b09a720e43cb4992f13bec6977f870de5d8cf736
[mesa.git] / src / gallium / drivers / etnaviv / etnaviv_compiler_nir.c
1 /*
2 * Copyright (c) 2012-2019 Etnaviv Project
3 * Copyright (c) 2019 Zodiac Inflight Innovations
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sub license,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the
13 * next paragraph) shall be included in all copies or substantial portions
14 * of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Jonathan Marek <jonathan@marek.ca>
26 * Wladimir J. van der Laan <laanwj@gmail.com>
27 */
28
29 #include "etnaviv_compiler.h"
30 #include "etnaviv_compiler_nir.h"
31 #include "etnaviv_asm.h"
32 #include "etnaviv_context.h"
33 #include "etnaviv_debug.h"
34 #include "etnaviv_disasm.h"
35 #include "etnaviv_nir.h"
36 #include "etnaviv_uniforms.h"
37 #include "etnaviv_util.h"
38
39 #include <math.h>
40 #include "util/u_memory.h"
41 #include "util/register_allocate.h"
42 #include "compiler/nir/nir_builder.h"
43
44 #include "tgsi/tgsi_strings.h"
45 #include "util/u_half.h"
46
47 static bool
48 etna_alu_to_scalar_filter_cb(const nir_instr *instr, const void *data)
49 {
50 const struct etna_specs *specs = data;
51
52 if (instr->type != nir_instr_type_alu)
53 return false;
54
55 nir_alu_instr *alu = nir_instr_as_alu(instr);
56 switch (alu->op) {
57 case nir_op_frsq:
58 case nir_op_frcp:
59 case nir_op_flog2:
60 case nir_op_fexp2:
61 case nir_op_fsqrt:
62 case nir_op_fcos:
63 case nir_op_fsin:
64 case nir_op_fdiv:
65 case nir_op_imul:
66 return true;
67 /* TODO: can do better than alu_to_scalar for vector compares */
68 case nir_op_b32all_fequal2:
69 case nir_op_b32all_fequal3:
70 case nir_op_b32all_fequal4:
71 case nir_op_b32any_fnequal2:
72 case nir_op_b32any_fnequal3:
73 case nir_op_b32any_fnequal4:
74 case nir_op_b32all_iequal2:
75 case nir_op_b32all_iequal3:
76 case nir_op_b32all_iequal4:
77 case nir_op_b32any_inequal2:
78 case nir_op_b32any_inequal3:
79 case nir_op_b32any_inequal4:
80 return true;
81 case nir_op_fdot2:
82 if (!specs->has_halti2_instructions)
83 return true;
84 break;
85 default:
86 break;
87 }
88
89 return false;
90 }
91
92 static void
93 etna_emit_block_start(struct etna_compile *c, unsigned block)
94 {
95 c->block_ptr[block] = c->inst_ptr;
96 }
97
98 static void
99 etna_emit_output(struct etna_compile *c, nir_variable *var, struct etna_inst_src src)
100 {
101 struct etna_shader_io_file *sf = &c->variant->outfile;
102
103 if (is_fs(c)) {
104 switch (var->data.location) {
105 case FRAG_RESULT_COLOR:
106 case FRAG_RESULT_DATA0: /* DATA0 is used by gallium shaders for color */
107 c->variant->ps_color_out_reg = src.reg;
108 break;
109 case FRAG_RESULT_DEPTH:
110 c->variant->ps_depth_out_reg = src.reg;
111 break;
112 default:
113 unreachable("Unsupported fs output");
114 }
115 return;
116 }
117
118 switch (var->data.location) {
119 case VARYING_SLOT_POS:
120 c->variant->vs_pos_out_reg = src.reg;
121 break;
122 case VARYING_SLOT_PSIZ:
123 c->variant->vs_pointsize_out_reg = src.reg;
124 break;
125 default:
126 sf->reg[sf->num_reg].reg = src.reg;
127 sf->reg[sf->num_reg].slot = var->data.location;
128 sf->reg[sf->num_reg].num_components = glsl_get_components(var->type);
129 sf->num_reg++;
130 break;
131 }
132 }
133
134 #define OPT(nir, pass, ...) ({ \
135 bool this_progress = false; \
136 NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
137 this_progress; \
138 })
139
140 static void
141 etna_optimize_loop(nir_shader *s)
142 {
143 bool progress;
144 do {
145 progress = false;
146
147 NIR_PASS_V(s, nir_lower_vars_to_ssa);
148 progress |= OPT(s, nir_opt_copy_prop_vars);
149 progress |= OPT(s, nir_copy_prop);
150 progress |= OPT(s, nir_opt_dce);
151 progress |= OPT(s, nir_opt_cse);
152 progress |= OPT(s, nir_opt_peephole_select, 16, true, true);
153 progress |= OPT(s, nir_opt_intrinsics);
154 progress |= OPT(s, nir_opt_algebraic);
155 progress |= OPT(s, nir_opt_constant_folding);
156 progress |= OPT(s, nir_opt_dead_cf);
157 if (OPT(s, nir_opt_trivial_continues)) {
158 progress = true;
159 /* If nir_opt_trivial_continues makes progress, then we need to clean
160 * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
161 * to make progress.
162 */
163 OPT(s, nir_copy_prop);
164 OPT(s, nir_opt_dce);
165 }
166 progress |= OPT(s, nir_opt_loop_unroll, nir_var_all);
167 progress |= OPT(s, nir_opt_if, false);
168 progress |= OPT(s, nir_opt_remove_phis);
169 progress |= OPT(s, nir_opt_undef);
170 }
171 while (progress);
172 }
173
174 static int
175 etna_glsl_type_size(const struct glsl_type *type, bool bindless)
176 {
177 return glsl_count_attribute_slots(type, false);
178 }
179
180 static void
181 copy_uniform_state_to_shader(struct etna_shader_variant *sobj, uint64_t *consts, unsigned count)
182 {
183 struct etna_shader_uniform_info *uinfo = &sobj->uniforms;
184
185 uinfo->imm_count = count * 4;
186 uinfo->imm_data = MALLOC(uinfo->imm_count * sizeof(*uinfo->imm_data));
187 uinfo->imm_contents = MALLOC(uinfo->imm_count * sizeof(*uinfo->imm_contents));
188
189 for (unsigned i = 0; i < uinfo->imm_count; i++) {
190 uinfo->imm_data[i] = consts[i];
191 uinfo->imm_contents[i] = consts[i] >> 32;
192 }
193
194 etna_set_shader_uniforms_dirty_flags(sobj);
195 }
196
197 #define ALU_SWIZ(s) INST_SWIZ((s)->swizzle[0], (s)->swizzle[1], (s)->swizzle[2], (s)->swizzle[3])
198 #define SRC_DISABLE ((hw_src){})
199 #define SRC_CONST(idx, s) ((hw_src){.use=1, .rgroup = INST_RGROUP_UNIFORM_0, .reg=idx, .swiz=s})
200 #define SRC_REG(idx, s) ((hw_src){.use=1, .rgroup = INST_RGROUP_TEMP, .reg=idx, .swiz=s})
201
202 typedef struct etna_inst_dst hw_dst;
203 typedef struct etna_inst_src hw_src;
204
205 static inline hw_src
206 src_swizzle(hw_src src, unsigned swizzle)
207 {
208 if (src.rgroup != INST_RGROUP_IMMEDIATE)
209 src.swiz = inst_swiz_compose(src.swiz, swizzle);
210
211 return src;
212 }
213
214 /* constants are represented as 64-bit ints
215 * 32-bit for the value and 32-bit for the type (imm, uniform, etc)
216 */
217
218 #define CONST_VAL(a, b) (nir_const_value) {.u64 = (uint64_t)(a) << 32 | (uint64_t)(b)}
219 #define CONST(x) CONST_VAL(ETNA_IMMEDIATE_CONSTANT, x)
220 #define UNIFORM(x) CONST_VAL(ETNA_IMMEDIATE_UNIFORM, x)
221 #define TEXSCALE(x, i) CONST_VAL(ETNA_IMMEDIATE_TEXRECT_SCALE_X + (i), x)
222
223 static int
224 const_add(uint64_t *c, uint64_t value)
225 {
226 for (unsigned i = 0; i < 4; i++) {
227 if (c[i] == value || !c[i]) {
228 c[i] = value;
229 return i;
230 }
231 }
232 return -1;
233 }
234
235 static hw_src
236 const_src(struct etna_compile *c, nir_const_value *value, unsigned num_components)
237 {
238 /* use inline immediates if possible */
239 if (c->specs->halti >= 2 && num_components == 1 &&
240 value[0].u64 >> 32 == ETNA_IMMEDIATE_CONSTANT) {
241 uint32_t bits = value[0].u32;
242
243 /* "float" - shifted by 12 */
244 if ((bits & 0xfff) == 0)
245 return etna_immediate_src(0, bits >> 12);
246
247 /* "unsigned" - raw 20 bit value */
248 if (bits < (1 << 20))
249 return etna_immediate_src(2, bits);
250
251 /* "signed" - sign extended 20-bit (sign included) value */
252 if (bits >= 0xfff80000)
253 return etna_immediate_src(1, bits);
254 }
255
256 unsigned i;
257 int swiz = -1;
258 for (i = 0; swiz < 0; i++) {
259 uint64_t *a = &c->consts[i*4];
260 uint64_t save[4];
261 memcpy(save, a, sizeof(save));
262 swiz = 0;
263 for (unsigned j = 0; j < num_components; j++) {
264 int c = const_add(a, value[j].u64);
265 if (c < 0) {
266 memcpy(a, save, sizeof(save));
267 swiz = -1;
268 break;
269 }
270 swiz |= c << j * 2;
271 }
272 }
273
274 assert(i <= ETNA_MAX_IMM / 4);
275 c->const_count = MAX2(c->const_count, i);
276
277 return SRC_CONST(i - 1, swiz);
278 }
279
280 /* how to swizzle when used as a src */
281 static const uint8_t
282 reg_swiz[NUM_REG_TYPES] = {
283 [REG_TYPE_VEC4] = INST_SWIZ_IDENTITY,
284 [REG_TYPE_VIRT_SCALAR_X] = INST_SWIZ_IDENTITY,
285 [REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(Y, Y, Y, Y),
286 [REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY,
287 [REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY,
288 [REG_TYPE_VIRT_VEC2C_XY] = INST_SWIZ_IDENTITY,
289 [REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(Z, Z, Z, Z),
290 [REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, Z, X, Z),
291 [REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(Y, Z, Y, Z),
292 [REG_TYPE_VIRT_VEC2C_YZ] = SWIZZLE(Y, Z, Y, Z),
293 [REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY,
294 [REG_TYPE_VIRT_VEC3C_XYZ] = INST_SWIZ_IDENTITY,
295 [REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(W, W, W, W),
296 [REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, W, X, W),
297 [REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(Y, W, Y, W),
298 [REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, W, X),
299 [REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(Z, W, Z, W),
300 [REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(Z, W, Z, W),
301 [REG_TYPE_VIRT_VEC2C_ZW] = SWIZZLE(Z, W, Z, W),
302 [REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Z, W, X),
303 [REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(Y, Z, W, X),
304 [REG_TYPE_VIRT_VEC3C_YZW] = SWIZZLE(Y, Z, W, X),
305 };
306
307 /* how to swizzle when used as a dest */
308 static const uint8_t
309 reg_dst_swiz[NUM_REG_TYPES] = {
310 [REG_TYPE_VEC4] = INST_SWIZ_IDENTITY,
311 [REG_TYPE_VIRT_SCALAR_X] = INST_SWIZ_IDENTITY,
312 [REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(X, X, X, X),
313 [REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY,
314 [REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY,
315 [REG_TYPE_VIRT_VEC2C_XY] = INST_SWIZ_IDENTITY,
316 [REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(X, X, X, X),
317 [REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, X, Y, Y),
318 [REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(X, X, Y, Y),
319 [REG_TYPE_VIRT_VEC2C_YZ] = SWIZZLE(X, X, Y, Y),
320 [REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY,
321 [REG_TYPE_VIRT_VEC3C_XYZ] = INST_SWIZ_IDENTITY,
322 [REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(X, X, X, X),
323 [REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, X, Y, Y),
324 [REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(X, X, Y, Y),
325 [REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, Z, Z),
326 [REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(X, X, X, Y),
327 [REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(X, X, X, Y),
328 [REG_TYPE_VIRT_VEC2C_ZW] = SWIZZLE(X, X, X, Y),
329 [REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Y, Y, Z),
330 [REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(X, X, Y, Z),
331 [REG_TYPE_VIRT_VEC3C_YZW] = SWIZZLE(X, X, Y, Z),
332 };
333
334 /* nir_src to allocated register */
335 static hw_src
336 ra_src(struct etna_compile *c, nir_src *src)
337 {
338 unsigned reg = ra_get_node_reg(c->g, c->live_map[src_index(c->impl, src)]);
339 return SRC_REG(reg_get_base(c, reg), reg_swiz[reg_get_type(reg)]);
340 }
341
342 static hw_src
343 get_src(struct etna_compile *c, nir_src *src)
344 {
345 if (!src->is_ssa)
346 return ra_src(c, src);
347
348 nir_instr *instr = src->ssa->parent_instr;
349
350 if (instr->pass_flags & BYPASS_SRC) {
351 assert(instr->type == nir_instr_type_alu);
352 nir_alu_instr *alu = nir_instr_as_alu(instr);
353 assert(alu->op == nir_op_mov);
354 return src_swizzle(get_src(c, &alu->src[0].src), ALU_SWIZ(&alu->src[0]));
355 }
356
357 switch (instr->type) {
358 case nir_instr_type_load_const:
359 return const_src(c, nir_instr_as_load_const(instr)->value, src->ssa->num_components);
360 case nir_instr_type_intrinsic: {
361 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
362 switch (intr->intrinsic) {
363 case nir_intrinsic_load_input:
364 case nir_intrinsic_load_instance_id:
365 case nir_intrinsic_load_uniform:
366 case nir_intrinsic_load_ubo:
367 return ra_src(c, src);
368 case nir_intrinsic_load_front_face:
369 return (hw_src) { .use = 1, .rgroup = INST_RGROUP_INTERNAL };
370 case nir_intrinsic_load_frag_coord:
371 return SRC_REG(0, INST_SWIZ_IDENTITY);
372 default:
373 compile_error(c, "Unhandled NIR intrinsic type: %s\n",
374 nir_intrinsic_infos[intr->intrinsic].name);
375 break;
376 }
377 } break;
378 case nir_instr_type_alu:
379 case nir_instr_type_tex:
380 return ra_src(c, src);
381 case nir_instr_type_ssa_undef: {
382 /* return zero to deal with broken Blur demo */
383 nir_const_value value = CONST(0);
384 return src_swizzle(const_src(c, &value, 1), SWIZZLE(X,X,X,X));
385 }
386 default:
387 compile_error(c, "Unhandled NIR instruction type: %d\n", instr->type);
388 break;
389 }
390
391 return SRC_DISABLE;
392 }
393
394 static bool
395 vec_dest_has_swizzle(nir_alu_instr *vec, nir_ssa_def *ssa)
396 {
397 for (unsigned i = 0; i < 4; i++) {
398 if (!(vec->dest.write_mask & (1 << i)) || vec->src[i].src.ssa != ssa)
399 continue;
400
401 if (vec->src[i].swizzle[0] != i)
402 return true;
403 }
404
405 /* don't deal with possible bypassed vec/mov chain */
406 nir_foreach_use(use_src, ssa) {
407 nir_instr *instr = use_src->parent_instr;
408 if (instr->type != nir_instr_type_alu)
409 continue;
410
411 nir_alu_instr *alu = nir_instr_as_alu(instr);
412
413 switch (alu->op) {
414 case nir_op_mov:
415 case nir_op_vec2:
416 case nir_op_vec3:
417 case nir_op_vec4:
418 return true;
419 default:
420 break;
421 }
422 }
423 return false;
424 }
425
426 /* get allocated dest register for nir_dest
427 * *p_swiz tells how the components need to be placed into register
428 */
429 static hw_dst
430 ra_dest(struct etna_compile *c, nir_dest *dest, unsigned *p_swiz)
431 {
432 unsigned swiz = INST_SWIZ_IDENTITY, mask = 0xf;
433 dest = real_dest(dest, &swiz, &mask);
434
435 unsigned r = ra_get_node_reg(c->g, c->live_map[dest_index(c->impl, dest)]);
436 unsigned t = reg_get_type(r);
437
438 *p_swiz = inst_swiz_compose(swiz, reg_dst_swiz[t]);
439
440 return (hw_dst) {
441 .use = 1,
442 .reg = reg_get_base(c, r),
443 .write_mask = inst_write_mask_compose(mask, reg_writemask[t]),
444 };
445 }
446
447 static void
448 emit_alu(struct etna_compile *c, nir_alu_instr * alu)
449 {
450 const nir_op_info *info = &nir_op_infos[alu->op];
451
452 /* marked as dead instruction (vecN and other bypassed instr) */
453 if (alu->instr.pass_flags)
454 return;
455
456 assert(!(alu->op >= nir_op_vec2 && alu->op <= nir_op_vec4));
457
458 unsigned dst_swiz;
459 hw_dst dst = ra_dest(c, &alu->dest.dest, &dst_swiz);
460
461 /* compose alu write_mask with RA write mask */
462 if (!alu->dest.dest.is_ssa)
463 dst.write_mask = inst_write_mask_compose(alu->dest.write_mask, dst.write_mask);
464
465 switch (alu->op) {
466 case nir_op_fdot2:
467 case nir_op_fdot3:
468 case nir_op_fdot4:
469 /* not per-component - don't compose dst_swiz */
470 dst_swiz = INST_SWIZ_IDENTITY;
471 break;
472 default:
473 break;
474 }
475
476 hw_src srcs[3];
477
478 for (int i = 0; i < info->num_inputs; i++) {
479 nir_alu_src *asrc = &alu->src[i];
480 hw_src src;
481
482 src = src_swizzle(get_src(c, &asrc->src), ALU_SWIZ(asrc));
483 src = src_swizzle(src, dst_swiz);
484
485 if (src.rgroup != INST_RGROUP_IMMEDIATE) {
486 src.neg = asrc->negate || (alu->op == nir_op_fneg);
487 src.abs = asrc->abs || (alu->op == nir_op_fabs);
488 } else {
489 assert(!asrc->negate && alu->op != nir_op_fneg);
490 assert(!asrc->abs && alu->op != nir_op_fabs);
491 }
492
493 srcs[i] = src;
494 }
495
496 etna_emit_alu(c, alu->op, dst, srcs, alu->dest.saturate || (alu->op == nir_op_fsat));
497 }
498
499 static void
500 emit_tex(struct etna_compile *c, nir_tex_instr * tex)
501 {
502 unsigned dst_swiz;
503 hw_dst dst = ra_dest(c, &tex->dest, &dst_swiz);
504 nir_src *coord = NULL, *lod_bias = NULL, *compare = NULL;
505
506 for (unsigned i = 0; i < tex->num_srcs; i++) {
507 switch (tex->src[i].src_type) {
508 case nir_tex_src_coord:
509 coord = &tex->src[i].src;
510 break;
511 case nir_tex_src_bias:
512 case nir_tex_src_lod:
513 assert(!lod_bias);
514 lod_bias = &tex->src[i].src;
515 break;
516 case nir_tex_src_comparator:
517 compare = &tex->src[i].src;
518 break;
519 default:
520 compile_error(c, "Unhandled NIR tex src type: %d\n",
521 tex->src[i].src_type);
522 break;
523 }
524 }
525
526 etna_emit_tex(c, tex->op, tex->sampler_index, dst_swiz, dst, get_src(c, coord),
527 lod_bias ? get_src(c, lod_bias) : SRC_DISABLE,
528 compare ? get_src(c, compare) : SRC_DISABLE);
529 }
530
531 static void
532 emit_intrinsic(struct etna_compile *c, nir_intrinsic_instr * intr)
533 {
534 switch (intr->intrinsic) {
535 case nir_intrinsic_store_deref:
536 etna_emit_output(c, nir_src_as_deref(intr->src[0])->var, get_src(c, &intr->src[1]));
537 break;
538 case nir_intrinsic_discard_if:
539 etna_emit_discard(c, get_src(c, &intr->src[0]));
540 break;
541 case nir_intrinsic_discard:
542 etna_emit_discard(c, SRC_DISABLE);
543 break;
544 case nir_intrinsic_load_uniform: {
545 unsigned dst_swiz;
546 struct etna_inst_dst dst = ra_dest(c, &intr->dest, &dst_swiz);
547
548 /* TODO: rework so extra MOV isn't required, load up to 4 addresses at once */
549 emit_inst(c, &(struct etna_inst) {
550 .opcode = INST_OPCODE_MOVAR,
551 .dst.write_mask = 0x1,
552 .src[2] = get_src(c, &intr->src[0]),
553 });
554 emit_inst(c, &(struct etna_inst) {
555 .opcode = INST_OPCODE_MOV,
556 .dst = dst,
557 .src[2] = {
558 .use = 1,
559 .rgroup = INST_RGROUP_UNIFORM_0,
560 .reg = nir_intrinsic_base(intr),
561 .swiz = dst_swiz,
562 .amode = INST_AMODE_ADD_A_X,
563 },
564 });
565 } break;
566 case nir_intrinsic_load_ubo: {
567 /* TODO: if offset is of the form (x + C) then add C to the base instead */
568 unsigned idx = nir_src_as_const_value(intr->src[0])[0].u32;
569 unsigned dst_swiz;
570 emit_inst(c, &(struct etna_inst) {
571 .opcode = INST_OPCODE_LOAD,
572 .type = INST_TYPE_U32,
573 .dst = ra_dest(c, &intr->dest, &dst_swiz),
574 .src[0] = get_src(c, &intr->src[1]),
575 .src[1] = const_src(c, &CONST_VAL(ETNA_IMMEDIATE_UBO0_ADDR + idx, 0), 1),
576 });
577 } break;
578 case nir_intrinsic_load_front_face:
579 case nir_intrinsic_load_frag_coord:
580 assert(intr->dest.is_ssa); /* TODO - lower phis could cause this */
581 break;
582 case nir_intrinsic_load_input:
583 case nir_intrinsic_load_instance_id:
584 break;
585 default:
586 compile_error(c, "Unhandled NIR intrinsic type: %s\n",
587 nir_intrinsic_infos[intr->intrinsic].name);
588 }
589 }
590
591 static void
592 emit_instr(struct etna_compile *c, nir_instr * instr)
593 {
594 switch (instr->type) {
595 case nir_instr_type_alu:
596 emit_alu(c, nir_instr_as_alu(instr));
597 break;
598 case nir_instr_type_tex:
599 emit_tex(c, nir_instr_as_tex(instr));
600 break;
601 case nir_instr_type_intrinsic:
602 emit_intrinsic(c, nir_instr_as_intrinsic(instr));
603 break;
604 case nir_instr_type_jump:
605 assert(nir_instr_is_last(instr));
606 case nir_instr_type_load_const:
607 case nir_instr_type_ssa_undef:
608 case nir_instr_type_deref:
609 break;
610 default:
611 compile_error(c, "Unhandled NIR instruction type: %d\n", instr->type);
612 break;
613 }
614 }
615
616 static void
617 emit_block(struct etna_compile *c, nir_block * block)
618 {
619 etna_emit_block_start(c, block->index);
620
621 nir_foreach_instr(instr, block)
622 emit_instr(c, instr);
623
624 /* succs->index < block->index is for the loop case */
625 nir_block *succs = block->successors[0];
626 if (nir_block_ends_in_jump(block) || succs->index < block->index)
627 etna_emit_jump(c, succs->index, SRC_DISABLE);
628 }
629
630 static void
631 emit_cf_list(struct etna_compile *c, struct exec_list *list);
632
633 static void
634 emit_if(struct etna_compile *c, nir_if * nif)
635 {
636 etna_emit_jump(c, nir_if_first_else_block(nif)->index, get_src(c, &nif->condition));
637 emit_cf_list(c, &nif->then_list);
638
639 /* jump at end of then_list to skip else_list
640 * not needed if then_list already ends with a jump or else_list is empty
641 */
642 if (!nir_block_ends_in_jump(nir_if_last_then_block(nif)) &&
643 !nir_cf_list_is_empty_block(&nif->else_list))
644 etna_emit_jump(c, nir_if_last_else_block(nif)->successors[0]->index, SRC_DISABLE);
645
646 emit_cf_list(c, &nif->else_list);
647 }
648
649 static void
650 emit_cf_list(struct etna_compile *c, struct exec_list *list)
651 {
652 foreach_list_typed(nir_cf_node, node, node, list) {
653 switch (node->type) {
654 case nir_cf_node_block:
655 emit_block(c, nir_cf_node_as_block(node));
656 break;
657 case nir_cf_node_if:
658 emit_if(c, nir_cf_node_as_if(node));
659 break;
660 case nir_cf_node_loop:
661 emit_cf_list(c, &nir_cf_node_as_loop(node)->body);
662 break;
663 default:
664 compile_error(c, "Unknown NIR node type\n");
665 break;
666 }
667 }
668 }
669
670 /* based on nir_lower_vec_to_movs */
671 static unsigned
672 insert_vec_mov(nir_alu_instr *vec, unsigned start_idx, nir_shader *shader)
673 {
674 assert(start_idx < nir_op_infos[vec->op].num_inputs);
675 unsigned write_mask = (1u << start_idx);
676
677 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov);
678 nir_alu_src_copy(&mov->src[0], &vec->src[start_idx], mov);
679
680 mov->src[0].swizzle[0] = vec->src[start_idx].swizzle[0];
681 mov->src[0].negate = vec->src[start_idx].negate;
682 mov->src[0].abs = vec->src[start_idx].abs;
683
684 unsigned num_components = 1;
685
686 for (unsigned i = start_idx + 1; i < 4; i++) {
687 if (!(vec->dest.write_mask & (1 << i)))
688 continue;
689
690 if (nir_srcs_equal(vec->src[i].src, vec->src[start_idx].src) &&
691 vec->src[i].negate == vec->src[start_idx].negate &&
692 vec->src[i].abs == vec->src[start_idx].abs) {
693 write_mask |= (1 << i);
694 mov->src[0].swizzle[num_components] = vec->src[i].swizzle[0];
695 num_components++;
696 }
697 }
698
699 mov->dest.write_mask = (1 << num_components) - 1;
700 nir_ssa_dest_init(&mov->instr, &mov->dest.dest, num_components, 32, NULL);
701
702 /* replace vec srcs with inserted mov */
703 for (unsigned i = 0, j = 0; i < 4; i++) {
704 if (!(write_mask & (1 << i)))
705 continue;
706
707 nir_instr_rewrite_src(&vec->instr, &vec->src[i].src, nir_src_for_ssa(&mov->dest.dest.ssa));
708 vec->src[i].swizzle[0] = j++;
709 }
710
711 nir_instr_insert_before(&vec->instr, &mov->instr);
712
713 return write_mask;
714 }
715
716 /*
717 * for vecN instructions:
718 * -merge constant sources into a single src
719 * -insert movs (nir_lower_vec_to_movs equivalent)
720 * for non-vecN instructions:
721 * -try to merge constants as single constant
722 * -insert movs for multiple constants (pre-HALTI5)
723 */
724 static void
725 lower_alu(struct etna_compile *c, nir_alu_instr *alu)
726 {
727 const nir_op_info *info = &nir_op_infos[alu->op];
728
729 nir_builder b;
730 nir_builder_init(&b, c->impl);
731 b.cursor = nir_before_instr(&alu->instr);
732
733 switch (alu->op) {
734 case nir_op_vec2:
735 case nir_op_vec3:
736 case nir_op_vec4:
737 break;
738 default:
739 /* pre-GC7000L can only have 1 uniform src per instruction */
740 if (c->specs->halti >= 5)
741 return;
742
743 nir_const_value value[4] = {};
744 uint8_t swizzle[4][4] = {};
745 unsigned swiz_max = 0, num_const = 0;
746
747 for (unsigned i = 0; i < info->num_inputs; i++) {
748 nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
749 if (!cv)
750 continue;
751
752 unsigned num_components = info->input_sizes[i] ?: alu->dest.dest.ssa.num_components;
753 for (unsigned j = 0; j < num_components; j++) {
754 int idx = const_add(&value[0].u64, cv[alu->src[i].swizzle[j]].u64);
755 swizzle[i][j] = idx;
756 swiz_max = MAX2(swiz_max, (unsigned) idx);
757 }
758 num_const++;
759 }
760
761 /* nothing to do */
762 if (num_const <= 1)
763 return;
764
765 /* resolve with single combined const src */
766 if (swiz_max < 4) {
767 nir_ssa_def *def = nir_build_imm(&b, swiz_max + 1, 32, value);
768
769 for (unsigned i = 0; i < info->num_inputs; i++) {
770 nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
771 if (!cv)
772 continue;
773
774 nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(def));
775
776 for (unsigned j = 0; j < 4; j++)
777 alu->src[i].swizzle[j] = swizzle[i][j];
778 }
779 return;
780 }
781
782 /* resolve with movs */
783 num_const = 0;
784 for (unsigned i = 0; i < info->num_inputs; i++) {
785 nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
786 if (!cv)
787 continue;
788
789 num_const++;
790 if (num_const == 1)
791 continue;
792
793 nir_ssa_def *mov = nir_mov(&b, alu->src[i].src.ssa);
794 nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(mov));
795 }
796 return;
797 }
798
799 nir_const_value value[4];
800 unsigned num_components = 0;
801
802 for (unsigned i = 0; i < info->num_inputs; i++) {
803 nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
804 if (cv)
805 value[num_components++] = cv[alu->src[i].swizzle[0]];
806 }
807
808 /* if there is more than one constant source to the vecN, combine them
809 * into a single load_const (removing the vecN completely if all components
810 * are constant)
811 */
812 if (num_components > 1) {
813 nir_ssa_def *def = nir_build_imm(&b, num_components, 32, value);
814
815 if (num_components == info->num_inputs) {
816 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(def));
817 nir_instr_remove(&alu->instr);
818 return;
819 }
820
821 for (unsigned i = 0, j = 0; i < info->num_inputs; i++) {
822 nir_const_value *cv = nir_src_as_const_value(alu->src[i].src);
823 if (!cv)
824 continue;
825
826 nir_instr_rewrite_src(&alu->instr, &alu->src[i].src, nir_src_for_ssa(def));
827 alu->src[i].swizzle[0] = j++;
828 }
829 }
830
831 unsigned finished_write_mask = 0;
832 for (unsigned i = 0; i < 4; i++) {
833 if (!(alu->dest.write_mask & (1 << i)))
834 continue;
835
836 nir_ssa_def *ssa = alu->src[i].src.ssa;
837
838 /* check that vecN instruction is only user of this */
839 bool need_mov = list_length(&ssa->if_uses) != 0;
840 nir_foreach_use(use_src, ssa) {
841 if (use_src->parent_instr != &alu->instr)
842 need_mov = true;
843 }
844
845 nir_instr *instr = ssa->parent_instr;
846 switch (instr->type) {
847 case nir_instr_type_alu:
848 case nir_instr_type_tex:
849 break;
850 case nir_instr_type_intrinsic:
851 if (nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_load_input) {
852 need_mov = vec_dest_has_swizzle(alu, &nir_instr_as_intrinsic(instr)->dest.ssa);
853 break;
854 }
855 /* fallthrough */
856 default:
857 need_mov = true;
858 }
859
860 if (need_mov && !(finished_write_mask & (1 << i)))
861 finished_write_mask |= insert_vec_mov(alu, i, c->nir);
862 }
863 }
864
865 static bool
866 emit_shader(struct etna_compile *c, unsigned *num_temps, unsigned *num_consts)
867 {
868 nir_shader *shader = c->nir;
869 c->impl = nir_shader_get_entrypoint(shader);
870
871 bool have_indirect_uniform = false;
872 unsigned indirect_max = 0;
873
874 nir_builder b;
875 nir_builder_init(&b, c->impl);
876
877 /* convert non-dynamic uniform loads to constants, etc */
878 nir_foreach_block(block, c->impl) {
879 nir_foreach_instr_safe(instr, block) {
880 switch(instr->type) {
881 case nir_instr_type_alu:
882 /* deals with vecN and const srcs */
883 lower_alu(c, nir_instr_as_alu(instr));
884 break;
885 case nir_instr_type_load_const: {
886 nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
887 for (unsigned i = 0; i < load_const->def.num_components; i++)
888 load_const->value[i] = CONST(load_const->value[i].u32);
889 } break;
890 case nir_instr_type_intrinsic: {
891 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
892 /* TODO: load_ubo can also become a constant in some cases
893 * (at the moment it can end up emitting a LOAD with two
894 * uniform sources, which could be a problem on HALTI2)
895 */
896 if (intr->intrinsic != nir_intrinsic_load_uniform)
897 break;
898 nir_const_value *off = nir_src_as_const_value(intr->src[0]);
899 if (!off || off[0].u64 >> 32 != ETNA_IMMEDIATE_CONSTANT) {
900 have_indirect_uniform = true;
901 indirect_max = nir_intrinsic_base(intr) + nir_intrinsic_range(intr);
902 break;
903 }
904
905 unsigned base = nir_intrinsic_base(intr);
906 /* pre halti2 uniform offset will be float */
907 if (c->specs->halti < 2)
908 base += (unsigned) off[0].f32;
909 else
910 base += off[0].u32;
911 nir_const_value value[4];
912
913 for (unsigned i = 0; i < intr->dest.ssa.num_components; i++) {
914 if (nir_intrinsic_base(intr) < 0)
915 value[i] = TEXSCALE(~nir_intrinsic_base(intr), i);
916 else
917 value[i] = UNIFORM(base * 4 + i);
918 }
919
920 b.cursor = nir_after_instr(instr);
921 nir_ssa_def *def = nir_build_imm(&b, intr->dest.ssa.num_components, 32, value);
922
923 nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_src_for_ssa(def));
924 nir_instr_remove(instr);
925 } break;
926 default:
927 break;
928 }
929 }
930 }
931
932 /* TODO: only emit required indirect uniform ranges */
933 if (have_indirect_uniform) {
934 for (unsigned i = 0; i < indirect_max * 4; i++)
935 c->consts[i] = UNIFORM(i).u64;
936 c->const_count = indirect_max;
937 }
938
939 /* add mov for any store output using sysval/const */
940 nir_foreach_block(block, c->impl) {
941 nir_foreach_instr_safe(instr, block) {
942 if (instr->type != nir_instr_type_intrinsic)
943 continue;
944
945 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
946
947 switch (intr->intrinsic) {
948 case nir_intrinsic_store_deref: {
949 nir_src *src = &intr->src[1];
950 if (nir_src_is_const(*src) || is_sysval(src->ssa->parent_instr)) {
951 b.cursor = nir_before_instr(instr);
952 nir_instr_rewrite_src(instr, src, nir_src_for_ssa(nir_mov(&b, src->ssa)));
953 }
954 } break;
955 default:
956 break;
957 }
958 }
959 }
960
961 /* call directly to avoid validation (load_const don't pass validation at this point) */
962 nir_convert_from_ssa(shader, true);
963 nir_opt_dce(shader);
964
965 etna_ra_assign(c, shader);
966
967 emit_cf_list(c, &nir_shader_get_entrypoint(shader)->body);
968
969 *num_temps = etna_ra_finish(c);
970 *num_consts = c->const_count;
971 return true;
972 }
973
974 static bool
975 etna_compile_check_limits(struct etna_shader_variant *v)
976 {
977 const struct etna_specs *specs = v->shader->specs;
978 int max_uniforms = (v->stage == MESA_SHADER_VERTEX)
979 ? specs->max_vs_uniforms
980 : specs->max_ps_uniforms;
981
982 if (!specs->has_icache && v->needs_icache) {
983 DBG("Number of instructions (%d) exceeds maximum %d", v->code_size / 4,
984 specs->max_instructions);
985 return false;
986 }
987
988 if (v->num_temps > specs->max_registers) {
989 DBG("Number of registers (%d) exceeds maximum %d", v->num_temps,
990 specs->max_registers);
991 return false;
992 }
993
994 if (v->uniforms.imm_count / 4 > max_uniforms) {
995 DBG("Number of uniforms (%d) exceeds maximum %d",
996 v->uniforms.imm_count / 4, max_uniforms);
997 return false;
998 }
999
1000 return true;
1001 }
1002
1003 static void
1004 fill_vs_mystery(struct etna_shader_variant *v)
1005 {
1006 const struct etna_specs *specs = v->shader->specs;
1007
1008 v->input_count_unk8 = DIV_ROUND_UP(v->infile.num_reg + 4, 16); /* XXX what is this */
1009
1010 /* fill in "mystery meat" load balancing value. This value determines how
1011 * work is scheduled between VS and PS
1012 * in the unified shader architecture. More precisely, it is determined from
1013 * the number of VS outputs, as well as chip-specific
1014 * vertex output buffer size, vertex cache size, and the number of shader
1015 * cores.
1016 *
1017 * XXX this is a conservative estimate, the "optimal" value is only known for
1018 * sure at link time because some
1019 * outputs may be unused and thus unmapped. Then again, in the general use
1020 * case with GLSL the vertex and fragment
1021 * shaders are linked already before submitting to Gallium, thus all outputs
1022 * are used.
1023 *
1024 * note: TGSI compiler counts all outputs (including position and pointsize), here
1025 * v->outfile.num_reg only counts varyings, +1 to compensate for the position output
1026 * TODO: might have a problem that we don't count pointsize when it is used
1027 */
1028
1029 int half_out = v->outfile.num_reg / 2 + 1;
1030 assert(half_out);
1031
1032 uint32_t b = ((20480 / (specs->vertex_output_buffer_size -
1033 2 * half_out * specs->vertex_cache_size)) +
1034 9) /
1035 10;
1036 uint32_t a = (b + 256 / (specs->shader_core_count * half_out)) / 2;
1037 v->vs_load_balancing = VIVS_VS_LOAD_BALANCING_A(MIN2(a, 255)) |
1038 VIVS_VS_LOAD_BALANCING_B(MIN2(b, 255)) |
1039 VIVS_VS_LOAD_BALANCING_C(0x3f) |
1040 VIVS_VS_LOAD_BALANCING_D(0x0f);
1041 }
1042
1043 bool
1044 etna_compile_shader_nir(struct etna_shader_variant *v)
1045 {
1046 if (unlikely(!v))
1047 return false;
1048
1049 struct etna_compile *c = CALLOC_STRUCT(etna_compile);
1050 if (!c)
1051 return false;
1052
1053 c->variant = v;
1054 c->specs = v->shader->specs;
1055 c->nir = nir_shader_clone(NULL, v->shader->nir);
1056
1057 nir_shader *s = c->nir;
1058 const struct etna_specs *specs = c->specs;
1059
1060 v->stage = s->info.stage;
1061 v->num_loops = 0; /* TODO */
1062 v->vs_id_in_reg = -1;
1063 v->vs_pos_out_reg = -1;
1064 v->vs_pointsize_out_reg = -1;
1065 v->ps_color_out_reg = 0; /* 0 for shader that doesn't write fragcolor.. */
1066 v->ps_depth_out_reg = -1;
1067
1068 /* setup input linking */
1069 struct etna_shader_io_file *sf = &v->infile;
1070 if (s->info.stage == MESA_SHADER_VERTEX) {
1071 nir_foreach_shader_in_variable(var, s) {
1072 unsigned idx = var->data.driver_location;
1073 sf->reg[idx].reg = idx;
1074 sf->reg[idx].slot = var->data.location;
1075 sf->reg[idx].num_components = glsl_get_components(var->type);
1076 sf->num_reg = MAX2(sf->num_reg, idx+1);
1077 }
1078 } else {
1079 unsigned count = 0;
1080 nir_foreach_shader_in_variable(var, s) {
1081 unsigned idx = var->data.driver_location;
1082 sf->reg[idx].reg = idx + 1;
1083 sf->reg[idx].slot = var->data.location;
1084 sf->reg[idx].num_components = glsl_get_components(var->type);
1085 sf->num_reg = MAX2(sf->num_reg, idx+1);
1086 count++;
1087 }
1088 assert(sf->num_reg == count);
1089 }
1090
1091 NIR_PASS_V(s, nir_lower_io, nir_var_shader_in | nir_var_uniform, etna_glsl_type_size,
1092 (nir_lower_io_options)0);
1093
1094 NIR_PASS_V(s, nir_lower_regs_to_ssa);
1095 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1096 NIR_PASS_V(s, nir_lower_indirect_derefs, nir_var_all);
1097 NIR_PASS_V(s, nir_lower_tex, &(struct nir_lower_tex_options) { .lower_txp = ~0u });
1098 NIR_PASS_V(s, nir_lower_alu_to_scalar, etna_alu_to_scalar_filter_cb, specs);
1099
1100 etna_optimize_loop(s);
1101
1102 NIR_PASS_V(s, etna_lower_io, v);
1103
1104 if (v->shader->specs->vs_need_z_div)
1105 NIR_PASS_V(s, nir_lower_clip_halfz);
1106
1107 /* lower pre-halti2 to float (halti0 has integers, but only scalar..) */
1108 if (c->specs->halti < 2) {
1109 /* use opt_algebraic between int_to_float and boot_to_float because
1110 * int_to_float emits ftrunc, and ftrunc lowering generates bool ops
1111 */
1112 NIR_PASS_V(s, nir_lower_int_to_float);
1113 NIR_PASS_V(s, nir_opt_algebraic);
1114 NIR_PASS_V(s, nir_lower_bool_to_float);
1115 } else {
1116 NIR_PASS_V(s, nir_lower_idiv, nir_lower_idiv_fast);
1117 NIR_PASS_V(s, nir_lower_bool_to_int32);
1118 }
1119
1120 etna_optimize_loop(s);
1121
1122 if (DBG_ENABLED(ETNA_DBG_DUMP_SHADERS))
1123 nir_print_shader(s, stdout);
1124
1125 while( OPT(s, nir_opt_vectorize, NULL, NULL) );
1126 NIR_PASS_V(s, nir_lower_alu_to_scalar, etna_alu_to_scalar_filter_cb, specs);
1127
1128 NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL);
1129 NIR_PASS_V(s, nir_opt_algebraic_late);
1130
1131 NIR_PASS_V(s, nir_move_vec_src_uses_to_dest);
1132 NIR_PASS_V(s, nir_copy_prop);
1133 /* only HW supported integer source mod is ineg for iadd instruction (?) */
1134 NIR_PASS_V(s, nir_lower_to_source_mods, ~nir_lower_int_source_mods);
1135 /* need copy prop after uses_to_dest, and before src mods: see
1136 * dEQP-GLES2.functional.shaders.random.all_features.fragment.95
1137 */
1138
1139 NIR_PASS_V(s, nir_opt_dce);
1140
1141 NIR_PASS_V(s, nir_lower_bool_to_bitsize);
1142 NIR_PASS_V(s, etna_lower_alu, c->specs->has_new_transcendentals);
1143
1144 if (DBG_ENABLED(ETNA_DBG_DUMP_SHADERS))
1145 nir_print_shader(s, stdout);
1146
1147 unsigned block_ptr[nir_shader_get_entrypoint(s)->num_blocks];
1148 c->block_ptr = block_ptr;
1149
1150 unsigned num_consts;
1151 ASSERTED bool ok = emit_shader(c, &v->num_temps, &num_consts);
1152 assert(ok);
1153
1154 /* empty shader, emit NOP */
1155 if (!c->inst_ptr)
1156 emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_NOP });
1157
1158 /* assemble instructions, fixing up labels */
1159 uint32_t *code = MALLOC(c->inst_ptr * 16);
1160 for (unsigned i = 0; i < c->inst_ptr; i++) {
1161 struct etna_inst *inst = &c->code[i];
1162 if (inst->opcode == INST_OPCODE_BRANCH)
1163 inst->imm = block_ptr[inst->imm];
1164
1165 inst->halti5 = specs->halti >= 5;
1166 etna_assemble(&code[i * 4], inst);
1167 }
1168
1169 v->code_size = c->inst_ptr * 4;
1170 v->code = code;
1171 v->needs_icache = c->inst_ptr > specs->max_instructions;
1172
1173 copy_uniform_state_to_shader(v, c->consts, num_consts);
1174
1175 if (s->info.stage == MESA_SHADER_FRAGMENT) {
1176 v->input_count_unk8 = 31; /* XXX what is this */
1177 assert(v->ps_depth_out_reg <= 0);
1178 } else {
1179 fill_vs_mystery(v);
1180 }
1181
1182 bool result = etna_compile_check_limits(v);
1183 ralloc_free(c->nir);
1184 FREE(c);
1185 return result;
1186 }
1187
1188 void
1189 etna_destroy_shader_nir(struct etna_shader_variant *shader)
1190 {
1191 assert(shader);
1192
1193 FREE(shader->code);
1194 FREE(shader->uniforms.imm_data);
1195 FREE(shader->uniforms.imm_contents);
1196 FREE(shader);
1197 }
1198
1199 extern const char *tgsi_swizzle_names[];
1200 void
1201 etna_dump_shader_nir(const struct etna_shader_variant *shader)
1202 {
1203 if (shader->stage == MESA_SHADER_VERTEX)
1204 printf("VERT\n");
1205 else
1206 printf("FRAG\n");
1207
1208 etna_disasm(shader->code, shader->code_size, PRINT_RAW);
1209
1210 printf("num loops: %i\n", shader->num_loops);
1211 printf("num temps: %i\n", shader->num_temps);
1212 printf("immediates:\n");
1213 for (int idx = 0; idx < shader->uniforms.imm_count; ++idx) {
1214 printf(" [%i].%s = %f (0x%08x) (%d)\n",
1215 idx / 4,
1216 tgsi_swizzle_names[idx % 4],
1217 *((float *)&shader->uniforms.imm_data[idx]),
1218 shader->uniforms.imm_data[idx],
1219 shader->uniforms.imm_contents[idx]);
1220 }
1221 printf("inputs:\n");
1222 for (int idx = 0; idx < shader->infile.num_reg; ++idx) {
1223 printf(" [%i] name=%s comps=%i\n", shader->infile.reg[idx].reg,
1224 (shader->stage == MESA_SHADER_VERTEX) ?
1225 gl_vert_attrib_name(shader->infile.reg[idx].slot) :
1226 gl_varying_slot_name(shader->infile.reg[idx].slot),
1227 shader->infile.reg[idx].num_components);
1228 }
1229 printf("outputs:\n");
1230 for (int idx = 0; idx < shader->outfile.num_reg; ++idx) {
1231 printf(" [%i] name=%s comps=%i\n", shader->outfile.reg[idx].reg,
1232 (shader->stage == MESA_SHADER_VERTEX) ?
1233 gl_varying_slot_name(shader->outfile.reg[idx].slot) :
1234 gl_frag_result_name(shader->outfile.reg[idx].slot),
1235 shader->outfile.reg[idx].num_components);
1236 }
1237 printf("special:\n");
1238 if (shader->stage == MESA_SHADER_VERTEX) {
1239 printf(" vs_pos_out_reg=%i\n", shader->vs_pos_out_reg);
1240 printf(" vs_pointsize_out_reg=%i\n", shader->vs_pointsize_out_reg);
1241 printf(" vs_load_balancing=0x%08x\n", shader->vs_load_balancing);
1242 } else {
1243 printf(" ps_color_out_reg=%i\n", shader->ps_color_out_reg);
1244 printf(" ps_depth_out_reg=%i\n", shader->ps_depth_out_reg);
1245 }
1246 printf(" input_count_unk8=0x%08x\n", shader->input_count_unk8);
1247 }
1248
1249 static const struct etna_shader_inout *
1250 etna_shader_vs_lookup(const struct etna_shader_variant *sobj,
1251 const struct etna_shader_inout *in)
1252 {
1253 for (int i = 0; i < sobj->outfile.num_reg; i++)
1254 if (sobj->outfile.reg[i].slot == in->slot)
1255 return &sobj->outfile.reg[i];
1256
1257 return NULL;
1258 }
1259
1260 bool
1261 etna_link_shader_nir(struct etna_shader_link_info *info,
1262 const struct etna_shader_variant *vs,
1263 const struct etna_shader_variant *fs)
1264 {
1265 int comp_ofs = 0;
1266 /* For each fragment input we need to find the associated vertex shader
1267 * output, which can be found by matching on semantic name and index. A
1268 * binary search could be used because the vs outputs are sorted by their
1269 * semantic index and grouped by semantic type by fill_in_vs_outputs.
1270 */
1271 assert(fs->infile.num_reg < ETNA_NUM_INPUTS);
1272 info->pcoord_varying_comp_ofs = -1;
1273
1274 for (int idx = 0; idx < fs->infile.num_reg; ++idx) {
1275 const struct etna_shader_inout *fsio = &fs->infile.reg[idx];
1276 const struct etna_shader_inout *vsio = etna_shader_vs_lookup(vs, fsio);
1277 struct etna_varying *varying;
1278 bool interpolate_always = true;
1279
1280 assert(fsio->reg > 0 && fsio->reg <= ARRAY_SIZE(info->varyings));
1281
1282 if (fsio->reg > info->num_varyings)
1283 info->num_varyings = fsio->reg;
1284
1285 varying = &info->varyings[fsio->reg - 1];
1286 varying->num_components = fsio->num_components;
1287
1288 if (!interpolate_always) /* colors affected by flat shading */
1289 varying->pa_attributes = 0x200;
1290 else /* texture coord or other bypasses flat shading */
1291 varying->pa_attributes = 0x2f1;
1292
1293 varying->use[0] = VARYING_COMPONENT_USE_UNUSED;
1294 varying->use[1] = VARYING_COMPONENT_USE_UNUSED;
1295 varying->use[2] = VARYING_COMPONENT_USE_UNUSED;
1296 varying->use[3] = VARYING_COMPONENT_USE_UNUSED;
1297
1298 /* point coord is an input to the PS without matching VS output,
1299 * so it gets a varying slot without being assigned a VS register.
1300 */
1301 if (fsio->slot == VARYING_SLOT_PNTC) {
1302 varying->use[0] = VARYING_COMPONENT_USE_POINTCOORD_X;
1303 varying->use[1] = VARYING_COMPONENT_USE_POINTCOORD_Y;
1304
1305 info->pcoord_varying_comp_ofs = comp_ofs;
1306 } else {
1307 if (vsio == NULL) { /* not found -- link error */
1308 BUG("Semantic value not found in vertex shader outputs\n");
1309 return true;
1310 }
1311 varying->reg = vsio->reg;
1312 }
1313
1314 comp_ofs += varying->num_components;
1315 }
1316
1317 assert(info->num_varyings == fs->infile.num_reg);
1318
1319 return false;
1320 }