iris: Minor tidying
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #define __gen_address_type struct iris_address
110 #define __gen_user_data struct iris_batch
111
112 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
113
114 static uint64_t
115 __gen_combine_address(struct iris_batch *batch, void *location,
116 struct iris_address addr, uint32_t delta)
117 {
118 uint64_t result = addr.offset + delta;
119
120 if (addr.bo) {
121 iris_use_pinned_bo(batch, addr.bo, addr.write);
122 /* Assume this is a general address, not relative to a base. */
123 result += addr.bo->gtt_offset;
124 }
125
126 return result;
127 }
128
129 #define __genxml_cmd_length(cmd) cmd ## _length
130 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
131 #define __genxml_cmd_header(cmd) cmd ## _header
132 #define __genxml_cmd_pack(cmd) cmd ## _pack
133
134 #define _iris_pack_command(batch, cmd, dst, name) \
135 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
136 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
137 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
138 _dst = NULL; \
139 }))
140
141 #define iris_pack_command(cmd, dst, name) \
142 _iris_pack_command(NULL, cmd, dst, name)
143
144 #define iris_pack_state(cmd, dst, name) \
145 for (struct cmd name = {}, \
146 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
147 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
148 _dst = NULL)
149
150 #define iris_emit_cmd(batch, cmd, name) \
151 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
152
153 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
154 do { \
155 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
156 for (uint32_t i = 0; i < num_dwords; i++) \
157 dw[i] = (dwords0)[i] | (dwords1)[i]; \
158 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
159 } while (0)
160
161 #include "genxml/genX_pack.h"
162 #include "genxml/gen_macros.h"
163 #include "genxml/genX_bits.h"
164 #include "intel/common/gen_guardband.h"
165
166 #if GEN_GEN == 8
167 #define MOCS_PTE 0x18
168 #define MOCS_WB 0x78
169 #else
170 #define MOCS_PTE (1 << 1)
171 #define MOCS_WB (2 << 1)
172 #endif
173
174 static uint32_t
175 mocs(const struct iris_bo *bo)
176 {
177 return bo && bo->external ? MOCS_PTE : MOCS_WB;
178 }
179
180 /**
181 * Statically assert that PIPE_* enums match the hardware packets.
182 * (As long as they match, we don't need to translate them.)
183 */
184 UNUSED static void pipe_asserts()
185 {
186 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
187
188 /* pipe_logicop happens to match the hardware. */
189 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
190 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
192 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
193 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
194 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
195 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
196 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
197 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
198 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
199 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
201 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
202 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
203 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
204 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
205
206 /* pipe_blend_func happens to match the hardware. */
207 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
224 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
225 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
226
227 /* pipe_blend_func happens to match the hardware. */
228 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
229 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
230 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
231 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
232 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
233
234 /* pipe_stencil_op happens to match the hardware. */
235 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
236 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
237 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
241 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
242 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
243
244 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
245 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
246 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
247 #undef PIPE_ASSERT
248 }
249
250 static unsigned
251 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
252 {
253 static const unsigned map[] = {
254 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
255 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
256 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
257 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
258 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
259 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
260 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
261 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
262 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
263 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
264 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
265 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
266 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
267 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
268 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
269 };
270
271 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
272 }
273
274 static unsigned
275 translate_compare_func(enum pipe_compare_func pipe_func)
276 {
277 static const unsigned map[] = {
278 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
279 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
280 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
281 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
282 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
283 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
284 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
285 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
286 };
287 return map[pipe_func];
288 }
289
290 static unsigned
291 translate_shadow_func(enum pipe_compare_func pipe_func)
292 {
293 /* Gallium specifies the result of shadow comparisons as:
294 *
295 * 1 if ref <op> texel,
296 * 0 otherwise.
297 *
298 * The hardware does:
299 *
300 * 0 if texel <op> ref,
301 * 1 otherwise.
302 *
303 * So we need to flip the operator and also negate.
304 */
305 static const unsigned map[] = {
306 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
307 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
308 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
309 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
310 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
311 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
312 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
313 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
314 };
315 return map[pipe_func];
316 }
317
318 static unsigned
319 translate_cull_mode(unsigned pipe_face)
320 {
321 static const unsigned map[4] = {
322 [PIPE_FACE_NONE] = CULLMODE_NONE,
323 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
324 [PIPE_FACE_BACK] = CULLMODE_BACK,
325 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
326 };
327 return map[pipe_face];
328 }
329
330 static unsigned
331 translate_fill_mode(unsigned pipe_polymode)
332 {
333 static const unsigned map[4] = {
334 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
335 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
336 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
337 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
338 };
339 return map[pipe_polymode];
340 }
341
342 static unsigned
343 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
344 {
345 static const unsigned map[] = {
346 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
347 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
348 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
349 };
350 return map[pipe_mip];
351 }
352
353 static uint32_t
354 translate_wrap(unsigned pipe_wrap)
355 {
356 static const unsigned map[] = {
357 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
358 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
359 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
360 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
361 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
362 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
363
364 /* These are unsupported. */
365 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
366 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
367 };
368 return map[pipe_wrap];
369 }
370
371 static struct iris_address
372 ro_bo(struct iris_bo *bo, uint64_t offset)
373 {
374 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
375 * validation list at CSO creation time, instead of draw time.
376 */
377 return (struct iris_address) { .bo = bo, .offset = offset };
378 }
379
380 static struct iris_address
381 rw_bo(struct iris_bo *bo, uint64_t offset)
382 {
383 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
384 * validation list at CSO creation time, instead of draw time.
385 */
386 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
387 }
388
389 /**
390 * Allocate space for some indirect state.
391 *
392 * Return a pointer to the map (to fill it out) and a state ref (for
393 * referring to the state in GPU commands).
394 */
395 static void *
396 upload_state(struct u_upload_mgr *uploader,
397 struct iris_state_ref *ref,
398 unsigned size,
399 unsigned alignment)
400 {
401 void *p = NULL;
402 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
403 return p;
404 }
405
406 /**
407 * Stream out temporary/short-lived state.
408 *
409 * This allocates space, pins the BO, and includes the BO address in the
410 * returned offset (which works because all state lives in 32-bit memory
411 * zones).
412 */
413 static uint32_t *
414 stream_state(struct iris_batch *batch,
415 struct u_upload_mgr *uploader,
416 struct pipe_resource **out_res,
417 unsigned size,
418 unsigned alignment,
419 uint32_t *out_offset)
420 {
421 void *ptr = NULL;
422
423 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
424
425 struct iris_bo *bo = iris_resource_bo(*out_res);
426 iris_use_pinned_bo(batch, bo, false);
427
428 *out_offset += iris_bo_offset_from_base_address(bo);
429
430 iris_record_state_size(batch->state_sizes, *out_offset, size);
431
432 return ptr;
433 }
434
435 /**
436 * stream_state() + memcpy.
437 */
438 static uint32_t
439 emit_state(struct iris_batch *batch,
440 struct u_upload_mgr *uploader,
441 struct pipe_resource **out_res,
442 const void *data,
443 unsigned size,
444 unsigned alignment)
445 {
446 unsigned offset = 0;
447 uint32_t *map =
448 stream_state(batch, uploader, out_res, size, alignment, &offset);
449
450 if (map)
451 memcpy(map, data, size);
452
453 return offset;
454 }
455
456 /**
457 * Did field 'x' change between 'old_cso' and 'new_cso'?
458 *
459 * (If so, we may want to set some dirty flags.)
460 */
461 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
462 #define cso_changed_memcmp(x) \
463 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
464
465 static void
466 flush_for_state_base_change(struct iris_batch *batch)
467 {
468 /* Flush before emitting STATE_BASE_ADDRESS.
469 *
470 * This isn't documented anywhere in the PRM. However, it seems to be
471 * necessary prior to changing the surface state base adress. We've
472 * seen issues in Vulkan where we get GPU hangs when using multi-level
473 * command buffers which clear depth, reset state base address, and then
474 * go render stuff.
475 *
476 * Normally, in GL, we would trust the kernel to do sufficient stalls
477 * and flushes prior to executing our batch. However, it doesn't seem
478 * as if the kernel's flushing is always sufficient and we don't want to
479 * rely on it.
480 *
481 * We make this an end-of-pipe sync instead of a normal flush because we
482 * do not know the current status of the GPU. On Haswell at least,
483 * having a fast-clear operation in flight at the same time as a normal
484 * rendering operation can cause hangs. Since the kernel's flushing is
485 * insufficient, we need to ensure that any rendering operations from
486 * other processes are definitely complete before we try to do our own
487 * rendering. It's a bit of a big hammer but it appears to work.
488 */
489 iris_emit_end_of_pipe_sync(batch,
490 "change STATE_BASE_ADDRESS",
491 PIPE_CONTROL_RENDER_TARGET_FLUSH |
492 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
493 PIPE_CONTROL_DATA_CACHE_FLUSH);
494 }
495
496 static void
497 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
498 {
499 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
500 lri.RegisterOffset = reg;
501 lri.DataDWord = val;
502 }
503 }
504 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
505
506 static void
507 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
508 {
509 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
510 lrr.SourceRegisterAddress = src;
511 lrr.DestinationRegisterAddress = dst;
512 }
513 }
514
515 static void
516 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
517 {
518 #if GEN_GEN >= 8 && GEN_GEN < 10
519 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
520 *
521 * Software must clear the COLOR_CALC_STATE Valid field in
522 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
523 * with Pipeline Select set to GPGPU.
524 *
525 * The internal hardware docs recommend the same workaround for Gen9
526 * hardware too.
527 */
528 if (pipeline == GPGPU)
529 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
530 #endif
531
532
533 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
534 * PIPELINE_SELECT [DevBWR+]":
535 *
536 * "Project: DEVSNB+
537 *
538 * Software must ensure all the write caches are flushed through a
539 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
540 * command to invalidate read only caches prior to programming
541 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
542 */
543 iris_emit_pipe_control_flush(batch,
544 "workaround: PIPELINE_SELECT flushes (1/2)",
545 PIPE_CONTROL_RENDER_TARGET_FLUSH |
546 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
547 PIPE_CONTROL_DATA_CACHE_FLUSH |
548 PIPE_CONTROL_CS_STALL);
549
550 iris_emit_pipe_control_flush(batch,
551 "workaround: PIPELINE_SELECT flushes (2/2)",
552 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
553 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
554 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
555 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
556
557 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
558 #if GEN_GEN >= 9
559 sel.MaskBits = 3;
560 #endif
561 sel.PipelineSelection = pipeline;
562 }
563 }
564
565 UNUSED static void
566 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
567 {
568 #if GEN_GEN == 9
569 /* Project: DevGLK
570 *
571 * "This chicken bit works around a hardware issue with barrier
572 * logic encountered when switching between GPGPU and 3D pipelines.
573 * To workaround the issue, this mode bit should be set after a
574 * pipeline is selected."
575 */
576 uint32_t reg_val;
577 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
578 reg.GLKBarrierMode = value;
579 reg.GLKBarrierModeMask = 1;
580 }
581 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
582 #endif
583 }
584
585 static void
586 init_state_base_address(struct iris_batch *batch)
587 {
588 flush_for_state_base_change(batch);
589
590 /* We program most base addresses once at context initialization time.
591 * Each base address points at a 4GB memory zone, and never needs to
592 * change. See iris_bufmgr.h for a description of the memory zones.
593 *
594 * The one exception is Surface State Base Address, which needs to be
595 * updated occasionally. See iris_binder.c for the details there.
596 */
597 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
598 sba.GeneralStateMOCS = MOCS_WB;
599 sba.StatelessDataPortAccessMOCS = MOCS_WB;
600 sba.DynamicStateMOCS = MOCS_WB;
601 sba.IndirectObjectMOCS = MOCS_WB;
602 sba.InstructionMOCS = MOCS_WB;
603
604 sba.GeneralStateBaseAddressModifyEnable = true;
605 sba.DynamicStateBaseAddressModifyEnable = true;
606 sba.IndirectObjectBaseAddressModifyEnable = true;
607 sba.InstructionBaseAddressModifyEnable = true;
608 sba.GeneralStateBufferSizeModifyEnable = true;
609 sba.DynamicStateBufferSizeModifyEnable = true;
610 #if (GEN_GEN >= 9)
611 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
612 sba.BindlessSurfaceStateMOCS = MOCS_WB;
613 #endif
614 sba.IndirectObjectBufferSizeModifyEnable = true;
615 sba.InstructionBuffersizeModifyEnable = true;
616
617 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
618 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
619
620 sba.GeneralStateBufferSize = 0xfffff;
621 sba.IndirectObjectBufferSize = 0xfffff;
622 sba.InstructionBufferSize = 0xfffff;
623 sba.DynamicStateBufferSize = 0xfffff;
624 }
625 }
626
627 static void
628 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
629 bool has_slm, bool wants_dc_cache)
630 {
631 uint32_t reg_val;
632 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
633 reg.SLMEnable = has_slm;
634 #if GEN_GEN == 11
635 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
636 * in L3CNTLREG register. The default setting of the bit is not the
637 * desirable behavior.
638 */
639 reg.ErrorDetectionBehaviorControl = true;
640 reg.UseFullWays = true;
641 #endif
642 reg.URBAllocation = cfg->n[GEN_L3P_URB];
643 reg.ROAllocation = cfg->n[GEN_L3P_RO];
644 reg.DCAllocation = cfg->n[GEN_L3P_DC];
645 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
646 }
647 iris_emit_lri(batch, L3CNTLREG, reg_val);
648 }
649
650 static void
651 iris_emit_default_l3_config(struct iris_batch *batch,
652 const struct gen_device_info *devinfo,
653 bool compute)
654 {
655 bool wants_dc_cache = true;
656 bool has_slm = compute;
657 const struct gen_l3_weights w =
658 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
659 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
660 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
661 }
662
663 #if GEN_GEN == 9 || GEN_GEN == 10
664 static void
665 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
666 {
667 uint32_t reg_val;
668
669 /* A fixed function pipe flush is required before modifying this field */
670 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
671 : "disable preemption",
672 PIPE_CONTROL_RENDER_TARGET_FLUSH);
673
674 /* enable object level preemption */
675 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
676 reg.ReplayMode = enable;
677 reg.ReplayModeMask = true;
678 }
679 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
680 }
681 #endif
682
683 /**
684 * Upload the initial GPU state for a render context.
685 *
686 * This sets some invariant state that needs to be programmed a particular
687 * way, but we never actually change.
688 */
689 static void
690 iris_init_render_context(struct iris_screen *screen,
691 struct iris_batch *batch,
692 struct iris_vtable *vtbl,
693 struct pipe_debug_callback *dbg)
694 {
695 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
696 uint32_t reg_val;
697
698 emit_pipeline_select(batch, _3D);
699
700 iris_emit_default_l3_config(batch, devinfo, false);
701
702 init_state_base_address(batch);
703
704 #if GEN_GEN >= 9
705 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
706 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
707 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
708 }
709 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
710 #else
711 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
712 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
713 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
714 }
715 iris_emit_lri(batch, INSTPM, reg_val);
716 #endif
717
718 #if GEN_GEN == 9
719 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
720 reg.FloatBlendOptimizationEnable = true;
721 reg.FloatBlendOptimizationEnableMask = true;
722 reg.PartialResolveDisableInVC = true;
723 reg.PartialResolveDisableInVCMask = true;
724 }
725 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
726
727 if (devinfo->is_geminilake)
728 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
729 #endif
730
731 #if GEN_GEN == 11
732 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
733 reg.HeaderlessMessageforPreemptableContexts = 1;
734 reg.HeaderlessMessageforPreemptableContextsMask = 1;
735 }
736 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
737
738 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
739 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
740 reg.EnabledTexelOffsetPrecisionFix = 1;
741 reg.EnabledTexelOffsetPrecisionFixMask = 1;
742 }
743 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
744
745 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
746 reg.StateCacheRedirectToCSSectionEnable = true;
747 reg.StateCacheRedirectToCSSectionEnableMask = true;
748 }
749 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
750
751 // XXX: 3D_MODE?
752 #endif
753
754 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
755 * changing it dynamically. We set it to the maximum size here, and
756 * instead include the render target dimensions in the viewport, so
757 * viewport extents clipping takes care of pruning stray geometry.
758 */
759 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
760 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
761 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
762 }
763
764 /* Set the initial MSAA sample positions. */
765 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
766 GEN_SAMPLE_POS_1X(pat._1xSample);
767 GEN_SAMPLE_POS_2X(pat._2xSample);
768 GEN_SAMPLE_POS_4X(pat._4xSample);
769 GEN_SAMPLE_POS_8X(pat._8xSample);
770 #if GEN_GEN >= 9
771 GEN_SAMPLE_POS_16X(pat._16xSample);
772 #endif
773 }
774
775 /* Use the legacy AA line coverage computation. */
776 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
777
778 /* Disable chromakeying (it's for media) */
779 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
780
781 /* We want regular rendering, not special HiZ operations. */
782 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
783
784 /* No polygon stippling offsets are necessary. */
785 /* TODO: may need to set an offset for origin-UL framebuffers */
786 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
787
788 /* Set a static partitioning of the push constant area. */
789 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
790 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
791 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
792 alloc._3DCommandSubOpcode = 18 + i;
793 alloc.ConstantBufferOffset = 6 * i;
794 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
795 }
796 }
797
798 #if GEN_GEN == 10
799 /* Gen11+ is enabled for us by the kernel. */
800 iris_enable_obj_preemption(batch, true);
801 #endif
802 }
803
804 static void
805 iris_init_compute_context(struct iris_screen *screen,
806 struct iris_batch *batch,
807 struct iris_vtable *vtbl,
808 struct pipe_debug_callback *dbg)
809 {
810 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
811
812 emit_pipeline_select(batch, GPGPU);
813
814 iris_emit_default_l3_config(batch, devinfo, true);
815
816 init_state_base_address(batch);
817
818 #if GEN_GEN == 9
819 if (devinfo->is_geminilake)
820 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
821 #endif
822 }
823
824 struct iris_vertex_buffer_state {
825 /** The VERTEX_BUFFER_STATE hardware structure. */
826 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
827
828 /** The resource to source vertex data from. */
829 struct pipe_resource *resource;
830 };
831
832 struct iris_depth_buffer_state {
833 /* Depth/HiZ/Stencil related hardware packets. */
834 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
835 GENX(3DSTATE_STENCIL_BUFFER_length) +
836 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
837 GENX(3DSTATE_CLEAR_PARAMS_length)];
838 };
839
840 /**
841 * Generation-specific context state (ice->state.genx->...).
842 *
843 * Most state can go in iris_context directly, but these encode hardware
844 * packets which vary by generation.
845 */
846 struct iris_genx_state {
847 struct iris_vertex_buffer_state vertex_buffers[33];
848
849 struct iris_depth_buffer_state depth_buffer;
850
851 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
852
853 #if GEN_GEN == 9
854 /* Is object level preemption enabled? */
855 bool object_preemption;
856 #endif
857
858 struct {
859 #if GEN_GEN == 8
860 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
861 #endif
862 } shaders[MESA_SHADER_STAGES];
863 };
864
865 /**
866 * The pipe->set_blend_color() driver hook.
867 *
868 * This corresponds to our COLOR_CALC_STATE.
869 */
870 static void
871 iris_set_blend_color(struct pipe_context *ctx,
872 const struct pipe_blend_color *state)
873 {
874 struct iris_context *ice = (struct iris_context *) ctx;
875
876 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
877 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
878 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
879 }
880
881 /**
882 * Gallium CSO for blend state (see pipe_blend_state).
883 */
884 struct iris_blend_state {
885 /** Partial 3DSTATE_PS_BLEND */
886 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
887
888 /** Partial BLEND_STATE */
889 uint32_t blend_state[GENX(BLEND_STATE_length) +
890 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
891
892 bool alpha_to_coverage; /* for shader key */
893
894 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
895 uint8_t blend_enables;
896
897 /** Bitfield of whether color writes are enabled for RT[i] */
898 uint8_t color_write_enables;
899
900 /** Does RT[0] use dual color blending? */
901 bool dual_color_blending;
902 };
903
904 static enum pipe_blendfactor
905 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
906 {
907 if (alpha_to_one) {
908 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
909 return PIPE_BLENDFACTOR_ONE;
910
911 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
912 return PIPE_BLENDFACTOR_ZERO;
913 }
914
915 return f;
916 }
917
918 /**
919 * The pipe->create_blend_state() driver hook.
920 *
921 * Translates a pipe_blend_state into iris_blend_state.
922 */
923 static void *
924 iris_create_blend_state(struct pipe_context *ctx,
925 const struct pipe_blend_state *state)
926 {
927 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
928 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
929
930 cso->blend_enables = 0;
931 cso->color_write_enables = 0;
932 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
933
934 cso->alpha_to_coverage = state->alpha_to_coverage;
935
936 bool indep_alpha_blend = false;
937
938 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
939 const struct pipe_rt_blend_state *rt =
940 &state->rt[state->independent_blend_enable ? i : 0];
941
942 enum pipe_blendfactor src_rgb =
943 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
944 enum pipe_blendfactor src_alpha =
945 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
946 enum pipe_blendfactor dst_rgb =
947 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
948 enum pipe_blendfactor dst_alpha =
949 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
950
951 if (rt->rgb_func != rt->alpha_func ||
952 src_rgb != src_alpha || dst_rgb != dst_alpha)
953 indep_alpha_blend = true;
954
955 if (rt->blend_enable)
956 cso->blend_enables |= 1u << i;
957
958 if (rt->colormask)
959 cso->color_write_enables |= 1u << i;
960
961 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
962 be.LogicOpEnable = state->logicop_enable;
963 be.LogicOpFunction = state->logicop_func;
964
965 be.PreBlendSourceOnlyClampEnable = false;
966 be.ColorClampRange = COLORCLAMP_RTFORMAT;
967 be.PreBlendColorClampEnable = true;
968 be.PostBlendColorClampEnable = true;
969
970 be.ColorBufferBlendEnable = rt->blend_enable;
971
972 be.ColorBlendFunction = rt->rgb_func;
973 be.AlphaBlendFunction = rt->alpha_func;
974 be.SourceBlendFactor = src_rgb;
975 be.SourceAlphaBlendFactor = src_alpha;
976 be.DestinationBlendFactor = dst_rgb;
977 be.DestinationAlphaBlendFactor = dst_alpha;
978
979 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
980 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
981 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
982 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
983 }
984 blend_entry += GENX(BLEND_STATE_ENTRY_length);
985 }
986
987 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
988 /* pb.HasWriteableRT is filled in at draw time.
989 * pb.AlphaTestEnable is filled in at draw time.
990 *
991 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
992 * setting it when dual color blending without an appropriate shader.
993 */
994
995 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
996 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
997
998 pb.SourceBlendFactor =
999 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1000 pb.SourceAlphaBlendFactor =
1001 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1002 pb.DestinationBlendFactor =
1003 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1004 pb.DestinationAlphaBlendFactor =
1005 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1006 }
1007
1008 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1009 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1010 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1011 bs.AlphaToOneEnable = state->alpha_to_one;
1012 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1013 bs.ColorDitherEnable = state->dither;
1014 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1015 }
1016
1017 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1018
1019 return cso;
1020 }
1021
1022 /**
1023 * The pipe->bind_blend_state() driver hook.
1024 *
1025 * Bind a blending CSO and flag related dirty bits.
1026 */
1027 static void
1028 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1029 {
1030 struct iris_context *ice = (struct iris_context *) ctx;
1031 struct iris_blend_state *cso = state;
1032
1033 ice->state.cso_blend = cso;
1034 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1035
1036 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1037 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1038 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1039 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1040 }
1041
1042 /**
1043 * Return true if the FS writes to any color outputs which are not disabled
1044 * via color masking.
1045 */
1046 static bool
1047 has_writeable_rt(const struct iris_blend_state *cso_blend,
1048 const struct shader_info *fs_info)
1049 {
1050 if (!fs_info)
1051 return false;
1052
1053 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1054
1055 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1056 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1057
1058 return cso_blend->color_write_enables & rt_outputs;
1059 }
1060
1061 /**
1062 * Gallium CSO for depth, stencil, and alpha testing state.
1063 */
1064 struct iris_depth_stencil_alpha_state {
1065 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1066 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1067
1068 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1069 struct pipe_alpha_state alpha;
1070
1071 /** Outbound to resolve and cache set tracking. */
1072 bool depth_writes_enabled;
1073 bool stencil_writes_enabled;
1074 };
1075
1076 /**
1077 * The pipe->create_depth_stencil_alpha_state() driver hook.
1078 *
1079 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1080 * testing state since we need pieces of it in a variety of places.
1081 */
1082 static void *
1083 iris_create_zsa_state(struct pipe_context *ctx,
1084 const struct pipe_depth_stencil_alpha_state *state)
1085 {
1086 struct iris_depth_stencil_alpha_state *cso =
1087 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1088
1089 bool two_sided_stencil = state->stencil[1].enabled;
1090
1091 cso->alpha = state->alpha;
1092 cso->depth_writes_enabled = state->depth.writemask;
1093 cso->stencil_writes_enabled =
1094 state->stencil[0].writemask != 0 ||
1095 (two_sided_stencil && state->stencil[1].writemask != 0);
1096
1097 /* The state tracker needs to optimize away EQUAL writes for us. */
1098 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1099
1100 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1101 wmds.StencilFailOp = state->stencil[0].fail_op;
1102 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1103 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1104 wmds.StencilTestFunction =
1105 translate_compare_func(state->stencil[0].func);
1106 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1107 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1108 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1109 wmds.BackfaceStencilTestFunction =
1110 translate_compare_func(state->stencil[1].func);
1111 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1112 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1113 wmds.StencilTestEnable = state->stencil[0].enabled;
1114 wmds.StencilBufferWriteEnable =
1115 state->stencil[0].writemask != 0 ||
1116 (two_sided_stencil && state->stencil[1].writemask != 0);
1117 wmds.DepthTestEnable = state->depth.enabled;
1118 wmds.DepthBufferWriteEnable = state->depth.writemask;
1119 wmds.StencilTestMask = state->stencil[0].valuemask;
1120 wmds.StencilWriteMask = state->stencil[0].writemask;
1121 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1122 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1123 /* wmds.[Backface]StencilReferenceValue are merged later */
1124 }
1125
1126 return cso;
1127 }
1128
1129 /**
1130 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1131 *
1132 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1133 */
1134 static void
1135 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1136 {
1137 struct iris_context *ice = (struct iris_context *) ctx;
1138 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1139 struct iris_depth_stencil_alpha_state *new_cso = state;
1140
1141 if (new_cso) {
1142 if (cso_changed(alpha.ref_value))
1143 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1144
1145 if (cso_changed(alpha.enabled))
1146 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1147
1148 if (cso_changed(alpha.func))
1149 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1150
1151 if (cso_changed(depth_writes_enabled))
1152 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1153
1154 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1155 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1156 }
1157
1158 ice->state.cso_zsa = new_cso;
1159 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1160 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1161 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1162 }
1163
1164 /**
1165 * Gallium CSO for rasterizer state.
1166 */
1167 struct iris_rasterizer_state {
1168 uint32_t sf[GENX(3DSTATE_SF_length)];
1169 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1170 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1171 uint32_t wm[GENX(3DSTATE_WM_length)];
1172 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1173
1174 uint8_t num_clip_plane_consts;
1175 bool clip_halfz; /* for CC_VIEWPORT */
1176 bool depth_clip_near; /* for CC_VIEWPORT */
1177 bool depth_clip_far; /* for CC_VIEWPORT */
1178 bool flatshade; /* for shader state */
1179 bool flatshade_first; /* for stream output */
1180 bool clamp_fragment_color; /* for shader state */
1181 bool light_twoside; /* for shader state */
1182 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1183 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1184 bool line_stipple_enable;
1185 bool poly_stipple_enable;
1186 bool multisample;
1187 bool force_persample_interp;
1188 bool conservative_rasterization;
1189 bool fill_mode_point_or_line;
1190 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1191 uint16_t sprite_coord_enable;
1192 };
1193
1194 static float
1195 get_line_width(const struct pipe_rasterizer_state *state)
1196 {
1197 float line_width = state->line_width;
1198
1199 /* From the OpenGL 4.4 spec:
1200 *
1201 * "The actual width of non-antialiased lines is determined by rounding
1202 * the supplied width to the nearest integer, then clamping it to the
1203 * implementation-dependent maximum non-antialiased line width."
1204 */
1205 if (!state->multisample && !state->line_smooth)
1206 line_width = roundf(state->line_width);
1207
1208 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1209 /* For 1 pixel line thickness or less, the general anti-aliasing
1210 * algorithm gives up, and a garbage line is generated. Setting a
1211 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1212 * (one-pixel-wide), non-antialiased lines.
1213 *
1214 * Lines rendered with zero Line Width are rasterized using the
1215 * "Grid Intersection Quantization" rules as specified by the
1216 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1217 */
1218 line_width = 0.0f;
1219 }
1220
1221 return line_width;
1222 }
1223
1224 /**
1225 * The pipe->create_rasterizer_state() driver hook.
1226 */
1227 static void *
1228 iris_create_rasterizer_state(struct pipe_context *ctx,
1229 const struct pipe_rasterizer_state *state)
1230 {
1231 struct iris_rasterizer_state *cso =
1232 malloc(sizeof(struct iris_rasterizer_state));
1233
1234 cso->multisample = state->multisample;
1235 cso->force_persample_interp = state->force_persample_interp;
1236 cso->clip_halfz = state->clip_halfz;
1237 cso->depth_clip_near = state->depth_clip_near;
1238 cso->depth_clip_far = state->depth_clip_far;
1239 cso->flatshade = state->flatshade;
1240 cso->flatshade_first = state->flatshade_first;
1241 cso->clamp_fragment_color = state->clamp_fragment_color;
1242 cso->light_twoside = state->light_twoside;
1243 cso->rasterizer_discard = state->rasterizer_discard;
1244 cso->half_pixel_center = state->half_pixel_center;
1245 cso->sprite_coord_mode = state->sprite_coord_mode;
1246 cso->sprite_coord_enable = state->sprite_coord_enable;
1247 cso->line_stipple_enable = state->line_stipple_enable;
1248 cso->poly_stipple_enable = state->poly_stipple_enable;
1249 cso->conservative_rasterization =
1250 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1251
1252 cso->fill_mode_point_or_line =
1253 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1254 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1255 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1256 state->fill_back == PIPE_POLYGON_MODE_POINT;
1257
1258 if (state->clip_plane_enable != 0)
1259 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1260 else
1261 cso->num_clip_plane_consts = 0;
1262
1263 float line_width = get_line_width(state);
1264
1265 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1266 sf.StatisticsEnable = true;
1267 sf.ViewportTransformEnable = true;
1268 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1269 sf.LineEndCapAntialiasingRegionWidth =
1270 state->line_smooth ? _10pixels : _05pixels;
1271 sf.LastPixelEnable = state->line_last_pixel;
1272 sf.LineWidth = line_width;
1273 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1274 !state->point_quad_rasterization;
1275 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1276 sf.PointWidth = state->point_size;
1277
1278 if (state->flatshade_first) {
1279 sf.TriangleFanProvokingVertexSelect = 1;
1280 } else {
1281 sf.TriangleStripListProvokingVertexSelect = 2;
1282 sf.TriangleFanProvokingVertexSelect = 2;
1283 sf.LineStripListProvokingVertexSelect = 1;
1284 }
1285 }
1286
1287 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1288 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1289 rr.CullMode = translate_cull_mode(state->cull_face);
1290 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1291 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1292 rr.DXMultisampleRasterizationEnable = state->multisample;
1293 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1294 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1295 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1296 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1297 rr.GlobalDepthOffsetScale = state->offset_scale;
1298 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1299 rr.SmoothPointEnable = state->point_smooth;
1300 rr.AntialiasingEnable = state->line_smooth;
1301 rr.ScissorRectangleEnable = state->scissor;
1302 #if GEN_GEN >= 9
1303 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1304 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1305 rr.ConservativeRasterizationEnable =
1306 cso->conservative_rasterization;
1307 #else
1308 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1309 #endif
1310 }
1311
1312 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1313 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1314 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1315 */
1316 cl.EarlyCullEnable = true;
1317 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1318 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1319 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1320 cl.GuardbandClipTestEnable = true;
1321 cl.ClipEnable = true;
1322 cl.MinimumPointWidth = 0.125;
1323 cl.MaximumPointWidth = 255.875;
1324
1325 if (state->flatshade_first) {
1326 cl.TriangleFanProvokingVertexSelect = 1;
1327 } else {
1328 cl.TriangleStripListProvokingVertexSelect = 2;
1329 cl.TriangleFanProvokingVertexSelect = 2;
1330 cl.LineStripListProvokingVertexSelect = 1;
1331 }
1332 }
1333
1334 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1335 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1336 * filled in at draw time from the FS program.
1337 */
1338 wm.LineAntialiasingRegionWidth = _10pixels;
1339 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1340 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1341 wm.LineStippleEnable = state->line_stipple_enable;
1342 wm.PolygonStippleEnable = state->poly_stipple_enable;
1343 }
1344
1345 /* Remap from 0..255 back to 1..256 */
1346 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1347
1348 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1349 line.LineStipplePattern = state->line_stipple_pattern;
1350 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1351 line.LineStippleRepeatCount = line_stipple_factor;
1352 }
1353
1354 return cso;
1355 }
1356
1357 /**
1358 * The pipe->bind_rasterizer_state() driver hook.
1359 *
1360 * Bind a rasterizer CSO and flag related dirty bits.
1361 */
1362 static void
1363 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1364 {
1365 struct iris_context *ice = (struct iris_context *) ctx;
1366 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1367 struct iris_rasterizer_state *new_cso = state;
1368
1369 if (new_cso) {
1370 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1371 if (cso_changed_memcmp(line_stipple))
1372 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1373
1374 if (cso_changed(half_pixel_center))
1375 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1376
1377 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1378 ice->state.dirty |= IRIS_DIRTY_WM;
1379
1380 if (cso_changed(rasterizer_discard))
1381 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1382
1383 if (cso_changed(flatshade_first))
1384 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1385
1386 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1387 cso_changed(clip_halfz))
1388 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1389
1390 if (cso_changed(sprite_coord_enable) ||
1391 cso_changed(sprite_coord_mode) ||
1392 cso_changed(light_twoside))
1393 ice->state.dirty |= IRIS_DIRTY_SBE;
1394
1395 if (cso_changed(conservative_rasterization))
1396 ice->state.dirty |= IRIS_DIRTY_FS;
1397 }
1398
1399 ice->state.cso_rast = new_cso;
1400 ice->state.dirty |= IRIS_DIRTY_RASTER;
1401 ice->state.dirty |= IRIS_DIRTY_CLIP;
1402 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1403 }
1404
1405 /**
1406 * Return true if the given wrap mode requires the border color to exist.
1407 *
1408 * (We can skip uploading it if the sampler isn't going to use it.)
1409 */
1410 static bool
1411 wrap_mode_needs_border_color(unsigned wrap_mode)
1412 {
1413 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1414 }
1415
1416 /**
1417 * Gallium CSO for sampler state.
1418 */
1419 struct iris_sampler_state {
1420 union pipe_color_union border_color;
1421 bool needs_border_color;
1422
1423 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1424 };
1425
1426 /**
1427 * The pipe->create_sampler_state() driver hook.
1428 *
1429 * We fill out SAMPLER_STATE (except for the border color pointer), and
1430 * store that on the CPU. It doesn't make sense to upload it to a GPU
1431 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1432 * all bound sampler states to be in contiguous memor.
1433 */
1434 static void *
1435 iris_create_sampler_state(struct pipe_context *ctx,
1436 const struct pipe_sampler_state *state)
1437 {
1438 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1439
1440 if (!cso)
1441 return NULL;
1442
1443 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1444 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1445
1446 unsigned wrap_s = translate_wrap(state->wrap_s);
1447 unsigned wrap_t = translate_wrap(state->wrap_t);
1448 unsigned wrap_r = translate_wrap(state->wrap_r);
1449
1450 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1451
1452 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1453 wrap_mode_needs_border_color(wrap_t) ||
1454 wrap_mode_needs_border_color(wrap_r);
1455
1456 float min_lod = state->min_lod;
1457 unsigned mag_img_filter = state->mag_img_filter;
1458
1459 // XXX: explain this code ported from ilo...I don't get it at all...
1460 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1461 state->min_lod > 0.0f) {
1462 min_lod = 0.0f;
1463 mag_img_filter = state->min_img_filter;
1464 }
1465
1466 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1467 samp.TCXAddressControlMode = wrap_s;
1468 samp.TCYAddressControlMode = wrap_t;
1469 samp.TCZAddressControlMode = wrap_r;
1470 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1471 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1472 samp.MinModeFilter = state->min_img_filter;
1473 samp.MagModeFilter = mag_img_filter;
1474 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1475 samp.MaximumAnisotropy = RATIO21;
1476
1477 if (state->max_anisotropy >= 2) {
1478 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1479 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1480 samp.AnisotropicAlgorithm = EWAApproximation;
1481 }
1482
1483 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1484 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1485
1486 samp.MaximumAnisotropy =
1487 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1488 }
1489
1490 /* Set address rounding bits if not using nearest filtering. */
1491 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1492 samp.UAddressMinFilterRoundingEnable = true;
1493 samp.VAddressMinFilterRoundingEnable = true;
1494 samp.RAddressMinFilterRoundingEnable = true;
1495 }
1496
1497 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1498 samp.UAddressMagFilterRoundingEnable = true;
1499 samp.VAddressMagFilterRoundingEnable = true;
1500 samp.RAddressMagFilterRoundingEnable = true;
1501 }
1502
1503 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1504 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1505
1506 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1507
1508 samp.LODPreClampMode = CLAMP_MODE_OGL;
1509 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1510 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1511 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1512
1513 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1514 }
1515
1516 return cso;
1517 }
1518
1519 /**
1520 * The pipe->bind_sampler_states() driver hook.
1521 */
1522 static void
1523 iris_bind_sampler_states(struct pipe_context *ctx,
1524 enum pipe_shader_type p_stage,
1525 unsigned start, unsigned count,
1526 void **states)
1527 {
1528 struct iris_context *ice = (struct iris_context *) ctx;
1529 gl_shader_stage stage = stage_from_pipe(p_stage);
1530 struct iris_shader_state *shs = &ice->state.shaders[stage];
1531
1532 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1533
1534 for (int i = 0; i < count; i++) {
1535 shs->samplers[start + i] = states[i];
1536 }
1537
1538 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1539 }
1540
1541 /**
1542 * Upload the sampler states into a contiguous area of GPU memory, for
1543 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1544 *
1545 * Also fill out the border color state pointers.
1546 */
1547 static void
1548 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1549 {
1550 struct iris_shader_state *shs = &ice->state.shaders[stage];
1551 const struct shader_info *info = iris_get_shader_info(ice, stage);
1552
1553 /* We assume the state tracker will call pipe->bind_sampler_states()
1554 * if the program's number of textures changes.
1555 */
1556 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1557
1558 if (!count)
1559 return;
1560
1561 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1562 * in the dynamic state memory zone, so we can point to it via the
1563 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1564 */
1565 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1566 uint32_t *map =
1567 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1568 if (unlikely(!map))
1569 return;
1570
1571 struct pipe_resource *res = shs->sampler_table.res;
1572 shs->sampler_table.offset +=
1573 iris_bo_offset_from_base_address(iris_resource_bo(res));
1574
1575 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1576
1577 /* Make sure all land in the same BO */
1578 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1579
1580 ice->state.need_border_colors &= ~(1 << stage);
1581
1582 for (int i = 0; i < count; i++) {
1583 struct iris_sampler_state *state = shs->samplers[i];
1584 struct iris_sampler_view *tex = shs->textures[i];
1585
1586 if (!state) {
1587 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1588 } else if (!state->needs_border_color) {
1589 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1590 } else {
1591 ice->state.need_border_colors |= 1 << stage;
1592
1593 /* We may need to swizzle the border color for format faking.
1594 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1595 * This means we need to move the border color's A channel into
1596 * the R or G channels so that those read swizzles will move it
1597 * back into A.
1598 */
1599 union pipe_color_union *color = &state->border_color;
1600 union pipe_color_union tmp;
1601 if (tex) {
1602 enum pipe_format internal_format = tex->res->internal_format;
1603
1604 if (util_format_is_alpha(internal_format)) {
1605 unsigned char swz[4] = {
1606 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1607 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1608 };
1609 util_format_apply_color_swizzle(&tmp, color, swz, true);
1610 color = &tmp;
1611 } else if (util_format_is_luminance_alpha(internal_format) &&
1612 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1613 unsigned char swz[4] = {
1614 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1615 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1616 };
1617 util_format_apply_color_swizzle(&tmp, color, swz, true);
1618 color = &tmp;
1619 }
1620 }
1621
1622 /* Stream out the border color and merge the pointer. */
1623 uint32_t offset = iris_upload_border_color(ice, color);
1624
1625 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1626 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1627 dyns.BorderColorPointer = offset;
1628 }
1629
1630 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1631 map[j] = state->sampler_state[j] | dynamic[j];
1632 }
1633
1634 map += GENX(SAMPLER_STATE_length);
1635 }
1636 }
1637
1638 static enum isl_channel_select
1639 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1640 {
1641 switch (swz) {
1642 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1643 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1644 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1645 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1646 case PIPE_SWIZZLE_1: return SCS_ONE;
1647 case PIPE_SWIZZLE_0: return SCS_ZERO;
1648 default: unreachable("invalid swizzle");
1649 }
1650 }
1651
1652 static void
1653 fill_buffer_surface_state(struct isl_device *isl_dev,
1654 struct iris_resource *res,
1655 void *map,
1656 enum isl_format format,
1657 struct isl_swizzle swizzle,
1658 unsigned offset,
1659 unsigned size)
1660 {
1661 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1662 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1663
1664 /* The ARB_texture_buffer_specification says:
1665 *
1666 * "The number of texels in the buffer texture's texel array is given by
1667 *
1668 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1669 *
1670 * where <buffer_size> is the size of the buffer object, in basic
1671 * machine units and <components> and <base_type> are the element count
1672 * and base data type for elements, as specified in Table X.1. The
1673 * number of texels in the texel array is then clamped to the
1674 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1675 *
1676 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1677 * so that when ISL divides by stride to obtain the number of texels, that
1678 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1679 */
1680 unsigned final_size =
1681 MIN3(size, res->bo->size - res->offset - offset,
1682 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1683
1684 isl_buffer_fill_state(isl_dev, map,
1685 .address = res->bo->gtt_offset + res->offset + offset,
1686 .size_B = final_size,
1687 .format = format,
1688 .swizzle = swizzle,
1689 .stride_B = cpp,
1690 .mocs = mocs(res->bo));
1691 }
1692
1693 #define SURFACE_STATE_ALIGNMENT 64
1694
1695 /**
1696 * Allocate several contiguous SURFACE_STATE structures, one for each
1697 * supported auxiliary surface mode.
1698 */
1699 static void *
1700 alloc_surface_states(struct u_upload_mgr *mgr,
1701 struct iris_state_ref *ref,
1702 unsigned aux_usages)
1703 {
1704 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1705
1706 /* If this changes, update this to explicitly align pointers */
1707 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1708
1709 assert(aux_usages != 0);
1710
1711 void *map =
1712 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1713 SURFACE_STATE_ALIGNMENT);
1714
1715 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1716
1717 return map;
1718 }
1719
1720 static void
1721 fill_surface_state(struct isl_device *isl_dev,
1722 void *map,
1723 struct iris_resource *res,
1724 struct isl_view *view,
1725 unsigned aux_usage)
1726 {
1727 struct isl_surf_fill_state_info f = {
1728 .surf = &res->surf,
1729 .view = view,
1730 .mocs = mocs(res->bo),
1731 .address = res->bo->gtt_offset + res->offset,
1732 };
1733
1734 if (aux_usage != ISL_AUX_USAGE_NONE) {
1735 f.aux_surf = &res->aux.surf;
1736 f.aux_usage = aux_usage;
1737 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1738
1739 struct iris_bo *clear_bo = NULL;
1740 uint64_t clear_offset = 0;
1741 f.clear_color =
1742 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1743 if (clear_bo) {
1744 f.clear_address = clear_bo->gtt_offset + clear_offset;
1745 f.use_clear_address = isl_dev->info->gen > 9;
1746 }
1747 }
1748
1749 isl_surf_fill_state_s(isl_dev, map, &f);
1750 }
1751
1752 /**
1753 * The pipe->create_sampler_view() driver hook.
1754 */
1755 static struct pipe_sampler_view *
1756 iris_create_sampler_view(struct pipe_context *ctx,
1757 struct pipe_resource *tex,
1758 const struct pipe_sampler_view *tmpl)
1759 {
1760 struct iris_context *ice = (struct iris_context *) ctx;
1761 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1762 const struct gen_device_info *devinfo = &screen->devinfo;
1763 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1764
1765 if (!isv)
1766 return NULL;
1767
1768 /* initialize base object */
1769 isv->base = *tmpl;
1770 isv->base.context = ctx;
1771 isv->base.texture = NULL;
1772 pipe_reference_init(&isv->base.reference, 1);
1773 pipe_resource_reference(&isv->base.texture, tex);
1774
1775 if (util_format_is_depth_or_stencil(tmpl->format)) {
1776 struct iris_resource *zres, *sres;
1777 const struct util_format_description *desc =
1778 util_format_description(tmpl->format);
1779
1780 iris_get_depth_stencil_resources(tex, &zres, &sres);
1781
1782 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1783 }
1784
1785 isv->res = (struct iris_resource *) tex;
1786
1787 void *map = alloc_surface_states(ice->state.surface_uploader,
1788 &isv->surface_state,
1789 isv->res->aux.sampler_usages);
1790 if (!unlikely(map))
1791 return NULL;
1792
1793 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1794
1795 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1796 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1797 usage |= ISL_SURF_USAGE_CUBE_BIT;
1798
1799 const struct iris_format_info fmt =
1800 iris_format_for_usage(devinfo, tmpl->format, usage);
1801
1802 isv->clear_color = isv->res->aux.clear_color;
1803
1804 isv->view = (struct isl_view) {
1805 .format = fmt.fmt,
1806 .swizzle = (struct isl_swizzle) {
1807 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1808 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1809 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1810 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1811 },
1812 .usage = usage,
1813 };
1814
1815 /* Fill out SURFACE_STATE for this view. */
1816 if (tmpl->target != PIPE_BUFFER) {
1817 isv->view.base_level = tmpl->u.tex.first_level;
1818 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1819 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1820 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1821 isv->view.array_len =
1822 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1823
1824 unsigned aux_modes = isv->res->aux.sampler_usages;
1825 while (aux_modes) {
1826 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1827
1828 /* If we have a multisampled depth buffer, do not create a sampler
1829 * surface state with HiZ.
1830 */
1831 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1832 aux_usage);
1833
1834 map += SURFACE_STATE_ALIGNMENT;
1835 }
1836 } else {
1837 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1838 isv->view.format, isv->view.swizzle,
1839 tmpl->u.buf.offset, tmpl->u.buf.size);
1840 }
1841
1842 return &isv->base;
1843 }
1844
1845 static void
1846 iris_sampler_view_destroy(struct pipe_context *ctx,
1847 struct pipe_sampler_view *state)
1848 {
1849 struct iris_sampler_view *isv = (void *) state;
1850 pipe_resource_reference(&state->texture, NULL);
1851 pipe_resource_reference(&isv->surface_state.res, NULL);
1852 free(isv);
1853 }
1854
1855 /**
1856 * The pipe->create_surface() driver hook.
1857 *
1858 * In Gallium nomenclature, "surfaces" are a view of a resource that
1859 * can be bound as a render target or depth/stencil buffer.
1860 */
1861 static struct pipe_surface *
1862 iris_create_surface(struct pipe_context *ctx,
1863 struct pipe_resource *tex,
1864 const struct pipe_surface *tmpl)
1865 {
1866 struct iris_context *ice = (struct iris_context *) ctx;
1867 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1868 const struct gen_device_info *devinfo = &screen->devinfo;
1869
1870 isl_surf_usage_flags_t usage = 0;
1871 if (tmpl->writable)
1872 usage = ISL_SURF_USAGE_STORAGE_BIT;
1873 else if (util_format_is_depth_or_stencil(tmpl->format))
1874 usage = ISL_SURF_USAGE_DEPTH_BIT;
1875 else
1876 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1877
1878 const struct iris_format_info fmt =
1879 iris_format_for_usage(devinfo, tmpl->format, usage);
1880
1881 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1882 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1883 /* Framebuffer validation will reject this invalid case, but it
1884 * hasn't had the opportunity yet. In the meantime, we need to
1885 * avoid hitting ISL asserts about unsupported formats below.
1886 */
1887 return NULL;
1888 }
1889
1890 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1891 struct pipe_surface *psurf = &surf->base;
1892 struct iris_resource *res = (struct iris_resource *) tex;
1893
1894 if (!surf)
1895 return NULL;
1896
1897 pipe_reference_init(&psurf->reference, 1);
1898 pipe_resource_reference(&psurf->texture, tex);
1899 psurf->context = ctx;
1900 psurf->format = tmpl->format;
1901 psurf->width = tex->width0;
1902 psurf->height = tex->height0;
1903 psurf->texture = tex;
1904 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1905 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1906 psurf->u.tex.level = tmpl->u.tex.level;
1907
1908 struct isl_view *view = &surf->view;
1909 *view = (struct isl_view) {
1910 .format = fmt.fmt,
1911 .base_level = tmpl->u.tex.level,
1912 .levels = 1,
1913 .base_array_layer = tmpl->u.tex.first_layer,
1914 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1915 .swizzle = ISL_SWIZZLE_IDENTITY,
1916 .usage = usage,
1917 };
1918
1919 surf->clear_color = res->aux.clear_color;
1920
1921 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1922 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1923 ISL_SURF_USAGE_STENCIL_BIT))
1924 return psurf;
1925
1926
1927 void *map = alloc_surface_states(ice->state.surface_uploader,
1928 &surf->surface_state,
1929 res->aux.possible_usages);
1930 if (!unlikely(map))
1931 return NULL;
1932
1933 if (!isl_format_is_compressed(res->surf.format)) {
1934 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
1935 * auxiliary surface mode and return the pipe_surface.
1936 */
1937 unsigned aux_modes = res->aux.possible_usages;
1938 while (aux_modes) {
1939 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1940
1941 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
1942
1943 map += SURFACE_STATE_ALIGNMENT;
1944 }
1945
1946 return psurf;
1947 }
1948
1949 /* The resource has a compressed format, which is not renderable, but we
1950 * have a renderable view format. We must be attempting to upload blocks
1951 * of compressed data via an uncompressed view.
1952 *
1953 * In this case, we can assume there are no auxiliary buffers, a single
1954 * miplevel, and that the resource is single-sampled. Gallium may try
1955 * and create an uncompressed view with multiple layers, however.
1956 */
1957 assert(!isl_format_is_compressed(fmt.fmt));
1958 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
1959 assert(res->surf.samples == 1);
1960 assert(view->levels == 1);
1961
1962 struct isl_surf isl_surf;
1963 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1964
1965 if (view->base_level > 0) {
1966 /* We can't rely on the hardware's miplevel selection with such
1967 * a substantial lie about the format, so we select a single image
1968 * using the Tile X/Y Offset fields. In this case, we can't handle
1969 * multiple array slices.
1970 *
1971 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
1972 * hard-coded to align to exactly the block size of the compressed
1973 * texture. This means that, when reinterpreted as a non-compressed
1974 * texture, the tile offsets may be anything and we can't rely on
1975 * X/Y Offset.
1976 *
1977 * Return NULL to force the state tracker to take fallback paths.
1978 */
1979 if (view->array_len > 1 || GEN_GEN == 8)
1980 return NULL;
1981
1982 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
1983 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
1984 view->base_level,
1985 is_3d ? 0 : view->base_array_layer,
1986 is_3d ? view->base_array_layer : 0,
1987 &isl_surf,
1988 &offset_B, &tile_x_sa, &tile_y_sa);
1989
1990 /* We use address and tile offsets to access a single level/layer
1991 * as a subimage, so reset level/layer so it doesn't offset again.
1992 */
1993 view->base_array_layer = 0;
1994 view->base_level = 0;
1995 } else {
1996 /* Level 0 doesn't require tile offsets, and the hardware can find
1997 * array slices using QPitch even with the format override, so we
1998 * can allow layers in this case. Copy the original ISL surface.
1999 */
2000 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2001 }
2002
2003 /* Scale down the image dimensions by the block size. */
2004 const struct isl_format_layout *fmtl =
2005 isl_format_get_layout(res->surf.format);
2006 isl_surf.format = fmt.fmt;
2007 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2008 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2009 tile_x_sa /= fmtl->bw;
2010 tile_y_sa /= fmtl->bh;
2011
2012 psurf->width = isl_surf.logical_level0_px.width;
2013 psurf->height = isl_surf.logical_level0_px.height;
2014
2015 struct isl_surf_fill_state_info f = {
2016 .surf = &isl_surf,
2017 .view = view,
2018 .mocs = mocs(res->bo),
2019 .address = res->bo->gtt_offset + offset_B,
2020 .x_offset_sa = tile_x_sa,
2021 .y_offset_sa = tile_y_sa,
2022 };
2023
2024 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
2025 return psurf;
2026 }
2027
2028 #if GEN_GEN < 9
2029 static void
2030 fill_default_image_param(struct brw_image_param *param)
2031 {
2032 memset(param, 0, sizeof(*param));
2033 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2034 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2035 * detailed explanation of these parameters.
2036 */
2037 param->swizzling[0] = 0xff;
2038 param->swizzling[1] = 0xff;
2039 }
2040
2041 static void
2042 fill_buffer_image_param(struct brw_image_param *param,
2043 enum pipe_format pfmt,
2044 unsigned size)
2045 {
2046 const unsigned cpp = util_format_get_blocksize(pfmt);
2047
2048 fill_default_image_param(param);
2049 param->size[0] = size / cpp;
2050 param->stride[0] = cpp;
2051 }
2052 #else
2053 #define isl_surf_fill_image_param(x, ...)
2054 #define fill_default_image_param(x, ...)
2055 #define fill_buffer_image_param(x, ...)
2056 #endif
2057
2058 /**
2059 * The pipe->set_shader_images() driver hook.
2060 */
2061 static void
2062 iris_set_shader_images(struct pipe_context *ctx,
2063 enum pipe_shader_type p_stage,
2064 unsigned start_slot, unsigned count,
2065 const struct pipe_image_view *p_images)
2066 {
2067 struct iris_context *ice = (struct iris_context *) ctx;
2068 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2069 const struct gen_device_info *devinfo = &screen->devinfo;
2070 gl_shader_stage stage = stage_from_pipe(p_stage);
2071 struct iris_shader_state *shs = &ice->state.shaders[stage];
2072 #if GEN_GEN == 8
2073 struct iris_genx_state *genx = ice->state.genx;
2074 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2075 #endif
2076
2077 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2078
2079 for (unsigned i = 0; i < count; i++) {
2080 struct iris_image_view *iv = &shs->image[start_slot + i];
2081
2082 if (p_images && p_images[i].resource) {
2083 const struct pipe_image_view *img = &p_images[i];
2084 struct iris_resource *res = (void *) img->resource;
2085
2086 void *map =
2087 alloc_surface_states(ice->state.surface_uploader,
2088 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2089 if (!unlikely(map))
2090 return;
2091
2092 util_copy_image_view(&iv->base, img);
2093
2094 shs->bound_image_views |= 1 << (start_slot + i);
2095
2096 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2097
2098 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2099 enum isl_format isl_fmt =
2100 iris_format_for_usage(devinfo, img->format, usage).fmt;
2101
2102 bool untyped_fallback = false;
2103
2104 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2105 /* On Gen8, try to use typed surfaces reads (which support a
2106 * limited number of formats), and if not possible, fall back
2107 * to untyped reads.
2108 */
2109 untyped_fallback = GEN_GEN == 8 &&
2110 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2111
2112 if (untyped_fallback)
2113 isl_fmt = ISL_FORMAT_RAW;
2114 else
2115 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2116 }
2117
2118 if (res->base.target != PIPE_BUFFER) {
2119 struct isl_view view = {
2120 .format = isl_fmt,
2121 .base_level = img->u.tex.level,
2122 .levels = 1,
2123 .base_array_layer = img->u.tex.first_layer,
2124 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2125 .swizzle = ISL_SWIZZLE_IDENTITY,
2126 .usage = usage,
2127 };
2128
2129 if (untyped_fallback) {
2130 fill_buffer_surface_state(&screen->isl_dev, res, map,
2131 isl_fmt, ISL_SWIZZLE_IDENTITY,
2132 0, res->bo->size);
2133 } else {
2134 /* Images don't support compression */
2135 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2136 while (aux_modes) {
2137 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2138
2139 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
2140
2141 map += SURFACE_STATE_ALIGNMENT;
2142 }
2143 }
2144
2145 isl_surf_fill_image_param(&screen->isl_dev,
2146 &image_params[start_slot + i],
2147 &res->surf, &view);
2148 } else {
2149 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2150 img->u.buf.offset + img->u.buf.size);
2151
2152 fill_buffer_surface_state(&screen->isl_dev, res, map,
2153 isl_fmt, ISL_SWIZZLE_IDENTITY,
2154 img->u.buf.offset, img->u.buf.size);
2155 fill_buffer_image_param(&image_params[start_slot + i],
2156 img->format, img->u.buf.size);
2157 }
2158 } else {
2159 pipe_resource_reference(&iv->base.resource, NULL);
2160 pipe_resource_reference(&iv->surface_state.res, NULL);
2161 fill_default_image_param(&image_params[start_slot + i]);
2162 }
2163 }
2164
2165 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2166 ice->state.dirty |=
2167 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2168 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2169
2170 /* Broadwell also needs brw_image_params re-uploaded */
2171 if (GEN_GEN < 9) {
2172 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2173 shs->sysvals_need_upload = true;
2174 }
2175 }
2176
2177
2178 /**
2179 * The pipe->set_sampler_views() driver hook.
2180 */
2181 static void
2182 iris_set_sampler_views(struct pipe_context *ctx,
2183 enum pipe_shader_type p_stage,
2184 unsigned start, unsigned count,
2185 struct pipe_sampler_view **views)
2186 {
2187 struct iris_context *ice = (struct iris_context *) ctx;
2188 gl_shader_stage stage = stage_from_pipe(p_stage);
2189 struct iris_shader_state *shs = &ice->state.shaders[stage];
2190
2191 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2192
2193 for (unsigned i = 0; i < count; i++) {
2194 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2195 pipe_sampler_view_reference((struct pipe_sampler_view **)
2196 &shs->textures[start + i], pview);
2197 struct iris_sampler_view *view = (void *) pview;
2198 if (view) {
2199 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2200 shs->bound_sampler_views |= 1 << (start + i);
2201 }
2202 }
2203
2204 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2205 ice->state.dirty |=
2206 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2207 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2208 }
2209
2210 /**
2211 * The pipe->set_tess_state() driver hook.
2212 */
2213 static void
2214 iris_set_tess_state(struct pipe_context *ctx,
2215 const float default_outer_level[4],
2216 const float default_inner_level[2])
2217 {
2218 struct iris_context *ice = (struct iris_context *) ctx;
2219 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2220
2221 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2222 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2223
2224 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2225 shs->sysvals_need_upload = true;
2226 }
2227
2228 static void
2229 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2230 {
2231 struct iris_surface *surf = (void *) p_surf;
2232 pipe_resource_reference(&p_surf->texture, NULL);
2233 pipe_resource_reference(&surf->surface_state.res, NULL);
2234 free(surf);
2235 }
2236
2237 static void
2238 iris_set_clip_state(struct pipe_context *ctx,
2239 const struct pipe_clip_state *state)
2240 {
2241 struct iris_context *ice = (struct iris_context *) ctx;
2242 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2243
2244 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2245
2246 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2247 shs->sysvals_need_upload = true;
2248 }
2249
2250 /**
2251 * The pipe->set_polygon_stipple() driver hook.
2252 */
2253 static void
2254 iris_set_polygon_stipple(struct pipe_context *ctx,
2255 const struct pipe_poly_stipple *state)
2256 {
2257 struct iris_context *ice = (struct iris_context *) ctx;
2258 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2259 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2260 }
2261
2262 /**
2263 * The pipe->set_sample_mask() driver hook.
2264 */
2265 static void
2266 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2267 {
2268 struct iris_context *ice = (struct iris_context *) ctx;
2269
2270 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2271 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2272 */
2273 ice->state.sample_mask = sample_mask & 0xffff;
2274 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2275 }
2276
2277 /**
2278 * The pipe->set_scissor_states() driver hook.
2279 *
2280 * This corresponds to our SCISSOR_RECT state structures. It's an
2281 * exact match, so we just store them, and memcpy them out later.
2282 */
2283 static void
2284 iris_set_scissor_states(struct pipe_context *ctx,
2285 unsigned start_slot,
2286 unsigned num_scissors,
2287 const struct pipe_scissor_state *rects)
2288 {
2289 struct iris_context *ice = (struct iris_context *) ctx;
2290
2291 for (unsigned i = 0; i < num_scissors; i++) {
2292 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2293 /* If the scissor was out of bounds and got clamped to 0 width/height
2294 * at the bounds, the subtraction of 1 from maximums could produce a
2295 * negative number and thus not clip anything. Instead, just provide
2296 * a min > max scissor inside the bounds, which produces the expected
2297 * no rendering.
2298 */
2299 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2300 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2301 };
2302 } else {
2303 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2304 .minx = rects[i].minx, .miny = rects[i].miny,
2305 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2306 };
2307 }
2308 }
2309
2310 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2311 }
2312
2313 /**
2314 * The pipe->set_stencil_ref() driver hook.
2315 *
2316 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2317 */
2318 static void
2319 iris_set_stencil_ref(struct pipe_context *ctx,
2320 const struct pipe_stencil_ref *state)
2321 {
2322 struct iris_context *ice = (struct iris_context *) ctx;
2323 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2324 if (GEN_GEN == 8)
2325 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2326 else
2327 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2328 }
2329
2330 static float
2331 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2332 {
2333 return copysignf(state->scale[axis], sign) + state->translate[axis];
2334 }
2335
2336 /**
2337 * The pipe->set_viewport_states() driver hook.
2338 *
2339 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2340 * the guardband yet, as we need the framebuffer dimensions, but we can
2341 * at least fill out the rest.
2342 */
2343 static void
2344 iris_set_viewport_states(struct pipe_context *ctx,
2345 unsigned start_slot,
2346 unsigned count,
2347 const struct pipe_viewport_state *states)
2348 {
2349 struct iris_context *ice = (struct iris_context *) ctx;
2350
2351 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2352
2353 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2354
2355 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2356 !ice->state.cso_rast->depth_clip_far))
2357 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2358 }
2359
2360 /**
2361 * The pipe->set_framebuffer_state() driver hook.
2362 *
2363 * Sets the current draw FBO, including color render targets, depth,
2364 * and stencil buffers.
2365 */
2366 static void
2367 iris_set_framebuffer_state(struct pipe_context *ctx,
2368 const struct pipe_framebuffer_state *state)
2369 {
2370 struct iris_context *ice = (struct iris_context *) ctx;
2371 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2372 struct isl_device *isl_dev = &screen->isl_dev;
2373 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2374 struct iris_resource *zres;
2375 struct iris_resource *stencil_res;
2376
2377 unsigned samples = util_framebuffer_get_num_samples(state);
2378 unsigned layers = util_framebuffer_get_num_layers(state);
2379
2380 if (cso->samples != samples) {
2381 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2382 }
2383
2384 if (cso->nr_cbufs != state->nr_cbufs) {
2385 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2386 }
2387
2388 if ((cso->layers == 0) != (layers == 0)) {
2389 ice->state.dirty |= IRIS_DIRTY_CLIP;
2390 }
2391
2392 if (cso->width != state->width || cso->height != state->height) {
2393 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2394 }
2395
2396 util_copy_framebuffer_state(cso, state);
2397 cso->samples = samples;
2398 cso->layers = layers;
2399
2400 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2401
2402 struct isl_view view = {
2403 .base_level = 0,
2404 .levels = 1,
2405 .base_array_layer = 0,
2406 .array_len = 1,
2407 .swizzle = ISL_SWIZZLE_IDENTITY,
2408 };
2409
2410 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2411
2412 if (cso->zsbuf) {
2413 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2414 &stencil_res);
2415
2416 view.base_level = cso->zsbuf->u.tex.level;
2417 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2418 view.array_len =
2419 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2420
2421 if (zres) {
2422 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2423
2424 info.depth_surf = &zres->surf;
2425 info.depth_address = zres->bo->gtt_offset + zres->offset;
2426 info.mocs = mocs(zres->bo);
2427
2428 view.format = zres->surf.format;
2429
2430 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2431 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2432 info.hiz_surf = &zres->aux.surf;
2433 info.hiz_address = zres->aux.bo->gtt_offset;
2434 }
2435 }
2436
2437 if (stencil_res) {
2438 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2439 info.stencil_surf = &stencil_res->surf;
2440 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2441 if (!zres) {
2442 view.format = stencil_res->surf.format;
2443 info.mocs = mocs(stencil_res->bo);
2444 }
2445 }
2446 }
2447
2448 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2449
2450 /* Make a null surface for unbound buffers */
2451 void *null_surf_map =
2452 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2453 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2454 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2455 isl_extent3d(MAX2(cso->width, 1),
2456 MAX2(cso->height, 1),
2457 cso->layers ? cso->layers : 1));
2458 ice->state.null_fb.offset +=
2459 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2460
2461 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2462
2463 /* Render target change */
2464 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2465
2466 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2467
2468 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2469
2470 #if GEN_GEN == 11
2471 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2472 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2473
2474 /* The PIPE_CONTROL command description says:
2475 *
2476 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2477 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2478 * Target Cache Flush by enabling this bit. When render target flush
2479 * is set due to new association of BTI, PS Scoreboard Stall bit must
2480 * be set in this packet."
2481 */
2482 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2483 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2484 "workaround: RT BTI change [draw]",
2485 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2486 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2487 #endif
2488 }
2489
2490 /**
2491 * The pipe->set_constant_buffer() driver hook.
2492 *
2493 * This uploads any constant data in user buffers, and references
2494 * any UBO resources containing constant data.
2495 */
2496 static void
2497 iris_set_constant_buffer(struct pipe_context *ctx,
2498 enum pipe_shader_type p_stage, unsigned index,
2499 const struct pipe_constant_buffer *input)
2500 {
2501 struct iris_context *ice = (struct iris_context *) ctx;
2502 gl_shader_stage stage = stage_from_pipe(p_stage);
2503 struct iris_shader_state *shs = &ice->state.shaders[stage];
2504 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2505
2506 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
2507 shs->bound_cbufs |= 1u << index;
2508
2509 if (input->user_buffer) {
2510 void *map = NULL;
2511 pipe_resource_reference(&cbuf->buffer, NULL);
2512 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
2513 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2514
2515 if (!cbuf->buffer) {
2516 /* Allocation was unsuccessful - just unbind */
2517 iris_set_constant_buffer(ctx, p_stage, index, NULL);
2518 return;
2519 }
2520
2521 assert(map);
2522 memcpy(map, input->user_buffer, input->buffer_size);
2523 } else if (input->buffer) {
2524 pipe_resource_reference(&cbuf->buffer, input->buffer);
2525
2526 cbuf->buffer_offset = input->buffer_offset;
2527 cbuf->buffer_size =
2528 MIN2(input->buffer_size,
2529 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
2530 }
2531
2532 struct iris_resource *res = (void *) cbuf->buffer;
2533 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2534
2535 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2536 &shs->constbuf_surf_state[index],
2537 false);
2538 } else {
2539 shs->bound_cbufs &= ~(1u << index);
2540 pipe_resource_reference(&cbuf->buffer, NULL);
2541 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2542 }
2543
2544 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2545 // XXX: maybe not necessary all the time...?
2546 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2547 // XXX: pull model we may need actual new bindings...
2548 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2549 }
2550
2551 static void
2552 upload_sysvals(struct iris_context *ice,
2553 gl_shader_stage stage)
2554 {
2555 UNUSED struct iris_genx_state *genx = ice->state.genx;
2556 struct iris_shader_state *shs = &ice->state.shaders[stage];
2557
2558 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2559 if (!shader || shader->num_system_values == 0)
2560 return;
2561
2562 assert(shader->num_cbufs > 0);
2563
2564 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
2565 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
2566 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
2567 uint32_t *map = NULL;
2568
2569 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
2570 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2571 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2572
2573 for (int i = 0; i < shader->num_system_values; i++) {
2574 uint32_t sysval = shader->system_values[i];
2575 uint32_t value = 0;
2576
2577 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2578 #if GEN_GEN == 8
2579 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2580 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2581 struct brw_image_param *param =
2582 &genx->shaders[stage].image_param[img];
2583
2584 assert(offset < sizeof(struct brw_image_param));
2585 value = ((uint32_t *) param)[offset];
2586 #endif
2587 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2588 value = 0;
2589 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2590 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2591 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2592 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2593 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2594 if (stage == MESA_SHADER_TESS_CTRL) {
2595 value = ice->state.vertices_per_patch;
2596 } else {
2597 assert(stage == MESA_SHADER_TESS_EVAL);
2598 const struct shader_info *tcs_info =
2599 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2600 if (tcs_info)
2601 value = tcs_info->tess.tcs_vertices_out;
2602 else
2603 value = ice->state.vertices_per_patch;
2604 }
2605 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2606 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2607 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2608 value = fui(ice->state.default_outer_level[i]);
2609 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2610 value = fui(ice->state.default_inner_level[0]);
2611 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2612 value = fui(ice->state.default_inner_level[1]);
2613 } else {
2614 assert(!"unhandled system value");
2615 }
2616
2617 *map++ = value;
2618 }
2619
2620 cbuf->buffer_size = upload_size;
2621 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2622 &shs->constbuf_surf_state[sysval_cbuf_index], false);
2623
2624 shs->sysvals_need_upload = false;
2625 }
2626
2627 /**
2628 * The pipe->set_shader_buffers() driver hook.
2629 *
2630 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2631 * SURFACE_STATE here, as the buffer offset may change each time.
2632 */
2633 static void
2634 iris_set_shader_buffers(struct pipe_context *ctx,
2635 enum pipe_shader_type p_stage,
2636 unsigned start_slot, unsigned count,
2637 const struct pipe_shader_buffer *buffers,
2638 unsigned writable_bitmask)
2639 {
2640 struct iris_context *ice = (struct iris_context *) ctx;
2641 gl_shader_stage stage = stage_from_pipe(p_stage);
2642 struct iris_shader_state *shs = &ice->state.shaders[stage];
2643
2644 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2645
2646 shs->bound_ssbos &= ~modified_bits;
2647 shs->writable_ssbos &= ~modified_bits;
2648 shs->writable_ssbos |= writable_bitmask << start_slot;
2649
2650 for (unsigned i = 0; i < count; i++) {
2651 if (buffers && buffers[i].buffer) {
2652 struct iris_resource *res = (void *) buffers[i].buffer;
2653 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2654 struct iris_state_ref *surf_state =
2655 &shs->ssbo_surf_state[start_slot + i];
2656 pipe_resource_reference(&ssbo->buffer, &res->base);
2657 ssbo->buffer_offset = buffers[i].buffer_offset;
2658 ssbo->buffer_size =
2659 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2660
2661 shs->bound_ssbos |= 1 << (start_slot + i);
2662
2663 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2664
2665 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2666
2667 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2668 ssbo->buffer_offset + ssbo->buffer_size);
2669 } else {
2670 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2671 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2672 NULL);
2673 }
2674 }
2675
2676 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2677 }
2678
2679 static void
2680 iris_delete_state(struct pipe_context *ctx, void *state)
2681 {
2682 free(state);
2683 }
2684
2685 /**
2686 * The pipe->set_vertex_buffers() driver hook.
2687 *
2688 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2689 */
2690 static void
2691 iris_set_vertex_buffers(struct pipe_context *ctx,
2692 unsigned start_slot, unsigned count,
2693 const struct pipe_vertex_buffer *buffers)
2694 {
2695 struct iris_context *ice = (struct iris_context *) ctx;
2696 struct iris_genx_state *genx = ice->state.genx;
2697
2698 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2699
2700 for (unsigned i = 0; i < count; i++) {
2701 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2702 struct iris_vertex_buffer_state *state =
2703 &genx->vertex_buffers[start_slot + i];
2704
2705 if (!buffer) {
2706 pipe_resource_reference(&state->resource, NULL);
2707 continue;
2708 }
2709
2710 /* We may see user buffers that are NULL bindings. */
2711 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2712
2713 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2714 struct iris_resource *res = (void *) state->resource;
2715
2716 if (res) {
2717 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2718 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2719 }
2720
2721 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2722 vb.VertexBufferIndex = start_slot + i;
2723 vb.AddressModifyEnable = true;
2724 vb.BufferPitch = buffer->stride;
2725 if (res) {
2726 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2727 vb.BufferStartingAddress =
2728 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2729 vb.MOCS = mocs(res->bo);
2730 } else {
2731 vb.NullVertexBuffer = true;
2732 }
2733 }
2734 }
2735
2736 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2737 }
2738
2739 /**
2740 * Gallium CSO for vertex elements.
2741 */
2742 struct iris_vertex_element_state {
2743 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2744 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2745 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2746 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2747 unsigned count;
2748 };
2749
2750 /**
2751 * The pipe->create_vertex_elements() driver hook.
2752 *
2753 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2754 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2755 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2756 * needed. In these cases we will need information available at draw time.
2757 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2758 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2759 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2760 */
2761 static void *
2762 iris_create_vertex_elements(struct pipe_context *ctx,
2763 unsigned count,
2764 const struct pipe_vertex_element *state)
2765 {
2766 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2767 const struct gen_device_info *devinfo = &screen->devinfo;
2768 struct iris_vertex_element_state *cso =
2769 malloc(sizeof(struct iris_vertex_element_state));
2770
2771 cso->count = count;
2772
2773 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2774 ve.DWordLength =
2775 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2776 }
2777
2778 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2779 uint32_t *vfi_pack_dest = cso->vf_instancing;
2780
2781 if (count == 0) {
2782 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2783 ve.Valid = true;
2784 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2785 ve.Component0Control = VFCOMP_STORE_0;
2786 ve.Component1Control = VFCOMP_STORE_0;
2787 ve.Component2Control = VFCOMP_STORE_0;
2788 ve.Component3Control = VFCOMP_STORE_1_FP;
2789 }
2790
2791 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2792 }
2793 }
2794
2795 for (int i = 0; i < count; i++) {
2796 const struct iris_format_info fmt =
2797 iris_format_for_usage(devinfo, state[i].src_format, 0);
2798 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2799 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2800
2801 switch (isl_format_get_num_channels(fmt.fmt)) {
2802 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
2803 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
2804 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
2805 case 3:
2806 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2807 : VFCOMP_STORE_1_FP;
2808 break;
2809 }
2810 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2811 ve.EdgeFlagEnable = false;
2812 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2813 ve.Valid = true;
2814 ve.SourceElementOffset = state[i].src_offset;
2815 ve.SourceElementFormat = fmt.fmt;
2816 ve.Component0Control = comp[0];
2817 ve.Component1Control = comp[1];
2818 ve.Component2Control = comp[2];
2819 ve.Component3Control = comp[3];
2820 }
2821
2822 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2823 vi.VertexElementIndex = i;
2824 vi.InstancingEnable = state[i].instance_divisor > 0;
2825 vi.InstanceDataStepRate = state[i].instance_divisor;
2826 }
2827
2828 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2829 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2830 }
2831
2832 /* An alternative version of the last VE and VFI is stored so it
2833 * can be used at draw time in case Vertex Shader uses EdgeFlag
2834 */
2835 if (count) {
2836 const unsigned edgeflag_index = count - 1;
2837 const struct iris_format_info fmt =
2838 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2839 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2840 ve.EdgeFlagEnable = true ;
2841 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2842 ve.Valid = true;
2843 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2844 ve.SourceElementFormat = fmt.fmt;
2845 ve.Component0Control = VFCOMP_STORE_SRC;
2846 ve.Component1Control = VFCOMP_STORE_0;
2847 ve.Component2Control = VFCOMP_STORE_0;
2848 ve.Component3Control = VFCOMP_STORE_0;
2849 }
2850 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2851 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2852 * at draw time, as it should change if SGVs are emitted.
2853 */
2854 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2855 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2856 }
2857 }
2858
2859 return cso;
2860 }
2861
2862 /**
2863 * The pipe->bind_vertex_elements_state() driver hook.
2864 */
2865 static void
2866 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2867 {
2868 struct iris_context *ice = (struct iris_context *) ctx;
2869 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2870 struct iris_vertex_element_state *new_cso = state;
2871
2872 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2873 * we need to re-emit it to ensure we're overriding the right one.
2874 */
2875 if (new_cso && cso_changed(count))
2876 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2877
2878 ice->state.cso_vertex_elements = state;
2879 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2880 }
2881
2882 /**
2883 * The pipe->create_stream_output_target() driver hook.
2884 *
2885 * "Target" here refers to a destination buffer. We translate this into
2886 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2887 * know which buffer this represents, or whether we ought to zero the
2888 * write-offsets, or append. Those are handled in the set() hook.
2889 */
2890 static struct pipe_stream_output_target *
2891 iris_create_stream_output_target(struct pipe_context *ctx,
2892 struct pipe_resource *p_res,
2893 unsigned buffer_offset,
2894 unsigned buffer_size)
2895 {
2896 struct iris_resource *res = (void *) p_res;
2897 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2898 if (!cso)
2899 return NULL;
2900
2901 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2902
2903 pipe_reference_init(&cso->base.reference, 1);
2904 pipe_resource_reference(&cso->base.buffer, p_res);
2905 cso->base.buffer_offset = buffer_offset;
2906 cso->base.buffer_size = buffer_size;
2907 cso->base.context = ctx;
2908
2909 util_range_add(&res->valid_buffer_range, buffer_offset,
2910 buffer_offset + buffer_size);
2911
2912 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2913
2914 return &cso->base;
2915 }
2916
2917 static void
2918 iris_stream_output_target_destroy(struct pipe_context *ctx,
2919 struct pipe_stream_output_target *state)
2920 {
2921 struct iris_stream_output_target *cso = (void *) state;
2922
2923 pipe_resource_reference(&cso->base.buffer, NULL);
2924 pipe_resource_reference(&cso->offset.res, NULL);
2925
2926 free(cso);
2927 }
2928
2929 /**
2930 * The pipe->set_stream_output_targets() driver hook.
2931 *
2932 * At this point, we know which targets are bound to a particular index,
2933 * and also whether we want to append or start over. We can finish the
2934 * 3DSTATE_SO_BUFFER packets we started earlier.
2935 */
2936 static void
2937 iris_set_stream_output_targets(struct pipe_context *ctx,
2938 unsigned num_targets,
2939 struct pipe_stream_output_target **targets,
2940 const unsigned *offsets)
2941 {
2942 struct iris_context *ice = (struct iris_context *) ctx;
2943 struct iris_genx_state *genx = ice->state.genx;
2944 uint32_t *so_buffers = genx->so_buffers;
2945
2946 const bool active = num_targets > 0;
2947 if (ice->state.streamout_active != active) {
2948 ice->state.streamout_active = active;
2949 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2950
2951 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2952 * it's a non-pipelined command. If we're switching streamout on, we
2953 * may have missed emitting it earlier, so do so now. (We're already
2954 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2955 */
2956 if (active) {
2957 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2958 } else {
2959 uint32_t flush = 0;
2960 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
2961 struct iris_stream_output_target *tgt =
2962 (void *) ice->state.so_target[i];
2963 if (tgt) {
2964 struct iris_resource *res = (void *) tgt->base.buffer;
2965
2966 flush |= iris_flush_bits_for_history(res);
2967 iris_dirty_for_history(ice, res);
2968 }
2969 }
2970 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2971 "make streamout results visible", flush);
2972 }
2973 }
2974
2975 for (int i = 0; i < 4; i++) {
2976 pipe_so_target_reference(&ice->state.so_target[i],
2977 i < num_targets ? targets[i] : NULL);
2978 }
2979
2980 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2981 if (!active)
2982 return;
2983
2984 for (unsigned i = 0; i < 4; i++,
2985 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2986
2987 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
2988 unsigned offset = offsets[i];
2989
2990 if (!tgt) {
2991 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2992 sob.SOBufferIndex = i;
2993 continue;
2994 }
2995
2996 struct iris_resource *res = (void *) tgt->base.buffer;
2997
2998 /* Note that offsets[i] will either be 0, causing us to zero
2999 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3000 * "continue appending at the existing offset."
3001 */
3002 assert(offset == 0 || offset == 0xFFFFFFFF);
3003
3004 /* We might be called by Begin (offset = 0), Pause, then Resume
3005 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3006 * will actually be sent to the GPU). In this case, we don't want
3007 * to append - we still want to do our initial zeroing.
3008 */
3009 if (!tgt->zeroed)
3010 offset = 0;
3011
3012 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3013 sob.SurfaceBaseAddress =
3014 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3015 sob.SOBufferEnable = true;
3016 sob.StreamOffsetWriteEnable = true;
3017 sob.StreamOutputBufferOffsetAddressEnable = true;
3018 sob.MOCS = mocs(res->bo);
3019
3020 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3021
3022 sob.SOBufferIndex = i;
3023 sob.StreamOffset = offset;
3024 sob.StreamOutputBufferOffsetAddress =
3025 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3026 tgt->offset.offset);
3027 }
3028 }
3029
3030 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3031 }
3032
3033 /**
3034 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3035 * 3DSTATE_STREAMOUT packets.
3036 *
3037 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3038 * hardware to record. We can create it entirely based on the shader, with
3039 * no dynamic state dependencies.
3040 *
3041 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3042 * state-based settings. We capture the shader-related ones here, and merge
3043 * the rest in at draw time.
3044 */
3045 static uint32_t *
3046 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3047 const struct brw_vue_map *vue_map)
3048 {
3049 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3050 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3051 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3052 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3053 int max_decls = 0;
3054 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3055
3056 memset(so_decl, 0, sizeof(so_decl));
3057
3058 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3059 * command feels strange -- each dword pair contains a SO_DECL per stream.
3060 */
3061 for (unsigned i = 0; i < info->num_outputs; i++) {
3062 const struct pipe_stream_output *output = &info->output[i];
3063 const int buffer = output->output_buffer;
3064 const int varying = output->register_index;
3065 const unsigned stream_id = output->stream;
3066 assert(stream_id < MAX_VERTEX_STREAMS);
3067
3068 buffer_mask[stream_id] |= 1 << buffer;
3069
3070 assert(vue_map->varying_to_slot[varying] >= 0);
3071
3072 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3073 * array. Instead, it simply increments DstOffset for the following
3074 * input by the number of components that should be skipped.
3075 *
3076 * Our hardware is unusual in that it requires us to program SO_DECLs
3077 * for fake "hole" components, rather than simply taking the offset
3078 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3079 * program as many size = 4 holes as we can, then a final hole to
3080 * accommodate the final 1, 2, or 3 remaining.
3081 */
3082 int skip_components = output->dst_offset - next_offset[buffer];
3083
3084 while (skip_components > 0) {
3085 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3086 .HoleFlag = 1,
3087 .OutputBufferSlot = output->output_buffer,
3088 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3089 };
3090 skip_components -= 4;
3091 }
3092
3093 next_offset[buffer] = output->dst_offset + output->num_components;
3094
3095 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3096 .OutputBufferSlot = output->output_buffer,
3097 .RegisterIndex = vue_map->varying_to_slot[varying],
3098 .ComponentMask =
3099 ((1 << output->num_components) - 1) << output->start_component,
3100 };
3101
3102 if (decls[stream_id] > max_decls)
3103 max_decls = decls[stream_id];
3104 }
3105
3106 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3107 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3108 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3109
3110 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3111 int urb_entry_read_offset = 0;
3112 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3113 urb_entry_read_offset;
3114
3115 /* We always read the whole vertex. This could be reduced at some
3116 * point by reading less and offsetting the register index in the
3117 * SO_DECLs.
3118 */
3119 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3120 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3121 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3122 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3123 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3124 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3125 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3126 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3127
3128 /* Set buffer pitches; 0 means unbound. */
3129 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3130 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3131 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3132 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3133 }
3134
3135 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3136 list.DWordLength = 3 + 2 * max_decls - 2;
3137 list.StreamtoBufferSelects0 = buffer_mask[0];
3138 list.StreamtoBufferSelects1 = buffer_mask[1];
3139 list.StreamtoBufferSelects2 = buffer_mask[2];
3140 list.StreamtoBufferSelects3 = buffer_mask[3];
3141 list.NumEntries0 = decls[0];
3142 list.NumEntries1 = decls[1];
3143 list.NumEntries2 = decls[2];
3144 list.NumEntries3 = decls[3];
3145 }
3146
3147 for (int i = 0; i < max_decls; i++) {
3148 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3149 entry.Stream0Decl = so_decl[0][i];
3150 entry.Stream1Decl = so_decl[1][i];
3151 entry.Stream2Decl = so_decl[2][i];
3152 entry.Stream3Decl = so_decl[3][i];
3153 }
3154 }
3155
3156 return map;
3157 }
3158
3159 static void
3160 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3161 const struct brw_vue_map *last_vue_map,
3162 bool two_sided_color,
3163 unsigned *out_offset,
3164 unsigned *out_length)
3165 {
3166 /* The compiler computes the first URB slot without considering COL/BFC
3167 * swizzling (because it doesn't know whether it's enabled), so we need
3168 * to do that here too. This may result in a smaller offset, which
3169 * should be safe.
3170 */
3171 const unsigned first_slot =
3172 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3173
3174 /* This becomes the URB read offset (counted in pairs of slots). */
3175 assert(first_slot % 2 == 0);
3176 *out_offset = first_slot / 2;
3177
3178 /* We need to adjust the inputs read to account for front/back color
3179 * swizzling, as it can make the URB length longer.
3180 */
3181 for (int c = 0; c <= 1; c++) {
3182 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3183 /* If two sided color is enabled, the fragment shader's gl_Color
3184 * (COL0) input comes from either the gl_FrontColor (COL0) or
3185 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3186 */
3187 if (two_sided_color)
3188 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3189
3190 /* If front color isn't written, we opt to give them back color
3191 * instead of an undefined value. Switch from COL to BFC.
3192 */
3193 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3194 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3195 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3196 }
3197 }
3198 }
3199
3200 /* Compute the minimum URB Read Length necessary for the FS inputs.
3201 *
3202 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3203 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3204 *
3205 * "This field should be set to the minimum length required to read the
3206 * maximum source attribute. The maximum source attribute is indicated
3207 * by the maximum value of the enabled Attribute # Source Attribute if
3208 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3209 * enable is not set.
3210 * read_length = ceiling((max_source_attr + 1) / 2)
3211 *
3212 * [errata] Corruption/Hang possible if length programmed larger than
3213 * recommended"
3214 *
3215 * Similar text exists for Ivy Bridge.
3216 *
3217 * We find the last URB slot that's actually read by the FS.
3218 */
3219 unsigned last_read_slot = last_vue_map->num_slots - 1;
3220 while (last_read_slot > first_slot && !(fs_input_slots &
3221 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3222 --last_read_slot;
3223
3224 /* The URB read length is the difference of the two, counted in pairs. */
3225 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3226 }
3227
3228 static void
3229 iris_emit_sbe_swiz(struct iris_batch *batch,
3230 const struct iris_context *ice,
3231 unsigned urb_read_offset,
3232 unsigned sprite_coord_enables)
3233 {
3234 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3235 const struct brw_wm_prog_data *wm_prog_data = (void *)
3236 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3237 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3238 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3239
3240 /* XXX: this should be generated when putting programs in place */
3241
3242 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3243 const int input_index = wm_prog_data->urb_setup[fs_attr];
3244 if (input_index < 0 || input_index >= 16)
3245 continue;
3246
3247 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3248 &attr_overrides[input_index];
3249 int slot = vue_map->varying_to_slot[fs_attr];
3250
3251 /* Viewport and Layer are stored in the VUE header. We need to override
3252 * them to zero if earlier stages didn't write them, as GL requires that
3253 * they read back as zero when not explicitly set.
3254 */
3255 switch (fs_attr) {
3256 case VARYING_SLOT_VIEWPORT:
3257 case VARYING_SLOT_LAYER:
3258 attr->ComponentOverrideX = true;
3259 attr->ComponentOverrideW = true;
3260 attr->ConstantSource = CONST_0000;
3261
3262 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3263 attr->ComponentOverrideY = true;
3264 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3265 attr->ComponentOverrideZ = true;
3266 continue;
3267
3268 case VARYING_SLOT_PRIMITIVE_ID:
3269 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3270 if (slot == -1) {
3271 attr->ComponentOverrideX = true;
3272 attr->ComponentOverrideY = true;
3273 attr->ComponentOverrideZ = true;
3274 attr->ComponentOverrideW = true;
3275 attr->ConstantSource = PRIM_ID;
3276 continue;
3277 }
3278
3279 default:
3280 break;
3281 }
3282
3283 if (sprite_coord_enables & (1 << input_index))
3284 continue;
3285
3286 /* If there was only a back color written but not front, use back
3287 * as the color instead of undefined.
3288 */
3289 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3290 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3291 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3292 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3293
3294 /* Not written by the previous stage - undefined. */
3295 if (slot == -1) {
3296 attr->ComponentOverrideX = true;
3297 attr->ComponentOverrideY = true;
3298 attr->ComponentOverrideZ = true;
3299 attr->ComponentOverrideW = true;
3300 attr->ConstantSource = CONST_0001_FLOAT;
3301 continue;
3302 }
3303
3304 /* Compute the location of the attribute relative to the read offset,
3305 * which is counted in 256-bit increments (two 128-bit VUE slots).
3306 */
3307 const int source_attr = slot - 2 * urb_read_offset;
3308 assert(source_attr >= 0 && source_attr <= 32);
3309 attr->SourceAttribute = source_attr;
3310
3311 /* If we are doing two-sided color, and the VUE slot following this one
3312 * represents a back-facing color, then we need to instruct the SF unit
3313 * to do back-facing swizzling.
3314 */
3315 if (cso_rast->light_twoside &&
3316 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3317 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3318 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3319 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3320 attr->SwizzleSelect = INPUTATTR_FACING;
3321 }
3322
3323 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3324 for (int i = 0; i < 16; i++)
3325 sbes.Attribute[i] = attr_overrides[i];
3326 }
3327 }
3328
3329 static unsigned
3330 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3331 const struct iris_rasterizer_state *cso)
3332 {
3333 unsigned overrides = 0;
3334
3335 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3336 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3337
3338 for (int i = 0; i < 8; i++) {
3339 if ((cso->sprite_coord_enable & (1 << i)) &&
3340 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3341 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3342 }
3343
3344 return overrides;
3345 }
3346
3347 static void
3348 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3349 {
3350 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3351 const struct brw_wm_prog_data *wm_prog_data = (void *)
3352 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3353 const struct shader_info *fs_info =
3354 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3355
3356 unsigned urb_read_offset, urb_read_length;
3357 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3358 ice->shaders.last_vue_map,
3359 cso_rast->light_twoside,
3360 &urb_read_offset, &urb_read_length);
3361
3362 unsigned sprite_coord_overrides =
3363 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3364
3365 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3366 sbe.AttributeSwizzleEnable = true;
3367 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3368 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3369 sbe.VertexURBEntryReadOffset = urb_read_offset;
3370 sbe.VertexURBEntryReadLength = urb_read_length;
3371 sbe.ForceVertexURBEntryReadOffset = true;
3372 sbe.ForceVertexURBEntryReadLength = true;
3373 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3374 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3375 #if GEN_GEN >= 9
3376 for (int i = 0; i < 32; i++) {
3377 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3378 }
3379 #endif
3380 }
3381
3382 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3383 }
3384
3385 /* ------------------------------------------------------------------- */
3386
3387 /**
3388 * Populate VS program key fields based on the current state.
3389 */
3390 static void
3391 iris_populate_vs_key(const struct iris_context *ice,
3392 const struct shader_info *info,
3393 struct brw_vs_prog_key *key)
3394 {
3395 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3396
3397 if (info->clip_distance_array_size == 0 &&
3398 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3399 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3400 }
3401
3402 /**
3403 * Populate TCS program key fields based on the current state.
3404 */
3405 static void
3406 iris_populate_tcs_key(const struct iris_context *ice,
3407 struct brw_tcs_prog_key *key)
3408 {
3409 }
3410
3411 /**
3412 * Populate TES program key fields based on the current state.
3413 */
3414 static void
3415 iris_populate_tes_key(const struct iris_context *ice,
3416 struct brw_tes_prog_key *key)
3417 {
3418 }
3419
3420 /**
3421 * Populate GS program key fields based on the current state.
3422 */
3423 static void
3424 iris_populate_gs_key(const struct iris_context *ice,
3425 struct brw_gs_prog_key *key)
3426 {
3427 }
3428
3429 /**
3430 * Populate FS program key fields based on the current state.
3431 */
3432 static void
3433 iris_populate_fs_key(const struct iris_context *ice,
3434 struct brw_wm_prog_key *key)
3435 {
3436 struct iris_screen *screen = (void *) ice->ctx.screen;
3437 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3438 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3439 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3440 const struct iris_blend_state *blend = ice->state.cso_blend;
3441
3442 key->nr_color_regions = fb->nr_cbufs;
3443
3444 key->clamp_fragment_color = rast->clamp_fragment_color;
3445
3446 key->alpha_to_coverage = blend->alpha_to_coverage;
3447
3448 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3449
3450 /* XXX: only bother if COL0/1 are read */
3451 key->flat_shade = rast->flatshade;
3452
3453 key->persample_interp = rast->force_persample_interp;
3454 key->multisample_fbo = rast->multisample && fb->samples > 1;
3455
3456 key->coherent_fb_fetch = true;
3457
3458 key->force_dual_color_blend =
3459 screen->driconf.dual_color_blend_by_location &&
3460 (blend->blend_enables & 1) && blend->dual_color_blending;
3461
3462 /* TODO: support key->force_dual_color_blend for Unigine */
3463 /* TODO: Respect glHint for key->high_quality_derivatives */
3464 }
3465
3466 static void
3467 iris_populate_cs_key(const struct iris_context *ice,
3468 struct brw_cs_prog_key *key)
3469 {
3470 }
3471
3472 static uint64_t
3473 KSP(const struct iris_compiled_shader *shader)
3474 {
3475 struct iris_resource *res = (void *) shader->assembly.res;
3476 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3477 }
3478
3479 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3480 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3481 * this WA on C0 stepping.
3482 *
3483 * TODO: Fill out SamplerCount for prefetching?
3484 */
3485
3486 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3487 pkt.KernelStartPointer = KSP(shader); \
3488 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3489 shader->bt.size_bytes / 4; \
3490 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3491 \
3492 pkt.DispatchGRFStartRegisterForURBData = \
3493 prog_data->dispatch_grf_start_reg; \
3494 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3495 pkt.prefix##URBEntryReadOffset = 0; \
3496 \
3497 pkt.StatisticsEnable = true; \
3498 pkt.Enable = true; \
3499 \
3500 if (prog_data->total_scratch) { \
3501 struct iris_bo *bo = \
3502 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3503 uint32_t scratch_addr = bo->gtt_offset; \
3504 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3505 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3506 }
3507
3508 /**
3509 * Encode most of 3DSTATE_VS based on the compiled shader.
3510 */
3511 static void
3512 iris_store_vs_state(struct iris_context *ice,
3513 const struct gen_device_info *devinfo,
3514 struct iris_compiled_shader *shader)
3515 {
3516 struct brw_stage_prog_data *prog_data = shader->prog_data;
3517 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3518
3519 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3520 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3521 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3522 vs.SIMD8DispatchEnable = true;
3523 vs.UserClipDistanceCullTestEnableBitmask =
3524 vue_prog_data->cull_distance_mask;
3525 }
3526 }
3527
3528 /**
3529 * Encode most of 3DSTATE_HS based on the compiled shader.
3530 */
3531 static void
3532 iris_store_tcs_state(struct iris_context *ice,
3533 const struct gen_device_info *devinfo,
3534 struct iris_compiled_shader *shader)
3535 {
3536 struct brw_stage_prog_data *prog_data = shader->prog_data;
3537 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3538 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3539
3540 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3541 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3542
3543 hs.InstanceCount = tcs_prog_data->instances - 1;
3544 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3545 hs.IncludeVertexHandles = true;
3546
3547 #if GEN_GEN >= 9
3548 hs.DispatchMode = vue_prog_data->dispatch_mode;
3549 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3550 #endif
3551 }
3552 }
3553
3554 /**
3555 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3556 */
3557 static void
3558 iris_store_tes_state(struct iris_context *ice,
3559 const struct gen_device_info *devinfo,
3560 struct iris_compiled_shader *shader)
3561 {
3562 struct brw_stage_prog_data *prog_data = shader->prog_data;
3563 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3564 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3565
3566 uint32_t *te_state = (void *) shader->derived_data;
3567 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3568
3569 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3570 te.Partitioning = tes_prog_data->partitioning;
3571 te.OutputTopology = tes_prog_data->output_topology;
3572 te.TEDomain = tes_prog_data->domain;
3573 te.TEEnable = true;
3574 te.MaximumTessellationFactorOdd = 63.0;
3575 te.MaximumTessellationFactorNotOdd = 64.0;
3576 }
3577
3578 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3579 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3580
3581 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3582 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3583 ds.ComputeWCoordinateEnable =
3584 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3585
3586 ds.UserClipDistanceCullTestEnableBitmask =
3587 vue_prog_data->cull_distance_mask;
3588 }
3589
3590 }
3591
3592 /**
3593 * Encode most of 3DSTATE_GS based on the compiled shader.
3594 */
3595 static void
3596 iris_store_gs_state(struct iris_context *ice,
3597 const struct gen_device_info *devinfo,
3598 struct iris_compiled_shader *shader)
3599 {
3600 struct brw_stage_prog_data *prog_data = shader->prog_data;
3601 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3602 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3603
3604 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3605 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3606
3607 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3608 gs.OutputTopology = gs_prog_data->output_topology;
3609 gs.ControlDataHeaderSize =
3610 gs_prog_data->control_data_header_size_hwords;
3611 gs.InstanceControl = gs_prog_data->invocations - 1;
3612 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3613 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3614 gs.ControlDataFormat = gs_prog_data->control_data_format;
3615 gs.ReorderMode = TRAILING;
3616 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3617 gs.MaximumNumberofThreads =
3618 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3619 : (devinfo->max_gs_threads - 1);
3620
3621 if (gs_prog_data->static_vertex_count != -1) {
3622 gs.StaticOutput = true;
3623 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3624 }
3625 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3626
3627 gs.UserClipDistanceCullTestEnableBitmask =
3628 vue_prog_data->cull_distance_mask;
3629
3630 const int urb_entry_write_offset = 1;
3631 const uint32_t urb_entry_output_length =
3632 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3633 urb_entry_write_offset;
3634
3635 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3636 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3637 }
3638 }
3639
3640 /**
3641 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3642 */
3643 static void
3644 iris_store_fs_state(struct iris_context *ice,
3645 const struct gen_device_info *devinfo,
3646 struct iris_compiled_shader *shader)
3647 {
3648 struct brw_stage_prog_data *prog_data = shader->prog_data;
3649 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3650
3651 uint32_t *ps_state = (void *) shader->derived_data;
3652 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3653
3654 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3655 ps.VectorMaskEnable = true;
3656 // XXX: WABTPPrefetchDisable, see above, drop at C0
3657 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3658 shader->bt.size_bytes / 4;
3659 ps.FloatingPointMode = prog_data->use_alt_mode;
3660 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3661
3662 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3663
3664 /* From the documentation for this packet:
3665 * "If the PS kernel does not need the Position XY Offsets to
3666 * compute a Position Value, then this field should be programmed
3667 * to POSOFFSET_NONE."
3668 *
3669 * "SW Recommendation: If the PS kernel needs the Position Offsets
3670 * to compute a Position XY value, this field should match Position
3671 * ZW Interpolation Mode to ensure a consistent position.xyzw
3672 * computation."
3673 *
3674 * We only require XY sample offsets. So, this recommendation doesn't
3675 * look useful at the moment. We might need this in future.
3676 */
3677 ps.PositionXYOffsetSelect =
3678 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3679 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3680 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3681 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3682
3683 // XXX: Disable SIMD32 with 16x MSAA
3684
3685 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3686 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3687 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3688 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3689 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3690 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3691
3692 ps.KernelStartPointer0 =
3693 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3694 ps.KernelStartPointer1 =
3695 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3696 ps.KernelStartPointer2 =
3697 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3698
3699 if (prog_data->total_scratch) {
3700 struct iris_bo *bo =
3701 iris_get_scratch_space(ice, prog_data->total_scratch,
3702 MESA_SHADER_FRAGMENT);
3703 uint32_t scratch_addr = bo->gtt_offset;
3704 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3705 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3706 }
3707 }
3708
3709 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3710 psx.PixelShaderValid = true;
3711 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3712 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3713 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3714 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3715 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3716 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3717 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3718
3719 #if GEN_GEN >= 9
3720 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3721 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3722 #else
3723 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3724 #endif
3725 }
3726 }
3727
3728 /**
3729 * Compute the size of the derived data (shader command packets).
3730 *
3731 * This must match the data written by the iris_store_xs_state() functions.
3732 */
3733 static void
3734 iris_store_cs_state(struct iris_context *ice,
3735 const struct gen_device_info *devinfo,
3736 struct iris_compiled_shader *shader)
3737 {
3738 struct brw_stage_prog_data *prog_data = shader->prog_data;
3739 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3740 void *map = shader->derived_data;
3741
3742 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3743 desc.KernelStartPointer = KSP(shader);
3744 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3745 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3746 desc.SharedLocalMemorySize =
3747 encode_slm_size(GEN_GEN, prog_data->total_shared);
3748 desc.BarrierEnable = cs_prog_data->uses_barrier;
3749 desc.CrossThreadConstantDataReadLength =
3750 cs_prog_data->push.cross_thread.regs;
3751 }
3752 }
3753
3754 static unsigned
3755 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3756 {
3757 assert(cache_id <= IRIS_CACHE_BLORP);
3758
3759 static const unsigned dwords[] = {
3760 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3761 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3762 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3763 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3764 [IRIS_CACHE_FS] =
3765 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3766 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3767 [IRIS_CACHE_BLORP] = 0,
3768 };
3769
3770 return sizeof(uint32_t) * dwords[cache_id];
3771 }
3772
3773 /**
3774 * Create any state packets corresponding to the given shader stage
3775 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3776 * This means that we can look up a program in the in-memory cache and
3777 * get most of the state packet without having to reconstruct it.
3778 */
3779 static void
3780 iris_store_derived_program_state(struct iris_context *ice,
3781 enum iris_program_cache_id cache_id,
3782 struct iris_compiled_shader *shader)
3783 {
3784 struct iris_screen *screen = (void *) ice->ctx.screen;
3785 const struct gen_device_info *devinfo = &screen->devinfo;
3786
3787 switch (cache_id) {
3788 case IRIS_CACHE_VS:
3789 iris_store_vs_state(ice, devinfo, shader);
3790 break;
3791 case IRIS_CACHE_TCS:
3792 iris_store_tcs_state(ice, devinfo, shader);
3793 break;
3794 case IRIS_CACHE_TES:
3795 iris_store_tes_state(ice, devinfo, shader);
3796 break;
3797 case IRIS_CACHE_GS:
3798 iris_store_gs_state(ice, devinfo, shader);
3799 break;
3800 case IRIS_CACHE_FS:
3801 iris_store_fs_state(ice, devinfo, shader);
3802 break;
3803 case IRIS_CACHE_CS:
3804 iris_store_cs_state(ice, devinfo, shader);
3805 case IRIS_CACHE_BLORP:
3806 break;
3807 default:
3808 break;
3809 }
3810 }
3811
3812 /* ------------------------------------------------------------------- */
3813
3814 static const uint32_t push_constant_opcodes[] = {
3815 [MESA_SHADER_VERTEX] = 21,
3816 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3817 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3818 [MESA_SHADER_GEOMETRY] = 22,
3819 [MESA_SHADER_FRAGMENT] = 23,
3820 [MESA_SHADER_COMPUTE] = 0,
3821 };
3822
3823 static uint32_t
3824 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3825 {
3826 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3827
3828 iris_use_pinned_bo(batch, state_bo, false);
3829
3830 return ice->state.unbound_tex.offset;
3831 }
3832
3833 static uint32_t
3834 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3835 {
3836 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3837 if (!ice->state.null_fb.res)
3838 return use_null_surface(batch, ice);
3839
3840 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3841
3842 iris_use_pinned_bo(batch, state_bo, false);
3843
3844 return ice->state.null_fb.offset;
3845 }
3846
3847 static uint32_t
3848 surf_state_offset_for_aux(struct iris_resource *res,
3849 unsigned aux_modes,
3850 enum isl_aux_usage aux_usage)
3851 {
3852 return SURFACE_STATE_ALIGNMENT *
3853 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3854 }
3855
3856 static void
3857 surf_state_update_clear_value(struct iris_batch *batch,
3858 struct iris_resource *res,
3859 struct iris_state_ref *state,
3860 unsigned aux_modes,
3861 enum isl_aux_usage aux_usage)
3862 {
3863 struct isl_device *isl_dev = &batch->screen->isl_dev;
3864 struct iris_bo *state_bo = iris_resource_bo(state->res);
3865 uint64_t real_offset = state->offset +
3866 IRIS_MEMZONE_BINDER_START;
3867 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
3868 uint32_t clear_offset = offset_into_bo +
3869 isl_dev->ss.clear_value_offset +
3870 surf_state_offset_for_aux(res, aux_modes, aux_usage);
3871
3872 batch->vtbl->copy_mem_mem(batch, state_bo, clear_offset,
3873 res->aux.clear_color_bo,
3874 res->aux.clear_color_offset,
3875 isl_dev->ss.clear_value_size);
3876 }
3877
3878 static void
3879 update_clear_value(struct iris_context *ice,
3880 struct iris_batch *batch,
3881 struct iris_resource *res,
3882 struct iris_state_ref *state,
3883 unsigned aux_modes,
3884 struct isl_view *view)
3885 {
3886 struct iris_screen *screen = batch->screen;
3887 const struct gen_device_info *devinfo = &screen->devinfo;
3888
3889 /* We only need to update the clear color in the surface state for gen8 and
3890 * gen9. Newer gens can read it directly from the clear color state buffer.
3891 */
3892 if (devinfo->gen > 9)
3893 return;
3894
3895 if (devinfo->gen == 9) {
3896 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
3897 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
3898
3899 while (aux_modes) {
3900 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3901
3902 surf_state_update_clear_value(batch, res, state, aux_modes,
3903 aux_usage);
3904 }
3905 } else if (devinfo->gen == 8) {
3906 pipe_resource_reference(&state->res, NULL);
3907 void *map = alloc_surface_states(ice->state.surface_uploader,
3908 state, res->aux.possible_usages);
3909 while (aux_modes) {
3910 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3911 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
3912 map += SURFACE_STATE_ALIGNMENT;
3913 }
3914 }
3915 }
3916
3917 /**
3918 * Add a surface to the validation list, as well as the buffer containing
3919 * the corresponding SURFACE_STATE.
3920 *
3921 * Returns the binding table entry (offset to SURFACE_STATE).
3922 */
3923 static uint32_t
3924 use_surface(struct iris_context *ice,
3925 struct iris_batch *batch,
3926 struct pipe_surface *p_surf,
3927 bool writeable,
3928 enum isl_aux_usage aux_usage)
3929 {
3930 struct iris_surface *surf = (void *) p_surf;
3931 struct iris_resource *res = (void *) p_surf->texture;
3932
3933 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3934 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3935
3936 if (res->aux.bo) {
3937 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3938 if (res->aux.clear_color_bo)
3939 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
3940
3941 if (memcmp(&res->aux.clear_color, &surf->clear_color,
3942 sizeof(surf->clear_color)) != 0) {
3943 update_clear_value(ice, batch, res, &surf->surface_state,
3944 res->aux.possible_usages, &surf->view);
3945 surf->clear_color = res->aux.clear_color;
3946 }
3947 }
3948
3949 return surf->surface_state.offset +
3950 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
3951 }
3952
3953 static uint32_t
3954 use_sampler_view(struct iris_context *ice,
3955 struct iris_batch *batch,
3956 struct iris_sampler_view *isv)
3957 {
3958 // XXX: ASTC hacks
3959 enum isl_aux_usage aux_usage =
3960 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3961
3962 iris_use_pinned_bo(batch, isv->res->bo, false);
3963 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3964
3965 if (isv->res->aux.bo) {
3966 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3967 if (isv->res->aux.clear_color_bo)
3968 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
3969 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
3970 sizeof(isv->clear_color)) != 0) {
3971 update_clear_value(ice, batch, isv->res, &isv->surface_state,
3972 isv->res->aux.sampler_usages, &isv->view);
3973 isv->clear_color = isv->res->aux.clear_color;
3974 }
3975 }
3976
3977 return isv->surface_state.offset +
3978 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
3979 aux_usage);
3980 }
3981
3982 static uint32_t
3983 use_ubo_ssbo(struct iris_batch *batch,
3984 struct iris_context *ice,
3985 struct pipe_shader_buffer *buf,
3986 struct iris_state_ref *surf_state,
3987 bool writable)
3988 {
3989 if (!buf->buffer)
3990 return use_null_surface(batch, ice);
3991
3992 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
3993 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3994
3995 return surf_state->offset;
3996 }
3997
3998 static uint32_t
3999 use_image(struct iris_batch *batch, struct iris_context *ice,
4000 struct iris_shader_state *shs, int i)
4001 {
4002 struct iris_image_view *iv = &shs->image[i];
4003 struct iris_resource *res = (void *) iv->base.resource;
4004
4005 if (!res)
4006 return use_null_surface(batch, ice);
4007
4008 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4009
4010 iris_use_pinned_bo(batch, res->bo, write);
4011 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
4012
4013 if (res->aux.bo)
4014 iris_use_pinned_bo(batch, res->aux.bo, write);
4015
4016 return iv->surface_state.offset;
4017 }
4018
4019 #define push_bt_entry(addr) \
4020 assert(addr >= binder_addr); \
4021 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4022 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4023
4024 #define bt_assert(section) \
4025 if (!pin_only && shader->bt.used_mask[section] != 0) \
4026 assert(shader->bt.offsets[section] == s);
4027
4028 /**
4029 * Populate the binding table for a given shader stage.
4030 *
4031 * This fills out the table of pointers to surfaces required by the shader,
4032 * and also adds those buffers to the validation list so the kernel can make
4033 * resident before running our batch.
4034 */
4035 static void
4036 iris_populate_binding_table(struct iris_context *ice,
4037 struct iris_batch *batch,
4038 gl_shader_stage stage,
4039 bool pin_only)
4040 {
4041 const struct iris_binder *binder = &ice->state.binder;
4042 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4043 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4044 if (!shader)
4045 return;
4046
4047 struct iris_binding_table *bt = &shader->bt;
4048 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4049 struct iris_shader_state *shs = &ice->state.shaders[stage];
4050 uint32_t binder_addr = binder->bo->gtt_offset;
4051
4052 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4053 int s = 0;
4054
4055 const struct shader_info *info = iris_get_shader_info(ice, stage);
4056 if (!info) {
4057 /* TCS passthrough doesn't need a binding table. */
4058 assert(stage == MESA_SHADER_TESS_CTRL);
4059 return;
4060 }
4061
4062 if (stage == MESA_SHADER_COMPUTE &&
4063 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4064 /* surface for gl_NumWorkGroups */
4065 struct iris_state_ref *grid_data = &ice->state.grid_size;
4066 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4067 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4068 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4069 push_bt_entry(grid_state->offset);
4070 }
4071
4072 if (stage == MESA_SHADER_FRAGMENT) {
4073 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4074 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4075 if (cso_fb->nr_cbufs) {
4076 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4077 uint32_t addr;
4078 if (cso_fb->cbufs[i]) {
4079 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4080 ice->state.draw_aux_usage[i]);
4081 } else {
4082 addr = use_null_fb_surface(batch, ice);
4083 }
4084 push_bt_entry(addr);
4085 }
4086 } else {
4087 uint32_t addr = use_null_fb_surface(batch, ice);
4088 push_bt_entry(addr);
4089 }
4090 }
4091
4092 #define foreach_surface_used(index, group) \
4093 bt_assert(group); \
4094 for (int index = 0; index < bt->sizes[group]; index++) \
4095 if (iris_group_index_to_bti(bt, group, index) != \
4096 IRIS_SURFACE_NOT_USED)
4097
4098 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4099 struct iris_sampler_view *view = shs->textures[i];
4100 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4101 : use_null_surface(batch, ice);
4102 push_bt_entry(addr);
4103 }
4104
4105 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4106 uint32_t addr = use_image(batch, ice, shs, i);
4107 push_bt_entry(addr);
4108 }
4109
4110 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4111 uint32_t addr;
4112
4113 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4114 if (ish->const_data) {
4115 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4116 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4117 false);
4118 addr = ish->const_data_state.offset;
4119 } else {
4120 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4121 addr = use_null_surface(batch, ice);
4122 }
4123 } else {
4124 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4125 &shs->constbuf_surf_state[i], false);
4126 }
4127
4128 push_bt_entry(addr);
4129 }
4130
4131 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4132 uint32_t addr =
4133 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4134 shs->writable_ssbos & (1u << i));
4135 push_bt_entry(addr);
4136 }
4137
4138 #if 0
4139 /* XXX: YUV surfaces not implemented yet */
4140 bt_assert(plane_start[1], ...);
4141 bt_assert(plane_start[2], ...);
4142 #endif
4143 }
4144
4145 static void
4146 iris_use_optional_res(struct iris_batch *batch,
4147 struct pipe_resource *res,
4148 bool writeable)
4149 {
4150 if (res) {
4151 struct iris_bo *bo = iris_resource_bo(res);
4152 iris_use_pinned_bo(batch, bo, writeable);
4153 }
4154 }
4155
4156 static void
4157 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4158 struct pipe_surface *zsbuf,
4159 struct iris_depth_stencil_alpha_state *cso_zsa)
4160 {
4161 if (!zsbuf)
4162 return;
4163
4164 struct iris_resource *zres, *sres;
4165 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4166
4167 if (zres) {
4168 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4169 if (zres->aux.bo) {
4170 iris_use_pinned_bo(batch, zres->aux.bo,
4171 cso_zsa->depth_writes_enabled);
4172 }
4173 }
4174
4175 if (sres) {
4176 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4177 }
4178 }
4179
4180 /* ------------------------------------------------------------------- */
4181
4182 /**
4183 * Pin any BOs which were installed by a previous batch, and restored
4184 * via the hardware logical context mechanism.
4185 *
4186 * We don't need to re-emit all state every batch - the hardware context
4187 * mechanism will save and restore it for us. This includes pointers to
4188 * various BOs...which won't exist unless we ask the kernel to pin them
4189 * by adding them to the validation list.
4190 *
4191 * We can skip buffers if we've re-emitted those packets, as we're
4192 * overwriting those stale pointers with new ones, and don't actually
4193 * refer to the old BOs.
4194 */
4195 static void
4196 iris_restore_render_saved_bos(struct iris_context *ice,
4197 struct iris_batch *batch,
4198 const struct pipe_draw_info *draw)
4199 {
4200 struct iris_genx_state *genx = ice->state.genx;
4201
4202 const uint64_t clean = ~ice->state.dirty;
4203
4204 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4205 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4206 }
4207
4208 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4209 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4210 }
4211
4212 if (clean & IRIS_DIRTY_BLEND_STATE) {
4213 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4214 }
4215
4216 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4217 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4218 }
4219
4220 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4221 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4222 }
4223
4224 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4225 for (int i = 0; i < 4; i++) {
4226 struct iris_stream_output_target *tgt =
4227 (void *) ice->state.so_target[i];
4228 if (tgt) {
4229 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4230 true);
4231 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4232 true);
4233 }
4234 }
4235 }
4236
4237 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4238 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4239 continue;
4240
4241 struct iris_shader_state *shs = &ice->state.shaders[stage];
4242 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4243
4244 if (!shader)
4245 continue;
4246
4247 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4248
4249 for (int i = 0; i < 4; i++) {
4250 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4251
4252 if (range->length == 0)
4253 continue;
4254
4255 /* Range block is a binding table index, map back to UBO index. */
4256 unsigned block_index = iris_bti_to_group_index(
4257 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4258 assert(block_index != IRIS_SURFACE_NOT_USED);
4259
4260 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4261 struct iris_resource *res = (void *) cbuf->buffer;
4262
4263 if (res)
4264 iris_use_pinned_bo(batch, res->bo, false);
4265 else
4266 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4267 }
4268 }
4269
4270 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4271 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4272 /* Re-pin any buffers referred to by the binding table. */
4273 iris_populate_binding_table(ice, batch, stage, true);
4274 }
4275 }
4276
4277 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4278 struct iris_shader_state *shs = &ice->state.shaders[stage];
4279 struct pipe_resource *res = shs->sampler_table.res;
4280 if (res)
4281 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4282 }
4283
4284 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4285 if (clean & (IRIS_DIRTY_VS << stage)) {
4286 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4287
4288 if (shader) {
4289 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4290 iris_use_pinned_bo(batch, bo, false);
4291
4292 struct brw_stage_prog_data *prog_data = shader->prog_data;
4293
4294 if (prog_data->total_scratch > 0) {
4295 struct iris_bo *bo =
4296 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4297 iris_use_pinned_bo(batch, bo, true);
4298 }
4299 }
4300 }
4301 }
4302
4303 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4304 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4305 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4306 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4307 }
4308
4309 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4310 /* This draw didn't emit a new index buffer, so we are inheriting the
4311 * older index buffer. This draw didn't need it, but future ones may.
4312 */
4313 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4314 iris_use_pinned_bo(batch, bo, false);
4315 }
4316
4317 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4318 uint64_t bound = ice->state.bound_vertex_buffers;
4319 while (bound) {
4320 const int i = u_bit_scan64(&bound);
4321 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4322 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4323 }
4324 }
4325 }
4326
4327 static void
4328 iris_restore_compute_saved_bos(struct iris_context *ice,
4329 struct iris_batch *batch,
4330 const struct pipe_grid_info *grid)
4331 {
4332 const uint64_t clean = ~ice->state.dirty;
4333
4334 const int stage = MESA_SHADER_COMPUTE;
4335 struct iris_shader_state *shs = &ice->state.shaders[stage];
4336
4337 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4338 /* Re-pin any buffers referred to by the binding table. */
4339 iris_populate_binding_table(ice, batch, stage, true);
4340 }
4341
4342 struct pipe_resource *sampler_res = shs->sampler_table.res;
4343 if (sampler_res)
4344 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4345
4346 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4347 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4348 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4349 (clean & IRIS_DIRTY_CS)) {
4350 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4351 }
4352
4353 if (clean & IRIS_DIRTY_CS) {
4354 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4355
4356 if (shader) {
4357 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4358 iris_use_pinned_bo(batch, bo, false);
4359
4360 struct iris_bo *curbe_bo =
4361 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4362 iris_use_pinned_bo(batch, curbe_bo, false);
4363
4364 struct brw_stage_prog_data *prog_data = shader->prog_data;
4365
4366 if (prog_data->total_scratch > 0) {
4367 struct iris_bo *bo =
4368 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4369 iris_use_pinned_bo(batch, bo, true);
4370 }
4371 }
4372 }
4373 }
4374
4375 /**
4376 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4377 */
4378 static void
4379 iris_update_surface_base_address(struct iris_batch *batch,
4380 struct iris_binder *binder)
4381 {
4382 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4383 return;
4384
4385 flush_for_state_base_change(batch);
4386
4387 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4388 sba.SurfaceStateMOCS = MOCS_WB;
4389 sba.SurfaceStateBaseAddressModifyEnable = true;
4390 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4391 }
4392
4393 batch->last_surface_base_address = binder->bo->gtt_offset;
4394 }
4395
4396 static void
4397 iris_upload_dirty_render_state(struct iris_context *ice,
4398 struct iris_batch *batch,
4399 const struct pipe_draw_info *draw)
4400 {
4401 const uint64_t dirty = ice->state.dirty;
4402
4403 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4404 return;
4405
4406 struct iris_genx_state *genx = ice->state.genx;
4407 struct iris_binder *binder = &ice->state.binder;
4408 struct brw_wm_prog_data *wm_prog_data = (void *)
4409 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4410
4411 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4412 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4413 uint32_t cc_vp_address;
4414
4415 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4416 uint32_t *cc_vp_map =
4417 stream_state(batch, ice->state.dynamic_uploader,
4418 &ice->state.last_res.cc_vp,
4419 4 * ice->state.num_viewports *
4420 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4421 for (int i = 0; i < ice->state.num_viewports; i++) {
4422 float zmin, zmax;
4423 util_viewport_zmin_zmax(&ice->state.viewports[i],
4424 cso_rast->clip_halfz, &zmin, &zmax);
4425 if (cso_rast->depth_clip_near)
4426 zmin = 0.0;
4427 if (cso_rast->depth_clip_far)
4428 zmax = 1.0;
4429
4430 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4431 ccv.MinimumDepth = zmin;
4432 ccv.MaximumDepth = zmax;
4433 }
4434
4435 cc_vp_map += GENX(CC_VIEWPORT_length);
4436 }
4437
4438 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4439 ptr.CCViewportPointer = cc_vp_address;
4440 }
4441 }
4442
4443 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4444 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4445 uint32_t sf_cl_vp_address;
4446 uint32_t *vp_map =
4447 stream_state(batch, ice->state.dynamic_uploader,
4448 &ice->state.last_res.sf_cl_vp,
4449 4 * ice->state.num_viewports *
4450 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4451
4452 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4453 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4454 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4455
4456 float vp_xmin = viewport_extent(state, 0, -1.0f);
4457 float vp_xmax = viewport_extent(state, 0, 1.0f);
4458 float vp_ymin = viewport_extent(state, 1, -1.0f);
4459 float vp_ymax = viewport_extent(state, 1, 1.0f);
4460
4461 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
4462 state->scale[0], state->scale[1],
4463 state->translate[0], state->translate[1],
4464 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4465
4466 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4467 vp.ViewportMatrixElementm00 = state->scale[0];
4468 vp.ViewportMatrixElementm11 = state->scale[1];
4469 vp.ViewportMatrixElementm22 = state->scale[2];
4470 vp.ViewportMatrixElementm30 = state->translate[0];
4471 vp.ViewportMatrixElementm31 = state->translate[1];
4472 vp.ViewportMatrixElementm32 = state->translate[2];
4473 vp.XMinClipGuardband = gb_xmin;
4474 vp.XMaxClipGuardband = gb_xmax;
4475 vp.YMinClipGuardband = gb_ymin;
4476 vp.YMaxClipGuardband = gb_ymax;
4477 vp.XMinViewPort = MAX2(vp_xmin, 0);
4478 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4479 vp.YMinViewPort = MAX2(vp_ymin, 0);
4480 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4481 }
4482
4483 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4484 }
4485
4486 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4487 ptr.SFClipViewportPointer = sf_cl_vp_address;
4488 }
4489 }
4490
4491 if (dirty & IRIS_DIRTY_URB) {
4492 unsigned size[4];
4493
4494 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4495 if (!ice->shaders.prog[i]) {
4496 size[i] = 1;
4497 } else {
4498 struct brw_vue_prog_data *vue_prog_data =
4499 (void *) ice->shaders.prog[i]->prog_data;
4500 size[i] = vue_prog_data->urb_entry_size;
4501 }
4502 assert(size[i] != 0);
4503 }
4504
4505 genX(emit_urb_setup)(ice, batch, size,
4506 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4507 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4508 }
4509
4510 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4511 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4512 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4513 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4514 const int header_dwords = GENX(BLEND_STATE_length);
4515
4516 /* Always write at least one BLEND_STATE - the final RT message will
4517 * reference BLEND_STATE[0] even if there aren't color writes. There
4518 * may still be alpha testing, computed depth, and so on.
4519 */
4520 const int rt_dwords =
4521 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4522
4523 uint32_t blend_offset;
4524 uint32_t *blend_map =
4525 stream_state(batch, ice->state.dynamic_uploader,
4526 &ice->state.last_res.blend,
4527 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4528
4529 uint32_t blend_state_header;
4530 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4531 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4532 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4533 }
4534
4535 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4536 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4537
4538 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4539 ptr.BlendStatePointer = blend_offset;
4540 ptr.BlendStatePointerValid = true;
4541 }
4542 }
4543
4544 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4545 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4546 #if GEN_GEN == 8
4547 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4548 #endif
4549 uint32_t cc_offset;
4550 void *cc_map =
4551 stream_state(batch, ice->state.dynamic_uploader,
4552 &ice->state.last_res.color_calc,
4553 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4554 64, &cc_offset);
4555 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4556 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4557 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4558 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4559 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4560 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4561 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4562 #if GEN_GEN == 8
4563 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4564 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4565 #endif
4566 }
4567 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4568 ptr.ColorCalcStatePointer = cc_offset;
4569 ptr.ColorCalcStatePointerValid = true;
4570 }
4571 }
4572
4573 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4574 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4575 continue;
4576
4577 struct iris_shader_state *shs = &ice->state.shaders[stage];
4578 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4579
4580 if (!shader)
4581 continue;
4582
4583 if (shs->sysvals_need_upload)
4584 upload_sysvals(ice, stage);
4585
4586 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4587
4588 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4589 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4590 if (prog_data) {
4591 /* The Skylake PRM contains the following restriction:
4592 *
4593 * "The driver must ensure The following case does not occur
4594 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4595 * buffer 3 read length equal to zero committed followed by a
4596 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4597 * zero committed."
4598 *
4599 * To avoid this, we program the buffers in the highest slots.
4600 * This way, slot 0 is only used if slot 3 is also used.
4601 */
4602 int n = 3;
4603
4604 for (int i = 3; i >= 0; i--) {
4605 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4606
4607 if (range->length == 0)
4608 continue;
4609
4610 /* Range block is a binding table index, map back to UBO index. */
4611 unsigned block_index = iris_bti_to_group_index(
4612 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4613 assert(block_index != IRIS_SURFACE_NOT_USED);
4614
4615 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4616 struct iris_resource *res = (void *) cbuf->buffer;
4617
4618 assert(cbuf->buffer_offset % 32 == 0);
4619
4620 pkt.ConstantBody.ReadLength[n] = range->length;
4621 pkt.ConstantBody.Buffer[n] =
4622 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4623 : ro_bo(batch->screen->workaround_bo, 0);
4624 n--;
4625 }
4626 }
4627 }
4628 }
4629
4630 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4631 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4632 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4633 ptr._3DCommandSubOpcode = 38 + stage;
4634 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4635 }
4636 }
4637 }
4638
4639 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4640 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4641 iris_populate_binding_table(ice, batch, stage, false);
4642 }
4643 }
4644
4645 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4646 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4647 !ice->shaders.prog[stage])
4648 continue;
4649
4650 iris_upload_sampler_states(ice, stage);
4651
4652 struct iris_shader_state *shs = &ice->state.shaders[stage];
4653 struct pipe_resource *res = shs->sampler_table.res;
4654 if (res)
4655 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4656
4657 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4658 ptr._3DCommandSubOpcode = 43 + stage;
4659 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4660 }
4661 }
4662
4663 if (ice->state.need_border_colors)
4664 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4665
4666 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4667 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4668 ms.PixelLocation =
4669 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4670 if (ice->state.framebuffer.samples > 0)
4671 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4672 }
4673 }
4674
4675 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4676 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4677 ms.SampleMask = ice->state.sample_mask;
4678 }
4679 }
4680
4681 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4682 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4683 continue;
4684
4685 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4686
4687 if (shader) {
4688 struct brw_stage_prog_data *prog_data = shader->prog_data;
4689 struct iris_resource *cache = (void *) shader->assembly.res;
4690 iris_use_pinned_bo(batch, cache->bo, false);
4691
4692 if (prog_data->total_scratch > 0) {
4693 struct iris_bo *bo =
4694 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4695 iris_use_pinned_bo(batch, bo, true);
4696 }
4697 #if GEN_GEN >= 9
4698 if (stage == MESA_SHADER_FRAGMENT && wm_prog_data->uses_sample_mask) {
4699 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
4700 uint32_t *shader_psx = ((uint32_t*)shader->derived_data) +
4701 GENX(3DSTATE_PS_length);
4702 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4703
4704 iris_pack_command(GENX(3DSTATE_PS_EXTRA), &psx_state, psx) {
4705 if (wm_prog_data->post_depth_coverage)
4706 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4707 else if (wm_prog_data->inner_coverage && cso->conservative_rasterization)
4708 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4709 else
4710 psx.InputCoverageMaskState = ICMS_NORMAL;
4711 }
4712
4713 iris_batch_emit(batch, shader->derived_data,
4714 sizeof(uint32_t) * GENX(3DSTATE_PS_length));
4715 iris_emit_merge(batch,
4716 shader_psx,
4717 psx_state,
4718 GENX(3DSTATE_PS_EXTRA_length));
4719 } else
4720 #endif
4721 iris_batch_emit(batch, shader->derived_data,
4722 iris_derived_program_state_size(stage));
4723 } else {
4724 if (stage == MESA_SHADER_TESS_EVAL) {
4725 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4726 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4727 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4728 } else if (stage == MESA_SHADER_GEOMETRY) {
4729 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4730 }
4731 }
4732 }
4733
4734 if (ice->state.streamout_active) {
4735 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4736 iris_batch_emit(batch, genx->so_buffers,
4737 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4738 for (int i = 0; i < 4; i++) {
4739 struct iris_stream_output_target *tgt =
4740 (void *) ice->state.so_target[i];
4741 if (tgt) {
4742 tgt->zeroed = true;
4743 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4744 true);
4745 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4746 true);
4747 }
4748 }
4749 }
4750
4751 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4752 uint32_t *decl_list =
4753 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4754 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4755 }
4756
4757 if (dirty & IRIS_DIRTY_STREAMOUT) {
4758 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4759
4760 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4761 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4762 sol.SOFunctionEnable = true;
4763 sol.SOStatisticsEnable = true;
4764
4765 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4766 !ice->state.prims_generated_query_active;
4767 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4768 }
4769
4770 assert(ice->state.streamout);
4771
4772 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4773 GENX(3DSTATE_STREAMOUT_length));
4774 }
4775 } else {
4776 if (dirty & IRIS_DIRTY_STREAMOUT) {
4777 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4778 }
4779 }
4780
4781 if (dirty & IRIS_DIRTY_CLIP) {
4782 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4783 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4784
4785 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
4786 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4787 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
4788 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
4789 : ice->state.prim_is_points_or_lines);
4790
4791 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4792 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4793 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4794 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4795 : CLIPMODE_NORMAL;
4796 cl.ViewportXYClipTestEnable = !points_or_lines;
4797
4798 if (wm_prog_data->barycentric_interp_modes &
4799 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4800 cl.NonPerspectiveBarycentricEnable = true;
4801
4802 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4803 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4804 }
4805 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4806 ARRAY_SIZE(cso_rast->clip));
4807 }
4808
4809 if (dirty & IRIS_DIRTY_RASTER) {
4810 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4811 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4812 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4813
4814 }
4815
4816 if (dirty & IRIS_DIRTY_WM) {
4817 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4818 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4819
4820 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4821 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4822
4823 wm.BarycentricInterpolationMode =
4824 wm_prog_data->barycentric_interp_modes;
4825
4826 if (wm_prog_data->early_fragment_tests)
4827 wm.EarlyDepthStencilControl = EDSC_PREPS;
4828 else if (wm_prog_data->has_side_effects)
4829 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4830
4831 /* We could skip this bit if color writes are enabled. */
4832 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4833 wm.ForceThreadDispatchEnable = ForceON;
4834 }
4835 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4836 }
4837
4838 if (dirty & IRIS_DIRTY_SBE) {
4839 iris_emit_sbe(batch, ice);
4840 }
4841
4842 if (dirty & IRIS_DIRTY_PS_BLEND) {
4843 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4844 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4845 const struct shader_info *fs_info =
4846 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4847
4848 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4849 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4850 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4851 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4852
4853 /* The dual source blending docs caution against using SRC1 factors
4854 * when the shader doesn't use a dual source render target write.
4855 * Empirically, this can lead to GPU hangs, and the results are
4856 * undefined anyway, so simply disable blending to avoid the hang.
4857 */
4858 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
4859 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
4860 }
4861
4862 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4863 ARRAY_SIZE(cso_blend->ps_blend));
4864 }
4865
4866 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4867 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4868 #if GEN_GEN >= 9
4869 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4870 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4871 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4872 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4873 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4874 }
4875 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4876 #else
4877 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4878 #endif
4879 }
4880
4881 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4882 uint32_t scissor_offset =
4883 emit_state(batch, ice->state.dynamic_uploader,
4884 &ice->state.last_res.scissor,
4885 ice->state.scissors,
4886 sizeof(struct pipe_scissor_state) *
4887 ice->state.num_viewports, 32);
4888
4889 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4890 ptr.ScissorRectPointer = scissor_offset;
4891 }
4892 }
4893
4894 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4895 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4896
4897 /* Do not emit the clear params yets. We need to update the clear value
4898 * first.
4899 */
4900 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
4901 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
4902 iris_batch_emit(batch, cso_z->packets, cso_z_size);
4903
4904 union isl_color_value clear_value = { .f32 = { 0, } };
4905
4906 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4907 if (cso_fb->zsbuf) {
4908 struct iris_resource *zres, *sres;
4909 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4910 &zres, &sres);
4911 if (zres && zres->aux.bo)
4912 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
4913 }
4914
4915 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
4916 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
4917 clear.DepthClearValueValid = true;
4918 clear.DepthClearValue = clear_value.f32[0];
4919 }
4920 iris_batch_emit(batch, clear_params, clear_length);
4921 }
4922
4923 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4924 /* Listen for buffer changes, and also write enable changes. */
4925 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4926 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4927 }
4928
4929 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4930 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4931 for (int i = 0; i < 32; i++) {
4932 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4933 }
4934 }
4935 }
4936
4937 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4938 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4939 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4940 }
4941
4942 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4943 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4944 topo.PrimitiveTopologyType =
4945 translate_prim_type(draw->mode, draw->vertices_per_patch);
4946 }
4947 }
4948
4949 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4950 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4951 int dynamic_bound = ice->state.bound_vertex_buffers;
4952
4953 if (ice->state.vs_uses_draw_params) {
4954 if (ice->draw.draw_params_offset == 0) {
4955 u_upload_data(ice->ctx.stream_uploader, 0, sizeof(ice->draw.params),
4956 4, &ice->draw.params, &ice->draw.draw_params_offset,
4957 &ice->draw.draw_params_res);
4958 }
4959 assert(ice->draw.draw_params_res);
4960
4961 struct iris_vertex_buffer_state *state =
4962 &(ice->state.genx->vertex_buffers[count]);
4963 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4964 struct iris_resource *res = (void *) state->resource;
4965
4966 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4967 vb.VertexBufferIndex = count;
4968 vb.AddressModifyEnable = true;
4969 vb.BufferPitch = 0;
4970 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4971 vb.BufferStartingAddress =
4972 ro_bo(NULL, res->bo->gtt_offset +
4973 (int) ice->draw.draw_params_offset);
4974 vb.MOCS = mocs(res->bo);
4975 }
4976 dynamic_bound |= 1ull << count;
4977 count++;
4978 }
4979
4980 if (ice->state.vs_uses_derived_draw_params) {
4981 u_upload_data(ice->ctx.stream_uploader, 0,
4982 sizeof(ice->draw.derived_params), 4,
4983 &ice->draw.derived_params,
4984 &ice->draw.derived_draw_params_offset,
4985 &ice->draw.derived_draw_params_res);
4986
4987 struct iris_vertex_buffer_state *state =
4988 &(ice->state.genx->vertex_buffers[count]);
4989 pipe_resource_reference(&state->resource,
4990 ice->draw.derived_draw_params_res);
4991 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
4992
4993 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4994 vb.VertexBufferIndex = count;
4995 vb.AddressModifyEnable = true;
4996 vb.BufferPitch = 0;
4997 vb.BufferSize =
4998 res->bo->size - ice->draw.derived_draw_params_offset;
4999 vb.BufferStartingAddress =
5000 ro_bo(NULL, res->bo->gtt_offset +
5001 (int) ice->draw.derived_draw_params_offset);
5002 vb.MOCS = mocs(res->bo);
5003 }
5004 dynamic_bound |= 1ull << count;
5005 count++;
5006 }
5007
5008 if (count) {
5009 /* The VF cache designers cut corners, and made the cache key's
5010 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5011 * 32 bits of the address. If you have two vertex buffers which get
5012 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5013 * you can get collisions (even within a single batch).
5014 *
5015 * So, we need to do a VF cache invalidate if the buffer for a VB
5016 * slot slot changes [48:32] address bits from the previous time.
5017 */
5018 unsigned flush_flags = 0;
5019
5020 uint64_t bound = dynamic_bound;
5021 while (bound) {
5022 const int i = u_bit_scan64(&bound);
5023 uint16_t high_bits = 0;
5024
5025 struct iris_resource *res =
5026 (void *) genx->vertex_buffers[i].resource;
5027 if (res) {
5028 iris_use_pinned_bo(batch, res->bo, false);
5029
5030 high_bits = res->bo->gtt_offset >> 32ull;
5031 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5032 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5033 PIPE_CONTROL_CS_STALL;
5034 ice->state.last_vbo_high_bits[i] = high_bits;
5035 }
5036 }
5037 }
5038
5039 if (flush_flags) {
5040 iris_emit_pipe_control_flush(batch,
5041 "workaround: VF cache 32-bit key [VB]",
5042 flush_flags);
5043 }
5044
5045 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5046
5047 uint32_t *map =
5048 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5049 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5050 vb.DWordLength = (vb_dwords * count + 1) - 2;
5051 }
5052 map += 1;
5053
5054 bound = dynamic_bound;
5055 while (bound) {
5056 const int i = u_bit_scan64(&bound);
5057 memcpy(map, genx->vertex_buffers[i].state,
5058 sizeof(uint32_t) * vb_dwords);
5059 map += vb_dwords;
5060 }
5061 }
5062 }
5063
5064 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5065 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5066 const unsigned entries = MAX2(cso->count, 1);
5067 if (!(ice->state.vs_needs_sgvs_element ||
5068 ice->state.vs_uses_derived_draw_params ||
5069 ice->state.vs_needs_edge_flag)) {
5070 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5071 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5072 } else {
5073 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5074 const unsigned dyn_count = cso->count +
5075 ice->state.vs_needs_sgvs_element +
5076 ice->state.vs_uses_derived_draw_params;
5077
5078 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5079 &dynamic_ves, ve) {
5080 ve.DWordLength =
5081 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5082 }
5083 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5084 (cso->count - ice->state.vs_needs_edge_flag) *
5085 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5086 uint32_t *ve_pack_dest =
5087 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5088 GENX(VERTEX_ELEMENT_STATE_length)];
5089
5090 if (ice->state.vs_needs_sgvs_element) {
5091 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5092 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5093 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5094 ve.Valid = true;
5095 ve.VertexBufferIndex =
5096 util_bitcount64(ice->state.bound_vertex_buffers);
5097 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5098 ve.Component0Control = base_ctrl;
5099 ve.Component1Control = base_ctrl;
5100 ve.Component2Control = VFCOMP_STORE_0;
5101 ve.Component3Control = VFCOMP_STORE_0;
5102 }
5103 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5104 }
5105 if (ice->state.vs_uses_derived_draw_params) {
5106 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5107 ve.Valid = true;
5108 ve.VertexBufferIndex =
5109 util_bitcount64(ice->state.bound_vertex_buffers) +
5110 ice->state.vs_uses_draw_params;
5111 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5112 ve.Component0Control = VFCOMP_STORE_SRC;
5113 ve.Component1Control = VFCOMP_STORE_SRC;
5114 ve.Component2Control = VFCOMP_STORE_0;
5115 ve.Component3Control = VFCOMP_STORE_0;
5116 }
5117 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5118 }
5119 if (ice->state.vs_needs_edge_flag) {
5120 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5121 ve_pack_dest[i] = cso->edgeflag_ve[i];
5122 }
5123
5124 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5125 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5126 }
5127
5128 if (!ice->state.vs_needs_edge_flag) {
5129 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5130 entries * GENX(3DSTATE_VF_INSTANCING_length));
5131 } else {
5132 assert(cso->count > 0);
5133 const unsigned edgeflag_index = cso->count - 1;
5134 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5135 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5136 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5137
5138 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5139 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5140 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5141 vi.VertexElementIndex = edgeflag_index +
5142 ice->state.vs_needs_sgvs_element +
5143 ice->state.vs_uses_derived_draw_params;
5144 }
5145 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5146 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5147
5148 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5149 entries * GENX(3DSTATE_VF_INSTANCING_length));
5150 }
5151 }
5152
5153 if (dirty & IRIS_DIRTY_VF_SGVS) {
5154 const struct brw_vs_prog_data *vs_prog_data = (void *)
5155 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5156 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5157
5158 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5159 if (vs_prog_data->uses_vertexid) {
5160 sgv.VertexIDEnable = true;
5161 sgv.VertexIDComponentNumber = 2;
5162 sgv.VertexIDElementOffset =
5163 cso->count - ice->state.vs_needs_edge_flag;
5164 }
5165
5166 if (vs_prog_data->uses_instanceid) {
5167 sgv.InstanceIDEnable = true;
5168 sgv.InstanceIDComponentNumber = 3;
5169 sgv.InstanceIDElementOffset =
5170 cso->count - ice->state.vs_needs_edge_flag;
5171 }
5172 }
5173 }
5174
5175 if (dirty & IRIS_DIRTY_VF) {
5176 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5177 if (draw->primitive_restart) {
5178 vf.IndexedDrawCutIndexEnable = true;
5179 vf.CutIndex = draw->restart_index;
5180 }
5181 }
5182 }
5183
5184 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5185 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5186 vf.StatisticsEnable = true;
5187 }
5188 }
5189
5190 /* TODO: Gen8 PMA fix */
5191 }
5192
5193 static void
5194 iris_upload_render_state(struct iris_context *ice,
5195 struct iris_batch *batch,
5196 const struct pipe_draw_info *draw)
5197 {
5198 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5199
5200 /* Always pin the binder. If we're emitting new binding table pointers,
5201 * we need it. If not, we're probably inheriting old tables via the
5202 * context, and need it anyway. Since true zero-bindings cases are
5203 * practically non-existent, just pin it and avoid last_res tracking.
5204 */
5205 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5206
5207 if (!batch->contains_draw) {
5208 iris_restore_render_saved_bos(ice, batch, draw);
5209 batch->contains_draw = true;
5210 }
5211
5212 iris_upload_dirty_render_state(ice, batch, draw);
5213
5214 if (draw->index_size > 0) {
5215 unsigned offset;
5216
5217 if (draw->has_user_indices) {
5218 u_upload_data(ice->ctx.stream_uploader, 0,
5219 draw->count * draw->index_size, 4, draw->index.user,
5220 &offset, &ice->state.last_res.index_buffer);
5221 } else {
5222 struct iris_resource *res = (void *) draw->index.resource;
5223 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5224
5225 pipe_resource_reference(&ice->state.last_res.index_buffer,
5226 draw->index.resource);
5227 offset = 0;
5228 }
5229
5230 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5231
5232 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
5233 ib.IndexFormat = draw->index_size >> 1;
5234 ib.MOCS = mocs(bo);
5235 ib.BufferSize = bo->size - offset;
5236 ib.BufferStartingAddress = ro_bo(bo, offset);
5237 }
5238
5239 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5240 uint16_t high_bits = bo->gtt_offset >> 32ull;
5241 if (high_bits != ice->state.last_index_bo_high_bits) {
5242 iris_emit_pipe_control_flush(batch,
5243 "workaround: VF cache 32-bit key [IB]",
5244 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5245 PIPE_CONTROL_CS_STALL);
5246 ice->state.last_index_bo_high_bits = high_bits;
5247 }
5248 }
5249
5250 #define _3DPRIM_END_OFFSET 0x2420
5251 #define _3DPRIM_START_VERTEX 0x2430
5252 #define _3DPRIM_VERTEX_COUNT 0x2434
5253 #define _3DPRIM_INSTANCE_COUNT 0x2438
5254 #define _3DPRIM_START_INSTANCE 0x243C
5255 #define _3DPRIM_BASE_VERTEX 0x2440
5256
5257 if (draw->indirect) {
5258 if (draw->indirect->indirect_draw_count) {
5259 use_predicate = true;
5260
5261 struct iris_bo *draw_count_bo =
5262 iris_resource_bo(draw->indirect->indirect_draw_count);
5263 unsigned draw_count_offset =
5264 draw->indirect->indirect_draw_count_offset;
5265
5266 iris_emit_pipe_control_flush(batch,
5267 "ensure indirect draw buffer is flushed",
5268 PIPE_CONTROL_FLUSH_ENABLE);
5269
5270 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5271 static const uint32_t math[] = {
5272 MI_MATH | (9 - 2),
5273 /* Compute (draw index < draw count).
5274 * We do this by subtracting and storing the carry bit.
5275 */
5276 MI_ALU2(LOAD, SRCA, R0),
5277 MI_ALU2(LOAD, SRCB, R1),
5278 MI_ALU0(SUB),
5279 MI_ALU2(STORE, R3, CF),
5280 /* Compute (subtracting result & MI_PREDICATE). */
5281 MI_ALU2(LOAD, SRCA, R3),
5282 MI_ALU2(LOAD, SRCB, R2),
5283 MI_ALU0(AND),
5284 MI_ALU2(STORE, R3, ACCU),
5285 };
5286
5287 /* Upload the current draw count from the draw parameters
5288 * buffer to GPR1.
5289 */
5290 ice->vtbl.load_register_mem32(batch, CS_GPR(1), draw_count_bo,
5291 draw_count_offset);
5292 /* Zero the top 32-bits of GPR1. */
5293 ice->vtbl.load_register_imm32(batch, CS_GPR(1) + 4, 0);
5294 /* Upload the id of the current primitive to GPR0. */
5295 ice->vtbl.load_register_imm64(batch, CS_GPR(0), draw->drawid);
5296
5297 iris_batch_emit(batch, math, sizeof(math));
5298
5299 /* Store result of MI_MATH computations to MI_PREDICATE_RESULT. */
5300 ice->vtbl.load_register_reg64(batch,
5301 MI_PREDICATE_RESULT, CS_GPR(3));
5302 } else {
5303 uint32_t mi_predicate;
5304
5305 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5306 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5307 draw->drawid);
5308 /* Upload the current draw count from the draw parameters buffer
5309 * to MI_PREDICATE_SRC0.
5310 */
5311 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5312 draw_count_bo, draw_count_offset);
5313 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5314 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5315
5316 if (draw->drawid == 0) {
5317 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5318 MI_PREDICATE_COMBINEOP_SET |
5319 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5320 } else {
5321 /* While draw_index < draw_count the predicate's result will be
5322 * (draw_index == draw_count) ^ TRUE = TRUE
5323 * When draw_index == draw_count the result is
5324 * (TRUE) ^ TRUE = FALSE
5325 * After this all results will be:
5326 * (FALSE) ^ FALSE = FALSE
5327 */
5328 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5329 MI_PREDICATE_COMBINEOP_XOR |
5330 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5331 }
5332 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5333 }
5334 }
5335 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5336 assert(bo);
5337
5338 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5339 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5340 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5341 }
5342 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5343 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5344 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5345 }
5346 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5347 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5348 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5349 }
5350 if (draw->index_size) {
5351 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5352 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5353 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5354 }
5355 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5356 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5357 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5358 }
5359 } else {
5360 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5361 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5362 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5363 }
5364 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5365 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5366 lri.DataDWord = 0;
5367 }
5368 }
5369 } else if (draw->count_from_stream_output) {
5370 struct iris_stream_output_target *so =
5371 (void *) draw->count_from_stream_output;
5372
5373 /* XXX: Replace with actual cache tracking */
5374 iris_emit_pipe_control_flush(batch,
5375 "draw count from stream output stall",
5376 PIPE_CONTROL_CS_STALL);
5377
5378 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5379 lrm.RegisterAddress = CS_GPR(0);
5380 lrm.MemoryAddress =
5381 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5382 }
5383 if (so->base.buffer_offset)
5384 iris_math_add32_gpr0(ice, batch, -so->base.buffer_offset);
5385 iris_math_div32_gpr0(ice, batch, so->stride);
5386 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5387
5388 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5389 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5390 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5391 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5392 }
5393
5394 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5395 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5396 prim.PredicateEnable = use_predicate;
5397
5398 if (draw->indirect || draw->count_from_stream_output) {
5399 prim.IndirectParameterEnable = true;
5400 } else {
5401 prim.StartInstanceLocation = draw->start_instance;
5402 prim.InstanceCount = draw->instance_count;
5403 prim.VertexCountPerInstance = draw->count;
5404
5405 prim.StartVertexLocation = draw->start;
5406
5407 if (draw->index_size) {
5408 prim.BaseVertexLocation += draw->index_bias;
5409 } else {
5410 prim.StartVertexLocation += draw->index_bias;
5411 }
5412 }
5413 }
5414 }
5415
5416 static void
5417 iris_upload_compute_state(struct iris_context *ice,
5418 struct iris_batch *batch,
5419 const struct pipe_grid_info *grid)
5420 {
5421 const uint64_t dirty = ice->state.dirty;
5422 struct iris_screen *screen = batch->screen;
5423 const struct gen_device_info *devinfo = &screen->devinfo;
5424 struct iris_binder *binder = &ice->state.binder;
5425 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5426 struct iris_compiled_shader *shader =
5427 ice->shaders.prog[MESA_SHADER_COMPUTE];
5428 struct brw_stage_prog_data *prog_data = shader->prog_data;
5429 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5430
5431 /* Always pin the binder. If we're emitting new binding table pointers,
5432 * we need it. If not, we're probably inheriting old tables via the
5433 * context, and need it anyway. Since true zero-bindings cases are
5434 * practically non-existent, just pin it and avoid last_res tracking.
5435 */
5436 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5437
5438 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
5439 upload_sysvals(ice, MESA_SHADER_COMPUTE);
5440
5441 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5442 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5443
5444 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5445 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5446
5447 iris_use_optional_res(batch, shs->sampler_table.res, false);
5448 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5449
5450 if (ice->state.need_border_colors)
5451 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5452
5453 if (dirty & IRIS_DIRTY_CS) {
5454 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5455 *
5456 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5457 * the only bits that are changed are scoreboard related: Scoreboard
5458 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5459 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5460 * sufficient."
5461 */
5462 iris_emit_pipe_control_flush(batch,
5463 "workaround: stall before MEDIA_VFE_STATE",
5464 PIPE_CONTROL_CS_STALL);
5465
5466 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5467 if (prog_data->total_scratch) {
5468 struct iris_bo *bo =
5469 iris_get_scratch_space(ice, prog_data->total_scratch,
5470 MESA_SHADER_COMPUTE);
5471 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5472 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5473 }
5474
5475 vfe.MaximumNumberofThreads =
5476 devinfo->max_cs_threads * screen->subslice_total - 1;
5477 #if GEN_GEN < 11
5478 vfe.ResetGatewayTimer =
5479 Resettingrelativetimerandlatchingtheglobaltimestamp;
5480 #endif
5481 #if GEN_GEN == 8
5482 vfe.BypassGatewayControl = true;
5483 #endif
5484 vfe.NumberofURBEntries = 2;
5485 vfe.URBEntryAllocationSize = 2;
5486
5487 vfe.CURBEAllocationSize =
5488 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5489 cs_prog_data->push.cross_thread.regs, 2);
5490 }
5491 }
5492
5493 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5494 if (dirty & IRIS_DIRTY_CS) {
5495 uint32_t curbe_data_offset = 0;
5496 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5497 cs_prog_data->push.per_thread.dwords == 1 &&
5498 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5499 uint32_t *curbe_data_map =
5500 stream_state(batch, ice->state.dynamic_uploader,
5501 &ice->state.last_res.cs_thread_ids,
5502 ALIGN(cs_prog_data->push.total.size, 64), 64,
5503 &curbe_data_offset);
5504 assert(curbe_data_map);
5505 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5506 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5507
5508 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5509 curbe.CURBETotalDataLength =
5510 ALIGN(cs_prog_data->push.total.size, 64);
5511 curbe.CURBEDataStartAddress = curbe_data_offset;
5512 }
5513 }
5514
5515 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5516 IRIS_DIRTY_BINDINGS_CS |
5517 IRIS_DIRTY_CONSTANTS_CS |
5518 IRIS_DIRTY_CS)) {
5519 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5520
5521 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5522 idd.SamplerStatePointer = shs->sampler_table.offset;
5523 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5524 }
5525
5526 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5527 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5528
5529 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5530 load.InterfaceDescriptorTotalLength =
5531 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5532 load.InterfaceDescriptorDataStartAddress =
5533 emit_state(batch, ice->state.dynamic_uploader,
5534 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
5535 }
5536 }
5537
5538 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5539 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5540 uint32_t right_mask;
5541
5542 if (remainder > 0)
5543 right_mask = ~0u >> (32 - remainder);
5544 else
5545 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5546
5547 #define GPGPU_DISPATCHDIMX 0x2500
5548 #define GPGPU_DISPATCHDIMY 0x2504
5549 #define GPGPU_DISPATCHDIMZ 0x2508
5550
5551 if (grid->indirect) {
5552 struct iris_state_ref *grid_size = &ice->state.grid_size;
5553 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5554 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5555 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5556 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5557 }
5558 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5559 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5560 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5561 }
5562 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5563 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5564 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5565 }
5566 }
5567
5568 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5569 ggw.IndirectParameterEnable = grid->indirect != NULL;
5570 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5571 ggw.ThreadDepthCounterMaximum = 0;
5572 ggw.ThreadHeightCounterMaximum = 0;
5573 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5574 ggw.ThreadGroupIDXDimension = grid->grid[0];
5575 ggw.ThreadGroupIDYDimension = grid->grid[1];
5576 ggw.ThreadGroupIDZDimension = grid->grid[2];
5577 ggw.RightExecutionMask = right_mask;
5578 ggw.BottomExecutionMask = 0xffffffff;
5579 }
5580
5581 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5582
5583 if (!batch->contains_draw) {
5584 iris_restore_compute_saved_bos(ice, batch, grid);
5585 batch->contains_draw = true;
5586 }
5587 }
5588
5589 /**
5590 * State module teardown.
5591 */
5592 static void
5593 iris_destroy_state(struct iris_context *ice)
5594 {
5595 struct iris_genx_state *genx = ice->state.genx;
5596
5597 pipe_resource_reference(&ice->draw.draw_params_res, NULL);
5598 pipe_resource_reference(&ice->draw.derived_draw_params_res, NULL);
5599
5600 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5601 while (bound_vbs) {
5602 const int i = u_bit_scan64(&bound_vbs);
5603 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5604 }
5605 free(ice->state.genx);
5606
5607 for (int i = 0; i < 4; i++) {
5608 pipe_so_target_reference(&ice->state.so_target[i], NULL);
5609 }
5610
5611 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5612 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5613 }
5614 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5615
5616 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5617 struct iris_shader_state *shs = &ice->state.shaders[stage];
5618 pipe_resource_reference(&shs->sampler_table.res, NULL);
5619 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5620 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5621 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5622 }
5623 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5624 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5625 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5626 }
5627 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5628 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5629 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5630 }
5631 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5632 pipe_sampler_view_reference((struct pipe_sampler_view **)
5633 &shs->textures[i], NULL);
5634 }
5635 }
5636
5637 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5638 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5639
5640 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5641 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5642
5643 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5644 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5645 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5646 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5647 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5648 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5649 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
5650 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
5651 }
5652
5653 /* ------------------------------------------------------------------- */
5654
5655 static void
5656 iris_rebind_buffer(struct iris_context *ice,
5657 struct iris_resource *res,
5658 uint64_t old_address)
5659 {
5660 struct pipe_context *ctx = &ice->ctx;
5661 struct iris_screen *screen = (void *) ctx->screen;
5662 struct iris_genx_state *genx = ice->state.genx;
5663
5664 assert(res->base.target == PIPE_BUFFER);
5665
5666 /* Buffers can't be framebuffer attachments, nor display related,
5667 * and we don't have upstream Clover support.
5668 */
5669 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5670 PIPE_BIND_RENDER_TARGET |
5671 PIPE_BIND_BLENDABLE |
5672 PIPE_BIND_DISPLAY_TARGET |
5673 PIPE_BIND_CURSOR |
5674 PIPE_BIND_COMPUTE_RESOURCE |
5675 PIPE_BIND_GLOBAL)));
5676
5677 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
5678 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5679 while (bound_vbs) {
5680 const int i = u_bit_scan64(&bound_vbs);
5681 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
5682
5683 /* Update the CPU struct */
5684 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
5685 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
5686 uint64_t *addr = (uint64_t *) &state->state[1];
5687
5688 if (*addr == old_address) {
5689 *addr = res->bo->gtt_offset;
5690 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
5691 }
5692 }
5693 }
5694
5695 /* No need to handle these:
5696 * - PIPE_BIND_INDEX_BUFFER (emitted for every indexed draw)
5697 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
5698 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
5699 */
5700
5701 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
5702 /* XXX: be careful about resetting vs appending... */
5703 assert(false);
5704 }
5705
5706 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
5707 struct iris_shader_state *shs = &ice->state.shaders[s];
5708 enum pipe_shader_type p_stage = stage_to_pipe(s);
5709
5710 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
5711 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
5712 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
5713 while (bound_cbufs) {
5714 const int i = u_bit_scan(&bound_cbufs);
5715 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
5716 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
5717
5718 if (res->bo == iris_resource_bo(cbuf->buffer)) {
5719 iris_upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
5720 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
5721 }
5722 }
5723 }
5724
5725 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
5726 uint32_t bound_ssbos = shs->bound_ssbos;
5727 while (bound_ssbos) {
5728 const int i = u_bit_scan(&bound_ssbos);
5729 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
5730
5731 if (res->bo == iris_resource_bo(ssbo->buffer)) {
5732 struct pipe_shader_buffer buf = {
5733 .buffer = &res->base,
5734 .buffer_offset = ssbo->buffer_offset,
5735 .buffer_size = ssbo->buffer_size,
5736 };
5737 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
5738 (shs->writable_ssbos >> i) & 1);
5739 }
5740 }
5741 }
5742
5743 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
5744 uint32_t bound_sampler_views = shs->bound_sampler_views;
5745 while (bound_sampler_views) {
5746 const int i = u_bit_scan(&bound_sampler_views);
5747 struct iris_sampler_view *isv = shs->textures[i];
5748
5749 if (res->bo == iris_resource_bo(isv->base.texture)) {
5750 void *map = alloc_surface_states(ice->state.surface_uploader,
5751 &isv->surface_state,
5752 isv->res->aux.sampler_usages);
5753 assert(map);
5754 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
5755 isv->view.format, isv->view.swizzle,
5756 isv->base.u.buf.offset,
5757 isv->base.u.buf.size);
5758 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
5759 }
5760 }
5761 }
5762
5763 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
5764 uint32_t bound_image_views = shs->bound_image_views;
5765 while (bound_image_views) {
5766 const int i = u_bit_scan(&bound_image_views);
5767 struct iris_image_view *iv = &shs->image[i];
5768
5769 if (res->bo == iris_resource_bo(iv->base.resource)) {
5770 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
5771 }
5772 }
5773 }
5774 }
5775 }
5776
5777 /* ------------------------------------------------------------------- */
5778
5779 static void
5780 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5781 uint32_t src)
5782 {
5783 _iris_emit_lrr(batch, dst, src);
5784 }
5785
5786 static void
5787 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5788 uint32_t src)
5789 {
5790 _iris_emit_lrr(batch, dst, src);
5791 _iris_emit_lrr(batch, dst + 4, src + 4);
5792 }
5793
5794 static void
5795 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5796 uint32_t val)
5797 {
5798 _iris_emit_lri(batch, reg, val);
5799 }
5800
5801 static void
5802 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5803 uint64_t val)
5804 {
5805 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5806 _iris_emit_lri(batch, reg + 4, val >> 32);
5807 }
5808
5809 /**
5810 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5811 */
5812 static void
5813 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5814 struct iris_bo *bo, uint32_t offset)
5815 {
5816 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5817 lrm.RegisterAddress = reg;
5818 lrm.MemoryAddress = ro_bo(bo, offset);
5819 }
5820 }
5821
5822 /**
5823 * Load a 64-bit value from a buffer into a MMIO register via
5824 * two MI_LOAD_REGISTER_MEM commands.
5825 */
5826 static void
5827 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5828 struct iris_bo *bo, uint32_t offset)
5829 {
5830 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5831 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5832 }
5833
5834 static void
5835 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5836 struct iris_bo *bo, uint32_t offset,
5837 bool predicated)
5838 {
5839 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5840 srm.RegisterAddress = reg;
5841 srm.MemoryAddress = rw_bo(bo, offset);
5842 srm.PredicateEnable = predicated;
5843 }
5844 }
5845
5846 static void
5847 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5848 struct iris_bo *bo, uint32_t offset,
5849 bool predicated)
5850 {
5851 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5852 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5853 }
5854
5855 static void
5856 iris_store_data_imm32(struct iris_batch *batch,
5857 struct iris_bo *bo, uint32_t offset,
5858 uint32_t imm)
5859 {
5860 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5861 sdi.Address = rw_bo(bo, offset);
5862 sdi.ImmediateData = imm;
5863 }
5864 }
5865
5866 static void
5867 iris_store_data_imm64(struct iris_batch *batch,
5868 struct iris_bo *bo, uint32_t offset,
5869 uint64_t imm)
5870 {
5871 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5872 * 2 in genxml but it's actually variable length and we need 5 DWords.
5873 */
5874 void *map = iris_get_command_space(batch, 4 * 5);
5875 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5876 sdi.DWordLength = 5 - 2;
5877 sdi.Address = rw_bo(bo, offset);
5878 sdi.ImmediateData = imm;
5879 }
5880 }
5881
5882 static void
5883 iris_copy_mem_mem(struct iris_batch *batch,
5884 struct iris_bo *dst_bo, uint32_t dst_offset,
5885 struct iris_bo *src_bo, uint32_t src_offset,
5886 unsigned bytes)
5887 {
5888 /* MI_COPY_MEM_MEM operates on DWords. */
5889 assert(bytes % 4 == 0);
5890 assert(dst_offset % 4 == 0);
5891 assert(src_offset % 4 == 0);
5892
5893 for (unsigned i = 0; i < bytes; i += 4) {
5894 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5895 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5896 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5897 }
5898 }
5899 }
5900
5901 /* ------------------------------------------------------------------- */
5902
5903 static unsigned
5904 flags_to_post_sync_op(uint32_t flags)
5905 {
5906 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5907 return WriteImmediateData;
5908
5909 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5910 return WritePSDepthCount;
5911
5912 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5913 return WriteTimestamp;
5914
5915 return 0;
5916 }
5917
5918 /**
5919 * Do the given flags have a Post Sync or LRI Post Sync operation?
5920 */
5921 static enum pipe_control_flags
5922 get_post_sync_flags(enum pipe_control_flags flags)
5923 {
5924 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5925 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5926 PIPE_CONTROL_WRITE_TIMESTAMP |
5927 PIPE_CONTROL_LRI_POST_SYNC_OP;
5928
5929 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5930 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5931 */
5932 assert(util_bitcount(flags) <= 1);
5933
5934 return flags;
5935 }
5936
5937 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5938
5939 /**
5940 * Emit a series of PIPE_CONTROL commands, taking into account any
5941 * workarounds necessary to actually accomplish the caller's request.
5942 *
5943 * Unless otherwise noted, spec quotations in this function come from:
5944 *
5945 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5946 * Restrictions for PIPE_CONTROL.
5947 *
5948 * You should not use this function directly. Use the helpers in
5949 * iris_pipe_control.c instead, which may split the pipe control further.
5950 */
5951 static void
5952 iris_emit_raw_pipe_control(struct iris_batch *batch,
5953 const char *reason,
5954 uint32_t flags,
5955 struct iris_bo *bo,
5956 uint32_t offset,
5957 uint64_t imm)
5958 {
5959 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5960 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5961 enum pipe_control_flags non_lri_post_sync_flags =
5962 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5963
5964 /* Recursive PIPE_CONTROL workarounds --------------------------------
5965 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5966 *
5967 * We do these first because we want to look at the original operation,
5968 * rather than any workarounds we set.
5969 */
5970 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5971 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5972 * lists several workarounds:
5973 *
5974 * "Project: SKL, KBL, BXT
5975 *
5976 * If the VF Cache Invalidation Enable is set to a 1 in a
5977 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5978 * sets to 0, with the VF Cache Invalidation Enable set to 0
5979 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5980 * Invalidation Enable set to a 1."
5981 */
5982 iris_emit_raw_pipe_control(batch,
5983 "workaround: recursive VF cache invalidate",
5984 0, NULL, 0, 0);
5985 }
5986
5987 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5988 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5989 *
5990 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5991 * programmed prior to programming a PIPECONTROL command with "LRI
5992 * Post Sync Operation" in GPGPU mode of operation (i.e when
5993 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5994 *
5995 * The same text exists a few rows below for Post Sync Op.
5996 */
5997 iris_emit_raw_pipe_control(batch,
5998 "workaround: CS stall before gpgpu post-sync",
5999 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6000 }
6001
6002 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6003 /* Cannonlake:
6004 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6005 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6006 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6007 */
6008 iris_emit_raw_pipe_control(batch,
6009 "workaround: PC flush before RT flush",
6010 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6011 }
6012
6013 /* "Flush Types" workarounds ---------------------------------------------
6014 * We do these now because they may add post-sync operations or CS stalls.
6015 */
6016
6017 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6018 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6019 *
6020 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6021 * 'Write PS Depth Count' or 'Write Timestamp'."
6022 */
6023 if (!bo) {
6024 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6025 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6026 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6027 bo = batch->screen->workaround_bo;
6028 }
6029 }
6030
6031 /* #1130 from Gen10 workarounds page:
6032 *
6033 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6034 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6035 * board stall if Render target cache flush is enabled."
6036 *
6037 * Applicable to CNL B0 and C0 steppings only.
6038 *
6039 * The wording here is unclear, and this workaround doesn't look anything
6040 * like the internal bug report recommendations, but leave it be for now...
6041 */
6042 if (GEN_GEN == 10) {
6043 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6044 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6045 } else if (flags & non_lri_post_sync_flags) {
6046 flags |= PIPE_CONTROL_DEPTH_STALL;
6047 }
6048 }
6049
6050 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6051 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6052 *
6053 * "This bit must be DISABLED for operations other than writing
6054 * PS_DEPTH_COUNT."
6055 *
6056 * This seems like nonsense. An Ivybridge workaround requires us to
6057 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6058 * operation. Gen8+ requires us to emit depth stalls and depth cache
6059 * flushes together. So, it's hard to imagine this means anything other
6060 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6061 *
6062 * We ignore the supposed restriction and do nothing.
6063 */
6064 }
6065
6066 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6067 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6068 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6069 *
6070 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6071 * PS_DEPTH_COUNT or TIMESTAMP queries."
6072 *
6073 * TODO: Implement end-of-pipe checking.
6074 */
6075 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6076 PIPE_CONTROL_WRITE_TIMESTAMP)));
6077 }
6078
6079 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6080 /* From the PIPE_CONTROL instruction table, bit 1:
6081 *
6082 * "This bit is ignored if Depth Stall Enable is set.
6083 * Further, the render cache is not flushed even if Write Cache
6084 * Flush Enable bit is set."
6085 *
6086 * We assert that the caller doesn't do this combination, to try and
6087 * prevent mistakes. It shouldn't hurt the GPU, though.
6088 *
6089 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6090 * and "Render Target Flush" combo is explicitly required for BTI
6091 * update workarounds.
6092 */
6093 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6094 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6095 }
6096
6097 /* PIPE_CONTROL page workarounds ------------------------------------- */
6098
6099 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6100 /* From the PIPE_CONTROL page itself:
6101 *
6102 * "IVB, HSW, BDW
6103 * Restriction: Pipe_control with CS-stall bit set must be issued
6104 * before a pipe-control command that has the State Cache
6105 * Invalidate bit set."
6106 */
6107 flags |= PIPE_CONTROL_CS_STALL;
6108 }
6109
6110 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6111 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6112 *
6113 * "Project: ALL
6114 * SW must always program Post-Sync Operation to "Write Immediate
6115 * Data" when Flush LLC is set."
6116 *
6117 * For now, we just require the caller to do it.
6118 */
6119 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6120 }
6121
6122 /* "Post-Sync Operation" workarounds -------------------------------- */
6123
6124 /* Project: All / Argument: Global Snapshot Count Reset [19]
6125 *
6126 * "This bit must not be exercised on any product.
6127 * Requires stall bit ([20] of DW1) set."
6128 *
6129 * We don't use this, so we just assert that it isn't used. The
6130 * PIPE_CONTROL instruction page indicates that they intended this
6131 * as a debug feature and don't think it is useful in production,
6132 * but it may actually be usable, should we ever want to.
6133 */
6134 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6135
6136 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6137 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6138 /* Project: All / Arguments:
6139 *
6140 * - Generic Media State Clear [16]
6141 * - Indirect State Pointers Disable [16]
6142 *
6143 * "Requires stall bit ([20] of DW1) set."
6144 *
6145 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6146 * State Clear) says:
6147 *
6148 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6149 * programmed prior to programming a PIPECONTROL command with "Media
6150 * State Clear" set in GPGPU mode of operation"
6151 *
6152 * This is a subset of the earlier rule, so there's nothing to do.
6153 */
6154 flags |= PIPE_CONTROL_CS_STALL;
6155 }
6156
6157 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6158 /* Project: All / Argument: Store Data Index
6159 *
6160 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6161 * than '0'."
6162 *
6163 * For now, we just assert that the caller does this. We might want to
6164 * automatically add a write to the workaround BO...
6165 */
6166 assert(non_lri_post_sync_flags != 0);
6167 }
6168
6169 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6170 /* Project: All / Argument: Sync GFDT
6171 *
6172 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6173 * than '0' or 0x2520[13] must be set."
6174 *
6175 * For now, we just assert that the caller does this.
6176 */
6177 assert(non_lri_post_sync_flags != 0);
6178 }
6179
6180 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6181 /* Project: IVB+ / Argument: TLB inv
6182 *
6183 * "Requires stall bit ([20] of DW1) set."
6184 *
6185 * Also, from the PIPE_CONTROL instruction table:
6186 *
6187 * "Project: SKL+
6188 * Post Sync Operation or CS stall must be set to ensure a TLB
6189 * invalidation occurs. Otherwise no cycle will occur to the TLB
6190 * cache to invalidate."
6191 *
6192 * This is not a subset of the earlier rule, so there's nothing to do.
6193 */
6194 flags |= PIPE_CONTROL_CS_STALL;
6195 }
6196
6197 if (GEN_GEN == 9 && devinfo->gt == 4) {
6198 /* TODO: The big Skylake GT4 post sync op workaround */
6199 }
6200
6201 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6202
6203 if (IS_COMPUTE_PIPELINE(batch)) {
6204 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6205 /* Project: SKL+ / Argument: Tex Invalidate
6206 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6207 */
6208 flags |= PIPE_CONTROL_CS_STALL;
6209 }
6210
6211 if (GEN_GEN == 8 && (post_sync_flags ||
6212 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6213 PIPE_CONTROL_DEPTH_STALL |
6214 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6215 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6216 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6217 /* Project: BDW / Arguments:
6218 *
6219 * - LRI Post Sync Operation [23]
6220 * - Post Sync Op [15:14]
6221 * - Notify En [8]
6222 * - Depth Stall [13]
6223 * - Render Target Cache Flush [12]
6224 * - Depth Cache Flush [0]
6225 * - DC Flush Enable [5]
6226 *
6227 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6228 * Workloads."
6229 */
6230 flags |= PIPE_CONTROL_CS_STALL;
6231
6232 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6233 *
6234 * "Project: BDW
6235 * This bit must be always set when PIPE_CONTROL command is
6236 * programmed by GPGPU and MEDIA workloads, except for the cases
6237 * when only Read Only Cache Invalidation bits are set (State
6238 * Cache Invalidation Enable, Instruction cache Invalidation
6239 * Enable, Texture Cache Invalidation Enable, Constant Cache
6240 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6241 * need not implemented when FF_DOP_CG is disable via "Fixed
6242 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6243 *
6244 * It sounds like we could avoid CS stalls in some cases, but we
6245 * don't currently bother. This list isn't exactly the list above,
6246 * either...
6247 */
6248 }
6249 }
6250
6251 /* "Stall" workarounds ----------------------------------------------
6252 * These have to come after the earlier ones because we may have added
6253 * some additional CS stalls above.
6254 */
6255
6256 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6257 /* Project: PRE-SKL, VLV, CHV
6258 *
6259 * "[All Stepping][All SKUs]:
6260 *
6261 * One of the following must also be set:
6262 *
6263 * - Render Target Cache Flush Enable ([12] of DW1)
6264 * - Depth Cache Flush Enable ([0] of DW1)
6265 * - Stall at Pixel Scoreboard ([1] of DW1)
6266 * - Depth Stall ([13] of DW1)
6267 * - Post-Sync Operation ([13] of DW1)
6268 * - DC Flush Enable ([5] of DW1)"
6269 *
6270 * If we don't already have one of those bits set, we choose to add
6271 * "Stall at Pixel Scoreboard". Some of the other bits require a
6272 * CS stall as a workaround (see above), which would send us into
6273 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6274 * appears to be safe, so we choose that.
6275 */
6276 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6277 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6278 PIPE_CONTROL_WRITE_IMMEDIATE |
6279 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6280 PIPE_CONTROL_WRITE_TIMESTAMP |
6281 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6282 PIPE_CONTROL_DEPTH_STALL |
6283 PIPE_CONTROL_DATA_CACHE_FLUSH;
6284 if (!(flags & wa_bits))
6285 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6286 }
6287
6288 /* Emit --------------------------------------------------------------- */
6289
6290 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6291 fprintf(stderr,
6292 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6293 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6294 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6295 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6296 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6297 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6298 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6299 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6300 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6301 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6302 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6303 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6304 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6305 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6306 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6307 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6308 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6309 "SnapRes" : "",
6310 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6311 "ISPDis" : "",
6312 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6313 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6314 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6315 imm, reason);
6316 }
6317
6318 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6319 pc.LRIPostSyncOperation = NoLRIOperation;
6320 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6321 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6322 pc.StoreDataIndex = 0;
6323 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6324 pc.GlobalSnapshotCountReset =
6325 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6326 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6327 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6328 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6329 pc.RenderTargetCacheFlushEnable =
6330 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6331 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6332 pc.StateCacheInvalidationEnable =
6333 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6334 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6335 pc.ConstantCacheInvalidationEnable =
6336 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6337 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6338 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6339 pc.InstructionCacheInvalidateEnable =
6340 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6341 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6342 pc.IndirectStatePointersDisable =
6343 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6344 pc.TextureCacheInvalidationEnable =
6345 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6346 pc.Address = rw_bo(bo, offset);
6347 pc.ImmediateData = imm;
6348 }
6349 }
6350
6351 void
6352 genX(emit_urb_setup)(struct iris_context *ice,
6353 struct iris_batch *batch,
6354 const unsigned size[4],
6355 bool tess_present, bool gs_present)
6356 {
6357 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6358 const unsigned push_size_kB = 32;
6359 unsigned entries[4];
6360 unsigned start[4];
6361
6362 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6363
6364 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6365 1024 * ice->shaders.urb_size,
6366 tess_present, gs_present,
6367 size, entries, start);
6368
6369 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6370 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6371 urb._3DCommandSubOpcode += i;
6372 urb.VSURBStartingAddress = start[i];
6373 urb.VSURBEntryAllocationSize = size[i] - 1;
6374 urb.VSNumberofURBEntries = entries[i];
6375 }
6376 }
6377 }
6378
6379 #if GEN_GEN == 9
6380 /**
6381 * Preemption on Gen9 has to be enabled or disabled in various cases.
6382 *
6383 * See these workarounds for preemption:
6384 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6385 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6386 * - WaDisableMidObjectPreemptionForLineLoop
6387 * - WA#0798
6388 *
6389 * We don't put this in the vtable because it's only used on Gen9.
6390 */
6391 void
6392 gen9_toggle_preemption(struct iris_context *ice,
6393 struct iris_batch *batch,
6394 const struct pipe_draw_info *draw)
6395 {
6396 struct iris_genx_state *genx = ice->state.genx;
6397 bool object_preemption = true;
6398
6399 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6400 *
6401 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6402 * and GS is enabled."
6403 */
6404 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6405 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6406 object_preemption = false;
6407
6408 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6409 *
6410 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6411 * on a previous context. End the previous, the resume another context
6412 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6413 * prempt again we will cause corruption.
6414 *
6415 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6416 */
6417 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6418 object_preemption = false;
6419
6420 /* WaDisableMidObjectPreemptionForLineLoop
6421 *
6422 * "VF Stats Counters Missing a vertex when preemption enabled.
6423 *
6424 * WA: Disable mid-draw preemption when the draw uses a lineloop
6425 * topology."
6426 */
6427 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6428 object_preemption = false;
6429
6430 /* WA#0798
6431 *
6432 * "VF is corrupting GAFS data when preempted on an instance boundary
6433 * and replayed with instancing enabled.
6434 *
6435 * WA: Disable preemption when using instanceing."
6436 */
6437 if (draw->instance_count > 1)
6438 object_preemption = false;
6439
6440 if (genx->object_preemption != object_preemption) {
6441 iris_enable_obj_preemption(batch, object_preemption);
6442 genx->object_preemption = object_preemption;
6443 }
6444 }
6445 #endif
6446
6447 void
6448 genX(init_state)(struct iris_context *ice)
6449 {
6450 struct pipe_context *ctx = &ice->ctx;
6451 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6452
6453 ctx->create_blend_state = iris_create_blend_state;
6454 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6455 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6456 ctx->create_sampler_state = iris_create_sampler_state;
6457 ctx->create_sampler_view = iris_create_sampler_view;
6458 ctx->create_surface = iris_create_surface;
6459 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6460 ctx->bind_blend_state = iris_bind_blend_state;
6461 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6462 ctx->bind_sampler_states = iris_bind_sampler_states;
6463 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6464 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6465 ctx->delete_blend_state = iris_delete_state;
6466 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6467 ctx->delete_rasterizer_state = iris_delete_state;
6468 ctx->delete_sampler_state = iris_delete_state;
6469 ctx->delete_vertex_elements_state = iris_delete_state;
6470 ctx->set_blend_color = iris_set_blend_color;
6471 ctx->set_clip_state = iris_set_clip_state;
6472 ctx->set_constant_buffer = iris_set_constant_buffer;
6473 ctx->set_shader_buffers = iris_set_shader_buffers;
6474 ctx->set_shader_images = iris_set_shader_images;
6475 ctx->set_sampler_views = iris_set_sampler_views;
6476 ctx->set_tess_state = iris_set_tess_state;
6477 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6478 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6479 ctx->set_sample_mask = iris_set_sample_mask;
6480 ctx->set_scissor_states = iris_set_scissor_states;
6481 ctx->set_stencil_ref = iris_set_stencil_ref;
6482 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6483 ctx->set_viewport_states = iris_set_viewport_states;
6484 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6485 ctx->surface_destroy = iris_surface_destroy;
6486 ctx->draw_vbo = iris_draw_vbo;
6487 ctx->launch_grid = iris_launch_grid;
6488 ctx->create_stream_output_target = iris_create_stream_output_target;
6489 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6490 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6491
6492 ice->vtbl.destroy_state = iris_destroy_state;
6493 ice->vtbl.init_render_context = iris_init_render_context;
6494 ice->vtbl.init_compute_context = iris_init_compute_context;
6495 ice->vtbl.upload_render_state = iris_upload_render_state;
6496 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6497 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6498 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6499 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6500 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6501 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6502 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6503 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6504 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6505 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6506 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6507 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6508 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6509 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6510 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6511 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6512 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6513 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6514 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6515 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6516 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6517 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6518 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6519 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6520 ice->vtbl.mocs = mocs;
6521
6522 ice->state.dirty = ~0ull;
6523
6524 ice->state.statistics_counters_enabled = true;
6525
6526 ice->state.sample_mask = 0xffff;
6527 ice->state.num_viewports = 1;
6528 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6529
6530 /* Make a 1x1x1 null surface for unbound textures */
6531 void *null_surf_map =
6532 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6533 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6534 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6535 ice->state.unbound_tex.offset +=
6536 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6537
6538 /* Default all scissor rectangles to be empty regions. */
6539 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6540 ice->state.scissors[i] = (struct pipe_scissor_state) {
6541 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6542 };
6543 }
6544 }