iris: Add helpers to clone a hardware context.
[mesa.git] / src / gallium / drivers / iris / iris_bufmgr.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_bufmgr.c
25 *
26 * The Iris buffer manager.
27 *
28 * XXX: write better comments
29 * - BOs
30 * - Explain BO cache
31 * - main interface to GEM in the kernel
32 */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <xf86drm.h>
39 #include <util/u_atomic.h>
40 #include <fcntl.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <assert.h>
46 #include <sys/ioctl.h>
47 #include <sys/mman.h>
48 #include <sys/stat.h>
49 #include <sys/types.h>
50 #include <stdbool.h>
51 #include <time.h>
52
53 #include "errno.h"
54 #ifndef ETIME
55 #define ETIME ETIMEDOUT
56 #endif
57 #include "common/gen_clflush.h"
58 #include "dev/gen_debug.h"
59 #include "common/gen_gem.h"
60 #include "dev/gen_device_info.h"
61 #include "main/macros.h"
62 #include "util/debug.h"
63 #include "util/macros.h"
64 #include "util/hash_table.h"
65 #include "util/list.h"
66 #include "util/u_dynarray.h"
67 #include "util/vma.h"
68 #include "iris_bufmgr.h"
69 #include "iris_context.h"
70 #include "string.h"
71
72 #include "drm-uapi/i915_drm.h"
73
74 #ifdef HAVE_VALGRIND
75 #include <valgrind.h>
76 #include <memcheck.h>
77 #define VG(x) x
78 #else
79 #define VG(x)
80 #endif
81
82 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
83 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
84 * leaked. All because it does not call VG(cli_free) from its
85 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
86 * and allocation, we mark it available for use upon mmapping and remove
87 * it upon unmapping.
88 */
89 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
90 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
91
92 #define PAGE_SIZE 4096
93
94 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
95
96 /**
97 * Call ioctl, restarting if it is interupted
98 */
99 int
100 drm_ioctl(int fd, unsigned long request, void *arg)
101 {
102 int ret;
103
104 do {
105 ret = ioctl(fd, request, arg);
106 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
107 return ret;
108 }
109
110 static inline int
111 atomic_add_unless(int *v, int add, int unless)
112 {
113 int c, old;
114 c = p_atomic_read(v);
115 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
116 c = old;
117 return c == unless;
118 }
119
120 static const char *
121 memzone_name(enum iris_memory_zone memzone)
122 {
123 const char *names[] = {
124 [IRIS_MEMZONE_SHADER] = "shader",
125 [IRIS_MEMZONE_BINDER] = "binder",
126 [IRIS_MEMZONE_SURFACE] = "surface",
127 [IRIS_MEMZONE_DYNAMIC] = "dynamic",
128 [IRIS_MEMZONE_OTHER] = "other",
129 [IRIS_MEMZONE_BORDER_COLOR_POOL] = "bordercolor",
130 };
131 assert(memzone < ARRAY_SIZE(names));
132 return names[memzone];
133 }
134
135 struct bo_cache_bucket {
136 /** List of cached BOs. */
137 struct list_head head;
138
139 /** Size of this bucket, in bytes. */
140 uint64_t size;
141 };
142
143 struct iris_bufmgr {
144 int fd;
145
146 mtx_t lock;
147
148 /** Array of lists of cached gem objects of power-of-two sizes */
149 struct bo_cache_bucket cache_bucket[14 * 4];
150 int num_buckets;
151 time_t time;
152
153 struct hash_table *name_table;
154 struct hash_table *handle_table;
155
156 struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT];
157
158 bool has_llc:1;
159 bool bo_reuse:1;
160 };
161
162 static int bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
163 uint32_t stride);
164
165 static void bo_free(struct iris_bo *bo);
166
167 static uint64_t vma_alloc(struct iris_bufmgr *bufmgr,
168 enum iris_memory_zone memzone,
169 uint64_t size, uint64_t alignment);
170
171 static uint32_t
172 key_hash_uint(const void *key)
173 {
174 return _mesa_hash_data(key, 4);
175 }
176
177 static bool
178 key_uint_equal(const void *a, const void *b)
179 {
180 return *((unsigned *) a) == *((unsigned *) b);
181 }
182
183 static struct iris_bo *
184 hash_find_bo(struct hash_table *ht, unsigned int key)
185 {
186 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
187 return entry ? (struct iris_bo *) entry->data : NULL;
188 }
189
190 /**
191 * This function finds the correct bucket fit for the input size.
192 * The function works with O(1) complexity when the requested size
193 * was queried instead of iterating the size through all the buckets.
194 */
195 static struct bo_cache_bucket *
196 bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size)
197 {
198 /* Calculating the pages and rounding up to the page size. */
199 const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
200
201 /* Row Bucket sizes clz((x-1) | 3) Row Column
202 * in pages stride size
203 * 0: 1 2 3 4 -> 30 30 30 30 4 1
204 * 1: 5 6 7 8 -> 29 29 29 29 4 1
205 * 2: 10 12 14 16 -> 28 28 28 28 8 2
206 * 3: 20 24 28 32 -> 27 27 27 27 16 4
207 */
208 const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
209 const unsigned row_max_pages = 4 << row;
210
211 /* The '& ~2' is the special case for row 1. In row 1, max pages /
212 * 2 is 2, but the previous row maximum is zero (because there is
213 * no previous row). All row maximum sizes are power of 2, so that
214 * is the only case where that bit will be set.
215 */
216 const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
217 int col_size_log2 = row - 1;
218 col_size_log2 += (col_size_log2 < 0);
219
220 const unsigned col = (pages - prev_row_max_pages +
221 ((1 << col_size_log2) - 1)) >> col_size_log2;
222
223 /* Calculating the index based on the row and column. */
224 const unsigned index = (row * 4) + (col - 1);
225
226 return (index < bufmgr->num_buckets) ?
227 &bufmgr->cache_bucket[index] : NULL;
228 }
229
230 enum iris_memory_zone
231 iris_memzone_for_address(uint64_t address)
232 {
233 STATIC_ASSERT(IRIS_MEMZONE_OTHER_START > IRIS_MEMZONE_DYNAMIC_START);
234 STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START > IRIS_MEMZONE_SURFACE_START);
235 STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START > IRIS_MEMZONE_BINDER_START);
236 STATIC_ASSERT(IRIS_MEMZONE_BINDER_START > IRIS_MEMZONE_SHADER_START);
237 STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START);
238
239 if (address >= IRIS_MEMZONE_OTHER_START)
240 return IRIS_MEMZONE_OTHER;
241
242 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
243 return IRIS_MEMZONE_BORDER_COLOR_POOL;
244
245 if (address > IRIS_MEMZONE_DYNAMIC_START)
246 return IRIS_MEMZONE_DYNAMIC;
247
248 if (address >= IRIS_MEMZONE_SURFACE_START)
249 return IRIS_MEMZONE_SURFACE;
250
251 if (address >= IRIS_MEMZONE_BINDER_START)
252 return IRIS_MEMZONE_BINDER;
253
254 return IRIS_MEMZONE_SHADER;
255 }
256
257 /**
258 * Allocate a section of virtual memory for a buffer, assigning an address.
259 *
260 * This uses either the bucket allocator for the given size, or the large
261 * object allocator (util_vma).
262 */
263 static uint64_t
264 vma_alloc(struct iris_bufmgr *bufmgr,
265 enum iris_memory_zone memzone,
266 uint64_t size,
267 uint64_t alignment)
268 {
269 /* Force alignment to be some number of pages */
270 alignment = ALIGN(alignment, PAGE_SIZE);
271
272 if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL)
273 return IRIS_BORDER_COLOR_POOL_ADDRESS;
274
275 /* The binder handles its own allocations. Return non-zero here. */
276 if (memzone == IRIS_MEMZONE_BINDER)
277 return IRIS_MEMZONE_BINDER_START;
278
279 uint64_t addr =
280 util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size, alignment);
281
282 assert((addr >> 48ull) == 0);
283 assert((addr % alignment) == 0);
284
285 return gen_canonical_address(addr);
286 }
287
288 static void
289 vma_free(struct iris_bufmgr *bufmgr,
290 uint64_t address,
291 uint64_t size)
292 {
293 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
294 return;
295
296 /* Un-canonicalize the address. */
297 address = gen_48b_address(address);
298
299 if (address == 0ull)
300 return;
301
302 enum iris_memory_zone memzone = iris_memzone_for_address(address);
303
304 /* The binder handles its own allocations. */
305 if (memzone == IRIS_MEMZONE_BINDER)
306 return;
307
308 util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
309 }
310
311 int
312 iris_bo_busy(struct iris_bo *bo)
313 {
314 struct iris_bufmgr *bufmgr = bo->bufmgr;
315 struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
316
317 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
318 if (ret == 0) {
319 bo->idle = !busy.busy;
320 return busy.busy;
321 }
322 return false;
323 }
324
325 int
326 iris_bo_madvise(struct iris_bo *bo, int state)
327 {
328 struct drm_i915_gem_madvise madv = {
329 .handle = bo->gem_handle,
330 .madv = state,
331 .retained = 1,
332 };
333
334 drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
335
336 return madv.retained;
337 }
338
339 /* drop the oldest entries that have been purged by the kernel */
340 static void
341 iris_bo_cache_purge_bucket(struct iris_bufmgr *bufmgr,
342 struct bo_cache_bucket *bucket)
343 {
344 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
345 if (iris_bo_madvise(bo, I915_MADV_DONTNEED))
346 break;
347
348 list_del(&bo->head);
349 bo_free(bo);
350 }
351 }
352
353 static struct iris_bo *
354 bo_calloc(void)
355 {
356 struct iris_bo *bo = calloc(1, sizeof(*bo));
357 if (bo) {
358 bo->hash = _mesa_hash_pointer(bo);
359 }
360 return bo;
361 }
362
363 static struct iris_bo *
364 bo_alloc_internal(struct iris_bufmgr *bufmgr,
365 const char *name,
366 uint64_t size,
367 enum iris_memory_zone memzone,
368 unsigned flags,
369 uint32_t tiling_mode,
370 uint32_t stride)
371 {
372 struct iris_bo *bo;
373 unsigned int page_size = getpagesize();
374 int ret;
375 struct bo_cache_bucket *bucket;
376 bool alloc_from_cache;
377 uint64_t bo_size;
378 bool zeroed = false;
379
380 if (flags & BO_ALLOC_ZEROED)
381 zeroed = true;
382
383 if ((flags & BO_ALLOC_COHERENT) && !bufmgr->has_llc) {
384 bo_size = MAX2(ALIGN(size, page_size), page_size);
385 bucket = NULL;
386 goto skip_cache;
387 }
388
389 /* Round the allocated size up to a power of two number of pages. */
390 bucket = bucket_for_size(bufmgr, size);
391
392 /* If we don't have caching at this size, don't actually round the
393 * allocation up.
394 */
395 if (bucket == NULL) {
396 bo_size = MAX2(ALIGN(size, page_size), page_size);
397 } else {
398 bo_size = bucket->size;
399 }
400
401 mtx_lock(&bufmgr->lock);
402 /* Get a buffer out of the cache if available */
403 retry:
404 alloc_from_cache = false;
405 if (bucket != NULL && !list_empty(&bucket->head)) {
406 /* If the last BO in the cache is idle, then reuse it. Otherwise,
407 * allocate a fresh buffer to avoid stalling.
408 */
409 bo = LIST_ENTRY(struct iris_bo, bucket->head.next, head);
410 if (!iris_bo_busy(bo)) {
411 alloc_from_cache = true;
412 list_del(&bo->head);
413 }
414
415 if (alloc_from_cache) {
416 if (!iris_bo_madvise(bo, I915_MADV_WILLNEED)) {
417 bo_free(bo);
418 iris_bo_cache_purge_bucket(bufmgr, bucket);
419 goto retry;
420 }
421
422 if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
423 bo_free(bo);
424 goto retry;
425 }
426
427 if (zeroed) {
428 void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
429 if (!map) {
430 bo_free(bo);
431 goto retry;
432 }
433 memset(map, 0, bo_size);
434 }
435 }
436 }
437
438 if (alloc_from_cache) {
439 /* If the cached BO isn't in the right memory zone, free the old
440 * memory and assign it a new address.
441 */
442 if (memzone != iris_memzone_for_address(bo->gtt_offset)) {
443 vma_free(bufmgr, bo->gtt_offset, bo->size);
444 bo->gtt_offset = 0ull;
445 }
446 } else {
447 skip_cache:
448 bo = bo_calloc();
449 if (!bo)
450 goto err;
451
452 bo->size = bo_size;
453 bo->idle = true;
454
455 struct drm_i915_gem_create create = { .size = bo_size };
456
457 /* All new BOs we get from the kernel are zeroed, so we don't need to
458 * worry about that here.
459 */
460 ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
461 if (ret != 0) {
462 free(bo);
463 goto err;
464 }
465
466 bo->gem_handle = create.handle;
467
468 bo->bufmgr = bufmgr;
469
470 bo->tiling_mode = I915_TILING_NONE;
471 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
472 bo->stride = 0;
473
474 if (bo_set_tiling_internal(bo, tiling_mode, stride))
475 goto err_free;
476
477 /* Calling set_domain() will allocate pages for the BO outside of the
478 * struct mutex lock in the kernel, which is more efficient than waiting
479 * to create them during the first execbuf that uses the BO.
480 */
481 struct drm_i915_gem_set_domain sd = {
482 .handle = bo->gem_handle,
483 .read_domains = I915_GEM_DOMAIN_CPU,
484 .write_domain = 0,
485 };
486
487 if (drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0)
488 goto err_free;
489 }
490
491 bo->name = name;
492 p_atomic_set(&bo->refcount, 1);
493 bo->reusable = bucket && bufmgr->bo_reuse;
494 bo->cache_coherent = bufmgr->has_llc;
495 bo->index = -1;
496 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
497
498 /* By default, capture all driver-internal buffers like shader kernels,
499 * surface states, dynamic states, border colors, and so on.
500 */
501 if (memzone < IRIS_MEMZONE_OTHER)
502 bo->kflags |= EXEC_OBJECT_CAPTURE;
503
504 if (bo->gtt_offset == 0ull) {
505 bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, 1);
506
507 if (bo->gtt_offset == 0ull)
508 goto err_free;
509 }
510
511 mtx_unlock(&bufmgr->lock);
512
513 if ((flags & BO_ALLOC_COHERENT) && !bo->cache_coherent) {
514 struct drm_i915_gem_caching arg = {
515 .handle = bo->gem_handle,
516 .caching = 1,
517 };
518 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) == 0) {
519 bo->cache_coherent = true;
520 bo->reusable = false;
521 }
522 }
523
524 DBG("bo_create: buf %d (%s) (%s memzone) %llub\n", bo->gem_handle,
525 bo->name, memzone_name(memzone), (unsigned long long) size);
526
527 return bo;
528
529 err_free:
530 bo_free(bo);
531 err:
532 mtx_unlock(&bufmgr->lock);
533 return NULL;
534 }
535
536 struct iris_bo *
537 iris_bo_alloc(struct iris_bufmgr *bufmgr,
538 const char *name,
539 uint64_t size,
540 enum iris_memory_zone memzone)
541 {
542 return bo_alloc_internal(bufmgr, name, size, memzone,
543 0, I915_TILING_NONE, 0);
544 }
545
546 struct iris_bo *
547 iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name,
548 uint64_t size, enum iris_memory_zone memzone,
549 uint32_t tiling_mode, uint32_t pitch, unsigned flags)
550 {
551 return bo_alloc_internal(bufmgr, name, size, memzone,
552 flags, tiling_mode, pitch);
553 }
554
555 struct iris_bo *
556 iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
557 void *ptr, size_t size,
558 enum iris_memory_zone memzone)
559 {
560 struct iris_bo *bo;
561
562 bo = bo_calloc();
563 if (!bo)
564 return NULL;
565
566 struct drm_i915_gem_userptr arg = {
567 .user_ptr = (uintptr_t)ptr,
568 .user_size = size,
569 };
570 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
571 goto err_free;
572 bo->gem_handle = arg.handle;
573
574 /* Check the buffer for validity before we try and use it in a batch */
575 struct drm_i915_gem_set_domain sd = {
576 .handle = bo->gem_handle,
577 .read_domains = I915_GEM_DOMAIN_CPU,
578 };
579 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
580 goto err_close;
581
582 bo->name = name;
583 bo->size = size;
584 bo->map_cpu = ptr;
585
586 bo->bufmgr = bufmgr;
587 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
588 bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1);
589 if (bo->gtt_offset == 0ull)
590 goto err_close;
591
592 p_atomic_set(&bo->refcount, 1);
593 bo->userptr = true;
594 bo->cache_coherent = true;
595 bo->index = -1;
596 bo->idle = true;
597
598 return bo;
599
600 err_close:
601 drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &bo->gem_handle);
602 err_free:
603 free(bo);
604 return NULL;
605 }
606
607 /**
608 * Returns a iris_bo wrapping the given buffer object handle.
609 *
610 * This can be used when one application needs to pass a buffer object
611 * to another.
612 */
613 struct iris_bo *
614 iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
615 const char *name, unsigned int handle)
616 {
617 struct iris_bo *bo;
618
619 /* At the moment most applications only have a few named bo.
620 * For instance, in a DRI client only the render buffers passed
621 * between X and the client are named. And since X returns the
622 * alternating names for the front/back buffer a linear search
623 * provides a sufficiently fast match.
624 */
625 mtx_lock(&bufmgr->lock);
626 bo = hash_find_bo(bufmgr->name_table, handle);
627 if (bo) {
628 iris_bo_reference(bo);
629 goto out;
630 }
631
632 struct drm_gem_open open_arg = { .name = handle };
633 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
634 if (ret != 0) {
635 DBG("Couldn't reference %s handle 0x%08x: %s\n",
636 name, handle, strerror(errno));
637 bo = NULL;
638 goto out;
639 }
640 /* Now see if someone has used a prime handle to get this
641 * object from the kernel before by looking through the list
642 * again for a matching gem_handle
643 */
644 bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
645 if (bo) {
646 iris_bo_reference(bo);
647 goto out;
648 }
649
650 bo = bo_calloc();
651 if (!bo)
652 goto out;
653
654 p_atomic_set(&bo->refcount, 1);
655
656 bo->size = open_arg.size;
657 bo->gtt_offset = 0;
658 bo->bufmgr = bufmgr;
659 bo->gem_handle = open_arg.handle;
660 bo->name = name;
661 bo->global_name = handle;
662 bo->reusable = false;
663 bo->external = true;
664 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
665 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
666
667 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
668 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
669
670 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
671 ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
672 if (ret != 0)
673 goto err_unref;
674
675 bo->tiling_mode = get_tiling.tiling_mode;
676 bo->swizzle_mode = get_tiling.swizzle_mode;
677 /* XXX stride is unknown */
678 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
679
680 out:
681 mtx_unlock(&bufmgr->lock);
682 return bo;
683
684 err_unref:
685 bo_free(bo);
686 mtx_unlock(&bufmgr->lock);
687 return NULL;
688 }
689
690 static void
691 bo_free(struct iris_bo *bo)
692 {
693 struct iris_bufmgr *bufmgr = bo->bufmgr;
694
695 if (bo->map_cpu && !bo->userptr) {
696 VG_NOACCESS(bo->map_cpu, bo->size);
697 munmap(bo->map_cpu, bo->size);
698 }
699 if (bo->map_wc) {
700 VG_NOACCESS(bo->map_wc, bo->size);
701 munmap(bo->map_wc, bo->size);
702 }
703 if (bo->map_gtt) {
704 VG_NOACCESS(bo->map_gtt, bo->size);
705 munmap(bo->map_gtt, bo->size);
706 }
707
708 if (bo->external) {
709 struct hash_entry *entry;
710
711 if (bo->global_name) {
712 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
713 _mesa_hash_table_remove(bufmgr->name_table, entry);
714 }
715
716 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
717 _mesa_hash_table_remove(bufmgr->handle_table, entry);
718 }
719
720 /* Close this object */
721 struct drm_gem_close close = { .handle = bo->gem_handle };
722 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
723 if (ret != 0) {
724 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
725 bo->gem_handle, bo->name, strerror(errno));
726 }
727
728 vma_free(bo->bufmgr, bo->gtt_offset, bo->size);
729
730 free(bo);
731 }
732
733 /** Frees all cached buffers significantly older than @time. */
734 static void
735 cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
736 {
737 int i;
738
739 if (bufmgr->time == time)
740 return;
741
742 for (i = 0; i < bufmgr->num_buckets; i++) {
743 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
744
745 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
746 if (time - bo->free_time <= 1)
747 break;
748
749 list_del(&bo->head);
750
751 bo_free(bo);
752 }
753 }
754
755 bufmgr->time = time;
756 }
757
758 static void
759 bo_unreference_final(struct iris_bo *bo, time_t time)
760 {
761 struct iris_bufmgr *bufmgr = bo->bufmgr;
762 struct bo_cache_bucket *bucket;
763
764 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
765
766 bucket = NULL;
767 if (bo->reusable)
768 bucket = bucket_for_size(bufmgr, bo->size);
769 /* Put the buffer into our internal cache for reuse if we can. */
770 if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
771 bo->free_time = time;
772 bo->name = NULL;
773
774 list_addtail(&bo->head, &bucket->head);
775 } else {
776 bo_free(bo);
777 }
778 }
779
780 void
781 iris_bo_unreference(struct iris_bo *bo)
782 {
783 if (bo == NULL)
784 return;
785
786 assert(p_atomic_read(&bo->refcount) > 0);
787
788 if (atomic_add_unless(&bo->refcount, -1, 1)) {
789 struct iris_bufmgr *bufmgr = bo->bufmgr;
790 struct timespec time;
791
792 clock_gettime(CLOCK_MONOTONIC, &time);
793
794 mtx_lock(&bufmgr->lock);
795
796 if (p_atomic_dec_zero(&bo->refcount)) {
797 bo_unreference_final(bo, time.tv_sec);
798 cleanup_bo_cache(bufmgr, time.tv_sec);
799 }
800
801 mtx_unlock(&bufmgr->lock);
802 }
803 }
804
805 static void
806 bo_wait_with_stall_warning(struct pipe_debug_callback *dbg,
807 struct iris_bo *bo,
808 const char *action)
809 {
810 bool busy = dbg && !bo->idle;
811 double elapsed = unlikely(busy) ? -get_time() : 0.0;
812
813 iris_bo_wait_rendering(bo);
814
815 if (unlikely(busy)) {
816 elapsed += get_time();
817 if (elapsed > 1e-5) /* 0.01ms */ {
818 perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
819 action, bo->name, elapsed * 1000);
820 }
821 }
822 }
823
824 static void
825 print_flags(unsigned flags)
826 {
827 if (flags & MAP_READ)
828 DBG("READ ");
829 if (flags & MAP_WRITE)
830 DBG("WRITE ");
831 if (flags & MAP_ASYNC)
832 DBG("ASYNC ");
833 if (flags & MAP_PERSISTENT)
834 DBG("PERSISTENT ");
835 if (flags & MAP_COHERENT)
836 DBG("COHERENT ");
837 if (flags & MAP_RAW)
838 DBG("RAW ");
839 DBG("\n");
840 }
841
842 static void *
843 iris_bo_map_cpu(struct pipe_debug_callback *dbg,
844 struct iris_bo *bo, unsigned flags)
845 {
846 struct iris_bufmgr *bufmgr = bo->bufmgr;
847
848 /* We disallow CPU maps for writing to non-coherent buffers, as the
849 * CPU map can become invalidated when a batch is flushed out, which
850 * can happen at unpredictable times. You should use WC maps instead.
851 */
852 assert(bo->cache_coherent || !(flags & MAP_WRITE));
853
854 if (!bo->map_cpu) {
855 DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
856
857 struct drm_i915_gem_mmap mmap_arg = {
858 .handle = bo->gem_handle,
859 .size = bo->size,
860 };
861 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
862 if (ret != 0) {
863 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
864 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
865 return NULL;
866 }
867 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
868 VG_DEFINED(map, bo->size);
869
870 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
871 VG_NOACCESS(map, bo->size);
872 munmap(map, bo->size);
873 }
874 }
875 assert(bo->map_cpu);
876
877 DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
878 bo->map_cpu);
879 print_flags(flags);
880
881 if (!(flags & MAP_ASYNC)) {
882 bo_wait_with_stall_warning(dbg, bo, "CPU mapping");
883 }
884
885 if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
886 /* If we're reusing an existing CPU mapping, the CPU caches may
887 * contain stale data from the last time we read from that mapping.
888 * (With the BO cache, it might even be data from a previous buffer!)
889 * Even if it's a brand new mapping, the kernel may have zeroed the
890 * buffer via CPU writes.
891 *
892 * We need to invalidate those cachelines so that we see the latest
893 * contents, and so long as we only read from the CPU mmap we do not
894 * need to write those cachelines back afterwards.
895 *
896 * On LLC, the emprical evidence suggests that writes from the GPU
897 * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
898 * cachelines. (Other reads, such as the display engine, bypass the
899 * LLC entirely requiring us to keep dirty pixels for the scanout
900 * out of any cache.)
901 */
902 gen_invalidate_range(bo->map_cpu, bo->size);
903 }
904
905 return bo->map_cpu;
906 }
907
908 static void *
909 iris_bo_map_wc(struct pipe_debug_callback *dbg,
910 struct iris_bo *bo, unsigned flags)
911 {
912 struct iris_bufmgr *bufmgr = bo->bufmgr;
913
914 if (!bo->map_wc) {
915 DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
916
917 struct drm_i915_gem_mmap mmap_arg = {
918 .handle = bo->gem_handle,
919 .size = bo->size,
920 .flags = I915_MMAP_WC,
921 };
922 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
923 if (ret != 0) {
924 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
925 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
926 return NULL;
927 }
928
929 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
930 VG_DEFINED(map, bo->size);
931
932 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
933 VG_NOACCESS(map, bo->size);
934 munmap(map, bo->size);
935 }
936 }
937 assert(bo->map_wc);
938
939 DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
940 print_flags(flags);
941
942 if (!(flags & MAP_ASYNC)) {
943 bo_wait_with_stall_warning(dbg, bo, "WC mapping");
944 }
945
946 return bo->map_wc;
947 }
948
949 /**
950 * Perform an uncached mapping via the GTT.
951 *
952 * Write access through the GTT is not quite fully coherent. On low power
953 * systems especially, like modern Atoms, we can observe reads from RAM before
954 * the write via GTT has landed. A write memory barrier that flushes the Write
955 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
956 * read after the write as the GTT write suffers a small delay through the GTT
957 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
958 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
959 * flushes prior to execbuf submission. However, if we are not informing the
960 * kernel about our GTT writes, it will not flush before earlier access, such
961 * as when using the cmdparser. Similarly, we need to be careful if we should
962 * ever issue a CPU read immediately following a GTT write.
963 *
964 * Telling the kernel about write access also has one more important
965 * side-effect. Upon receiving notification about the write, it cancels any
966 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
967 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
968 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
969 * tracking is handled on the buffer exchange instead.
970 */
971 static void *
972 iris_bo_map_gtt(struct pipe_debug_callback *dbg,
973 struct iris_bo *bo, unsigned flags)
974 {
975 struct iris_bufmgr *bufmgr = bo->bufmgr;
976
977 /* Get a mapping of the buffer if we haven't before. */
978 if (bo->map_gtt == NULL) {
979 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
980
981 struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
982
983 /* Get the fake offset back... */
984 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
985 if (ret != 0) {
986 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
987 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
988 return NULL;
989 }
990
991 /* and mmap it. */
992 void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE,
993 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
994 if (map == MAP_FAILED) {
995 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
996 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
997 return NULL;
998 }
999
1000 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
1001 * already intercept this mmap call. However, for consistency between
1002 * all the mmap paths, we mark the pointer as defined now and mark it
1003 * as inaccessible afterwards.
1004 */
1005 VG_DEFINED(map, bo->size);
1006
1007 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
1008 VG_NOACCESS(map, bo->size);
1009 munmap(map, bo->size);
1010 }
1011 }
1012 assert(bo->map_gtt);
1013
1014 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
1015 print_flags(flags);
1016
1017 if (!(flags & MAP_ASYNC)) {
1018 bo_wait_with_stall_warning(dbg, bo, "GTT mapping");
1019 }
1020
1021 return bo->map_gtt;
1022 }
1023
1024 static bool
1025 can_map_cpu(struct iris_bo *bo, unsigned flags)
1026 {
1027 if (bo->cache_coherent)
1028 return true;
1029
1030 /* Even if the buffer itself is not cache-coherent (such as a scanout), on
1031 * an LLC platform reads always are coherent (as they are performed via the
1032 * central system agent). It is just the writes that we need to take special
1033 * care to ensure that land in main memory and not stick in the CPU cache.
1034 */
1035 if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
1036 return true;
1037
1038 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
1039 * across batch flushes where the kernel will change cache domains of the
1040 * bo, invalidating continued access to the CPU mmap on non-LLC device.
1041 *
1042 * Similarly, ASYNC typically means that the buffer will be accessed via
1043 * both the CPU and the GPU simultaneously. Batches may be executed that
1044 * use the BO even while it is mapped. While OpenGL technically disallows
1045 * most drawing while non-persistent mappings are active, we may still use
1046 * the GPU for blits or other operations, causing batches to happen at
1047 * inconvenient times.
1048 *
1049 * If RAW is set, we expect the caller to be able to handle a WC buffer
1050 * more efficiently than the involuntary clflushes.
1051 */
1052 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC | MAP_RAW))
1053 return false;
1054
1055 return !(flags & MAP_WRITE);
1056 }
1057
1058 void *
1059 iris_bo_map(struct pipe_debug_callback *dbg,
1060 struct iris_bo *bo, unsigned flags)
1061 {
1062 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
1063 return iris_bo_map_gtt(dbg, bo, flags);
1064
1065 void *map;
1066
1067 if (can_map_cpu(bo, flags))
1068 map = iris_bo_map_cpu(dbg, bo, flags);
1069 else
1070 map = iris_bo_map_wc(dbg, bo, flags);
1071
1072 /* Allow the attempt to fail by falling back to the GTT where necessary.
1073 *
1074 * Not every buffer can be mmaped directly using the CPU (or WC), for
1075 * example buffers that wrap stolen memory or are imported from other
1076 * devices. For those, we have little choice but to use a GTT mmapping.
1077 * However, if we use a slow GTT mmapping for reads where we expected fast
1078 * access, that order of magnitude difference in throughput will be clearly
1079 * expressed by angry users.
1080 *
1081 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
1082 */
1083 if (!map && !(flags & MAP_RAW)) {
1084 perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n",
1085 bo->name, flags);
1086 map = iris_bo_map_gtt(dbg, bo, flags);
1087 }
1088
1089 return map;
1090 }
1091
1092 /** Waits for all GPU rendering with the object to have completed. */
1093 void
1094 iris_bo_wait_rendering(struct iris_bo *bo)
1095 {
1096 /* We require a kernel recent enough for WAIT_IOCTL support.
1097 * See intel_init_bufmgr()
1098 */
1099 iris_bo_wait(bo, -1);
1100 }
1101
1102 /**
1103 * Waits on a BO for the given amount of time.
1104 *
1105 * @bo: buffer object to wait for
1106 * @timeout_ns: amount of time to wait in nanoseconds.
1107 * If value is less than 0, an infinite wait will occur.
1108 *
1109 * Returns 0 if the wait was successful ie. the last batch referencing the
1110 * object has completed within the allotted time. Otherwise some negative return
1111 * value describes the error. Of particular interest is -ETIME when the wait has
1112 * failed to yield the desired result.
1113 *
1114 * Similar to iris_bo_wait_rendering except a timeout parameter allows
1115 * the operation to give up after a certain amount of time. Another subtle
1116 * difference is the internal locking semantics are different (this variant does
1117 * not hold the lock for the duration of the wait). This makes the wait subject
1118 * to a larger userspace race window.
1119 *
1120 * The implementation shall wait until the object is no longer actively
1121 * referenced within a batch buffer at the time of the call. The wait will
1122 * not guarantee that the buffer is re-issued via another thread, or an flinked
1123 * handle. Userspace must make sure this race does not occur if such precision
1124 * is important.
1125 *
1126 * Note that some kernels have broken the inifite wait for negative values
1127 * promise, upgrade to latest stable kernels if this is the case.
1128 */
1129 int
1130 iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
1131 {
1132 struct iris_bufmgr *bufmgr = bo->bufmgr;
1133
1134 /* If we know it's idle, don't bother with the kernel round trip */
1135 if (bo->idle && !bo->external)
1136 return 0;
1137
1138 struct drm_i915_gem_wait wait = {
1139 .bo_handle = bo->gem_handle,
1140 .timeout_ns = timeout_ns,
1141 };
1142 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1143 if (ret != 0)
1144 return -errno;
1145
1146 bo->idle = true;
1147
1148 return ret;
1149 }
1150
1151 void
1152 iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
1153 {
1154 mtx_destroy(&bufmgr->lock);
1155
1156 /* Free any cached buffer objects we were going to reuse */
1157 for (int i = 0; i < bufmgr->num_buckets; i++) {
1158 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1159
1160 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1161 list_del(&bo->head);
1162
1163 bo_free(bo);
1164 }
1165 }
1166
1167 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1168 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1169
1170 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) {
1171 if (z != IRIS_MEMZONE_BINDER)
1172 util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1173 }
1174
1175 free(bufmgr);
1176 }
1177
1178 static int
1179 bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
1180 uint32_t stride)
1181 {
1182 struct iris_bufmgr *bufmgr = bo->bufmgr;
1183 struct drm_i915_gem_set_tiling set_tiling;
1184 int ret;
1185
1186 if (bo->global_name == 0 &&
1187 tiling_mode == bo->tiling_mode && stride == bo->stride)
1188 return 0;
1189
1190 memset(&set_tiling, 0, sizeof(set_tiling));
1191 do {
1192 /* set_tiling is slightly broken and overwrites the
1193 * input on the error path, so we have to open code
1194 * drm_ioctl.
1195 */
1196 set_tiling.handle = bo->gem_handle;
1197 set_tiling.tiling_mode = tiling_mode;
1198 set_tiling.stride = stride;
1199
1200 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1201 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1202 if (ret == -1)
1203 return -errno;
1204
1205 bo->tiling_mode = set_tiling.tiling_mode;
1206 bo->swizzle_mode = set_tiling.swizzle_mode;
1207 bo->stride = set_tiling.stride;
1208 return 0;
1209 }
1210
1211 int
1212 iris_bo_get_tiling(struct iris_bo *bo, uint32_t *tiling_mode,
1213 uint32_t *swizzle_mode)
1214 {
1215 *tiling_mode = bo->tiling_mode;
1216 *swizzle_mode = bo->swizzle_mode;
1217 return 0;
1218 }
1219
1220 struct iris_bo *
1221 iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd)
1222 {
1223 uint32_t handle;
1224 struct iris_bo *bo;
1225
1226 mtx_lock(&bufmgr->lock);
1227 int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1228 if (ret) {
1229 DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1230 strerror(errno));
1231 mtx_unlock(&bufmgr->lock);
1232 return NULL;
1233 }
1234
1235 /*
1236 * See if the kernel has already returned this buffer to us. Just as
1237 * for named buffers, we must not create two bo's pointing at the same
1238 * kernel object
1239 */
1240 bo = hash_find_bo(bufmgr->handle_table, handle);
1241 if (bo) {
1242 iris_bo_reference(bo);
1243 goto out;
1244 }
1245
1246 bo = bo_calloc();
1247 if (!bo)
1248 goto out;
1249
1250 p_atomic_set(&bo->refcount, 1);
1251
1252 /* Determine size of bo. The fd-to-handle ioctl really should
1253 * return the size, but it doesn't. If we have kernel 3.12 or
1254 * later, we can lseek on the prime fd to get the size. Older
1255 * kernels will just fail, in which case we fall back to the
1256 * provided (estimated or guess size). */
1257 ret = lseek(prime_fd, 0, SEEK_END);
1258 if (ret != -1)
1259 bo->size = ret;
1260
1261 bo->bufmgr = bufmgr;
1262
1263 bo->gem_handle = handle;
1264 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1265
1266 bo->name = "prime";
1267 bo->reusable = false;
1268 bo->external = true;
1269 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1270 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
1271
1272 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1273 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1274 goto err;
1275
1276 bo->tiling_mode = get_tiling.tiling_mode;
1277 bo->swizzle_mode = get_tiling.swizzle_mode;
1278 /* XXX stride is unknown */
1279
1280 out:
1281 mtx_unlock(&bufmgr->lock);
1282 return bo;
1283
1284 err:
1285 bo_free(bo);
1286 mtx_unlock(&bufmgr->lock);
1287 return NULL;
1288 }
1289
1290 static void
1291 iris_bo_make_external_locked(struct iris_bo *bo)
1292 {
1293 if (!bo->external) {
1294 _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo);
1295 bo->external = true;
1296 }
1297 }
1298
1299 static void
1300 iris_bo_make_external(struct iris_bo *bo)
1301 {
1302 struct iris_bufmgr *bufmgr = bo->bufmgr;
1303
1304 if (bo->external)
1305 return;
1306
1307 mtx_lock(&bufmgr->lock);
1308 iris_bo_make_external_locked(bo);
1309 mtx_unlock(&bufmgr->lock);
1310 }
1311
1312 int
1313 iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
1314 {
1315 struct iris_bufmgr *bufmgr = bo->bufmgr;
1316
1317 iris_bo_make_external(bo);
1318
1319 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1320 DRM_CLOEXEC, prime_fd) != 0)
1321 return -errno;
1322
1323 bo->reusable = false;
1324
1325 return 0;
1326 }
1327
1328 uint32_t
1329 iris_bo_export_gem_handle(struct iris_bo *bo)
1330 {
1331 iris_bo_make_external(bo);
1332
1333 return bo->gem_handle;
1334 }
1335
1336 int
1337 iris_bo_flink(struct iris_bo *bo, uint32_t *name)
1338 {
1339 struct iris_bufmgr *bufmgr = bo->bufmgr;
1340
1341 if (!bo->global_name) {
1342 struct drm_gem_flink flink = { .handle = bo->gem_handle };
1343
1344 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1345 return -errno;
1346
1347 mtx_lock(&bufmgr->lock);
1348 if (!bo->global_name) {
1349 iris_bo_make_external_locked(bo);
1350 bo->global_name = flink.name;
1351 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1352 }
1353 mtx_unlock(&bufmgr->lock);
1354
1355 bo->reusable = false;
1356 }
1357
1358 *name = bo->global_name;
1359 return 0;
1360 }
1361
1362 static void
1363 add_bucket(struct iris_bufmgr *bufmgr, int size)
1364 {
1365 unsigned int i = bufmgr->num_buckets;
1366
1367 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1368
1369 list_inithead(&bufmgr->cache_bucket[i].head);
1370 bufmgr->cache_bucket[i].size = size;
1371 bufmgr->num_buckets++;
1372
1373 assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1374 assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1375 assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1376 }
1377
1378 static void
1379 init_cache_buckets(struct iris_bufmgr *bufmgr)
1380 {
1381 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1382
1383 /* OK, so power of two buckets was too wasteful of memory.
1384 * Give 3 other sizes between each power of two, to hopefully
1385 * cover things accurately enough. (The alternative is
1386 * probably to just go for exact matching of sizes, and assume
1387 * that for things like composited window resize the tiled
1388 * width/height alignment and rounding of sizes to pages will
1389 * get us useful cache hit rates anyway)
1390 */
1391 add_bucket(bufmgr, PAGE_SIZE);
1392 add_bucket(bufmgr, PAGE_SIZE * 2);
1393 add_bucket(bufmgr, PAGE_SIZE * 3);
1394
1395 /* Initialize the linked lists for BO reuse cache. */
1396 for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
1397 add_bucket(bufmgr, size);
1398
1399 add_bucket(bufmgr, size + size * 1 / 4);
1400 add_bucket(bufmgr, size + size * 2 / 4);
1401 add_bucket(bufmgr, size + size * 3 / 4);
1402 }
1403 }
1404
1405 uint32_t
1406 iris_create_hw_context(struct iris_bufmgr *bufmgr)
1407 {
1408 struct drm_i915_gem_context_create create = { };
1409 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1410 if (ret != 0) {
1411 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1412 return 0;
1413 }
1414
1415 /* Upon declaring a GPU hang, the kernel will zap the guilty context
1416 * back to the default logical HW state and attempt to continue on to
1417 * our next submitted batchbuffer. However, our render batches assume
1418 * the previous GPU state is preserved, and only emit commands needed
1419 * to incrementally change that state. In particular, we inherit the
1420 * STATE_BASE_ADDRESS and PIPELINE_SELECT settings, which are critical.
1421 * With default base addresses, our next batches will almost certainly
1422 * cause more GPU hangs, leading to repeated hangs until we're banned
1423 * or the machine is dead.
1424 *
1425 * Here we tell the kernel not to attempt to recover our context but
1426 * immediately (on the next batchbuffer submission) report that the
1427 * context is lost, and we will do the recovery ourselves. Ideally,
1428 * we'll have two lost batches instead of a continual stream of hangs.
1429 */
1430 struct drm_i915_gem_context_param p = {
1431 .ctx_id = create.ctx_id,
1432 .param = I915_CONTEXT_PARAM_RECOVERABLE,
1433 .value = false,
1434 };
1435 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p);
1436
1437 return create.ctx_id;
1438 }
1439
1440 static int
1441 iris_hw_context_get_priority(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1442 {
1443 struct drm_i915_gem_context_param p = {
1444 .ctx_id = ctx_id,
1445 .param = I915_CONTEXT_PARAM_PRIORITY,
1446 };
1447 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p);
1448 return p.value; /* on error, return 0 i.e. default priority */
1449 }
1450
1451 int
1452 iris_hw_context_set_priority(struct iris_bufmgr *bufmgr,
1453 uint32_t ctx_id,
1454 int priority)
1455 {
1456 struct drm_i915_gem_context_param p = {
1457 .ctx_id = ctx_id,
1458 .param = I915_CONTEXT_PARAM_PRIORITY,
1459 .value = priority,
1460 };
1461 int err;
1462
1463 err = 0;
1464 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1465 err = -errno;
1466
1467 return err;
1468 }
1469
1470 uint32_t
1471 iris_clone_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1472 {
1473 uint32_t new_ctx = iris_create_hw_context(bufmgr);
1474
1475 if (new_ctx) {
1476 int priority = iris_hw_context_get_priority(bufmgr, ctx_id);
1477 iris_hw_context_set_priority(bufmgr, new_ctx, priority);
1478 }
1479
1480 return new_ctx;
1481 }
1482
1483 void
1484 iris_destroy_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1485 {
1486 struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1487
1488 if (ctx_id != 0 &&
1489 drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1490 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1491 strerror(errno));
1492 }
1493 }
1494
1495 int
1496 iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1497 {
1498 struct drm_i915_reg_read reg_read = { .offset = offset };
1499 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1500
1501 *result = reg_read.val;
1502 return ret;
1503 }
1504
1505 static uint64_t
1506 iris_gtt_size(int fd)
1507 {
1508 /* We use the default (already allocated) context to determine
1509 * the default configuration of the virtual address space.
1510 */
1511 struct drm_i915_gem_context_param p = {
1512 .param = I915_CONTEXT_PARAM_GTT_SIZE,
1513 };
1514 if (!drm_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p))
1515 return p.value;
1516
1517 return 0;
1518 }
1519
1520 /**
1521 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1522 * and manage map buffer objections.
1523 *
1524 * \param fd File descriptor of the opened DRM device.
1525 */
1526 struct iris_bufmgr *
1527 iris_bufmgr_init(struct gen_device_info *devinfo, int fd)
1528 {
1529 uint64_t gtt_size = iris_gtt_size(fd);
1530 if (gtt_size <= IRIS_MEMZONE_OTHER_START)
1531 return NULL;
1532
1533 struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
1534 if (bufmgr == NULL)
1535 return NULL;
1536
1537 /* Handles to buffer objects belong to the device fd and are not
1538 * reference counted by the kernel. If the same fd is used by
1539 * multiple parties (threads sharing the same screen bufmgr, or
1540 * even worse the same device fd passed to multiple libraries)
1541 * ownership of those handles is shared by those independent parties.
1542 *
1543 * Don't do this! Ensure that each library/bufmgr has its own device
1544 * fd so that its namespace does not clash with another.
1545 */
1546 bufmgr->fd = fd;
1547
1548 if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
1549 free(bufmgr);
1550 return NULL;
1551 }
1552
1553 bufmgr->has_llc = devinfo->has_llc;
1554
1555 STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull);
1556 const uint64_t _4GB = 1ull << 32;
1557
1558 /* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */
1559 const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE;
1560
1561 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER],
1562 PAGE_SIZE, _4GB_minus_1 - PAGE_SIZE);
1563 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE],
1564 IRIS_MEMZONE_SURFACE_START,
1565 _4GB_minus_1 - IRIS_MAX_BINDERS * IRIS_BINDER_SIZE);
1566 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC],
1567 IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE,
1568 _4GB_minus_1 - IRIS_BORDER_COLOR_POOL_SIZE);
1569
1570 /* Leave the last 4GB out of the high vma range, so that no state
1571 * base address + size can overflow 48 bits.
1572 */
1573 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER],
1574 IRIS_MEMZONE_OTHER_START,
1575 (gtt_size - _4GB) - IRIS_MEMZONE_OTHER_START);
1576
1577 // XXX: driconf
1578 bufmgr->bo_reuse = env_var_as_boolean("bo_reuse", true);
1579
1580 init_cache_buckets(bufmgr);
1581
1582 bufmgr->name_table =
1583 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1584 bufmgr->handle_table =
1585 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1586
1587 return bufmgr;
1588 }