2104 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2105
2106 .. math::
2107
2108 dst.xy = min(src0.xy, src1.xy)
2109
2110 dst.zw = min(src0.zw, src1.zw)
2111
2112 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2113
2114 .. math::
2115
2116 dst.xy = max(src0.xy, src1.xy)
2117
2118 dst.zw = max(src0.zw, src1.zw)
2119
2120 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2121
2122 .. math::
2123
2124 dst.xy = max(src0.xy, src1.xy)
2125
2126 dst.zw = max(src0.zw, src1.zw)
2127
2128 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2129
2130 The shift count is masked with 0x3f before the shift is applied.
2131
2132 .. math::
2133
2134 dst.xy = src0.xy << (0x3f \& src1.x)
2135
2136 dst.zw = src0.zw << (0x3f \& src1.y)
2137
2138 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2139
2140 The shift count is masked with 0x3f before the shift is applied.
2141
2142 .. math::
2143
2144 dst.xy = src0.xy >> (0x3f \& src1.x)
2145
2146 dst.zw = src0.zw >> (0x3f \& src1.y)
2147
2148 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2149
2150 The shift count is masked with 0x3f before the shift is applied.
2151
2152 .. math::
2153
2154 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2155
2156 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2157
2158 .. opcode:: I64DIV - 64-bit Signed Integer Division
2159
2160 .. math::
2161
2162 dst.xy = \frac{src0.xy}{src1.xy}
2163
2164 dst.zw = \frac{src0.zw}{src1.zw}
2165
2166 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2167
2168 .. math::
2169
2170 dst.xy = \frac{src0.xy}{src1.xy}
2171
2172 dst.zw = \frac{src0.zw}{src1.zw}
2173
2174 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2175
2176 .. math::
2177
2178 dst.xy = src0.xy \bmod src1.xy
2179
2180 dst.zw = src0.zw \bmod src1.zw
2181
2182 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2183
2184 .. math::
2185
2186 dst.xy = src0.xy \bmod src1.xy
2187
2188 dst.zw = src0.zw \bmod src1.zw
2189
2190 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2191
2192 .. math::
2193
2194 dst.xy = (uint64_t) src0.x
2195
2196 dst.zw = (uint64_t) src0.y
2197
2198 .. opcode:: F2I64 - Float to 64-bit Int
2199
2200 .. math::
2201
2202 dst.xy = (int64_t) src0.x
2203
2204 dst.zw = (int64_t) src0.y
2205
2206 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2207
2208 This is a zero extension.
2209
2210 .. math::
2211
2212 dst.xy = (int64_t) src0.x
2213
2214 dst.zw = (int64_t) src0.y
2215
2216 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2217
2218 This is a sign extension.
2219
2220 .. math::
2221
2222 dst.xy = (int64_t) src0.x
2223
2224 dst.zw = (int64_t) src0.y
2225
2226 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2227
2228 .. math::
2229
2230 dst.xy = (uint64_t) src0.xy
2231
2232 dst.zw = (uint64_t) src0.zw
2233
2234 .. opcode:: D2I64 - Double to 64-bit Int
2235
2236 .. math::
2237
2238 dst.xy = (int64_t) src0.xy
2239
2240 dst.zw = (int64_t) src0.zw
2241
2242 .. opcode:: U642F - 64-bit unsigned integer to float
2243
2244 .. math::
2245
2246 dst.x = (float) src0.xy
2247
2248 dst.y = (float) src0.zw
2249
2250 .. opcode:: I642F - 64-bit Int to Float
2251
2252 .. math::
2253
2254 dst.x = (float) src0.xy
2255
2256 dst.y = (float) src0.zw
2257
2258 .. opcode:: U642D - 64-bit unsigned integer to double
2259
2260 .. math::
2261
2262 dst.xy = (double) src0.xy
2263
2264 dst.zw = (double) src0.zw
2265
2266 .. opcode:: I642D - 64-bit Int to double
2267
2268 .. math::
2269
2270 dst.xy = (double) src0.xy
2271
2272 dst.zw = (double) src0.zw
2273
2274 .. _samplingopcodes:
2275
2276 Resource Sampling Opcodes
2277 ^^^^^^^^^^^^^^^^^^^^^^^^^
2278
2279 Those opcodes follow very closely semantics of the respective Direct3D
2280 instructions. If in doubt double check Direct3D documentation.
2281 Note that the swizzle on SVIEW (src1) determines texel swizzling
2282 after lookup.
2283
2284 .. opcode:: SAMPLE
2285
2286 Using provided address, sample data from the specified texture using the
2287 filtering mode identified by the given sampler. The source data may come from
2288 any resource type other than buffers.
2289
2290 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2291
2292 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2293
2294 .. opcode:: SAMPLE_I
2295
2296 Simplified alternative to the SAMPLE instruction. Using the provided
2297 integer address, SAMPLE_I fetches data from the specified sampler view
2298 without any filtering. The source data may come from any resource type
2299 other than CUBE.
2300
2301 Syntax: ``SAMPLE_I dst, address, sampler_view``
2302
2303 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2304
2305 The 'address' is specified as unsigned integers. If the 'address' is out of
2306 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2307 components. As such the instruction doesn't honor address wrap modes, in
2308 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2309 address.w always provides an unsigned integer mipmap level. If the value is
2310 out of the range then the instruction always returns 0 in all components.
2311 address.yz are ignored for buffers and 1d textures. address.z is ignored
2312 for 1d texture arrays and 2d textures.
2313
2314 For 1D texture arrays address.y provides the array index (also as unsigned
2315 integer). If the value is out of the range of available array indices
2316 [0... (array size - 1)] then the opcode always returns 0 in all components.
2317 For 2D texture arrays address.z provides the array index, otherwise it
2318 exhibits the same behavior as in the case for 1D texture arrays. The exact
2319 semantics of the source address are presented in the table below:
2320
2321 +---------------------------+----+-----+-----+---------+
2322 | resource type | X | Y | Z | W |
2323 +===========================+====+=====+=====+=========+
2324 | ``PIPE_BUFFER`` | x | | | ignored |
2325 +---------------------------+----+-----+-----+---------+
2326 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2327 +---------------------------+----+-----+-----+---------+
2328 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2329 +---------------------------+----+-----+-----+---------+
2330 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2331 +---------------------------+----+-----+-----+---------+
2332 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2333 +---------------------------+----+-----+-----+---------+
2334 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2335 +---------------------------+----+-----+-----+---------+
2336 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2337 +---------------------------+----+-----+-----+---------+
2338 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2339 +---------------------------+----+-----+-----+---------+
2340
2341 Where 'mpl' is a mipmap level and 'idx' is the array index.
2342
2343 .. opcode:: SAMPLE_I_MS
2344
2345 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2346
2347 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2348
2349 .. opcode:: SAMPLE_B
2350
2351 Just like the SAMPLE instruction with the exception that an additional bias
2352 is applied to the level of detail computed as part of the instruction
2353 execution.
2354
2355 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2356
2357 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2358
2359 .. opcode:: SAMPLE_C
2360
2361 Similar to the SAMPLE instruction but it performs a comparison filter. The
2362 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2363 additional float32 operand, reference value, which must be a register with
2364 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2365 current samplers compare_func (in pipe_sampler_state) to compare reference
2366 value against the red component value for the surce resource at each texel
2367 that the currently configured texture filter covers based on the provided
2368 coordinates.
2369
2370 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2371
2372 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2373
2374 .. opcode:: SAMPLE_C_LZ
2375
2376 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2377 for level-zero.
2378
2379 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2380
2381 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2382
2383
2384 .. opcode:: SAMPLE_D
2385
2386 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2387 the source address in the x direction and the y direction are provided by
2388 extra parameters.
2389
2390 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2391
2392 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2393
2394 .. opcode:: SAMPLE_L
2395
2396 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2397 directly as a scalar value, representing no anisotropy.
2398
2399 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2400
2401 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2402
2403 .. opcode:: GATHER4
2404
2405 Gathers the four texels to be used in a bi-linear filtering operation and
2406 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2407 and cubemaps arrays. For 2D textures, only the addressing modes of the
2408 sampler and the top level of any mip pyramid are used. Set W to zero. It
2409 behaves like the SAMPLE instruction, but a filtered sample is not
2410 generated. The four samples that contribute to filtering are placed into
2411 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2412 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2413 magnitude of the deltas are half a texel.
2414
2415
2416 .. opcode:: SVIEWINFO
2417
2418 Query the dimensions of a given sampler view. dst receives width, height,
2419 depth or array size and number of mipmap levels as int4. The dst can have a
2420 writemask which will specify what info is the caller interested in.
2421
2422 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2423
2424 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2425
2426 src_mip_level is an unsigned integer scalar. If it's out of range then
2427 returns 0 for width, height and depth/array size but the total number of
2428 mipmap is still returned correctly for the given sampler view. The returned
2429 width, height and depth values are for the mipmap level selected by the
2430 src_mip_level and are in the number of texels. For 1d texture array width
2431 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2432 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2433 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2434 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2435 resinfo allowing swizzling dst values is ignored (due to the interaction
2436 with rcpfloat modifier which requires some swizzle handling in the state
2437 tracker anyway).
2438
2439 .. opcode:: SAMPLE_POS
2440
2441 Query the position of a sample in the given resource or render target
2442 when per-sample fragment shading is in effect.
2443
2444 Syntax: ``SAMPLE_POS dst, source, sample_index``
2445
2446 dst receives float4 (x, y, undef, undef) indicated where the sample is
2447 located. Sample locations are in the range [0, 1] where 0.5 is the center
2448 of the fragment.
2449
2450 source is either a sampler view (to indicate a shader resource) or temp
2451 register (to indicate the render target). The source register may have
2452 an optional swizzle to apply to the returned result
2453
2454 sample_index is an integer scalar indicating which sample position is to
2455 be queried.
2456
2457 If per-sample shading is not in effect or the source resource or render
2458 target is not multisampled, the result is (0.5, 0.5, undef, undef).
2459
2460 NOTE: no driver has implemented this opcode yet (and no state tracker
2461 emits it). This information is subject to change.
2462
2463 .. opcode:: SAMPLE_INFO
2464
2465 Query the number of samples in a multisampled resource or render target.
2466
2467 Syntax: ``SAMPLE_INFO dst, source``
2468
2469 dst receives int4 (n, 0, 0, 0) where n is the number of samples in a
2470 resource or the render target.
2471
2472 source is either a sampler view (to indicate a shader resource) or temp
2473 register (to indicate the render target). The source register may have
2474 an optional swizzle to apply to the returned result
2475
2476 If per-sample shading is not in effect or the source resource or render
2477 target is not multisampled, the result is (1, 0, 0, 0).
2478
2479 NOTE: no driver has implemented this opcode yet (and no state tracker
2480 emits it). This information is subject to change.
2481
2482 .. _resourceopcodes:
2483
2484 Resource Access Opcodes
2485 ^^^^^^^^^^^^^^^^^^^^^^^
2486
2487 For these opcodes, the resource can be a BUFFER, IMAGE, or MEMORY.
2488
2489 .. opcode:: LOAD - Fetch data from a shader buffer or image
2490
2491 Syntax: ``LOAD dst, resource, address``
2492
2493 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2494
2495 Using the provided integer address, LOAD fetches data
2496 from the specified buffer or texture without any
2497 filtering.
2498
2499 The 'address' is specified as a vector of unsigned
2500 integers. If the 'address' is out of range the result
2501 is unspecified.
2502
2503 Only the first mipmap level of a resource can be read
2504 from using this instruction.
2505
2506 For 1D or 2D texture arrays, the array index is
2507 provided as an unsigned integer in address.y or
2508 address.z, respectively. address.yz are ignored for
2509 buffers and 1D textures. address.z is ignored for 1D
2510 texture arrays and 2D textures. address.w is always
2511 ignored.
2512
2513 A swizzle suffix may be added to the resource argument
2514 this will cause the resource data to be swizzled accordingly.
2515
2516 .. opcode:: STORE - Write data to a shader resource
2517
2518 Syntax: ``STORE resource, address, src``
2519
2520 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2521
2522 Using the provided integer address, STORE writes data
2523 to the specified buffer or texture.
2524
2525 The 'address' is specified as a vector of unsigned
2526 integers. If the 'address' is out of range the result
2527 is unspecified.
2528
2529 Only the first mipmap level of a resource can be
2530 written to using this instruction.
2531
2532 For 1D or 2D texture arrays, the array index is
2533 provided as an unsigned integer in address.y or
2534 address.z, respectively. address.yz are ignored for
2535 buffers and 1D textures. address.z is ignored for 1D
2536 texture arrays and 2D textures. address.w is always
2537 ignored.
2538
2539 .. opcode:: RESQ - Query information about a resource
2540
2541 Syntax: ``RESQ dst, resource``
2542
2543 Example: ``RESQ TEMP[0], BUFFER[0]``
2544
2545 Returns information about the buffer or image resource. For buffer
2546 resources, the size (in bytes) is returned in the x component. For
2547 image resources, .xyz will contain the width/height/layers of the
2548 image, while .w will contain the number of samples for multi-sampled
2549 images.
2550
2551 .. opcode:: FBFETCH - Load data from framebuffer
2552
2553 Syntax: ``FBFETCH dst, output``
2554
2555 Example: ``FBFETCH TEMP[0], OUT[0]``
2556
2557 This is only valid on ``COLOR`` semantic outputs. Returns the color
2558 of the current position in the framebuffer from before this fragment
2559 shader invocation. May return the same value from multiple calls for
2560 a particular output within a single invocation. Note that result may
2561 be undefined if a fragment is drawn multiple times without a blend
2562 barrier in between.
2563
2564
2565 .. _threadsyncopcodes:
2566
2567 Inter-thread synchronization opcodes
2568 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2569
2570 These opcodes are intended for communication between threads running
2571 within the same compute grid. For now they're only valid in compute
2572 programs.
2573
2574 .. opcode:: BARRIER - Thread group barrier
2575
2576 ``BARRIER``
2577
2578 This opcode suspends the execution of the current thread until all
2579 the remaining threads in the working group reach the same point of
2580 the program. Results are unspecified if any of the remaining
2581 threads terminates or never reaches an executed BARRIER instruction.
2582
2583 .. opcode:: MEMBAR - Memory barrier
2584
2585 ``MEMBAR type``
2586
2587 This opcode waits for the completion of all memory accesses based on
2588 the type passed in. The type is an immediate bitfield with the following
2589 meaning:
2590
2591 Bit 0: Shader storage buffers
2592 Bit 1: Atomic buffers
2593 Bit 2: Images
2594 Bit 3: Shared memory
2595 Bit 4: Thread group
2596
2597 These may be passed in in any combination. An implementation is free to not
2598 distinguish between these as it sees fit. However these map to all the
2599 possibilities made available by GLSL.
2600
2601 .. _atomopcodes:
2602
2603 Atomic opcodes
2604 ^^^^^^^^^^^^^^
2605
2606 These opcodes provide atomic variants of some common arithmetic and
2607 logical operations. In this context atomicity means that another
2608 concurrent memory access operation that affects the same memory
2609 location is guaranteed to be performed strictly before or after the
2610 entire execution of the atomic operation. The resource may be a BUFFER,
2611 IMAGE, or MEMORY. In the case of an image, the offset works the same as for
2612 ``LOAD`` and ``STORE``, specified above. These atomic operations may
2613 only be used with 32-bit integer image formats.
2614
2615 .. opcode:: ATOMUADD - Atomic integer addition
2616
2617 Syntax: ``ATOMUADD dst, resource, offset, src``
2618
2619 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2620
2621 The following operation is performed atomically:
2622
2623 .. math::
2624
2625 dst_x = resource[offset]
2626
2627 resource[offset] = dst_x + src_x
2628
2629
2630 .. opcode:: ATOMXCHG - Atomic exchange
2631
2632 Syntax: ``ATOMXCHG dst, resource, offset, src``
2633
2634 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2635
2636 The following operation is performed atomically:
2637
2638 .. math::
2639
2640 dst_x = resource[offset]
2641
2642 resource[offset] = src_x
2643
2644
2645 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2646
2647 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2648
2649 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2650
2651 The following operation is performed atomically:
2652
2653 .. math::
2654
2655 dst_x = resource[offset]
2656
2657 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2658
2659
2660 .. opcode:: ATOMAND - Atomic bitwise And
2661
2662 Syntax: ``ATOMAND dst, resource, offset, src``
2663
2664 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2665
2666 The following operation is performed atomically:
2667
2668 .. math::
2669
2670 dst_x = resource[offset]
2671
2672 resource[offset] = dst_x \& src_x
2673
2674
2675 .. opcode:: ATOMOR - Atomic bitwise Or
2676
2677 Syntax: ``ATOMOR dst, resource, offset, src``
2678
2679 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2680
2681 The following operation is performed atomically:
2682
2683 .. math::
2684
2685 dst_x = resource[offset]
2686
2687 resource[offset] = dst_x | src_x
2688
2689
2690 .. opcode:: ATOMXOR - Atomic bitwise Xor
2691
2692 Syntax: ``ATOMXOR dst, resource, offset, src``
2693
2694 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2695
2696 The following operation is performed atomically:
2697
2698 .. math::
2699
2700 dst_x = resource[offset]
2701
2702 resource[offset] = dst_x \oplus src_x
2703
2704
2705 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2706
2707 Syntax: ``ATOMUMIN dst, resource, offset, src``
2708
2709 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2710
2711 The following operation is performed atomically:
2712
2713 .. math::
2714
2715 dst_x = resource[offset]
2716
2717 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2718
2719
2720 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2721
2722 Syntax: ``ATOMUMAX dst, resource, offset, src``
2723
2724 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2725
2726 The following operation is performed atomically:
2727
2728 .. math::
2729
2730 dst_x = resource[offset]
2731
2732 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2733
2734
2735 .. opcode:: ATOMIMIN - Atomic signed minimum
2736
2737 Syntax: ``ATOMIMIN dst, resource, offset, src``
2738
2739 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2740
2741 The following operation is performed atomically:
2742
2743 .. math::
2744
2745 dst_x = resource[offset]
2746
2747 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2748
2749
2750 .. opcode:: ATOMIMAX - Atomic signed maximum
2751
2752 Syntax: ``ATOMIMAX dst, resource, offset, src``
2753
2754 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2755
2756 The following operation is performed atomically:
2757
2758 .. math::
2759
2760 dst_x = resource[offset]
2761
2762 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2763
2764
2765 .. _interlaneopcodes:
2766
2767 Inter-lane opcodes
2768 ^^^^^^^^^^^^^^^^^^
2769
2770 These opcodes reduce the given value across the shader invocations
2771 running in the current SIMD group. Every thread in the subgroup will receive
2772 the same result. The BALLOT operations accept a single-channel argument that
2773 is treated as a boolean and produce a 64-bit value.
2774
2775 .. opcode:: VOTE_ANY - Value is set in any of the active invocations
2776
2777 Syntax: ``VOTE_ANY dst, value``
2778
2779 Example: ``VOTE_ANY TEMP[0].x, TEMP[1].x``
2780
2781
2782 .. opcode:: VOTE_ALL - Value is set in all of the active invocations
2783
2784 Syntax: ``VOTE_ALL dst, value``
2785
2786 Example: ``VOTE_ALL TEMP[0].x, TEMP[1].x``
2787
2788
2789 .. opcode:: VOTE_EQ - Value is the same in all of the active invocations
2790
2791 Syntax: ``VOTE_EQ dst, value``
2792
2793 Example: ``VOTE_EQ TEMP[0].x, TEMP[1].x``
2794
2795
2796 .. opcode:: BALLOT - Lanemask of whether the value is set in each active
2797 invocation
2798
2799 Syntax: ``BALLOT dst, value``
2800
2801 Example: ``BALLOT TEMP[0].xy, TEMP[1].x``
2802
2803 When the argument is a constant true, this produces a bitmask of active
2804 invocations. In fragment shaders, this can include helper invocations
2805 (invocations whose outputs and writes to memory are discarded, but which
2806 are used to compute derivatives).
2807
2808
2809 .. opcode:: READ_FIRST - Broadcast the value from the first active
2810 invocation to all active lanes
2811
2812 Syntax: ``READ_FIRST dst, value``
2813
2814 Example: ``READ_FIRST TEMP[0], TEMP[1]``
2815
2816
2817 .. opcode:: READ_INVOC - Retrieve the value from the given invocation
2818 (need not be uniform)
2819
2820 Syntax: ``READ_INVOC dst, value, invocation``
2821
2822 Example: ``READ_INVOC TEMP[0].xy, TEMP[1].xy, TEMP[2].x``
2823
2824 invocation.x controls the invocation number to read from for all channels.
2825 The invocation number must be the same across all active invocations in a
2826 sub-group; otherwise, the results are undefined.
2827
2828
2829 Explanation of symbols used
2830 ------------------------------
2831
2832
2833 Functions
2834 ^^^^^^^^^^^^^^
2835
2836
2837 :math:`|x|` Absolute value of `x`.
2838
2839 :math:`\lceil x \rceil` Ceiling of `x`.
2840
2841 clamp(x,y,z) Clamp x between y and z.
2842 (x < y) ? y : (x > z) ? z : x
2843
2844 :math:`\lfloor x\rfloor` Floor of `x`.
2845
2846 :math:`\log_2{x}` Logarithm of `x`, base 2.
2847
2848 max(x,y) Maximum of x and y.
2849 (x > y) ? x : y
2850
2851 min(x,y) Minimum of x and y.
2852 (x < y) ? x : y
2853
2854 partialx(x) Derivative of x relative to fragment's X.
2855
2856 partialy(x) Derivative of x relative to fragment's Y.
2857
2858 pop() Pop from stack.
2859
2860 :math:`x^y` `x` to the power `y`.
2861
2862 push(x) Push x on stack.
2863
2864 round(x) Round x.
2865
2866 trunc(x) Truncate x, i.e. drop the fraction bits.
2867
2868
2869 Keywords
2870 ^^^^^^^^^^^^^
2871
2872
2873 discard Discard fragment.
2874
2875 pc Program counter.
2876
2877 target Label of target instruction.
2878
2879
2880 Other tokens
2881 ---------------
2882
2883
2884 Declaration
2885 ^^^^^^^^^^^
2886
2887
2888 Declares a register that is will be referenced as an operand in Instruction
2889 tokens.
2890
2891 File field contains register file that is being declared and is one
2892 of TGSI_FILE.
2893
2894 UsageMask field specifies which of the register components can be accessed
2895 and is one of TGSI_WRITEMASK.
2896
2897 The Local flag specifies that a given value isn't intended for
2898 subroutine parameter passing and, as a result, the implementation
2899 isn't required to give any guarantees of it being preserved across
2900 subroutine boundaries. As it's merely a compiler hint, the
2901 implementation is free to ignore it.
2902
2903 If Dimension flag is set to 1, a Declaration Dimension token follows.
2904
2905 If Semantic flag is set to 1, a Declaration Semantic token follows.
2906
2907 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2908
2909 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2910
2911 If Array flag is set to 1, a Declaration Array token follows.
2912
2913 Array Declaration
2914 ^^^^^^^^^^^^^^^^^^^^^^^^
2915
2916 Declarations can optional have an ArrayID attribute which can be referred by
2917 indirect addressing operands. An ArrayID of zero is reserved and treated as
2918 if no ArrayID is specified.
2919
2920 If an indirect addressing operand refers to a specific declaration by using
2921 an ArrayID only the registers in this declaration are guaranteed to be
2922 accessed, accessing any register outside this declaration results in undefined
2923 behavior. Note that for compatibility the effective index is zero-based and
2924 not relative to the specified declaration
2925
2926 If no ArrayID is specified with an indirect addressing operand the whole
2927 register file might be accessed by this operand. This is strongly discouraged
2928 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2929 This is only legal for TEMP and CONST register files.
2930
2931 Declaration Semantic
2932 ^^^^^^^^^^^^^^^^^^^^^^^^
2933
2934 Vertex and fragment shader input and output registers may be labeled
2935 with semantic information consisting of a name and index.
2936
2937 Follows Declaration token if Semantic bit is set.
2938
2939 Since its purpose is to link a shader with other stages of the pipeline,
2940 it is valid to follow only those Declaration tokens that declare a register
2941 either in INPUT or OUTPUT file.
2942
2943 SemanticName field contains the semantic name of the register being declared.
2944 There is no default value.
2945
2946 SemanticIndex is an optional subscript that can be used to distinguish
2947 different register declarations with the same semantic name. The default value
2948 is 0.
2949
2950 The meanings of the individual semantic names are explained in the following
2951 sections.
2952
2953 TGSI_SEMANTIC_POSITION
2954 """"""""""""""""""""""
2955
2956 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2957 output register which contains the homogeneous vertex position in the clip
2958 space coordinate system. After clipping, the X, Y and Z components of the
2959 vertex will be divided by the W value to get normalized device coordinates.
2960
2961 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2962 fragment shader input (or system value, depending on which one is
2963 supported by the driver) contains the fragment's window position. The X
2964 component starts at zero and always increases from left to right.
2965 The Y component starts at zero and always increases but Y=0 may either
2966 indicate the top of the window or the bottom depending on the fragment
2967 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2968 The Z coordinate ranges from 0 to 1 to represent depth from the front
2969 to the back of the Z buffer. The W component contains the interpolated
2970 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2971 but unlike d3d10 which interpolates the same 1/w but then gives back
2972 the reciprocal of the interpolated value).
2973
2974 Fragment shaders may also declare an output register with
2975 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2976 the fragment shader to change the fragment's Z position.
2977
2978
2979
2980 TGSI_SEMANTIC_COLOR
2981 """""""""""""""""""
2982
2983 For vertex shader outputs or fragment shader inputs/outputs, this
2984 label indicates that the register contains an R,G,B,A color.
2985
2986 Several shader inputs/outputs may contain colors so the semantic index
2987 is used to distinguish them. For example, color[0] may be the diffuse
2988 color while color[1] may be the specular color.
2989
2990 This label is needed so that the flat/smooth shading can be applied
2991 to the right interpolants during rasterization.
2992
2993
2994
2995 TGSI_SEMANTIC_BCOLOR
2996 """"""""""""""""""""
2997
2998 Back-facing colors are only used for back-facing polygons, and are only valid
2999 in vertex shader outputs. After rasterization, all polygons are front-facing
3000 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
3001 so all BCOLORs effectively become regular COLORs in the fragment shader.
3002
3003
3004 TGSI_SEMANTIC_FOG
3005 """""""""""""""""
3006
3007 Vertex shader inputs and outputs and fragment shader inputs may be
3008 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
3009 a fog coordinate. Typically, the fragment shader will use the fog coordinate
3010 to compute a fog blend factor which is used to blend the normal fragment color
3011 with a constant fog color. But fog coord really is just an ordinary vec4
3012 register like regular semantics.
3013
3014
3015 TGSI_SEMANTIC_PSIZE
3016 """""""""""""""""""
3017
3018 Vertex shader input and output registers may be labeled with
3019 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3020 in the form (S, 0, 0, 1). The point size controls the width or diameter
3021 of points for rasterization. This label cannot be used in fragment
3022 shaders.
3023
3024 When using this semantic, be sure to set the appropriate state in the
3025 :ref:`rasterizer` first.
3026
3027
3028 TGSI_SEMANTIC_TEXCOORD
3029 """"""""""""""""""""""
3030
3031 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3032
3033 Vertex shader outputs and fragment shader inputs may be labeled with
3034 this semantic to make them replaceable by sprite coordinates via the
3035 sprite_coord_enable state in the :ref:`rasterizer`.
3036 The semantic index permitted with this semantic is limited to <= 7.
3037
3038 If the driver does not support TEXCOORD, sprite coordinate replacement
3039 applies to inputs with the GENERIC semantic instead.
3040
3041 The intended use case for this semantic is gl_TexCoord.
3042
3043
3044 TGSI_SEMANTIC_PCOORD
3045 """"""""""""""""""""
3046
3047 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3048
3049 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3050 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3051 the current primitive is a point and point sprites are enabled. Otherwise,
3052 the contents of the register are undefined.
3053
3054 The intended use case for this semantic is gl_PointCoord.
3055
3056
3057 TGSI_SEMANTIC_GENERIC
3058 """""""""""""""""""""
3059
3060 All vertex/fragment shader inputs/outputs not labeled with any other
3061 semantic label can be considered to be generic attributes. Typical
3062 uses of generic inputs/outputs are texcoords and user-defined values.
3063
3064
3065 TGSI_SEMANTIC_NORMAL
3066 """"""""""""""""""""
3067
3068 Indicates that a vertex shader input is a normal vector. This is
3069 typically only used for legacy graphics APIs.
3070
3071
3072 TGSI_SEMANTIC_FACE
3073 """"""""""""""""""
3074
3075 This label applies to fragment shader inputs (or system values,
3076 depending on which one is supported by the driver) and indicates that
3077 the register contains front/back-face information.
3078
3079 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3080 where F will be positive when the fragment belongs to a front-facing polygon,
3081 and negative when the fragment belongs to a back-facing polygon.
3082
3083 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3084 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3085 0 when the fragment belongs to a back-facing polygon.
3086
3087
3088 TGSI_SEMANTIC_EDGEFLAG
3089 """"""""""""""""""""""
3090
3091 For vertex shaders, this sematic label indicates that an input or
3092 output is a boolean edge flag. The register layout is [F, x, x, x]
3093 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3094 simply copies the edge flag input to the edgeflag output.
3095
3096 Edge flags are used to control which lines or points are actually
3097 drawn when the polygon mode converts triangles/quads/polygons into
3098 points or lines.
3099
3100
3101 TGSI_SEMANTIC_STENCIL
3102 """""""""""""""""""""
3103
3104 For fragment shaders, this semantic label indicates that an output
3105 is a writable stencil reference value. Only the Y component is writable.
3106 This allows the fragment shader to change the fragments stencilref value.
3107
3108
3109 TGSI_SEMANTIC_VIEWPORT_INDEX
3110 """"""""""""""""""""""""""""
3111
3112 For geometry shaders, this semantic label indicates that an output
3113 contains the index of the viewport (and scissor) to use.
3114 This is an integer value, and only the X component is used.
3115
3116 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3117 supported, then this semantic label can also be used in vertex or
3118 tessellation evaluation shaders, respectively. Only the value written in the
3119 last vertex processing stage is used.
3120
3121
3122 TGSI_SEMANTIC_LAYER
3123 """""""""""""""""""
3124
3125 For geometry shaders, this semantic label indicates that an output
3126 contains the layer value to use for the color and depth/stencil surfaces.
3127 This is an integer value, and only the X component is used.
3128 (Also known as rendertarget array index.)
3129
3130 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3131 supported, then this semantic label can also be used in vertex or
3132 tessellation evaluation shaders, respectively. Only the value written in the
3133 last vertex processing stage is used.
3134
3135
3136 TGSI_SEMANTIC_CULLDIST
3137 """"""""""""""""""""""
3138
3139 Used as distance to plane for performing application-defined culling
3140 of individual primitives against a plane. When components of vertex
3141 elements are given this label, these values are assumed to be a
3142 float32 signed distance to a plane. Primitives will be completely
3143 discarded if the plane distance for all of the vertices in the
3144 primitive are < 0. If a vertex has a cull distance of NaN, that
3145 vertex counts as "out" (as if its < 0);
3146 The limits on both clip and cull distances are bound
3147 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3148 the maximum number of components that can be used to hold the
3149 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3150 which specifies the maximum number of registers which can be
3151 annotated with those semantics.
3152
3153
3154 TGSI_SEMANTIC_CLIPDIST
3155 """"""""""""""""""""""
3156
3157 Note this covers clipping and culling distances.
3158
3159 When components of vertex elements are identified this way, these
3160 values are each assumed to be a float32 signed distance to a plane.
3161
3162 For clip distances:
3163 Primitive setup only invokes rasterization on pixels for which
3164 the interpolated plane distances are >= 0.
3165
3166 For cull distances:
3167 Primitives will be completely discarded if the plane distance
3168 for all of the vertices in the primitive are < 0.
3169 If a vertex has a cull distance of NaN, that vertex counts as "out"
3170 (as if its < 0);
3171
3172 Multiple clip/cull planes can be implemented simultaneously, by
3173 annotating multiple components of one or more vertex elements with
3174 the above specified semantic.
3175 The limits on both clip and cull distances are bound
3176 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3177 the maximum number of components that can be used to hold the
3178 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3179 which specifies the maximum number of registers which can be
3180 annotated with those semantics.
3181 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3182 are used to divide up the 2 x vec4 space between clipping and culling.
3183
3184 TGSI_SEMANTIC_SAMPLEID
3185 """"""""""""""""""""""
3186
3187 For fragment shaders, this semantic label indicates that a system value
3188 contains the current sample id (i.e. gl_SampleID) as an unsigned int.
3189 Only the X component is used. If per-sample shading is not enabled,
3190 the result is (0, undef, undef, undef).
3191
3192 Note that if the fragment shader uses this system value, the fragment
3193 shader is automatically executed at per sample frequency.
3194
3195 TGSI_SEMANTIC_SAMPLEPOS
3196 """""""""""""""""""""""
3197
3198 For fragment shaders, this semantic label indicates that a system
3199 value contains the current sample's position as float4(x, y, undef, undef)
3200 in the render target (i.e. gl_SamplePosition) when per-fragment shading
3201 is in effect. Position values are in the range [0, 1] where 0.5 is
3202 the center of the fragment.
3203
3204 Note that if the fragment shader uses this system value, the fragment
3205 shader is automatically executed at per sample frequency.
3206
3207 TGSI_SEMANTIC_SAMPLEMASK
3208 """"""""""""""""""""""""
3209
3210 For fragment shaders, this semantic label can be applied to either a
3211 shader system value input or output.
3212
3213 For a system value, the sample mask indicates the set of samples covered by
3214 the current primitive. If MSAA is not enabled, the value is (1, 0, 0, 0).
3215
3216 For an output, the sample mask is used to disable further sample processing.
3217
3218 For both, the register type is uint[4] but only the X component is used
3219 (i.e. gl_SampleMask[0]). Each bit corresponds to one sample position (up
3220 to 32x MSAA is supported).
3221
3222 TGSI_SEMANTIC_INVOCATIONID
3223 """"""""""""""""""""""""""
3224
3225 For geometry shaders, this semantic label indicates that a system value
3226 contains the current invocation id (i.e. gl_InvocationID).
3227 This is an integer value, and only the X component is used.
3228
3229 TGSI_SEMANTIC_INSTANCEID
3230 """"""""""""""""""""""""
3231
3232 For vertex shaders, this semantic label indicates that a system value contains
3233 the current instance id (i.e. gl_InstanceID). It does not include the base
3234 instance. This is an integer value, and only the X component is used.
3235
3236 TGSI_SEMANTIC_VERTEXID
3237 """"""""""""""""""""""
3238
3239 For vertex shaders, this semantic label indicates that a system value contains
3240 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3241 base vertex. This is an integer value, and only the X component is used.
3242
3243 TGSI_SEMANTIC_VERTEXID_NOBASE
3244 """""""""""""""""""""""""""""""
3245
3246 For vertex shaders, this semantic label indicates that a system value contains
3247 the current vertex id without including the base vertex (this corresponds to
3248 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3249 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3250 is used.
3251
3252 TGSI_SEMANTIC_BASEVERTEX
3253 """"""""""""""""""""""""
3254
3255 For vertex shaders, this semantic label indicates that a system value contains
3256 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3257 this contains the first (or start) value instead.
3258 This is an integer value, and only the X component is used.
3259
3260 TGSI_SEMANTIC_PRIMID
3261 """"""""""""""""""""
3262
3263 For geometry and fragment shaders, this semantic label indicates the value
3264 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3265 and only the X component is used.
3266 FIXME: This right now can be either a ordinary input or a system value...
3267
3268
3269 TGSI_SEMANTIC_PATCH
3270 """""""""""""""""""
3271
3272 For tessellation evaluation/control shaders, this semantic label indicates a
3273 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3274 arrays.
3275
3276 TGSI_SEMANTIC_TESSCOORD
3277 """""""""""""""""""""""
3278
3279 For tessellation evaluation shaders, this semantic label indicates the
3280 coordinates of the vertex being processed. This is available in XYZ; W is
3281 undefined.
3282
3283 TGSI_SEMANTIC_TESSOUTER
3284 """""""""""""""""""""""
3285
3286 For tessellation evaluation/control shaders, this semantic label indicates the
3287 outer tessellation levels of the patch. Isoline tessellation will only have XY
3288 defined, triangle will have XYZ and quads will have XYZW defined. This
3289 corresponds to gl_TessLevelOuter.
3290
3291 TGSI_SEMANTIC_TESSINNER
3292 """""""""""""""""""""""
3293
3294 For tessellation evaluation/control shaders, this semantic label indicates the
3295 inner tessellation levels of the patch. The X value is only defined for
3296 triangle tessellation, while quads will have XY defined. This is entirely
3297 undefined for isoline tessellation.
3298
3299 TGSI_SEMANTIC_VERTICESIN
3300 """"""""""""""""""""""""
3301
3302 For tessellation evaluation/control shaders, this semantic label indicates the
3303 number of vertices provided in the input patch. Only the X value is defined.
3304
3305 TGSI_SEMANTIC_HELPER_INVOCATION
3306 """""""""""""""""""""""""""""""
3307
3308 For fragment shaders, this semantic indicates whether the current
3309 invocation is covered or not. Helper invocations are created in order
3310 to properly compute derivatives, however it may be desirable to skip
3311 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3312
3313 TGSI_SEMANTIC_BASEINSTANCE
3314 """"""""""""""""""""""""""
3315
3316 For vertex shaders, the base instance argument supplied for this
3317 draw. This is an integer value, and only the X component is used.
3318
3319 TGSI_SEMANTIC_DRAWID
3320 """"""""""""""""""""
3321
3322 For vertex shaders, the zero-based index of the current draw in a
3323 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3324 component is used.
3325
3326
3327 TGSI_SEMANTIC_WORK_DIM
3328 """"""""""""""""""""""
3329
3330 For compute shaders started via opencl this retrieves the work_dim
3331 parameter to the clEnqueueNDRangeKernel call with which the shader
3332 was started.
3333
3334
3335 TGSI_SEMANTIC_GRID_SIZE
3336 """""""""""""""""""""""
3337
3338 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3339 of a grid of thread blocks.
3340
3341
3342 TGSI_SEMANTIC_BLOCK_ID
3343 """"""""""""""""""""""
3344
3345 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3346 current block inside of the grid.
3347
3348
3349 TGSI_SEMANTIC_BLOCK_SIZE
3350 """"""""""""""""""""""""
3351
3352 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3353 of a block in threads.
3354
3355
3356 TGSI_SEMANTIC_THREAD_ID
3357 """""""""""""""""""""""
3358
3359 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3360 current thread inside of the block.
3361
3362
3363 TGSI_SEMANTIC_SUBGROUP_SIZE
3364 """""""""""""""""""""""""""
3365
3366 This semantic indicates the subgroup size for the current invocation. This is
3367 an integer of at most 64, as it indicates the width of lanemasks. It does not
3368 depend on the number of invocations that are active.
3369
3370
3371 TGSI_SEMANTIC_SUBGROUP_INVOCATION
3372 """""""""""""""""""""""""""""""""
3373
3374 The index of the current invocation within its subgroup.
3375
3376
3377 TGSI_SEMANTIC_SUBGROUP_EQ_MASK
3378 """"""""""""""""""""""""""""""
3379
3380 A bit mask of ``bit index == TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3381 ``1 << subgroup_invocation`` in arbitrary precision arithmetic.
3382
3383
3384 TGSI_SEMANTIC_SUBGROUP_GE_MASK
3385 """"""""""""""""""""""""""""""
3386
3387 A bit mask of ``bit index >= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3388 ``((1 << (subgroup_size - subgroup_invocation)) - 1) << subgroup_invocation``
3389 in arbitrary precision arithmetic.
3390
3391
3392 TGSI_SEMANTIC_SUBGROUP_GT_MASK
3393 """"""""""""""""""""""""""""""
3394
3395 A bit mask of ``bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3396 ``((1 << (subgroup_size - subgroup_invocation - 1)) - 1) << (subgroup_invocation + 1)``
3397 in arbitrary precision arithmetic.
3398
3399
3400 TGSI_SEMANTIC_SUBGROUP_LE_MASK
3401 """"""""""""""""""""""""""""""
3402
3403 A bit mask of ``bit index <= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3404 ``(1 << (subgroup_invocation + 1)) - 1`` in arbitrary precision arithmetic.
3405
3406
3407 TGSI_SEMANTIC_SUBGROUP_LT_MASK
3408 """"""""""""""""""""""""""""""
3409
3410 A bit mask of ``bit index < TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3411 ``(1 << subgroup_invocation) - 1`` in arbitrary precision arithmetic.
3412
3413
3414 Declaration Interpolate
3415 ^^^^^^^^^^^^^^^^^^^^^^^
3416
3417 This token is only valid for fragment shader INPUT declarations.
3418
3419 The Interpolate field specifes the way input is being interpolated by
3420 the rasteriser and is one of TGSI_INTERPOLATE_*.
3421
3422 The Location field specifies the location inside the pixel that the
3423 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3424 when per-sample shading is enabled, the implementation may choose to
3425 interpolate at the sample irrespective of the Location field.
3426
3427 The CylindricalWrap bitfield specifies which register components
3428 should be subject to cylindrical wrapping when interpolating by the
3429 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3430 should be interpolated according to cylindrical wrapping rules.
3431
3432
3433 Declaration Sampler View
3434 ^^^^^^^^^^^^^^^^^^^^^^^^
3435
3436 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3437
3438 DCL SVIEW[#], resource, type(s)
3439
3440 Declares a shader input sampler view and assigns it to a SVIEW[#]
3441 register.
3442
3443 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3444
3445 type must be 1 or 4 entries (if specifying on a per-component
3446 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3447
3448 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3449 which take an explicit SVIEW[#] source register), there may be optionally
3450 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3451 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3452 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3453 But note in particular that some drivers need to know the sampler type
3454 (float/int/unsigned) in order to generate the correct code, so cases
3455 where integer textures are sampled, SVIEW[#] declarations should be
3456 used.
3457
3458 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3459 in the same shader.
3460
3461 Declaration Resource
3462 ^^^^^^^^^^^^^^^^^^^^
3463
3464 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3465
3466 DCL RES[#], resource [, WR] [, RAW]
3467
3468 Declares a shader input resource and assigns it to a RES[#]
3469 register.
3470
3471 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3472 2DArray.
3473
3474 If the RAW keyword is not specified, the texture data will be
3475 subject to conversion, swizzling and scaling as required to yield
3476 the specified data type from the physical data format of the bound
3477 resource.
3478
3479 If the RAW keyword is specified, no channel conversion will be
3480 performed: the values read for each of the channels (X,Y,Z,W) will
3481 correspond to consecutive words in the same order and format
3482 they're found in memory. No element-to-address conversion will be
3483 performed either: the value of the provided X coordinate will be
3484 interpreted in byte units instead of texel units. The result of
3485 accessing a misaligned address is undefined.
3486
3487 Usage of the STORE opcode is only allowed if the WR (writable) flag
3488 is set.
3489
3490
3491 Properties
3492 ^^^^^^^^^^^^^^^^^^^^^^^^
3493
3494 Properties are general directives that apply to the whole TGSI program.
3495
3496 FS_COORD_ORIGIN
3497 """""""""""""""
3498
3499 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3500 The default value is UPPER_LEFT.
3501
3502 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3503 increase downward and rightward.
3504 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3505 increase upward and rightward.
3506
3507 OpenGL defaults to LOWER_LEFT, and is configurable with the
3508 GL_ARB_fragment_coord_conventions extension.
3509
3510 DirectX 9/10 use UPPER_LEFT.
3511
3512 FS_COORD_PIXEL_CENTER
3513 """""""""""""""""""""
3514
3515 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3516 The default value is HALF_INTEGER.
3517
3518 If HALF_INTEGER, the fractionary part of the position will be 0.5
3519 If INTEGER, the fractionary part of the position will be 0.0
3520
3521 Note that this does not affect the set of fragments generated by
3522 rasterization, which is instead controlled by half_pixel_center in the
3523 rasterizer.
3524
3525 OpenGL defaults to HALF_INTEGER, and is configurable with the
3526 GL_ARB_fragment_coord_conventions extension.
3527
3528 DirectX 9 uses INTEGER.
3529 DirectX 10 uses HALF_INTEGER.
3530
3531 FS_COLOR0_WRITES_ALL_CBUFS
3532 """"""""""""""""""""""""""
3533 Specifies that writes to the fragment shader color 0 are replicated to all
3534 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3535 fragData is directed to a single color buffer, but fragColor is broadcast.
3536
3537 VS_PROHIBIT_UCPS
3538 """"""""""""""""""""""""""
3539 If this property is set on the program bound to the shader stage before the
3540 fragment shader, user clip planes should have no effect (be disabled) even if
3541 that shader does not write to any clip distance outputs and the rasterizer's
3542 clip_plane_enable is non-zero.
3543 This property is only supported by drivers that also support shader clip
3544 distance outputs.
3545 This is useful for APIs that don't have UCPs and where clip distances written
3546 by a shader cannot be disabled.
3547
3548 GS_INVOCATIONS
3549 """"""""""""""
3550
3551 Specifies the number of times a geometry shader should be executed for each
3552 input primitive. Each invocation will have a different
3553 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3554 be 1.
3555
3556 VS_WINDOW_SPACE_POSITION
3557 """"""""""""""""""""""""""
3558 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3559 is assumed to contain window space coordinates.
3560 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3561 directly taken from the 4-th component of the shader output.
3562 Naturally, clipping is not performed on window coordinates either.
3563 The effect of this property is undefined if a geometry or tessellation shader
3564 are in use.
3565
3566 TCS_VERTICES_OUT
3567 """"""""""""""""
3568
3569 The number of vertices written by the tessellation control shader. This
3570 effectively defines the patch input size of the tessellation evaluation shader
3571 as well.
3572
3573 TES_PRIM_MODE
3574 """""""""""""
3575
3576 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3577 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3578 separate isolines settings, the regular lines is assumed to mean isolines.)
3579
3580 TES_SPACING
3581 """""""""""
3582
3583 This sets the spacing mode of the tessellation generator, one of
3584 ``PIPE_TESS_SPACING_*``.
3585
3586 TES_VERTEX_ORDER_CW
3587 """""""""""""""""""
3588
3589 This sets the vertex order to be clockwise if the value is 1, or
3590 counter-clockwise if set to 0.
3591
3592 TES_POINT_MODE
3593 """"""""""""""
3594
3595 If set to a non-zero value, this turns on point mode for the tessellator,
3596 which means that points will be generated instead of primitives.
3597
3598 NUM_CLIPDIST_ENABLED
3599 """"""""""""""""""""
3600
3601 How many clip distance scalar outputs are enabled.
3602
3603 NUM_CULLDIST_ENABLED
3604 """"""""""""""""""""
3605
3606 How many cull distance scalar outputs are enabled.
3607
3608 FS_EARLY_DEPTH_STENCIL
3609 """"""""""""""""""""""
3610
3611 Whether depth test, stencil test, and occlusion query should run before
3612 the fragment shader (regardless of fragment shader side effects). Corresponds
3613 to GLSL early_fragment_tests.
3614
3615 NEXT_SHADER
3616 """""""""""
3617
3618 Which shader stage will MOST LIKELY follow after this shader when the shader
3619 is bound. This is only a hint to the driver and doesn't have to be precise.
3620 Only set for VS and TES.
3621
3622 CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3623 """""""""""""""""""""""""""""""""""""
3624
3625 Threads per block in each dimension, if known at compile time. If the block size
3626 is known all three should be at least 1. If it is unknown they should all be set
3627 to 0 or not set.
3628
3629 MUL_ZERO_WINS
3630 """""""""""""
3631
3632 The MUL TGSI operation (FP32 multiplication) will return 0 if either
3633 of the operands are equal to 0. That means that 0 * Inf = 0. This
3634 should be set the same way for an entire pipeline. Note that this
3635 applies not only to the literal MUL TGSI opcode, but all FP32
3636 multiplications implied by other operations, such as MAD, FMA, DP2,
3637 DP3, DP4, DST, LOG, LRP, and possibly others. If there is a
3638 mismatch between shaders, then it is unspecified whether this behavior
3639 will be enabled.
3640
3641 FS_POST_DEPTH_COVERAGE
3642 """"""""""""""""""""""
3643
3644 When enabled, the input for TGSI_SEMANTIC_SAMPLEMASK will exclude samples
3645 that have failed the depth/stencil tests. This is only valid when
3646 FS_EARLY_DEPTH_STENCIL is also specified.
3647
3648
3649 Texture Sampling and Texture Formats
3650 ------------------------------------
3651
3652 This table shows how texture image components are returned as (x,y,z,w) tuples
3653 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3654 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3655 well.
3656
3657 +--------------------+--------------+--------------------+--------------+
3658 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3659 +====================+==============+====================+==============+
3660 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3661 +--------------------+--------------+--------------------+--------------+
3662 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3663 +--------------------+--------------+--------------------+--------------+
3664 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3665 +--------------------+--------------+--------------------+--------------+
3666 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3667 +--------------------+--------------+--------------------+--------------+
3668 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3669 +--------------------+--------------+--------------------+--------------+
3670 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3671 +--------------------+--------------+--------------------+--------------+
3672 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3673 +--------------------+--------------+--------------------+--------------+
3674 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3675 +--------------------+--------------+--------------------+--------------+
3676 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3677 | | | [#envmap-bumpmap]_ | |
3678 +--------------------+--------------+--------------------+--------------+
3679 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3680 | | | [#depth-tex-mode]_ | |
3681 +--------------------+--------------+--------------------+--------------+
3682 | S | (s, s, s, s) | unknown | unknown |
3683 +--------------------+--------------+--------------------+--------------+
3684
3685 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3686 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3687 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.