gallium/docs: clarify TGSI_SEMANTIC_SAMPLEMASK, again
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and
32 negation modifiers are supported (with absolute value being applied
33 first). The only source of TGSI_OPCODE_MOV and the second and third
34 sources of TGSI_OPCODE_UCMP are considered to have float type for
35 applying modifiers.
36
37 For inputs which have signed or unsigned type only the negate modifier is
38 supported.
39
40 Instruction Set
41 ---------------
42
43 Core ISA
44 ^^^^^^^^^^^^^^^^^^^^^^^^^
45
46 These opcodes are guaranteed to be available regardless of the driver being
47 used.
48
49 .. opcode:: ARL - Address Register Load
50
51 .. math::
52
53 dst.x = (int) \lfloor src.x\rfloor
54
55 dst.y = (int) \lfloor src.y\rfloor
56
57 dst.z = (int) \lfloor src.z\rfloor
58
59 dst.w = (int) \lfloor src.w\rfloor
60
61
62 .. opcode:: MOV - Move
63
64 .. math::
65
66 dst.x = src.x
67
68 dst.y = src.y
69
70 dst.z = src.z
71
72 dst.w = src.w
73
74
75 .. opcode:: LIT - Light Coefficients
76
77 .. math::
78
79 dst.x &= 1 \\
80 dst.y &= max(src.x, 0) \\
81 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
82 dst.w &= 1
83
84
85 .. opcode:: RCP - Reciprocal
86
87 This instruction replicates its result.
88
89 .. math::
90
91 dst = \frac{1}{src.x}
92
93
94 .. opcode:: RSQ - Reciprocal Square Root
95
96 This instruction replicates its result. The results are undefined for src <= 0.
97
98 .. math::
99
100 dst = \frac{1}{\sqrt{src.x}}
101
102
103 .. opcode:: SQRT - Square Root
104
105 This instruction replicates its result. The results are undefined for src < 0.
106
107 .. math::
108
109 dst = {\sqrt{src.x}}
110
111
112 .. opcode:: EXP - Approximate Exponential Base 2
113
114 .. math::
115
116 dst.x &= 2^{\lfloor src.x\rfloor} \\
117 dst.y &= src.x - \lfloor src.x\rfloor \\
118 dst.z &= 2^{src.x} \\
119 dst.w &= 1
120
121
122 .. opcode:: LOG - Approximate Logarithm Base 2
123
124 .. math::
125
126 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
127 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
128 dst.z &= \log_2{|src.x|} \\
129 dst.w &= 1
130
131
132 .. opcode:: MUL - Multiply
133
134 .. math::
135
136 dst.x = src0.x \times src1.x
137
138 dst.y = src0.y \times src1.y
139
140 dst.z = src0.z \times src1.z
141
142 dst.w = src0.w \times src1.w
143
144
145 .. opcode:: ADD - Add
146
147 .. math::
148
149 dst.x = src0.x + src1.x
150
151 dst.y = src0.y + src1.y
152
153 dst.z = src0.z + src1.z
154
155 dst.w = src0.w + src1.w
156
157
158 .. opcode:: DP3 - 3-component Dot Product
159
160 This instruction replicates its result.
161
162 .. math::
163
164 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
165
166
167 .. opcode:: DP4 - 4-component Dot Product
168
169 This instruction replicates its result.
170
171 .. math::
172
173 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
174
175
176 .. opcode:: DST - Distance Vector
177
178 .. math::
179
180 dst.x &= 1\\
181 dst.y &= src0.y \times src1.y\\
182 dst.z &= src0.z\\
183 dst.w &= src1.w
184
185
186 .. opcode:: MIN - Minimum
187
188 .. math::
189
190 dst.x = min(src0.x, src1.x)
191
192 dst.y = min(src0.y, src1.y)
193
194 dst.z = min(src0.z, src1.z)
195
196 dst.w = min(src0.w, src1.w)
197
198
199 .. opcode:: MAX - Maximum
200
201 .. math::
202
203 dst.x = max(src0.x, src1.x)
204
205 dst.y = max(src0.y, src1.y)
206
207 dst.z = max(src0.z, src1.z)
208
209 dst.w = max(src0.w, src1.w)
210
211
212 .. opcode:: SLT - Set On Less Than
213
214 .. math::
215
216 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
217
218 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
219
220 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
221
222 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
223
224
225 .. opcode:: SGE - Set On Greater Equal Than
226
227 .. math::
228
229 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
230
231 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
232
233 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
234
235 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
236
237
238 .. opcode:: MAD - Multiply And Add
239
240 .. math::
241
242 dst.x = src0.x \times src1.x + src2.x
243
244 dst.y = src0.y \times src1.y + src2.y
245
246 dst.z = src0.z \times src1.z + src2.z
247
248 dst.w = src0.w \times src1.w + src2.w
249
250
251 .. opcode:: LRP - Linear Interpolate
252
253 .. math::
254
255 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
256
257 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
258
259 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
260
261 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
262
263
264 .. opcode:: FMA - Fused Multiply-Add
265
266 Perform a * b + c with no intermediate rounding step.
267
268 .. math::
269
270 dst.x = src0.x \times src1.x + src2.x
271
272 dst.y = src0.y \times src1.y + src2.y
273
274 dst.z = src0.z \times src1.z + src2.z
275
276 dst.w = src0.w \times src1.w + src2.w
277
278
279 .. opcode:: DP2A - 2-component Dot Product And Add
280
281 .. math::
282
283 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
288
289 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
290
291
292 .. opcode:: FRC - Fraction
293
294 .. math::
295
296 dst.x = src.x - \lfloor src.x\rfloor
297
298 dst.y = src.y - \lfloor src.y\rfloor
299
300 dst.z = src.z - \lfloor src.z\rfloor
301
302 dst.w = src.w - \lfloor src.w\rfloor
303
304
305 .. opcode:: FLR - Floor
306
307 .. math::
308
309 dst.x = \lfloor src.x\rfloor
310
311 dst.y = \lfloor src.y\rfloor
312
313 dst.z = \lfloor src.z\rfloor
314
315 dst.w = \lfloor src.w\rfloor
316
317
318 .. opcode:: ROUND - Round
319
320 .. math::
321
322 dst.x = round(src.x)
323
324 dst.y = round(src.y)
325
326 dst.z = round(src.z)
327
328 dst.w = round(src.w)
329
330
331 .. opcode:: EX2 - Exponential Base 2
332
333 This instruction replicates its result.
334
335 .. math::
336
337 dst = 2^{src.x}
338
339
340 .. opcode:: LG2 - Logarithm Base 2
341
342 This instruction replicates its result.
343
344 .. math::
345
346 dst = \log_2{src.x}
347
348
349 .. opcode:: POW - Power
350
351 This instruction replicates its result.
352
353 .. math::
354
355 dst = src0.x^{src1.x}
356
357 .. opcode:: XPD - Cross Product
358
359 .. math::
360
361 dst.x = src0.y \times src1.z - src1.y \times src0.z
362
363 dst.y = src0.z \times src1.x - src1.z \times src0.x
364
365 dst.z = src0.x \times src1.y - src1.x \times src0.y
366
367 dst.w = 1
368
369
370 .. opcode:: DPH - Homogeneous Dot Product
371
372 This instruction replicates its result.
373
374 .. math::
375
376 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
377
378
379 .. opcode:: COS - Cosine
380
381 This instruction replicates its result.
382
383 .. math::
384
385 dst = \cos{src.x}
386
387
388 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
389
390 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
391 advertised. When it is, the fine version guarantees one derivative per row
392 while DDX is allowed to be the same for the entire 2x2 quad.
393
394 .. math::
395
396 dst.x = partialx(src.x)
397
398 dst.y = partialx(src.y)
399
400 dst.z = partialx(src.z)
401
402 dst.w = partialx(src.w)
403
404
405 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
406
407 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
408 advertised. When it is, the fine version guarantees one derivative per column
409 while DDY is allowed to be the same for the entire 2x2 quad.
410
411 .. math::
412
413 dst.x = partialy(src.x)
414
415 dst.y = partialy(src.y)
416
417 dst.z = partialy(src.z)
418
419 dst.w = partialy(src.w)
420
421
422 .. opcode:: PK2H - Pack Two 16-bit Floats
423
424 This instruction replicates its result.
425
426 .. math::
427
428 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
429
430
431 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
432
433 TBD
434
435
436 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
437
438 TBD
439
440
441 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
442
443 TBD
444
445
446 .. opcode:: SEQ - Set On Equal
447
448 .. math::
449
450 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
451
452 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
453
454 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
455
456 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
457
458
459 .. opcode:: SGT - Set On Greater Than
460
461 .. math::
462
463 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
464
465 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
466
467 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
468
469 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
470
471
472 .. opcode:: SIN - Sine
473
474 This instruction replicates its result.
475
476 .. math::
477
478 dst = \sin{src.x}
479
480
481 .. opcode:: SLE - Set On Less Equal Than
482
483 .. math::
484
485 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
486
487 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
488
489 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
490
491 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
492
493
494 .. opcode:: SNE - Set On Not Equal
495
496 .. math::
497
498 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
499
500 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
501
502 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
503
504 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
505
506
507 .. opcode:: TEX - Texture Lookup
508
509 for array textures src0.y contains the slice for 1D,
510 and src0.z contain the slice for 2D.
511
512 for shadow textures with no arrays (and not cube map),
513 src0.z contains the reference value.
514
515 for shadow textures with arrays, src0.z contains
516 the reference value for 1D arrays, and src0.w contains
517 the reference value for 2D arrays and cube maps.
518
519 for cube map array shadow textures, the reference value
520 cannot be passed in src0.w, and TEX2 must be used instead.
521
522 .. math::
523
524 coord = src0
525
526 shadow_ref = src0.z or src0.w (optional)
527
528 unit = src1
529
530 dst = texture\_sample(unit, coord, shadow_ref)
531
532
533 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
534
535 this is the same as TEX, but uses another reg to encode the
536 reference value.
537
538 .. math::
539
540 coord = src0
541
542 shadow_ref = src1.x
543
544 unit = src2
545
546 dst = texture\_sample(unit, coord, shadow_ref)
547
548
549
550
551 .. opcode:: TXD - Texture Lookup with Derivatives
552
553 .. math::
554
555 coord = src0
556
557 ddx = src1
558
559 ddy = src2
560
561 unit = src3
562
563 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
564
565
566 .. opcode:: TXP - Projective Texture Lookup
567
568 .. math::
569
570 coord.x = src0.x / src0.w
571
572 coord.y = src0.y / src0.w
573
574 coord.z = src0.z / src0.w
575
576 coord.w = src0.w
577
578 unit = src1
579
580 dst = texture\_sample(unit, coord)
581
582
583 .. opcode:: UP2H - Unpack Two 16-Bit Floats
584
585 .. math::
586
587 dst.x = f16\_to\_f32(src0.x \& 0xffff)
588
589 dst.y = f16\_to\_f32(src0.x >> 16)
590
591 dst.z = f16\_to\_f32(src0.x \& 0xffff)
592
593 dst.w = f16\_to\_f32(src0.x >> 16)
594
595 .. note::
596
597 Considered for removal.
598
599 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
600
601 TBD
602
603 .. note::
604
605 Considered for removal.
606
607 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
608
609 TBD
610
611 .. note::
612
613 Considered for removal.
614
615 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
616
617 TBD
618
619 .. note::
620
621 Considered for removal.
622
623
624 .. opcode:: ARR - Address Register Load With Round
625
626 .. math::
627
628 dst.x = (int) round(src.x)
629
630 dst.y = (int) round(src.y)
631
632 dst.z = (int) round(src.z)
633
634 dst.w = (int) round(src.w)
635
636
637 .. opcode:: SSG - Set Sign
638
639 .. math::
640
641 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
642
643 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
644
645 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
646
647 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
648
649
650 .. opcode:: CMP - Compare
651
652 .. math::
653
654 dst.x = (src0.x < 0) ? src1.x : src2.x
655
656 dst.y = (src0.y < 0) ? src1.y : src2.y
657
658 dst.z = (src0.z < 0) ? src1.z : src2.z
659
660 dst.w = (src0.w < 0) ? src1.w : src2.w
661
662
663 .. opcode:: KILL_IF - Conditional Discard
664
665 Conditional discard. Allowed in fragment shaders only.
666
667 .. math::
668
669 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
670 discard
671 endif
672
673
674 .. opcode:: KILL - Discard
675
676 Unconditional discard. Allowed in fragment shaders only.
677
678
679 .. opcode:: SCS - Sine Cosine
680
681 .. math::
682
683 dst.x = \cos{src.x}
684
685 dst.y = \sin{src.x}
686
687 dst.z = 0
688
689 dst.w = 1
690
691
692 .. opcode:: TXB - Texture Lookup With Bias
693
694 for cube map array textures and shadow cube maps, the bias value
695 cannot be passed in src0.w, and TXB2 must be used instead.
696
697 if the target is a shadow texture, the reference value is always
698 in src.z (this prevents shadow 3d and shadow 2d arrays from
699 using this instruction, but this is not needed).
700
701 .. math::
702
703 coord.x = src0.x
704
705 coord.y = src0.y
706
707 coord.z = src0.z
708
709 coord.w = none
710
711 bias = src0.w
712
713 unit = src1
714
715 dst = texture\_sample(unit, coord, bias)
716
717
718 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
719
720 this is the same as TXB, but uses another reg to encode the
721 lod bias value for cube map arrays and shadow cube maps.
722 Presumably shadow 2d arrays and shadow 3d targets could use
723 this encoding too, but this is not legal.
724
725 shadow cube map arrays are neither possible nor required.
726
727 .. math::
728
729 coord = src0
730
731 bias = src1.x
732
733 unit = src2
734
735 dst = texture\_sample(unit, coord, bias)
736
737
738 .. opcode:: DIV - Divide
739
740 .. math::
741
742 dst.x = \frac{src0.x}{src1.x}
743
744 dst.y = \frac{src0.y}{src1.y}
745
746 dst.z = \frac{src0.z}{src1.z}
747
748 dst.w = \frac{src0.w}{src1.w}
749
750
751 .. opcode:: DP2 - 2-component Dot Product
752
753 This instruction replicates its result.
754
755 .. math::
756
757 dst = src0.x \times src1.x + src0.y \times src1.y
758
759
760 .. opcode:: TEX_LZ - Texture Lookup With LOD = 0
761
762 This is the same as TXL with LOD = 0. Like every texture opcode, it obeys
763 pipe_sampler_view::u.tex.first_level and pipe_sampler_state::min_lod.
764 There is no way to override those two in shaders.
765
766 .. math::
767
768 coord.x = src0.x
769
770 coord.y = src0.y
771
772 coord.z = src0.z
773
774 coord.w = none
775
776 lod = 0
777
778 unit = src1
779
780 dst = texture\_sample(unit, coord, lod)
781
782
783 .. opcode:: TXL - Texture Lookup With explicit LOD
784
785 for cube map array textures, the explicit lod value
786 cannot be passed in src0.w, and TXL2 must be used instead.
787
788 if the target is a shadow texture, the reference value is always
789 in src.z (this prevents shadow 3d / 2d array / cube targets from
790 using this instruction, but this is not needed).
791
792 .. math::
793
794 coord.x = src0.x
795
796 coord.y = src0.y
797
798 coord.z = src0.z
799
800 coord.w = none
801
802 lod = src0.w
803
804 unit = src1
805
806 dst = texture\_sample(unit, coord, lod)
807
808
809 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
810
811 this is the same as TXL, but uses another reg to encode the
812 explicit lod value.
813 Presumably shadow 3d / 2d array / cube targets could use
814 this encoding too, but this is not legal.
815
816 shadow cube map arrays are neither possible nor required.
817
818 .. math::
819
820 coord = src0
821
822 lod = src1.x
823
824 unit = src2
825
826 dst = texture\_sample(unit, coord, lod)
827
828
829 .. opcode:: PUSHA - Push Address Register On Stack
830
831 push(src.x)
832 push(src.y)
833 push(src.z)
834 push(src.w)
835
836 .. note::
837
838 Considered for cleanup.
839
840 .. note::
841
842 Considered for removal.
843
844 .. opcode:: POPA - Pop Address Register From Stack
845
846 dst.w = pop()
847 dst.z = pop()
848 dst.y = pop()
849 dst.x = pop()
850
851 .. note::
852
853 Considered for cleanup.
854
855 .. note::
856
857 Considered for removal.
858
859
860 .. opcode:: CALLNZ - Subroutine Call If Not Zero
861
862 TBD
863
864 .. note::
865
866 Considered for cleanup.
867
868 .. note::
869
870 Considered for removal.
871
872
873 Compute ISA
874 ^^^^^^^^^^^^^^^^^^^^^^^^
875
876 These opcodes are primarily provided for special-use computational shaders.
877 Support for these opcodes indicated by a special pipe capability bit (TBD).
878
879 XXX doesn't look like most of the opcodes really belong here.
880
881 .. opcode:: CEIL - Ceiling
882
883 .. math::
884
885 dst.x = \lceil src.x\rceil
886
887 dst.y = \lceil src.y\rceil
888
889 dst.z = \lceil src.z\rceil
890
891 dst.w = \lceil src.w\rceil
892
893
894 .. opcode:: TRUNC - Truncate
895
896 .. math::
897
898 dst.x = trunc(src.x)
899
900 dst.y = trunc(src.y)
901
902 dst.z = trunc(src.z)
903
904 dst.w = trunc(src.w)
905
906
907 .. opcode:: MOD - Modulus
908
909 .. math::
910
911 dst.x = src0.x \bmod src1.x
912
913 dst.y = src0.y \bmod src1.y
914
915 dst.z = src0.z \bmod src1.z
916
917 dst.w = src0.w \bmod src1.w
918
919
920 .. opcode:: UARL - Integer Address Register Load
921
922 Moves the contents of the source register, assumed to be an integer, into the
923 destination register, which is assumed to be an address (ADDR) register.
924
925
926 .. opcode:: SAD - Sum Of Absolute Differences
927
928 .. math::
929
930 dst.x = |src0.x - src1.x| + src2.x
931
932 dst.y = |src0.y - src1.y| + src2.y
933
934 dst.z = |src0.z - src1.z| + src2.z
935
936 dst.w = |src0.w - src1.w| + src2.w
937
938
939 .. opcode:: TXF - Texel Fetch
940
941 As per NV_gpu_shader4, extract a single texel from a specified texture
942 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
943 four-component signed integer vector used to identify the single texel
944 accessed. 3 components + level. Just like texture instructions, an optional
945 offset vector is provided, which is subject to various driver restrictions
946 (regarding range, source of offsets). This instruction ignores the sampler
947 state.
948
949 TXF(uint_vec coord, int_vec offset).
950
951
952 .. opcode:: TXF_LZ - Texel Fetch
953
954 This is the same as TXF with level = 0. Like TXF, it obeys
955 pipe_sampler_view::u.tex.first_level.
956
957
958 .. opcode:: TXQ - Texture Size Query
959
960 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
961 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
962 depth), 1D array (width, layers), 2D array (width, height, layers).
963 Also return the number of accessible levels (last_level - first_level + 1)
964 in W.
965
966 For components which don't return a resource dimension, their value
967 is undefined.
968
969 .. math::
970
971 lod = src0.x
972
973 dst.x = texture\_width(unit, lod)
974
975 dst.y = texture\_height(unit, lod)
976
977 dst.z = texture\_depth(unit, lod)
978
979 dst.w = texture\_levels(unit)
980
981
982 .. opcode:: TXQS - Texture Samples Query
983
984 This retrieves the number of samples in the texture, and stores it
985 into the x component. The other components are undefined.
986
987 .. math::
988
989 dst.x = texture\_samples(unit)
990
991
992 .. opcode:: TG4 - Texture Gather
993
994 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
995 filtering operation and packs them into a single register. Only works with
996 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
997 addressing modes of the sampler and the top level of any mip pyramid are
998 used. Set W to zero. It behaves like the TEX instruction, but a filtered
999 sample is not generated. The four samples that contribute to filtering are
1000 placed into xyzw in clockwise order, starting with the (u,v) texture
1001 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
1002 where the magnitude of the deltas are half a texel.
1003
1004 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1005 depth compares, single component selection, and a non-constant offset. It
1006 doesn't allow support for the GL independent offset to get i0,j0. This would
1007 require another CAP is hw can do it natively. For now we lower that before
1008 TGSI.
1009
1010 .. math::
1011
1012 coord = src0
1013
1014 component = src1
1015
1016 dst = texture\_gather4 (unit, coord, component)
1017
1018 (with SM5 - cube array shadow)
1019
1020 .. math::
1021
1022 coord = src0
1023
1024 compare = src1
1025
1026 dst = texture\_gather (uint, coord, compare)
1027
1028 .. opcode:: LODQ - level of detail query
1029
1030 Compute the LOD information that the texture pipe would use to access the
1031 texture. The Y component contains the computed LOD lambda_prime. The X
1032 component contains the LOD that will be accessed, based on min/max lod's
1033 and mipmap filters.
1034
1035 .. math::
1036
1037 coord = src0
1038
1039 dst.xy = lodq(uint, coord);
1040
1041 .. opcode:: CLOCK - retrieve the current shader time
1042
1043 Invoking this instruction multiple times in the same shader should
1044 cause monotonically increasing values to be returned. The values
1045 are implicitly 64-bit, so if fewer than 64 bits of precision are
1046 available, to provide expected wraparound semantics, the value
1047 should be shifted up so that the most significant bit of the time
1048 is the most significant bit of the 64-bit value.
1049
1050 .. math::
1051
1052 dst.xy = clock()
1053
1054
1055 Integer ISA
1056 ^^^^^^^^^^^^^^^^^^^^^^^^
1057 These opcodes are used for integer operations.
1058 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1059
1060
1061 .. opcode:: I2F - Signed Integer To Float
1062
1063 Rounding is unspecified (round to nearest even suggested).
1064
1065 .. math::
1066
1067 dst.x = (float) src.x
1068
1069 dst.y = (float) src.y
1070
1071 dst.z = (float) src.z
1072
1073 dst.w = (float) src.w
1074
1075
1076 .. opcode:: U2F - Unsigned Integer To Float
1077
1078 Rounding is unspecified (round to nearest even suggested).
1079
1080 .. math::
1081
1082 dst.x = (float) src.x
1083
1084 dst.y = (float) src.y
1085
1086 dst.z = (float) src.z
1087
1088 dst.w = (float) src.w
1089
1090
1091 .. opcode:: F2I - Float to Signed Integer
1092
1093 Rounding is towards zero (truncate).
1094 Values outside signed range (including NaNs) produce undefined results.
1095
1096 .. math::
1097
1098 dst.x = (int) src.x
1099
1100 dst.y = (int) src.y
1101
1102 dst.z = (int) src.z
1103
1104 dst.w = (int) src.w
1105
1106
1107 .. opcode:: F2U - Float to Unsigned Integer
1108
1109 Rounding is towards zero (truncate).
1110 Values outside unsigned range (including NaNs) produce undefined results.
1111
1112 .. math::
1113
1114 dst.x = (unsigned) src.x
1115
1116 dst.y = (unsigned) src.y
1117
1118 dst.z = (unsigned) src.z
1119
1120 dst.w = (unsigned) src.w
1121
1122
1123 .. opcode:: UADD - Integer Add
1124
1125 This instruction works the same for signed and unsigned integers.
1126 The low 32bit of the result is returned.
1127
1128 .. math::
1129
1130 dst.x = src0.x + src1.x
1131
1132 dst.y = src0.y + src1.y
1133
1134 dst.z = src0.z + src1.z
1135
1136 dst.w = src0.w + src1.w
1137
1138
1139 .. opcode:: UMAD - Integer Multiply And Add
1140
1141 This instruction works the same for signed and unsigned integers.
1142 The multiplication returns the low 32bit (as does the result itself).
1143
1144 .. math::
1145
1146 dst.x = src0.x \times src1.x + src2.x
1147
1148 dst.y = src0.y \times src1.y + src2.y
1149
1150 dst.z = src0.z \times src1.z + src2.z
1151
1152 dst.w = src0.w \times src1.w + src2.w
1153
1154
1155 .. opcode:: UMUL - Integer Multiply
1156
1157 This instruction works the same for signed and unsigned integers.
1158 The low 32bit of the result is returned.
1159
1160 .. math::
1161
1162 dst.x = src0.x \times src1.x
1163
1164 dst.y = src0.y \times src1.y
1165
1166 dst.z = src0.z \times src1.z
1167
1168 dst.w = src0.w \times src1.w
1169
1170
1171 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1172
1173 The high 32bits of the multiplication of 2 signed integers are returned.
1174
1175 .. math::
1176
1177 dst.x = (src0.x \times src1.x) >> 32
1178
1179 dst.y = (src0.y \times src1.y) >> 32
1180
1181 dst.z = (src0.z \times src1.z) >> 32
1182
1183 dst.w = (src0.w \times src1.w) >> 32
1184
1185
1186 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1187
1188 The high 32bits of the multiplication of 2 unsigned integers are returned.
1189
1190 .. math::
1191
1192 dst.x = (src0.x \times src1.x) >> 32
1193
1194 dst.y = (src0.y \times src1.y) >> 32
1195
1196 dst.z = (src0.z \times src1.z) >> 32
1197
1198 dst.w = (src0.w \times src1.w) >> 32
1199
1200
1201 .. opcode:: IDIV - Signed Integer Division
1202
1203 TBD: behavior for division by zero.
1204
1205 .. math::
1206
1207 dst.x = \frac{src0.x}{src1.x}
1208
1209 dst.y = \frac{src0.y}{src1.y}
1210
1211 dst.z = \frac{src0.z}{src1.z}
1212
1213 dst.w = \frac{src0.w}{src1.w}
1214
1215
1216 .. opcode:: UDIV - Unsigned Integer Division
1217
1218 For division by zero, 0xffffffff is returned.
1219
1220 .. math::
1221
1222 dst.x = \frac{src0.x}{src1.x}
1223
1224 dst.y = \frac{src0.y}{src1.y}
1225
1226 dst.z = \frac{src0.z}{src1.z}
1227
1228 dst.w = \frac{src0.w}{src1.w}
1229
1230
1231 .. opcode:: UMOD - Unsigned Integer Remainder
1232
1233 If second arg is zero, 0xffffffff is returned.
1234
1235 .. math::
1236
1237 dst.x = src0.x \bmod src1.x
1238
1239 dst.y = src0.y \bmod src1.y
1240
1241 dst.z = src0.z \bmod src1.z
1242
1243 dst.w = src0.w \bmod src1.w
1244
1245
1246 .. opcode:: NOT - Bitwise Not
1247
1248 .. math::
1249
1250 dst.x = \sim src.x
1251
1252 dst.y = \sim src.y
1253
1254 dst.z = \sim src.z
1255
1256 dst.w = \sim src.w
1257
1258
1259 .. opcode:: AND - Bitwise And
1260
1261 .. math::
1262
1263 dst.x = src0.x \& src1.x
1264
1265 dst.y = src0.y \& src1.y
1266
1267 dst.z = src0.z \& src1.z
1268
1269 dst.w = src0.w \& src1.w
1270
1271
1272 .. opcode:: OR - Bitwise Or
1273
1274 .. math::
1275
1276 dst.x = src0.x | src1.x
1277
1278 dst.y = src0.y | src1.y
1279
1280 dst.z = src0.z | src1.z
1281
1282 dst.w = src0.w | src1.w
1283
1284
1285 .. opcode:: XOR - Bitwise Xor
1286
1287 .. math::
1288
1289 dst.x = src0.x \oplus src1.x
1290
1291 dst.y = src0.y \oplus src1.y
1292
1293 dst.z = src0.z \oplus src1.z
1294
1295 dst.w = src0.w \oplus src1.w
1296
1297
1298 .. opcode:: IMAX - Maximum of Signed Integers
1299
1300 .. math::
1301
1302 dst.x = max(src0.x, src1.x)
1303
1304 dst.y = max(src0.y, src1.y)
1305
1306 dst.z = max(src0.z, src1.z)
1307
1308 dst.w = max(src0.w, src1.w)
1309
1310
1311 .. opcode:: UMAX - Maximum of Unsigned Integers
1312
1313 .. math::
1314
1315 dst.x = max(src0.x, src1.x)
1316
1317 dst.y = max(src0.y, src1.y)
1318
1319 dst.z = max(src0.z, src1.z)
1320
1321 dst.w = max(src0.w, src1.w)
1322
1323
1324 .. opcode:: IMIN - Minimum of Signed Integers
1325
1326 .. math::
1327
1328 dst.x = min(src0.x, src1.x)
1329
1330 dst.y = min(src0.y, src1.y)
1331
1332 dst.z = min(src0.z, src1.z)
1333
1334 dst.w = min(src0.w, src1.w)
1335
1336
1337 .. opcode:: UMIN - Minimum of Unsigned Integers
1338
1339 .. math::
1340
1341 dst.x = min(src0.x, src1.x)
1342
1343 dst.y = min(src0.y, src1.y)
1344
1345 dst.z = min(src0.z, src1.z)
1346
1347 dst.w = min(src0.w, src1.w)
1348
1349
1350 .. opcode:: SHL - Shift Left
1351
1352 The shift count is masked with 0x1f before the shift is applied.
1353
1354 .. math::
1355
1356 dst.x = src0.x << (0x1f \& src1.x)
1357
1358 dst.y = src0.y << (0x1f \& src1.y)
1359
1360 dst.z = src0.z << (0x1f \& src1.z)
1361
1362 dst.w = src0.w << (0x1f \& src1.w)
1363
1364
1365 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1366
1367 The shift count is masked with 0x1f before the shift is applied.
1368
1369 .. math::
1370
1371 dst.x = src0.x >> (0x1f \& src1.x)
1372
1373 dst.y = src0.y >> (0x1f \& src1.y)
1374
1375 dst.z = src0.z >> (0x1f \& src1.z)
1376
1377 dst.w = src0.w >> (0x1f \& src1.w)
1378
1379
1380 .. opcode:: USHR - Logical Shift Right
1381
1382 The shift count is masked with 0x1f before the shift is applied.
1383
1384 .. math::
1385
1386 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1387
1388 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1389
1390 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1391
1392 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1393
1394
1395 .. opcode:: UCMP - Integer Conditional Move
1396
1397 .. math::
1398
1399 dst.x = src0.x ? src1.x : src2.x
1400
1401 dst.y = src0.y ? src1.y : src2.y
1402
1403 dst.z = src0.z ? src1.z : src2.z
1404
1405 dst.w = src0.w ? src1.w : src2.w
1406
1407
1408
1409 .. opcode:: ISSG - Integer Set Sign
1410
1411 .. math::
1412
1413 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1414
1415 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1416
1417 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1418
1419 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1420
1421
1422
1423 .. opcode:: FSLT - Float Set On Less Than (ordered)
1424
1425 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1426
1427 .. math::
1428
1429 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1430
1431 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1432
1433 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1434
1435 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1436
1437
1438 .. opcode:: ISLT - Signed Integer Set On Less Than
1439
1440 .. math::
1441
1442 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1443
1444 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1445
1446 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1447
1448 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1449
1450
1451 .. opcode:: USLT - Unsigned Integer Set On Less Than
1452
1453 .. math::
1454
1455 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1456
1457 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1458
1459 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1460
1461 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1462
1463
1464 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1465
1466 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1467
1468 .. math::
1469
1470 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1471
1472 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1473
1474 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1475
1476 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1477
1478
1479 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1480
1481 .. math::
1482
1483 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1484
1485 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1486
1487 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1488
1489 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1490
1491
1492 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1493
1494 .. math::
1495
1496 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1497
1498 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1499
1500 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1501
1502 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1503
1504
1505 .. opcode:: FSEQ - Float Set On Equal (ordered)
1506
1507 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1508
1509 .. math::
1510
1511 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1512
1513 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1514
1515 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1516
1517 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1518
1519
1520 .. opcode:: USEQ - Integer Set On Equal
1521
1522 .. math::
1523
1524 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1525
1526 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1527
1528 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1529
1530 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1531
1532
1533 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1534
1535 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1536
1537 .. math::
1538
1539 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1540
1541 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1542
1543 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1544
1545 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1546
1547
1548 .. opcode:: USNE - Integer Set On Not Equal
1549
1550 .. math::
1551
1552 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1553
1554 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1555
1556 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1557
1558 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1559
1560
1561 .. opcode:: INEG - Integer Negate
1562
1563 Two's complement.
1564
1565 .. math::
1566
1567 dst.x = -src.x
1568
1569 dst.y = -src.y
1570
1571 dst.z = -src.z
1572
1573 dst.w = -src.w
1574
1575
1576 .. opcode:: IABS - Integer Absolute Value
1577
1578 .. math::
1579
1580 dst.x = |src.x|
1581
1582 dst.y = |src.y|
1583
1584 dst.z = |src.z|
1585
1586 dst.w = |src.w|
1587
1588 Bitwise ISA
1589 ^^^^^^^^^^^
1590 These opcodes are used for bit-level manipulation of integers.
1591
1592 .. opcode:: IBFE - Signed Bitfield Extract
1593
1594 Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1595 sign-extends them if the high bit of the extracted window is set.
1596
1597 Pseudocode::
1598
1599 def ibfe(value, offset, bits):
1600 if offset < 0 or bits < 0 or offset + bits > 32:
1601 return undefined
1602 if bits == 0: return 0
1603 # Note: >> sign-extends
1604 return (value << (32 - offset - bits)) >> (32 - bits)
1605
1606 .. opcode:: UBFE - Unsigned Bitfield Extract
1607
1608 Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1609 any sign-extension.
1610
1611 Pseudocode::
1612
1613 def ubfe(value, offset, bits):
1614 if offset < 0 or bits < 0 or offset + bits > 32:
1615 return undefined
1616 if bits == 0: return 0
1617 # Note: >> does not sign-extend
1618 return (value << (32 - offset - bits)) >> (32 - bits)
1619
1620 .. opcode:: BFI - Bitfield Insert
1621
1622 Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1623 of 'insert'.
1624
1625 Pseudocode::
1626
1627 def bfi(base, insert, offset, bits):
1628 if offset < 0 or bits < 0 or offset + bits > 32:
1629 return undefined
1630 # << defined such that mask == ~0 when bits == 32, offset == 0
1631 mask = ((1 << bits) - 1) << offset
1632 return ((insert << offset) & mask) | (base & ~mask)
1633
1634 .. opcode:: BREV - Bitfield Reverse
1635
1636 See SM5 instruction BFREV. Reverses the bits of the argument.
1637
1638 .. opcode:: POPC - Population Count
1639
1640 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1641
1642 .. opcode:: LSB - Index of lowest set bit
1643
1644 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1645 bit of the argument. Returns -1 if none are set.
1646
1647 .. opcode:: IMSB - Index of highest non-sign bit
1648
1649 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1650 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1651 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1652 (i.e. for inputs 0 and -1).
1653
1654 .. opcode:: UMSB - Index of highest set bit
1655
1656 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1657 set bit of the argument. Returns -1 if none are set.
1658
1659 Geometry ISA
1660 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1661
1662 These opcodes are only supported in geometry shaders; they have no meaning
1663 in any other type of shader.
1664
1665 .. opcode:: EMIT - Emit
1666
1667 Generate a new vertex for the current primitive into the specified vertex
1668 stream using the values in the output registers.
1669
1670
1671 .. opcode:: ENDPRIM - End Primitive
1672
1673 Complete the current primitive in the specified vertex stream (consisting of
1674 the emitted vertices), and start a new one.
1675
1676
1677 GLSL ISA
1678 ^^^^^^^^^^
1679
1680 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1681 opcodes is determined by a special capability bit, ``GLSL``.
1682 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1683
1684 .. opcode:: CAL - Subroutine Call
1685
1686 push(pc)
1687 pc = target
1688
1689
1690 .. opcode:: RET - Subroutine Call Return
1691
1692 pc = pop()
1693
1694
1695 .. opcode:: CONT - Continue
1696
1697 Unconditionally moves the point of execution to the instruction after the
1698 last bgnloop. The instruction must appear within a bgnloop/endloop.
1699
1700 .. note::
1701
1702 Support for CONT is determined by a special capability bit,
1703 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1704
1705
1706 .. opcode:: BGNLOOP - Begin a Loop
1707
1708 Start a loop. Must have a matching endloop.
1709
1710
1711 .. opcode:: BGNSUB - Begin Subroutine
1712
1713 Starts definition of a subroutine. Must have a matching endsub.
1714
1715
1716 .. opcode:: ENDLOOP - End a Loop
1717
1718 End a loop started with bgnloop.
1719
1720
1721 .. opcode:: ENDSUB - End Subroutine
1722
1723 Ends definition of a subroutine.
1724
1725
1726 .. opcode:: NOP - No Operation
1727
1728 Do nothing.
1729
1730
1731 .. opcode:: BRK - Break
1732
1733 Unconditionally moves the point of execution to the instruction after the
1734 next endloop or endswitch. The instruction must appear within a loop/endloop
1735 or switch/endswitch.
1736
1737
1738 .. opcode:: BREAKC - Break Conditional
1739
1740 Conditionally moves the point of execution to the instruction after the
1741 next endloop or endswitch. The instruction must appear within a loop/endloop
1742 or switch/endswitch.
1743 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1744 as an integer register.
1745
1746 .. note::
1747
1748 Considered for removal as it's quite inconsistent wrt other opcodes
1749 (could emulate with UIF/BRK/ENDIF).
1750
1751
1752 .. opcode:: IF - Float If
1753
1754 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1755
1756 src0.x != 0.0
1757
1758 where src0.x is interpreted as a floating point register.
1759
1760
1761 .. opcode:: UIF - Bitwise If
1762
1763 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1764
1765 src0.x != 0
1766
1767 where src0.x is interpreted as an integer register.
1768
1769
1770 .. opcode:: ELSE - Else
1771
1772 Starts an else block, after an IF or UIF statement.
1773
1774
1775 .. opcode:: ENDIF - End If
1776
1777 Ends an IF or UIF block.
1778
1779
1780 .. opcode:: SWITCH - Switch
1781
1782 Starts a C-style switch expression. The switch consists of one or multiple
1783 CASE statements, and at most one DEFAULT statement. Execution of a statement
1784 ends when a BRK is hit, but just like in C falling through to other cases
1785 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1786 just as last statement, and fallthrough is allowed into/from it.
1787 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1788
1789 Example::
1790
1791 SWITCH src[0].x
1792 CASE src[0].x
1793 (some instructions here)
1794 (optional BRK here)
1795 DEFAULT
1796 (some instructions here)
1797 (optional BRK here)
1798 CASE src[0].x
1799 (some instructions here)
1800 (optional BRK here)
1801 ENDSWITCH
1802
1803
1804 .. opcode:: CASE - Switch case
1805
1806 This represents a switch case label. The src arg must be an integer immediate.
1807
1808
1809 .. opcode:: DEFAULT - Switch default
1810
1811 This represents the default case in the switch, which is taken if no other
1812 case matches.
1813
1814
1815 .. opcode:: ENDSWITCH - End of switch
1816
1817 Ends a switch expression.
1818
1819
1820 Interpolation ISA
1821 ^^^^^^^^^^^^^^^^^
1822
1823 The interpolation instructions allow an input to be interpolated in a
1824 different way than its declaration. This corresponds to the GLSL 4.00
1825 interpolateAt* functions. The first argument of each of these must come from
1826 ``TGSI_FILE_INPUT``.
1827
1828 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1829
1830 Interpolates the varying specified by src0 at the centroid
1831
1832 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1833
1834 Interpolates the varying specified by src0 at the sample id specified by
1835 src1.x (interpreted as an integer)
1836
1837 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1838
1839 Interpolates the varying specified by src0 at the offset src1.xy from the
1840 pixel center (interpreted as floats)
1841
1842
1843 .. _doubleopcodes:
1844
1845 Double ISA
1846 ^^^^^^^^^^^^^^^
1847
1848 The double-precision opcodes reinterpret four-component vectors into
1849 two-component vectors with doubled precision in each component.
1850
1851 .. opcode:: DABS - Absolute
1852
1853 .. math::
1854
1855 dst.xy = |src0.xy|
1856
1857 dst.zw = |src0.zw|
1858
1859 .. opcode:: DADD - Add
1860
1861 .. math::
1862
1863 dst.xy = src0.xy + src1.xy
1864
1865 dst.zw = src0.zw + src1.zw
1866
1867 .. opcode:: DSEQ - Set on Equal
1868
1869 .. math::
1870
1871 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1872
1873 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1874
1875 .. opcode:: DSNE - Set on Equal
1876
1877 .. math::
1878
1879 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1880
1881 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1882
1883 .. opcode:: DSLT - Set on Less than
1884
1885 .. math::
1886
1887 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1888
1889 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1890
1891 .. opcode:: DSGE - Set on Greater equal
1892
1893 .. math::
1894
1895 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1896
1897 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1898
1899 .. opcode:: DFRAC - Fraction
1900
1901 .. math::
1902
1903 dst.xy = src.xy - \lfloor src.xy\rfloor
1904
1905 dst.zw = src.zw - \lfloor src.zw\rfloor
1906
1907 .. opcode:: DTRUNC - Truncate
1908
1909 .. math::
1910
1911 dst.xy = trunc(src.xy)
1912
1913 dst.zw = trunc(src.zw)
1914
1915 .. opcode:: DCEIL - Ceiling
1916
1917 .. math::
1918
1919 dst.xy = \lceil src.xy\rceil
1920
1921 dst.zw = \lceil src.zw\rceil
1922
1923 .. opcode:: DFLR - Floor
1924
1925 .. math::
1926
1927 dst.xy = \lfloor src.xy\rfloor
1928
1929 dst.zw = \lfloor src.zw\rfloor
1930
1931 .. opcode:: DROUND - Fraction
1932
1933 .. math::
1934
1935 dst.xy = round(src.xy)
1936
1937 dst.zw = round(src.zw)
1938
1939 .. opcode:: DSSG - Set Sign
1940
1941 .. math::
1942
1943 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1944
1945 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1946
1947 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1948
1949 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1950 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1951 :math:`dst1 \times 2^{dst0} = src` .
1952
1953 .. math::
1954
1955 dst0.xy = exp(src.xy)
1956
1957 dst1.xy = frac(src.xy)
1958
1959 dst0.zw = exp(src.zw)
1960
1961 dst1.zw = frac(src.zw)
1962
1963 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1964
1965 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1966 source is an integer.
1967
1968 .. math::
1969
1970 dst.xy = src0.xy \times 2^{src1.x}
1971
1972 dst.zw = src0.zw \times 2^{src1.y}
1973
1974 .. opcode:: DMIN - Minimum
1975
1976 .. math::
1977
1978 dst.xy = min(src0.xy, src1.xy)
1979
1980 dst.zw = min(src0.zw, src1.zw)
1981
1982 .. opcode:: DMAX - Maximum
1983
1984 .. math::
1985
1986 dst.xy = max(src0.xy, src1.xy)
1987
1988 dst.zw = max(src0.zw, src1.zw)
1989
1990 .. opcode:: DMUL - Multiply
1991
1992 .. math::
1993
1994 dst.xy = src0.xy \times src1.xy
1995
1996 dst.zw = src0.zw \times src1.zw
1997
1998
1999 .. opcode:: DMAD - Multiply And Add
2000
2001 .. math::
2002
2003 dst.xy = src0.xy \times src1.xy + src2.xy
2004
2005 dst.zw = src0.zw \times src1.zw + src2.zw
2006
2007
2008 .. opcode:: DFMA - Fused Multiply-Add
2009
2010 Perform a * b + c with no intermediate rounding step.
2011
2012 .. math::
2013
2014 dst.xy = src0.xy \times src1.xy + src2.xy
2015
2016 dst.zw = src0.zw \times src1.zw + src2.zw
2017
2018
2019 .. opcode:: DDIV - Divide
2020
2021 .. math::
2022
2023 dst.xy = \frac{src0.xy}{src1.xy}
2024
2025 dst.zw = \frac{src0.zw}{src1.zw}
2026
2027
2028 .. opcode:: DRCP - Reciprocal
2029
2030 .. math::
2031
2032 dst.xy = \frac{1}{src.xy}
2033
2034 dst.zw = \frac{1}{src.zw}
2035
2036 .. opcode:: DSQRT - Square Root
2037
2038 .. math::
2039
2040 dst.xy = \sqrt{src.xy}
2041
2042 dst.zw = \sqrt{src.zw}
2043
2044 .. opcode:: DRSQ - Reciprocal Square Root
2045
2046 .. math::
2047
2048 dst.xy = \frac{1}{\sqrt{src.xy}}
2049
2050 dst.zw = \frac{1}{\sqrt{src.zw}}
2051
2052 .. opcode:: F2D - Float to Double
2053
2054 .. math::
2055
2056 dst.xy = double(src0.x)
2057
2058 dst.zw = double(src0.y)
2059
2060 .. opcode:: D2F - Double to Float
2061
2062 .. math::
2063
2064 dst.x = float(src0.xy)
2065
2066 dst.y = float(src0.zw)
2067
2068 .. opcode:: I2D - Int to Double
2069
2070 .. math::
2071
2072 dst.xy = double(src0.x)
2073
2074 dst.zw = double(src0.y)
2075
2076 .. opcode:: D2I - Double to Int
2077
2078 .. math::
2079
2080 dst.x = int(src0.xy)
2081
2082 dst.y = int(src0.zw)
2083
2084 .. opcode:: U2D - Unsigned Int to Double
2085
2086 .. math::
2087
2088 dst.xy = double(src0.x)
2089
2090 dst.zw = double(src0.y)
2091
2092 .. opcode:: D2U - Double to Unsigned Int
2093
2094 .. math::
2095
2096 dst.x = unsigned(src0.xy)
2097
2098 dst.y = unsigned(src0.zw)
2099
2100 64-bit Integer ISA
2101 ^^^^^^^^^^^^^^^^^^
2102
2103 The 64-bit integer opcodes reinterpret four-component vectors into
2104 two-component vectors with 64-bits in each component.
2105
2106 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2107
2108 .. math::
2109
2110 dst.xy = |src0.xy|
2111
2112 dst.zw = |src0.zw|
2113
2114 .. opcode:: I64NEG - 64-bit Integer Negate
2115
2116 Two's complement.
2117
2118 .. math::
2119
2120 dst.xy = -src.xy
2121
2122 dst.zw = -src.zw
2123
2124 .. opcode:: I64SSG - 64-bit Integer Set Sign
2125
2126 .. math::
2127
2128 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2129
2130 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2131
2132 .. opcode:: U64ADD - 64-bit Integer Add
2133
2134 .. math::
2135
2136 dst.xy = src0.xy + src1.xy
2137
2138 dst.zw = src0.zw + src1.zw
2139
2140 .. opcode:: U64MUL - 64-bit Integer Multiply
2141
2142 .. math::
2143
2144 dst.xy = src0.xy * src1.xy
2145
2146 dst.zw = src0.zw * src1.zw
2147
2148 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2149
2150 .. math::
2151
2152 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2153
2154 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2155
2156 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2157
2158 .. math::
2159
2160 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2161
2162 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2163
2164 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2165
2166 .. math::
2167
2168 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2169
2170 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2171
2172 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2173
2174 .. math::
2175
2176 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2177
2178 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2179
2180 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2181
2182 .. math::
2183
2184 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2185
2186 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2187
2188 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2189
2190 .. math::
2191
2192 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2193
2194 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2195
2196 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2197
2198 .. math::
2199
2200 dst.xy = min(src0.xy, src1.xy)
2201
2202 dst.zw = min(src0.zw, src1.zw)
2203
2204 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2205
2206 .. math::
2207
2208 dst.xy = min(src0.xy, src1.xy)
2209
2210 dst.zw = min(src0.zw, src1.zw)
2211
2212 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2213
2214 .. math::
2215
2216 dst.xy = max(src0.xy, src1.xy)
2217
2218 dst.zw = max(src0.zw, src1.zw)
2219
2220 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2221
2222 .. math::
2223
2224 dst.xy = max(src0.xy, src1.xy)
2225
2226 dst.zw = max(src0.zw, src1.zw)
2227
2228 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2229
2230 The shift count is masked with 0x3f before the shift is applied.
2231
2232 .. math::
2233
2234 dst.xy = src0.xy << (0x3f \& src1.x)
2235
2236 dst.zw = src0.zw << (0x3f \& src1.y)
2237
2238 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2239
2240 The shift count is masked with 0x3f before the shift is applied.
2241
2242 .. math::
2243
2244 dst.xy = src0.xy >> (0x3f \& src1.x)
2245
2246 dst.zw = src0.zw >> (0x3f \& src1.y)
2247
2248 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2249
2250 The shift count is masked with 0x3f before the shift is applied.
2251
2252 .. math::
2253
2254 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2255
2256 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2257
2258 .. opcode:: I64DIV - 64-bit Signed Integer Division
2259
2260 .. math::
2261
2262 dst.xy = \frac{src0.xy}{src1.xy}
2263
2264 dst.zw = \frac{src0.zw}{src1.zw}
2265
2266 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2267
2268 .. math::
2269
2270 dst.xy = \frac{src0.xy}{src1.xy}
2271
2272 dst.zw = \frac{src0.zw}{src1.zw}
2273
2274 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2275
2276 .. math::
2277
2278 dst.xy = src0.xy \bmod src1.xy
2279
2280 dst.zw = src0.zw \bmod src1.zw
2281
2282 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2283
2284 .. math::
2285
2286 dst.xy = src0.xy \bmod src1.xy
2287
2288 dst.zw = src0.zw \bmod src1.zw
2289
2290 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2291
2292 .. math::
2293
2294 dst.xy = (uint64_t) src0.x
2295
2296 dst.zw = (uint64_t) src0.y
2297
2298 .. opcode:: F2I64 - Float to 64-bit Int
2299
2300 .. math::
2301
2302 dst.xy = (int64_t) src0.x
2303
2304 dst.zw = (int64_t) src0.y
2305
2306 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2307
2308 This is a zero extension.
2309
2310 .. math::
2311
2312 dst.xy = (uint64_t) src0.x
2313
2314 dst.zw = (uint64_t) src0.y
2315
2316 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2317
2318 This is a sign extension.
2319
2320 .. math::
2321
2322 dst.xy = (int64_t) src0.x
2323
2324 dst.zw = (int64_t) src0.y
2325
2326 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2327
2328 .. math::
2329
2330 dst.xy = (uint64_t) src0.xy
2331
2332 dst.zw = (uint64_t) src0.zw
2333
2334 .. opcode:: D2I64 - Double to 64-bit Int
2335
2336 .. math::
2337
2338 dst.xy = (int64_t) src0.xy
2339
2340 dst.zw = (int64_t) src0.zw
2341
2342 .. opcode:: U642F - 64-bit unsigned integer to float
2343
2344 .. math::
2345
2346 dst.x = (float) src0.xy
2347
2348 dst.y = (float) src0.zw
2349
2350 .. opcode:: I642F - 64-bit Int to Float
2351
2352 .. math::
2353
2354 dst.x = (float) src0.xy
2355
2356 dst.y = (float) src0.zw
2357
2358 .. opcode:: U642D - 64-bit unsigned integer to double
2359
2360 .. math::
2361
2362 dst.xy = (double) src0.xy
2363
2364 dst.zw = (double) src0.zw
2365
2366 .. opcode:: I642D - 64-bit Int to double
2367
2368 .. math::
2369
2370 dst.xy = (double) src0.xy
2371
2372 dst.zw = (double) src0.zw
2373
2374 .. _samplingopcodes:
2375
2376 Resource Sampling Opcodes
2377 ^^^^^^^^^^^^^^^^^^^^^^^^^
2378
2379 Those opcodes follow very closely semantics of the respective Direct3D
2380 instructions. If in doubt double check Direct3D documentation.
2381 Note that the swizzle on SVIEW (src1) determines texel swizzling
2382 after lookup.
2383
2384 .. opcode:: SAMPLE
2385
2386 Using provided address, sample data from the specified texture using the
2387 filtering mode identified by the given sampler. The source data may come from
2388 any resource type other than buffers.
2389
2390 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2391
2392 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2393
2394 .. opcode:: SAMPLE_I
2395
2396 Simplified alternative to the SAMPLE instruction. Using the provided
2397 integer address, SAMPLE_I fetches data from the specified sampler view
2398 without any filtering. The source data may come from any resource type
2399 other than CUBE.
2400
2401 Syntax: ``SAMPLE_I dst, address, sampler_view``
2402
2403 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2404
2405 The 'address' is specified as unsigned integers. If the 'address' is out of
2406 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2407 components. As such the instruction doesn't honor address wrap modes, in
2408 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2409 address.w always provides an unsigned integer mipmap level. If the value is
2410 out of the range then the instruction always returns 0 in all components.
2411 address.yz are ignored for buffers and 1d textures. address.z is ignored
2412 for 1d texture arrays and 2d textures.
2413
2414 For 1D texture arrays address.y provides the array index (also as unsigned
2415 integer). If the value is out of the range of available array indices
2416 [0... (array size - 1)] then the opcode always returns 0 in all components.
2417 For 2D texture arrays address.z provides the array index, otherwise it
2418 exhibits the same behavior as in the case for 1D texture arrays. The exact
2419 semantics of the source address are presented in the table below:
2420
2421 +---------------------------+----+-----+-----+---------+
2422 | resource type | X | Y | Z | W |
2423 +===========================+====+=====+=====+=========+
2424 | ``PIPE_BUFFER`` | x | | | ignored |
2425 +---------------------------+----+-----+-----+---------+
2426 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2427 +---------------------------+----+-----+-----+---------+
2428 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2429 +---------------------------+----+-----+-----+---------+
2430 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2431 +---------------------------+----+-----+-----+---------+
2432 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2433 +---------------------------+----+-----+-----+---------+
2434 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2435 +---------------------------+----+-----+-----+---------+
2436 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2437 +---------------------------+----+-----+-----+---------+
2438 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2439 +---------------------------+----+-----+-----+---------+
2440
2441 Where 'mpl' is a mipmap level and 'idx' is the array index.
2442
2443 .. opcode:: SAMPLE_I_MS
2444
2445 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2446
2447 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2448
2449 .. opcode:: SAMPLE_B
2450
2451 Just like the SAMPLE instruction with the exception that an additional bias
2452 is applied to the level of detail computed as part of the instruction
2453 execution.
2454
2455 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2456
2457 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2458
2459 .. opcode:: SAMPLE_C
2460
2461 Similar to the SAMPLE instruction but it performs a comparison filter. The
2462 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2463 additional float32 operand, reference value, which must be a register with
2464 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2465 current samplers compare_func (in pipe_sampler_state) to compare reference
2466 value against the red component value for the surce resource at each texel
2467 that the currently configured texture filter covers based on the provided
2468 coordinates.
2469
2470 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2471
2472 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2473
2474 .. opcode:: SAMPLE_C_LZ
2475
2476 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2477 for level-zero.
2478
2479 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2480
2481 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2482
2483
2484 .. opcode:: SAMPLE_D
2485
2486 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2487 the source address in the x direction and the y direction are provided by
2488 extra parameters.
2489
2490 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2491
2492 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2493
2494 .. opcode:: SAMPLE_L
2495
2496 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2497 directly as a scalar value, representing no anisotropy.
2498
2499 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2500
2501 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2502
2503 .. opcode:: GATHER4
2504
2505 Gathers the four texels to be used in a bi-linear filtering operation and
2506 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2507 and cubemaps arrays. For 2D textures, only the addressing modes of the
2508 sampler and the top level of any mip pyramid are used. Set W to zero. It
2509 behaves like the SAMPLE instruction, but a filtered sample is not
2510 generated. The four samples that contribute to filtering are placed into
2511 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2512 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2513 magnitude of the deltas are half a texel.
2514
2515
2516 .. opcode:: SVIEWINFO
2517
2518 Query the dimensions of a given sampler view. dst receives width, height,
2519 depth or array size and number of mipmap levels as int4. The dst can have a
2520 writemask which will specify what info is the caller interested in.
2521
2522 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2523
2524 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2525
2526 src_mip_level is an unsigned integer scalar. If it's out of range then
2527 returns 0 for width, height and depth/array size but the total number of
2528 mipmap is still returned correctly for the given sampler view. The returned
2529 width, height and depth values are for the mipmap level selected by the
2530 src_mip_level and are in the number of texels. For 1d texture array width
2531 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2532 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2533 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2534 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2535 resinfo allowing swizzling dst values is ignored (due to the interaction
2536 with rcpfloat modifier which requires some swizzle handling in the state
2537 tracker anyway).
2538
2539 .. opcode:: SAMPLE_POS
2540
2541 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2542 indicated where the sample is located. If the resource is not a multi-sample
2543 resource and not a render target, the result is 0.
2544
2545 .. opcode:: SAMPLE_INFO
2546
2547 dst receives number of samples in x. If the resource is not a multi-sample
2548 resource and not a render target, the result is 0.
2549
2550
2551 .. _resourceopcodes:
2552
2553 Resource Access Opcodes
2554 ^^^^^^^^^^^^^^^^^^^^^^^
2555
2556 For these opcodes, the resource can be a BUFFER, IMAGE, or MEMORY.
2557
2558 .. opcode:: LOAD - Fetch data from a shader buffer or image
2559
2560 Syntax: ``LOAD dst, resource, address``
2561
2562 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2563
2564 Using the provided integer address, LOAD fetches data
2565 from the specified buffer or texture without any
2566 filtering.
2567
2568 The 'address' is specified as a vector of unsigned
2569 integers. If the 'address' is out of range the result
2570 is unspecified.
2571
2572 Only the first mipmap level of a resource can be read
2573 from using this instruction.
2574
2575 For 1D or 2D texture arrays, the array index is
2576 provided as an unsigned integer in address.y or
2577 address.z, respectively. address.yz are ignored for
2578 buffers and 1D textures. address.z is ignored for 1D
2579 texture arrays and 2D textures. address.w is always
2580 ignored.
2581
2582 A swizzle suffix may be added to the resource argument
2583 this will cause the resource data to be swizzled accordingly.
2584
2585 .. opcode:: STORE - Write data to a shader resource
2586
2587 Syntax: ``STORE resource, address, src``
2588
2589 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2590
2591 Using the provided integer address, STORE writes data
2592 to the specified buffer or texture.
2593
2594 The 'address' is specified as a vector of unsigned
2595 integers. If the 'address' is out of range the result
2596 is unspecified.
2597
2598 Only the first mipmap level of a resource can be
2599 written to using this instruction.
2600
2601 For 1D or 2D texture arrays, the array index is
2602 provided as an unsigned integer in address.y or
2603 address.z, respectively. address.yz are ignored for
2604 buffers and 1D textures. address.z is ignored for 1D
2605 texture arrays and 2D textures. address.w is always
2606 ignored.
2607
2608 .. opcode:: RESQ - Query information about a resource
2609
2610 Syntax: ``RESQ dst, resource``
2611
2612 Example: ``RESQ TEMP[0], BUFFER[0]``
2613
2614 Returns information about the buffer or image resource. For buffer
2615 resources, the size (in bytes) is returned in the x component. For
2616 image resources, .xyz will contain the width/height/layers of the
2617 image, while .w will contain the number of samples for multi-sampled
2618 images.
2619
2620 .. opcode:: FBFETCH - Load data from framebuffer
2621
2622 Syntax: ``FBFETCH dst, output``
2623
2624 Example: ``FBFETCH TEMP[0], OUT[0]``
2625
2626 This is only valid on ``COLOR`` semantic outputs. Returns the color
2627 of the current position in the framebuffer from before this fragment
2628 shader invocation. May return the same value from multiple calls for
2629 a particular output within a single invocation. Note that result may
2630 be undefined if a fragment is drawn multiple times without a blend
2631 barrier in between.
2632
2633
2634 .. _threadsyncopcodes:
2635
2636 Inter-thread synchronization opcodes
2637 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2638
2639 These opcodes are intended for communication between threads running
2640 within the same compute grid. For now they're only valid in compute
2641 programs.
2642
2643 .. opcode:: MFENCE - Memory fence
2644
2645 Syntax: ``MFENCE resource``
2646
2647 Example: ``MFENCE RES[0]``
2648
2649 This opcode forces strong ordering between any memory access
2650 operations that affect the specified resource. This means that
2651 previous loads and stores (and only those) will be performed and
2652 visible to other threads before the program execution continues.
2653
2654
2655 .. opcode:: LFENCE - Load memory fence
2656
2657 Syntax: ``LFENCE resource``
2658
2659 Example: ``LFENCE RES[0]``
2660
2661 Similar to MFENCE, but it only affects the ordering of memory loads.
2662
2663
2664 .. opcode:: SFENCE - Store memory fence
2665
2666 Syntax: ``SFENCE resource``
2667
2668 Example: ``SFENCE RES[0]``
2669
2670 Similar to MFENCE, but it only affects the ordering of memory stores.
2671
2672
2673 .. opcode:: BARRIER - Thread group barrier
2674
2675 ``BARRIER``
2676
2677 This opcode suspends the execution of the current thread until all
2678 the remaining threads in the working group reach the same point of
2679 the program. Results are unspecified if any of the remaining
2680 threads terminates or never reaches an executed BARRIER instruction.
2681
2682 .. opcode:: MEMBAR - Memory barrier
2683
2684 ``MEMBAR type``
2685
2686 This opcode waits for the completion of all memory accesses based on
2687 the type passed in. The type is an immediate bitfield with the following
2688 meaning:
2689
2690 Bit 0: Shader storage buffers
2691 Bit 1: Atomic buffers
2692 Bit 2: Images
2693 Bit 3: Shared memory
2694 Bit 4: Thread group
2695
2696 These may be passed in in any combination. An implementation is free to not
2697 distinguish between these as it sees fit. However these map to all the
2698 possibilities made available by GLSL.
2699
2700 .. _atomopcodes:
2701
2702 Atomic opcodes
2703 ^^^^^^^^^^^^^^
2704
2705 These opcodes provide atomic variants of some common arithmetic and
2706 logical operations. In this context atomicity means that another
2707 concurrent memory access operation that affects the same memory
2708 location is guaranteed to be performed strictly before or after the
2709 entire execution of the atomic operation. The resource may be a BUFFER,
2710 IMAGE, or MEMORY. In the case of an image, the offset works the same as for
2711 ``LOAD`` and ``STORE``, specified above. These atomic operations may
2712 only be used with 32-bit integer image formats.
2713
2714 .. opcode:: ATOMUADD - Atomic integer addition
2715
2716 Syntax: ``ATOMUADD dst, resource, offset, src``
2717
2718 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2719
2720 The following operation is performed atomically:
2721
2722 .. math::
2723
2724 dst_x = resource[offset]
2725
2726 resource[offset] = dst_x + src_x
2727
2728
2729 .. opcode:: ATOMXCHG - Atomic exchange
2730
2731 Syntax: ``ATOMXCHG dst, resource, offset, src``
2732
2733 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2734
2735 The following operation is performed atomically:
2736
2737 .. math::
2738
2739 dst_x = resource[offset]
2740
2741 resource[offset] = src_x
2742
2743
2744 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2745
2746 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2747
2748 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2749
2750 The following operation is performed atomically:
2751
2752 .. math::
2753
2754 dst_x = resource[offset]
2755
2756 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2757
2758
2759 .. opcode:: ATOMAND - Atomic bitwise And
2760
2761 Syntax: ``ATOMAND dst, resource, offset, src``
2762
2763 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2764
2765 The following operation is performed atomically:
2766
2767 .. math::
2768
2769 dst_x = resource[offset]
2770
2771 resource[offset] = dst_x \& src_x
2772
2773
2774 .. opcode:: ATOMOR - Atomic bitwise Or
2775
2776 Syntax: ``ATOMOR dst, resource, offset, src``
2777
2778 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2779
2780 The following operation is performed atomically:
2781
2782 .. math::
2783
2784 dst_x = resource[offset]
2785
2786 resource[offset] = dst_x | src_x
2787
2788
2789 .. opcode:: ATOMXOR - Atomic bitwise Xor
2790
2791 Syntax: ``ATOMXOR dst, resource, offset, src``
2792
2793 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2794
2795 The following operation is performed atomically:
2796
2797 .. math::
2798
2799 dst_x = resource[offset]
2800
2801 resource[offset] = dst_x \oplus src_x
2802
2803
2804 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2805
2806 Syntax: ``ATOMUMIN dst, resource, offset, src``
2807
2808 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2809
2810 The following operation is performed atomically:
2811
2812 .. math::
2813
2814 dst_x = resource[offset]
2815
2816 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2817
2818
2819 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2820
2821 Syntax: ``ATOMUMAX dst, resource, offset, src``
2822
2823 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2824
2825 The following operation is performed atomically:
2826
2827 .. math::
2828
2829 dst_x = resource[offset]
2830
2831 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2832
2833
2834 .. opcode:: ATOMIMIN - Atomic signed minimum
2835
2836 Syntax: ``ATOMIMIN dst, resource, offset, src``
2837
2838 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2839
2840 The following operation is performed atomically:
2841
2842 .. math::
2843
2844 dst_x = resource[offset]
2845
2846 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2847
2848
2849 .. opcode:: ATOMIMAX - Atomic signed maximum
2850
2851 Syntax: ``ATOMIMAX dst, resource, offset, src``
2852
2853 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2854
2855 The following operation is performed atomically:
2856
2857 .. math::
2858
2859 dst_x = resource[offset]
2860
2861 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2862
2863
2864 .. _interlaneopcodes:
2865
2866 Inter-lane opcodes
2867 ^^^^^^^^^^^^^^^^^^
2868
2869 These opcodes reduce the given value across the shader invocations
2870 running in the current SIMD group. Every thread in the subgroup will receive
2871 the same result. The BALLOT operations accept a single-channel argument that
2872 is treated as a boolean and produce a 64-bit value.
2873
2874 .. opcode:: VOTE_ANY - Value is set in any of the active invocations
2875
2876 Syntax: ``VOTE_ANY dst, value``
2877
2878 Example: ``VOTE_ANY TEMP[0].x, TEMP[1].x``
2879
2880
2881 .. opcode:: VOTE_ALL - Value is set in all of the active invocations
2882
2883 Syntax: ``VOTE_ALL dst, value``
2884
2885 Example: ``VOTE_ALL TEMP[0].x, TEMP[1].x``
2886
2887
2888 .. opcode:: VOTE_EQ - Value is the same in all of the active invocations
2889
2890 Syntax: ``VOTE_EQ dst, value``
2891
2892 Example: ``VOTE_EQ TEMP[0].x, TEMP[1].x``
2893
2894
2895 .. opcode:: BALLOT - Lanemask of whether the value is set in each active
2896 invocation
2897
2898 Syntax: ``BALLOT dst, value``
2899
2900 Example: ``BALLOT TEMP[0].xy, TEMP[1].x``
2901
2902 When the argument is a constant true, this produces a bitmask of active
2903 invocations. In fragment shaders, this can include helper invocations
2904 (invocations whose outputs and writes to memory are discarded, but which
2905 are used to compute derivatives).
2906
2907
2908 .. opcode:: READ_FIRST - Broadcast the value from the first active
2909 invocation to all active lanes
2910
2911 Syntax: ``READ_FIRST dst, value``
2912
2913 Example: ``READ_FIRST TEMP[0], TEMP[1]``
2914
2915
2916 .. opcode:: READ_INVOC - Retrieve the value from the given invocation
2917 (need not be uniform)
2918
2919 Syntax: ``READ_INVOC dst, value, invocation``
2920
2921 Example: ``READ_INVOC TEMP[0].xy, TEMP[1].xy, TEMP[2].x``
2922
2923 invocation.x controls the invocation number to read from for all channels.
2924 The invocation number must be the same across all active invocations in a
2925 sub-group; otherwise, the results are undefined.
2926
2927
2928 Explanation of symbols used
2929 ------------------------------
2930
2931
2932 Functions
2933 ^^^^^^^^^^^^^^
2934
2935
2936 :math:`|x|` Absolute value of `x`.
2937
2938 :math:`\lceil x \rceil` Ceiling of `x`.
2939
2940 clamp(x,y,z) Clamp x between y and z.
2941 (x < y) ? y : (x > z) ? z : x
2942
2943 :math:`\lfloor x\rfloor` Floor of `x`.
2944
2945 :math:`\log_2{x}` Logarithm of `x`, base 2.
2946
2947 max(x,y) Maximum of x and y.
2948 (x > y) ? x : y
2949
2950 min(x,y) Minimum of x and y.
2951 (x < y) ? x : y
2952
2953 partialx(x) Derivative of x relative to fragment's X.
2954
2955 partialy(x) Derivative of x relative to fragment's Y.
2956
2957 pop() Pop from stack.
2958
2959 :math:`x^y` `x` to the power `y`.
2960
2961 push(x) Push x on stack.
2962
2963 round(x) Round x.
2964
2965 trunc(x) Truncate x, i.e. drop the fraction bits.
2966
2967
2968 Keywords
2969 ^^^^^^^^^^^^^
2970
2971
2972 discard Discard fragment.
2973
2974 pc Program counter.
2975
2976 target Label of target instruction.
2977
2978
2979 Other tokens
2980 ---------------
2981
2982
2983 Declaration
2984 ^^^^^^^^^^^
2985
2986
2987 Declares a register that is will be referenced as an operand in Instruction
2988 tokens.
2989
2990 File field contains register file that is being declared and is one
2991 of TGSI_FILE.
2992
2993 UsageMask field specifies which of the register components can be accessed
2994 and is one of TGSI_WRITEMASK.
2995
2996 The Local flag specifies that a given value isn't intended for
2997 subroutine parameter passing and, as a result, the implementation
2998 isn't required to give any guarantees of it being preserved across
2999 subroutine boundaries. As it's merely a compiler hint, the
3000 implementation is free to ignore it.
3001
3002 If Dimension flag is set to 1, a Declaration Dimension token follows.
3003
3004 If Semantic flag is set to 1, a Declaration Semantic token follows.
3005
3006 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
3007
3008 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
3009
3010 If Array flag is set to 1, a Declaration Array token follows.
3011
3012 Array Declaration
3013 ^^^^^^^^^^^^^^^^^^^^^^^^
3014
3015 Declarations can optional have an ArrayID attribute which can be referred by
3016 indirect addressing operands. An ArrayID of zero is reserved and treated as
3017 if no ArrayID is specified.
3018
3019 If an indirect addressing operand refers to a specific declaration by using
3020 an ArrayID only the registers in this declaration are guaranteed to be
3021 accessed, accessing any register outside this declaration results in undefined
3022 behavior. Note that for compatibility the effective index is zero-based and
3023 not relative to the specified declaration
3024
3025 If no ArrayID is specified with an indirect addressing operand the whole
3026 register file might be accessed by this operand. This is strongly discouraged
3027 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
3028 This is only legal for TEMP and CONST register files.
3029
3030 Declaration Semantic
3031 ^^^^^^^^^^^^^^^^^^^^^^^^
3032
3033 Vertex and fragment shader input and output registers may be labeled
3034 with semantic information consisting of a name and index.
3035
3036 Follows Declaration token if Semantic bit is set.
3037
3038 Since its purpose is to link a shader with other stages of the pipeline,
3039 it is valid to follow only those Declaration tokens that declare a register
3040 either in INPUT or OUTPUT file.
3041
3042 SemanticName field contains the semantic name of the register being declared.
3043 There is no default value.
3044
3045 SemanticIndex is an optional subscript that can be used to distinguish
3046 different register declarations with the same semantic name. The default value
3047 is 0.
3048
3049 The meanings of the individual semantic names are explained in the following
3050 sections.
3051
3052 TGSI_SEMANTIC_POSITION
3053 """"""""""""""""""""""
3054
3055 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
3056 output register which contains the homogeneous vertex position in the clip
3057 space coordinate system. After clipping, the X, Y and Z components of the
3058 vertex will be divided by the W value to get normalized device coordinates.
3059
3060 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
3061 fragment shader input (or system value, depending on which one is
3062 supported by the driver) contains the fragment's window position. The X
3063 component starts at zero and always increases from left to right.
3064 The Y component starts at zero and always increases but Y=0 may either
3065 indicate the top of the window or the bottom depending on the fragment
3066 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
3067 The Z coordinate ranges from 0 to 1 to represent depth from the front
3068 to the back of the Z buffer. The W component contains the interpolated
3069 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
3070 but unlike d3d10 which interpolates the same 1/w but then gives back
3071 the reciprocal of the interpolated value).
3072
3073 Fragment shaders may also declare an output register with
3074 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
3075 the fragment shader to change the fragment's Z position.
3076
3077
3078
3079 TGSI_SEMANTIC_COLOR
3080 """""""""""""""""""
3081
3082 For vertex shader outputs or fragment shader inputs/outputs, this
3083 label indicates that the register contains an R,G,B,A color.
3084
3085 Several shader inputs/outputs may contain colors so the semantic index
3086 is used to distinguish them. For example, color[0] may be the diffuse
3087 color while color[1] may be the specular color.
3088
3089 This label is needed so that the flat/smooth shading can be applied
3090 to the right interpolants during rasterization.
3091
3092
3093
3094 TGSI_SEMANTIC_BCOLOR
3095 """"""""""""""""""""
3096
3097 Back-facing colors are only used for back-facing polygons, and are only valid
3098 in vertex shader outputs. After rasterization, all polygons are front-facing
3099 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
3100 so all BCOLORs effectively become regular COLORs in the fragment shader.
3101
3102
3103 TGSI_SEMANTIC_FOG
3104 """""""""""""""""
3105
3106 Vertex shader inputs and outputs and fragment shader inputs may be
3107 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
3108 a fog coordinate. Typically, the fragment shader will use the fog coordinate
3109 to compute a fog blend factor which is used to blend the normal fragment color
3110 with a constant fog color. But fog coord really is just an ordinary vec4
3111 register like regular semantics.
3112
3113
3114 TGSI_SEMANTIC_PSIZE
3115 """""""""""""""""""
3116
3117 Vertex shader input and output registers may be labeled with
3118 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3119 in the form (S, 0, 0, 1). The point size controls the width or diameter
3120 of points for rasterization. This label cannot be used in fragment
3121 shaders.
3122
3123 When using this semantic, be sure to set the appropriate state in the
3124 :ref:`rasterizer` first.
3125
3126
3127 TGSI_SEMANTIC_TEXCOORD
3128 """"""""""""""""""""""
3129
3130 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3131
3132 Vertex shader outputs and fragment shader inputs may be labeled with
3133 this semantic to make them replaceable by sprite coordinates via the
3134 sprite_coord_enable state in the :ref:`rasterizer`.
3135 The semantic index permitted with this semantic is limited to <= 7.
3136
3137 If the driver does not support TEXCOORD, sprite coordinate replacement
3138 applies to inputs with the GENERIC semantic instead.
3139
3140 The intended use case for this semantic is gl_TexCoord.
3141
3142
3143 TGSI_SEMANTIC_PCOORD
3144 """"""""""""""""""""
3145
3146 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3147
3148 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3149 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3150 the current primitive is a point and point sprites are enabled. Otherwise,
3151 the contents of the register are undefined.
3152
3153 The intended use case for this semantic is gl_PointCoord.
3154
3155
3156 TGSI_SEMANTIC_GENERIC
3157 """""""""""""""""""""
3158
3159 All vertex/fragment shader inputs/outputs not labeled with any other
3160 semantic label can be considered to be generic attributes. Typical
3161 uses of generic inputs/outputs are texcoords and user-defined values.
3162
3163
3164 TGSI_SEMANTIC_NORMAL
3165 """"""""""""""""""""
3166
3167 Indicates that a vertex shader input is a normal vector. This is
3168 typically only used for legacy graphics APIs.
3169
3170
3171 TGSI_SEMANTIC_FACE
3172 """"""""""""""""""
3173
3174 This label applies to fragment shader inputs (or system values,
3175 depending on which one is supported by the driver) and indicates that
3176 the register contains front/back-face information.
3177
3178 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3179 where F will be positive when the fragment belongs to a front-facing polygon,
3180 and negative when the fragment belongs to a back-facing polygon.
3181
3182 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3183 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3184 0 when the fragment belongs to a back-facing polygon.
3185
3186
3187 TGSI_SEMANTIC_EDGEFLAG
3188 """"""""""""""""""""""
3189
3190 For vertex shaders, this sematic label indicates that an input or
3191 output is a boolean edge flag. The register layout is [F, x, x, x]
3192 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3193 simply copies the edge flag input to the edgeflag output.
3194
3195 Edge flags are used to control which lines or points are actually
3196 drawn when the polygon mode converts triangles/quads/polygons into
3197 points or lines.
3198
3199
3200 TGSI_SEMANTIC_STENCIL
3201 """""""""""""""""""""
3202
3203 For fragment shaders, this semantic label indicates that an output
3204 is a writable stencil reference value. Only the Y component is writable.
3205 This allows the fragment shader to change the fragments stencilref value.
3206
3207
3208 TGSI_SEMANTIC_VIEWPORT_INDEX
3209 """"""""""""""""""""""""""""
3210
3211 For geometry shaders, this semantic label indicates that an output
3212 contains the index of the viewport (and scissor) to use.
3213 This is an integer value, and only the X component is used.
3214
3215 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3216 supported, then this semantic label can also be used in vertex or
3217 tessellation evaluation shaders, respectively. Only the value written in the
3218 last vertex processing stage is used.
3219
3220
3221 TGSI_SEMANTIC_LAYER
3222 """""""""""""""""""
3223
3224 For geometry shaders, this semantic label indicates that an output
3225 contains the layer value to use for the color and depth/stencil surfaces.
3226 This is an integer value, and only the X component is used.
3227 (Also known as rendertarget array index.)
3228
3229 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3230 supported, then this semantic label can also be used in vertex or
3231 tessellation evaluation shaders, respectively. Only the value written in the
3232 last vertex processing stage is used.
3233
3234
3235 TGSI_SEMANTIC_CULLDIST
3236 """"""""""""""""""""""
3237
3238 Used as distance to plane for performing application-defined culling
3239 of individual primitives against a plane. When components of vertex
3240 elements are given this label, these values are assumed to be a
3241 float32 signed distance to a plane. Primitives will be completely
3242 discarded if the plane distance for all of the vertices in the
3243 primitive are < 0. If a vertex has a cull distance of NaN, that
3244 vertex counts as "out" (as if its < 0);
3245 The limits on both clip and cull distances are bound
3246 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3247 the maximum number of components that can be used to hold the
3248 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3249 which specifies the maximum number of registers which can be
3250 annotated with those semantics.
3251
3252
3253 TGSI_SEMANTIC_CLIPDIST
3254 """"""""""""""""""""""
3255
3256 Note this covers clipping and culling distances.
3257
3258 When components of vertex elements are identified this way, these
3259 values are each assumed to be a float32 signed distance to a plane.
3260
3261 For clip distances:
3262 Primitive setup only invokes rasterization on pixels for which
3263 the interpolated plane distances are >= 0.
3264
3265 For cull distances:
3266 Primitives will be completely discarded if the plane distance
3267 for all of the vertices in the primitive are < 0.
3268 If a vertex has a cull distance of NaN, that vertex counts as "out"
3269 (as if its < 0);
3270
3271 Multiple clip/cull planes can be implemented simultaneously, by
3272 annotating multiple components of one or more vertex elements with
3273 the above specified semantic.
3274 The limits on both clip and cull distances are bound
3275 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3276 the maximum number of components that can be used to hold the
3277 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3278 which specifies the maximum number of registers which can be
3279 annotated with those semantics.
3280 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3281 are used to divide up the 2 x vec4 space between clipping and culling.
3282
3283 TGSI_SEMANTIC_SAMPLEID
3284 """"""""""""""""""""""
3285
3286 For fragment shaders, this semantic label indicates that a system value
3287 contains the current sample id (i.e. gl_SampleID).
3288 This is an integer value, and only the X component is used.
3289
3290 TGSI_SEMANTIC_SAMPLEPOS
3291 """""""""""""""""""""""
3292
3293 For fragment shaders, this semantic label indicates that a system value
3294 contains the current sample's position (i.e. gl_SamplePosition). Only the X
3295 and Y values are used.
3296
3297 TGSI_SEMANTIC_SAMPLEMASK
3298 """"""""""""""""""""""""
3299
3300 For fragment shaders, this semantic label can be applied to either a
3301 shader system value input or output.
3302
3303 For a system value, the sample mask indicates the set of samples covered by
3304 the current primitive. If MSAA is not enabled, the value is (1, 0, 0, 0).
3305
3306 For an output, the sample mask is used to disable further sample processing.
3307
3308 For both, the register type is uint[4] but only the X component is used
3309 (i.e. gl_SampleMask[0]). Each bit corresponds to one sample position (up
3310 to 32x MSAA is supported).
3311
3312 TGSI_SEMANTIC_INVOCATIONID
3313 """"""""""""""""""""""""""
3314
3315 For geometry shaders, this semantic label indicates that a system value
3316 contains the current invocation id (i.e. gl_InvocationID).
3317 This is an integer value, and only the X component is used.
3318
3319 TGSI_SEMANTIC_INSTANCEID
3320 """"""""""""""""""""""""
3321
3322 For vertex shaders, this semantic label indicates that a system value contains
3323 the current instance id (i.e. gl_InstanceID). It does not include the base
3324 instance. This is an integer value, and only the X component is used.
3325
3326 TGSI_SEMANTIC_VERTEXID
3327 """"""""""""""""""""""
3328
3329 For vertex shaders, this semantic label indicates that a system value contains
3330 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3331 base vertex. This is an integer value, and only the X component is used.
3332
3333 TGSI_SEMANTIC_VERTEXID_NOBASE
3334 """""""""""""""""""""""""""""""
3335
3336 For vertex shaders, this semantic label indicates that a system value contains
3337 the current vertex id without including the base vertex (this corresponds to
3338 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3339 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3340 is used.
3341
3342 TGSI_SEMANTIC_BASEVERTEX
3343 """"""""""""""""""""""""
3344
3345 For vertex shaders, this semantic label indicates that a system value contains
3346 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3347 this contains the first (or start) value instead.
3348 This is an integer value, and only the X component is used.
3349
3350 TGSI_SEMANTIC_PRIMID
3351 """"""""""""""""""""
3352
3353 For geometry and fragment shaders, this semantic label indicates the value
3354 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3355 and only the X component is used.
3356 FIXME: This right now can be either a ordinary input or a system value...
3357
3358
3359 TGSI_SEMANTIC_PATCH
3360 """""""""""""""""""
3361
3362 For tessellation evaluation/control shaders, this semantic label indicates a
3363 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3364 arrays.
3365
3366 TGSI_SEMANTIC_TESSCOORD
3367 """""""""""""""""""""""
3368
3369 For tessellation evaluation shaders, this semantic label indicates the
3370 coordinates of the vertex being processed. This is available in XYZ; W is
3371 undefined.
3372
3373 TGSI_SEMANTIC_TESSOUTER
3374 """""""""""""""""""""""
3375
3376 For tessellation evaluation/control shaders, this semantic label indicates the
3377 outer tessellation levels of the patch. Isoline tessellation will only have XY
3378 defined, triangle will have XYZ and quads will have XYZW defined. This
3379 corresponds to gl_TessLevelOuter.
3380
3381 TGSI_SEMANTIC_TESSINNER
3382 """""""""""""""""""""""
3383
3384 For tessellation evaluation/control shaders, this semantic label indicates the
3385 inner tessellation levels of the patch. The X value is only defined for
3386 triangle tessellation, while quads will have XY defined. This is entirely
3387 undefined for isoline tessellation.
3388
3389 TGSI_SEMANTIC_VERTICESIN
3390 """"""""""""""""""""""""
3391
3392 For tessellation evaluation/control shaders, this semantic label indicates the
3393 number of vertices provided in the input patch. Only the X value is defined.
3394
3395 TGSI_SEMANTIC_HELPER_INVOCATION
3396 """""""""""""""""""""""""""""""
3397
3398 For fragment shaders, this semantic indicates whether the current
3399 invocation is covered or not. Helper invocations are created in order
3400 to properly compute derivatives, however it may be desirable to skip
3401 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3402
3403 TGSI_SEMANTIC_BASEINSTANCE
3404 """"""""""""""""""""""""""
3405
3406 For vertex shaders, the base instance argument supplied for this
3407 draw. This is an integer value, and only the X component is used.
3408
3409 TGSI_SEMANTIC_DRAWID
3410 """"""""""""""""""""
3411
3412 For vertex shaders, the zero-based index of the current draw in a
3413 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3414 component is used.
3415
3416
3417 TGSI_SEMANTIC_WORK_DIM
3418 """"""""""""""""""""""
3419
3420 For compute shaders started via opencl this retrieves the work_dim
3421 parameter to the clEnqueueNDRangeKernel call with which the shader
3422 was started.
3423
3424
3425 TGSI_SEMANTIC_GRID_SIZE
3426 """""""""""""""""""""""
3427
3428 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3429 of a grid of thread blocks.
3430
3431
3432 TGSI_SEMANTIC_BLOCK_ID
3433 """"""""""""""""""""""
3434
3435 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3436 current block inside of the grid.
3437
3438
3439 TGSI_SEMANTIC_BLOCK_SIZE
3440 """"""""""""""""""""""""
3441
3442 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3443 of a block in threads.
3444
3445
3446 TGSI_SEMANTIC_THREAD_ID
3447 """""""""""""""""""""""
3448
3449 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3450 current thread inside of the block.
3451
3452
3453 TGSI_SEMANTIC_SUBGROUP_SIZE
3454 """""""""""""""""""""""""""
3455
3456 This semantic indicates the subgroup size for the current invocation. This is
3457 an integer of at most 64, as it indicates the width of lanemasks. It does not
3458 depend on the number of invocations that are active.
3459
3460
3461 TGSI_SEMANTIC_SUBGROUP_INVOCATION
3462 """""""""""""""""""""""""""""""""
3463
3464 The index of the current invocation within its subgroup.
3465
3466
3467 TGSI_SEMANTIC_SUBGROUP_EQ_MASK
3468 """"""""""""""""""""""""""""""
3469
3470 A bit mask of ``bit index == TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3471 ``1 << subgroup_invocation`` in arbitrary precision arithmetic.
3472
3473
3474 TGSI_SEMANTIC_SUBGROUP_GE_MASK
3475 """"""""""""""""""""""""""""""
3476
3477 A bit mask of ``bit index >= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3478 ``((1 << (subgroup_size - subgroup_invocation)) - 1) << subgroup_invocation``
3479 in arbitrary precision arithmetic.
3480
3481
3482 TGSI_SEMANTIC_SUBGROUP_GT_MASK
3483 """"""""""""""""""""""""""""""
3484
3485 A bit mask of ``bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3486 ``((1 << (subgroup_size - subgroup_invocation - 1)) - 1) << (subgroup_invocation + 1)``
3487 in arbitrary precision arithmetic.
3488
3489
3490 TGSI_SEMANTIC_SUBGROUP_LE_MASK
3491 """"""""""""""""""""""""""""""
3492
3493 A bit mask of ``bit index <= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3494 ``(1 << (subgroup_invocation + 1)) - 1`` in arbitrary precision arithmetic.
3495
3496
3497 TGSI_SEMANTIC_SUBGROUP_LT_MASK
3498 """"""""""""""""""""""""""""""
3499
3500 A bit mask of ``bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3501 ``(1 << subgroup_invocation) - 1`` in arbitrary precision arithmetic.
3502
3503
3504 Declaration Interpolate
3505 ^^^^^^^^^^^^^^^^^^^^^^^
3506
3507 This token is only valid for fragment shader INPUT declarations.
3508
3509 The Interpolate field specifes the way input is being interpolated by
3510 the rasteriser and is one of TGSI_INTERPOLATE_*.
3511
3512 The Location field specifies the location inside the pixel that the
3513 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3514 when per-sample shading is enabled, the implementation may choose to
3515 interpolate at the sample irrespective of the Location field.
3516
3517 The CylindricalWrap bitfield specifies which register components
3518 should be subject to cylindrical wrapping when interpolating by the
3519 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3520 should be interpolated according to cylindrical wrapping rules.
3521
3522
3523 Declaration Sampler View
3524 ^^^^^^^^^^^^^^^^^^^^^^^^
3525
3526 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3527
3528 DCL SVIEW[#], resource, type(s)
3529
3530 Declares a shader input sampler view and assigns it to a SVIEW[#]
3531 register.
3532
3533 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3534
3535 type must be 1 or 4 entries (if specifying on a per-component
3536 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3537
3538 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3539 which take an explicit SVIEW[#] source register), there may be optionally
3540 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3541 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3542 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3543 But note in particular that some drivers need to know the sampler type
3544 (float/int/unsigned) in order to generate the correct code, so cases
3545 where integer textures are sampled, SVIEW[#] declarations should be
3546 used.
3547
3548 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3549 in the same shader.
3550
3551 Declaration Resource
3552 ^^^^^^^^^^^^^^^^^^^^
3553
3554 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3555
3556 DCL RES[#], resource [, WR] [, RAW]
3557
3558 Declares a shader input resource and assigns it to a RES[#]
3559 register.
3560
3561 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3562 2DArray.
3563
3564 If the RAW keyword is not specified, the texture data will be
3565 subject to conversion, swizzling and scaling as required to yield
3566 the specified data type from the physical data format of the bound
3567 resource.
3568
3569 If the RAW keyword is specified, no channel conversion will be
3570 performed: the values read for each of the channels (X,Y,Z,W) will
3571 correspond to consecutive words in the same order and format
3572 they're found in memory. No element-to-address conversion will be
3573 performed either: the value of the provided X coordinate will be
3574 interpreted in byte units instead of texel units. The result of
3575 accessing a misaligned address is undefined.
3576
3577 Usage of the STORE opcode is only allowed if the WR (writable) flag
3578 is set.
3579
3580
3581 Properties
3582 ^^^^^^^^^^^^^^^^^^^^^^^^
3583
3584 Properties are general directives that apply to the whole TGSI program.
3585
3586 FS_COORD_ORIGIN
3587 """""""""""""""
3588
3589 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3590 The default value is UPPER_LEFT.
3591
3592 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3593 increase downward and rightward.
3594 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3595 increase upward and rightward.
3596
3597 OpenGL defaults to LOWER_LEFT, and is configurable with the
3598 GL_ARB_fragment_coord_conventions extension.
3599
3600 DirectX 9/10 use UPPER_LEFT.
3601
3602 FS_COORD_PIXEL_CENTER
3603 """""""""""""""""""""
3604
3605 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3606 The default value is HALF_INTEGER.
3607
3608 If HALF_INTEGER, the fractionary part of the position will be 0.5
3609 If INTEGER, the fractionary part of the position will be 0.0
3610
3611 Note that this does not affect the set of fragments generated by
3612 rasterization, which is instead controlled by half_pixel_center in the
3613 rasterizer.
3614
3615 OpenGL defaults to HALF_INTEGER, and is configurable with the
3616 GL_ARB_fragment_coord_conventions extension.
3617
3618 DirectX 9 uses INTEGER.
3619 DirectX 10 uses HALF_INTEGER.
3620
3621 FS_COLOR0_WRITES_ALL_CBUFS
3622 """"""""""""""""""""""""""
3623 Specifies that writes to the fragment shader color 0 are replicated to all
3624 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3625 fragData is directed to a single color buffer, but fragColor is broadcast.
3626
3627 VS_PROHIBIT_UCPS
3628 """"""""""""""""""""""""""
3629 If this property is set on the program bound to the shader stage before the
3630 fragment shader, user clip planes should have no effect (be disabled) even if
3631 that shader does not write to any clip distance outputs and the rasterizer's
3632 clip_plane_enable is non-zero.
3633 This property is only supported by drivers that also support shader clip
3634 distance outputs.
3635 This is useful for APIs that don't have UCPs and where clip distances written
3636 by a shader cannot be disabled.
3637
3638 GS_INVOCATIONS
3639 """"""""""""""
3640
3641 Specifies the number of times a geometry shader should be executed for each
3642 input primitive. Each invocation will have a different
3643 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3644 be 1.
3645
3646 VS_WINDOW_SPACE_POSITION
3647 """"""""""""""""""""""""""
3648 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3649 is assumed to contain window space coordinates.
3650 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3651 directly taken from the 4-th component of the shader output.
3652 Naturally, clipping is not performed on window coordinates either.
3653 The effect of this property is undefined if a geometry or tessellation shader
3654 are in use.
3655
3656 TCS_VERTICES_OUT
3657 """"""""""""""""
3658
3659 The number of vertices written by the tessellation control shader. This
3660 effectively defines the patch input size of the tessellation evaluation shader
3661 as well.
3662
3663 TES_PRIM_MODE
3664 """""""""""""
3665
3666 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3667 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3668 separate isolines settings, the regular lines is assumed to mean isolines.)
3669
3670 TES_SPACING
3671 """""""""""
3672
3673 This sets the spacing mode of the tessellation generator, one of
3674 ``PIPE_TESS_SPACING_*``.
3675
3676 TES_VERTEX_ORDER_CW
3677 """""""""""""""""""
3678
3679 This sets the vertex order to be clockwise if the value is 1, or
3680 counter-clockwise if set to 0.
3681
3682 TES_POINT_MODE
3683 """"""""""""""
3684
3685 If set to a non-zero value, this turns on point mode for the tessellator,
3686 which means that points will be generated instead of primitives.
3687
3688 NUM_CLIPDIST_ENABLED
3689 """"""""""""""""""""
3690
3691 How many clip distance scalar outputs are enabled.
3692
3693 NUM_CULLDIST_ENABLED
3694 """"""""""""""""""""
3695
3696 How many cull distance scalar outputs are enabled.
3697
3698 FS_EARLY_DEPTH_STENCIL
3699 """"""""""""""""""""""
3700
3701 Whether depth test, stencil test, and occlusion query should run before
3702 the fragment shader (regardless of fragment shader side effects). Corresponds
3703 to GLSL early_fragment_tests.
3704
3705 NEXT_SHADER
3706 """""""""""
3707
3708 Which shader stage will MOST LIKELY follow after this shader when the shader
3709 is bound. This is only a hint to the driver and doesn't have to be precise.
3710 Only set for VS and TES.
3711
3712 CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3713 """""""""""""""""""""""""""""""""""""
3714
3715 Threads per block in each dimension, if known at compile time. If the block size
3716 is known all three should be at least 1. If it is unknown they should all be set
3717 to 0 or not set.
3718
3719 MUL_ZERO_WINS
3720 """""""""""""
3721
3722 The MUL TGSI operation (FP32 multiplication) will return 0 if either
3723 of the operands are equal to 0. That means that 0 * Inf = 0. This
3724 should be set the same way for an entire pipeline. Note that this
3725 applies not only to the literal MUL TGSI opcode, but all FP32
3726 multiplications implied by other operations, such as MAD, FMA, DP2,
3727 DP3, DP4, DPH, DST, LOG, LRP, XPD, and possibly others. If there is a
3728 mismatch between shaders, then it is unspecified whether this behavior
3729 will be enabled.
3730
3731 FS_POST_DEPTH_COVERAGE
3732 """"""""""""""""""""""
3733
3734 When enabled, the input for TGSI_SEMANTIC_SAMPLEMASK will exclude samples
3735 that have failed the depth/stencil tests. This is only valid when
3736 FS_EARLY_DEPTH_STENCIL is also specified.
3737
3738
3739 Texture Sampling and Texture Formats
3740 ------------------------------------
3741
3742 This table shows how texture image components are returned as (x,y,z,w) tuples
3743 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3744 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3745 well.
3746
3747 +--------------------+--------------+--------------------+--------------+
3748 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3749 +====================+==============+====================+==============+
3750 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3751 +--------------------+--------------+--------------------+--------------+
3752 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3753 +--------------------+--------------+--------------------+--------------+
3754 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3755 +--------------------+--------------+--------------------+--------------+
3756 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3757 +--------------------+--------------+--------------------+--------------+
3758 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3759 +--------------------+--------------+--------------------+--------------+
3760 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3761 +--------------------+--------------+--------------------+--------------+
3762 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3763 +--------------------+--------------+--------------------+--------------+
3764 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3765 +--------------------+--------------+--------------------+--------------+
3766 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3767 | | | [#envmap-bumpmap]_ | |
3768 +--------------------+--------------+--------------------+--------------+
3769 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3770 | | | [#depth-tex-mode]_ | |
3771 +--------------------+--------------+--------------------+--------------+
3772 | S | (s, s, s, s) | unknown | unknown |
3773 +--------------------+--------------+--------------------+--------------+
3774
3775 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3776 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3777 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.