gallium: Drop the unused SFL/STR opcodes.
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: CND - Condition
276
277 .. math::
278
279 dst.x = (src2.x > 0.5) ? src0.x : src1.x
280
281 dst.y = (src2.y > 0.5) ? src0.y : src1.y
282
283 dst.z = (src2.z > 0.5) ? src0.z : src1.z
284
285 dst.w = (src2.w > 0.5) ? src0.w : src1.w
286
287
288 .. opcode:: DP2A - 2-component Dot Product And Add
289
290 .. math::
291
292 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
293
294 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300
301 .. opcode:: FRC - Fraction
302
303 .. math::
304
305 dst.x = src.x - \lfloor src.x\rfloor
306
307 dst.y = src.y - \lfloor src.y\rfloor
308
309 dst.z = src.z - \lfloor src.z\rfloor
310
311 dst.w = src.w - \lfloor src.w\rfloor
312
313
314 .. opcode:: CLAMP - Clamp
315
316 .. math::
317
318 dst.x = clamp(src0.x, src1.x, src2.x)
319
320 dst.y = clamp(src0.y, src1.y, src2.y)
321
322 dst.z = clamp(src0.z, src1.z, src2.z)
323
324 dst.w = clamp(src0.w, src1.w, src2.w)
325
326
327 .. opcode:: FLR - Floor
328
329 This is identical to :opcode:`ARL`.
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: DPH - Homogeneous Dot Product
408
409 This instruction replicates its result.
410
411 .. math::
412
413 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
414
415
416 .. opcode:: COS - Cosine
417
418 This instruction replicates its result.
419
420 .. math::
421
422 dst = \cos{src.x}
423
424
425 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
426
427 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
428 advertised. When it is, the fine version guarantees one derivative per row
429 while DDX is allowed to be the same for the entire 2x2 quad.
430
431 .. math::
432
433 dst.x = partialx(src.x)
434
435 dst.y = partialx(src.y)
436
437 dst.z = partialx(src.z)
438
439 dst.w = partialx(src.w)
440
441
442 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
443
444 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
445 advertised. When it is, the fine version guarantees one derivative per column
446 while DDY is allowed to be the same for the entire 2x2 quad.
447
448 .. math::
449
450 dst.x = partialy(src.x)
451
452 dst.y = partialy(src.y)
453
454 dst.z = partialy(src.z)
455
456 dst.w = partialy(src.w)
457
458
459 .. opcode:: PK2H - Pack Two 16-bit Floats
460
461 TBD
462
463
464 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
465
466 TBD
467
468
469 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
470
471 TBD
472
473
474 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
475
476 TBD
477
478
479 .. opcode:: SEQ - Set On Equal
480
481 .. math::
482
483 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
484
485 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
486
487 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
488
489 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
490
491
492 .. opcode:: SGT - Set On Greater Than
493
494 .. math::
495
496 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
497
498 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
499
500 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
501
502 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
503
504
505 .. opcode:: SIN - Sine
506
507 This instruction replicates its result.
508
509 .. math::
510
511 dst = \sin{src.x}
512
513
514 .. opcode:: SLE - Set On Less Equal Than
515
516 .. math::
517
518 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
519
520 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
521
522 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
523
524 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
525
526
527 .. opcode:: SNE - Set On Not Equal
528
529 .. math::
530
531 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
532
533 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
534
535 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
536
537 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
538
539
540 .. opcode:: STR - Set On True
541
542 This instruction replicates its result.
543
544 .. math::
545
546 dst = 1.0F
547
548
549 .. opcode:: TEX - Texture Lookup
550
551 for array textures src0.y contains the slice for 1D,
552 and src0.z contain the slice for 2D.
553
554 for shadow textures with no arrays (and not cube map),
555 src0.z contains the reference value.
556
557 for shadow textures with arrays, src0.z contains
558 the reference value for 1D arrays, and src0.w contains
559 the reference value for 2D arrays and cube maps.
560
561 for cube map array shadow textures, the reference value
562 cannot be passed in src0.w, and TEX2 must be used instead.
563
564 .. math::
565
566 coord = src0
567
568 shadow_ref = src0.z or src0.w (optional)
569
570 unit = src1
571
572 dst = texture\_sample(unit, coord, shadow_ref)
573
574
575 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
576
577 this is the same as TEX, but uses another reg to encode the
578 reference value.
579
580 .. math::
581
582 coord = src0
583
584 shadow_ref = src1.x
585
586 unit = src2
587
588 dst = texture\_sample(unit, coord, shadow_ref)
589
590
591
592
593 .. opcode:: TXD - Texture Lookup with Derivatives
594
595 .. math::
596
597 coord = src0
598
599 ddx = src1
600
601 ddy = src2
602
603 unit = src3
604
605 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
606
607
608 .. opcode:: TXP - Projective Texture Lookup
609
610 .. math::
611
612 coord.x = src0.x / src0.w
613
614 coord.y = src0.y / src0.w
615
616 coord.z = src0.z / src0.w
617
618 coord.w = src0.w
619
620 unit = src1
621
622 dst = texture\_sample(unit, coord)
623
624
625 .. opcode:: UP2H - Unpack Two 16-Bit Floats
626
627 TBD
628
629 .. note::
630
631 Considered for removal.
632
633 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
634
635 TBD
636
637 .. note::
638
639 Considered for removal.
640
641 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
642
643 TBD
644
645 .. note::
646
647 Considered for removal.
648
649 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
650
651 TBD
652
653 .. note::
654
655 Considered for removal.
656
657
658 .. opcode:: ARR - Address Register Load With Round
659
660 .. math::
661
662 dst.x = round(src.x)
663
664 dst.y = round(src.y)
665
666 dst.z = round(src.z)
667
668 dst.w = round(src.w)
669
670
671 .. opcode:: SSG - Set Sign
672
673 .. math::
674
675 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
676
677 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
678
679 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
680
681 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
682
683
684 .. opcode:: CMP - Compare
685
686 .. math::
687
688 dst.x = (src0.x < 0) ? src1.x : src2.x
689
690 dst.y = (src0.y < 0) ? src1.y : src2.y
691
692 dst.z = (src0.z < 0) ? src1.z : src2.z
693
694 dst.w = (src0.w < 0) ? src1.w : src2.w
695
696
697 .. opcode:: KILL_IF - Conditional Discard
698
699 Conditional discard. Allowed in fragment shaders only.
700
701 .. math::
702
703 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
704 discard
705 endif
706
707
708 .. opcode:: KILL - Discard
709
710 Unconditional discard. Allowed in fragment shaders only.
711
712
713 .. opcode:: SCS - Sine Cosine
714
715 .. math::
716
717 dst.x = \cos{src.x}
718
719 dst.y = \sin{src.x}
720
721 dst.z = 0
722
723 dst.w = 1
724
725
726 .. opcode:: TXB - Texture Lookup With Bias
727
728 for cube map array textures and shadow cube maps, the bias value
729 cannot be passed in src0.w, and TXB2 must be used instead.
730
731 if the target is a shadow texture, the reference value is always
732 in src.z (this prevents shadow 3d and shadow 2d arrays from
733 using this instruction, but this is not needed).
734
735 .. math::
736
737 coord.x = src0.x
738
739 coord.y = src0.y
740
741 coord.z = src0.z
742
743 coord.w = none
744
745 bias = src0.w
746
747 unit = src1
748
749 dst = texture\_sample(unit, coord, bias)
750
751
752 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
753
754 this is the same as TXB, but uses another reg to encode the
755 lod bias value for cube map arrays and shadow cube maps.
756 Presumably shadow 2d arrays and shadow 3d targets could use
757 this encoding too, but this is not legal.
758
759 shadow cube map arrays are neither possible nor required.
760
761 .. math::
762
763 coord = src0
764
765 bias = src1.x
766
767 unit = src2
768
769 dst = texture\_sample(unit, coord, bias)
770
771
772 .. opcode:: DIV - Divide
773
774 .. math::
775
776 dst.x = \frac{src0.x}{src1.x}
777
778 dst.y = \frac{src0.y}{src1.y}
779
780 dst.z = \frac{src0.z}{src1.z}
781
782 dst.w = \frac{src0.w}{src1.w}
783
784
785 .. opcode:: DP2 - 2-component Dot Product
786
787 This instruction replicates its result.
788
789 .. math::
790
791 dst = src0.x \times src1.x + src0.y \times src1.y
792
793
794 .. opcode:: TXL - Texture Lookup With explicit LOD
795
796 for cube map array textures, the explicit lod value
797 cannot be passed in src0.w, and TXL2 must be used instead.
798
799 if the target is a shadow texture, the reference value is always
800 in src.z (this prevents shadow 3d / 2d array / cube targets from
801 using this instruction, but this is not needed).
802
803 .. math::
804
805 coord.x = src0.x
806
807 coord.y = src0.y
808
809 coord.z = src0.z
810
811 coord.w = none
812
813 lod = src0.w
814
815 unit = src1
816
817 dst = texture\_sample(unit, coord, lod)
818
819
820 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
821
822 this is the same as TXL, but uses another reg to encode the
823 explicit lod value.
824 Presumably shadow 3d / 2d array / cube targets could use
825 this encoding too, but this is not legal.
826
827 shadow cube map arrays are neither possible nor required.
828
829 .. math::
830
831 coord = src0
832
833 lod = src1.x
834
835 unit = src2
836
837 dst = texture\_sample(unit, coord, lod)
838
839
840 .. opcode:: PUSHA - Push Address Register On Stack
841
842 push(src.x)
843 push(src.y)
844 push(src.z)
845 push(src.w)
846
847 .. note::
848
849 Considered for cleanup.
850
851 .. note::
852
853 Considered for removal.
854
855 .. opcode:: POPA - Pop Address Register From Stack
856
857 dst.w = pop()
858 dst.z = pop()
859 dst.y = pop()
860 dst.x = pop()
861
862 .. note::
863
864 Considered for cleanup.
865
866 .. note::
867
868 Considered for removal.
869
870
871 .. opcode:: BRA - Branch
872
873 pc = target
874
875 .. note::
876
877 Considered for removal.
878
879
880 .. opcode:: CALLNZ - Subroutine Call If Not Zero
881
882 TBD
883
884 .. note::
885
886 Considered for cleanup.
887
888 .. note::
889
890 Considered for removal.
891
892
893 Compute ISA
894 ^^^^^^^^^^^^^^^^^^^^^^^^
895
896 These opcodes are primarily provided for special-use computational shaders.
897 Support for these opcodes indicated by a special pipe capability bit (TBD).
898
899 XXX doesn't look like most of the opcodes really belong here.
900
901 .. opcode:: CEIL - Ceiling
902
903 .. math::
904
905 dst.x = \lceil src.x\rceil
906
907 dst.y = \lceil src.y\rceil
908
909 dst.z = \lceil src.z\rceil
910
911 dst.w = \lceil src.w\rceil
912
913
914 .. opcode:: TRUNC - Truncate
915
916 .. math::
917
918 dst.x = trunc(src.x)
919
920 dst.y = trunc(src.y)
921
922 dst.z = trunc(src.z)
923
924 dst.w = trunc(src.w)
925
926
927 .. opcode:: MOD - Modulus
928
929 .. math::
930
931 dst.x = src0.x \bmod src1.x
932
933 dst.y = src0.y \bmod src1.y
934
935 dst.z = src0.z \bmod src1.z
936
937 dst.w = src0.w \bmod src1.w
938
939
940 .. opcode:: UARL - Integer Address Register Load
941
942 Moves the contents of the source register, assumed to be an integer, into the
943 destination register, which is assumed to be an address (ADDR) register.
944
945
946 .. opcode:: SAD - Sum Of Absolute Differences
947
948 .. math::
949
950 dst.x = |src0.x - src1.x| + src2.x
951
952 dst.y = |src0.y - src1.y| + src2.y
953
954 dst.z = |src0.z - src1.z| + src2.z
955
956 dst.w = |src0.w - src1.w| + src2.w
957
958
959 .. opcode:: TXF - Texel Fetch
960
961 As per NV_gpu_shader4, extract a single texel from a specified texture
962 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
963 four-component signed integer vector used to identify the single texel
964 accessed. 3 components + level. Just like texture instructions, an optional
965 offset vector is provided, which is subject to various driver restrictions
966 (regarding range, source of offsets).
967 TXF(uint_vec coord, int_vec offset).
968
969
970 .. opcode:: TXQ - Texture Size Query
971
972 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
973 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
974 depth), 1D array (width, layers), 2D array (width, height, layers).
975 Also return the number of accessible levels (last_level - first_level + 1)
976 in W.
977
978 For components which don't return a resource dimension, their value
979 is undefined.
980
981
982 .. math::
983
984 lod = src0.x
985
986 dst.x = texture\_width(unit, lod)
987
988 dst.y = texture\_height(unit, lod)
989
990 dst.z = texture\_depth(unit, lod)
991
992 dst.w = texture\_levels(unit)
993
994 .. opcode:: TG4 - Texture Gather
995
996 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
997 filtering operation and packs them into a single register. Only works with
998 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
999 addressing modes of the sampler and the top level of any mip pyramid are
1000 used. Set W to zero. It behaves like the TEX instruction, but a filtered
1001 sample is not generated. The four samples that contribute to filtering are
1002 placed into xyzw in clockwise order, starting with the (u,v) texture
1003 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
1004 where the magnitude of the deltas are half a texel.
1005
1006 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1007 depth compares, single component selection, and a non-constant offset. It
1008 doesn't allow support for the GL independent offset to get i0,j0. This would
1009 require another CAP is hw can do it natively. For now we lower that before
1010 TGSI.
1011
1012 .. math::
1013
1014 coord = src0
1015
1016 component = src1
1017
1018 dst = texture\_gather4 (unit, coord, component)
1019
1020 (with SM5 - cube array shadow)
1021
1022 .. math::
1023
1024 coord = src0
1025
1026 compare = src1
1027
1028 dst = texture\_gather (uint, coord, compare)
1029
1030 .. opcode:: LODQ - level of detail query
1031
1032 Compute the LOD information that the texture pipe would use to access the
1033 texture. The Y component contains the computed LOD lambda_prime. The X
1034 component contains the LOD that will be accessed, based on min/max lod's
1035 and mipmap filters.
1036
1037 .. math::
1038
1039 coord = src0
1040
1041 dst.xy = lodq(uint, coord);
1042
1043 Integer ISA
1044 ^^^^^^^^^^^^^^^^^^^^^^^^
1045 These opcodes are used for integer operations.
1046 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1047
1048
1049 .. opcode:: I2F - Signed Integer To Float
1050
1051 Rounding is unspecified (round to nearest even suggested).
1052
1053 .. math::
1054
1055 dst.x = (float) src.x
1056
1057 dst.y = (float) src.y
1058
1059 dst.z = (float) src.z
1060
1061 dst.w = (float) src.w
1062
1063
1064 .. opcode:: U2F - Unsigned Integer To Float
1065
1066 Rounding is unspecified (round to nearest even suggested).
1067
1068 .. math::
1069
1070 dst.x = (float) src.x
1071
1072 dst.y = (float) src.y
1073
1074 dst.z = (float) src.z
1075
1076 dst.w = (float) src.w
1077
1078
1079 .. opcode:: F2I - Float to Signed Integer
1080
1081 Rounding is towards zero (truncate).
1082 Values outside signed range (including NaNs) produce undefined results.
1083
1084 .. math::
1085
1086 dst.x = (int) src.x
1087
1088 dst.y = (int) src.y
1089
1090 dst.z = (int) src.z
1091
1092 dst.w = (int) src.w
1093
1094
1095 .. opcode:: F2U - Float to Unsigned Integer
1096
1097 Rounding is towards zero (truncate).
1098 Values outside unsigned range (including NaNs) produce undefined results.
1099
1100 .. math::
1101
1102 dst.x = (unsigned) src.x
1103
1104 dst.y = (unsigned) src.y
1105
1106 dst.z = (unsigned) src.z
1107
1108 dst.w = (unsigned) src.w
1109
1110
1111 .. opcode:: UADD - Integer Add
1112
1113 This instruction works the same for signed and unsigned integers.
1114 The low 32bit of the result is returned.
1115
1116 .. math::
1117
1118 dst.x = src0.x + src1.x
1119
1120 dst.y = src0.y + src1.y
1121
1122 dst.z = src0.z + src1.z
1123
1124 dst.w = src0.w + src1.w
1125
1126
1127 .. opcode:: UMAD - Integer Multiply And Add
1128
1129 This instruction works the same for signed and unsigned integers.
1130 The multiplication returns the low 32bit (as does the result itself).
1131
1132 .. math::
1133
1134 dst.x = src0.x \times src1.x + src2.x
1135
1136 dst.y = src0.y \times src1.y + src2.y
1137
1138 dst.z = src0.z \times src1.z + src2.z
1139
1140 dst.w = src0.w \times src1.w + src2.w
1141
1142
1143 .. opcode:: UMUL - Integer Multiply
1144
1145 This instruction works the same for signed and unsigned integers.
1146 The low 32bit of the result is returned.
1147
1148 .. math::
1149
1150 dst.x = src0.x \times src1.x
1151
1152 dst.y = src0.y \times src1.y
1153
1154 dst.z = src0.z \times src1.z
1155
1156 dst.w = src0.w \times src1.w
1157
1158
1159 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1160
1161 The high 32bits of the multiplication of 2 signed integers are returned.
1162
1163 .. math::
1164
1165 dst.x = (src0.x \times src1.x) >> 32
1166
1167 dst.y = (src0.y \times src1.y) >> 32
1168
1169 dst.z = (src0.z \times src1.z) >> 32
1170
1171 dst.w = (src0.w \times src1.w) >> 32
1172
1173
1174 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1175
1176 The high 32bits of the multiplication of 2 unsigned integers are returned.
1177
1178 .. math::
1179
1180 dst.x = (src0.x \times src1.x) >> 32
1181
1182 dst.y = (src0.y \times src1.y) >> 32
1183
1184 dst.z = (src0.z \times src1.z) >> 32
1185
1186 dst.w = (src0.w \times src1.w) >> 32
1187
1188
1189 .. opcode:: IDIV - Signed Integer Division
1190
1191 TBD: behavior for division by zero.
1192
1193 .. math::
1194
1195 dst.x = src0.x \ src1.x
1196
1197 dst.y = src0.y \ src1.y
1198
1199 dst.z = src0.z \ src1.z
1200
1201 dst.w = src0.w \ src1.w
1202
1203
1204 .. opcode:: UDIV - Unsigned Integer Division
1205
1206 For division by zero, 0xffffffff is returned.
1207
1208 .. math::
1209
1210 dst.x = src0.x \ src1.x
1211
1212 dst.y = src0.y \ src1.y
1213
1214 dst.z = src0.z \ src1.z
1215
1216 dst.w = src0.w \ src1.w
1217
1218
1219 .. opcode:: UMOD - Unsigned Integer Remainder
1220
1221 If second arg is zero, 0xffffffff is returned.
1222
1223 .. math::
1224
1225 dst.x = src0.x \ src1.x
1226
1227 dst.y = src0.y \ src1.y
1228
1229 dst.z = src0.z \ src1.z
1230
1231 dst.w = src0.w \ src1.w
1232
1233
1234 .. opcode:: NOT - Bitwise Not
1235
1236 .. math::
1237
1238 dst.x = \sim src.x
1239
1240 dst.y = \sim src.y
1241
1242 dst.z = \sim src.z
1243
1244 dst.w = \sim src.w
1245
1246
1247 .. opcode:: AND - Bitwise And
1248
1249 .. math::
1250
1251 dst.x = src0.x \& src1.x
1252
1253 dst.y = src0.y \& src1.y
1254
1255 dst.z = src0.z \& src1.z
1256
1257 dst.w = src0.w \& src1.w
1258
1259
1260 .. opcode:: OR - Bitwise Or
1261
1262 .. math::
1263
1264 dst.x = src0.x | src1.x
1265
1266 dst.y = src0.y | src1.y
1267
1268 dst.z = src0.z | src1.z
1269
1270 dst.w = src0.w | src1.w
1271
1272
1273 .. opcode:: XOR - Bitwise Xor
1274
1275 .. math::
1276
1277 dst.x = src0.x \oplus src1.x
1278
1279 dst.y = src0.y \oplus src1.y
1280
1281 dst.z = src0.z \oplus src1.z
1282
1283 dst.w = src0.w \oplus src1.w
1284
1285
1286 .. opcode:: IMAX - Maximum of Signed Integers
1287
1288 .. math::
1289
1290 dst.x = max(src0.x, src1.x)
1291
1292 dst.y = max(src0.y, src1.y)
1293
1294 dst.z = max(src0.z, src1.z)
1295
1296 dst.w = max(src0.w, src1.w)
1297
1298
1299 .. opcode:: UMAX - Maximum of Unsigned Integers
1300
1301 .. math::
1302
1303 dst.x = max(src0.x, src1.x)
1304
1305 dst.y = max(src0.y, src1.y)
1306
1307 dst.z = max(src0.z, src1.z)
1308
1309 dst.w = max(src0.w, src1.w)
1310
1311
1312 .. opcode:: IMIN - Minimum of Signed Integers
1313
1314 .. math::
1315
1316 dst.x = min(src0.x, src1.x)
1317
1318 dst.y = min(src0.y, src1.y)
1319
1320 dst.z = min(src0.z, src1.z)
1321
1322 dst.w = min(src0.w, src1.w)
1323
1324
1325 .. opcode:: UMIN - Minimum of Unsigned Integers
1326
1327 .. math::
1328
1329 dst.x = min(src0.x, src1.x)
1330
1331 dst.y = min(src0.y, src1.y)
1332
1333 dst.z = min(src0.z, src1.z)
1334
1335 dst.w = min(src0.w, src1.w)
1336
1337
1338 .. opcode:: SHL - Shift Left
1339
1340 The shift count is masked with 0x1f before the shift is applied.
1341
1342 .. math::
1343
1344 dst.x = src0.x << (0x1f \& src1.x)
1345
1346 dst.y = src0.y << (0x1f \& src1.y)
1347
1348 dst.z = src0.z << (0x1f \& src1.z)
1349
1350 dst.w = src0.w << (0x1f \& src1.w)
1351
1352
1353 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1354
1355 The shift count is masked with 0x1f before the shift is applied.
1356
1357 .. math::
1358
1359 dst.x = src0.x >> (0x1f \& src1.x)
1360
1361 dst.y = src0.y >> (0x1f \& src1.y)
1362
1363 dst.z = src0.z >> (0x1f \& src1.z)
1364
1365 dst.w = src0.w >> (0x1f \& src1.w)
1366
1367
1368 .. opcode:: USHR - Logical Shift Right
1369
1370 The shift count is masked with 0x1f before the shift is applied.
1371
1372 .. math::
1373
1374 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1375
1376 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1377
1378 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1379
1380 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1381
1382
1383 .. opcode:: UCMP - Integer Conditional Move
1384
1385 .. math::
1386
1387 dst.x = src0.x ? src1.x : src2.x
1388
1389 dst.y = src0.y ? src1.y : src2.y
1390
1391 dst.z = src0.z ? src1.z : src2.z
1392
1393 dst.w = src0.w ? src1.w : src2.w
1394
1395
1396
1397 .. opcode:: ISSG - Integer Set Sign
1398
1399 .. math::
1400
1401 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1402
1403 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1404
1405 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1406
1407 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1408
1409
1410
1411 .. opcode:: FSLT - Float Set On Less Than (ordered)
1412
1413 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1414
1415 .. math::
1416
1417 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1418
1419 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1420
1421 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1422
1423 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1424
1425
1426 .. opcode:: ISLT - Signed Integer Set On Less Than
1427
1428 .. math::
1429
1430 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1431
1432 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1433
1434 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1435
1436 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1437
1438
1439 .. opcode:: USLT - Unsigned Integer Set On Less Than
1440
1441 .. math::
1442
1443 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1444
1445 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1446
1447 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1448
1449 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1450
1451
1452 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1453
1454 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1455
1456 .. math::
1457
1458 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1459
1460 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1461
1462 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1463
1464 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1465
1466
1467 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1468
1469 .. math::
1470
1471 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1472
1473 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1474
1475 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1476
1477 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1478
1479
1480 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1481
1482 .. math::
1483
1484 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1485
1486 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1487
1488 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1489
1490 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1491
1492
1493 .. opcode:: FSEQ - Float Set On Equal (ordered)
1494
1495 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1496
1497 .. math::
1498
1499 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1500
1501 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1502
1503 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1504
1505 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1506
1507
1508 .. opcode:: USEQ - Integer Set On Equal
1509
1510 .. math::
1511
1512 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1513
1514 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1515
1516 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1517
1518 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1519
1520
1521 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1522
1523 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1524
1525 .. math::
1526
1527 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1528
1529 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1530
1531 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1532
1533 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1534
1535
1536 .. opcode:: USNE - Integer Set On Not Equal
1537
1538 .. math::
1539
1540 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1541
1542 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1543
1544 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1545
1546 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1547
1548
1549 .. opcode:: INEG - Integer Negate
1550
1551 Two's complement.
1552
1553 .. math::
1554
1555 dst.x = -src.x
1556
1557 dst.y = -src.y
1558
1559 dst.z = -src.z
1560
1561 dst.w = -src.w
1562
1563
1564 .. opcode:: IABS - Integer Absolute Value
1565
1566 .. math::
1567
1568 dst.x = |src.x|
1569
1570 dst.y = |src.y|
1571
1572 dst.z = |src.z|
1573
1574 dst.w = |src.w|
1575
1576 Bitwise ISA
1577 ^^^^^^^^^^^
1578 These opcodes are used for bit-level manipulation of integers.
1579
1580 .. opcode:: IBFE - Signed Bitfield Extract
1581
1582 See SM5 instruction of the same name. Extracts a set of bits from the input,
1583 and sign-extends them if the high bit of the extracted window is set.
1584
1585 Pseudocode::
1586
1587 def ibfe(value, offset, bits):
1588 offset = offset & 0x1f
1589 bits = bits & 0x1f
1590 if bits == 0: return 0
1591 # Note: >> sign-extends
1592 if width + offset < 32:
1593 return (value << (32 - offset - bits)) >> (32 - bits)
1594 else:
1595 return value >> offset
1596
1597 .. opcode:: UBFE - Unsigned Bitfield Extract
1598
1599 See SM5 instruction of the same name. Extracts a set of bits from the input,
1600 without any sign-extension.
1601
1602 Pseudocode::
1603
1604 def ubfe(value, offset, bits):
1605 offset = offset & 0x1f
1606 bits = bits & 0x1f
1607 if bits == 0: return 0
1608 # Note: >> does not sign-extend
1609 if width + offset < 32:
1610 return (value << (32 - offset - bits)) >> (32 - bits)
1611 else:
1612 return value >> offset
1613
1614 .. opcode:: BFI - Bitfield Insert
1615
1616 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1617 the low bits of 'insert'.
1618
1619 Pseudocode::
1620
1621 def bfi(base, insert, offset, bits):
1622 offset = offset & 0x1f
1623 bits = bits & 0x1f
1624 mask = ((1 << bits) - 1) << offset
1625 return ((insert << offset) & mask) | (base & ~mask)
1626
1627 .. opcode:: BREV - Bitfield Reverse
1628
1629 See SM5 instruction BFREV. Reverses the bits of the argument.
1630
1631 .. opcode:: POPC - Population Count
1632
1633 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1634
1635 .. opcode:: LSB - Index of lowest set bit
1636
1637 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1638 bit of the argument. Returns -1 if none are set.
1639
1640 .. opcode:: IMSB - Index of highest non-sign bit
1641
1642 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1643 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1644 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1645 (i.e. for inputs 0 and -1).
1646
1647 .. opcode:: UMSB - Index of highest set bit
1648
1649 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1650 set bit of the argument. Returns -1 if none are set.
1651
1652 Geometry ISA
1653 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1654
1655 These opcodes are only supported in geometry shaders; they have no meaning
1656 in any other type of shader.
1657
1658 .. opcode:: EMIT - Emit
1659
1660 Generate a new vertex for the current primitive into the specified vertex
1661 stream using the values in the output registers.
1662
1663
1664 .. opcode:: ENDPRIM - End Primitive
1665
1666 Complete the current primitive in the specified vertex stream (consisting of
1667 the emitted vertices), and start a new one.
1668
1669
1670 GLSL ISA
1671 ^^^^^^^^^^
1672
1673 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1674 opcodes is determined by a special capability bit, ``GLSL``.
1675 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1676
1677 .. opcode:: CAL - Subroutine Call
1678
1679 push(pc)
1680 pc = target
1681
1682
1683 .. opcode:: RET - Subroutine Call Return
1684
1685 pc = pop()
1686
1687
1688 .. opcode:: CONT - Continue
1689
1690 Unconditionally moves the point of execution to the instruction after the
1691 last bgnloop. The instruction must appear within a bgnloop/endloop.
1692
1693 .. note::
1694
1695 Support for CONT is determined by a special capability bit,
1696 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1697
1698
1699 .. opcode:: BGNLOOP - Begin a Loop
1700
1701 Start a loop. Must have a matching endloop.
1702
1703
1704 .. opcode:: BGNSUB - Begin Subroutine
1705
1706 Starts definition of a subroutine. Must have a matching endsub.
1707
1708
1709 .. opcode:: ENDLOOP - End a Loop
1710
1711 End a loop started with bgnloop.
1712
1713
1714 .. opcode:: ENDSUB - End Subroutine
1715
1716 Ends definition of a subroutine.
1717
1718
1719 .. opcode:: NOP - No Operation
1720
1721 Do nothing.
1722
1723
1724 .. opcode:: BRK - Break
1725
1726 Unconditionally moves the point of execution to the instruction after the
1727 next endloop or endswitch. The instruction must appear within a loop/endloop
1728 or switch/endswitch.
1729
1730
1731 .. opcode:: BREAKC - Break Conditional
1732
1733 Conditionally moves the point of execution to the instruction after the
1734 next endloop or endswitch. The instruction must appear within a loop/endloop
1735 or switch/endswitch.
1736 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1737 as an integer register.
1738
1739 .. note::
1740
1741 Considered for removal as it's quite inconsistent wrt other opcodes
1742 (could emulate with UIF/BRK/ENDIF).
1743
1744
1745 .. opcode:: IF - Float If
1746
1747 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1748
1749 src0.x != 0.0
1750
1751 where src0.x is interpreted as a floating point register.
1752
1753
1754 .. opcode:: UIF - Bitwise If
1755
1756 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1757
1758 src0.x != 0
1759
1760 where src0.x is interpreted as an integer register.
1761
1762
1763 .. opcode:: ELSE - Else
1764
1765 Starts an else block, after an IF or UIF statement.
1766
1767
1768 .. opcode:: ENDIF - End If
1769
1770 Ends an IF or UIF block.
1771
1772
1773 .. opcode:: SWITCH - Switch
1774
1775 Starts a C-style switch expression. The switch consists of one or multiple
1776 CASE statements, and at most one DEFAULT statement. Execution of a statement
1777 ends when a BRK is hit, but just like in C falling through to other cases
1778 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1779 just as last statement, and fallthrough is allowed into/from it.
1780 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1781
1782 Example::
1783
1784 SWITCH src[0].x
1785 CASE src[0].x
1786 (some instructions here)
1787 (optional BRK here)
1788 DEFAULT
1789 (some instructions here)
1790 (optional BRK here)
1791 CASE src[0].x
1792 (some instructions here)
1793 (optional BRK here)
1794 ENDSWITCH
1795
1796
1797 .. opcode:: CASE - Switch case
1798
1799 This represents a switch case label. The src arg must be an integer immediate.
1800
1801
1802 .. opcode:: DEFAULT - Switch default
1803
1804 This represents the default case in the switch, which is taken if no other
1805 case matches.
1806
1807
1808 .. opcode:: ENDSWITCH - End of switch
1809
1810 Ends a switch expression.
1811
1812
1813 Interpolation ISA
1814 ^^^^^^^^^^^^^^^^^
1815
1816 The interpolation instructions allow an input to be interpolated in a
1817 different way than its declaration. This corresponds to the GLSL 4.00
1818 interpolateAt* functions. The first argument of each of these must come from
1819 ``TGSI_FILE_INPUT``.
1820
1821 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1822
1823 Interpolates the varying specified by src0 at the centroid
1824
1825 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1826
1827 Interpolates the varying specified by src0 at the sample id specified by
1828 src1.x (interpreted as an integer)
1829
1830 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1831
1832 Interpolates the varying specified by src0 at the offset src1.xy from the
1833 pixel center (interpreted as floats)
1834
1835
1836 .. _doubleopcodes:
1837
1838 Double ISA
1839 ^^^^^^^^^^^^^^^
1840
1841 The double-precision opcodes reinterpret four-component vectors into
1842 two-component vectors with doubled precision in each component.
1843
1844 Support for these opcodes is XXX undecided. :T
1845
1846 .. opcode:: DADD - Add
1847
1848 .. math::
1849
1850 dst.xy = src0.xy + src1.xy
1851
1852 dst.zw = src0.zw + src1.zw
1853
1854
1855 .. opcode:: DDIV - Divide
1856
1857 .. math::
1858
1859 dst.xy = src0.xy / src1.xy
1860
1861 dst.zw = src0.zw / src1.zw
1862
1863 .. opcode:: DSEQ - Set on Equal
1864
1865 .. math::
1866
1867 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1868
1869 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1870
1871 .. opcode:: DSLT - Set on Less than
1872
1873 .. math::
1874
1875 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1876
1877 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1878
1879 .. opcode:: DFRAC - Fraction
1880
1881 .. math::
1882
1883 dst.xy = src.xy - \lfloor src.xy\rfloor
1884
1885 dst.zw = src.zw - \lfloor src.zw\rfloor
1886
1887
1888 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1889
1890 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1891 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1892 :math:`dst1 \times 2^{dst0} = src` .
1893
1894 .. math::
1895
1896 dst0.xy = exp(src.xy)
1897
1898 dst1.xy = frac(src.xy)
1899
1900 dst0.zw = exp(src.zw)
1901
1902 dst1.zw = frac(src.zw)
1903
1904 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1905
1906 This opcode is the inverse of :opcode:`DFRACEXP`.
1907
1908 .. math::
1909
1910 dst.xy = src0.xy \times 2^{src1.xy}
1911
1912 dst.zw = src0.zw \times 2^{src1.zw}
1913
1914 .. opcode:: DMIN - Minimum
1915
1916 .. math::
1917
1918 dst.xy = min(src0.xy, src1.xy)
1919
1920 dst.zw = min(src0.zw, src1.zw)
1921
1922 .. opcode:: DMAX - Maximum
1923
1924 .. math::
1925
1926 dst.xy = max(src0.xy, src1.xy)
1927
1928 dst.zw = max(src0.zw, src1.zw)
1929
1930 .. opcode:: DMUL - Multiply
1931
1932 .. math::
1933
1934 dst.xy = src0.xy \times src1.xy
1935
1936 dst.zw = src0.zw \times src1.zw
1937
1938
1939 .. opcode:: DMAD - Multiply And Add
1940
1941 .. math::
1942
1943 dst.xy = src0.xy \times src1.xy + src2.xy
1944
1945 dst.zw = src0.zw \times src1.zw + src2.zw
1946
1947
1948 .. opcode:: DRCP - Reciprocal
1949
1950 .. math::
1951
1952 dst.xy = \frac{1}{src.xy}
1953
1954 dst.zw = \frac{1}{src.zw}
1955
1956 .. opcode:: DSQRT - Square Root
1957
1958 .. math::
1959
1960 dst.xy = \sqrt{src.xy}
1961
1962 dst.zw = \sqrt{src.zw}
1963
1964
1965 .. _samplingopcodes:
1966
1967 Resource Sampling Opcodes
1968 ^^^^^^^^^^^^^^^^^^^^^^^^^
1969
1970 Those opcodes follow very closely semantics of the respective Direct3D
1971 instructions. If in doubt double check Direct3D documentation.
1972 Note that the swizzle on SVIEW (src1) determines texel swizzling
1973 after lookup.
1974
1975 .. opcode:: SAMPLE
1976
1977 Using provided address, sample data from the specified texture using the
1978 filtering mode identified by the gven sampler. The source data may come from
1979 any resource type other than buffers.
1980
1981 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
1982
1983 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
1984
1985 .. opcode:: SAMPLE_I
1986
1987 Simplified alternative to the SAMPLE instruction. Using the provided
1988 integer address, SAMPLE_I fetches data from the specified sampler view
1989 without any filtering. The source data may come from any resource type
1990 other than CUBE.
1991
1992 Syntax: ``SAMPLE_I dst, address, sampler_view``
1993
1994 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
1995
1996 The 'address' is specified as unsigned integers. If the 'address' is out of
1997 range [0...(# texels - 1)] the result of the fetch is always 0 in all
1998 components. As such the instruction doesn't honor address wrap modes, in
1999 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2000 address.w always provides an unsigned integer mipmap level. If the value is
2001 out of the range then the instruction always returns 0 in all components.
2002 address.yz are ignored for buffers and 1d textures. address.z is ignored
2003 for 1d texture arrays and 2d textures.
2004
2005 For 1D texture arrays address.y provides the array index (also as unsigned
2006 integer). If the value is out of the range of available array indices
2007 [0... (array size - 1)] then the opcode always returns 0 in all components.
2008 For 2D texture arrays address.z provides the array index, otherwise it
2009 exhibits the same behavior as in the case for 1D texture arrays. The exact
2010 semantics of the source address are presented in the table below:
2011
2012 +---------------------------+----+-----+-----+---------+
2013 | resource type | X | Y | Z | W |
2014 +===========================+====+=====+=====+=========+
2015 | ``PIPE_BUFFER`` | x | | | ignored |
2016 +---------------------------+----+-----+-----+---------+
2017 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2018 +---------------------------+----+-----+-----+---------+
2019 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2020 +---------------------------+----+-----+-----+---------+
2021 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2022 +---------------------------+----+-----+-----+---------+
2023 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2024 +---------------------------+----+-----+-----+---------+
2025 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2026 +---------------------------+----+-----+-----+---------+
2027 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2028 +---------------------------+----+-----+-----+---------+
2029 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2030 +---------------------------+----+-----+-----+---------+
2031
2032 Where 'mpl' is a mipmap level and 'idx' is the array index.
2033
2034 .. opcode:: SAMPLE_I_MS
2035
2036 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2037
2038 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2039
2040 .. opcode:: SAMPLE_B
2041
2042 Just like the SAMPLE instruction with the exception that an additional bias
2043 is applied to the level of detail computed as part of the instruction
2044 execution.
2045
2046 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2047
2048 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2049
2050 .. opcode:: SAMPLE_C
2051
2052 Similar to the SAMPLE instruction but it performs a comparison filter. The
2053 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2054 additional float32 operand, reference value, which must be a register with
2055 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2056 current samplers compare_func (in pipe_sampler_state) to compare reference
2057 value against the red component value for the surce resource at each texel
2058 that the currently configured texture filter covers based on the provided
2059 coordinates.
2060
2061 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2062
2063 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2064
2065 .. opcode:: SAMPLE_C_LZ
2066
2067 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2068 for level-zero.
2069
2070 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2071
2072 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2073
2074
2075 .. opcode:: SAMPLE_D
2076
2077 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2078 the source address in the x direction and the y direction are provided by
2079 extra parameters.
2080
2081 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2082
2083 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2084
2085 .. opcode:: SAMPLE_L
2086
2087 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2088 directly as a scalar value, representing no anisotropy.
2089
2090 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2091
2092 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2093
2094 .. opcode:: GATHER4
2095
2096 Gathers the four texels to be used in a bi-linear filtering operation and
2097 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2098 and cubemaps arrays. For 2D textures, only the addressing modes of the
2099 sampler and the top level of any mip pyramid are used. Set W to zero. It
2100 behaves like the SAMPLE instruction, but a filtered sample is not
2101 generated. The four samples that contribute to filtering are placed into
2102 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2103 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2104 magnitude of the deltas are half a texel.
2105
2106
2107 .. opcode:: SVIEWINFO
2108
2109 Query the dimensions of a given sampler view. dst receives width, height,
2110 depth or array size and number of mipmap levels as int4. The dst can have a
2111 writemask which will specify what info is the caller interested in.
2112
2113 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2114
2115 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2116
2117 src_mip_level is an unsigned integer scalar. If it's out of range then
2118 returns 0 for width, height and depth/array size but the total number of
2119 mipmap is still returned correctly for the given sampler view. The returned
2120 width, height and depth values are for the mipmap level selected by the
2121 src_mip_level and are in the number of texels. For 1d texture array width
2122 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2123 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2124 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2125 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2126 resinfo allowing swizzling dst values is ignored (due to the interaction
2127 with rcpfloat modifier which requires some swizzle handling in the state
2128 tracker anyway).
2129
2130 .. opcode:: SAMPLE_POS
2131
2132 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2133 indicated where the sample is located. If the resource is not a multi-sample
2134 resource and not a render target, the result is 0.
2135
2136 .. opcode:: SAMPLE_INFO
2137
2138 dst receives number of samples in x. If the resource is not a multi-sample
2139 resource and not a render target, the result is 0.
2140
2141
2142 .. _resourceopcodes:
2143
2144 Resource Access Opcodes
2145 ^^^^^^^^^^^^^^^^^^^^^^^
2146
2147 .. opcode:: LOAD - Fetch data from a shader resource
2148
2149 Syntax: ``LOAD dst, resource, address``
2150
2151 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2152
2153 Using the provided integer address, LOAD fetches data
2154 from the specified buffer or texture without any
2155 filtering.
2156
2157 The 'address' is specified as a vector of unsigned
2158 integers. If the 'address' is out of range the result
2159 is unspecified.
2160
2161 Only the first mipmap level of a resource can be read
2162 from using this instruction.
2163
2164 For 1D or 2D texture arrays, the array index is
2165 provided as an unsigned integer in address.y or
2166 address.z, respectively. address.yz are ignored for
2167 buffers and 1D textures. address.z is ignored for 1D
2168 texture arrays and 2D textures. address.w is always
2169 ignored.
2170
2171 .. opcode:: STORE - Write data to a shader resource
2172
2173 Syntax: ``STORE resource, address, src``
2174
2175 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2176
2177 Using the provided integer address, STORE writes data
2178 to the specified buffer or texture.
2179
2180 The 'address' is specified as a vector of unsigned
2181 integers. If the 'address' is out of range the result
2182 is unspecified.
2183
2184 Only the first mipmap level of a resource can be
2185 written to using this instruction.
2186
2187 For 1D or 2D texture arrays, the array index is
2188 provided as an unsigned integer in address.y or
2189 address.z, respectively. address.yz are ignored for
2190 buffers and 1D textures. address.z is ignored for 1D
2191 texture arrays and 2D textures. address.w is always
2192 ignored.
2193
2194
2195 .. _threadsyncopcodes:
2196
2197 Inter-thread synchronization opcodes
2198 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2199
2200 These opcodes are intended for communication between threads running
2201 within the same compute grid. For now they're only valid in compute
2202 programs.
2203
2204 .. opcode:: MFENCE - Memory fence
2205
2206 Syntax: ``MFENCE resource``
2207
2208 Example: ``MFENCE RES[0]``
2209
2210 This opcode forces strong ordering between any memory access
2211 operations that affect the specified resource. This means that
2212 previous loads and stores (and only those) will be performed and
2213 visible to other threads before the program execution continues.
2214
2215
2216 .. opcode:: LFENCE - Load memory fence
2217
2218 Syntax: ``LFENCE resource``
2219
2220 Example: ``LFENCE RES[0]``
2221
2222 Similar to MFENCE, but it only affects the ordering of memory loads.
2223
2224
2225 .. opcode:: SFENCE - Store memory fence
2226
2227 Syntax: ``SFENCE resource``
2228
2229 Example: ``SFENCE RES[0]``
2230
2231 Similar to MFENCE, but it only affects the ordering of memory stores.
2232
2233
2234 .. opcode:: BARRIER - Thread group barrier
2235
2236 ``BARRIER``
2237
2238 This opcode suspends the execution of the current thread until all
2239 the remaining threads in the working group reach the same point of
2240 the program. Results are unspecified if any of the remaining
2241 threads terminates or never reaches an executed BARRIER instruction.
2242
2243
2244 .. _atomopcodes:
2245
2246 Atomic opcodes
2247 ^^^^^^^^^^^^^^
2248
2249 These opcodes provide atomic variants of some common arithmetic and
2250 logical operations. In this context atomicity means that another
2251 concurrent memory access operation that affects the same memory
2252 location is guaranteed to be performed strictly before or after the
2253 entire execution of the atomic operation.
2254
2255 For the moment they're only valid in compute programs.
2256
2257 .. opcode:: ATOMUADD - Atomic integer addition
2258
2259 Syntax: ``ATOMUADD dst, resource, offset, src``
2260
2261 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2262
2263 The following operation is performed atomically on each component:
2264
2265 .. math::
2266
2267 dst_i = resource[offset]_i
2268
2269 resource[offset]_i = dst_i + src_i
2270
2271
2272 .. opcode:: ATOMXCHG - Atomic exchange
2273
2274 Syntax: ``ATOMXCHG dst, resource, offset, src``
2275
2276 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2277
2278 The following operation is performed atomically on each component:
2279
2280 .. math::
2281
2282 dst_i = resource[offset]_i
2283
2284 resource[offset]_i = src_i
2285
2286
2287 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2288
2289 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2290
2291 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2292
2293 The following operation is performed atomically on each component:
2294
2295 .. math::
2296
2297 dst_i = resource[offset]_i
2298
2299 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2300
2301
2302 .. opcode:: ATOMAND - Atomic bitwise And
2303
2304 Syntax: ``ATOMAND dst, resource, offset, src``
2305
2306 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2307
2308 The following operation is performed atomically on each component:
2309
2310 .. math::
2311
2312 dst_i = resource[offset]_i
2313
2314 resource[offset]_i = dst_i \& src_i
2315
2316
2317 .. opcode:: ATOMOR - Atomic bitwise Or
2318
2319 Syntax: ``ATOMOR dst, resource, offset, src``
2320
2321 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2322
2323 The following operation is performed atomically on each component:
2324
2325 .. math::
2326
2327 dst_i = resource[offset]_i
2328
2329 resource[offset]_i = dst_i | src_i
2330
2331
2332 .. opcode:: ATOMXOR - Atomic bitwise Xor
2333
2334 Syntax: ``ATOMXOR dst, resource, offset, src``
2335
2336 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2337
2338 The following operation is performed atomically on each component:
2339
2340 .. math::
2341
2342 dst_i = resource[offset]_i
2343
2344 resource[offset]_i = dst_i \oplus src_i
2345
2346
2347 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2348
2349 Syntax: ``ATOMUMIN dst, resource, offset, src``
2350
2351 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2352
2353 The following operation is performed atomically on each component:
2354
2355 .. math::
2356
2357 dst_i = resource[offset]_i
2358
2359 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2360
2361
2362 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2363
2364 Syntax: ``ATOMUMAX dst, resource, offset, src``
2365
2366 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2367
2368 The following operation is performed atomically on each component:
2369
2370 .. math::
2371
2372 dst_i = resource[offset]_i
2373
2374 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2375
2376
2377 .. opcode:: ATOMIMIN - Atomic signed minimum
2378
2379 Syntax: ``ATOMIMIN dst, resource, offset, src``
2380
2381 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2382
2383 The following operation is performed atomically on each component:
2384
2385 .. math::
2386
2387 dst_i = resource[offset]_i
2388
2389 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2390
2391
2392 .. opcode:: ATOMIMAX - Atomic signed maximum
2393
2394 Syntax: ``ATOMIMAX dst, resource, offset, src``
2395
2396 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2397
2398 The following operation is performed atomically on each component:
2399
2400 .. math::
2401
2402 dst_i = resource[offset]_i
2403
2404 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2405
2406
2407
2408 Explanation of symbols used
2409 ------------------------------
2410
2411
2412 Functions
2413 ^^^^^^^^^^^^^^
2414
2415
2416 :math:`|x|` Absolute value of `x`.
2417
2418 :math:`\lceil x \rceil` Ceiling of `x`.
2419
2420 clamp(x,y,z) Clamp x between y and z.
2421 (x < y) ? y : (x > z) ? z : x
2422
2423 :math:`\lfloor x\rfloor` Floor of `x`.
2424
2425 :math:`\log_2{x}` Logarithm of `x`, base 2.
2426
2427 max(x,y) Maximum of x and y.
2428 (x > y) ? x : y
2429
2430 min(x,y) Minimum of x and y.
2431 (x < y) ? x : y
2432
2433 partialx(x) Derivative of x relative to fragment's X.
2434
2435 partialy(x) Derivative of x relative to fragment's Y.
2436
2437 pop() Pop from stack.
2438
2439 :math:`x^y` `x` to the power `y`.
2440
2441 push(x) Push x on stack.
2442
2443 round(x) Round x.
2444
2445 trunc(x) Truncate x, i.e. drop the fraction bits.
2446
2447
2448 Keywords
2449 ^^^^^^^^^^^^^
2450
2451
2452 discard Discard fragment.
2453
2454 pc Program counter.
2455
2456 target Label of target instruction.
2457
2458
2459 Other tokens
2460 ---------------
2461
2462
2463 Declaration
2464 ^^^^^^^^^^^
2465
2466
2467 Declares a register that is will be referenced as an operand in Instruction
2468 tokens.
2469
2470 File field contains register file that is being declared and is one
2471 of TGSI_FILE.
2472
2473 UsageMask field specifies which of the register components can be accessed
2474 and is one of TGSI_WRITEMASK.
2475
2476 The Local flag specifies that a given value isn't intended for
2477 subroutine parameter passing and, as a result, the implementation
2478 isn't required to give any guarantees of it being preserved across
2479 subroutine boundaries. As it's merely a compiler hint, the
2480 implementation is free to ignore it.
2481
2482 If Dimension flag is set to 1, a Declaration Dimension token follows.
2483
2484 If Semantic flag is set to 1, a Declaration Semantic token follows.
2485
2486 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2487
2488 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2489
2490 If Array flag is set to 1, a Declaration Array token follows.
2491
2492 Array Declaration
2493 ^^^^^^^^^^^^^^^^^^^^^^^^
2494
2495 Declarations can optional have an ArrayID attribute which can be referred by
2496 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2497 if no ArrayID is specified.
2498
2499 If an indirect addressing operand refers to a specific declaration by using
2500 an ArrayID only the registers in this declaration are guaranteed to be
2501 accessed, accessing any register outside this declaration results in undefined
2502 behavior. Note that for compatibility the effective index is zero-based and
2503 not relative to the specified declaration
2504
2505 If no ArrayID is specified with an indirect addressing operand the whole
2506 register file might be accessed by this operand. This is strongly discouraged
2507 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2508
2509 Declaration Semantic
2510 ^^^^^^^^^^^^^^^^^^^^^^^^
2511
2512 Vertex and fragment shader input and output registers may be labeled
2513 with semantic information consisting of a name and index.
2514
2515 Follows Declaration token if Semantic bit is set.
2516
2517 Since its purpose is to link a shader with other stages of the pipeline,
2518 it is valid to follow only those Declaration tokens that declare a register
2519 either in INPUT or OUTPUT file.
2520
2521 SemanticName field contains the semantic name of the register being declared.
2522 There is no default value.
2523
2524 SemanticIndex is an optional subscript that can be used to distinguish
2525 different register declarations with the same semantic name. The default value
2526 is 0.
2527
2528 The meanings of the individual semantic names are explained in the following
2529 sections.
2530
2531 TGSI_SEMANTIC_POSITION
2532 """"""""""""""""""""""
2533
2534 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2535 output register which contains the homogeneous vertex position in the clip
2536 space coordinate system. After clipping, the X, Y and Z components of the
2537 vertex will be divided by the W value to get normalized device coordinates.
2538
2539 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2540 fragment shader input contains the fragment's window position. The X
2541 component starts at zero and always increases from left to right.
2542 The Y component starts at zero and always increases but Y=0 may either
2543 indicate the top of the window or the bottom depending on the fragment
2544 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2545 The Z coordinate ranges from 0 to 1 to represent depth from the front
2546 to the back of the Z buffer. The W component contains the reciprocol
2547 of the interpolated vertex position W component.
2548
2549 Fragment shaders may also declare an output register with
2550 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2551 the fragment shader to change the fragment's Z position.
2552
2553
2554
2555 TGSI_SEMANTIC_COLOR
2556 """""""""""""""""""
2557
2558 For vertex shader outputs or fragment shader inputs/outputs, this
2559 label indicates that the resister contains an R,G,B,A color.
2560
2561 Several shader inputs/outputs may contain colors so the semantic index
2562 is used to distinguish them. For example, color[0] may be the diffuse
2563 color while color[1] may be the specular color.
2564
2565 This label is needed so that the flat/smooth shading can be applied
2566 to the right interpolants during rasterization.
2567
2568
2569
2570 TGSI_SEMANTIC_BCOLOR
2571 """"""""""""""""""""
2572
2573 Back-facing colors are only used for back-facing polygons, and are only valid
2574 in vertex shader outputs. After rasterization, all polygons are front-facing
2575 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2576 so all BCOLORs effectively become regular COLORs in the fragment shader.
2577
2578
2579 TGSI_SEMANTIC_FOG
2580 """""""""""""""""
2581
2582 Vertex shader inputs and outputs and fragment shader inputs may be
2583 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2584 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2585 to compute a fog blend factor which is used to blend the normal fragment color
2586 with a constant fog color. But fog coord really is just an ordinary vec4
2587 register like regular semantics.
2588
2589
2590 TGSI_SEMANTIC_PSIZE
2591 """""""""""""""""""
2592
2593 Vertex shader input and output registers may be labeled with
2594 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2595 in the form (S, 0, 0, 1). The point size controls the width or diameter
2596 of points for rasterization. This label cannot be used in fragment
2597 shaders.
2598
2599 When using this semantic, be sure to set the appropriate state in the
2600 :ref:`rasterizer` first.
2601
2602
2603 TGSI_SEMANTIC_TEXCOORD
2604 """"""""""""""""""""""
2605
2606 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2607
2608 Vertex shader outputs and fragment shader inputs may be labeled with
2609 this semantic to make them replaceable by sprite coordinates via the
2610 sprite_coord_enable state in the :ref:`rasterizer`.
2611 The semantic index permitted with this semantic is limited to <= 7.
2612
2613 If the driver does not support TEXCOORD, sprite coordinate replacement
2614 applies to inputs with the GENERIC semantic instead.
2615
2616 The intended use case for this semantic is gl_TexCoord.
2617
2618
2619 TGSI_SEMANTIC_PCOORD
2620 """"""""""""""""""""
2621
2622 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2623
2624 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2625 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2626 the current primitive is a point and point sprites are enabled. Otherwise,
2627 the contents of the register are undefined.
2628
2629 The intended use case for this semantic is gl_PointCoord.
2630
2631
2632 TGSI_SEMANTIC_GENERIC
2633 """""""""""""""""""""
2634
2635 All vertex/fragment shader inputs/outputs not labeled with any other
2636 semantic label can be considered to be generic attributes. Typical
2637 uses of generic inputs/outputs are texcoords and user-defined values.
2638
2639
2640 TGSI_SEMANTIC_NORMAL
2641 """"""""""""""""""""
2642
2643 Indicates that a vertex shader input is a normal vector. This is
2644 typically only used for legacy graphics APIs.
2645
2646
2647 TGSI_SEMANTIC_FACE
2648 """"""""""""""""""
2649
2650 This label applies to fragment shader inputs only and indicates that
2651 the register contains front/back-face information of the form (F, 0,
2652 0, 1). The first component will be positive when the fragment belongs
2653 to a front-facing polygon, and negative when the fragment belongs to a
2654 back-facing polygon.
2655
2656
2657 TGSI_SEMANTIC_EDGEFLAG
2658 """"""""""""""""""""""
2659
2660 For vertex shaders, this sematic label indicates that an input or
2661 output is a boolean edge flag. The register layout is [F, x, x, x]
2662 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2663 simply copies the edge flag input to the edgeflag output.
2664
2665 Edge flags are used to control which lines or points are actually
2666 drawn when the polygon mode converts triangles/quads/polygons into
2667 points or lines.
2668
2669
2670 TGSI_SEMANTIC_STENCIL
2671 """""""""""""""""""""
2672
2673 For fragment shaders, this semantic label indicates that an output
2674 is a writable stencil reference value. Only the Y component is writable.
2675 This allows the fragment shader to change the fragments stencilref value.
2676
2677
2678 TGSI_SEMANTIC_VIEWPORT_INDEX
2679 """"""""""""""""""""""""""""
2680
2681 For geometry shaders, this semantic label indicates that an output
2682 contains the index of the viewport (and scissor) to use.
2683 Only the X value is used.
2684
2685
2686 TGSI_SEMANTIC_LAYER
2687 """""""""""""""""""
2688
2689 For geometry shaders, this semantic label indicates that an output
2690 contains the layer value to use for the color and depth/stencil surfaces.
2691 Only the X value is used. (Also known as rendertarget array index.)
2692
2693
2694 TGSI_SEMANTIC_CULLDIST
2695 """"""""""""""""""""""
2696
2697 Used as distance to plane for performing application-defined culling
2698 of individual primitives against a plane. When components of vertex
2699 elements are given this label, these values are assumed to be a
2700 float32 signed distance to a plane. Primitives will be completely
2701 discarded if the plane distance for all of the vertices in the
2702 primitive are < 0. If a vertex has a cull distance of NaN, that
2703 vertex counts as "out" (as if its < 0);
2704 The limits on both clip and cull distances are bound
2705 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2706 the maximum number of components that can be used to hold the
2707 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2708 which specifies the maximum number of registers which can be
2709 annotated with those semantics.
2710
2711
2712 TGSI_SEMANTIC_CLIPDIST
2713 """"""""""""""""""""""
2714
2715 When components of vertex elements are identified this way, these
2716 values are each assumed to be a float32 signed distance to a plane.
2717 Primitive setup only invokes rasterization on pixels for which
2718 the interpolated plane distances are >= 0. Multiple clip planes
2719 can be implemented simultaneously, by annotating multiple
2720 components of one or more vertex elements with the above specified
2721 semantic. The limits on both clip and cull distances are bound
2722 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2723 the maximum number of components that can be used to hold the
2724 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2725 which specifies the maximum number of registers which can be
2726 annotated with those semantics.
2727
2728 TGSI_SEMANTIC_SAMPLEID
2729 """"""""""""""""""""""
2730
2731 For fragment shaders, this semantic label indicates that a system value
2732 contains the current sample id (i.e. gl_SampleID). Only the X value is used.
2733
2734 TGSI_SEMANTIC_SAMPLEPOS
2735 """""""""""""""""""""""
2736
2737 For fragment shaders, this semantic label indicates that a system value
2738 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2739 and Y values are used.
2740
2741 TGSI_SEMANTIC_SAMPLEMASK
2742 """"""""""""""""""""""""
2743
2744 For fragment shaders, this semantic label indicates that an output contains
2745 the sample mask used to disable further sample processing
2746 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2747
2748 TGSI_SEMANTIC_INVOCATIONID
2749 """"""""""""""""""""""""""
2750
2751 For geometry shaders, this semantic label indicates that a system value
2752 contains the current invocation id (i.e. gl_InvocationID). Only the X value is
2753 used.
2754
2755 Declaration Interpolate
2756 ^^^^^^^^^^^^^^^^^^^^^^^
2757
2758 This token is only valid for fragment shader INPUT declarations.
2759
2760 The Interpolate field specifes the way input is being interpolated by
2761 the rasteriser and is one of TGSI_INTERPOLATE_*.
2762
2763 The Location field specifies the location inside the pixel that the
2764 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2765 when per-sample shading is enabled, the implementation may choose to
2766 interpolate at the sample irrespective of the Location field.
2767
2768 The CylindricalWrap bitfield specifies which register components
2769 should be subject to cylindrical wrapping when interpolating by the
2770 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2771 should be interpolated according to cylindrical wrapping rules.
2772
2773
2774 Declaration Sampler View
2775 ^^^^^^^^^^^^^^^^^^^^^^^^
2776
2777 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2778
2779 DCL SVIEW[#], resource, type(s)
2780
2781 Declares a shader input sampler view and assigns it to a SVIEW[#]
2782 register.
2783
2784 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2785
2786 type must be 1 or 4 entries (if specifying on a per-component
2787 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2788
2789
2790 Declaration Resource
2791 ^^^^^^^^^^^^^^^^^^^^
2792
2793 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2794
2795 DCL RES[#], resource [, WR] [, RAW]
2796
2797 Declares a shader input resource and assigns it to a RES[#]
2798 register.
2799
2800 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2801 2DArray.
2802
2803 If the RAW keyword is not specified, the texture data will be
2804 subject to conversion, swizzling and scaling as required to yield
2805 the specified data type from the physical data format of the bound
2806 resource.
2807
2808 If the RAW keyword is specified, no channel conversion will be
2809 performed: the values read for each of the channels (X,Y,Z,W) will
2810 correspond to consecutive words in the same order and format
2811 they're found in memory. No element-to-address conversion will be
2812 performed either: the value of the provided X coordinate will be
2813 interpreted in byte units instead of texel units. The result of
2814 accessing a misaligned address is undefined.
2815
2816 Usage of the STORE opcode is only allowed if the WR (writable) flag
2817 is set.
2818
2819
2820 Properties
2821 ^^^^^^^^^^^^^^^^^^^^^^^^
2822
2823 Properties are general directives that apply to the whole TGSI program.
2824
2825 FS_COORD_ORIGIN
2826 """""""""""""""
2827
2828 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2829 The default value is UPPER_LEFT.
2830
2831 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2832 increase downward and rightward.
2833 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2834 increase upward and rightward.
2835
2836 OpenGL defaults to LOWER_LEFT, and is configurable with the
2837 GL_ARB_fragment_coord_conventions extension.
2838
2839 DirectX 9/10 use UPPER_LEFT.
2840
2841 FS_COORD_PIXEL_CENTER
2842 """""""""""""""""""""
2843
2844 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2845 The default value is HALF_INTEGER.
2846
2847 If HALF_INTEGER, the fractionary part of the position will be 0.5
2848 If INTEGER, the fractionary part of the position will be 0.0
2849
2850 Note that this does not affect the set of fragments generated by
2851 rasterization, which is instead controlled by half_pixel_center in the
2852 rasterizer.
2853
2854 OpenGL defaults to HALF_INTEGER, and is configurable with the
2855 GL_ARB_fragment_coord_conventions extension.
2856
2857 DirectX 9 uses INTEGER.
2858 DirectX 10 uses HALF_INTEGER.
2859
2860 FS_COLOR0_WRITES_ALL_CBUFS
2861 """"""""""""""""""""""""""
2862 Specifies that writes to the fragment shader color 0 are replicated to all
2863 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2864 fragData is directed to a single color buffer, but fragColor is broadcast.
2865
2866 VS_PROHIBIT_UCPS
2867 """"""""""""""""""""""""""
2868 If this property is set on the program bound to the shader stage before the
2869 fragment shader, user clip planes should have no effect (be disabled) even if
2870 that shader does not write to any clip distance outputs and the rasterizer's
2871 clip_plane_enable is non-zero.
2872 This property is only supported by drivers that also support shader clip
2873 distance outputs.
2874 This is useful for APIs that don't have UCPs and where clip distances written
2875 by a shader cannot be disabled.
2876
2877 GS_INVOCATIONS
2878 """"""""""""""
2879
2880 Specifies the number of times a geometry shader should be executed for each
2881 input primitive. Each invocation will have a different
2882 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2883 be 1.
2884
2885 VS_WINDOW_SPACE_POSITION
2886 """"""""""""""""""""""""""
2887 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2888 is assumed to contain window space coordinates.
2889 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2890 directly taken from the 4-th component of the shader output.
2891 Naturally, clipping is not performed on window coordinates either.
2892 The effect of this property is undefined if a geometry or tessellation shader
2893 are in use.
2894
2895 Texture Sampling and Texture Formats
2896 ------------------------------------
2897
2898 This table shows how texture image components are returned as (x,y,z,w) tuples
2899 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2900 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2901 well.
2902
2903 +--------------------+--------------+--------------------+--------------+
2904 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2905 +====================+==============+====================+==============+
2906 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2907 +--------------------+--------------+--------------------+--------------+
2908 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2909 +--------------------+--------------+--------------------+--------------+
2910 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2911 +--------------------+--------------+--------------------+--------------+
2912 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2913 +--------------------+--------------+--------------------+--------------+
2914 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2915 +--------------------+--------------+--------------------+--------------+
2916 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2917 +--------------------+--------------+--------------------+--------------+
2918 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2919 +--------------------+--------------+--------------------+--------------+
2920 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2921 +--------------------+--------------+--------------------+--------------+
2922 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2923 | | | [#envmap-bumpmap]_ | |
2924 +--------------------+--------------+--------------------+--------------+
2925 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2926 | | | [#depth-tex-mode]_ | |
2927 +--------------------+--------------+--------------------+--------------+
2928 | S | (s, s, s, s) | unknown | unknown |
2929 +--------------------+--------------+--------------------+--------------+
2930
2931 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2932 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2933 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.