gallium/docs: fix docs wrt ARL/ARR/FLR
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = (int) \lfloor src.x\rfloor
52
53 dst.y = (int) \lfloor src.y\rfloor
54
55 dst.z = (int) \lfloor src.z\rfloor
56
57 dst.w = (int) \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: DP2A - 2-component Dot Product And Add
276
277 .. math::
278
279 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
280
281 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
282
283 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287
288 .. opcode:: FRC - Fraction
289
290 .. math::
291
292 dst.x = src.x - \lfloor src.x\rfloor
293
294 dst.y = src.y - \lfloor src.y\rfloor
295
296 dst.z = src.z - \lfloor src.z\rfloor
297
298 dst.w = src.w - \lfloor src.w\rfloor
299
300
301 .. opcode:: CLAMP - Clamp
302
303 .. math::
304
305 dst.x = clamp(src0.x, src1.x, src2.x)
306
307 dst.y = clamp(src0.y, src1.y, src2.y)
308
309 dst.z = clamp(src0.z, src1.z, src2.z)
310
311 dst.w = clamp(src0.w, src1.w, src2.w)
312
313
314 .. opcode:: FLR - Floor
315
316 .. math::
317
318 dst.x = \lfloor src.x\rfloor
319
320 dst.y = \lfloor src.y\rfloor
321
322 dst.z = \lfloor src.z\rfloor
323
324 dst.w = \lfloor src.w\rfloor
325
326
327 .. opcode:: ROUND - Round
328
329 .. math::
330
331 dst.x = round(src.x)
332
333 dst.y = round(src.y)
334
335 dst.z = round(src.z)
336
337 dst.w = round(src.w)
338
339
340 .. opcode:: EX2 - Exponential Base 2
341
342 This instruction replicates its result.
343
344 .. math::
345
346 dst = 2^{src.x}
347
348
349 .. opcode:: LG2 - Logarithm Base 2
350
351 This instruction replicates its result.
352
353 .. math::
354
355 dst = \log_2{src.x}
356
357
358 .. opcode:: POW - Power
359
360 This instruction replicates its result.
361
362 .. math::
363
364 dst = src0.x^{src1.x}
365
366 .. opcode:: XPD - Cross Product
367
368 .. math::
369
370 dst.x = src0.y \times src1.z - src1.y \times src0.z
371
372 dst.y = src0.z \times src1.x - src1.z \times src0.x
373
374 dst.z = src0.x \times src1.y - src1.x \times src0.y
375
376 dst.w = 1
377
378
379 .. opcode:: ABS - Absolute
380
381 .. math::
382
383 dst.x = |src.x|
384
385 dst.y = |src.y|
386
387 dst.z = |src.z|
388
389 dst.w = |src.w|
390
391
392 .. opcode:: DPH - Homogeneous Dot Product
393
394 This instruction replicates its result.
395
396 .. math::
397
398 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
399
400
401 .. opcode:: COS - Cosine
402
403 This instruction replicates its result.
404
405 .. math::
406
407 dst = \cos{src.x}
408
409
410 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
411
412 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
413 advertised. When it is, the fine version guarantees one derivative per row
414 while DDX is allowed to be the same for the entire 2x2 quad.
415
416 .. math::
417
418 dst.x = partialx(src.x)
419
420 dst.y = partialx(src.y)
421
422 dst.z = partialx(src.z)
423
424 dst.w = partialx(src.w)
425
426
427 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
428
429 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
430 advertised. When it is, the fine version guarantees one derivative per column
431 while DDY is allowed to be the same for the entire 2x2 quad.
432
433 .. math::
434
435 dst.x = partialy(src.x)
436
437 dst.y = partialy(src.y)
438
439 dst.z = partialy(src.z)
440
441 dst.w = partialy(src.w)
442
443
444 .. opcode:: PK2H - Pack Two 16-bit Floats
445
446 TBD
447
448
449 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
450
451 TBD
452
453
454 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
455
456 TBD
457
458
459 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
460
461 TBD
462
463
464 .. opcode:: SEQ - Set On Equal
465
466 .. math::
467
468 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
469
470 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
471
472 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
473
474 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
475
476
477 .. opcode:: SGT - Set On Greater Than
478
479 .. math::
480
481 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
482
483 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
484
485 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
486
487 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
488
489
490 .. opcode:: SIN - Sine
491
492 This instruction replicates its result.
493
494 .. math::
495
496 dst = \sin{src.x}
497
498
499 .. opcode:: SLE - Set On Less Equal Than
500
501 .. math::
502
503 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
504
505 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
506
507 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
508
509 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
510
511
512 .. opcode:: SNE - Set On Not Equal
513
514 .. math::
515
516 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
517
518 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
519
520 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
521
522 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
523
524
525 .. opcode:: TEX - Texture Lookup
526
527 for array textures src0.y contains the slice for 1D,
528 and src0.z contain the slice for 2D.
529
530 for shadow textures with no arrays (and not cube map),
531 src0.z contains the reference value.
532
533 for shadow textures with arrays, src0.z contains
534 the reference value for 1D arrays, and src0.w contains
535 the reference value for 2D arrays and cube maps.
536
537 for cube map array shadow textures, the reference value
538 cannot be passed in src0.w, and TEX2 must be used instead.
539
540 .. math::
541
542 coord = src0
543
544 shadow_ref = src0.z or src0.w (optional)
545
546 unit = src1
547
548 dst = texture\_sample(unit, coord, shadow_ref)
549
550
551 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
552
553 this is the same as TEX, but uses another reg to encode the
554 reference value.
555
556 .. math::
557
558 coord = src0
559
560 shadow_ref = src1.x
561
562 unit = src2
563
564 dst = texture\_sample(unit, coord, shadow_ref)
565
566
567
568
569 .. opcode:: TXD - Texture Lookup with Derivatives
570
571 .. math::
572
573 coord = src0
574
575 ddx = src1
576
577 ddy = src2
578
579 unit = src3
580
581 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
582
583
584 .. opcode:: TXP - Projective Texture Lookup
585
586 .. math::
587
588 coord.x = src0.x / src0.w
589
590 coord.y = src0.y / src0.w
591
592 coord.z = src0.z / src0.w
593
594 coord.w = src0.w
595
596 unit = src1
597
598 dst = texture\_sample(unit, coord)
599
600
601 .. opcode:: UP2H - Unpack Two 16-Bit Floats
602
603 TBD
604
605 .. note::
606
607 Considered for removal.
608
609 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
610
611 TBD
612
613 .. note::
614
615 Considered for removal.
616
617 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
618
619 TBD
620
621 .. note::
622
623 Considered for removal.
624
625 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
626
627 TBD
628
629 .. note::
630
631 Considered for removal.
632
633
634 .. opcode:: ARR - Address Register Load With Round
635
636 .. math::
637
638 dst.x = (int) round(src.x)
639
640 dst.y = (int) round(src.y)
641
642 dst.z = (int) round(src.z)
643
644 dst.w = (int) round(src.w)
645
646
647 .. opcode:: SSG - Set Sign
648
649 .. math::
650
651 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
652
653 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
654
655 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
656
657 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
658
659
660 .. opcode:: CMP - Compare
661
662 .. math::
663
664 dst.x = (src0.x < 0) ? src1.x : src2.x
665
666 dst.y = (src0.y < 0) ? src1.y : src2.y
667
668 dst.z = (src0.z < 0) ? src1.z : src2.z
669
670 dst.w = (src0.w < 0) ? src1.w : src2.w
671
672
673 .. opcode:: KILL_IF - Conditional Discard
674
675 Conditional discard. Allowed in fragment shaders only.
676
677 .. math::
678
679 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
680 discard
681 endif
682
683
684 .. opcode:: KILL - Discard
685
686 Unconditional discard. Allowed in fragment shaders only.
687
688
689 .. opcode:: SCS - Sine Cosine
690
691 .. math::
692
693 dst.x = \cos{src.x}
694
695 dst.y = \sin{src.x}
696
697 dst.z = 0
698
699 dst.w = 1
700
701
702 .. opcode:: TXB - Texture Lookup With Bias
703
704 for cube map array textures and shadow cube maps, the bias value
705 cannot be passed in src0.w, and TXB2 must be used instead.
706
707 if the target is a shadow texture, the reference value is always
708 in src.z (this prevents shadow 3d and shadow 2d arrays from
709 using this instruction, but this is not needed).
710
711 .. math::
712
713 coord.x = src0.x
714
715 coord.y = src0.y
716
717 coord.z = src0.z
718
719 coord.w = none
720
721 bias = src0.w
722
723 unit = src1
724
725 dst = texture\_sample(unit, coord, bias)
726
727
728 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
729
730 this is the same as TXB, but uses another reg to encode the
731 lod bias value for cube map arrays and shadow cube maps.
732 Presumably shadow 2d arrays and shadow 3d targets could use
733 this encoding too, but this is not legal.
734
735 shadow cube map arrays are neither possible nor required.
736
737 .. math::
738
739 coord = src0
740
741 bias = src1.x
742
743 unit = src2
744
745 dst = texture\_sample(unit, coord, bias)
746
747
748 .. opcode:: DIV - Divide
749
750 .. math::
751
752 dst.x = \frac{src0.x}{src1.x}
753
754 dst.y = \frac{src0.y}{src1.y}
755
756 dst.z = \frac{src0.z}{src1.z}
757
758 dst.w = \frac{src0.w}{src1.w}
759
760
761 .. opcode:: DP2 - 2-component Dot Product
762
763 This instruction replicates its result.
764
765 .. math::
766
767 dst = src0.x \times src1.x + src0.y \times src1.y
768
769
770 .. opcode:: TXL - Texture Lookup With explicit LOD
771
772 for cube map array textures, the explicit lod value
773 cannot be passed in src0.w, and TXL2 must be used instead.
774
775 if the target is a shadow texture, the reference value is always
776 in src.z (this prevents shadow 3d / 2d array / cube targets from
777 using this instruction, but this is not needed).
778
779 .. math::
780
781 coord.x = src0.x
782
783 coord.y = src0.y
784
785 coord.z = src0.z
786
787 coord.w = none
788
789 lod = src0.w
790
791 unit = src1
792
793 dst = texture\_sample(unit, coord, lod)
794
795
796 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
797
798 this is the same as TXL, but uses another reg to encode the
799 explicit lod value.
800 Presumably shadow 3d / 2d array / cube targets could use
801 this encoding too, but this is not legal.
802
803 shadow cube map arrays are neither possible nor required.
804
805 .. math::
806
807 coord = src0
808
809 lod = src1.x
810
811 unit = src2
812
813 dst = texture\_sample(unit, coord, lod)
814
815
816 .. opcode:: PUSHA - Push Address Register On Stack
817
818 push(src.x)
819 push(src.y)
820 push(src.z)
821 push(src.w)
822
823 .. note::
824
825 Considered for cleanup.
826
827 .. note::
828
829 Considered for removal.
830
831 .. opcode:: POPA - Pop Address Register From Stack
832
833 dst.w = pop()
834 dst.z = pop()
835 dst.y = pop()
836 dst.x = pop()
837
838 .. note::
839
840 Considered for cleanup.
841
842 .. note::
843
844 Considered for removal.
845
846
847 .. opcode:: CALLNZ - Subroutine Call If Not Zero
848
849 TBD
850
851 .. note::
852
853 Considered for cleanup.
854
855 .. note::
856
857 Considered for removal.
858
859
860 Compute ISA
861 ^^^^^^^^^^^^^^^^^^^^^^^^
862
863 These opcodes are primarily provided for special-use computational shaders.
864 Support for these opcodes indicated by a special pipe capability bit (TBD).
865
866 XXX doesn't look like most of the opcodes really belong here.
867
868 .. opcode:: CEIL - Ceiling
869
870 .. math::
871
872 dst.x = \lceil src.x\rceil
873
874 dst.y = \lceil src.y\rceil
875
876 dst.z = \lceil src.z\rceil
877
878 dst.w = \lceil src.w\rceil
879
880
881 .. opcode:: TRUNC - Truncate
882
883 .. math::
884
885 dst.x = trunc(src.x)
886
887 dst.y = trunc(src.y)
888
889 dst.z = trunc(src.z)
890
891 dst.w = trunc(src.w)
892
893
894 .. opcode:: MOD - Modulus
895
896 .. math::
897
898 dst.x = src0.x \bmod src1.x
899
900 dst.y = src0.y \bmod src1.y
901
902 dst.z = src0.z \bmod src1.z
903
904 dst.w = src0.w \bmod src1.w
905
906
907 .. opcode:: UARL - Integer Address Register Load
908
909 Moves the contents of the source register, assumed to be an integer, into the
910 destination register, which is assumed to be an address (ADDR) register.
911
912
913 .. opcode:: SAD - Sum Of Absolute Differences
914
915 .. math::
916
917 dst.x = |src0.x - src1.x| + src2.x
918
919 dst.y = |src0.y - src1.y| + src2.y
920
921 dst.z = |src0.z - src1.z| + src2.z
922
923 dst.w = |src0.w - src1.w| + src2.w
924
925
926 .. opcode:: TXF - Texel Fetch
927
928 As per NV_gpu_shader4, extract a single texel from a specified texture
929 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
930 four-component signed integer vector used to identify the single texel
931 accessed. 3 components + level. Just like texture instructions, an optional
932 offset vector is provided, which is subject to various driver restrictions
933 (regarding range, source of offsets).
934 TXF(uint_vec coord, int_vec offset).
935
936
937 .. opcode:: TXQ - Texture Size Query
938
939 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
940 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
941 depth), 1D array (width, layers), 2D array (width, height, layers).
942 Also return the number of accessible levels (last_level - first_level + 1)
943 in W.
944
945 For components which don't return a resource dimension, their value
946 is undefined.
947
948
949 .. math::
950
951 lod = src0.x
952
953 dst.x = texture\_width(unit, lod)
954
955 dst.y = texture\_height(unit, lod)
956
957 dst.z = texture\_depth(unit, lod)
958
959 dst.w = texture\_levels(unit)
960
961 .. opcode:: TG4 - Texture Gather
962
963 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
964 filtering operation and packs them into a single register. Only works with
965 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
966 addressing modes of the sampler and the top level of any mip pyramid are
967 used. Set W to zero. It behaves like the TEX instruction, but a filtered
968 sample is not generated. The four samples that contribute to filtering are
969 placed into xyzw in clockwise order, starting with the (u,v) texture
970 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
971 where the magnitude of the deltas are half a texel.
972
973 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
974 depth compares, single component selection, and a non-constant offset. It
975 doesn't allow support for the GL independent offset to get i0,j0. This would
976 require another CAP is hw can do it natively. For now we lower that before
977 TGSI.
978
979 .. math::
980
981 coord = src0
982
983 component = src1
984
985 dst = texture\_gather4 (unit, coord, component)
986
987 (with SM5 - cube array shadow)
988
989 .. math::
990
991 coord = src0
992
993 compare = src1
994
995 dst = texture\_gather (uint, coord, compare)
996
997 .. opcode:: LODQ - level of detail query
998
999 Compute the LOD information that the texture pipe would use to access the
1000 texture. The Y component contains the computed LOD lambda_prime. The X
1001 component contains the LOD that will be accessed, based on min/max lod's
1002 and mipmap filters.
1003
1004 .. math::
1005
1006 coord = src0
1007
1008 dst.xy = lodq(uint, coord);
1009
1010 Integer ISA
1011 ^^^^^^^^^^^^^^^^^^^^^^^^
1012 These opcodes are used for integer operations.
1013 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1014
1015
1016 .. opcode:: I2F - Signed Integer To Float
1017
1018 Rounding is unspecified (round to nearest even suggested).
1019
1020 .. math::
1021
1022 dst.x = (float) src.x
1023
1024 dst.y = (float) src.y
1025
1026 dst.z = (float) src.z
1027
1028 dst.w = (float) src.w
1029
1030
1031 .. opcode:: U2F - Unsigned Integer To Float
1032
1033 Rounding is unspecified (round to nearest even suggested).
1034
1035 .. math::
1036
1037 dst.x = (float) src.x
1038
1039 dst.y = (float) src.y
1040
1041 dst.z = (float) src.z
1042
1043 dst.w = (float) src.w
1044
1045
1046 .. opcode:: F2I - Float to Signed Integer
1047
1048 Rounding is towards zero (truncate).
1049 Values outside signed range (including NaNs) produce undefined results.
1050
1051 .. math::
1052
1053 dst.x = (int) src.x
1054
1055 dst.y = (int) src.y
1056
1057 dst.z = (int) src.z
1058
1059 dst.w = (int) src.w
1060
1061
1062 .. opcode:: F2U - Float to Unsigned Integer
1063
1064 Rounding is towards zero (truncate).
1065 Values outside unsigned range (including NaNs) produce undefined results.
1066
1067 .. math::
1068
1069 dst.x = (unsigned) src.x
1070
1071 dst.y = (unsigned) src.y
1072
1073 dst.z = (unsigned) src.z
1074
1075 dst.w = (unsigned) src.w
1076
1077
1078 .. opcode:: UADD - Integer Add
1079
1080 This instruction works the same for signed and unsigned integers.
1081 The low 32bit of the result is returned.
1082
1083 .. math::
1084
1085 dst.x = src0.x + src1.x
1086
1087 dst.y = src0.y + src1.y
1088
1089 dst.z = src0.z + src1.z
1090
1091 dst.w = src0.w + src1.w
1092
1093
1094 .. opcode:: UMAD - Integer Multiply And Add
1095
1096 This instruction works the same for signed and unsigned integers.
1097 The multiplication returns the low 32bit (as does the result itself).
1098
1099 .. math::
1100
1101 dst.x = src0.x \times src1.x + src2.x
1102
1103 dst.y = src0.y \times src1.y + src2.y
1104
1105 dst.z = src0.z \times src1.z + src2.z
1106
1107 dst.w = src0.w \times src1.w + src2.w
1108
1109
1110 .. opcode:: UMUL - Integer Multiply
1111
1112 This instruction works the same for signed and unsigned integers.
1113 The low 32bit of the result is returned.
1114
1115 .. math::
1116
1117 dst.x = src0.x \times src1.x
1118
1119 dst.y = src0.y \times src1.y
1120
1121 dst.z = src0.z \times src1.z
1122
1123 dst.w = src0.w \times src1.w
1124
1125
1126 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1127
1128 The high 32bits of the multiplication of 2 signed integers are returned.
1129
1130 .. math::
1131
1132 dst.x = (src0.x \times src1.x) >> 32
1133
1134 dst.y = (src0.y \times src1.y) >> 32
1135
1136 dst.z = (src0.z \times src1.z) >> 32
1137
1138 dst.w = (src0.w \times src1.w) >> 32
1139
1140
1141 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1142
1143 The high 32bits of the multiplication of 2 unsigned integers are returned.
1144
1145 .. math::
1146
1147 dst.x = (src0.x \times src1.x) >> 32
1148
1149 dst.y = (src0.y \times src1.y) >> 32
1150
1151 dst.z = (src0.z \times src1.z) >> 32
1152
1153 dst.w = (src0.w \times src1.w) >> 32
1154
1155
1156 .. opcode:: IDIV - Signed Integer Division
1157
1158 TBD: behavior for division by zero.
1159
1160 .. math::
1161
1162 dst.x = src0.x \ src1.x
1163
1164 dst.y = src0.y \ src1.y
1165
1166 dst.z = src0.z \ src1.z
1167
1168 dst.w = src0.w \ src1.w
1169
1170
1171 .. opcode:: UDIV - Unsigned Integer Division
1172
1173 For division by zero, 0xffffffff is returned.
1174
1175 .. math::
1176
1177 dst.x = src0.x \ src1.x
1178
1179 dst.y = src0.y \ src1.y
1180
1181 dst.z = src0.z \ src1.z
1182
1183 dst.w = src0.w \ src1.w
1184
1185
1186 .. opcode:: UMOD - Unsigned Integer Remainder
1187
1188 If second arg is zero, 0xffffffff is returned.
1189
1190 .. math::
1191
1192 dst.x = src0.x \ src1.x
1193
1194 dst.y = src0.y \ src1.y
1195
1196 dst.z = src0.z \ src1.z
1197
1198 dst.w = src0.w \ src1.w
1199
1200
1201 .. opcode:: NOT - Bitwise Not
1202
1203 .. math::
1204
1205 dst.x = \sim src.x
1206
1207 dst.y = \sim src.y
1208
1209 dst.z = \sim src.z
1210
1211 dst.w = \sim src.w
1212
1213
1214 .. opcode:: AND - Bitwise And
1215
1216 .. math::
1217
1218 dst.x = src0.x \& src1.x
1219
1220 dst.y = src0.y \& src1.y
1221
1222 dst.z = src0.z \& src1.z
1223
1224 dst.w = src0.w \& src1.w
1225
1226
1227 .. opcode:: OR - Bitwise Or
1228
1229 .. math::
1230
1231 dst.x = src0.x | src1.x
1232
1233 dst.y = src0.y | src1.y
1234
1235 dst.z = src0.z | src1.z
1236
1237 dst.w = src0.w | src1.w
1238
1239
1240 .. opcode:: XOR - Bitwise Xor
1241
1242 .. math::
1243
1244 dst.x = src0.x \oplus src1.x
1245
1246 dst.y = src0.y \oplus src1.y
1247
1248 dst.z = src0.z \oplus src1.z
1249
1250 dst.w = src0.w \oplus src1.w
1251
1252
1253 .. opcode:: IMAX - Maximum of Signed Integers
1254
1255 .. math::
1256
1257 dst.x = max(src0.x, src1.x)
1258
1259 dst.y = max(src0.y, src1.y)
1260
1261 dst.z = max(src0.z, src1.z)
1262
1263 dst.w = max(src0.w, src1.w)
1264
1265
1266 .. opcode:: UMAX - Maximum of Unsigned Integers
1267
1268 .. math::
1269
1270 dst.x = max(src0.x, src1.x)
1271
1272 dst.y = max(src0.y, src1.y)
1273
1274 dst.z = max(src0.z, src1.z)
1275
1276 dst.w = max(src0.w, src1.w)
1277
1278
1279 .. opcode:: IMIN - Minimum of Signed Integers
1280
1281 .. math::
1282
1283 dst.x = min(src0.x, src1.x)
1284
1285 dst.y = min(src0.y, src1.y)
1286
1287 dst.z = min(src0.z, src1.z)
1288
1289 dst.w = min(src0.w, src1.w)
1290
1291
1292 .. opcode:: UMIN - Minimum of Unsigned Integers
1293
1294 .. math::
1295
1296 dst.x = min(src0.x, src1.x)
1297
1298 dst.y = min(src0.y, src1.y)
1299
1300 dst.z = min(src0.z, src1.z)
1301
1302 dst.w = min(src0.w, src1.w)
1303
1304
1305 .. opcode:: SHL - Shift Left
1306
1307 The shift count is masked with 0x1f before the shift is applied.
1308
1309 .. math::
1310
1311 dst.x = src0.x << (0x1f \& src1.x)
1312
1313 dst.y = src0.y << (0x1f \& src1.y)
1314
1315 dst.z = src0.z << (0x1f \& src1.z)
1316
1317 dst.w = src0.w << (0x1f \& src1.w)
1318
1319
1320 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1321
1322 The shift count is masked with 0x1f before the shift is applied.
1323
1324 .. math::
1325
1326 dst.x = src0.x >> (0x1f \& src1.x)
1327
1328 dst.y = src0.y >> (0x1f \& src1.y)
1329
1330 dst.z = src0.z >> (0x1f \& src1.z)
1331
1332 dst.w = src0.w >> (0x1f \& src1.w)
1333
1334
1335 .. opcode:: USHR - Logical Shift Right
1336
1337 The shift count is masked with 0x1f before the shift is applied.
1338
1339 .. math::
1340
1341 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1342
1343 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1344
1345 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1346
1347 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1348
1349
1350 .. opcode:: UCMP - Integer Conditional Move
1351
1352 .. math::
1353
1354 dst.x = src0.x ? src1.x : src2.x
1355
1356 dst.y = src0.y ? src1.y : src2.y
1357
1358 dst.z = src0.z ? src1.z : src2.z
1359
1360 dst.w = src0.w ? src1.w : src2.w
1361
1362
1363
1364 .. opcode:: ISSG - Integer Set Sign
1365
1366 .. math::
1367
1368 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1369
1370 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1371
1372 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1373
1374 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1375
1376
1377
1378 .. opcode:: FSLT - Float Set On Less Than (ordered)
1379
1380 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1381
1382 .. math::
1383
1384 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1385
1386 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1387
1388 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1389
1390 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1391
1392
1393 .. opcode:: ISLT - Signed Integer Set On Less Than
1394
1395 .. math::
1396
1397 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1398
1399 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1400
1401 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1402
1403 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1404
1405
1406 .. opcode:: USLT - Unsigned Integer Set On Less Than
1407
1408 .. math::
1409
1410 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1411
1412 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1413
1414 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1415
1416 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1417
1418
1419 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1420
1421 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1422
1423 .. math::
1424
1425 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1426
1427 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1428
1429 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1430
1431 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1432
1433
1434 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1435
1436 .. math::
1437
1438 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1439
1440 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1441
1442 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1443
1444 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1445
1446
1447 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1448
1449 .. math::
1450
1451 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1452
1453 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1454
1455 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1456
1457 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1458
1459
1460 .. opcode:: FSEQ - Float Set On Equal (ordered)
1461
1462 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1463
1464 .. math::
1465
1466 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1467
1468 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1469
1470 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1471
1472 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1473
1474
1475 .. opcode:: USEQ - Integer Set On Equal
1476
1477 .. math::
1478
1479 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1480
1481 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1482
1483 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1484
1485 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1486
1487
1488 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1489
1490 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1491
1492 .. math::
1493
1494 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1495
1496 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1497
1498 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1499
1500 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1501
1502
1503 .. opcode:: USNE - Integer Set On Not Equal
1504
1505 .. math::
1506
1507 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1508
1509 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1510
1511 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1512
1513 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1514
1515
1516 .. opcode:: INEG - Integer Negate
1517
1518 Two's complement.
1519
1520 .. math::
1521
1522 dst.x = -src.x
1523
1524 dst.y = -src.y
1525
1526 dst.z = -src.z
1527
1528 dst.w = -src.w
1529
1530
1531 .. opcode:: IABS - Integer Absolute Value
1532
1533 .. math::
1534
1535 dst.x = |src.x|
1536
1537 dst.y = |src.y|
1538
1539 dst.z = |src.z|
1540
1541 dst.w = |src.w|
1542
1543 Bitwise ISA
1544 ^^^^^^^^^^^
1545 These opcodes are used for bit-level manipulation of integers.
1546
1547 .. opcode:: IBFE - Signed Bitfield Extract
1548
1549 See SM5 instruction of the same name. Extracts a set of bits from the input,
1550 and sign-extends them if the high bit of the extracted window is set.
1551
1552 Pseudocode::
1553
1554 def ibfe(value, offset, bits):
1555 offset = offset & 0x1f
1556 bits = bits & 0x1f
1557 if bits == 0: return 0
1558 # Note: >> sign-extends
1559 if width + offset < 32:
1560 return (value << (32 - offset - bits)) >> (32 - bits)
1561 else:
1562 return value >> offset
1563
1564 .. opcode:: UBFE - Unsigned Bitfield Extract
1565
1566 See SM5 instruction of the same name. Extracts a set of bits from the input,
1567 without any sign-extension.
1568
1569 Pseudocode::
1570
1571 def ubfe(value, offset, bits):
1572 offset = offset & 0x1f
1573 bits = bits & 0x1f
1574 if bits == 0: return 0
1575 # Note: >> does not sign-extend
1576 if width + offset < 32:
1577 return (value << (32 - offset - bits)) >> (32 - bits)
1578 else:
1579 return value >> offset
1580
1581 .. opcode:: BFI - Bitfield Insert
1582
1583 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1584 the low bits of 'insert'.
1585
1586 Pseudocode::
1587
1588 def bfi(base, insert, offset, bits):
1589 offset = offset & 0x1f
1590 bits = bits & 0x1f
1591 mask = ((1 << bits) - 1) << offset
1592 return ((insert << offset) & mask) | (base & ~mask)
1593
1594 .. opcode:: BREV - Bitfield Reverse
1595
1596 See SM5 instruction BFREV. Reverses the bits of the argument.
1597
1598 .. opcode:: POPC - Population Count
1599
1600 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1601
1602 .. opcode:: LSB - Index of lowest set bit
1603
1604 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1605 bit of the argument. Returns -1 if none are set.
1606
1607 .. opcode:: IMSB - Index of highest non-sign bit
1608
1609 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1610 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1611 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1612 (i.e. for inputs 0 and -1).
1613
1614 .. opcode:: UMSB - Index of highest set bit
1615
1616 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1617 set bit of the argument. Returns -1 if none are set.
1618
1619 Geometry ISA
1620 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1621
1622 These opcodes are only supported in geometry shaders; they have no meaning
1623 in any other type of shader.
1624
1625 .. opcode:: EMIT - Emit
1626
1627 Generate a new vertex for the current primitive into the specified vertex
1628 stream using the values in the output registers.
1629
1630
1631 .. opcode:: ENDPRIM - End Primitive
1632
1633 Complete the current primitive in the specified vertex stream (consisting of
1634 the emitted vertices), and start a new one.
1635
1636
1637 GLSL ISA
1638 ^^^^^^^^^^
1639
1640 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1641 opcodes is determined by a special capability bit, ``GLSL``.
1642 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1643
1644 .. opcode:: CAL - Subroutine Call
1645
1646 push(pc)
1647 pc = target
1648
1649
1650 .. opcode:: RET - Subroutine Call Return
1651
1652 pc = pop()
1653
1654
1655 .. opcode:: CONT - Continue
1656
1657 Unconditionally moves the point of execution to the instruction after the
1658 last bgnloop. The instruction must appear within a bgnloop/endloop.
1659
1660 .. note::
1661
1662 Support for CONT is determined by a special capability bit,
1663 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1664
1665
1666 .. opcode:: BGNLOOP - Begin a Loop
1667
1668 Start a loop. Must have a matching endloop.
1669
1670
1671 .. opcode:: BGNSUB - Begin Subroutine
1672
1673 Starts definition of a subroutine. Must have a matching endsub.
1674
1675
1676 .. opcode:: ENDLOOP - End a Loop
1677
1678 End a loop started with bgnloop.
1679
1680
1681 .. opcode:: ENDSUB - End Subroutine
1682
1683 Ends definition of a subroutine.
1684
1685
1686 .. opcode:: NOP - No Operation
1687
1688 Do nothing.
1689
1690
1691 .. opcode:: BRK - Break
1692
1693 Unconditionally moves the point of execution to the instruction after the
1694 next endloop or endswitch. The instruction must appear within a loop/endloop
1695 or switch/endswitch.
1696
1697
1698 .. opcode:: BREAKC - Break Conditional
1699
1700 Conditionally moves the point of execution to the instruction after the
1701 next endloop or endswitch. The instruction must appear within a loop/endloop
1702 or switch/endswitch.
1703 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1704 as an integer register.
1705
1706 .. note::
1707
1708 Considered for removal as it's quite inconsistent wrt other opcodes
1709 (could emulate with UIF/BRK/ENDIF).
1710
1711
1712 .. opcode:: IF - Float If
1713
1714 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1715
1716 src0.x != 0.0
1717
1718 where src0.x is interpreted as a floating point register.
1719
1720
1721 .. opcode:: UIF - Bitwise If
1722
1723 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1724
1725 src0.x != 0
1726
1727 where src0.x is interpreted as an integer register.
1728
1729
1730 .. opcode:: ELSE - Else
1731
1732 Starts an else block, after an IF or UIF statement.
1733
1734
1735 .. opcode:: ENDIF - End If
1736
1737 Ends an IF or UIF block.
1738
1739
1740 .. opcode:: SWITCH - Switch
1741
1742 Starts a C-style switch expression. The switch consists of one or multiple
1743 CASE statements, and at most one DEFAULT statement. Execution of a statement
1744 ends when a BRK is hit, but just like in C falling through to other cases
1745 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1746 just as last statement, and fallthrough is allowed into/from it.
1747 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1748
1749 Example::
1750
1751 SWITCH src[0].x
1752 CASE src[0].x
1753 (some instructions here)
1754 (optional BRK here)
1755 DEFAULT
1756 (some instructions here)
1757 (optional BRK here)
1758 CASE src[0].x
1759 (some instructions here)
1760 (optional BRK here)
1761 ENDSWITCH
1762
1763
1764 .. opcode:: CASE - Switch case
1765
1766 This represents a switch case label. The src arg must be an integer immediate.
1767
1768
1769 .. opcode:: DEFAULT - Switch default
1770
1771 This represents the default case in the switch, which is taken if no other
1772 case matches.
1773
1774
1775 .. opcode:: ENDSWITCH - End of switch
1776
1777 Ends a switch expression.
1778
1779
1780 Interpolation ISA
1781 ^^^^^^^^^^^^^^^^^
1782
1783 The interpolation instructions allow an input to be interpolated in a
1784 different way than its declaration. This corresponds to the GLSL 4.00
1785 interpolateAt* functions. The first argument of each of these must come from
1786 ``TGSI_FILE_INPUT``.
1787
1788 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1789
1790 Interpolates the varying specified by src0 at the centroid
1791
1792 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1793
1794 Interpolates the varying specified by src0 at the sample id specified by
1795 src1.x (interpreted as an integer)
1796
1797 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1798
1799 Interpolates the varying specified by src0 at the offset src1.xy from the
1800 pixel center (interpreted as floats)
1801
1802
1803 .. _doubleopcodes:
1804
1805 Double ISA
1806 ^^^^^^^^^^^^^^^
1807
1808 The double-precision opcodes reinterpret four-component vectors into
1809 two-component vectors with doubled precision in each component.
1810
1811 Support for these opcodes is XXX undecided. :T
1812
1813 .. opcode:: DADD - Add
1814
1815 .. math::
1816
1817 dst.xy = src0.xy + src1.xy
1818
1819 dst.zw = src0.zw + src1.zw
1820
1821
1822 .. opcode:: DDIV - Divide
1823
1824 .. math::
1825
1826 dst.xy = src0.xy / src1.xy
1827
1828 dst.zw = src0.zw / src1.zw
1829
1830 .. opcode:: DSEQ - Set on Equal
1831
1832 .. math::
1833
1834 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1835
1836 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1837
1838 .. opcode:: DSLT - Set on Less than
1839
1840 .. math::
1841
1842 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1843
1844 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1845
1846 .. opcode:: DFRAC - Fraction
1847
1848 .. math::
1849
1850 dst.xy = src.xy - \lfloor src.xy\rfloor
1851
1852 dst.zw = src.zw - \lfloor src.zw\rfloor
1853
1854
1855 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1856
1857 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1858 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1859 :math:`dst1 \times 2^{dst0} = src` .
1860
1861 .. math::
1862
1863 dst0.xy = exp(src.xy)
1864
1865 dst1.xy = frac(src.xy)
1866
1867 dst0.zw = exp(src.zw)
1868
1869 dst1.zw = frac(src.zw)
1870
1871 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1872
1873 This opcode is the inverse of :opcode:`DFRACEXP`.
1874
1875 .. math::
1876
1877 dst.xy = src0.xy \times 2^{src1.xy}
1878
1879 dst.zw = src0.zw \times 2^{src1.zw}
1880
1881 .. opcode:: DMIN - Minimum
1882
1883 .. math::
1884
1885 dst.xy = min(src0.xy, src1.xy)
1886
1887 dst.zw = min(src0.zw, src1.zw)
1888
1889 .. opcode:: DMAX - Maximum
1890
1891 .. math::
1892
1893 dst.xy = max(src0.xy, src1.xy)
1894
1895 dst.zw = max(src0.zw, src1.zw)
1896
1897 .. opcode:: DMUL - Multiply
1898
1899 .. math::
1900
1901 dst.xy = src0.xy \times src1.xy
1902
1903 dst.zw = src0.zw \times src1.zw
1904
1905
1906 .. opcode:: DMAD - Multiply And Add
1907
1908 .. math::
1909
1910 dst.xy = src0.xy \times src1.xy + src2.xy
1911
1912 dst.zw = src0.zw \times src1.zw + src2.zw
1913
1914
1915 .. opcode:: DRCP - Reciprocal
1916
1917 .. math::
1918
1919 dst.xy = \frac{1}{src.xy}
1920
1921 dst.zw = \frac{1}{src.zw}
1922
1923 .. opcode:: DSQRT - Square Root
1924
1925 .. math::
1926
1927 dst.xy = \sqrt{src.xy}
1928
1929 dst.zw = \sqrt{src.zw}
1930
1931
1932 .. _samplingopcodes:
1933
1934 Resource Sampling Opcodes
1935 ^^^^^^^^^^^^^^^^^^^^^^^^^
1936
1937 Those opcodes follow very closely semantics of the respective Direct3D
1938 instructions. If in doubt double check Direct3D documentation.
1939 Note that the swizzle on SVIEW (src1) determines texel swizzling
1940 after lookup.
1941
1942 .. opcode:: SAMPLE
1943
1944 Using provided address, sample data from the specified texture using the
1945 filtering mode identified by the gven sampler. The source data may come from
1946 any resource type other than buffers.
1947
1948 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
1949
1950 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
1951
1952 .. opcode:: SAMPLE_I
1953
1954 Simplified alternative to the SAMPLE instruction. Using the provided
1955 integer address, SAMPLE_I fetches data from the specified sampler view
1956 without any filtering. The source data may come from any resource type
1957 other than CUBE.
1958
1959 Syntax: ``SAMPLE_I dst, address, sampler_view``
1960
1961 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
1962
1963 The 'address' is specified as unsigned integers. If the 'address' is out of
1964 range [0...(# texels - 1)] the result of the fetch is always 0 in all
1965 components. As such the instruction doesn't honor address wrap modes, in
1966 cases where that behavior is desirable 'SAMPLE' instruction should be used.
1967 address.w always provides an unsigned integer mipmap level. If the value is
1968 out of the range then the instruction always returns 0 in all components.
1969 address.yz are ignored for buffers and 1d textures. address.z is ignored
1970 for 1d texture arrays and 2d textures.
1971
1972 For 1D texture arrays address.y provides the array index (also as unsigned
1973 integer). If the value is out of the range of available array indices
1974 [0... (array size - 1)] then the opcode always returns 0 in all components.
1975 For 2D texture arrays address.z provides the array index, otherwise it
1976 exhibits the same behavior as in the case for 1D texture arrays. The exact
1977 semantics of the source address are presented in the table below:
1978
1979 +---------------------------+----+-----+-----+---------+
1980 | resource type | X | Y | Z | W |
1981 +===========================+====+=====+=====+=========+
1982 | ``PIPE_BUFFER`` | x | | | ignored |
1983 +---------------------------+----+-----+-----+---------+
1984 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
1985 +---------------------------+----+-----+-----+---------+
1986 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
1987 +---------------------------+----+-----+-----+---------+
1988 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
1989 +---------------------------+----+-----+-----+---------+
1990 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
1991 +---------------------------+----+-----+-----+---------+
1992 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
1993 +---------------------------+----+-----+-----+---------+
1994 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
1995 +---------------------------+----+-----+-----+---------+
1996 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
1997 +---------------------------+----+-----+-----+---------+
1998
1999 Where 'mpl' is a mipmap level and 'idx' is the array index.
2000
2001 .. opcode:: SAMPLE_I_MS
2002
2003 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2004
2005 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2006
2007 .. opcode:: SAMPLE_B
2008
2009 Just like the SAMPLE instruction with the exception that an additional bias
2010 is applied to the level of detail computed as part of the instruction
2011 execution.
2012
2013 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2014
2015 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2016
2017 .. opcode:: SAMPLE_C
2018
2019 Similar to the SAMPLE instruction but it performs a comparison filter. The
2020 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2021 additional float32 operand, reference value, which must be a register with
2022 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2023 current samplers compare_func (in pipe_sampler_state) to compare reference
2024 value against the red component value for the surce resource at each texel
2025 that the currently configured texture filter covers based on the provided
2026 coordinates.
2027
2028 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2029
2030 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2031
2032 .. opcode:: SAMPLE_C_LZ
2033
2034 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2035 for level-zero.
2036
2037 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2038
2039 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2040
2041
2042 .. opcode:: SAMPLE_D
2043
2044 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2045 the source address in the x direction and the y direction are provided by
2046 extra parameters.
2047
2048 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2049
2050 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2051
2052 .. opcode:: SAMPLE_L
2053
2054 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2055 directly as a scalar value, representing no anisotropy.
2056
2057 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2058
2059 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2060
2061 .. opcode:: GATHER4
2062
2063 Gathers the four texels to be used in a bi-linear filtering operation and
2064 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2065 and cubemaps arrays. For 2D textures, only the addressing modes of the
2066 sampler and the top level of any mip pyramid are used. Set W to zero. It
2067 behaves like the SAMPLE instruction, but a filtered sample is not
2068 generated. The four samples that contribute to filtering are placed into
2069 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2070 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2071 magnitude of the deltas are half a texel.
2072
2073
2074 .. opcode:: SVIEWINFO
2075
2076 Query the dimensions of a given sampler view. dst receives width, height,
2077 depth or array size and number of mipmap levels as int4. The dst can have a
2078 writemask which will specify what info is the caller interested in.
2079
2080 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2081
2082 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2083
2084 src_mip_level is an unsigned integer scalar. If it's out of range then
2085 returns 0 for width, height and depth/array size but the total number of
2086 mipmap is still returned correctly for the given sampler view. The returned
2087 width, height and depth values are for the mipmap level selected by the
2088 src_mip_level and are in the number of texels. For 1d texture array width
2089 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2090 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2091 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2092 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2093 resinfo allowing swizzling dst values is ignored (due to the interaction
2094 with rcpfloat modifier which requires some swizzle handling in the state
2095 tracker anyway).
2096
2097 .. opcode:: SAMPLE_POS
2098
2099 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2100 indicated where the sample is located. If the resource is not a multi-sample
2101 resource and not a render target, the result is 0.
2102
2103 .. opcode:: SAMPLE_INFO
2104
2105 dst receives number of samples in x. If the resource is not a multi-sample
2106 resource and not a render target, the result is 0.
2107
2108
2109 .. _resourceopcodes:
2110
2111 Resource Access Opcodes
2112 ^^^^^^^^^^^^^^^^^^^^^^^
2113
2114 .. opcode:: LOAD - Fetch data from a shader resource
2115
2116 Syntax: ``LOAD dst, resource, address``
2117
2118 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2119
2120 Using the provided integer address, LOAD fetches data
2121 from the specified buffer or texture without any
2122 filtering.
2123
2124 The 'address' is specified as a vector of unsigned
2125 integers. If the 'address' is out of range the result
2126 is unspecified.
2127
2128 Only the first mipmap level of a resource can be read
2129 from using this instruction.
2130
2131 For 1D or 2D texture arrays, the array index is
2132 provided as an unsigned integer in address.y or
2133 address.z, respectively. address.yz are ignored for
2134 buffers and 1D textures. address.z is ignored for 1D
2135 texture arrays and 2D textures. address.w is always
2136 ignored.
2137
2138 .. opcode:: STORE - Write data to a shader resource
2139
2140 Syntax: ``STORE resource, address, src``
2141
2142 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2143
2144 Using the provided integer address, STORE writes data
2145 to the specified buffer or texture.
2146
2147 The 'address' is specified as a vector of unsigned
2148 integers. If the 'address' is out of range the result
2149 is unspecified.
2150
2151 Only the first mipmap level of a resource can be
2152 written to using this instruction.
2153
2154 For 1D or 2D texture arrays, the array index is
2155 provided as an unsigned integer in address.y or
2156 address.z, respectively. address.yz are ignored for
2157 buffers and 1D textures. address.z is ignored for 1D
2158 texture arrays and 2D textures. address.w is always
2159 ignored.
2160
2161
2162 .. _threadsyncopcodes:
2163
2164 Inter-thread synchronization opcodes
2165 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2166
2167 These opcodes are intended for communication between threads running
2168 within the same compute grid. For now they're only valid in compute
2169 programs.
2170
2171 .. opcode:: MFENCE - Memory fence
2172
2173 Syntax: ``MFENCE resource``
2174
2175 Example: ``MFENCE RES[0]``
2176
2177 This opcode forces strong ordering between any memory access
2178 operations that affect the specified resource. This means that
2179 previous loads and stores (and only those) will be performed and
2180 visible to other threads before the program execution continues.
2181
2182
2183 .. opcode:: LFENCE - Load memory fence
2184
2185 Syntax: ``LFENCE resource``
2186
2187 Example: ``LFENCE RES[0]``
2188
2189 Similar to MFENCE, but it only affects the ordering of memory loads.
2190
2191
2192 .. opcode:: SFENCE - Store memory fence
2193
2194 Syntax: ``SFENCE resource``
2195
2196 Example: ``SFENCE RES[0]``
2197
2198 Similar to MFENCE, but it only affects the ordering of memory stores.
2199
2200
2201 .. opcode:: BARRIER - Thread group barrier
2202
2203 ``BARRIER``
2204
2205 This opcode suspends the execution of the current thread until all
2206 the remaining threads in the working group reach the same point of
2207 the program. Results are unspecified if any of the remaining
2208 threads terminates or never reaches an executed BARRIER instruction.
2209
2210
2211 .. _atomopcodes:
2212
2213 Atomic opcodes
2214 ^^^^^^^^^^^^^^
2215
2216 These opcodes provide atomic variants of some common arithmetic and
2217 logical operations. In this context atomicity means that another
2218 concurrent memory access operation that affects the same memory
2219 location is guaranteed to be performed strictly before or after the
2220 entire execution of the atomic operation.
2221
2222 For the moment they're only valid in compute programs.
2223
2224 .. opcode:: ATOMUADD - Atomic integer addition
2225
2226 Syntax: ``ATOMUADD dst, resource, offset, src``
2227
2228 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2229
2230 The following operation is performed atomically on each component:
2231
2232 .. math::
2233
2234 dst_i = resource[offset]_i
2235
2236 resource[offset]_i = dst_i + src_i
2237
2238
2239 .. opcode:: ATOMXCHG - Atomic exchange
2240
2241 Syntax: ``ATOMXCHG dst, resource, offset, src``
2242
2243 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2244
2245 The following operation is performed atomically on each component:
2246
2247 .. math::
2248
2249 dst_i = resource[offset]_i
2250
2251 resource[offset]_i = src_i
2252
2253
2254 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2255
2256 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2257
2258 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2259
2260 The following operation is performed atomically on each component:
2261
2262 .. math::
2263
2264 dst_i = resource[offset]_i
2265
2266 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2267
2268
2269 .. opcode:: ATOMAND - Atomic bitwise And
2270
2271 Syntax: ``ATOMAND dst, resource, offset, src``
2272
2273 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2274
2275 The following operation is performed atomically on each component:
2276
2277 .. math::
2278
2279 dst_i = resource[offset]_i
2280
2281 resource[offset]_i = dst_i \& src_i
2282
2283
2284 .. opcode:: ATOMOR - Atomic bitwise Or
2285
2286 Syntax: ``ATOMOR dst, resource, offset, src``
2287
2288 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2289
2290 The following operation is performed atomically on each component:
2291
2292 .. math::
2293
2294 dst_i = resource[offset]_i
2295
2296 resource[offset]_i = dst_i | src_i
2297
2298
2299 .. opcode:: ATOMXOR - Atomic bitwise Xor
2300
2301 Syntax: ``ATOMXOR dst, resource, offset, src``
2302
2303 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2304
2305 The following operation is performed atomically on each component:
2306
2307 .. math::
2308
2309 dst_i = resource[offset]_i
2310
2311 resource[offset]_i = dst_i \oplus src_i
2312
2313
2314 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2315
2316 Syntax: ``ATOMUMIN dst, resource, offset, src``
2317
2318 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2319
2320 The following operation is performed atomically on each component:
2321
2322 .. math::
2323
2324 dst_i = resource[offset]_i
2325
2326 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2327
2328
2329 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2330
2331 Syntax: ``ATOMUMAX dst, resource, offset, src``
2332
2333 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2334
2335 The following operation is performed atomically on each component:
2336
2337 .. math::
2338
2339 dst_i = resource[offset]_i
2340
2341 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2342
2343
2344 .. opcode:: ATOMIMIN - Atomic signed minimum
2345
2346 Syntax: ``ATOMIMIN dst, resource, offset, src``
2347
2348 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2349
2350 The following operation is performed atomically on each component:
2351
2352 .. math::
2353
2354 dst_i = resource[offset]_i
2355
2356 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2357
2358
2359 .. opcode:: ATOMIMAX - Atomic signed maximum
2360
2361 Syntax: ``ATOMIMAX dst, resource, offset, src``
2362
2363 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2364
2365 The following operation is performed atomically on each component:
2366
2367 .. math::
2368
2369 dst_i = resource[offset]_i
2370
2371 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2372
2373
2374
2375 Explanation of symbols used
2376 ------------------------------
2377
2378
2379 Functions
2380 ^^^^^^^^^^^^^^
2381
2382
2383 :math:`|x|` Absolute value of `x`.
2384
2385 :math:`\lceil x \rceil` Ceiling of `x`.
2386
2387 clamp(x,y,z) Clamp x between y and z.
2388 (x < y) ? y : (x > z) ? z : x
2389
2390 :math:`\lfloor x\rfloor` Floor of `x`.
2391
2392 :math:`\log_2{x}` Logarithm of `x`, base 2.
2393
2394 max(x,y) Maximum of x and y.
2395 (x > y) ? x : y
2396
2397 min(x,y) Minimum of x and y.
2398 (x < y) ? x : y
2399
2400 partialx(x) Derivative of x relative to fragment's X.
2401
2402 partialy(x) Derivative of x relative to fragment's Y.
2403
2404 pop() Pop from stack.
2405
2406 :math:`x^y` `x` to the power `y`.
2407
2408 push(x) Push x on stack.
2409
2410 round(x) Round x.
2411
2412 trunc(x) Truncate x, i.e. drop the fraction bits.
2413
2414
2415 Keywords
2416 ^^^^^^^^^^^^^
2417
2418
2419 discard Discard fragment.
2420
2421 pc Program counter.
2422
2423 target Label of target instruction.
2424
2425
2426 Other tokens
2427 ---------------
2428
2429
2430 Declaration
2431 ^^^^^^^^^^^
2432
2433
2434 Declares a register that is will be referenced as an operand in Instruction
2435 tokens.
2436
2437 File field contains register file that is being declared and is one
2438 of TGSI_FILE.
2439
2440 UsageMask field specifies which of the register components can be accessed
2441 and is one of TGSI_WRITEMASK.
2442
2443 The Local flag specifies that a given value isn't intended for
2444 subroutine parameter passing and, as a result, the implementation
2445 isn't required to give any guarantees of it being preserved across
2446 subroutine boundaries. As it's merely a compiler hint, the
2447 implementation is free to ignore it.
2448
2449 If Dimension flag is set to 1, a Declaration Dimension token follows.
2450
2451 If Semantic flag is set to 1, a Declaration Semantic token follows.
2452
2453 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2454
2455 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2456
2457 If Array flag is set to 1, a Declaration Array token follows.
2458
2459 Array Declaration
2460 ^^^^^^^^^^^^^^^^^^^^^^^^
2461
2462 Declarations can optional have an ArrayID attribute which can be referred by
2463 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2464 if no ArrayID is specified.
2465
2466 If an indirect addressing operand refers to a specific declaration by using
2467 an ArrayID only the registers in this declaration are guaranteed to be
2468 accessed, accessing any register outside this declaration results in undefined
2469 behavior. Note that for compatibility the effective index is zero-based and
2470 not relative to the specified declaration
2471
2472 If no ArrayID is specified with an indirect addressing operand the whole
2473 register file might be accessed by this operand. This is strongly discouraged
2474 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2475
2476 Declaration Semantic
2477 ^^^^^^^^^^^^^^^^^^^^^^^^
2478
2479 Vertex and fragment shader input and output registers may be labeled
2480 with semantic information consisting of a name and index.
2481
2482 Follows Declaration token if Semantic bit is set.
2483
2484 Since its purpose is to link a shader with other stages of the pipeline,
2485 it is valid to follow only those Declaration tokens that declare a register
2486 either in INPUT or OUTPUT file.
2487
2488 SemanticName field contains the semantic name of the register being declared.
2489 There is no default value.
2490
2491 SemanticIndex is an optional subscript that can be used to distinguish
2492 different register declarations with the same semantic name. The default value
2493 is 0.
2494
2495 The meanings of the individual semantic names are explained in the following
2496 sections.
2497
2498 TGSI_SEMANTIC_POSITION
2499 """"""""""""""""""""""
2500
2501 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2502 output register which contains the homogeneous vertex position in the clip
2503 space coordinate system. After clipping, the X, Y and Z components of the
2504 vertex will be divided by the W value to get normalized device coordinates.
2505
2506 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2507 fragment shader input contains the fragment's window position. The X
2508 component starts at zero and always increases from left to right.
2509 The Y component starts at zero and always increases but Y=0 may either
2510 indicate the top of the window or the bottom depending on the fragment
2511 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2512 The Z coordinate ranges from 0 to 1 to represent depth from the front
2513 to the back of the Z buffer. The W component contains the interpolated
2514 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2515 but unlike d3d10 which interpolates the same 1/w but then gives back
2516 the reciprocal of the interpolated value).
2517
2518 Fragment shaders may also declare an output register with
2519 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2520 the fragment shader to change the fragment's Z position.
2521
2522
2523
2524 TGSI_SEMANTIC_COLOR
2525 """""""""""""""""""
2526
2527 For vertex shader outputs or fragment shader inputs/outputs, this
2528 label indicates that the resister contains an R,G,B,A color.
2529
2530 Several shader inputs/outputs may contain colors so the semantic index
2531 is used to distinguish them. For example, color[0] may be the diffuse
2532 color while color[1] may be the specular color.
2533
2534 This label is needed so that the flat/smooth shading can be applied
2535 to the right interpolants during rasterization.
2536
2537
2538
2539 TGSI_SEMANTIC_BCOLOR
2540 """"""""""""""""""""
2541
2542 Back-facing colors are only used for back-facing polygons, and are only valid
2543 in vertex shader outputs. After rasterization, all polygons are front-facing
2544 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2545 so all BCOLORs effectively become regular COLORs in the fragment shader.
2546
2547
2548 TGSI_SEMANTIC_FOG
2549 """""""""""""""""
2550
2551 Vertex shader inputs and outputs and fragment shader inputs may be
2552 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2553 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2554 to compute a fog blend factor which is used to blend the normal fragment color
2555 with a constant fog color. But fog coord really is just an ordinary vec4
2556 register like regular semantics.
2557
2558
2559 TGSI_SEMANTIC_PSIZE
2560 """""""""""""""""""
2561
2562 Vertex shader input and output registers may be labeled with
2563 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2564 in the form (S, 0, 0, 1). The point size controls the width or diameter
2565 of points for rasterization. This label cannot be used in fragment
2566 shaders.
2567
2568 When using this semantic, be sure to set the appropriate state in the
2569 :ref:`rasterizer` first.
2570
2571
2572 TGSI_SEMANTIC_TEXCOORD
2573 """"""""""""""""""""""
2574
2575 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2576
2577 Vertex shader outputs and fragment shader inputs may be labeled with
2578 this semantic to make them replaceable by sprite coordinates via the
2579 sprite_coord_enable state in the :ref:`rasterizer`.
2580 The semantic index permitted with this semantic is limited to <= 7.
2581
2582 If the driver does not support TEXCOORD, sprite coordinate replacement
2583 applies to inputs with the GENERIC semantic instead.
2584
2585 The intended use case for this semantic is gl_TexCoord.
2586
2587
2588 TGSI_SEMANTIC_PCOORD
2589 """"""""""""""""""""
2590
2591 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2592
2593 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2594 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2595 the current primitive is a point and point sprites are enabled. Otherwise,
2596 the contents of the register are undefined.
2597
2598 The intended use case for this semantic is gl_PointCoord.
2599
2600
2601 TGSI_SEMANTIC_GENERIC
2602 """""""""""""""""""""
2603
2604 All vertex/fragment shader inputs/outputs not labeled with any other
2605 semantic label can be considered to be generic attributes. Typical
2606 uses of generic inputs/outputs are texcoords and user-defined values.
2607
2608
2609 TGSI_SEMANTIC_NORMAL
2610 """"""""""""""""""""
2611
2612 Indicates that a vertex shader input is a normal vector. This is
2613 typically only used for legacy graphics APIs.
2614
2615
2616 TGSI_SEMANTIC_FACE
2617 """"""""""""""""""
2618
2619 This label applies to fragment shader inputs only and indicates that
2620 the register contains front/back-face information of the form (F, 0,
2621 0, 1). The first component will be positive when the fragment belongs
2622 to a front-facing polygon, and negative when the fragment belongs to a
2623 back-facing polygon.
2624
2625
2626 TGSI_SEMANTIC_EDGEFLAG
2627 """"""""""""""""""""""
2628
2629 For vertex shaders, this sematic label indicates that an input or
2630 output is a boolean edge flag. The register layout is [F, x, x, x]
2631 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2632 simply copies the edge flag input to the edgeflag output.
2633
2634 Edge flags are used to control which lines or points are actually
2635 drawn when the polygon mode converts triangles/quads/polygons into
2636 points or lines.
2637
2638
2639 TGSI_SEMANTIC_STENCIL
2640 """""""""""""""""""""
2641
2642 For fragment shaders, this semantic label indicates that an output
2643 is a writable stencil reference value. Only the Y component is writable.
2644 This allows the fragment shader to change the fragments stencilref value.
2645
2646
2647 TGSI_SEMANTIC_VIEWPORT_INDEX
2648 """"""""""""""""""""""""""""
2649
2650 For geometry shaders, this semantic label indicates that an output
2651 contains the index of the viewport (and scissor) to use.
2652 This is an integer value, and only the X component is used.
2653
2654
2655 TGSI_SEMANTIC_LAYER
2656 """""""""""""""""""
2657
2658 For geometry shaders, this semantic label indicates that an output
2659 contains the layer value to use for the color and depth/stencil surfaces.
2660 This is an integer value, and only the X component is used.
2661 (Also known as rendertarget array index.)
2662
2663
2664 TGSI_SEMANTIC_CULLDIST
2665 """"""""""""""""""""""
2666
2667 Used as distance to plane for performing application-defined culling
2668 of individual primitives against a plane. When components of vertex
2669 elements are given this label, these values are assumed to be a
2670 float32 signed distance to a plane. Primitives will be completely
2671 discarded if the plane distance for all of the vertices in the
2672 primitive are < 0. If a vertex has a cull distance of NaN, that
2673 vertex counts as "out" (as if its < 0);
2674 The limits on both clip and cull distances are bound
2675 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2676 the maximum number of components that can be used to hold the
2677 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2678 which specifies the maximum number of registers which can be
2679 annotated with those semantics.
2680
2681
2682 TGSI_SEMANTIC_CLIPDIST
2683 """"""""""""""""""""""
2684
2685 When components of vertex elements are identified this way, these
2686 values are each assumed to be a float32 signed distance to a plane.
2687 Primitive setup only invokes rasterization on pixels for which
2688 the interpolated plane distances are >= 0. Multiple clip planes
2689 can be implemented simultaneously, by annotating multiple
2690 components of one or more vertex elements with the above specified
2691 semantic. The limits on both clip and cull distances are bound
2692 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2693 the maximum number of components that can be used to hold the
2694 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2695 which specifies the maximum number of registers which can be
2696 annotated with those semantics.
2697
2698 TGSI_SEMANTIC_SAMPLEID
2699 """"""""""""""""""""""
2700
2701 For fragment shaders, this semantic label indicates that a system value
2702 contains the current sample id (i.e. gl_SampleID).
2703 This is an integer value, and only the X component is used.
2704
2705 TGSI_SEMANTIC_SAMPLEPOS
2706 """""""""""""""""""""""
2707
2708 For fragment shaders, this semantic label indicates that a system value
2709 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2710 and Y values are used.
2711
2712 TGSI_SEMANTIC_SAMPLEMASK
2713 """"""""""""""""""""""""
2714
2715 For fragment shaders, this semantic label indicates that an output contains
2716 the sample mask used to disable further sample processing
2717 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2718
2719 TGSI_SEMANTIC_INVOCATIONID
2720 """"""""""""""""""""""""""
2721
2722 For geometry shaders, this semantic label indicates that a system value
2723 contains the current invocation id (i.e. gl_InvocationID).
2724 This is an integer value, and only the X component is used.
2725
2726 TGSI_SEMANTIC_INSTANCEID
2727 """"""""""""""""""""""""
2728
2729 For vertex shaders, this semantic label indicates that a system value contains
2730 the current instance id (i.e. gl_InstanceID). It does not include the base
2731 instance. This is an integer value, and only the X component is used.
2732
2733 TGSI_SEMANTIC_VERTEXID
2734 """"""""""""""""""""""
2735
2736 For vertex shaders, this semantic label indicates that a system value contains
2737 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
2738 base vertex. This is an integer value, and only the X component is used.
2739
2740 TGSI_SEMANTIC_VERTEXID_NOBASE
2741 """""""""""""""""""""""""""""""
2742
2743 For vertex shaders, this semantic label indicates that a system value contains
2744 the current vertex id without including the base vertex (this corresponds to
2745 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
2746 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
2747 is used.
2748
2749 TGSI_SEMANTIC_BASEVERTEX
2750 """"""""""""""""""""""""
2751
2752 For vertex shaders, this semantic label indicates that a system value contains
2753 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
2754 this contains the first (or start) value instead.
2755 This is an integer value, and only the X component is used.
2756
2757 TGSI_SEMANTIC_PRIMID
2758 """"""""""""""""""""
2759
2760 For geometry and fragment shaders, this semantic label indicates the value
2761 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
2762 and only the X component is used.
2763 FIXME: This right now can be either a ordinary input or a system value...
2764
2765
2766 Declaration Interpolate
2767 ^^^^^^^^^^^^^^^^^^^^^^^
2768
2769 This token is only valid for fragment shader INPUT declarations.
2770
2771 The Interpolate field specifes the way input is being interpolated by
2772 the rasteriser and is one of TGSI_INTERPOLATE_*.
2773
2774 The Location field specifies the location inside the pixel that the
2775 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2776 when per-sample shading is enabled, the implementation may choose to
2777 interpolate at the sample irrespective of the Location field.
2778
2779 The CylindricalWrap bitfield specifies which register components
2780 should be subject to cylindrical wrapping when interpolating by the
2781 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2782 should be interpolated according to cylindrical wrapping rules.
2783
2784
2785 Declaration Sampler View
2786 ^^^^^^^^^^^^^^^^^^^^^^^^
2787
2788 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2789
2790 DCL SVIEW[#], resource, type(s)
2791
2792 Declares a shader input sampler view and assigns it to a SVIEW[#]
2793 register.
2794
2795 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2796
2797 type must be 1 or 4 entries (if specifying on a per-component
2798 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2799
2800
2801 Declaration Resource
2802 ^^^^^^^^^^^^^^^^^^^^
2803
2804 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2805
2806 DCL RES[#], resource [, WR] [, RAW]
2807
2808 Declares a shader input resource and assigns it to a RES[#]
2809 register.
2810
2811 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2812 2DArray.
2813
2814 If the RAW keyword is not specified, the texture data will be
2815 subject to conversion, swizzling and scaling as required to yield
2816 the specified data type from the physical data format of the bound
2817 resource.
2818
2819 If the RAW keyword is specified, no channel conversion will be
2820 performed: the values read for each of the channels (X,Y,Z,W) will
2821 correspond to consecutive words in the same order and format
2822 they're found in memory. No element-to-address conversion will be
2823 performed either: the value of the provided X coordinate will be
2824 interpreted in byte units instead of texel units. The result of
2825 accessing a misaligned address is undefined.
2826
2827 Usage of the STORE opcode is only allowed if the WR (writable) flag
2828 is set.
2829
2830
2831 Properties
2832 ^^^^^^^^^^^^^^^^^^^^^^^^
2833
2834 Properties are general directives that apply to the whole TGSI program.
2835
2836 FS_COORD_ORIGIN
2837 """""""""""""""
2838
2839 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2840 The default value is UPPER_LEFT.
2841
2842 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2843 increase downward and rightward.
2844 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2845 increase upward and rightward.
2846
2847 OpenGL defaults to LOWER_LEFT, and is configurable with the
2848 GL_ARB_fragment_coord_conventions extension.
2849
2850 DirectX 9/10 use UPPER_LEFT.
2851
2852 FS_COORD_PIXEL_CENTER
2853 """""""""""""""""""""
2854
2855 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2856 The default value is HALF_INTEGER.
2857
2858 If HALF_INTEGER, the fractionary part of the position will be 0.5
2859 If INTEGER, the fractionary part of the position will be 0.0
2860
2861 Note that this does not affect the set of fragments generated by
2862 rasterization, which is instead controlled by half_pixel_center in the
2863 rasterizer.
2864
2865 OpenGL defaults to HALF_INTEGER, and is configurable with the
2866 GL_ARB_fragment_coord_conventions extension.
2867
2868 DirectX 9 uses INTEGER.
2869 DirectX 10 uses HALF_INTEGER.
2870
2871 FS_COLOR0_WRITES_ALL_CBUFS
2872 """"""""""""""""""""""""""
2873 Specifies that writes to the fragment shader color 0 are replicated to all
2874 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2875 fragData is directed to a single color buffer, but fragColor is broadcast.
2876
2877 VS_PROHIBIT_UCPS
2878 """"""""""""""""""""""""""
2879 If this property is set on the program bound to the shader stage before the
2880 fragment shader, user clip planes should have no effect (be disabled) even if
2881 that shader does not write to any clip distance outputs and the rasterizer's
2882 clip_plane_enable is non-zero.
2883 This property is only supported by drivers that also support shader clip
2884 distance outputs.
2885 This is useful for APIs that don't have UCPs and where clip distances written
2886 by a shader cannot be disabled.
2887
2888 GS_INVOCATIONS
2889 """"""""""""""
2890
2891 Specifies the number of times a geometry shader should be executed for each
2892 input primitive. Each invocation will have a different
2893 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2894 be 1.
2895
2896 VS_WINDOW_SPACE_POSITION
2897 """"""""""""""""""""""""""
2898 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2899 is assumed to contain window space coordinates.
2900 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2901 directly taken from the 4-th component of the shader output.
2902 Naturally, clipping is not performed on window coordinates either.
2903 The effect of this property is undefined if a geometry or tessellation shader
2904 are in use.
2905
2906 Texture Sampling and Texture Formats
2907 ------------------------------------
2908
2909 This table shows how texture image components are returned as (x,y,z,w) tuples
2910 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2911 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2912 well.
2913
2914 +--------------------+--------------+--------------------+--------------+
2915 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2916 +====================+==============+====================+==============+
2917 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2918 +--------------------+--------------+--------------------+--------------+
2919 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2920 +--------------------+--------------+--------------------+--------------+
2921 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2922 +--------------------+--------------+--------------------+--------------+
2923 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2924 +--------------------+--------------+--------------------+--------------+
2925 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2926 +--------------------+--------------+--------------------+--------------+
2927 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2928 +--------------------+--------------+--------------------+--------------+
2929 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2930 +--------------------+--------------+--------------------+--------------+
2931 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2932 +--------------------+--------------+--------------------+--------------+
2933 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2934 | | | [#envmap-bumpmap]_ | |
2935 +--------------------+--------------+--------------------+--------------+
2936 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2937 | | | [#depth-tex-mode]_ | |
2938 +--------------------+--------------+--------------------+--------------+
2939 | S | (s, s, s, s) | unknown | unknown |
2940 +--------------------+--------------+--------------------+--------------+
2941
2942 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2943 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2944 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.