f68275e568c38ced5eacbde7ffa7d7e5e614a68d
[mesa.git] / src / gallium / drivers / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "util/u_debug.h"
31 #include "util/list.h"
32
33 #include "instr-a3xx.h"
34 #include "disasm.h" /* TODO move 'enum shader_t' somewhere else.. */
35
36 /* low level intermediate representation of an adreno shader program */
37
38 struct ir3_compiler;
39 struct ir3;
40 struct ir3_instruction;
41 struct ir3_block;
42
43 struct ir3_info {
44 uint32_t gpu_id;
45 uint16_t sizedwords;
46 uint16_t instrs_count; /* expanded to account for rpt's */
47 /* NOTE: max_reg, etc, does not include registers not touched
48 * by the shader (ie. vertex fetched via VFD_DECODE but not
49 * touched by shader)
50 */
51 int8_t max_reg; /* highest GPR # used by shader */
52 int8_t max_half_reg;
53 int16_t max_const;
54 };
55
56 struct ir3_register {
57 enum {
58 IR3_REG_CONST = 0x001,
59 IR3_REG_IMMED = 0x002,
60 IR3_REG_HALF = 0x004,
61 IR3_REG_RELATIV= 0x008,
62 IR3_REG_R = 0x010,
63 /* Most instructions, it seems, can do float abs/neg but not
64 * integer. The CP pass needs to know what is intended (int or
65 * float) in order to do the right thing. For this reason the
66 * abs/neg flags are split out into float and int variants. In
67 * addition, .b (bitwise) operations, the negate is actually a
68 * bitwise not, so split that out into a new flag to make it
69 * more clear.
70 */
71 IR3_REG_FNEG = 0x020,
72 IR3_REG_FABS = 0x040,
73 IR3_REG_SNEG = 0x080,
74 IR3_REG_SABS = 0x100,
75 IR3_REG_BNOT = 0x200,
76 IR3_REG_EVEN = 0x400,
77 IR3_REG_POS_INF= 0x800,
78 /* (ei) flag, end-input? Set on last bary, presumably to signal
79 * that the shader needs no more input:
80 */
81 IR3_REG_EI = 0x1000,
82 /* meta-flags, for intermediate stages of IR, ie.
83 * before register assignment is done:
84 */
85 IR3_REG_SSA = 0x2000, /* 'instr' is ptr to assigning instr */
86 IR3_REG_ARRAY = 0x4000,
87 IR3_REG_PHI_SRC= 0x8000, /* phi src, regs[0]->instr points to phi */
88
89 } flags;
90 union {
91 /* normal registers:
92 * the component is in the low two bits of the reg #, so
93 * rN.x becomes: (N << 2) | x
94 */
95 int num;
96 /* immediate: */
97 int32_t iim_val;
98 uint32_t uim_val;
99 float fim_val;
100 /* relative: */
101 struct {
102 uint16_t id;
103 int16_t offset;
104 } array;
105 };
106
107 /* For IR3_REG_SSA, src registers contain ptr back to assigning
108 * instruction.
109 *
110 * For IR3_REG_ARRAY, the pointer is back to the last dependent
111 * array access (although the net effect is the same, it points
112 * back to a previous instruction that we depend on).
113 */
114 struct ir3_instruction *instr;
115
116 union {
117 /* used for cat5 instructions, but also for internal/IR level
118 * tracking of what registers are read/written by an instruction.
119 * wrmask may be a bad name since it is used to represent both
120 * src and dst that touch multiple adjacent registers.
121 */
122 unsigned wrmask;
123 /* for relative addressing, 32bits for array size is too small,
124 * but otoh we don't need to deal with disjoint sets, so instead
125 * use a simple size field (number of scalar components).
126 */
127 unsigned size;
128 };
129 };
130
131 struct ir3_instruction {
132 struct ir3_block *block;
133 opc_t opc;
134 enum {
135 /* (sy) flag is set on first instruction, and after sample
136 * instructions (probably just on RAW hazard).
137 */
138 IR3_INSTR_SY = 0x001,
139 /* (ss) flag is set on first instruction, and first instruction
140 * to depend on the result of "long" instructions (RAW hazard):
141 *
142 * rcp, rsq, log2, exp2, sin, cos, sqrt
143 *
144 * It seems to synchronize until all in-flight instructions are
145 * completed, for example:
146 *
147 * rsq hr1.w, hr1.w
148 * add.f hr2.z, (neg)hr2.z, hc0.y
149 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
150 * rsq hr2.x, hr2.x
151 * (rpt1)nop
152 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
153 * nop
154 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
155 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
156 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
157 *
158 * The last mul.f does not have (ss) set, presumably because the
159 * (ss) on the previous instruction does the job.
160 *
161 * The blob driver also seems to set it on WAR hazards, although
162 * not really clear if this is needed or just blob compiler being
163 * sloppy. So far I haven't found a case where removing the (ss)
164 * causes problems for WAR hazard, but I could just be getting
165 * lucky:
166 *
167 * rcp r1.y, r3.y
168 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
169 *
170 */
171 IR3_INSTR_SS = 0x002,
172 /* (jp) flag is set on jump targets:
173 */
174 IR3_INSTR_JP = 0x004,
175 IR3_INSTR_UL = 0x008,
176 IR3_INSTR_3D = 0x010,
177 IR3_INSTR_A = 0x020,
178 IR3_INSTR_O = 0x040,
179 IR3_INSTR_P = 0x080,
180 IR3_INSTR_S = 0x100,
181 IR3_INSTR_S2EN = 0x200,
182 IR3_INSTR_G = 0x400,
183 /* meta-flags, for intermediate stages of IR, ie.
184 * before register assignment is done:
185 */
186 IR3_INSTR_MARK = 0x1000,
187 IR3_INSTR_UNUSED= 0x2000,
188 } flags;
189 int repeat;
190 #ifdef DEBUG
191 unsigned regs_max;
192 #endif
193 unsigned regs_count;
194 struct ir3_register **regs;
195 union {
196 struct {
197 char inv;
198 char comp;
199 int immed;
200 struct ir3_block *target;
201 } cat0;
202 struct {
203 type_t src_type, dst_type;
204 } cat1;
205 struct {
206 enum {
207 IR3_COND_LT = 0,
208 IR3_COND_LE = 1,
209 IR3_COND_GT = 2,
210 IR3_COND_GE = 3,
211 IR3_COND_EQ = 4,
212 IR3_COND_NE = 5,
213 } condition;
214 } cat2;
215 struct {
216 unsigned samp, tex;
217 type_t type;
218 } cat5;
219 struct {
220 type_t type;
221 int src_offset;
222 int dst_offset;
223 int iim_val;
224 } cat6;
225 /* for meta-instructions, just used to hold extra data
226 * before instruction scheduling, etc
227 */
228 struct {
229 int off; /* component/offset */
230 } fo;
231 struct {
232 /* used to temporarily hold reference to nir_phi_instr
233 * until we resolve the phi srcs
234 */
235 void *nphi;
236 } phi;
237 struct {
238 struct ir3_block *block;
239 } inout;
240 };
241
242 /* transient values used during various algorithms: */
243 union {
244 /* The instruction depth is the max dependency distance to output.
245 *
246 * You can also think of it as the "cost", if we did any sort of
247 * optimization for register footprint. Ie. a value that is just
248 * result of moving a const to a reg would have a low cost, so to
249 * it could make sense to duplicate the instruction at various
250 * points where the result is needed to reduce register footprint.
251 */
252 unsigned depth;
253 /* When we get to the RA stage, we no longer need depth, but
254 * we do need instruction's position/name:
255 */
256 struct {
257 uint16_t ip;
258 uint16_t name;
259 };
260 };
261
262 /* used for per-pass extra instruction data.
263 */
264 void *data;
265
266 /* Used during CP and RA stages. For fanin and shader inputs/
267 * outputs where we need a sequence of consecutive registers,
268 * keep track of each src instructions left (ie 'n-1') and right
269 * (ie 'n+1') neighbor. The front-end must insert enough mov's
270 * to ensure that each instruction has at most one left and at
271 * most one right neighbor. During the copy-propagation pass,
272 * we only remove mov's when we can preserve this constraint.
273 * And during the RA stage, we use the neighbor information to
274 * allocate a block of registers in one shot.
275 *
276 * TODO: maybe just add something like:
277 * struct ir3_instruction_ref {
278 * struct ir3_instruction *instr;
279 * unsigned cnt;
280 * }
281 *
282 * Or can we get away without the refcnt stuff? It seems like
283 * it should be overkill.. the problem is if, potentially after
284 * already eliminating some mov's, if you have a single mov that
285 * needs to be grouped with it's neighbors in two different
286 * places (ex. shader output and a fanin).
287 */
288 struct {
289 struct ir3_instruction *left, *right;
290 uint16_t left_cnt, right_cnt;
291 } cp;
292
293 /* an instruction can reference at most one address register amongst
294 * it's src/dst registers. Beyond that, you need to insert mov's.
295 *
296 * NOTE: do not write this directly, use ir3_instr_set_address()
297 */
298 struct ir3_instruction *address;
299
300 /* Entry in ir3_block's instruction list: */
301 struct list_head node;
302
303 #ifdef DEBUG
304 uint32_t serialno;
305 #endif
306 };
307
308 static inline struct ir3_instruction *
309 ir3_neighbor_first(struct ir3_instruction *instr)
310 {
311 int cnt = 0;
312 while (instr->cp.left) {
313 instr = instr->cp.left;
314 if (++cnt > 0xffff) {
315 debug_assert(0);
316 break;
317 }
318 }
319 return instr;
320 }
321
322 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
323 {
324 int num = 1;
325
326 debug_assert(!instr->cp.left);
327
328 while (instr->cp.right) {
329 num++;
330 instr = instr->cp.right;
331 if (num > 0xffff) {
332 debug_assert(0);
333 break;
334 }
335 }
336
337 return num;
338 }
339
340 struct ir3_heap_chunk;
341
342 struct ir3 {
343 struct ir3_compiler *compiler;
344
345 unsigned ninputs, noutputs;
346 struct ir3_instruction **inputs;
347 struct ir3_instruction **outputs;
348
349 /* Track bary.f (and ldlv) instructions.. this is needed in
350 * scheduling to ensure that all varying fetches happen before
351 * any potential kill instructions. The hw gets grumpy if all
352 * threads in a group are killed before the last bary.f gets
353 * a chance to signal end of input (ei).
354 */
355 unsigned baryfs_count, baryfs_sz;
356 struct ir3_instruction **baryfs;
357
358 /* Track all indirect instructions (read and write). To avoid
359 * deadlock scenario where an address register gets scheduled,
360 * but other dependent src instructions cannot be scheduled due
361 * to dependency on a *different* address register value, the
362 * scheduler needs to ensure that all dependencies other than
363 * the instruction other than the address register are scheduled
364 * before the one that writes the address register. Having a
365 * convenient list of instructions that reference some address
366 * register simplifies this.
367 */
368 unsigned indirects_count, indirects_sz;
369 struct ir3_instruction **indirects;
370 /* and same for instructions that consume predicate register: */
371 unsigned predicates_count, predicates_sz;
372 struct ir3_instruction **predicates;
373
374 /* Track instructions which do not write a register but other-
375 * wise must not be discarded (such as kill, stg, etc)
376 */
377 unsigned keeps_count, keeps_sz;
378 struct ir3_instruction **keeps;
379
380 /* List of blocks: */
381 struct list_head block_list;
382
383 /* List of ir3_array's: */
384 struct list_head array_list;
385
386 unsigned heap_idx;
387 struct ir3_heap_chunk *chunk;
388 };
389
390 typedef struct nir_variable nir_variable;
391
392 struct ir3_array {
393 struct list_head node;
394 unsigned length;
395 unsigned id;
396
397 nir_variable *var;
398
399 /* We track the last write and last access (read or write) to
400 * setup dependencies on instructions that read or write the
401 * array. Reads can be re-ordered wrt. other reads, but should
402 * not be re-ordered wrt. to writes. Writes cannot be reordered
403 * wrt. any other access to the array.
404 *
405 * So array reads depend on last write, and array writes depend
406 * on the last access.
407 */
408 struct ir3_instruction *last_write, *last_access;
409
410 /* extra stuff used in RA pass: */
411 unsigned base; /* base vreg name */
412 unsigned reg; /* base physical reg */
413 uint16_t start_ip, end_ip;
414 };
415
416 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
417
418 typedef struct nir_block nir_block;
419
420 struct ir3_block {
421 struct list_head node;
422 struct ir3 *shader;
423
424 nir_block *nblock;
425
426 struct list_head instr_list; /* list of ir3_instruction */
427
428 /* each block has either one or two successors.. in case of
429 * two successors, 'condition' decides which one to follow.
430 * A block preceding an if/else has two successors.
431 */
432 struct ir3_instruction *condition;
433 struct ir3_block *successors[2];
434
435 uint16_t start_ip, end_ip;
436
437 /* used for per-pass extra block data. Mainly used right
438 * now in RA step to track livein/liveout.
439 */
440 void *data;
441
442 #ifdef DEBUG
443 uint32_t serialno;
444 #endif
445 };
446
447 static inline uint32_t
448 block_id(struct ir3_block *block)
449 {
450 #ifdef DEBUG
451 return block->serialno;
452 #else
453 return (uint32_t)(unsigned long)block;
454 #endif
455 }
456
457 struct ir3 * ir3_create(struct ir3_compiler *compiler,
458 unsigned nin, unsigned nout);
459 void ir3_destroy(struct ir3 *shader);
460 void * ir3_assemble(struct ir3 *shader,
461 struct ir3_info *info, uint32_t gpu_id);
462 void * ir3_alloc(struct ir3 *shader, int sz);
463
464 struct ir3_block * ir3_block_create(struct ir3 *shader);
465
466 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
467 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
468 opc_t opc, int nreg);
469 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
470 const char *ir3_instr_name(struct ir3_instruction *instr);
471
472 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
473 int num, int flags);
474 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
475 struct ir3_register *reg);
476
477 void ir3_instr_set_address(struct ir3_instruction *instr,
478 struct ir3_instruction *addr);
479
480 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
481 {
482 if (instr->flags & IR3_INSTR_MARK)
483 return true; /* already visited */
484 instr->flags |= IR3_INSTR_MARK;
485 return false;
486 }
487
488 void ir3_block_clear_mark(struct ir3_block *block);
489 void ir3_clear_mark(struct ir3 *shader);
490
491 unsigned ir3_count_instructions(struct ir3 *ir);
492
493 static inline int ir3_instr_regno(struct ir3_instruction *instr,
494 struct ir3_register *reg)
495 {
496 unsigned i;
497 for (i = 0; i < instr->regs_count; i++)
498 if (reg == instr->regs[i])
499 return i;
500 return -1;
501 }
502
503
504 #define MAX_ARRAYS 16
505
506 /* comp:
507 * 0 - x
508 * 1 - y
509 * 2 - z
510 * 3 - w
511 */
512 static inline uint32_t regid(int num, int comp)
513 {
514 return (num << 2) | (comp & 0x3);
515 }
516
517 static inline uint32_t reg_num(struct ir3_register *reg)
518 {
519 return reg->num >> 2;
520 }
521
522 static inline uint32_t reg_comp(struct ir3_register *reg)
523 {
524 return reg->num & 0x3;
525 }
526
527 static inline bool is_flow(struct ir3_instruction *instr)
528 {
529 return (opc_cat(instr->opc) == 0);
530 }
531
532 static inline bool is_kill(struct ir3_instruction *instr)
533 {
534 return instr->opc == OPC_KILL;
535 }
536
537 static inline bool is_nop(struct ir3_instruction *instr)
538 {
539 return instr->opc == OPC_NOP;
540 }
541
542 /* Is it a non-transformative (ie. not type changing) mov? This can
543 * also include absneg.s/absneg.f, which for the most part can be
544 * treated as a mov (single src argument).
545 */
546 static inline bool is_same_type_mov(struct ir3_instruction *instr)
547 {
548 struct ir3_register *dst = instr->regs[0];
549
550 /* mov's that write to a0.x or p0.x are special: */
551 if (dst->num == regid(REG_P0, 0))
552 return false;
553 if (dst->num == regid(REG_A0, 0))
554 return false;
555
556 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
557 return false;
558
559 switch (instr->opc) {
560 case OPC_MOV:
561 return instr->cat1.src_type == instr->cat1.dst_type;
562 case OPC_ABSNEG_F:
563 case OPC_ABSNEG_S:
564 return true;
565 default:
566 return false;
567 }
568 }
569
570 static inline bool is_alu(struct ir3_instruction *instr)
571 {
572 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
573 }
574
575 static inline bool is_sfu(struct ir3_instruction *instr)
576 {
577 return (opc_cat(instr->opc) == 4);
578 }
579
580 static inline bool is_tex(struct ir3_instruction *instr)
581 {
582 return (opc_cat(instr->opc) == 5);
583 }
584
585 static inline bool is_mem(struct ir3_instruction *instr)
586 {
587 return (opc_cat(instr->opc) == 6);
588 }
589
590 static inline bool
591 is_store(struct ir3_instruction *instr)
592 {
593 /* these instructions, the "destination" register is
594 * actually a source, the address to store to.
595 */
596 switch (instr->opc) {
597 case OPC_STG:
598 case OPC_STP:
599 case OPC_STL:
600 case OPC_STLW:
601 case OPC_L2G:
602 case OPC_G2L:
603 return true;
604 default:
605 return false;
606 }
607 }
608
609 static inline bool is_load(struct ir3_instruction *instr)
610 {
611 switch (instr->opc) {
612 case OPC_LDG:
613 case OPC_LDL:
614 case OPC_LDP:
615 case OPC_L2G:
616 case OPC_LDLW:
617 case OPC_LDC_4:
618 case OPC_LDLV:
619 /* probably some others too.. */
620 return true;
621 default:
622 return false;
623 }
624 }
625
626 static inline bool is_input(struct ir3_instruction *instr)
627 {
628 /* in some cases, ldlv is used to fetch varying without
629 * interpolation.. fortunately inloc is the first src
630 * register in either case
631 */
632 switch (instr->opc) {
633 case OPC_LDLV:
634 case OPC_BARY_F:
635 return true;
636 default:
637 return false;
638 }
639 }
640
641 static inline bool is_bool(struct ir3_instruction *instr)
642 {
643 switch (instr->opc) {
644 case OPC_CMPS_F:
645 case OPC_CMPS_S:
646 case OPC_CMPS_U:
647 return true;
648 default:
649 return false;
650 }
651 }
652
653 static inline bool is_meta(struct ir3_instruction *instr)
654 {
655 /* TODO how should we count PHI (and maybe fan-in/out) which
656 * might actually contribute some instructions to the final
657 * result?
658 */
659 return (opc_cat(instr->opc) == -1);
660 }
661
662 static inline bool writes_addr(struct ir3_instruction *instr)
663 {
664 if (instr->regs_count > 0) {
665 struct ir3_register *dst = instr->regs[0];
666 return reg_num(dst) == REG_A0;
667 }
668 return false;
669 }
670
671 static inline bool writes_pred(struct ir3_instruction *instr)
672 {
673 if (instr->regs_count > 0) {
674 struct ir3_register *dst = instr->regs[0];
675 return reg_num(dst) == REG_P0;
676 }
677 return false;
678 }
679
680 /* returns defining instruction for reg */
681 /* TODO better name */
682 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
683 {
684 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
685 debug_assert(!(reg->instr && (reg->instr->flags & IR3_INSTR_UNUSED)));
686 return reg->instr;
687 }
688 return NULL;
689 }
690
691 static inline bool conflicts(struct ir3_instruction *a,
692 struct ir3_instruction *b)
693 {
694 return (a && b) && (a != b);
695 }
696
697 static inline bool reg_gpr(struct ir3_register *r)
698 {
699 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
700 return false;
701 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
702 return false;
703 return true;
704 }
705
706 static inline type_t half_type(type_t type)
707 {
708 switch (type) {
709 case TYPE_F32: return TYPE_F16;
710 case TYPE_U32: return TYPE_U16;
711 case TYPE_S32: return TYPE_S16;
712 case TYPE_F16:
713 case TYPE_U16:
714 case TYPE_S16:
715 return type;
716 default:
717 assert(0);
718 return ~0;
719 }
720 }
721
722 /* some cat2 instructions (ie. those which are not float) can embed an
723 * immediate:
724 */
725 static inline bool ir3_cat2_int(opc_t opc)
726 {
727 switch (opc) {
728 case OPC_ADD_U:
729 case OPC_ADD_S:
730 case OPC_SUB_U:
731 case OPC_SUB_S:
732 case OPC_CMPS_U:
733 case OPC_CMPS_S:
734 case OPC_MIN_U:
735 case OPC_MIN_S:
736 case OPC_MAX_U:
737 case OPC_MAX_S:
738 case OPC_CMPV_U:
739 case OPC_CMPV_S:
740 case OPC_MUL_U:
741 case OPC_MUL_S:
742 case OPC_MULL_U:
743 case OPC_CLZ_S:
744 case OPC_ABSNEG_S:
745 case OPC_AND_B:
746 case OPC_OR_B:
747 case OPC_NOT_B:
748 case OPC_XOR_B:
749 case OPC_BFREV_B:
750 case OPC_CLZ_B:
751 case OPC_SHL_B:
752 case OPC_SHR_B:
753 case OPC_ASHR_B:
754 case OPC_MGEN_B:
755 case OPC_GETBIT_B:
756 case OPC_CBITS_B:
757 case OPC_BARY_F:
758 return true;
759
760 default:
761 return false;
762 }
763 }
764
765
766 /* map cat2 instruction to valid abs/neg flags: */
767 static inline unsigned ir3_cat2_absneg(opc_t opc)
768 {
769 switch (opc) {
770 case OPC_ADD_F:
771 case OPC_MIN_F:
772 case OPC_MAX_F:
773 case OPC_MUL_F:
774 case OPC_SIGN_F:
775 case OPC_CMPS_F:
776 case OPC_ABSNEG_F:
777 case OPC_CMPV_F:
778 case OPC_FLOOR_F:
779 case OPC_CEIL_F:
780 case OPC_RNDNE_F:
781 case OPC_RNDAZ_F:
782 case OPC_TRUNC_F:
783 case OPC_BARY_F:
784 return IR3_REG_FABS | IR3_REG_FNEG;
785
786 case OPC_ADD_U:
787 case OPC_ADD_S:
788 case OPC_SUB_U:
789 case OPC_SUB_S:
790 case OPC_CMPS_U:
791 case OPC_CMPS_S:
792 case OPC_MIN_U:
793 case OPC_MIN_S:
794 case OPC_MAX_U:
795 case OPC_MAX_S:
796 case OPC_CMPV_U:
797 case OPC_CMPV_S:
798 case OPC_MUL_U:
799 case OPC_MUL_S:
800 case OPC_MULL_U:
801 case OPC_CLZ_S:
802 return 0;
803
804 case OPC_ABSNEG_S:
805 return IR3_REG_SABS | IR3_REG_SNEG;
806
807 case OPC_AND_B:
808 case OPC_OR_B:
809 case OPC_NOT_B:
810 case OPC_XOR_B:
811 case OPC_BFREV_B:
812 case OPC_CLZ_B:
813 case OPC_SHL_B:
814 case OPC_SHR_B:
815 case OPC_ASHR_B:
816 case OPC_MGEN_B:
817 case OPC_GETBIT_B:
818 case OPC_CBITS_B:
819 return IR3_REG_BNOT;
820
821 default:
822 return 0;
823 }
824 }
825
826 /* map cat3 instructions to valid abs/neg flags: */
827 static inline unsigned ir3_cat3_absneg(opc_t opc)
828 {
829 switch (opc) {
830 case OPC_MAD_F16:
831 case OPC_MAD_F32:
832 case OPC_SEL_F16:
833 case OPC_SEL_F32:
834 return IR3_REG_FNEG;
835
836 case OPC_MAD_U16:
837 case OPC_MADSH_U16:
838 case OPC_MAD_S16:
839 case OPC_MADSH_M16:
840 case OPC_MAD_U24:
841 case OPC_MAD_S24:
842 case OPC_SEL_S16:
843 case OPC_SEL_S32:
844 case OPC_SAD_S16:
845 case OPC_SAD_S32:
846 /* neg *may* work on 3rd src.. */
847
848 case OPC_SEL_B16:
849 case OPC_SEL_B32:
850
851 default:
852 return 0;
853 }
854 }
855
856 #define array_insert(arr, val) do { \
857 if (arr ## _count == arr ## _sz) { \
858 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
859 arr = realloc(arr, arr ## _sz * sizeof(arr[0])); \
860 } \
861 arr[arr ##_count++] = val; \
862 } while (0)
863
864 /* iterator for an instructions's sources (reg), also returns src #: */
865 #define foreach_src_n(__srcreg, __n, __instr) \
866 if ((__instr)->regs_count) \
867 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
868 if ((__srcreg = (__instr)->regs[__n + 1]))
869
870 /* iterator for an instructions's sources (reg): */
871 #define foreach_src(__srcreg, __instr) \
872 foreach_src_n(__srcreg, __i, __instr)
873
874 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
875 {
876 if (instr->address)
877 return instr->regs_count + 1;
878 return instr->regs_count;
879 }
880
881 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
882 {
883 if (n == (instr->regs_count + 0))
884 return instr->address;
885 return ssa(instr->regs[n]);
886 }
887
888 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
889
890 /* iterator for an instruction's SSA sources (instr), also returns src #: */
891 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
892 if ((__instr)->regs_count) \
893 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
894 if ((__srcinst = __ssa_src_n(__instr, __n)))
895
896 /* iterator for an instruction's SSA sources (instr): */
897 #define foreach_ssa_src(__srcinst, __instr) \
898 foreach_ssa_src_n(__srcinst, __i, __instr)
899
900
901 /* dump: */
902 void ir3_print(struct ir3 *ir);
903 void ir3_print_instr(struct ir3_instruction *instr);
904
905 /* depth calculation: */
906 int ir3_delayslots(struct ir3_instruction *assigner,
907 struct ir3_instruction *consumer, unsigned n);
908 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
909 void ir3_depth(struct ir3 *ir);
910
911 /* copy-propagate: */
912 void ir3_cp(struct ir3 *ir);
913
914 /* group neighbors and insert mov's to resolve conflicts: */
915 void ir3_group(struct ir3 *ir);
916
917 /* scheduling: */
918 int ir3_sched(struct ir3 *ir);
919
920 /* register assignment: */
921 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(void *memctx);
922 int ir3_ra(struct ir3 *ir3, enum shader_t type,
923 bool frag_coord, bool frag_face);
924
925 /* legalize: */
926 void ir3_legalize(struct ir3 *ir, bool *has_samp, int *max_bary);
927
928 /* ************************************************************************* */
929 /* instruction helpers */
930
931 static inline struct ir3_instruction *
932 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
933 {
934 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
935 ir3_reg_create(instr, 0, 0); /* dst */
936 if (src->regs[0]->flags & IR3_REG_ARRAY) {
937 struct ir3_register *src_reg =
938 ir3_reg_create(instr, 0, IR3_REG_ARRAY);
939 src_reg->array = src->regs[0]->array;
940 src_reg->instr = src;
941 } else {
942 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
943 }
944 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
945 instr->cat1.src_type = type;
946 instr->cat1.dst_type = type;
947 return instr;
948 }
949
950 static inline struct ir3_instruction *
951 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
952 type_t src_type, type_t dst_type)
953 {
954 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
955 ir3_reg_create(instr, 0, 0); /* dst */
956 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
957 instr->cat1.src_type = src_type;
958 instr->cat1.dst_type = dst_type;
959 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
960 return instr;
961 }
962
963 static inline struct ir3_instruction *
964 ir3_NOP(struct ir3_block *block)
965 {
966 return ir3_instr_create(block, OPC_NOP);
967 }
968
969 #define INSTR0(name) \
970 static inline struct ir3_instruction * \
971 ir3_##name(struct ir3_block *block) \
972 { \
973 struct ir3_instruction *instr = \
974 ir3_instr_create(block, OPC_##name); \
975 return instr; \
976 }
977
978 #define INSTR1(name) \
979 static inline struct ir3_instruction * \
980 ir3_##name(struct ir3_block *block, \
981 struct ir3_instruction *a, unsigned aflags) \
982 { \
983 struct ir3_instruction *instr = \
984 ir3_instr_create(block, OPC_##name); \
985 ir3_reg_create(instr, 0, 0); /* dst */ \
986 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
987 return instr; \
988 }
989
990 #define INSTR2(name) \
991 static inline struct ir3_instruction * \
992 ir3_##name(struct ir3_block *block, \
993 struct ir3_instruction *a, unsigned aflags, \
994 struct ir3_instruction *b, unsigned bflags) \
995 { \
996 struct ir3_instruction *instr = \
997 ir3_instr_create(block, OPC_##name); \
998 ir3_reg_create(instr, 0, 0); /* dst */ \
999 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
1000 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
1001 return instr; \
1002 }
1003
1004 #define INSTR3(name) \
1005 static inline struct ir3_instruction * \
1006 ir3_##name(struct ir3_block *block, \
1007 struct ir3_instruction *a, unsigned aflags, \
1008 struct ir3_instruction *b, unsigned bflags, \
1009 struct ir3_instruction *c, unsigned cflags) \
1010 { \
1011 struct ir3_instruction *instr = \
1012 ir3_instr_create(block, OPC_##name); \
1013 ir3_reg_create(instr, 0, 0); /* dst */ \
1014 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
1015 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
1016 ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c; \
1017 return instr; \
1018 }
1019
1020 /* cat0 instructions: */
1021 INSTR0(BR);
1022 INSTR0(JUMP);
1023 INSTR1(KILL);
1024 INSTR0(END);
1025
1026 /* cat2 instructions, most 2 src but some 1 src: */
1027 INSTR2(ADD_F)
1028 INSTR2(MIN_F)
1029 INSTR2(MAX_F)
1030 INSTR2(MUL_F)
1031 INSTR1(SIGN_F)
1032 INSTR2(CMPS_F)
1033 INSTR1(ABSNEG_F)
1034 INSTR2(CMPV_F)
1035 INSTR1(FLOOR_F)
1036 INSTR1(CEIL_F)
1037 INSTR1(RNDNE_F)
1038 INSTR1(RNDAZ_F)
1039 INSTR1(TRUNC_F)
1040 INSTR2(ADD_U)
1041 INSTR2(ADD_S)
1042 INSTR2(SUB_U)
1043 INSTR2(SUB_S)
1044 INSTR2(CMPS_U)
1045 INSTR2(CMPS_S)
1046 INSTR2(MIN_U)
1047 INSTR2(MIN_S)
1048 INSTR2(MAX_U)
1049 INSTR2(MAX_S)
1050 INSTR1(ABSNEG_S)
1051 INSTR2(AND_B)
1052 INSTR2(OR_B)
1053 INSTR1(NOT_B)
1054 INSTR2(XOR_B)
1055 INSTR2(CMPV_U)
1056 INSTR2(CMPV_S)
1057 INSTR2(MUL_U)
1058 INSTR2(MUL_S)
1059 INSTR2(MULL_U)
1060 INSTR1(BFREV_B)
1061 INSTR1(CLZ_S)
1062 INSTR1(CLZ_B)
1063 INSTR2(SHL_B)
1064 INSTR2(SHR_B)
1065 INSTR2(ASHR_B)
1066 INSTR2(BARY_F)
1067 INSTR2(MGEN_B)
1068 INSTR2(GETBIT_B)
1069 INSTR1(SETRM)
1070 INSTR1(CBITS_B)
1071 INSTR2(SHB)
1072 INSTR2(MSAD)
1073
1074 /* cat3 instructions: */
1075 INSTR3(MAD_U16)
1076 INSTR3(MADSH_U16)
1077 INSTR3(MAD_S16)
1078 INSTR3(MADSH_M16)
1079 INSTR3(MAD_U24)
1080 INSTR3(MAD_S24)
1081 INSTR3(MAD_F16)
1082 INSTR3(MAD_F32)
1083 INSTR3(SEL_B16)
1084 INSTR3(SEL_B32)
1085 INSTR3(SEL_S16)
1086 INSTR3(SEL_S32)
1087 INSTR3(SEL_F16)
1088 INSTR3(SEL_F32)
1089 INSTR3(SAD_S16)
1090 INSTR3(SAD_S32)
1091
1092 /* cat4 instructions: */
1093 INSTR1(RCP)
1094 INSTR1(RSQ)
1095 INSTR1(LOG2)
1096 INSTR1(EXP2)
1097 INSTR1(SIN)
1098 INSTR1(COS)
1099 INSTR1(SQRT)
1100
1101 /* cat5 instructions: */
1102 INSTR1(DSX)
1103 INSTR1(DSY)
1104
1105 static inline struct ir3_instruction *
1106 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1107 unsigned wrmask, unsigned flags, unsigned samp, unsigned tex,
1108 struct ir3_instruction *src0, struct ir3_instruction *src1)
1109 {
1110 struct ir3_instruction *sam;
1111 struct ir3_register *reg;
1112
1113 sam = ir3_instr_create(block, opc);
1114 sam->flags |= flags;
1115 ir3_reg_create(sam, 0, 0)->wrmask = wrmask;
1116 if (src0) {
1117 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1118 reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
1119 reg->instr = src0;
1120 }
1121 if (src1) {
1122 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1123 reg->instr = src1;
1124 reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
1125 }
1126 sam->cat5.samp = samp;
1127 sam->cat5.tex = tex;
1128 sam->cat5.type = type;
1129
1130 return sam;
1131 }
1132
1133 /* cat6 instructions: */
1134 INSTR2(LDLV)
1135 INSTR2(LDG)
1136 INSTR3(STG)
1137
1138 /* ************************************************************************* */
1139 /* split this out or find some helper to use.. like main/bitset.h.. */
1140
1141 #include <string.h>
1142
1143 #define MAX_REG 256
1144
1145 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1146
1147 static inline unsigned regmask_idx(struct ir3_register *reg)
1148 {
1149 unsigned num = (reg->flags & IR3_REG_RELATIV) ? reg->array.offset : reg->num;
1150 debug_assert(num < MAX_REG);
1151 if (reg->flags & IR3_REG_HALF)
1152 num += MAX_REG;
1153 return num;
1154 }
1155
1156 static inline void regmask_init(regmask_t *regmask)
1157 {
1158 memset(regmask, 0, sizeof(*regmask));
1159 }
1160
1161 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1162 {
1163 unsigned idx = regmask_idx(reg);
1164 if (reg->flags & IR3_REG_RELATIV) {
1165 unsigned i;
1166 for (i = 0; i < reg->size; i++, idx++)
1167 (*regmask)[idx / 8] |= 1 << (idx % 8);
1168 } else {
1169 unsigned mask;
1170 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1171 if (mask & 1)
1172 (*regmask)[idx / 8] |= 1 << (idx % 8);
1173 }
1174 }
1175
1176 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1177 {
1178 unsigned i;
1179 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1180 (*dst)[i] = (*a)[i] | (*b)[i];
1181 }
1182
1183 /* set bits in a if not set in b, conceptually:
1184 * a |= (reg & ~b)
1185 */
1186 static inline void regmask_set_if_not(regmask_t *a,
1187 struct ir3_register *reg, regmask_t *b)
1188 {
1189 unsigned idx = regmask_idx(reg);
1190 if (reg->flags & IR3_REG_RELATIV) {
1191 unsigned i;
1192 for (i = 0; i < reg->size; i++, idx++)
1193 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1194 (*a)[idx / 8] |= 1 << (idx % 8);
1195 } else {
1196 unsigned mask;
1197 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1198 if (mask & 1)
1199 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1200 (*a)[idx / 8] |= 1 << (idx % 8);
1201 }
1202 }
1203
1204 static inline bool regmask_get(regmask_t *regmask,
1205 struct ir3_register *reg)
1206 {
1207 unsigned idx = regmask_idx(reg);
1208 if (reg->flags & IR3_REG_RELATIV) {
1209 unsigned i;
1210 for (i = 0; i < reg->size; i++, idx++)
1211 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1212 return true;
1213 } else {
1214 unsigned mask;
1215 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1216 if (mask & 1)
1217 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1218 return true;
1219 }
1220 return false;
1221 }
1222
1223 /* ************************************************************************* */
1224
1225 #endif /* IR3_H_ */