freedreno/a4xx: better workaround for astc+srgb
[mesa.git] / src / gallium / drivers / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "util/u_debug.h"
31 #include "util/list.h"
32
33 #include "instr-a3xx.h"
34 #include "disasm.h" /* TODO move 'enum shader_t' somewhere else.. */
35
36 /* low level intermediate representation of an adreno shader program */
37
38 struct ir3_compiler;
39 struct ir3;
40 struct ir3_instruction;
41 struct ir3_block;
42
43 struct ir3_info {
44 uint32_t gpu_id;
45 uint16_t sizedwords;
46 uint16_t instrs_count; /* expanded to account for rpt's */
47 /* NOTE: max_reg, etc, does not include registers not touched
48 * by the shader (ie. vertex fetched via VFD_DECODE but not
49 * touched by shader)
50 */
51 int8_t max_reg; /* highest GPR # used by shader */
52 int8_t max_half_reg;
53 int16_t max_const;
54 };
55
56 struct ir3_register {
57 enum {
58 IR3_REG_CONST = 0x001,
59 IR3_REG_IMMED = 0x002,
60 IR3_REG_HALF = 0x004,
61 IR3_REG_RELATIV= 0x008,
62 IR3_REG_R = 0x010,
63 /* Most instructions, it seems, can do float abs/neg but not
64 * integer. The CP pass needs to know what is intended (int or
65 * float) in order to do the right thing. For this reason the
66 * abs/neg flags are split out into float and int variants. In
67 * addition, .b (bitwise) operations, the negate is actually a
68 * bitwise not, so split that out into a new flag to make it
69 * more clear.
70 */
71 IR3_REG_FNEG = 0x020,
72 IR3_REG_FABS = 0x040,
73 IR3_REG_SNEG = 0x080,
74 IR3_REG_SABS = 0x100,
75 IR3_REG_BNOT = 0x200,
76 IR3_REG_EVEN = 0x400,
77 IR3_REG_POS_INF= 0x800,
78 /* (ei) flag, end-input? Set on last bary, presumably to signal
79 * that the shader needs no more input:
80 */
81 IR3_REG_EI = 0x1000,
82 /* meta-flags, for intermediate stages of IR, ie.
83 * before register assignment is done:
84 */
85 IR3_REG_SSA = 0x2000, /* 'instr' is ptr to assigning instr */
86 IR3_REG_ARRAY = 0x4000,
87 IR3_REG_PHI_SRC= 0x8000, /* phi src, regs[0]->instr points to phi */
88
89 } flags;
90 union {
91 /* normal registers:
92 * the component is in the low two bits of the reg #, so
93 * rN.x becomes: (N << 2) | x
94 */
95 int num;
96 /* immediate: */
97 int32_t iim_val;
98 uint32_t uim_val;
99 float fim_val;
100 /* relative: */
101 struct {
102 uint16_t id;
103 int16_t offset;
104 } array;
105 };
106
107 /* For IR3_REG_SSA, src registers contain ptr back to assigning
108 * instruction.
109 *
110 * For IR3_REG_ARRAY, the pointer is back to the last dependent
111 * array access (although the net effect is the same, it points
112 * back to a previous instruction that we depend on).
113 */
114 struct ir3_instruction *instr;
115
116 union {
117 /* used for cat5 instructions, but also for internal/IR level
118 * tracking of what registers are read/written by an instruction.
119 * wrmask may be a bad name since it is used to represent both
120 * src and dst that touch multiple adjacent registers.
121 */
122 unsigned wrmask;
123 /* for relative addressing, 32bits for array size is too small,
124 * but otoh we don't need to deal with disjoint sets, so instead
125 * use a simple size field (number of scalar components).
126 */
127 unsigned size;
128 };
129 };
130
131 struct ir3_instruction {
132 struct ir3_block *block;
133 opc_t opc;
134 enum {
135 /* (sy) flag is set on first instruction, and after sample
136 * instructions (probably just on RAW hazard).
137 */
138 IR3_INSTR_SY = 0x001,
139 /* (ss) flag is set on first instruction, and first instruction
140 * to depend on the result of "long" instructions (RAW hazard):
141 *
142 * rcp, rsq, log2, exp2, sin, cos, sqrt
143 *
144 * It seems to synchronize until all in-flight instructions are
145 * completed, for example:
146 *
147 * rsq hr1.w, hr1.w
148 * add.f hr2.z, (neg)hr2.z, hc0.y
149 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
150 * rsq hr2.x, hr2.x
151 * (rpt1)nop
152 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
153 * nop
154 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
155 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
156 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
157 *
158 * The last mul.f does not have (ss) set, presumably because the
159 * (ss) on the previous instruction does the job.
160 *
161 * The blob driver also seems to set it on WAR hazards, although
162 * not really clear if this is needed or just blob compiler being
163 * sloppy. So far I haven't found a case where removing the (ss)
164 * causes problems for WAR hazard, but I could just be getting
165 * lucky:
166 *
167 * rcp r1.y, r3.y
168 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
169 *
170 */
171 IR3_INSTR_SS = 0x002,
172 /* (jp) flag is set on jump targets:
173 */
174 IR3_INSTR_JP = 0x004,
175 IR3_INSTR_UL = 0x008,
176 IR3_INSTR_3D = 0x010,
177 IR3_INSTR_A = 0x020,
178 IR3_INSTR_O = 0x040,
179 IR3_INSTR_P = 0x080,
180 IR3_INSTR_S = 0x100,
181 IR3_INSTR_S2EN = 0x200,
182 IR3_INSTR_G = 0x400,
183 /* meta-flags, for intermediate stages of IR, ie.
184 * before register assignment is done:
185 */
186 IR3_INSTR_MARK = 0x1000,
187 IR3_INSTR_UNUSED= 0x2000,
188 } flags;
189 int repeat;
190 #ifdef DEBUG
191 unsigned regs_max;
192 #endif
193 unsigned regs_count;
194 struct ir3_register **regs;
195 union {
196 struct {
197 char inv;
198 char comp;
199 int immed;
200 struct ir3_block *target;
201 } cat0;
202 struct {
203 type_t src_type, dst_type;
204 } cat1;
205 struct {
206 enum {
207 IR3_COND_LT = 0,
208 IR3_COND_LE = 1,
209 IR3_COND_GT = 2,
210 IR3_COND_GE = 3,
211 IR3_COND_EQ = 4,
212 IR3_COND_NE = 5,
213 } condition;
214 } cat2;
215 struct {
216 unsigned samp, tex;
217 type_t type;
218 } cat5;
219 struct {
220 type_t type;
221 int src_offset;
222 int dst_offset;
223 int iim_val;
224 } cat6;
225 /* for meta-instructions, just used to hold extra data
226 * before instruction scheduling, etc
227 */
228 struct {
229 int off; /* component/offset */
230 } fo;
231 struct {
232 /* used to temporarily hold reference to nir_phi_instr
233 * until we resolve the phi srcs
234 */
235 void *nphi;
236 } phi;
237 struct {
238 struct ir3_block *block;
239 } inout;
240 };
241
242 /* transient values used during various algorithms: */
243 union {
244 /* The instruction depth is the max dependency distance to output.
245 *
246 * You can also think of it as the "cost", if we did any sort of
247 * optimization for register footprint. Ie. a value that is just
248 * result of moving a const to a reg would have a low cost, so to
249 * it could make sense to duplicate the instruction at various
250 * points where the result is needed to reduce register footprint.
251 */
252 unsigned depth;
253 /* When we get to the RA stage, we no longer need depth, but
254 * we do need instruction's position/name:
255 */
256 struct {
257 uint16_t ip;
258 uint16_t name;
259 };
260 };
261
262 /* used for per-pass extra instruction data.
263 */
264 void *data;
265
266 /* Used during CP and RA stages. For fanin and shader inputs/
267 * outputs where we need a sequence of consecutive registers,
268 * keep track of each src instructions left (ie 'n-1') and right
269 * (ie 'n+1') neighbor. The front-end must insert enough mov's
270 * to ensure that each instruction has at most one left and at
271 * most one right neighbor. During the copy-propagation pass,
272 * we only remove mov's when we can preserve this constraint.
273 * And during the RA stage, we use the neighbor information to
274 * allocate a block of registers in one shot.
275 *
276 * TODO: maybe just add something like:
277 * struct ir3_instruction_ref {
278 * struct ir3_instruction *instr;
279 * unsigned cnt;
280 * }
281 *
282 * Or can we get away without the refcnt stuff? It seems like
283 * it should be overkill.. the problem is if, potentially after
284 * already eliminating some mov's, if you have a single mov that
285 * needs to be grouped with it's neighbors in two different
286 * places (ex. shader output and a fanin).
287 */
288 struct {
289 struct ir3_instruction *left, *right;
290 uint16_t left_cnt, right_cnt;
291 } cp;
292
293 /* an instruction can reference at most one address register amongst
294 * it's src/dst registers. Beyond that, you need to insert mov's.
295 *
296 * NOTE: do not write this directly, use ir3_instr_set_address()
297 */
298 struct ir3_instruction *address;
299
300 /* Entry in ir3_block's instruction list: */
301 struct list_head node;
302
303 #ifdef DEBUG
304 uint32_t serialno;
305 #endif
306 };
307
308 static inline struct ir3_instruction *
309 ir3_neighbor_first(struct ir3_instruction *instr)
310 {
311 int cnt = 0;
312 while (instr->cp.left) {
313 instr = instr->cp.left;
314 if (++cnt > 0xffff) {
315 debug_assert(0);
316 break;
317 }
318 }
319 return instr;
320 }
321
322 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
323 {
324 int num = 1;
325
326 debug_assert(!instr->cp.left);
327
328 while (instr->cp.right) {
329 num++;
330 instr = instr->cp.right;
331 if (num > 0xffff) {
332 debug_assert(0);
333 break;
334 }
335 }
336
337 return num;
338 }
339
340 struct ir3_heap_chunk;
341
342 struct ir3 {
343 struct ir3_compiler *compiler;
344
345 unsigned ninputs, noutputs;
346 struct ir3_instruction **inputs;
347 struct ir3_instruction **outputs;
348
349 /* Track bary.f (and ldlv) instructions.. this is needed in
350 * scheduling to ensure that all varying fetches happen before
351 * any potential kill instructions. The hw gets grumpy if all
352 * threads in a group are killed before the last bary.f gets
353 * a chance to signal end of input (ei).
354 */
355 unsigned baryfs_count, baryfs_sz;
356 struct ir3_instruction **baryfs;
357
358 /* Track all indirect instructions (read and write). To avoid
359 * deadlock scenario where an address register gets scheduled,
360 * but other dependent src instructions cannot be scheduled due
361 * to dependency on a *different* address register value, the
362 * scheduler needs to ensure that all dependencies other than
363 * the instruction other than the address register are scheduled
364 * before the one that writes the address register. Having a
365 * convenient list of instructions that reference some address
366 * register simplifies this.
367 */
368 unsigned indirects_count, indirects_sz;
369 struct ir3_instruction **indirects;
370 /* and same for instructions that consume predicate register: */
371 unsigned predicates_count, predicates_sz;
372 struct ir3_instruction **predicates;
373
374 /* Track instructions which do not write a register but other-
375 * wise must not be discarded (such as kill, stg, etc)
376 */
377 unsigned keeps_count, keeps_sz;
378 struct ir3_instruction **keeps;
379
380 /* Track texture sample instructions which need texture state
381 * patched in (for astc-srgb workaround):
382 */
383 unsigned astc_srgb_count, astc_srgb_sz;
384 struct ir3_instruction **astc_srgb;
385
386 /* List of blocks: */
387 struct list_head block_list;
388
389 /* List of ir3_array's: */
390 struct list_head array_list;
391
392 unsigned heap_idx;
393 struct ir3_heap_chunk *chunk;
394 };
395
396 typedef struct nir_variable nir_variable;
397
398 struct ir3_array {
399 struct list_head node;
400 unsigned length;
401 unsigned id;
402
403 nir_variable *var;
404
405 /* We track the last write and last access (read or write) to
406 * setup dependencies on instructions that read or write the
407 * array. Reads can be re-ordered wrt. other reads, but should
408 * not be re-ordered wrt. to writes. Writes cannot be reordered
409 * wrt. any other access to the array.
410 *
411 * So array reads depend on last write, and array writes depend
412 * on the last access.
413 */
414 struct ir3_instruction *last_write, *last_access;
415
416 /* extra stuff used in RA pass: */
417 unsigned base; /* base vreg name */
418 unsigned reg; /* base physical reg */
419 uint16_t start_ip, end_ip;
420 };
421
422 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
423
424 typedef struct nir_block nir_block;
425
426 struct ir3_block {
427 struct list_head node;
428 struct ir3 *shader;
429
430 nir_block *nblock;
431
432 struct list_head instr_list; /* list of ir3_instruction */
433
434 /* each block has either one or two successors.. in case of
435 * two successors, 'condition' decides which one to follow.
436 * A block preceding an if/else has two successors.
437 */
438 struct ir3_instruction *condition;
439 struct ir3_block *successors[2];
440
441 uint16_t start_ip, end_ip;
442
443 /* used for per-pass extra block data. Mainly used right
444 * now in RA step to track livein/liveout.
445 */
446 void *data;
447
448 #ifdef DEBUG
449 uint32_t serialno;
450 #endif
451 };
452
453 static inline uint32_t
454 block_id(struct ir3_block *block)
455 {
456 #ifdef DEBUG
457 return block->serialno;
458 #else
459 return (uint32_t)(unsigned long)block;
460 #endif
461 }
462
463 struct ir3 * ir3_create(struct ir3_compiler *compiler,
464 unsigned nin, unsigned nout);
465 void ir3_destroy(struct ir3 *shader);
466 void * ir3_assemble(struct ir3 *shader,
467 struct ir3_info *info, uint32_t gpu_id);
468 void * ir3_alloc(struct ir3 *shader, int sz);
469
470 struct ir3_block * ir3_block_create(struct ir3 *shader);
471
472 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
473 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
474 opc_t opc, int nreg);
475 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
476 const char *ir3_instr_name(struct ir3_instruction *instr);
477
478 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
479 int num, int flags);
480 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
481 struct ir3_register *reg);
482
483 void ir3_instr_set_address(struct ir3_instruction *instr,
484 struct ir3_instruction *addr);
485
486 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
487 {
488 if (instr->flags & IR3_INSTR_MARK)
489 return true; /* already visited */
490 instr->flags |= IR3_INSTR_MARK;
491 return false;
492 }
493
494 void ir3_block_clear_mark(struct ir3_block *block);
495 void ir3_clear_mark(struct ir3 *shader);
496
497 unsigned ir3_count_instructions(struct ir3 *ir);
498
499 static inline int ir3_instr_regno(struct ir3_instruction *instr,
500 struct ir3_register *reg)
501 {
502 unsigned i;
503 for (i = 0; i < instr->regs_count; i++)
504 if (reg == instr->regs[i])
505 return i;
506 return -1;
507 }
508
509
510 #define MAX_ARRAYS 16
511
512 /* comp:
513 * 0 - x
514 * 1 - y
515 * 2 - z
516 * 3 - w
517 */
518 static inline uint32_t regid(int num, int comp)
519 {
520 return (num << 2) | (comp & 0x3);
521 }
522
523 static inline uint32_t reg_num(struct ir3_register *reg)
524 {
525 return reg->num >> 2;
526 }
527
528 static inline uint32_t reg_comp(struct ir3_register *reg)
529 {
530 return reg->num & 0x3;
531 }
532
533 static inline bool is_flow(struct ir3_instruction *instr)
534 {
535 return (opc_cat(instr->opc) == 0);
536 }
537
538 static inline bool is_kill(struct ir3_instruction *instr)
539 {
540 return instr->opc == OPC_KILL;
541 }
542
543 static inline bool is_nop(struct ir3_instruction *instr)
544 {
545 return instr->opc == OPC_NOP;
546 }
547
548 /* Is it a non-transformative (ie. not type changing) mov? This can
549 * also include absneg.s/absneg.f, which for the most part can be
550 * treated as a mov (single src argument).
551 */
552 static inline bool is_same_type_mov(struct ir3_instruction *instr)
553 {
554 struct ir3_register *dst = instr->regs[0];
555
556 /* mov's that write to a0.x or p0.x are special: */
557 if (dst->num == regid(REG_P0, 0))
558 return false;
559 if (dst->num == regid(REG_A0, 0))
560 return false;
561
562 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
563 return false;
564
565 switch (instr->opc) {
566 case OPC_MOV:
567 return instr->cat1.src_type == instr->cat1.dst_type;
568 case OPC_ABSNEG_F:
569 case OPC_ABSNEG_S:
570 return true;
571 default:
572 return false;
573 }
574 }
575
576 static inline bool is_alu(struct ir3_instruction *instr)
577 {
578 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
579 }
580
581 static inline bool is_sfu(struct ir3_instruction *instr)
582 {
583 return (opc_cat(instr->opc) == 4);
584 }
585
586 static inline bool is_tex(struct ir3_instruction *instr)
587 {
588 return (opc_cat(instr->opc) == 5);
589 }
590
591 static inline bool is_mem(struct ir3_instruction *instr)
592 {
593 return (opc_cat(instr->opc) == 6);
594 }
595
596 static inline bool
597 is_store(struct ir3_instruction *instr)
598 {
599 /* these instructions, the "destination" register is
600 * actually a source, the address to store to.
601 */
602 switch (instr->opc) {
603 case OPC_STG:
604 case OPC_STP:
605 case OPC_STL:
606 case OPC_STLW:
607 case OPC_L2G:
608 case OPC_G2L:
609 return true;
610 default:
611 return false;
612 }
613 }
614
615 static inline bool is_load(struct ir3_instruction *instr)
616 {
617 switch (instr->opc) {
618 case OPC_LDG:
619 case OPC_LDL:
620 case OPC_LDP:
621 case OPC_L2G:
622 case OPC_LDLW:
623 case OPC_LDC_4:
624 case OPC_LDLV:
625 /* probably some others too.. */
626 return true;
627 default:
628 return false;
629 }
630 }
631
632 static inline bool is_input(struct ir3_instruction *instr)
633 {
634 /* in some cases, ldlv is used to fetch varying without
635 * interpolation.. fortunately inloc is the first src
636 * register in either case
637 */
638 switch (instr->opc) {
639 case OPC_LDLV:
640 case OPC_BARY_F:
641 return true;
642 default:
643 return false;
644 }
645 }
646
647 static inline bool is_bool(struct ir3_instruction *instr)
648 {
649 switch (instr->opc) {
650 case OPC_CMPS_F:
651 case OPC_CMPS_S:
652 case OPC_CMPS_U:
653 return true;
654 default:
655 return false;
656 }
657 }
658
659 static inline bool is_meta(struct ir3_instruction *instr)
660 {
661 /* TODO how should we count PHI (and maybe fan-in/out) which
662 * might actually contribute some instructions to the final
663 * result?
664 */
665 return (opc_cat(instr->opc) == -1);
666 }
667
668 static inline bool writes_addr(struct ir3_instruction *instr)
669 {
670 if (instr->regs_count > 0) {
671 struct ir3_register *dst = instr->regs[0];
672 return reg_num(dst) == REG_A0;
673 }
674 return false;
675 }
676
677 static inline bool writes_pred(struct ir3_instruction *instr)
678 {
679 if (instr->regs_count > 0) {
680 struct ir3_register *dst = instr->regs[0];
681 return reg_num(dst) == REG_P0;
682 }
683 return false;
684 }
685
686 /* returns defining instruction for reg */
687 /* TODO better name */
688 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
689 {
690 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
691 debug_assert(!(reg->instr && (reg->instr->flags & IR3_INSTR_UNUSED)));
692 return reg->instr;
693 }
694 return NULL;
695 }
696
697 static inline bool conflicts(struct ir3_instruction *a,
698 struct ir3_instruction *b)
699 {
700 return (a && b) && (a != b);
701 }
702
703 static inline bool reg_gpr(struct ir3_register *r)
704 {
705 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
706 return false;
707 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
708 return false;
709 return true;
710 }
711
712 static inline type_t half_type(type_t type)
713 {
714 switch (type) {
715 case TYPE_F32: return TYPE_F16;
716 case TYPE_U32: return TYPE_U16;
717 case TYPE_S32: return TYPE_S16;
718 case TYPE_F16:
719 case TYPE_U16:
720 case TYPE_S16:
721 return type;
722 default:
723 assert(0);
724 return ~0;
725 }
726 }
727
728 /* some cat2 instructions (ie. those which are not float) can embed an
729 * immediate:
730 */
731 static inline bool ir3_cat2_int(opc_t opc)
732 {
733 switch (opc) {
734 case OPC_ADD_U:
735 case OPC_ADD_S:
736 case OPC_SUB_U:
737 case OPC_SUB_S:
738 case OPC_CMPS_U:
739 case OPC_CMPS_S:
740 case OPC_MIN_U:
741 case OPC_MIN_S:
742 case OPC_MAX_U:
743 case OPC_MAX_S:
744 case OPC_CMPV_U:
745 case OPC_CMPV_S:
746 case OPC_MUL_U:
747 case OPC_MUL_S:
748 case OPC_MULL_U:
749 case OPC_CLZ_S:
750 case OPC_ABSNEG_S:
751 case OPC_AND_B:
752 case OPC_OR_B:
753 case OPC_NOT_B:
754 case OPC_XOR_B:
755 case OPC_BFREV_B:
756 case OPC_CLZ_B:
757 case OPC_SHL_B:
758 case OPC_SHR_B:
759 case OPC_ASHR_B:
760 case OPC_MGEN_B:
761 case OPC_GETBIT_B:
762 case OPC_CBITS_B:
763 case OPC_BARY_F:
764 return true;
765
766 default:
767 return false;
768 }
769 }
770
771
772 /* map cat2 instruction to valid abs/neg flags: */
773 static inline unsigned ir3_cat2_absneg(opc_t opc)
774 {
775 switch (opc) {
776 case OPC_ADD_F:
777 case OPC_MIN_F:
778 case OPC_MAX_F:
779 case OPC_MUL_F:
780 case OPC_SIGN_F:
781 case OPC_CMPS_F:
782 case OPC_ABSNEG_F:
783 case OPC_CMPV_F:
784 case OPC_FLOOR_F:
785 case OPC_CEIL_F:
786 case OPC_RNDNE_F:
787 case OPC_RNDAZ_F:
788 case OPC_TRUNC_F:
789 case OPC_BARY_F:
790 return IR3_REG_FABS | IR3_REG_FNEG;
791
792 case OPC_ADD_U:
793 case OPC_ADD_S:
794 case OPC_SUB_U:
795 case OPC_SUB_S:
796 case OPC_CMPS_U:
797 case OPC_CMPS_S:
798 case OPC_MIN_U:
799 case OPC_MIN_S:
800 case OPC_MAX_U:
801 case OPC_MAX_S:
802 case OPC_CMPV_U:
803 case OPC_CMPV_S:
804 case OPC_MUL_U:
805 case OPC_MUL_S:
806 case OPC_MULL_U:
807 case OPC_CLZ_S:
808 return 0;
809
810 case OPC_ABSNEG_S:
811 return IR3_REG_SABS | IR3_REG_SNEG;
812
813 case OPC_AND_B:
814 case OPC_OR_B:
815 case OPC_NOT_B:
816 case OPC_XOR_B:
817 case OPC_BFREV_B:
818 case OPC_CLZ_B:
819 case OPC_SHL_B:
820 case OPC_SHR_B:
821 case OPC_ASHR_B:
822 case OPC_MGEN_B:
823 case OPC_GETBIT_B:
824 case OPC_CBITS_B:
825 return IR3_REG_BNOT;
826
827 default:
828 return 0;
829 }
830 }
831
832 /* map cat3 instructions to valid abs/neg flags: */
833 static inline unsigned ir3_cat3_absneg(opc_t opc)
834 {
835 switch (opc) {
836 case OPC_MAD_F16:
837 case OPC_MAD_F32:
838 case OPC_SEL_F16:
839 case OPC_SEL_F32:
840 return IR3_REG_FNEG;
841
842 case OPC_MAD_U16:
843 case OPC_MADSH_U16:
844 case OPC_MAD_S16:
845 case OPC_MADSH_M16:
846 case OPC_MAD_U24:
847 case OPC_MAD_S24:
848 case OPC_SEL_S16:
849 case OPC_SEL_S32:
850 case OPC_SAD_S16:
851 case OPC_SAD_S32:
852 /* neg *may* work on 3rd src.. */
853
854 case OPC_SEL_B16:
855 case OPC_SEL_B32:
856
857 default:
858 return 0;
859 }
860 }
861
862 #define array_insert(arr, val) do { \
863 if (arr ## _count == arr ## _sz) { \
864 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
865 arr = realloc(arr, arr ## _sz * sizeof(arr[0])); \
866 } \
867 arr[arr ##_count++] = val; \
868 } while (0)
869
870 /* iterator for an instructions's sources (reg), also returns src #: */
871 #define foreach_src_n(__srcreg, __n, __instr) \
872 if ((__instr)->regs_count) \
873 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
874 if ((__srcreg = (__instr)->regs[__n + 1]))
875
876 /* iterator for an instructions's sources (reg): */
877 #define foreach_src(__srcreg, __instr) \
878 foreach_src_n(__srcreg, __i, __instr)
879
880 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
881 {
882 if (instr->address)
883 return instr->regs_count + 1;
884 return instr->regs_count;
885 }
886
887 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
888 {
889 if (n == (instr->regs_count + 0))
890 return instr->address;
891 return ssa(instr->regs[n]);
892 }
893
894 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
895
896 /* iterator for an instruction's SSA sources (instr), also returns src #: */
897 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
898 if ((__instr)->regs_count) \
899 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
900 if ((__srcinst = __ssa_src_n(__instr, __n)))
901
902 /* iterator for an instruction's SSA sources (instr): */
903 #define foreach_ssa_src(__srcinst, __instr) \
904 foreach_ssa_src_n(__srcinst, __i, __instr)
905
906
907 /* dump: */
908 void ir3_print(struct ir3 *ir);
909 void ir3_print_instr(struct ir3_instruction *instr);
910
911 /* depth calculation: */
912 int ir3_delayslots(struct ir3_instruction *assigner,
913 struct ir3_instruction *consumer, unsigned n);
914 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
915 void ir3_depth(struct ir3 *ir);
916
917 /* copy-propagate: */
918 void ir3_cp(struct ir3 *ir);
919
920 /* group neighbors and insert mov's to resolve conflicts: */
921 void ir3_group(struct ir3 *ir);
922
923 /* scheduling: */
924 int ir3_sched(struct ir3 *ir);
925
926 /* register assignment: */
927 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(void *memctx);
928 int ir3_ra(struct ir3 *ir3, enum shader_t type,
929 bool frag_coord, bool frag_face);
930
931 /* legalize: */
932 void ir3_legalize(struct ir3 *ir, bool *has_samp, int *max_bary);
933
934 /* ************************************************************************* */
935 /* instruction helpers */
936
937 static inline struct ir3_instruction *
938 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
939 {
940 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
941 ir3_reg_create(instr, 0, 0); /* dst */
942 if (src->regs[0]->flags & IR3_REG_ARRAY) {
943 struct ir3_register *src_reg =
944 ir3_reg_create(instr, 0, IR3_REG_ARRAY);
945 src_reg->array = src->regs[0]->array;
946 src_reg->instr = src;
947 } else {
948 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
949 }
950 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
951 instr->cat1.src_type = type;
952 instr->cat1.dst_type = type;
953 return instr;
954 }
955
956 static inline struct ir3_instruction *
957 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
958 type_t src_type, type_t dst_type)
959 {
960 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
961 ir3_reg_create(instr, 0, 0); /* dst */
962 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
963 instr->cat1.src_type = src_type;
964 instr->cat1.dst_type = dst_type;
965 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
966 return instr;
967 }
968
969 static inline struct ir3_instruction *
970 ir3_NOP(struct ir3_block *block)
971 {
972 return ir3_instr_create(block, OPC_NOP);
973 }
974
975 #define INSTR0(name) \
976 static inline struct ir3_instruction * \
977 ir3_##name(struct ir3_block *block) \
978 { \
979 struct ir3_instruction *instr = \
980 ir3_instr_create(block, OPC_##name); \
981 return instr; \
982 }
983
984 #define INSTR1(name) \
985 static inline struct ir3_instruction * \
986 ir3_##name(struct ir3_block *block, \
987 struct ir3_instruction *a, unsigned aflags) \
988 { \
989 struct ir3_instruction *instr = \
990 ir3_instr_create(block, OPC_##name); \
991 ir3_reg_create(instr, 0, 0); /* dst */ \
992 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
993 return instr; \
994 }
995
996 #define INSTR2(name) \
997 static inline struct ir3_instruction * \
998 ir3_##name(struct ir3_block *block, \
999 struct ir3_instruction *a, unsigned aflags, \
1000 struct ir3_instruction *b, unsigned bflags) \
1001 { \
1002 struct ir3_instruction *instr = \
1003 ir3_instr_create(block, OPC_##name); \
1004 ir3_reg_create(instr, 0, 0); /* dst */ \
1005 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
1006 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
1007 return instr; \
1008 }
1009
1010 #define INSTR3(name) \
1011 static inline struct ir3_instruction * \
1012 ir3_##name(struct ir3_block *block, \
1013 struct ir3_instruction *a, unsigned aflags, \
1014 struct ir3_instruction *b, unsigned bflags, \
1015 struct ir3_instruction *c, unsigned cflags) \
1016 { \
1017 struct ir3_instruction *instr = \
1018 ir3_instr_create(block, OPC_##name); \
1019 ir3_reg_create(instr, 0, 0); /* dst */ \
1020 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
1021 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
1022 ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c; \
1023 return instr; \
1024 }
1025
1026 /* cat0 instructions: */
1027 INSTR0(BR);
1028 INSTR0(JUMP);
1029 INSTR1(KILL);
1030 INSTR0(END);
1031
1032 /* cat2 instructions, most 2 src but some 1 src: */
1033 INSTR2(ADD_F)
1034 INSTR2(MIN_F)
1035 INSTR2(MAX_F)
1036 INSTR2(MUL_F)
1037 INSTR1(SIGN_F)
1038 INSTR2(CMPS_F)
1039 INSTR1(ABSNEG_F)
1040 INSTR2(CMPV_F)
1041 INSTR1(FLOOR_F)
1042 INSTR1(CEIL_F)
1043 INSTR1(RNDNE_F)
1044 INSTR1(RNDAZ_F)
1045 INSTR1(TRUNC_F)
1046 INSTR2(ADD_U)
1047 INSTR2(ADD_S)
1048 INSTR2(SUB_U)
1049 INSTR2(SUB_S)
1050 INSTR2(CMPS_U)
1051 INSTR2(CMPS_S)
1052 INSTR2(MIN_U)
1053 INSTR2(MIN_S)
1054 INSTR2(MAX_U)
1055 INSTR2(MAX_S)
1056 INSTR1(ABSNEG_S)
1057 INSTR2(AND_B)
1058 INSTR2(OR_B)
1059 INSTR1(NOT_B)
1060 INSTR2(XOR_B)
1061 INSTR2(CMPV_U)
1062 INSTR2(CMPV_S)
1063 INSTR2(MUL_U)
1064 INSTR2(MUL_S)
1065 INSTR2(MULL_U)
1066 INSTR1(BFREV_B)
1067 INSTR1(CLZ_S)
1068 INSTR1(CLZ_B)
1069 INSTR2(SHL_B)
1070 INSTR2(SHR_B)
1071 INSTR2(ASHR_B)
1072 INSTR2(BARY_F)
1073 INSTR2(MGEN_B)
1074 INSTR2(GETBIT_B)
1075 INSTR1(SETRM)
1076 INSTR1(CBITS_B)
1077 INSTR2(SHB)
1078 INSTR2(MSAD)
1079
1080 /* cat3 instructions: */
1081 INSTR3(MAD_U16)
1082 INSTR3(MADSH_U16)
1083 INSTR3(MAD_S16)
1084 INSTR3(MADSH_M16)
1085 INSTR3(MAD_U24)
1086 INSTR3(MAD_S24)
1087 INSTR3(MAD_F16)
1088 INSTR3(MAD_F32)
1089 INSTR3(SEL_B16)
1090 INSTR3(SEL_B32)
1091 INSTR3(SEL_S16)
1092 INSTR3(SEL_S32)
1093 INSTR3(SEL_F16)
1094 INSTR3(SEL_F32)
1095 INSTR3(SAD_S16)
1096 INSTR3(SAD_S32)
1097
1098 /* cat4 instructions: */
1099 INSTR1(RCP)
1100 INSTR1(RSQ)
1101 INSTR1(LOG2)
1102 INSTR1(EXP2)
1103 INSTR1(SIN)
1104 INSTR1(COS)
1105 INSTR1(SQRT)
1106
1107 /* cat5 instructions: */
1108 INSTR1(DSX)
1109 INSTR1(DSY)
1110
1111 static inline struct ir3_instruction *
1112 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1113 unsigned wrmask, unsigned flags, unsigned samp, unsigned tex,
1114 struct ir3_instruction *src0, struct ir3_instruction *src1)
1115 {
1116 struct ir3_instruction *sam;
1117 struct ir3_register *reg;
1118
1119 sam = ir3_instr_create(block, opc);
1120 sam->flags |= flags;
1121 ir3_reg_create(sam, 0, 0)->wrmask = wrmask;
1122 if (src0) {
1123 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1124 reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
1125 reg->instr = src0;
1126 }
1127 if (src1) {
1128 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1129 reg->instr = src1;
1130 reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
1131 }
1132 sam->cat5.samp = samp;
1133 sam->cat5.tex = tex;
1134 sam->cat5.type = type;
1135
1136 return sam;
1137 }
1138
1139 /* cat6 instructions: */
1140 INSTR2(LDLV)
1141 INSTR2(LDG)
1142 INSTR3(STG)
1143
1144 /* ************************************************************************* */
1145 /* split this out or find some helper to use.. like main/bitset.h.. */
1146
1147 #include <string.h>
1148
1149 #define MAX_REG 256
1150
1151 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1152
1153 static inline unsigned regmask_idx(struct ir3_register *reg)
1154 {
1155 unsigned num = (reg->flags & IR3_REG_RELATIV) ? reg->array.offset : reg->num;
1156 debug_assert(num < MAX_REG);
1157 if (reg->flags & IR3_REG_HALF)
1158 num += MAX_REG;
1159 return num;
1160 }
1161
1162 static inline void regmask_init(regmask_t *regmask)
1163 {
1164 memset(regmask, 0, sizeof(*regmask));
1165 }
1166
1167 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1168 {
1169 unsigned idx = regmask_idx(reg);
1170 if (reg->flags & IR3_REG_RELATIV) {
1171 unsigned i;
1172 for (i = 0; i < reg->size; i++, idx++)
1173 (*regmask)[idx / 8] |= 1 << (idx % 8);
1174 } else {
1175 unsigned mask;
1176 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1177 if (mask & 1)
1178 (*regmask)[idx / 8] |= 1 << (idx % 8);
1179 }
1180 }
1181
1182 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1183 {
1184 unsigned i;
1185 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1186 (*dst)[i] = (*a)[i] | (*b)[i];
1187 }
1188
1189 /* set bits in a if not set in b, conceptually:
1190 * a |= (reg & ~b)
1191 */
1192 static inline void regmask_set_if_not(regmask_t *a,
1193 struct ir3_register *reg, regmask_t *b)
1194 {
1195 unsigned idx = regmask_idx(reg);
1196 if (reg->flags & IR3_REG_RELATIV) {
1197 unsigned i;
1198 for (i = 0; i < reg->size; i++, idx++)
1199 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1200 (*a)[idx / 8] |= 1 << (idx % 8);
1201 } else {
1202 unsigned mask;
1203 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1204 if (mask & 1)
1205 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1206 (*a)[idx / 8] |= 1 << (idx % 8);
1207 }
1208 }
1209
1210 static inline bool regmask_get(regmask_t *regmask,
1211 struct ir3_register *reg)
1212 {
1213 unsigned idx = regmask_idx(reg);
1214 if (reg->flags & IR3_REG_RELATIV) {
1215 unsigned i;
1216 for (i = 0; i < reg->size; i++, idx++)
1217 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1218 return true;
1219 } else {
1220 unsigned mask;
1221 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1222 if (mask & 1)
1223 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1224 return true;
1225 }
1226 return false;
1227 }
1228
1229 /* ************************************************************************* */
1230
1231 #endif /* IR3_H_ */