iris: Set bo->reusable = false in iris_bo_make_external_locked
[mesa.git] / src / gallium / drivers / iris / iris_bufmgr.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_bufmgr.c
25 *
26 * The Iris buffer manager.
27 *
28 * XXX: write better comments
29 * - BOs
30 * - Explain BO cache
31 * - main interface to GEM in the kernel
32 */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <xf86drm.h>
39 #include <util/u_atomic.h>
40 #include <fcntl.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <assert.h>
46 #include <sys/ioctl.h>
47 #include <sys/mman.h>
48 #include <sys/stat.h>
49 #include <sys/types.h>
50 #include <stdbool.h>
51 #include <time.h>
52
53 #include "errno.h"
54 #include "common/gen_clflush.h"
55 #include "dev/gen_debug.h"
56 #include "common/gen_gem.h"
57 #include "dev/gen_device_info.h"
58 #include "main/macros.h"
59 #include "util/debug.h"
60 #include "util/macros.h"
61 #include "util/hash_table.h"
62 #include "util/list.h"
63 #include "util/u_dynarray.h"
64 #include "util/vma.h"
65 #include "iris_bufmgr.h"
66 #include "iris_context.h"
67 #include "string.h"
68
69 #include "drm-uapi/i915_drm.h"
70
71 #ifdef HAVE_VALGRIND
72 #include <valgrind.h>
73 #include <memcheck.h>
74 #define VG(x) x
75 #else
76 #define VG(x)
77 #endif
78
79 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
80 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
81 * leaked. All because it does not call VG(cli_free) from its
82 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
83 * and allocation, we mark it available for use upon mmapping and remove
84 * it upon unmapping.
85 */
86 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
87 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
88
89 #define PAGE_SIZE 4096
90
91 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
92
93 static inline int
94 atomic_add_unless(int *v, int add, int unless)
95 {
96 int c, old;
97 c = p_atomic_read(v);
98 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
99 c = old;
100 return c == unless;
101 }
102
103 static const char *
104 memzone_name(enum iris_memory_zone memzone)
105 {
106 const char *names[] = {
107 [IRIS_MEMZONE_SHADER] = "shader",
108 [IRIS_MEMZONE_BINDER] = "binder",
109 [IRIS_MEMZONE_SURFACE] = "surface",
110 [IRIS_MEMZONE_DYNAMIC] = "dynamic",
111 [IRIS_MEMZONE_OTHER] = "other",
112 [IRIS_MEMZONE_BORDER_COLOR_POOL] = "bordercolor",
113 };
114 assert(memzone < ARRAY_SIZE(names));
115 return names[memzone];
116 }
117
118 struct bo_cache_bucket {
119 /** List of cached BOs. */
120 struct list_head head;
121
122 /** Size of this bucket, in bytes. */
123 uint64_t size;
124 };
125
126 struct iris_bufmgr {
127 int fd;
128
129 mtx_t lock;
130
131 /** Array of lists of cached gem objects of power-of-two sizes */
132 struct bo_cache_bucket cache_bucket[14 * 4];
133 int num_buckets;
134 time_t time;
135
136 struct hash_table *name_table;
137 struct hash_table *handle_table;
138
139 /**
140 * List of BOs which we've effectively freed, but are hanging on to
141 * until they're idle before closing and returning the VMA.
142 */
143 struct list_head zombie_list;
144
145 struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT];
146
147 bool has_llc:1;
148 bool bo_reuse:1;
149 };
150
151 static int bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
152 uint32_t stride);
153
154 static void bo_free(struct iris_bo *bo);
155
156 static uint64_t vma_alloc(struct iris_bufmgr *bufmgr,
157 enum iris_memory_zone memzone,
158 uint64_t size, uint64_t alignment);
159
160 static uint32_t
161 key_hash_uint(const void *key)
162 {
163 return _mesa_hash_data(key, 4);
164 }
165
166 static bool
167 key_uint_equal(const void *a, const void *b)
168 {
169 return *((unsigned *) a) == *((unsigned *) b);
170 }
171
172 static struct iris_bo *
173 find_and_ref_external_bo(struct hash_table *ht, unsigned int key)
174 {
175 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
176 struct iris_bo *bo = entry ? entry->data : NULL;
177
178 if (bo) {
179 assert(bo->external);
180 assert(!bo->reusable);
181
182 /* Being non-reusable, the BO cannot be in the cache lists, but it
183 * may be in the zombie list if it had reached zero references, but
184 * we hadn't yet closed it...and then reimported the same BO. If it
185 * is, then remove it since it's now been resurrected.
186 */
187 if (bo->head.prev || bo->head.next)
188 list_del(&bo->head);
189
190 iris_bo_reference(bo);
191 }
192
193 return bo;
194 }
195
196 /**
197 * This function finds the correct bucket fit for the input size.
198 * The function works with O(1) complexity when the requested size
199 * was queried instead of iterating the size through all the buckets.
200 */
201 static struct bo_cache_bucket *
202 bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size)
203 {
204 /* Calculating the pages and rounding up to the page size. */
205 const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
206
207 /* Row Bucket sizes clz((x-1) | 3) Row Column
208 * in pages stride size
209 * 0: 1 2 3 4 -> 30 30 30 30 4 1
210 * 1: 5 6 7 8 -> 29 29 29 29 4 1
211 * 2: 10 12 14 16 -> 28 28 28 28 8 2
212 * 3: 20 24 28 32 -> 27 27 27 27 16 4
213 */
214 const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
215 const unsigned row_max_pages = 4 << row;
216
217 /* The '& ~2' is the special case for row 1. In row 1, max pages /
218 * 2 is 2, but the previous row maximum is zero (because there is
219 * no previous row). All row maximum sizes are power of 2, so that
220 * is the only case where that bit will be set.
221 */
222 const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
223 int col_size_log2 = row - 1;
224 col_size_log2 += (col_size_log2 < 0);
225
226 const unsigned col = (pages - prev_row_max_pages +
227 ((1 << col_size_log2) - 1)) >> col_size_log2;
228
229 /* Calculating the index based on the row and column. */
230 const unsigned index = (row * 4) + (col - 1);
231
232 return (index < bufmgr->num_buckets) ?
233 &bufmgr->cache_bucket[index] : NULL;
234 }
235
236 enum iris_memory_zone
237 iris_memzone_for_address(uint64_t address)
238 {
239 STATIC_ASSERT(IRIS_MEMZONE_OTHER_START > IRIS_MEMZONE_DYNAMIC_START);
240 STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START > IRIS_MEMZONE_SURFACE_START);
241 STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START > IRIS_MEMZONE_BINDER_START);
242 STATIC_ASSERT(IRIS_MEMZONE_BINDER_START > IRIS_MEMZONE_SHADER_START);
243 STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START);
244
245 if (address >= IRIS_MEMZONE_OTHER_START)
246 return IRIS_MEMZONE_OTHER;
247
248 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
249 return IRIS_MEMZONE_BORDER_COLOR_POOL;
250
251 if (address > IRIS_MEMZONE_DYNAMIC_START)
252 return IRIS_MEMZONE_DYNAMIC;
253
254 if (address >= IRIS_MEMZONE_SURFACE_START)
255 return IRIS_MEMZONE_SURFACE;
256
257 if (address >= IRIS_MEMZONE_BINDER_START)
258 return IRIS_MEMZONE_BINDER;
259
260 return IRIS_MEMZONE_SHADER;
261 }
262
263 /**
264 * Allocate a section of virtual memory for a buffer, assigning an address.
265 *
266 * This uses either the bucket allocator for the given size, or the large
267 * object allocator (util_vma).
268 */
269 static uint64_t
270 vma_alloc(struct iris_bufmgr *bufmgr,
271 enum iris_memory_zone memzone,
272 uint64_t size,
273 uint64_t alignment)
274 {
275 /* Force alignment to be some number of pages */
276 alignment = ALIGN(alignment, PAGE_SIZE);
277
278 if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL)
279 return IRIS_BORDER_COLOR_POOL_ADDRESS;
280
281 /* The binder handles its own allocations. Return non-zero here. */
282 if (memzone == IRIS_MEMZONE_BINDER)
283 return IRIS_MEMZONE_BINDER_START;
284
285 uint64_t addr =
286 util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size, alignment);
287
288 assert((addr >> 48ull) == 0);
289 assert((addr % alignment) == 0);
290
291 return gen_canonical_address(addr);
292 }
293
294 static void
295 vma_free(struct iris_bufmgr *bufmgr,
296 uint64_t address,
297 uint64_t size)
298 {
299 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
300 return;
301
302 /* Un-canonicalize the address. */
303 address = gen_48b_address(address);
304
305 if (address == 0ull)
306 return;
307
308 enum iris_memory_zone memzone = iris_memzone_for_address(address);
309
310 /* The binder handles its own allocations. */
311 if (memzone == IRIS_MEMZONE_BINDER)
312 return;
313
314 util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
315 }
316
317 int
318 iris_bo_busy(struct iris_bo *bo)
319 {
320 struct iris_bufmgr *bufmgr = bo->bufmgr;
321 struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
322
323 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
324 if (ret == 0) {
325 bo->idle = !busy.busy;
326 return busy.busy;
327 }
328 return false;
329 }
330
331 int
332 iris_bo_madvise(struct iris_bo *bo, int state)
333 {
334 struct drm_i915_gem_madvise madv = {
335 .handle = bo->gem_handle,
336 .madv = state,
337 .retained = 1,
338 };
339
340 gen_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
341
342 return madv.retained;
343 }
344
345 static struct iris_bo *
346 bo_calloc(void)
347 {
348 struct iris_bo *bo = calloc(1, sizeof(*bo));
349 if (bo) {
350 bo->hash = _mesa_hash_pointer(bo);
351 }
352 return bo;
353 }
354
355 static struct iris_bo *
356 alloc_bo_from_cache(struct iris_bufmgr *bufmgr,
357 struct bo_cache_bucket *bucket,
358 uint32_t alignment,
359 enum iris_memory_zone memzone,
360 unsigned flags,
361 bool match_zone)
362 {
363 if (!bucket)
364 return NULL;
365
366 struct iris_bo *bo = NULL;
367
368 list_for_each_entry_safe(struct iris_bo, cur, &bucket->head, head) {
369 /* Try a little harder to find one that's already in the right memzone */
370 if (match_zone && memzone != iris_memzone_for_address(cur->gtt_offset))
371 continue;
372
373 /* If the last BO in the cache is busy, there are no idle BOs. Bail,
374 * either falling back to a non-matching memzone, or if that fails,
375 * allocating a fresh buffer.
376 */
377 if (iris_bo_busy(cur))
378 return NULL;
379
380 list_del(&cur->head);
381
382 /* Tell the kernel we need this BO. If it still exists, we're done! */
383 if (iris_bo_madvise(cur, I915_MADV_WILLNEED)) {
384 bo = cur;
385 break;
386 }
387
388 /* This BO was purged, throw it out and keep looking. */
389 bo_free(cur);
390 }
391
392 if (!bo)
393 return NULL;
394
395 /* If the cached BO isn't in the right memory zone, or the alignment
396 * isn't sufficient, free the old memory and assign it a new address.
397 */
398 if (memzone != iris_memzone_for_address(bo->gtt_offset) ||
399 bo->gtt_offset % alignment != 0) {
400 vma_free(bufmgr, bo->gtt_offset, bo->size);
401 bo->gtt_offset = 0ull;
402 }
403
404 /* Zero the contents if necessary. If this fails, fall back to
405 * allocating a fresh BO, which will always be zeroed by the kernel.
406 */
407 if (flags & BO_ALLOC_ZEROED) {
408 void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
409 if (map) {
410 memset(map, 0, bo->size);
411 } else {
412 bo_free(bo);
413 return NULL;
414 }
415 }
416
417 return bo;
418 }
419
420 static struct iris_bo *
421 alloc_fresh_bo(struct iris_bufmgr *bufmgr, uint64_t bo_size)
422 {
423 struct iris_bo *bo = bo_calloc();
424 if (!bo)
425 return NULL;
426
427 struct drm_i915_gem_create create = { .size = bo_size };
428
429 /* All new BOs we get from the kernel are zeroed, so we don't need to
430 * worry about that here.
431 */
432 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create) != 0) {
433 free(bo);
434 return NULL;
435 }
436
437 bo->gem_handle = create.handle;
438 bo->bufmgr = bufmgr;
439 bo->size = bo_size;
440 bo->idle = true;
441 bo->tiling_mode = I915_TILING_NONE;
442 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
443 bo->stride = 0;
444
445 /* Calling set_domain() will allocate pages for the BO outside of the
446 * struct mutex lock in the kernel, which is more efficient than waiting
447 * to create them during the first execbuf that uses the BO.
448 */
449 struct drm_i915_gem_set_domain sd = {
450 .handle = bo->gem_handle,
451 .read_domains = I915_GEM_DOMAIN_CPU,
452 .write_domain = 0,
453 };
454
455 if (gen_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) {
456 bo_free(bo);
457 return NULL;
458 }
459
460 return bo;
461 }
462
463 static struct iris_bo *
464 bo_alloc_internal(struct iris_bufmgr *bufmgr,
465 const char *name,
466 uint64_t size,
467 uint32_t alignment,
468 enum iris_memory_zone memzone,
469 unsigned flags,
470 uint32_t tiling_mode,
471 uint32_t stride)
472 {
473 struct iris_bo *bo;
474 unsigned int page_size = getpagesize();
475 struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size);
476
477 /* Round the size up to the bucket size, or if we don't have caching
478 * at this size, a multiple of the page size.
479 */
480 uint64_t bo_size =
481 bucket ? bucket->size : MAX2(ALIGN(size, page_size), page_size);
482
483 mtx_lock(&bufmgr->lock);
484
485 /* Get a buffer out of the cache if available. First, we try to find
486 * one with a matching memory zone so we can avoid reallocating VMA.
487 */
488 bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, flags, true);
489
490 /* If that fails, we try for any cached BO, without matching memzone. */
491 if (!bo) {
492 bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, flags,
493 false);
494 }
495
496 mtx_unlock(&bufmgr->lock);
497
498 if (!bo) {
499 bo = alloc_fresh_bo(bufmgr, bo_size);
500 if (!bo)
501 return NULL;
502 }
503
504 if (bo->gtt_offset == 0ull) {
505 mtx_lock(&bufmgr->lock);
506 bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, alignment);
507 mtx_unlock(&bufmgr->lock);
508
509 if (bo->gtt_offset == 0ull)
510 goto err_free;
511 }
512
513 if (bo_set_tiling_internal(bo, tiling_mode, stride))
514 goto err_free;
515
516 bo->name = name;
517 p_atomic_set(&bo->refcount, 1);
518 bo->reusable = bucket && bufmgr->bo_reuse;
519 bo->cache_coherent = bufmgr->has_llc;
520 bo->index = -1;
521 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
522
523 /* By default, capture all driver-internal buffers like shader kernels,
524 * surface states, dynamic states, border colors, and so on.
525 */
526 if (memzone < IRIS_MEMZONE_OTHER)
527 bo->kflags |= EXEC_OBJECT_CAPTURE;
528
529 if ((flags & BO_ALLOC_COHERENT) && !bo->cache_coherent) {
530 struct drm_i915_gem_caching arg = {
531 .handle = bo->gem_handle,
532 .caching = 1,
533 };
534 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) == 0) {
535 bo->cache_coherent = true;
536 bo->reusable = false;
537 }
538 }
539
540 DBG("bo_create: buf %d (%s) (%s memzone) %llub\n", bo->gem_handle,
541 bo->name, memzone_name(memzone), (unsigned long long) size);
542
543 return bo;
544
545 err_free:
546 bo_free(bo);
547 return NULL;
548 }
549
550 struct iris_bo *
551 iris_bo_alloc(struct iris_bufmgr *bufmgr,
552 const char *name,
553 uint64_t size,
554 enum iris_memory_zone memzone)
555 {
556 return bo_alloc_internal(bufmgr, name, size, 1, memzone,
557 0, I915_TILING_NONE, 0);
558 }
559
560 struct iris_bo *
561 iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name,
562 uint64_t size, uint32_t alignment,
563 enum iris_memory_zone memzone,
564 uint32_t tiling_mode, uint32_t pitch, unsigned flags)
565 {
566 return bo_alloc_internal(bufmgr, name, size, alignment, memzone,
567 flags, tiling_mode, pitch);
568 }
569
570 struct iris_bo *
571 iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
572 void *ptr, size_t size,
573 enum iris_memory_zone memzone)
574 {
575 struct iris_bo *bo;
576
577 bo = bo_calloc();
578 if (!bo)
579 return NULL;
580
581 struct drm_i915_gem_userptr arg = {
582 .user_ptr = (uintptr_t)ptr,
583 .user_size = size,
584 };
585 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
586 goto err_free;
587 bo->gem_handle = arg.handle;
588
589 /* Check the buffer for validity before we try and use it in a batch */
590 struct drm_i915_gem_set_domain sd = {
591 .handle = bo->gem_handle,
592 .read_domains = I915_GEM_DOMAIN_CPU,
593 };
594 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
595 goto err_close;
596
597 bo->name = name;
598 bo->size = size;
599 bo->map_cpu = ptr;
600
601 bo->bufmgr = bufmgr;
602 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
603
604 mtx_lock(&bufmgr->lock);
605 bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1);
606 mtx_unlock(&bufmgr->lock);
607
608 if (bo->gtt_offset == 0ull)
609 goto err_close;
610
611 p_atomic_set(&bo->refcount, 1);
612 bo->userptr = true;
613 bo->cache_coherent = true;
614 bo->index = -1;
615 bo->idle = true;
616
617 return bo;
618
619 err_close:
620 gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &bo->gem_handle);
621 err_free:
622 free(bo);
623 return NULL;
624 }
625
626 /**
627 * Returns a iris_bo wrapping the given buffer object handle.
628 *
629 * This can be used when one application needs to pass a buffer object
630 * to another.
631 */
632 struct iris_bo *
633 iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
634 const char *name, unsigned int handle)
635 {
636 struct iris_bo *bo;
637
638 /* At the moment most applications only have a few named bo.
639 * For instance, in a DRI client only the render buffers passed
640 * between X and the client are named. And since X returns the
641 * alternating names for the front/back buffer a linear search
642 * provides a sufficiently fast match.
643 */
644 mtx_lock(&bufmgr->lock);
645 bo = find_and_ref_external_bo(bufmgr->name_table, handle);
646 if (bo)
647 goto out;
648
649 struct drm_gem_open open_arg = { .name = handle };
650 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
651 if (ret != 0) {
652 DBG("Couldn't reference %s handle 0x%08x: %s\n",
653 name, handle, strerror(errno));
654 bo = NULL;
655 goto out;
656 }
657 /* Now see if someone has used a prime handle to get this
658 * object from the kernel before by looking through the list
659 * again for a matching gem_handle
660 */
661 bo = find_and_ref_external_bo(bufmgr->handle_table, open_arg.handle);
662 if (bo)
663 goto out;
664
665 bo = bo_calloc();
666 if (!bo)
667 goto out;
668
669 p_atomic_set(&bo->refcount, 1);
670
671 bo->size = open_arg.size;
672 bo->gtt_offset = 0;
673 bo->bufmgr = bufmgr;
674 bo->gem_handle = open_arg.handle;
675 bo->name = name;
676 bo->global_name = handle;
677 bo->reusable = false;
678 bo->external = true;
679 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
680 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
681
682 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
683 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
684
685 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
686 ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
687 if (ret != 0)
688 goto err_unref;
689
690 bo->tiling_mode = get_tiling.tiling_mode;
691 bo->swizzle_mode = get_tiling.swizzle_mode;
692 /* XXX stride is unknown */
693 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
694
695 out:
696 mtx_unlock(&bufmgr->lock);
697 return bo;
698
699 err_unref:
700 bo_free(bo);
701 mtx_unlock(&bufmgr->lock);
702 return NULL;
703 }
704
705 static void
706 bo_close(struct iris_bo *bo)
707 {
708 struct iris_bufmgr *bufmgr = bo->bufmgr;
709
710 if (bo->external) {
711 struct hash_entry *entry;
712
713 if (bo->global_name) {
714 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
715 _mesa_hash_table_remove(bufmgr->name_table, entry);
716 }
717
718 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
719 _mesa_hash_table_remove(bufmgr->handle_table, entry);
720 }
721
722 /* Close this object */
723 struct drm_gem_close close = { .handle = bo->gem_handle };
724 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
725 if (ret != 0) {
726 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
727 bo->gem_handle, bo->name, strerror(errno));
728 }
729
730 /* Return the VMA for reuse */
731 vma_free(bo->bufmgr, bo->gtt_offset, bo->size);
732
733 free(bo);
734 }
735
736 static void
737 bo_free(struct iris_bo *bo)
738 {
739 struct iris_bufmgr *bufmgr = bo->bufmgr;
740
741 if (bo->map_cpu && !bo->userptr) {
742 VG_NOACCESS(bo->map_cpu, bo->size);
743 munmap(bo->map_cpu, bo->size);
744 }
745 if (bo->map_wc) {
746 VG_NOACCESS(bo->map_wc, bo->size);
747 munmap(bo->map_wc, bo->size);
748 }
749 if (bo->map_gtt) {
750 VG_NOACCESS(bo->map_gtt, bo->size);
751 munmap(bo->map_gtt, bo->size);
752 }
753
754 if (bo->idle) {
755 bo_close(bo);
756 } else {
757 /* Defer closing the GEM BO and returning the VMA for reuse until the
758 * BO is idle. Just move it to the dead list for now.
759 */
760 list_addtail(&bo->head, &bufmgr->zombie_list);
761 }
762 }
763
764 /** Frees all cached buffers significantly older than @time. */
765 static void
766 cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
767 {
768 int i;
769
770 if (bufmgr->time == time)
771 return;
772
773 for (i = 0; i < bufmgr->num_buckets; i++) {
774 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
775
776 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
777 if (time - bo->free_time <= 1)
778 break;
779
780 list_del(&bo->head);
781
782 bo_free(bo);
783 }
784 }
785
786 list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
787 /* Stop once we reach a busy BO - all others past this point were
788 * freed more recently so are likely also busy.
789 */
790 if (!bo->idle && iris_bo_busy(bo))
791 break;
792
793 list_del(&bo->head);
794 bo_close(bo);
795 }
796
797 bufmgr->time = time;
798 }
799
800 static void
801 bo_unreference_final(struct iris_bo *bo, time_t time)
802 {
803 struct iris_bufmgr *bufmgr = bo->bufmgr;
804 struct bo_cache_bucket *bucket;
805
806 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
807
808 bucket = NULL;
809 if (bo->reusable)
810 bucket = bucket_for_size(bufmgr, bo->size);
811 /* Put the buffer into our internal cache for reuse if we can. */
812 if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
813 bo->free_time = time;
814 bo->name = NULL;
815
816 list_addtail(&bo->head, &bucket->head);
817 } else {
818 bo_free(bo);
819 }
820 }
821
822 void
823 iris_bo_unreference(struct iris_bo *bo)
824 {
825 if (bo == NULL)
826 return;
827
828 assert(p_atomic_read(&bo->refcount) > 0);
829
830 if (atomic_add_unless(&bo->refcount, -1, 1)) {
831 struct iris_bufmgr *bufmgr = bo->bufmgr;
832 struct timespec time;
833
834 clock_gettime(CLOCK_MONOTONIC, &time);
835
836 mtx_lock(&bufmgr->lock);
837
838 if (p_atomic_dec_zero(&bo->refcount)) {
839 bo_unreference_final(bo, time.tv_sec);
840 cleanup_bo_cache(bufmgr, time.tv_sec);
841 }
842
843 mtx_unlock(&bufmgr->lock);
844 }
845 }
846
847 static void
848 bo_wait_with_stall_warning(struct pipe_debug_callback *dbg,
849 struct iris_bo *bo,
850 const char *action)
851 {
852 bool busy = dbg && !bo->idle;
853 double elapsed = unlikely(busy) ? -get_time() : 0.0;
854
855 iris_bo_wait_rendering(bo);
856
857 if (unlikely(busy)) {
858 elapsed += get_time();
859 if (elapsed > 1e-5) /* 0.01ms */ {
860 perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
861 action, bo->name, elapsed * 1000);
862 }
863 }
864 }
865
866 static void
867 print_flags(unsigned flags)
868 {
869 if (flags & MAP_READ)
870 DBG("READ ");
871 if (flags & MAP_WRITE)
872 DBG("WRITE ");
873 if (flags & MAP_ASYNC)
874 DBG("ASYNC ");
875 if (flags & MAP_PERSISTENT)
876 DBG("PERSISTENT ");
877 if (flags & MAP_COHERENT)
878 DBG("COHERENT ");
879 if (flags & MAP_RAW)
880 DBG("RAW ");
881 DBG("\n");
882 }
883
884 static void *
885 iris_bo_map_cpu(struct pipe_debug_callback *dbg,
886 struct iris_bo *bo, unsigned flags)
887 {
888 struct iris_bufmgr *bufmgr = bo->bufmgr;
889
890 /* We disallow CPU maps for writing to non-coherent buffers, as the
891 * CPU map can become invalidated when a batch is flushed out, which
892 * can happen at unpredictable times. You should use WC maps instead.
893 */
894 assert(bo->cache_coherent || !(flags & MAP_WRITE));
895
896 if (!bo->map_cpu) {
897 DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
898
899 struct drm_i915_gem_mmap mmap_arg = {
900 .handle = bo->gem_handle,
901 .size = bo->size,
902 };
903 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
904 if (ret != 0) {
905 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
906 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
907 return NULL;
908 }
909 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
910 VG_DEFINED(map, bo->size);
911
912 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
913 VG_NOACCESS(map, bo->size);
914 munmap(map, bo->size);
915 }
916 }
917 assert(bo->map_cpu);
918
919 DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
920 bo->map_cpu);
921 print_flags(flags);
922
923 if (!(flags & MAP_ASYNC)) {
924 bo_wait_with_stall_warning(dbg, bo, "CPU mapping");
925 }
926
927 if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
928 /* If we're reusing an existing CPU mapping, the CPU caches may
929 * contain stale data from the last time we read from that mapping.
930 * (With the BO cache, it might even be data from a previous buffer!)
931 * Even if it's a brand new mapping, the kernel may have zeroed the
932 * buffer via CPU writes.
933 *
934 * We need to invalidate those cachelines so that we see the latest
935 * contents, and so long as we only read from the CPU mmap we do not
936 * need to write those cachelines back afterwards.
937 *
938 * On LLC, the emprical evidence suggests that writes from the GPU
939 * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
940 * cachelines. (Other reads, such as the display engine, bypass the
941 * LLC entirely requiring us to keep dirty pixels for the scanout
942 * out of any cache.)
943 */
944 gen_invalidate_range(bo->map_cpu, bo->size);
945 }
946
947 return bo->map_cpu;
948 }
949
950 static void *
951 iris_bo_map_wc(struct pipe_debug_callback *dbg,
952 struct iris_bo *bo, unsigned flags)
953 {
954 struct iris_bufmgr *bufmgr = bo->bufmgr;
955
956 if (!bo->map_wc) {
957 DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
958
959 struct drm_i915_gem_mmap mmap_arg = {
960 .handle = bo->gem_handle,
961 .size = bo->size,
962 .flags = I915_MMAP_WC,
963 };
964 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
965 if (ret != 0) {
966 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
967 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
968 return NULL;
969 }
970
971 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
972 VG_DEFINED(map, bo->size);
973
974 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
975 VG_NOACCESS(map, bo->size);
976 munmap(map, bo->size);
977 }
978 }
979 assert(bo->map_wc);
980
981 DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
982 print_flags(flags);
983
984 if (!(flags & MAP_ASYNC)) {
985 bo_wait_with_stall_warning(dbg, bo, "WC mapping");
986 }
987
988 return bo->map_wc;
989 }
990
991 /**
992 * Perform an uncached mapping via the GTT.
993 *
994 * Write access through the GTT is not quite fully coherent. On low power
995 * systems especially, like modern Atoms, we can observe reads from RAM before
996 * the write via GTT has landed. A write memory barrier that flushes the Write
997 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
998 * read after the write as the GTT write suffers a small delay through the GTT
999 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
1000 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
1001 * flushes prior to execbuf submission. However, if we are not informing the
1002 * kernel about our GTT writes, it will not flush before earlier access, such
1003 * as when using the cmdparser. Similarly, we need to be careful if we should
1004 * ever issue a CPU read immediately following a GTT write.
1005 *
1006 * Telling the kernel about write access also has one more important
1007 * side-effect. Upon receiving notification about the write, it cancels any
1008 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
1009 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
1010 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
1011 * tracking is handled on the buffer exchange instead.
1012 */
1013 static void *
1014 iris_bo_map_gtt(struct pipe_debug_callback *dbg,
1015 struct iris_bo *bo, unsigned flags)
1016 {
1017 struct iris_bufmgr *bufmgr = bo->bufmgr;
1018
1019 /* Get a mapping of the buffer if we haven't before. */
1020 if (bo->map_gtt == NULL) {
1021 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
1022
1023 struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
1024
1025 /* Get the fake offset back... */
1026 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
1027 if (ret != 0) {
1028 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1029 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1030 return NULL;
1031 }
1032
1033 /* and mmap it. */
1034 void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE,
1035 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
1036 if (map == MAP_FAILED) {
1037 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1038 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1039 return NULL;
1040 }
1041
1042 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
1043 * already intercept this mmap call. However, for consistency between
1044 * all the mmap paths, we mark the pointer as defined now and mark it
1045 * as inaccessible afterwards.
1046 */
1047 VG_DEFINED(map, bo->size);
1048
1049 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
1050 VG_NOACCESS(map, bo->size);
1051 munmap(map, bo->size);
1052 }
1053 }
1054 assert(bo->map_gtt);
1055
1056 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
1057 print_flags(flags);
1058
1059 if (!(flags & MAP_ASYNC)) {
1060 bo_wait_with_stall_warning(dbg, bo, "GTT mapping");
1061 }
1062
1063 return bo->map_gtt;
1064 }
1065
1066 static bool
1067 can_map_cpu(struct iris_bo *bo, unsigned flags)
1068 {
1069 if (bo->cache_coherent)
1070 return true;
1071
1072 /* Even if the buffer itself is not cache-coherent (such as a scanout), on
1073 * an LLC platform reads always are coherent (as they are performed via the
1074 * central system agent). It is just the writes that we need to take special
1075 * care to ensure that land in main memory and not stick in the CPU cache.
1076 */
1077 if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
1078 return true;
1079
1080 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
1081 * across batch flushes where the kernel will change cache domains of the
1082 * bo, invalidating continued access to the CPU mmap on non-LLC device.
1083 *
1084 * Similarly, ASYNC typically means that the buffer will be accessed via
1085 * both the CPU and the GPU simultaneously. Batches may be executed that
1086 * use the BO even while it is mapped. While OpenGL technically disallows
1087 * most drawing while non-persistent mappings are active, we may still use
1088 * the GPU for blits or other operations, causing batches to happen at
1089 * inconvenient times.
1090 *
1091 * If RAW is set, we expect the caller to be able to handle a WC buffer
1092 * more efficiently than the involuntary clflushes.
1093 */
1094 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC | MAP_RAW))
1095 return false;
1096
1097 return !(flags & MAP_WRITE);
1098 }
1099
1100 void *
1101 iris_bo_map(struct pipe_debug_callback *dbg,
1102 struct iris_bo *bo, unsigned flags)
1103 {
1104 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
1105 return iris_bo_map_gtt(dbg, bo, flags);
1106
1107 void *map;
1108
1109 if (can_map_cpu(bo, flags))
1110 map = iris_bo_map_cpu(dbg, bo, flags);
1111 else
1112 map = iris_bo_map_wc(dbg, bo, flags);
1113
1114 /* Allow the attempt to fail by falling back to the GTT where necessary.
1115 *
1116 * Not every buffer can be mmaped directly using the CPU (or WC), for
1117 * example buffers that wrap stolen memory or are imported from other
1118 * devices. For those, we have little choice but to use a GTT mmapping.
1119 * However, if we use a slow GTT mmapping for reads where we expected fast
1120 * access, that order of magnitude difference in throughput will be clearly
1121 * expressed by angry users.
1122 *
1123 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
1124 */
1125 if (!map && !(flags & MAP_RAW)) {
1126 perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n",
1127 bo->name, flags);
1128 map = iris_bo_map_gtt(dbg, bo, flags);
1129 }
1130
1131 return map;
1132 }
1133
1134 /** Waits for all GPU rendering with the object to have completed. */
1135 void
1136 iris_bo_wait_rendering(struct iris_bo *bo)
1137 {
1138 /* We require a kernel recent enough for WAIT_IOCTL support.
1139 * See intel_init_bufmgr()
1140 */
1141 iris_bo_wait(bo, -1);
1142 }
1143
1144 /**
1145 * Waits on a BO for the given amount of time.
1146 *
1147 * @bo: buffer object to wait for
1148 * @timeout_ns: amount of time to wait in nanoseconds.
1149 * If value is less than 0, an infinite wait will occur.
1150 *
1151 * Returns 0 if the wait was successful ie. the last batch referencing the
1152 * object has completed within the allotted time. Otherwise some negative return
1153 * value describes the error. Of particular interest is -ETIME when the wait has
1154 * failed to yield the desired result.
1155 *
1156 * Similar to iris_bo_wait_rendering except a timeout parameter allows
1157 * the operation to give up after a certain amount of time. Another subtle
1158 * difference is the internal locking semantics are different (this variant does
1159 * not hold the lock for the duration of the wait). This makes the wait subject
1160 * to a larger userspace race window.
1161 *
1162 * The implementation shall wait until the object is no longer actively
1163 * referenced within a batch buffer at the time of the call. The wait will
1164 * not guarantee that the buffer is re-issued via another thread, or an flinked
1165 * handle. Userspace must make sure this race does not occur if such precision
1166 * is important.
1167 *
1168 * Note that some kernels have broken the inifite wait for negative values
1169 * promise, upgrade to latest stable kernels if this is the case.
1170 */
1171 int
1172 iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
1173 {
1174 struct iris_bufmgr *bufmgr = bo->bufmgr;
1175
1176 /* If we know it's idle, don't bother with the kernel round trip */
1177 if (bo->idle && !bo->external)
1178 return 0;
1179
1180 struct drm_i915_gem_wait wait = {
1181 .bo_handle = bo->gem_handle,
1182 .timeout_ns = timeout_ns,
1183 };
1184 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1185 if (ret != 0)
1186 return -errno;
1187
1188 bo->idle = true;
1189
1190 return ret;
1191 }
1192
1193 void
1194 iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
1195 {
1196 mtx_destroy(&bufmgr->lock);
1197
1198 /* Free any cached buffer objects we were going to reuse */
1199 for (int i = 0; i < bufmgr->num_buckets; i++) {
1200 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1201
1202 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1203 list_del(&bo->head);
1204
1205 bo_free(bo);
1206 }
1207 }
1208
1209 /* Close any buffer objects on the dead list. */
1210 list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
1211 list_del(&bo->head);
1212 bo_close(bo);
1213 }
1214
1215 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1216 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1217
1218 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) {
1219 if (z != IRIS_MEMZONE_BINDER)
1220 util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1221 }
1222
1223 free(bufmgr);
1224 }
1225
1226 static int
1227 bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
1228 uint32_t stride)
1229 {
1230 struct iris_bufmgr *bufmgr = bo->bufmgr;
1231 struct drm_i915_gem_set_tiling set_tiling;
1232 int ret;
1233
1234 if (bo->global_name == 0 &&
1235 tiling_mode == bo->tiling_mode && stride == bo->stride)
1236 return 0;
1237
1238 memset(&set_tiling, 0, sizeof(set_tiling));
1239 do {
1240 /* set_tiling is slightly broken and overwrites the
1241 * input on the error path, so we have to open code
1242 * drm_ioctl.
1243 */
1244 set_tiling.handle = bo->gem_handle;
1245 set_tiling.tiling_mode = tiling_mode;
1246 set_tiling.stride = stride;
1247
1248 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1249 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1250 if (ret == -1)
1251 return -errno;
1252
1253 bo->tiling_mode = set_tiling.tiling_mode;
1254 bo->swizzle_mode = set_tiling.swizzle_mode;
1255 bo->stride = set_tiling.stride;
1256 return 0;
1257 }
1258
1259 int
1260 iris_bo_get_tiling(struct iris_bo *bo, uint32_t *tiling_mode,
1261 uint32_t *swizzle_mode)
1262 {
1263 *tiling_mode = bo->tiling_mode;
1264 *swizzle_mode = bo->swizzle_mode;
1265 return 0;
1266 }
1267
1268 struct iris_bo *
1269 iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd)
1270 {
1271 uint32_t handle;
1272 struct iris_bo *bo;
1273
1274 mtx_lock(&bufmgr->lock);
1275 int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1276 if (ret) {
1277 DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1278 strerror(errno));
1279 mtx_unlock(&bufmgr->lock);
1280 return NULL;
1281 }
1282
1283 /*
1284 * See if the kernel has already returned this buffer to us. Just as
1285 * for named buffers, we must not create two bo's pointing at the same
1286 * kernel object
1287 */
1288 bo = find_and_ref_external_bo(bufmgr->handle_table, handle);
1289 if (bo)
1290 goto out;
1291
1292 bo = bo_calloc();
1293 if (!bo)
1294 goto out;
1295
1296 p_atomic_set(&bo->refcount, 1);
1297
1298 /* Determine size of bo. The fd-to-handle ioctl really should
1299 * return the size, but it doesn't. If we have kernel 3.12 or
1300 * later, we can lseek on the prime fd to get the size. Older
1301 * kernels will just fail, in which case we fall back to the
1302 * provided (estimated or guess size). */
1303 ret = lseek(prime_fd, 0, SEEK_END);
1304 if (ret != -1)
1305 bo->size = ret;
1306
1307 bo->bufmgr = bufmgr;
1308 bo->name = "prime";
1309 bo->reusable = false;
1310 bo->external = true;
1311 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1312 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
1313 bo->gem_handle = handle;
1314 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1315
1316 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1317 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1318 goto err;
1319
1320 bo->tiling_mode = get_tiling.tiling_mode;
1321 bo->swizzle_mode = get_tiling.swizzle_mode;
1322 /* XXX stride is unknown */
1323
1324 out:
1325 mtx_unlock(&bufmgr->lock);
1326 return bo;
1327
1328 err:
1329 bo_free(bo);
1330 mtx_unlock(&bufmgr->lock);
1331 return NULL;
1332 }
1333
1334 static void
1335 iris_bo_make_external_locked(struct iris_bo *bo)
1336 {
1337 if (!bo->external) {
1338 _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo);
1339 bo->external = true;
1340 bo->reusable = false;
1341 }
1342 }
1343
1344 static void
1345 iris_bo_make_external(struct iris_bo *bo)
1346 {
1347 struct iris_bufmgr *bufmgr = bo->bufmgr;
1348
1349 if (bo->external) {
1350 assert(!bo->reusable);
1351 return;
1352 }
1353
1354 mtx_lock(&bufmgr->lock);
1355 iris_bo_make_external_locked(bo);
1356 mtx_unlock(&bufmgr->lock);
1357 }
1358
1359 int
1360 iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
1361 {
1362 struct iris_bufmgr *bufmgr = bo->bufmgr;
1363
1364 iris_bo_make_external(bo);
1365
1366 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1367 DRM_CLOEXEC, prime_fd) != 0)
1368 return -errno;
1369
1370 return 0;
1371 }
1372
1373 uint32_t
1374 iris_bo_export_gem_handle(struct iris_bo *bo)
1375 {
1376 iris_bo_make_external(bo);
1377
1378 return bo->gem_handle;
1379 }
1380
1381 int
1382 iris_bo_flink(struct iris_bo *bo, uint32_t *name)
1383 {
1384 struct iris_bufmgr *bufmgr = bo->bufmgr;
1385
1386 if (!bo->global_name) {
1387 struct drm_gem_flink flink = { .handle = bo->gem_handle };
1388
1389 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1390 return -errno;
1391
1392 mtx_lock(&bufmgr->lock);
1393 if (!bo->global_name) {
1394 iris_bo_make_external_locked(bo);
1395 bo->global_name = flink.name;
1396 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1397 }
1398 mtx_unlock(&bufmgr->lock);
1399 }
1400
1401 *name = bo->global_name;
1402 return 0;
1403 }
1404
1405 static void
1406 add_bucket(struct iris_bufmgr *bufmgr, int size)
1407 {
1408 unsigned int i = bufmgr->num_buckets;
1409
1410 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1411
1412 list_inithead(&bufmgr->cache_bucket[i].head);
1413 bufmgr->cache_bucket[i].size = size;
1414 bufmgr->num_buckets++;
1415
1416 assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1417 assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1418 assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1419 }
1420
1421 static void
1422 init_cache_buckets(struct iris_bufmgr *bufmgr)
1423 {
1424 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1425
1426 /* OK, so power of two buckets was too wasteful of memory.
1427 * Give 3 other sizes between each power of two, to hopefully
1428 * cover things accurately enough. (The alternative is
1429 * probably to just go for exact matching of sizes, and assume
1430 * that for things like composited window resize the tiled
1431 * width/height alignment and rounding of sizes to pages will
1432 * get us useful cache hit rates anyway)
1433 */
1434 add_bucket(bufmgr, PAGE_SIZE);
1435 add_bucket(bufmgr, PAGE_SIZE * 2);
1436 add_bucket(bufmgr, PAGE_SIZE * 3);
1437
1438 /* Initialize the linked lists for BO reuse cache. */
1439 for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
1440 add_bucket(bufmgr, size);
1441
1442 add_bucket(bufmgr, size + size * 1 / 4);
1443 add_bucket(bufmgr, size + size * 2 / 4);
1444 add_bucket(bufmgr, size + size * 3 / 4);
1445 }
1446 }
1447
1448 uint32_t
1449 iris_create_hw_context(struct iris_bufmgr *bufmgr)
1450 {
1451 struct drm_i915_gem_context_create create = { };
1452 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1453 if (ret != 0) {
1454 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1455 return 0;
1456 }
1457
1458 /* Upon declaring a GPU hang, the kernel will zap the guilty context
1459 * back to the default logical HW state and attempt to continue on to
1460 * our next submitted batchbuffer. However, our render batches assume
1461 * the previous GPU state is preserved, and only emit commands needed
1462 * to incrementally change that state. In particular, we inherit the
1463 * STATE_BASE_ADDRESS and PIPELINE_SELECT settings, which are critical.
1464 * With default base addresses, our next batches will almost certainly
1465 * cause more GPU hangs, leading to repeated hangs until we're banned
1466 * or the machine is dead.
1467 *
1468 * Here we tell the kernel not to attempt to recover our context but
1469 * immediately (on the next batchbuffer submission) report that the
1470 * context is lost, and we will do the recovery ourselves. Ideally,
1471 * we'll have two lost batches instead of a continual stream of hangs.
1472 */
1473 struct drm_i915_gem_context_param p = {
1474 .ctx_id = create.ctx_id,
1475 .param = I915_CONTEXT_PARAM_RECOVERABLE,
1476 .value = false,
1477 };
1478 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p);
1479
1480 return create.ctx_id;
1481 }
1482
1483 static int
1484 iris_hw_context_get_priority(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1485 {
1486 struct drm_i915_gem_context_param p = {
1487 .ctx_id = ctx_id,
1488 .param = I915_CONTEXT_PARAM_PRIORITY,
1489 };
1490 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p);
1491 return p.value; /* on error, return 0 i.e. default priority */
1492 }
1493
1494 int
1495 iris_hw_context_set_priority(struct iris_bufmgr *bufmgr,
1496 uint32_t ctx_id,
1497 int priority)
1498 {
1499 struct drm_i915_gem_context_param p = {
1500 .ctx_id = ctx_id,
1501 .param = I915_CONTEXT_PARAM_PRIORITY,
1502 .value = priority,
1503 };
1504 int err;
1505
1506 err = 0;
1507 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1508 err = -errno;
1509
1510 return err;
1511 }
1512
1513 uint32_t
1514 iris_clone_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1515 {
1516 uint32_t new_ctx = iris_create_hw_context(bufmgr);
1517
1518 if (new_ctx) {
1519 int priority = iris_hw_context_get_priority(bufmgr, ctx_id);
1520 iris_hw_context_set_priority(bufmgr, new_ctx, priority);
1521 }
1522
1523 return new_ctx;
1524 }
1525
1526 void
1527 iris_destroy_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1528 {
1529 struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1530
1531 if (ctx_id != 0 &&
1532 gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1533 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1534 strerror(errno));
1535 }
1536 }
1537
1538 int
1539 iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1540 {
1541 struct drm_i915_reg_read reg_read = { .offset = offset };
1542 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1543
1544 *result = reg_read.val;
1545 return ret;
1546 }
1547
1548 static uint64_t
1549 iris_gtt_size(int fd)
1550 {
1551 /* We use the default (already allocated) context to determine
1552 * the default configuration of the virtual address space.
1553 */
1554 struct drm_i915_gem_context_param p = {
1555 .param = I915_CONTEXT_PARAM_GTT_SIZE,
1556 };
1557 if (!gen_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p))
1558 return p.value;
1559
1560 return 0;
1561 }
1562
1563 /**
1564 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1565 * and manage map buffer objections.
1566 *
1567 * \param fd File descriptor of the opened DRM device.
1568 */
1569 struct iris_bufmgr *
1570 iris_bufmgr_init(struct gen_device_info *devinfo, int fd, bool bo_reuse)
1571 {
1572 uint64_t gtt_size = iris_gtt_size(fd);
1573 if (gtt_size <= IRIS_MEMZONE_OTHER_START)
1574 return NULL;
1575
1576 struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
1577 if (bufmgr == NULL)
1578 return NULL;
1579
1580 /* Handles to buffer objects belong to the device fd and are not
1581 * reference counted by the kernel. If the same fd is used by
1582 * multiple parties (threads sharing the same screen bufmgr, or
1583 * even worse the same device fd passed to multiple libraries)
1584 * ownership of those handles is shared by those independent parties.
1585 *
1586 * Don't do this! Ensure that each library/bufmgr has its own device
1587 * fd so that its namespace does not clash with another.
1588 */
1589 bufmgr->fd = fd;
1590
1591 if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
1592 free(bufmgr);
1593 return NULL;
1594 }
1595
1596 list_inithead(&bufmgr->zombie_list);
1597
1598 bufmgr->has_llc = devinfo->has_llc;
1599 bufmgr->bo_reuse = bo_reuse;
1600
1601 STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull);
1602 const uint64_t _4GB = 1ull << 32;
1603
1604 /* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */
1605 const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE;
1606
1607 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER],
1608 PAGE_SIZE, _4GB_minus_1 - PAGE_SIZE);
1609 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE],
1610 IRIS_MEMZONE_SURFACE_START,
1611 _4GB_minus_1 - IRIS_MAX_BINDERS * IRIS_BINDER_SIZE);
1612 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC],
1613 IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE,
1614 _4GB_minus_1 - IRIS_BORDER_COLOR_POOL_SIZE);
1615
1616 /* Leave the last 4GB out of the high vma range, so that no state
1617 * base address + size can overflow 48 bits.
1618 */
1619 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER],
1620 IRIS_MEMZONE_OTHER_START,
1621 (gtt_size - _4GB) - IRIS_MEMZONE_OTHER_START);
1622
1623 init_cache_buckets(bufmgr);
1624
1625 bufmgr->name_table =
1626 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1627 bufmgr->handle_table =
1628 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1629
1630 return bufmgr;
1631 }