i965,iris: Move guardband calculations to a common location
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #define __gen_address_type struct iris_address
110 #define __gen_user_data struct iris_batch
111
112 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
113
114 static uint64_t
115 __gen_combine_address(struct iris_batch *batch, void *location,
116 struct iris_address addr, uint32_t delta)
117 {
118 uint64_t result = addr.offset + delta;
119
120 if (addr.bo) {
121 iris_use_pinned_bo(batch, addr.bo, addr.write);
122 /* Assume this is a general address, not relative to a base. */
123 result += addr.bo->gtt_offset;
124 }
125
126 return result;
127 }
128
129 #define __genxml_cmd_length(cmd) cmd ## _length
130 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
131 #define __genxml_cmd_header(cmd) cmd ## _header
132 #define __genxml_cmd_pack(cmd) cmd ## _pack
133
134 #define _iris_pack_command(batch, cmd, dst, name) \
135 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
136 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
137 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
138 _dst = NULL; \
139 }))
140
141 #define iris_pack_command(cmd, dst, name) \
142 _iris_pack_command(NULL, cmd, dst, name)
143
144 #define iris_pack_state(cmd, dst, name) \
145 for (struct cmd name = {}, \
146 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
147 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
148 _dst = NULL)
149
150 #define iris_emit_cmd(batch, cmd, name) \
151 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
152
153 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
154 do { \
155 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
156 for (uint32_t i = 0; i < num_dwords; i++) \
157 dw[i] = (dwords0)[i] | (dwords1)[i]; \
158 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
159 } while (0)
160
161 #include "genxml/genX_pack.h"
162 #include "genxml/gen_macros.h"
163 #include "genxml/genX_bits.h"
164 #include "intel/common/gen_guardband.h"
165
166 #if GEN_GEN == 8
167 #define MOCS_PTE 0x18
168 #define MOCS_WB 0x78
169 #else
170 #define MOCS_PTE (1 << 1)
171 #define MOCS_WB (2 << 1)
172 #endif
173
174 static uint32_t
175 mocs(const struct iris_bo *bo)
176 {
177 return bo && bo->external ? MOCS_PTE : MOCS_WB;
178 }
179
180 /**
181 * Statically assert that PIPE_* enums match the hardware packets.
182 * (As long as they match, we don't need to translate them.)
183 */
184 UNUSED static void pipe_asserts()
185 {
186 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
187
188 /* pipe_logicop happens to match the hardware. */
189 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
190 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
192 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
193 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
194 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
195 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
196 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
197 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
198 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
199 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
201 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
202 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
203 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
204 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
205
206 /* pipe_blend_func happens to match the hardware. */
207 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
224 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
225 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
226
227 /* pipe_blend_func happens to match the hardware. */
228 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
229 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
230 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
231 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
232 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
233
234 /* pipe_stencil_op happens to match the hardware. */
235 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
236 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
237 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
241 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
242 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
243
244 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
245 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
246 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
247 #undef PIPE_ASSERT
248 }
249
250 static unsigned
251 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
252 {
253 static const unsigned map[] = {
254 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
255 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
256 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
257 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
258 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
259 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
260 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
261 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
262 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
263 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
264 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
265 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
266 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
267 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
268 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
269 };
270
271 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
272 }
273
274 static unsigned
275 translate_compare_func(enum pipe_compare_func pipe_func)
276 {
277 static const unsigned map[] = {
278 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
279 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
280 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
281 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
282 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
283 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
284 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
285 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
286 };
287 return map[pipe_func];
288 }
289
290 static unsigned
291 translate_shadow_func(enum pipe_compare_func pipe_func)
292 {
293 /* Gallium specifies the result of shadow comparisons as:
294 *
295 * 1 if ref <op> texel,
296 * 0 otherwise.
297 *
298 * The hardware does:
299 *
300 * 0 if texel <op> ref,
301 * 1 otherwise.
302 *
303 * So we need to flip the operator and also negate.
304 */
305 static const unsigned map[] = {
306 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
307 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
308 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
309 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
310 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
311 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
312 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
313 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
314 };
315 return map[pipe_func];
316 }
317
318 static unsigned
319 translate_cull_mode(unsigned pipe_face)
320 {
321 static const unsigned map[4] = {
322 [PIPE_FACE_NONE] = CULLMODE_NONE,
323 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
324 [PIPE_FACE_BACK] = CULLMODE_BACK,
325 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
326 };
327 return map[pipe_face];
328 }
329
330 static unsigned
331 translate_fill_mode(unsigned pipe_polymode)
332 {
333 static const unsigned map[4] = {
334 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
335 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
336 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
337 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
338 };
339 return map[pipe_polymode];
340 }
341
342 static unsigned
343 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
344 {
345 static const unsigned map[] = {
346 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
347 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
348 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
349 };
350 return map[pipe_mip];
351 }
352
353 static uint32_t
354 translate_wrap(unsigned pipe_wrap)
355 {
356 static const unsigned map[] = {
357 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
358 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
359 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
360 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
361 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
362 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
363
364 /* These are unsupported. */
365 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
366 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
367 };
368 return map[pipe_wrap];
369 }
370
371 static struct iris_address
372 ro_bo(struct iris_bo *bo, uint64_t offset)
373 {
374 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
375 * validation list at CSO creation time, instead of draw time.
376 */
377 return (struct iris_address) { .bo = bo, .offset = offset };
378 }
379
380 static struct iris_address
381 rw_bo(struct iris_bo *bo, uint64_t offset)
382 {
383 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
384 * validation list at CSO creation time, instead of draw time.
385 */
386 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
387 }
388
389 /**
390 * Allocate space for some indirect state.
391 *
392 * Return a pointer to the map (to fill it out) and a state ref (for
393 * referring to the state in GPU commands).
394 */
395 static void *
396 upload_state(struct u_upload_mgr *uploader,
397 struct iris_state_ref *ref,
398 unsigned size,
399 unsigned alignment)
400 {
401 void *p = NULL;
402 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
403 return p;
404 }
405
406 /**
407 * Stream out temporary/short-lived state.
408 *
409 * This allocates space, pins the BO, and includes the BO address in the
410 * returned offset (which works because all state lives in 32-bit memory
411 * zones).
412 */
413 static uint32_t *
414 stream_state(struct iris_batch *batch,
415 struct u_upload_mgr *uploader,
416 struct pipe_resource **out_res,
417 unsigned size,
418 unsigned alignment,
419 uint32_t *out_offset)
420 {
421 void *ptr = NULL;
422
423 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
424
425 struct iris_bo *bo = iris_resource_bo(*out_res);
426 iris_use_pinned_bo(batch, bo, false);
427
428 *out_offset += iris_bo_offset_from_base_address(bo);
429
430 iris_record_state_size(batch->state_sizes, *out_offset, size);
431
432 return ptr;
433 }
434
435 /**
436 * stream_state() + memcpy.
437 */
438 static uint32_t
439 emit_state(struct iris_batch *batch,
440 struct u_upload_mgr *uploader,
441 struct pipe_resource **out_res,
442 const void *data,
443 unsigned size,
444 unsigned alignment)
445 {
446 unsigned offset = 0;
447 uint32_t *map =
448 stream_state(batch, uploader, out_res, size, alignment, &offset);
449
450 if (map)
451 memcpy(map, data, size);
452
453 return offset;
454 }
455
456 /**
457 * Did field 'x' change between 'old_cso' and 'new_cso'?
458 *
459 * (If so, we may want to set some dirty flags.)
460 */
461 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
462 #define cso_changed_memcmp(x) \
463 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
464
465 static void
466 flush_for_state_base_change(struct iris_batch *batch)
467 {
468 /* Flush before emitting STATE_BASE_ADDRESS.
469 *
470 * This isn't documented anywhere in the PRM. However, it seems to be
471 * necessary prior to changing the surface state base adress. We've
472 * seen issues in Vulkan where we get GPU hangs when using multi-level
473 * command buffers which clear depth, reset state base address, and then
474 * go render stuff.
475 *
476 * Normally, in GL, we would trust the kernel to do sufficient stalls
477 * and flushes prior to executing our batch. However, it doesn't seem
478 * as if the kernel's flushing is always sufficient and we don't want to
479 * rely on it.
480 *
481 * We make this an end-of-pipe sync instead of a normal flush because we
482 * do not know the current status of the GPU. On Haswell at least,
483 * having a fast-clear operation in flight at the same time as a normal
484 * rendering operation can cause hangs. Since the kernel's flushing is
485 * insufficient, we need to ensure that any rendering operations from
486 * other processes are definitely complete before we try to do our own
487 * rendering. It's a bit of a big hammer but it appears to work.
488 */
489 iris_emit_end_of_pipe_sync(batch,
490 "change STATE_BASE_ADDRESS",
491 PIPE_CONTROL_RENDER_TARGET_FLUSH |
492 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
493 PIPE_CONTROL_DATA_CACHE_FLUSH);
494 }
495
496 static void
497 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
498 {
499 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
500 lri.RegisterOffset = reg;
501 lri.DataDWord = val;
502 }
503 }
504 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
505
506 static void
507 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
508 {
509 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
510 lrr.SourceRegisterAddress = src;
511 lrr.DestinationRegisterAddress = dst;
512 }
513 }
514
515 static void
516 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
517 {
518 #if GEN_GEN >= 8 && GEN_GEN < 10
519 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
520 *
521 * Software must clear the COLOR_CALC_STATE Valid field in
522 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
523 * with Pipeline Select set to GPGPU.
524 *
525 * The internal hardware docs recommend the same workaround for Gen9
526 * hardware too.
527 */
528 if (pipeline == GPGPU)
529 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
530 #endif
531
532
533 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
534 * PIPELINE_SELECT [DevBWR+]":
535 *
536 * "Project: DEVSNB+
537 *
538 * Software must ensure all the write caches are flushed through a
539 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
540 * command to invalidate read only caches prior to programming
541 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
542 */
543 iris_emit_pipe_control_flush(batch,
544 "workaround: PIPELINE_SELECT flushes (1/2)",
545 PIPE_CONTROL_RENDER_TARGET_FLUSH |
546 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
547 PIPE_CONTROL_DATA_CACHE_FLUSH |
548 PIPE_CONTROL_CS_STALL);
549
550 iris_emit_pipe_control_flush(batch,
551 "workaround: PIPELINE_SELECT flushes (2/2)",
552 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
553 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
554 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
555 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
556
557 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
558 #if GEN_GEN >= 9
559 sel.MaskBits = 3;
560 #endif
561 sel.PipelineSelection = pipeline;
562 }
563 }
564
565 UNUSED static void
566 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
567 {
568 #if GEN_GEN == 9
569 /* Project: DevGLK
570 *
571 * "This chicken bit works around a hardware issue with barrier
572 * logic encountered when switching between GPGPU and 3D pipelines.
573 * To workaround the issue, this mode bit should be set after a
574 * pipeline is selected."
575 */
576 uint32_t reg_val;
577 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
578 reg.GLKBarrierMode = value;
579 reg.GLKBarrierModeMask = 1;
580 }
581 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
582 #endif
583 }
584
585 static void
586 init_state_base_address(struct iris_batch *batch)
587 {
588 flush_for_state_base_change(batch);
589
590 /* We program most base addresses once at context initialization time.
591 * Each base address points at a 4GB memory zone, and never needs to
592 * change. See iris_bufmgr.h for a description of the memory zones.
593 *
594 * The one exception is Surface State Base Address, which needs to be
595 * updated occasionally. See iris_binder.c for the details there.
596 */
597 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
598 sba.GeneralStateMOCS = MOCS_WB;
599 sba.StatelessDataPortAccessMOCS = MOCS_WB;
600 sba.DynamicStateMOCS = MOCS_WB;
601 sba.IndirectObjectMOCS = MOCS_WB;
602 sba.InstructionMOCS = MOCS_WB;
603
604 sba.GeneralStateBaseAddressModifyEnable = true;
605 sba.DynamicStateBaseAddressModifyEnable = true;
606 sba.IndirectObjectBaseAddressModifyEnable = true;
607 sba.InstructionBaseAddressModifyEnable = true;
608 sba.GeneralStateBufferSizeModifyEnable = true;
609 sba.DynamicStateBufferSizeModifyEnable = true;
610 #if (GEN_GEN >= 9)
611 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
612 sba.BindlessSurfaceStateMOCS = MOCS_WB;
613 #endif
614 sba.IndirectObjectBufferSizeModifyEnable = true;
615 sba.InstructionBuffersizeModifyEnable = true;
616
617 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
618 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
619
620 sba.GeneralStateBufferSize = 0xfffff;
621 sba.IndirectObjectBufferSize = 0xfffff;
622 sba.InstructionBufferSize = 0xfffff;
623 sba.DynamicStateBufferSize = 0xfffff;
624 }
625 }
626
627 static void
628 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
629 bool has_slm, bool wants_dc_cache)
630 {
631 uint32_t reg_val;
632 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
633 reg.SLMEnable = has_slm;
634 #if GEN_GEN == 11
635 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
636 * in L3CNTLREG register. The default setting of the bit is not the
637 * desirable behavior.
638 */
639 reg.ErrorDetectionBehaviorControl = true;
640 reg.UseFullWays = true;
641 #endif
642 reg.URBAllocation = cfg->n[GEN_L3P_URB];
643 reg.ROAllocation = cfg->n[GEN_L3P_RO];
644 reg.DCAllocation = cfg->n[GEN_L3P_DC];
645 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
646 }
647 iris_emit_lri(batch, L3CNTLREG, reg_val);
648 }
649
650 static void
651 iris_emit_default_l3_config(struct iris_batch *batch,
652 const struct gen_device_info *devinfo,
653 bool compute)
654 {
655 bool wants_dc_cache = true;
656 bool has_slm = compute;
657 const struct gen_l3_weights w =
658 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
659 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
660 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
661 }
662
663 #if GEN_GEN == 9 || GEN_GEN == 10
664 static void
665 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
666 {
667 uint32_t reg_val;
668
669 /* A fixed function pipe flush is required before modifying this field */
670 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
671 : "disable preemption",
672 PIPE_CONTROL_RENDER_TARGET_FLUSH);
673
674 /* enable object level preemption */
675 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
676 reg.ReplayMode = enable;
677 reg.ReplayModeMask = true;
678 }
679 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
680 }
681 #endif
682
683 /**
684 * Upload the initial GPU state for a render context.
685 *
686 * This sets some invariant state that needs to be programmed a particular
687 * way, but we never actually change.
688 */
689 static void
690 iris_init_render_context(struct iris_screen *screen,
691 struct iris_batch *batch,
692 struct iris_vtable *vtbl,
693 struct pipe_debug_callback *dbg)
694 {
695 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
696 uint32_t reg_val;
697
698 emit_pipeline_select(batch, _3D);
699
700 iris_emit_default_l3_config(batch, devinfo, false);
701
702 init_state_base_address(batch);
703
704 #if GEN_GEN >= 9
705 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
706 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
707 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
708 }
709 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
710 #else
711 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
712 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
713 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
714 }
715 iris_emit_lri(batch, INSTPM, reg_val);
716 #endif
717
718 #if GEN_GEN == 9
719 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
720 reg.FloatBlendOptimizationEnable = true;
721 reg.FloatBlendOptimizationEnableMask = true;
722 reg.PartialResolveDisableInVC = true;
723 reg.PartialResolveDisableInVCMask = true;
724 }
725 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
726
727 if (devinfo->is_geminilake)
728 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
729 #endif
730
731 #if GEN_GEN == 11
732 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
733 reg.HeaderlessMessageforPreemptableContexts = 1;
734 reg.HeaderlessMessageforPreemptableContextsMask = 1;
735 }
736 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
737
738 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
739 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
740 reg.EnabledTexelOffsetPrecisionFix = 1;
741 reg.EnabledTexelOffsetPrecisionFixMask = 1;
742 }
743 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
744
745 /* WA_2204188704: Pixel Shader Panic dispatch must be disabled. */
746 iris_pack_state(GENX(COMMON_SLICE_CHICKEN3), &reg_val, reg) {
747 reg.PSThreadPanicDispatch = 0x3;
748 reg.PSThreadPanicDispatchMask = 0x3;
749 }
750 iris_emit_lri(batch, COMMON_SLICE_CHICKEN3, reg_val);
751
752 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
753 reg.StateCacheRedirectToCSSectionEnable = true;
754 reg.StateCacheRedirectToCSSectionEnableMask = true;
755 }
756 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
757
758
759 // XXX: 3D_MODE?
760 #endif
761
762 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
763 * changing it dynamically. We set it to the maximum size here, and
764 * instead include the render target dimensions in the viewport, so
765 * viewport extents clipping takes care of pruning stray geometry.
766 */
767 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
768 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
769 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
770 }
771
772 /* Set the initial MSAA sample positions. */
773 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
774 GEN_SAMPLE_POS_1X(pat._1xSample);
775 GEN_SAMPLE_POS_2X(pat._2xSample);
776 GEN_SAMPLE_POS_4X(pat._4xSample);
777 GEN_SAMPLE_POS_8X(pat._8xSample);
778 #if GEN_GEN >= 9
779 GEN_SAMPLE_POS_16X(pat._16xSample);
780 #endif
781 }
782
783 /* Use the legacy AA line coverage computation. */
784 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
785
786 /* Disable chromakeying (it's for media) */
787 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
788
789 /* We want regular rendering, not special HiZ operations. */
790 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
791
792 /* No polygon stippling offsets are necessary. */
793 /* TODO: may need to set an offset for origin-UL framebuffers */
794 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
795
796 /* Set a static partitioning of the push constant area. */
797 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
798 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
799 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
800 alloc._3DCommandSubOpcode = 18 + i;
801 alloc.ConstantBufferOffset = 6 * i;
802 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
803 }
804 }
805
806 #if GEN_GEN == 10
807 /* Gen11+ is enabled for us by the kernel. */
808 iris_enable_obj_preemption(batch, true);
809 #endif
810 }
811
812 static void
813 iris_init_compute_context(struct iris_screen *screen,
814 struct iris_batch *batch,
815 struct iris_vtable *vtbl,
816 struct pipe_debug_callback *dbg)
817 {
818 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
819
820 emit_pipeline_select(batch, GPGPU);
821
822 iris_emit_default_l3_config(batch, devinfo, true);
823
824 init_state_base_address(batch);
825
826 #if GEN_GEN == 9
827 if (devinfo->is_geminilake)
828 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
829 #endif
830 }
831
832 struct iris_vertex_buffer_state {
833 /** The VERTEX_BUFFER_STATE hardware structure. */
834 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
835
836 /** The resource to source vertex data from. */
837 struct pipe_resource *resource;
838 };
839
840 struct iris_depth_buffer_state {
841 /* Depth/HiZ/Stencil related hardware packets. */
842 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
843 GENX(3DSTATE_STENCIL_BUFFER_length) +
844 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
845 GENX(3DSTATE_CLEAR_PARAMS_length)];
846 };
847
848 /**
849 * Generation-specific context state (ice->state.genx->...).
850 *
851 * Most state can go in iris_context directly, but these encode hardware
852 * packets which vary by generation.
853 */
854 struct iris_genx_state {
855 struct iris_vertex_buffer_state vertex_buffers[33];
856
857 struct iris_depth_buffer_state depth_buffer;
858
859 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
860
861 #if GEN_GEN == 9
862 /* Is object level preemption enabled? */
863 bool object_preemption;
864 #endif
865
866 struct {
867 #if GEN_GEN == 8
868 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
869 #endif
870 } shaders[MESA_SHADER_STAGES];
871 };
872
873 /**
874 * The pipe->set_blend_color() driver hook.
875 *
876 * This corresponds to our COLOR_CALC_STATE.
877 */
878 static void
879 iris_set_blend_color(struct pipe_context *ctx,
880 const struct pipe_blend_color *state)
881 {
882 struct iris_context *ice = (struct iris_context *) ctx;
883
884 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
885 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
886 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
887 }
888
889 /**
890 * Gallium CSO for blend state (see pipe_blend_state).
891 */
892 struct iris_blend_state {
893 /** Partial 3DSTATE_PS_BLEND */
894 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
895
896 /** Partial BLEND_STATE */
897 uint32_t blend_state[GENX(BLEND_STATE_length) +
898 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
899
900 bool alpha_to_coverage; /* for shader key */
901
902 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
903 uint8_t blend_enables;
904
905 /** Bitfield of whether color writes are enabled for RT[i] */
906 uint8_t color_write_enables;
907
908 /** Does RT[0] use dual color blending? */
909 bool dual_color_blending;
910 };
911
912 static enum pipe_blendfactor
913 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
914 {
915 if (alpha_to_one) {
916 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
917 return PIPE_BLENDFACTOR_ONE;
918
919 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
920 return PIPE_BLENDFACTOR_ZERO;
921 }
922
923 return f;
924 }
925
926 /**
927 * The pipe->create_blend_state() driver hook.
928 *
929 * Translates a pipe_blend_state into iris_blend_state.
930 */
931 static void *
932 iris_create_blend_state(struct pipe_context *ctx,
933 const struct pipe_blend_state *state)
934 {
935 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
936 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
937
938 cso->blend_enables = 0;
939 cso->color_write_enables = 0;
940 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
941
942 cso->alpha_to_coverage = state->alpha_to_coverage;
943
944 bool indep_alpha_blend = false;
945
946 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
947 const struct pipe_rt_blend_state *rt =
948 &state->rt[state->independent_blend_enable ? i : 0];
949
950 enum pipe_blendfactor src_rgb =
951 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
952 enum pipe_blendfactor src_alpha =
953 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
954 enum pipe_blendfactor dst_rgb =
955 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
956 enum pipe_blendfactor dst_alpha =
957 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
958
959 if (rt->rgb_func != rt->alpha_func ||
960 src_rgb != src_alpha || dst_rgb != dst_alpha)
961 indep_alpha_blend = true;
962
963 if (rt->blend_enable)
964 cso->blend_enables |= 1u << i;
965
966 if (rt->colormask)
967 cso->color_write_enables |= 1u << i;
968
969 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
970 be.LogicOpEnable = state->logicop_enable;
971 be.LogicOpFunction = state->logicop_func;
972
973 be.PreBlendSourceOnlyClampEnable = false;
974 be.ColorClampRange = COLORCLAMP_RTFORMAT;
975 be.PreBlendColorClampEnable = true;
976 be.PostBlendColorClampEnable = true;
977
978 be.ColorBufferBlendEnable = rt->blend_enable;
979
980 be.ColorBlendFunction = rt->rgb_func;
981 be.AlphaBlendFunction = rt->alpha_func;
982 be.SourceBlendFactor = src_rgb;
983 be.SourceAlphaBlendFactor = src_alpha;
984 be.DestinationBlendFactor = dst_rgb;
985 be.DestinationAlphaBlendFactor = dst_alpha;
986
987 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
988 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
989 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
990 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
991 }
992 blend_entry += GENX(BLEND_STATE_ENTRY_length);
993 }
994
995 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
996 /* pb.HasWriteableRT is filled in at draw time.
997 * pb.AlphaTestEnable is filled in at draw time.
998 *
999 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1000 * setting it when dual color blending without an appropriate shader.
1001 */
1002
1003 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1004 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1005
1006 pb.SourceBlendFactor =
1007 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1008 pb.SourceAlphaBlendFactor =
1009 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1010 pb.DestinationBlendFactor =
1011 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1012 pb.DestinationAlphaBlendFactor =
1013 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1014 }
1015
1016 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1017 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1018 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1019 bs.AlphaToOneEnable = state->alpha_to_one;
1020 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1021 bs.ColorDitherEnable = state->dither;
1022 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1023 }
1024
1025 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1026
1027 return cso;
1028 }
1029
1030 /**
1031 * The pipe->bind_blend_state() driver hook.
1032 *
1033 * Bind a blending CSO and flag related dirty bits.
1034 */
1035 static void
1036 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1037 {
1038 struct iris_context *ice = (struct iris_context *) ctx;
1039 struct iris_blend_state *cso = state;
1040
1041 ice->state.cso_blend = cso;
1042 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1043
1044 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1045 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1046 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1047 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1048 }
1049
1050 /**
1051 * Return true if the FS writes to any color outputs which are not disabled
1052 * via color masking.
1053 */
1054 static bool
1055 has_writeable_rt(const struct iris_blend_state *cso_blend,
1056 const struct shader_info *fs_info)
1057 {
1058 if (!fs_info)
1059 return false;
1060
1061 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1062
1063 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1064 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1065
1066 return cso_blend->color_write_enables & rt_outputs;
1067 }
1068
1069 /**
1070 * Gallium CSO for depth, stencil, and alpha testing state.
1071 */
1072 struct iris_depth_stencil_alpha_state {
1073 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1074 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1075
1076 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1077 struct pipe_alpha_state alpha;
1078
1079 /** Outbound to resolve and cache set tracking. */
1080 bool depth_writes_enabled;
1081 bool stencil_writes_enabled;
1082 };
1083
1084 /**
1085 * The pipe->create_depth_stencil_alpha_state() driver hook.
1086 *
1087 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1088 * testing state since we need pieces of it in a variety of places.
1089 */
1090 static void *
1091 iris_create_zsa_state(struct pipe_context *ctx,
1092 const struct pipe_depth_stencil_alpha_state *state)
1093 {
1094 struct iris_depth_stencil_alpha_state *cso =
1095 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1096
1097 bool two_sided_stencil = state->stencil[1].enabled;
1098
1099 cso->alpha = state->alpha;
1100 cso->depth_writes_enabled = state->depth.writemask;
1101 cso->stencil_writes_enabled =
1102 state->stencil[0].writemask != 0 ||
1103 (two_sided_stencil && state->stencil[1].writemask != 0);
1104
1105 /* The state tracker needs to optimize away EQUAL writes for us. */
1106 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1107
1108 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1109 wmds.StencilFailOp = state->stencil[0].fail_op;
1110 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1111 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1112 wmds.StencilTestFunction =
1113 translate_compare_func(state->stencil[0].func);
1114 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1115 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1116 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1117 wmds.BackfaceStencilTestFunction =
1118 translate_compare_func(state->stencil[1].func);
1119 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1120 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1121 wmds.StencilTestEnable = state->stencil[0].enabled;
1122 wmds.StencilBufferWriteEnable =
1123 state->stencil[0].writemask != 0 ||
1124 (two_sided_stencil && state->stencil[1].writemask != 0);
1125 wmds.DepthTestEnable = state->depth.enabled;
1126 wmds.DepthBufferWriteEnable = state->depth.writemask;
1127 wmds.StencilTestMask = state->stencil[0].valuemask;
1128 wmds.StencilWriteMask = state->stencil[0].writemask;
1129 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1130 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1131 /* wmds.[Backface]StencilReferenceValue are merged later */
1132 }
1133
1134 return cso;
1135 }
1136
1137 /**
1138 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1139 *
1140 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1141 */
1142 static void
1143 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1144 {
1145 struct iris_context *ice = (struct iris_context *) ctx;
1146 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1147 struct iris_depth_stencil_alpha_state *new_cso = state;
1148
1149 if (new_cso) {
1150 if (cso_changed(alpha.ref_value))
1151 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1152
1153 if (cso_changed(alpha.enabled))
1154 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1155
1156 if (cso_changed(alpha.func))
1157 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1158
1159 if (cso_changed(depth_writes_enabled))
1160 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1161
1162 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1163 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1164 }
1165
1166 ice->state.cso_zsa = new_cso;
1167 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1168 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1169 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1170 }
1171
1172 /**
1173 * Gallium CSO for rasterizer state.
1174 */
1175 struct iris_rasterizer_state {
1176 uint32_t sf[GENX(3DSTATE_SF_length)];
1177 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1178 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1179 uint32_t wm[GENX(3DSTATE_WM_length)];
1180 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1181
1182 uint8_t num_clip_plane_consts;
1183 bool clip_halfz; /* for CC_VIEWPORT */
1184 bool depth_clip_near; /* for CC_VIEWPORT */
1185 bool depth_clip_far; /* for CC_VIEWPORT */
1186 bool flatshade; /* for shader state */
1187 bool flatshade_first; /* for stream output */
1188 bool clamp_fragment_color; /* for shader state */
1189 bool light_twoside; /* for shader state */
1190 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1191 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1192 bool line_stipple_enable;
1193 bool poly_stipple_enable;
1194 bool multisample;
1195 bool force_persample_interp;
1196 bool conservative_rasterization;
1197 bool fill_mode_point_or_line;
1198 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1199 uint16_t sprite_coord_enable;
1200 };
1201
1202 static float
1203 get_line_width(const struct pipe_rasterizer_state *state)
1204 {
1205 float line_width = state->line_width;
1206
1207 /* From the OpenGL 4.4 spec:
1208 *
1209 * "The actual width of non-antialiased lines is determined by rounding
1210 * the supplied width to the nearest integer, then clamping it to the
1211 * implementation-dependent maximum non-antialiased line width."
1212 */
1213 if (!state->multisample && !state->line_smooth)
1214 line_width = roundf(state->line_width);
1215
1216 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1217 /* For 1 pixel line thickness or less, the general anti-aliasing
1218 * algorithm gives up, and a garbage line is generated. Setting a
1219 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1220 * (one-pixel-wide), non-antialiased lines.
1221 *
1222 * Lines rendered with zero Line Width are rasterized using the
1223 * "Grid Intersection Quantization" rules as specified by the
1224 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1225 */
1226 line_width = 0.0f;
1227 }
1228
1229 return line_width;
1230 }
1231
1232 /**
1233 * The pipe->create_rasterizer_state() driver hook.
1234 */
1235 static void *
1236 iris_create_rasterizer_state(struct pipe_context *ctx,
1237 const struct pipe_rasterizer_state *state)
1238 {
1239 struct iris_rasterizer_state *cso =
1240 malloc(sizeof(struct iris_rasterizer_state));
1241
1242 cso->multisample = state->multisample;
1243 cso->force_persample_interp = state->force_persample_interp;
1244 cso->clip_halfz = state->clip_halfz;
1245 cso->depth_clip_near = state->depth_clip_near;
1246 cso->depth_clip_far = state->depth_clip_far;
1247 cso->flatshade = state->flatshade;
1248 cso->flatshade_first = state->flatshade_first;
1249 cso->clamp_fragment_color = state->clamp_fragment_color;
1250 cso->light_twoside = state->light_twoside;
1251 cso->rasterizer_discard = state->rasterizer_discard;
1252 cso->half_pixel_center = state->half_pixel_center;
1253 cso->sprite_coord_mode = state->sprite_coord_mode;
1254 cso->sprite_coord_enable = state->sprite_coord_enable;
1255 cso->line_stipple_enable = state->line_stipple_enable;
1256 cso->poly_stipple_enable = state->poly_stipple_enable;
1257 cso->conservative_rasterization =
1258 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1259
1260 cso->fill_mode_point_or_line =
1261 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1262 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1263 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1264 state->fill_back == PIPE_POLYGON_MODE_POINT;
1265
1266 if (state->clip_plane_enable != 0)
1267 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1268 else
1269 cso->num_clip_plane_consts = 0;
1270
1271 float line_width = get_line_width(state);
1272
1273 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1274 sf.StatisticsEnable = true;
1275 sf.ViewportTransformEnable = true;
1276 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1277 sf.LineEndCapAntialiasingRegionWidth =
1278 state->line_smooth ? _10pixels : _05pixels;
1279 sf.LastPixelEnable = state->line_last_pixel;
1280 sf.LineWidth = line_width;
1281 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1282 !state->point_quad_rasterization;
1283 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1284 sf.PointWidth = state->point_size;
1285
1286 if (state->flatshade_first) {
1287 sf.TriangleFanProvokingVertexSelect = 1;
1288 } else {
1289 sf.TriangleStripListProvokingVertexSelect = 2;
1290 sf.TriangleFanProvokingVertexSelect = 2;
1291 sf.LineStripListProvokingVertexSelect = 1;
1292 }
1293 }
1294
1295 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1296 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1297 rr.CullMode = translate_cull_mode(state->cull_face);
1298 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1299 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1300 rr.DXMultisampleRasterizationEnable = state->multisample;
1301 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1302 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1303 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1304 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1305 rr.GlobalDepthOffsetScale = state->offset_scale;
1306 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1307 rr.SmoothPointEnable = state->point_smooth;
1308 rr.AntialiasingEnable = state->line_smooth;
1309 rr.ScissorRectangleEnable = state->scissor;
1310 #if GEN_GEN >= 9
1311 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1312 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1313 rr.ConservativeRasterizationEnable =
1314 cso->conservative_rasterization;
1315 #else
1316 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1317 #endif
1318 }
1319
1320 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1321 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1322 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1323 */
1324 cl.EarlyCullEnable = true;
1325 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1326 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1327 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1328 cl.GuardbandClipTestEnable = true;
1329 cl.ClipEnable = true;
1330 cl.MinimumPointWidth = 0.125;
1331 cl.MaximumPointWidth = 255.875;
1332
1333 if (state->flatshade_first) {
1334 cl.TriangleFanProvokingVertexSelect = 1;
1335 } else {
1336 cl.TriangleStripListProvokingVertexSelect = 2;
1337 cl.TriangleFanProvokingVertexSelect = 2;
1338 cl.LineStripListProvokingVertexSelect = 1;
1339 }
1340 }
1341
1342 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1343 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1344 * filled in at draw time from the FS program.
1345 */
1346 wm.LineAntialiasingRegionWidth = _10pixels;
1347 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1348 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1349 wm.LineStippleEnable = state->line_stipple_enable;
1350 wm.PolygonStippleEnable = state->poly_stipple_enable;
1351 }
1352
1353 /* Remap from 0..255 back to 1..256 */
1354 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1355
1356 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1357 line.LineStipplePattern = state->line_stipple_pattern;
1358 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1359 line.LineStippleRepeatCount = line_stipple_factor;
1360 }
1361
1362 return cso;
1363 }
1364
1365 /**
1366 * The pipe->bind_rasterizer_state() driver hook.
1367 *
1368 * Bind a rasterizer CSO and flag related dirty bits.
1369 */
1370 static void
1371 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1372 {
1373 struct iris_context *ice = (struct iris_context *) ctx;
1374 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1375 struct iris_rasterizer_state *new_cso = state;
1376
1377 if (new_cso) {
1378 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1379 if (cso_changed_memcmp(line_stipple))
1380 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1381
1382 if (cso_changed(half_pixel_center))
1383 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1384
1385 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1386 ice->state.dirty |= IRIS_DIRTY_WM;
1387
1388 if (cso_changed(rasterizer_discard))
1389 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1390
1391 if (cso_changed(flatshade_first))
1392 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1393
1394 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1395 cso_changed(clip_halfz))
1396 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1397
1398 if (cso_changed(sprite_coord_enable) ||
1399 cso_changed(sprite_coord_mode) ||
1400 cso_changed(light_twoside))
1401 ice->state.dirty |= IRIS_DIRTY_SBE;
1402
1403 if (cso_changed(conservative_rasterization))
1404 ice->state.dirty |= IRIS_DIRTY_FS;
1405 }
1406
1407 ice->state.cso_rast = new_cso;
1408 ice->state.dirty |= IRIS_DIRTY_RASTER;
1409 ice->state.dirty |= IRIS_DIRTY_CLIP;
1410 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1411 }
1412
1413 /**
1414 * Return true if the given wrap mode requires the border color to exist.
1415 *
1416 * (We can skip uploading it if the sampler isn't going to use it.)
1417 */
1418 static bool
1419 wrap_mode_needs_border_color(unsigned wrap_mode)
1420 {
1421 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1422 }
1423
1424 /**
1425 * Gallium CSO for sampler state.
1426 */
1427 struct iris_sampler_state {
1428 union pipe_color_union border_color;
1429 bool needs_border_color;
1430
1431 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1432 };
1433
1434 /**
1435 * The pipe->create_sampler_state() driver hook.
1436 *
1437 * We fill out SAMPLER_STATE (except for the border color pointer), and
1438 * store that on the CPU. It doesn't make sense to upload it to a GPU
1439 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1440 * all bound sampler states to be in contiguous memor.
1441 */
1442 static void *
1443 iris_create_sampler_state(struct pipe_context *ctx,
1444 const struct pipe_sampler_state *state)
1445 {
1446 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1447
1448 if (!cso)
1449 return NULL;
1450
1451 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1452 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1453
1454 unsigned wrap_s = translate_wrap(state->wrap_s);
1455 unsigned wrap_t = translate_wrap(state->wrap_t);
1456 unsigned wrap_r = translate_wrap(state->wrap_r);
1457
1458 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1459
1460 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1461 wrap_mode_needs_border_color(wrap_t) ||
1462 wrap_mode_needs_border_color(wrap_r);
1463
1464 float min_lod = state->min_lod;
1465 unsigned mag_img_filter = state->mag_img_filter;
1466
1467 // XXX: explain this code ported from ilo...I don't get it at all...
1468 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1469 state->min_lod > 0.0f) {
1470 min_lod = 0.0f;
1471 mag_img_filter = state->min_img_filter;
1472 }
1473
1474 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1475 samp.TCXAddressControlMode = wrap_s;
1476 samp.TCYAddressControlMode = wrap_t;
1477 samp.TCZAddressControlMode = wrap_r;
1478 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1479 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1480 samp.MinModeFilter = state->min_img_filter;
1481 samp.MagModeFilter = mag_img_filter;
1482 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1483 samp.MaximumAnisotropy = RATIO21;
1484
1485 if (state->max_anisotropy >= 2) {
1486 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1487 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1488 samp.AnisotropicAlgorithm = EWAApproximation;
1489 }
1490
1491 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1492 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1493
1494 samp.MaximumAnisotropy =
1495 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1496 }
1497
1498 /* Set address rounding bits if not using nearest filtering. */
1499 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1500 samp.UAddressMinFilterRoundingEnable = true;
1501 samp.VAddressMinFilterRoundingEnable = true;
1502 samp.RAddressMinFilterRoundingEnable = true;
1503 }
1504
1505 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1506 samp.UAddressMagFilterRoundingEnable = true;
1507 samp.VAddressMagFilterRoundingEnable = true;
1508 samp.RAddressMagFilterRoundingEnable = true;
1509 }
1510
1511 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1512 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1513
1514 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1515
1516 samp.LODPreClampMode = CLAMP_MODE_OGL;
1517 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1518 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1519 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1520
1521 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1522 }
1523
1524 return cso;
1525 }
1526
1527 /**
1528 * The pipe->bind_sampler_states() driver hook.
1529 */
1530 static void
1531 iris_bind_sampler_states(struct pipe_context *ctx,
1532 enum pipe_shader_type p_stage,
1533 unsigned start, unsigned count,
1534 void **states)
1535 {
1536 struct iris_context *ice = (struct iris_context *) ctx;
1537 gl_shader_stage stage = stage_from_pipe(p_stage);
1538 struct iris_shader_state *shs = &ice->state.shaders[stage];
1539
1540 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1541
1542 for (int i = 0; i < count; i++) {
1543 shs->samplers[start + i] = states[i];
1544 }
1545
1546 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1547 }
1548
1549 /**
1550 * Upload the sampler states into a contiguous area of GPU memory, for
1551 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1552 *
1553 * Also fill out the border color state pointers.
1554 */
1555 static void
1556 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1557 {
1558 struct iris_shader_state *shs = &ice->state.shaders[stage];
1559 const struct shader_info *info = iris_get_shader_info(ice, stage);
1560
1561 /* We assume the state tracker will call pipe->bind_sampler_states()
1562 * if the program's number of textures changes.
1563 */
1564 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1565
1566 if (!count)
1567 return;
1568
1569 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1570 * in the dynamic state memory zone, so we can point to it via the
1571 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1572 */
1573 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1574 uint32_t *map =
1575 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1576 if (unlikely(!map))
1577 return;
1578
1579 struct pipe_resource *res = shs->sampler_table.res;
1580 shs->sampler_table.offset +=
1581 iris_bo_offset_from_base_address(iris_resource_bo(res));
1582
1583 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1584
1585 /* Make sure all land in the same BO */
1586 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1587
1588 ice->state.need_border_colors &= ~(1 << stage);
1589
1590 for (int i = 0; i < count; i++) {
1591 struct iris_sampler_state *state = shs->samplers[i];
1592 struct iris_sampler_view *tex = shs->textures[i];
1593
1594 if (!state) {
1595 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1596 } else if (!state->needs_border_color) {
1597 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1598 } else {
1599 ice->state.need_border_colors |= 1 << stage;
1600
1601 /* We may need to swizzle the border color for format faking.
1602 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1603 * This means we need to move the border color's A channel into
1604 * the R or G channels so that those read swizzles will move it
1605 * back into A.
1606 */
1607 union pipe_color_union *color = &state->border_color;
1608 union pipe_color_union tmp;
1609 if (tex) {
1610 enum pipe_format internal_format = tex->res->internal_format;
1611
1612 if (util_format_is_alpha(internal_format)) {
1613 unsigned char swz[4] = {
1614 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1615 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1616 };
1617 util_format_apply_color_swizzle(&tmp, color, swz, true);
1618 color = &tmp;
1619 } else if (util_format_is_luminance_alpha(internal_format) &&
1620 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1621 unsigned char swz[4] = {
1622 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1623 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1624 };
1625 util_format_apply_color_swizzle(&tmp, color, swz, true);
1626 color = &tmp;
1627 }
1628 }
1629
1630 /* Stream out the border color and merge the pointer. */
1631 uint32_t offset = iris_upload_border_color(ice, color);
1632
1633 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1634 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1635 dyns.BorderColorPointer = offset;
1636 }
1637
1638 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1639 map[j] = state->sampler_state[j] | dynamic[j];
1640 }
1641
1642 map += GENX(SAMPLER_STATE_length);
1643 }
1644 }
1645
1646 static enum isl_channel_select
1647 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1648 {
1649 switch (swz) {
1650 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1651 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1652 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1653 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1654 case PIPE_SWIZZLE_1: return SCS_ONE;
1655 case PIPE_SWIZZLE_0: return SCS_ZERO;
1656 default: unreachable("invalid swizzle");
1657 }
1658 }
1659
1660 static void
1661 fill_buffer_surface_state(struct isl_device *isl_dev,
1662 struct iris_resource *res,
1663 void *map,
1664 enum isl_format format,
1665 struct isl_swizzle swizzle,
1666 unsigned offset,
1667 unsigned size)
1668 {
1669 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1670 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1671
1672 /* The ARB_texture_buffer_specification says:
1673 *
1674 * "The number of texels in the buffer texture's texel array is given by
1675 *
1676 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1677 *
1678 * where <buffer_size> is the size of the buffer object, in basic
1679 * machine units and <components> and <base_type> are the element count
1680 * and base data type for elements, as specified in Table X.1. The
1681 * number of texels in the texel array is then clamped to the
1682 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1683 *
1684 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1685 * so that when ISL divides by stride to obtain the number of texels, that
1686 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1687 */
1688 unsigned final_size =
1689 MIN3(size, res->bo->size - res->offset - offset,
1690 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1691
1692 isl_buffer_fill_state(isl_dev, map,
1693 .address = res->bo->gtt_offset + res->offset + offset,
1694 .size_B = final_size,
1695 .format = format,
1696 .swizzle = swizzle,
1697 .stride_B = cpp,
1698 .mocs = mocs(res->bo));
1699 }
1700
1701 #define SURFACE_STATE_ALIGNMENT 64
1702
1703 /**
1704 * Allocate several contiguous SURFACE_STATE structures, one for each
1705 * supported auxiliary surface mode.
1706 */
1707 static void *
1708 alloc_surface_states(struct u_upload_mgr *mgr,
1709 struct iris_state_ref *ref,
1710 unsigned aux_usages)
1711 {
1712 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1713
1714 /* If this changes, update this to explicitly align pointers */
1715 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1716
1717 assert(aux_usages != 0);
1718
1719 void *map =
1720 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1721 SURFACE_STATE_ALIGNMENT);
1722
1723 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1724
1725 return map;
1726 }
1727
1728 static void
1729 fill_surface_state(struct isl_device *isl_dev,
1730 void *map,
1731 struct iris_resource *res,
1732 struct isl_view *view,
1733 unsigned aux_usage)
1734 {
1735 struct isl_surf_fill_state_info f = {
1736 .surf = &res->surf,
1737 .view = view,
1738 .mocs = mocs(res->bo),
1739 .address = res->bo->gtt_offset + res->offset,
1740 };
1741
1742 if (aux_usage != ISL_AUX_USAGE_NONE) {
1743 f.aux_surf = &res->aux.surf;
1744 f.aux_usage = aux_usage;
1745 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1746
1747 struct iris_bo *clear_bo = NULL;
1748 uint64_t clear_offset = 0;
1749 f.clear_color =
1750 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1751 if (clear_bo) {
1752 f.clear_address = clear_bo->gtt_offset + clear_offset;
1753 f.use_clear_address = isl_dev->info->gen > 9;
1754 }
1755 }
1756
1757 isl_surf_fill_state_s(isl_dev, map, &f);
1758 }
1759
1760 /**
1761 * The pipe->create_sampler_view() driver hook.
1762 */
1763 static struct pipe_sampler_view *
1764 iris_create_sampler_view(struct pipe_context *ctx,
1765 struct pipe_resource *tex,
1766 const struct pipe_sampler_view *tmpl)
1767 {
1768 struct iris_context *ice = (struct iris_context *) ctx;
1769 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1770 const struct gen_device_info *devinfo = &screen->devinfo;
1771 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1772
1773 if (!isv)
1774 return NULL;
1775
1776 /* initialize base object */
1777 isv->base = *tmpl;
1778 isv->base.context = ctx;
1779 isv->base.texture = NULL;
1780 pipe_reference_init(&isv->base.reference, 1);
1781 pipe_resource_reference(&isv->base.texture, tex);
1782
1783 if (util_format_is_depth_or_stencil(tmpl->format)) {
1784 struct iris_resource *zres, *sres;
1785 const struct util_format_description *desc =
1786 util_format_description(tmpl->format);
1787
1788 iris_get_depth_stencil_resources(tex, &zres, &sres);
1789
1790 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1791 }
1792
1793 isv->res = (struct iris_resource *) tex;
1794
1795 void *map = alloc_surface_states(ice->state.surface_uploader,
1796 &isv->surface_state,
1797 isv->res->aux.sampler_usages);
1798 if (!unlikely(map))
1799 return NULL;
1800
1801 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1802
1803 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1804 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1805 usage |= ISL_SURF_USAGE_CUBE_BIT;
1806
1807 const struct iris_format_info fmt =
1808 iris_format_for_usage(devinfo, tmpl->format, usage);
1809
1810 isv->clear_color = isv->res->aux.clear_color;
1811
1812 isv->view = (struct isl_view) {
1813 .format = fmt.fmt,
1814 .swizzle = (struct isl_swizzle) {
1815 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1816 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1817 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1818 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1819 },
1820 .usage = usage,
1821 };
1822
1823 /* Fill out SURFACE_STATE for this view. */
1824 if (tmpl->target != PIPE_BUFFER) {
1825 isv->view.base_level = tmpl->u.tex.first_level;
1826 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1827 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1828 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1829 isv->view.array_len =
1830 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1831
1832 unsigned aux_modes = isv->res->aux.sampler_usages;
1833 while (aux_modes) {
1834 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1835
1836 /* If we have a multisampled depth buffer, do not create a sampler
1837 * surface state with HiZ.
1838 */
1839 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1840 aux_usage);
1841
1842 map += SURFACE_STATE_ALIGNMENT;
1843 }
1844 } else {
1845 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1846 isv->view.format, isv->view.swizzle,
1847 tmpl->u.buf.offset, tmpl->u.buf.size);
1848 }
1849
1850 return &isv->base;
1851 }
1852
1853 static void
1854 iris_sampler_view_destroy(struct pipe_context *ctx,
1855 struct pipe_sampler_view *state)
1856 {
1857 struct iris_sampler_view *isv = (void *) state;
1858 pipe_resource_reference(&state->texture, NULL);
1859 pipe_resource_reference(&isv->surface_state.res, NULL);
1860 free(isv);
1861 }
1862
1863 /**
1864 * The pipe->create_surface() driver hook.
1865 *
1866 * In Gallium nomenclature, "surfaces" are a view of a resource that
1867 * can be bound as a render target or depth/stencil buffer.
1868 */
1869 static struct pipe_surface *
1870 iris_create_surface(struct pipe_context *ctx,
1871 struct pipe_resource *tex,
1872 const struct pipe_surface *tmpl)
1873 {
1874 struct iris_context *ice = (struct iris_context *) ctx;
1875 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1876 const struct gen_device_info *devinfo = &screen->devinfo;
1877 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1878 struct pipe_surface *psurf = &surf->base;
1879 struct iris_resource *res = (struct iris_resource *) tex;
1880
1881 if (!surf)
1882 return NULL;
1883
1884 pipe_reference_init(&psurf->reference, 1);
1885 pipe_resource_reference(&psurf->texture, tex);
1886 psurf->context = ctx;
1887 psurf->format = tmpl->format;
1888 psurf->width = tex->width0;
1889 psurf->height = tex->height0;
1890 psurf->texture = tex;
1891 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1892 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1893 psurf->u.tex.level = tmpl->u.tex.level;
1894
1895 isl_surf_usage_flags_t usage = 0;
1896 if (tmpl->writable)
1897 usage = ISL_SURF_USAGE_STORAGE_BIT;
1898 else if (util_format_is_depth_or_stencil(tmpl->format))
1899 usage = ISL_SURF_USAGE_DEPTH_BIT;
1900 else
1901 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1902
1903 const struct iris_format_info fmt =
1904 iris_format_for_usage(devinfo, psurf->format, usage);
1905
1906 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1907 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1908 /* Framebuffer validation will reject this invalid case, but it
1909 * hasn't had the opportunity yet. In the meantime, we need to
1910 * avoid hitting ISL asserts about unsupported formats below.
1911 */
1912 free(surf);
1913 return NULL;
1914 }
1915
1916 struct isl_view *view = &surf->view;
1917 *view = (struct isl_view) {
1918 .format = fmt.fmt,
1919 .base_level = tmpl->u.tex.level,
1920 .levels = 1,
1921 .base_array_layer = tmpl->u.tex.first_layer,
1922 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1923 .swizzle = ISL_SWIZZLE_IDENTITY,
1924 .usage = usage,
1925 };
1926
1927 surf->clear_color = res->aux.clear_color;
1928
1929 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1930 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1931 ISL_SURF_USAGE_STENCIL_BIT))
1932 return psurf;
1933
1934
1935 void *map = alloc_surface_states(ice->state.surface_uploader,
1936 &surf->surface_state,
1937 res->aux.possible_usages);
1938 if (!unlikely(map))
1939 return NULL;
1940
1941 if (!isl_format_is_compressed(res->surf.format)) {
1942 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
1943 * auxiliary surface mode and return the pipe_surface.
1944 */
1945 unsigned aux_modes = res->aux.possible_usages;
1946 while (aux_modes) {
1947 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1948
1949 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
1950
1951 map += SURFACE_STATE_ALIGNMENT;
1952 }
1953
1954 return psurf;
1955 }
1956
1957 /* The resource has a compressed format, which is not renderable, but we
1958 * have a renderable view format. We must be attempting to upload blocks
1959 * of compressed data via an uncompressed view.
1960 *
1961 * In this case, we can assume there are no auxiliary buffers, a single
1962 * miplevel, and that the resource is single-sampled. Gallium may try
1963 * and create an uncompressed view with multiple layers, however.
1964 */
1965 assert(!isl_format_is_compressed(fmt.fmt));
1966 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
1967 assert(res->surf.samples == 1);
1968 assert(view->levels == 1);
1969
1970 struct isl_surf isl_surf;
1971 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1972
1973 if (view->base_level > 0) {
1974 /* We can't rely on the hardware's miplevel selection with such
1975 * a substantial lie about the format, so we select a single image
1976 * using the Tile X/Y Offset fields. In this case, we can't handle
1977 * multiple array slices.
1978 *
1979 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
1980 * hard-coded to align to exactly the block size of the compressed
1981 * texture. This means that, when reinterpreted as a non-compressed
1982 * texture, the tile offsets may be anything and we can't rely on
1983 * X/Y Offset.
1984 *
1985 * Return NULL to force the state tracker to take fallback paths.
1986 */
1987 if (view->array_len > 1 || GEN_GEN == 8)
1988 return NULL;
1989
1990 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
1991 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
1992 view->base_level,
1993 is_3d ? 0 : view->base_array_layer,
1994 is_3d ? view->base_array_layer : 0,
1995 &isl_surf,
1996 &offset_B, &tile_x_sa, &tile_y_sa);
1997
1998 /* We use address and tile offsets to access a single level/layer
1999 * as a subimage, so reset level/layer so it doesn't offset again.
2000 */
2001 view->base_array_layer = 0;
2002 view->base_level = 0;
2003 } else {
2004 /* Level 0 doesn't require tile offsets, and the hardware can find
2005 * array slices using QPitch even with the format override, so we
2006 * can allow layers in this case. Copy the original ISL surface.
2007 */
2008 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2009 }
2010
2011 /* Scale down the image dimensions by the block size. */
2012 const struct isl_format_layout *fmtl =
2013 isl_format_get_layout(res->surf.format);
2014 isl_surf.format = fmt.fmt;
2015 isl_surf.logical_level0_px.width =
2016 DIV_ROUND_UP(isl_surf.logical_level0_px.width, fmtl->bw);
2017 isl_surf.logical_level0_px.height =
2018 DIV_ROUND_UP(isl_surf.logical_level0_px.height, fmtl->bh);
2019 isl_surf.phys_level0_sa.width /= fmtl->bw;
2020 isl_surf.phys_level0_sa.height /= fmtl->bh;
2021 tile_x_sa /= fmtl->bw;
2022 tile_y_sa /= fmtl->bh;
2023
2024 psurf->width = isl_surf.logical_level0_px.width;
2025 psurf->height = isl_surf.logical_level0_px.height;
2026
2027 struct isl_surf_fill_state_info f = {
2028 .surf = &isl_surf,
2029 .view = view,
2030 .mocs = mocs(res->bo),
2031 .address = res->bo->gtt_offset + offset_B,
2032 .x_offset_sa = tile_x_sa,
2033 .y_offset_sa = tile_y_sa,
2034 };
2035
2036 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
2037 return psurf;
2038 }
2039
2040 #if GEN_GEN < 9
2041 static void
2042 fill_default_image_param(struct brw_image_param *param)
2043 {
2044 memset(param, 0, sizeof(*param));
2045 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2046 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2047 * detailed explanation of these parameters.
2048 */
2049 param->swizzling[0] = 0xff;
2050 param->swizzling[1] = 0xff;
2051 }
2052
2053 static void
2054 fill_buffer_image_param(struct brw_image_param *param,
2055 enum pipe_format pfmt,
2056 unsigned size)
2057 {
2058 const unsigned cpp = util_format_get_blocksize(pfmt);
2059
2060 fill_default_image_param(param);
2061 param->size[0] = size / cpp;
2062 param->stride[0] = cpp;
2063 }
2064 #else
2065 #define isl_surf_fill_image_param(x, ...)
2066 #define fill_default_image_param(x, ...)
2067 #define fill_buffer_image_param(x, ...)
2068 #endif
2069
2070 /**
2071 * The pipe->set_shader_images() driver hook.
2072 */
2073 static void
2074 iris_set_shader_images(struct pipe_context *ctx,
2075 enum pipe_shader_type p_stage,
2076 unsigned start_slot, unsigned count,
2077 const struct pipe_image_view *p_images)
2078 {
2079 struct iris_context *ice = (struct iris_context *) ctx;
2080 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2081 const struct gen_device_info *devinfo = &screen->devinfo;
2082 gl_shader_stage stage = stage_from_pipe(p_stage);
2083 struct iris_shader_state *shs = &ice->state.shaders[stage];
2084 #if GEN_GEN == 8
2085 struct iris_genx_state *genx = ice->state.genx;
2086 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2087 #endif
2088
2089 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2090
2091 for (unsigned i = 0; i < count; i++) {
2092 struct iris_image_view *iv = &shs->image[start_slot + i];
2093
2094 if (p_images && p_images[i].resource) {
2095 const struct pipe_image_view *img = &p_images[i];
2096 struct iris_resource *res = (void *) img->resource;
2097
2098 // XXX: these are not retained forever, use a separate uploader?
2099 void *map =
2100 alloc_surface_states(ice->state.surface_uploader,
2101 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2102 if (!unlikely(map))
2103 return;
2104
2105 iv->base = *img;
2106 iv->base.resource = NULL;
2107 pipe_resource_reference(&iv->base.resource, &res->base);
2108
2109 shs->bound_image_views |= 1 << (start_slot + i);
2110
2111 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2112
2113 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2114 enum isl_format isl_fmt =
2115 iris_format_for_usage(devinfo, img->format, usage).fmt;
2116
2117 bool untyped_fallback = false;
2118
2119 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2120 /* On Gen8, try to use typed surfaces reads (which support a
2121 * limited number of formats), and if not possible, fall back
2122 * to untyped reads.
2123 */
2124 untyped_fallback = GEN_GEN == 8 &&
2125 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2126
2127 if (untyped_fallback)
2128 isl_fmt = ISL_FORMAT_RAW;
2129 else
2130 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2131 }
2132
2133 if (res->base.target != PIPE_BUFFER) {
2134 struct isl_view view = {
2135 .format = isl_fmt,
2136 .base_level = img->u.tex.level,
2137 .levels = 1,
2138 .base_array_layer = img->u.tex.first_layer,
2139 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2140 .swizzle = ISL_SWIZZLE_IDENTITY,
2141 .usage = usage,
2142 };
2143
2144 if (untyped_fallback) {
2145 fill_buffer_surface_state(&screen->isl_dev, res, map,
2146 isl_fmt, ISL_SWIZZLE_IDENTITY,
2147 0, res->bo->size);
2148 } else {
2149 /* Images don't support compression */
2150 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2151 while (aux_modes) {
2152 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2153
2154 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
2155
2156 map += SURFACE_STATE_ALIGNMENT;
2157 }
2158 }
2159
2160 isl_surf_fill_image_param(&screen->isl_dev,
2161 &image_params[start_slot + i],
2162 &res->surf, &view);
2163 } else {
2164 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2165 img->u.buf.offset + img->u.buf.size);
2166
2167 fill_buffer_surface_state(&screen->isl_dev, res, map,
2168 isl_fmt, ISL_SWIZZLE_IDENTITY,
2169 img->u.buf.offset, img->u.buf.size);
2170 fill_buffer_image_param(&image_params[start_slot + i],
2171 img->format, img->u.buf.size);
2172 }
2173 } else {
2174 pipe_resource_reference(&iv->base.resource, NULL);
2175 pipe_resource_reference(&iv->surface_state.res, NULL);
2176 fill_default_image_param(&image_params[start_slot + i]);
2177 }
2178 }
2179
2180 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2181 ice->state.dirty |=
2182 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2183 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2184
2185 /* Broadwell also needs brw_image_params re-uploaded */
2186 if (GEN_GEN < 9) {
2187 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2188 shs->cbuf0_needs_upload = true;
2189 }
2190 }
2191
2192
2193 /**
2194 * The pipe->set_sampler_views() driver hook.
2195 */
2196 static void
2197 iris_set_sampler_views(struct pipe_context *ctx,
2198 enum pipe_shader_type p_stage,
2199 unsigned start, unsigned count,
2200 struct pipe_sampler_view **views)
2201 {
2202 struct iris_context *ice = (struct iris_context *) ctx;
2203 gl_shader_stage stage = stage_from_pipe(p_stage);
2204 struct iris_shader_state *shs = &ice->state.shaders[stage];
2205
2206 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2207
2208 for (unsigned i = 0; i < count; i++) {
2209 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2210 pipe_sampler_view_reference((struct pipe_sampler_view **)
2211 &shs->textures[start + i], pview);
2212 struct iris_sampler_view *view = (void *) pview;
2213 if (view) {
2214 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2215 shs->bound_sampler_views |= 1 << (start + i);
2216 }
2217 }
2218
2219 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2220 ice->state.dirty |=
2221 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2222 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2223 }
2224
2225 /**
2226 * The pipe->set_tess_state() driver hook.
2227 */
2228 static void
2229 iris_set_tess_state(struct pipe_context *ctx,
2230 const float default_outer_level[4],
2231 const float default_inner_level[2])
2232 {
2233 struct iris_context *ice = (struct iris_context *) ctx;
2234 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2235
2236 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2237 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2238
2239 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2240 shs->cbuf0_needs_upload = true;
2241 }
2242
2243 static void
2244 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2245 {
2246 struct iris_surface *surf = (void *) p_surf;
2247 pipe_resource_reference(&p_surf->texture, NULL);
2248 pipe_resource_reference(&surf->surface_state.res, NULL);
2249 free(surf);
2250 }
2251
2252 static void
2253 iris_set_clip_state(struct pipe_context *ctx,
2254 const struct pipe_clip_state *state)
2255 {
2256 struct iris_context *ice = (struct iris_context *) ctx;
2257 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2258
2259 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2260
2261 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2262 shs->cbuf0_needs_upload = true;
2263 }
2264
2265 /**
2266 * The pipe->set_polygon_stipple() driver hook.
2267 */
2268 static void
2269 iris_set_polygon_stipple(struct pipe_context *ctx,
2270 const struct pipe_poly_stipple *state)
2271 {
2272 struct iris_context *ice = (struct iris_context *) ctx;
2273 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2274 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2275 }
2276
2277 /**
2278 * The pipe->set_sample_mask() driver hook.
2279 */
2280 static void
2281 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2282 {
2283 struct iris_context *ice = (struct iris_context *) ctx;
2284
2285 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2286 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2287 */
2288 ice->state.sample_mask = sample_mask & 0xffff;
2289 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2290 }
2291
2292 /**
2293 * The pipe->set_scissor_states() driver hook.
2294 *
2295 * This corresponds to our SCISSOR_RECT state structures. It's an
2296 * exact match, so we just store them, and memcpy them out later.
2297 */
2298 static void
2299 iris_set_scissor_states(struct pipe_context *ctx,
2300 unsigned start_slot,
2301 unsigned num_scissors,
2302 const struct pipe_scissor_state *rects)
2303 {
2304 struct iris_context *ice = (struct iris_context *) ctx;
2305
2306 for (unsigned i = 0; i < num_scissors; i++) {
2307 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2308 /* If the scissor was out of bounds and got clamped to 0 width/height
2309 * at the bounds, the subtraction of 1 from maximums could produce a
2310 * negative number and thus not clip anything. Instead, just provide
2311 * a min > max scissor inside the bounds, which produces the expected
2312 * no rendering.
2313 */
2314 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2315 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2316 };
2317 } else {
2318 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2319 .minx = rects[i].minx, .miny = rects[i].miny,
2320 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2321 };
2322 }
2323 }
2324
2325 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2326 }
2327
2328 /**
2329 * The pipe->set_stencil_ref() driver hook.
2330 *
2331 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2332 */
2333 static void
2334 iris_set_stencil_ref(struct pipe_context *ctx,
2335 const struct pipe_stencil_ref *state)
2336 {
2337 struct iris_context *ice = (struct iris_context *) ctx;
2338 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2339 if (GEN_GEN == 8)
2340 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2341 else
2342 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2343 }
2344
2345 static float
2346 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2347 {
2348 return copysignf(state->scale[axis], sign) + state->translate[axis];
2349 }
2350
2351 /**
2352 * The pipe->set_viewport_states() driver hook.
2353 *
2354 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2355 * the guardband yet, as we need the framebuffer dimensions, but we can
2356 * at least fill out the rest.
2357 */
2358 static void
2359 iris_set_viewport_states(struct pipe_context *ctx,
2360 unsigned start_slot,
2361 unsigned count,
2362 const struct pipe_viewport_state *states)
2363 {
2364 struct iris_context *ice = (struct iris_context *) ctx;
2365
2366 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2367
2368 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2369
2370 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2371 !ice->state.cso_rast->depth_clip_far))
2372 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2373 }
2374
2375 /**
2376 * The pipe->set_framebuffer_state() driver hook.
2377 *
2378 * Sets the current draw FBO, including color render targets, depth,
2379 * and stencil buffers.
2380 */
2381 static void
2382 iris_set_framebuffer_state(struct pipe_context *ctx,
2383 const struct pipe_framebuffer_state *state)
2384 {
2385 struct iris_context *ice = (struct iris_context *) ctx;
2386 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2387 struct isl_device *isl_dev = &screen->isl_dev;
2388 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2389 struct iris_resource *zres;
2390 struct iris_resource *stencil_res;
2391
2392 unsigned samples = util_framebuffer_get_num_samples(state);
2393 unsigned layers = util_framebuffer_get_num_layers(state);
2394
2395 if (cso->samples != samples) {
2396 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2397 }
2398
2399 if (cso->nr_cbufs != state->nr_cbufs) {
2400 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2401 }
2402
2403 if ((cso->layers == 0) != (layers == 0)) {
2404 ice->state.dirty |= IRIS_DIRTY_CLIP;
2405 }
2406
2407 if (cso->width != state->width || cso->height != state->height) {
2408 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2409 }
2410
2411 util_copy_framebuffer_state(cso, state);
2412 cso->samples = samples;
2413 cso->layers = layers;
2414
2415 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2416
2417 struct isl_view view = {
2418 .base_level = 0,
2419 .levels = 1,
2420 .base_array_layer = 0,
2421 .array_len = 1,
2422 .swizzle = ISL_SWIZZLE_IDENTITY,
2423 };
2424
2425 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2426
2427 if (cso->zsbuf) {
2428 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2429 &stencil_res);
2430
2431 view.base_level = cso->zsbuf->u.tex.level;
2432 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2433 view.array_len =
2434 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2435
2436 if (zres) {
2437 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2438
2439 info.depth_surf = &zres->surf;
2440 info.depth_address = zres->bo->gtt_offset + zres->offset;
2441 info.mocs = mocs(zres->bo);
2442
2443 view.format = zres->surf.format;
2444
2445 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2446 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2447 info.hiz_surf = &zres->aux.surf;
2448 info.hiz_address = zres->aux.bo->gtt_offset;
2449 }
2450 }
2451
2452 if (stencil_res) {
2453 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2454 info.stencil_surf = &stencil_res->surf;
2455 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2456 if (!zres) {
2457 view.format = stencil_res->surf.format;
2458 info.mocs = mocs(stencil_res->bo);
2459 }
2460 }
2461 }
2462
2463 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2464
2465 /* Make a null surface for unbound buffers */
2466 void *null_surf_map =
2467 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2468 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2469 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2470 isl_extent3d(MAX2(cso->width, 1),
2471 MAX2(cso->height, 1),
2472 cso->layers ? cso->layers : 1));
2473 ice->state.null_fb.offset +=
2474 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2475
2476 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2477
2478 /* Render target change */
2479 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2480
2481 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2482
2483 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2484
2485 #if GEN_GEN == 11
2486 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2487 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2488
2489 /* The PIPE_CONTROL command description says:
2490 *
2491 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2492 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2493 * Target Cache Flush by enabling this bit. When render target flush
2494 * is set due to new association of BTI, PS Scoreboard Stall bit must
2495 * be set in this packet."
2496 */
2497 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2498 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2499 "workaround: RT BTI change [draw]",
2500 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2501 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2502 #endif
2503 }
2504
2505 /**
2506 * The pipe->set_constant_buffer() driver hook.
2507 *
2508 * This uploads any constant data in user buffers, and references
2509 * any UBO resources containing constant data.
2510 */
2511 static void
2512 iris_set_constant_buffer(struct pipe_context *ctx,
2513 enum pipe_shader_type p_stage, unsigned index,
2514 const struct pipe_constant_buffer *input)
2515 {
2516 struct iris_context *ice = (struct iris_context *) ctx;
2517 gl_shader_stage stage = stage_from_pipe(p_stage);
2518 struct iris_shader_state *shs = &ice->state.shaders[stage];
2519 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2520
2521 if (input && input->buffer) {
2522 shs->bound_cbufs |= 1u << index;
2523
2524 assert(index > 0);
2525
2526 pipe_resource_reference(&cbuf->buffer, input->buffer);
2527 cbuf->buffer_offset = input->buffer_offset;
2528 cbuf->buffer_size =
2529 MIN2(input->buffer_size,
2530 iris_resource_bo(input->buffer)->size - cbuf->buffer_offset);
2531
2532 struct iris_resource *res = (void *) cbuf->buffer;
2533 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2534
2535 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2536 &shs->constbuf_surf_state[index],
2537 false);
2538 } else {
2539 shs->bound_cbufs &= ~(1u << index);
2540 pipe_resource_reference(&cbuf->buffer, NULL);
2541 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2542 }
2543
2544 if (index == 0) {
2545 if (input)
2546 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2547 else
2548 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2549
2550 shs->cbuf0_needs_upload = true;
2551 }
2552
2553 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2554 // XXX: maybe not necessary all the time...?
2555 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2556 // XXX: pull model we may need actual new bindings...
2557 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2558 }
2559
2560 static void
2561 upload_uniforms(struct iris_context *ice,
2562 gl_shader_stage stage)
2563 {
2564 UNUSED struct iris_genx_state *genx = ice->state.genx;
2565 struct iris_shader_state *shs = &ice->state.shaders[stage];
2566 struct pipe_shader_buffer *cbuf = &shs->constbuf[0];
2567 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2568
2569 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2570 shs->cbuf0.buffer_size;
2571
2572 if (upload_size == 0)
2573 return;
2574
2575 uint32_t *map = NULL;
2576 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2577 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2578
2579 for (int i = 0; i < shader->num_system_values; i++) {
2580 uint32_t sysval = shader->system_values[i];
2581 uint32_t value = 0;
2582
2583 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2584 #if GEN_GEN == 8
2585 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2586 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2587 struct brw_image_param *param =
2588 &genx->shaders[stage].image_param[img];
2589
2590 assert(offset < sizeof(struct brw_image_param));
2591 value = ((uint32_t *) param)[offset];
2592 #endif
2593 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2594 value = 0;
2595 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2596 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2597 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2598 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2599 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2600 if (stage == MESA_SHADER_TESS_CTRL) {
2601 value = ice->state.vertices_per_patch;
2602 } else {
2603 assert(stage == MESA_SHADER_TESS_EVAL);
2604 const struct shader_info *tcs_info =
2605 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2606 if (tcs_info)
2607 value = tcs_info->tess.tcs_vertices_out;
2608 else
2609 value = ice->state.vertices_per_patch;
2610 }
2611 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2612 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2613 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2614 value = fui(ice->state.default_outer_level[i]);
2615 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2616 value = fui(ice->state.default_inner_level[0]);
2617 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2618 value = fui(ice->state.default_inner_level[1]);
2619 } else {
2620 assert(!"unhandled system value");
2621 }
2622
2623 *map++ = value;
2624 }
2625
2626 if (shs->cbuf0.user_buffer) {
2627 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2628 }
2629
2630 cbuf->buffer_size = upload_size;
2631 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2632 &shs->constbuf_surf_state[0], false);
2633 }
2634
2635 /**
2636 * The pipe->set_shader_buffers() driver hook.
2637 *
2638 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2639 * SURFACE_STATE here, as the buffer offset may change each time.
2640 */
2641 static void
2642 iris_set_shader_buffers(struct pipe_context *ctx,
2643 enum pipe_shader_type p_stage,
2644 unsigned start_slot, unsigned count,
2645 const struct pipe_shader_buffer *buffers,
2646 unsigned writable_bitmask)
2647 {
2648 struct iris_context *ice = (struct iris_context *) ctx;
2649 gl_shader_stage stage = stage_from_pipe(p_stage);
2650 struct iris_shader_state *shs = &ice->state.shaders[stage];
2651
2652 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2653
2654 shs->bound_ssbos &= ~modified_bits;
2655 shs->writable_ssbos &= ~modified_bits;
2656 shs->writable_ssbos |= writable_bitmask << start_slot;
2657
2658 for (unsigned i = 0; i < count; i++) {
2659 if (buffers && buffers[i].buffer) {
2660 struct iris_resource *res = (void *) buffers[i].buffer;
2661 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2662 struct iris_state_ref *surf_state =
2663 &shs->ssbo_surf_state[start_slot + i];
2664 pipe_resource_reference(&ssbo->buffer, &res->base);
2665 ssbo->buffer_offset = buffers[i].buffer_offset;
2666 ssbo->buffer_size =
2667 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2668
2669 shs->bound_ssbos |= 1 << (start_slot + i);
2670
2671 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2672
2673 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2674
2675 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2676 ssbo->buffer_offset + ssbo->buffer_size);
2677 } else {
2678 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2679 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2680 NULL);
2681 }
2682 }
2683
2684 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2685 }
2686
2687 static void
2688 iris_delete_state(struct pipe_context *ctx, void *state)
2689 {
2690 free(state);
2691 }
2692
2693 /**
2694 * The pipe->set_vertex_buffers() driver hook.
2695 *
2696 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2697 */
2698 static void
2699 iris_set_vertex_buffers(struct pipe_context *ctx,
2700 unsigned start_slot, unsigned count,
2701 const struct pipe_vertex_buffer *buffers)
2702 {
2703 struct iris_context *ice = (struct iris_context *) ctx;
2704 struct iris_genx_state *genx = ice->state.genx;
2705
2706 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2707
2708 for (unsigned i = 0; i < count; i++) {
2709 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2710 struct iris_vertex_buffer_state *state =
2711 &genx->vertex_buffers[start_slot + i];
2712
2713 if (!buffer) {
2714 pipe_resource_reference(&state->resource, NULL);
2715 continue;
2716 }
2717
2718 /* We may see user buffers that are NULL bindings. */
2719 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2720
2721 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2722 struct iris_resource *res = (void *) state->resource;
2723
2724 if (res) {
2725 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2726 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2727 }
2728
2729 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2730 vb.VertexBufferIndex = start_slot + i;
2731 vb.AddressModifyEnable = true;
2732 vb.BufferPitch = buffer->stride;
2733 if (res) {
2734 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2735 vb.BufferStartingAddress =
2736 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2737 vb.MOCS = mocs(res->bo);
2738 } else {
2739 vb.NullVertexBuffer = true;
2740 }
2741 }
2742 }
2743
2744 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2745 }
2746
2747 /**
2748 * Gallium CSO for vertex elements.
2749 */
2750 struct iris_vertex_element_state {
2751 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2752 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2753 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2754 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2755 unsigned count;
2756 };
2757
2758 /**
2759 * The pipe->create_vertex_elements() driver hook.
2760 *
2761 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2762 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2763 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2764 * needed. In these cases we will need information available at draw time.
2765 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2766 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2767 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2768 */
2769 static void *
2770 iris_create_vertex_elements(struct pipe_context *ctx,
2771 unsigned count,
2772 const struct pipe_vertex_element *state)
2773 {
2774 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2775 const struct gen_device_info *devinfo = &screen->devinfo;
2776 struct iris_vertex_element_state *cso =
2777 malloc(sizeof(struct iris_vertex_element_state));
2778
2779 cso->count = count;
2780
2781 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2782 ve.DWordLength =
2783 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2784 }
2785
2786 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2787 uint32_t *vfi_pack_dest = cso->vf_instancing;
2788
2789 if (count == 0) {
2790 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2791 ve.Valid = true;
2792 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2793 ve.Component0Control = VFCOMP_STORE_0;
2794 ve.Component1Control = VFCOMP_STORE_0;
2795 ve.Component2Control = VFCOMP_STORE_0;
2796 ve.Component3Control = VFCOMP_STORE_1_FP;
2797 }
2798
2799 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2800 }
2801 }
2802
2803 for (int i = 0; i < count; i++) {
2804 const struct iris_format_info fmt =
2805 iris_format_for_usage(devinfo, state[i].src_format, 0);
2806 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2807 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2808
2809 switch (isl_format_get_num_channels(fmt.fmt)) {
2810 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
2811 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
2812 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
2813 case 3:
2814 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2815 : VFCOMP_STORE_1_FP;
2816 break;
2817 }
2818 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2819 ve.EdgeFlagEnable = false;
2820 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2821 ve.Valid = true;
2822 ve.SourceElementOffset = state[i].src_offset;
2823 ve.SourceElementFormat = fmt.fmt;
2824 ve.Component0Control = comp[0];
2825 ve.Component1Control = comp[1];
2826 ve.Component2Control = comp[2];
2827 ve.Component3Control = comp[3];
2828 }
2829
2830 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2831 vi.VertexElementIndex = i;
2832 vi.InstancingEnable = state[i].instance_divisor > 0;
2833 vi.InstanceDataStepRate = state[i].instance_divisor;
2834 }
2835
2836 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2837 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2838 }
2839
2840 /* An alternative version of the last VE and VFI is stored so it
2841 * can be used at draw time in case Vertex Shader uses EdgeFlag
2842 */
2843 if (count) {
2844 const unsigned edgeflag_index = count - 1;
2845 const struct iris_format_info fmt =
2846 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2847 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2848 ve.EdgeFlagEnable = true ;
2849 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2850 ve.Valid = true;
2851 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2852 ve.SourceElementFormat = fmt.fmt;
2853 ve.Component0Control = VFCOMP_STORE_SRC;
2854 ve.Component1Control = VFCOMP_STORE_0;
2855 ve.Component2Control = VFCOMP_STORE_0;
2856 ve.Component3Control = VFCOMP_STORE_0;
2857 }
2858 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2859 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2860 * at draw time, as it should change if SGVs are emitted.
2861 */
2862 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2863 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2864 }
2865 }
2866
2867 return cso;
2868 }
2869
2870 /**
2871 * The pipe->bind_vertex_elements_state() driver hook.
2872 */
2873 static void
2874 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2875 {
2876 struct iris_context *ice = (struct iris_context *) ctx;
2877 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2878 struct iris_vertex_element_state *new_cso = state;
2879
2880 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2881 * we need to re-emit it to ensure we're overriding the right one.
2882 */
2883 if (new_cso && cso_changed(count))
2884 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2885
2886 ice->state.cso_vertex_elements = state;
2887 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2888 }
2889
2890 /**
2891 * The pipe->create_stream_output_target() driver hook.
2892 *
2893 * "Target" here refers to a destination buffer. We translate this into
2894 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2895 * know which buffer this represents, or whether we ought to zero the
2896 * write-offsets, or append. Those are handled in the set() hook.
2897 */
2898 static struct pipe_stream_output_target *
2899 iris_create_stream_output_target(struct pipe_context *ctx,
2900 struct pipe_resource *p_res,
2901 unsigned buffer_offset,
2902 unsigned buffer_size)
2903 {
2904 struct iris_resource *res = (void *) p_res;
2905 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2906 if (!cso)
2907 return NULL;
2908
2909 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2910
2911 pipe_reference_init(&cso->base.reference, 1);
2912 pipe_resource_reference(&cso->base.buffer, p_res);
2913 cso->base.buffer_offset = buffer_offset;
2914 cso->base.buffer_size = buffer_size;
2915 cso->base.context = ctx;
2916
2917 util_range_add(&res->valid_buffer_range, buffer_offset,
2918 buffer_offset + buffer_size);
2919
2920 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2921
2922 return &cso->base;
2923 }
2924
2925 static void
2926 iris_stream_output_target_destroy(struct pipe_context *ctx,
2927 struct pipe_stream_output_target *state)
2928 {
2929 struct iris_stream_output_target *cso = (void *) state;
2930
2931 pipe_resource_reference(&cso->base.buffer, NULL);
2932 pipe_resource_reference(&cso->offset.res, NULL);
2933
2934 free(cso);
2935 }
2936
2937 /**
2938 * The pipe->set_stream_output_targets() driver hook.
2939 *
2940 * At this point, we know which targets are bound to a particular index,
2941 * and also whether we want to append or start over. We can finish the
2942 * 3DSTATE_SO_BUFFER packets we started earlier.
2943 */
2944 static void
2945 iris_set_stream_output_targets(struct pipe_context *ctx,
2946 unsigned num_targets,
2947 struct pipe_stream_output_target **targets,
2948 const unsigned *offsets)
2949 {
2950 struct iris_context *ice = (struct iris_context *) ctx;
2951 struct iris_genx_state *genx = ice->state.genx;
2952 uint32_t *so_buffers = genx->so_buffers;
2953
2954 const bool active = num_targets > 0;
2955 if (ice->state.streamout_active != active) {
2956 ice->state.streamout_active = active;
2957 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2958
2959 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2960 * it's a non-pipelined command. If we're switching streamout on, we
2961 * may have missed emitting it earlier, so do so now. (We're already
2962 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2963 */
2964 if (active) {
2965 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2966 } else {
2967 uint32_t flush = 0;
2968 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
2969 struct iris_stream_output_target *tgt =
2970 (void *) ice->state.so_target[i];
2971 if (tgt) {
2972 struct iris_resource *res = (void *) tgt->base.buffer;
2973
2974 flush |= iris_flush_bits_for_history(res);
2975 iris_dirty_for_history(ice, res);
2976 }
2977 }
2978 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2979 "make streamout results visible", flush);
2980 }
2981 }
2982
2983 for (int i = 0; i < 4; i++) {
2984 pipe_so_target_reference(&ice->state.so_target[i],
2985 i < num_targets ? targets[i] : NULL);
2986 }
2987
2988 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2989 if (!active)
2990 return;
2991
2992 for (unsigned i = 0; i < 4; i++,
2993 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2994
2995 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
2996 unsigned offset = offsets[i];
2997
2998 if (!tgt) {
2999 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
3000 sob.SOBufferIndex = i;
3001 continue;
3002 }
3003
3004 struct iris_resource *res = (void *) tgt->base.buffer;
3005
3006 /* Note that offsets[i] will either be 0, causing us to zero
3007 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3008 * "continue appending at the existing offset."
3009 */
3010 assert(offset == 0 || offset == 0xFFFFFFFF);
3011
3012 /* We might be called by Begin (offset = 0), Pause, then Resume
3013 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3014 * will actually be sent to the GPU). In this case, we don't want
3015 * to append - we still want to do our initial zeroing.
3016 */
3017 if (!tgt->zeroed)
3018 offset = 0;
3019
3020 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3021 sob.SurfaceBaseAddress =
3022 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3023 sob.SOBufferEnable = true;
3024 sob.StreamOffsetWriteEnable = true;
3025 sob.StreamOutputBufferOffsetAddressEnable = true;
3026 sob.MOCS = mocs(res->bo);
3027
3028 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3029
3030 sob.SOBufferIndex = i;
3031 sob.StreamOffset = offset;
3032 sob.StreamOutputBufferOffsetAddress =
3033 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3034 tgt->offset.offset);
3035 }
3036 }
3037
3038 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3039 }
3040
3041 /**
3042 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3043 * 3DSTATE_STREAMOUT packets.
3044 *
3045 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3046 * hardware to record. We can create it entirely based on the shader, with
3047 * no dynamic state dependencies.
3048 *
3049 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3050 * state-based settings. We capture the shader-related ones here, and merge
3051 * the rest in at draw time.
3052 */
3053 static uint32_t *
3054 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3055 const struct brw_vue_map *vue_map)
3056 {
3057 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3058 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3059 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3060 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3061 int max_decls = 0;
3062 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3063
3064 memset(so_decl, 0, sizeof(so_decl));
3065
3066 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3067 * command feels strange -- each dword pair contains a SO_DECL per stream.
3068 */
3069 for (unsigned i = 0; i < info->num_outputs; i++) {
3070 const struct pipe_stream_output *output = &info->output[i];
3071 const int buffer = output->output_buffer;
3072 const int varying = output->register_index;
3073 const unsigned stream_id = output->stream;
3074 assert(stream_id < MAX_VERTEX_STREAMS);
3075
3076 buffer_mask[stream_id] |= 1 << buffer;
3077
3078 assert(vue_map->varying_to_slot[varying] >= 0);
3079
3080 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3081 * array. Instead, it simply increments DstOffset for the following
3082 * input by the number of components that should be skipped.
3083 *
3084 * Our hardware is unusual in that it requires us to program SO_DECLs
3085 * for fake "hole" components, rather than simply taking the offset
3086 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3087 * program as many size = 4 holes as we can, then a final hole to
3088 * accommodate the final 1, 2, or 3 remaining.
3089 */
3090 int skip_components = output->dst_offset - next_offset[buffer];
3091
3092 while (skip_components > 0) {
3093 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3094 .HoleFlag = 1,
3095 .OutputBufferSlot = output->output_buffer,
3096 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3097 };
3098 skip_components -= 4;
3099 }
3100
3101 next_offset[buffer] = output->dst_offset + output->num_components;
3102
3103 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3104 .OutputBufferSlot = output->output_buffer,
3105 .RegisterIndex = vue_map->varying_to_slot[varying],
3106 .ComponentMask =
3107 ((1 << output->num_components) - 1) << output->start_component,
3108 };
3109
3110 if (decls[stream_id] > max_decls)
3111 max_decls = decls[stream_id];
3112 }
3113
3114 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3115 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3116 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3117
3118 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3119 int urb_entry_read_offset = 0;
3120 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3121 urb_entry_read_offset;
3122
3123 /* We always read the whole vertex. This could be reduced at some
3124 * point by reading less and offsetting the register index in the
3125 * SO_DECLs.
3126 */
3127 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3128 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3129 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3130 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3131 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3132 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3133 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3134 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3135
3136 /* Set buffer pitches; 0 means unbound. */
3137 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3138 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3139 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3140 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3141 }
3142
3143 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3144 list.DWordLength = 3 + 2 * max_decls - 2;
3145 list.StreamtoBufferSelects0 = buffer_mask[0];
3146 list.StreamtoBufferSelects1 = buffer_mask[1];
3147 list.StreamtoBufferSelects2 = buffer_mask[2];
3148 list.StreamtoBufferSelects3 = buffer_mask[3];
3149 list.NumEntries0 = decls[0];
3150 list.NumEntries1 = decls[1];
3151 list.NumEntries2 = decls[2];
3152 list.NumEntries3 = decls[3];
3153 }
3154
3155 for (int i = 0; i < max_decls; i++) {
3156 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3157 entry.Stream0Decl = so_decl[0][i];
3158 entry.Stream1Decl = so_decl[1][i];
3159 entry.Stream2Decl = so_decl[2][i];
3160 entry.Stream3Decl = so_decl[3][i];
3161 }
3162 }
3163
3164 return map;
3165 }
3166
3167 static void
3168 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3169 const struct brw_vue_map *last_vue_map,
3170 bool two_sided_color,
3171 unsigned *out_offset,
3172 unsigned *out_length)
3173 {
3174 /* The compiler computes the first URB slot without considering COL/BFC
3175 * swizzling (because it doesn't know whether it's enabled), so we need
3176 * to do that here too. This may result in a smaller offset, which
3177 * should be safe.
3178 */
3179 const unsigned first_slot =
3180 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3181
3182 /* This becomes the URB read offset (counted in pairs of slots). */
3183 assert(first_slot % 2 == 0);
3184 *out_offset = first_slot / 2;
3185
3186 /* We need to adjust the inputs read to account for front/back color
3187 * swizzling, as it can make the URB length longer.
3188 */
3189 for (int c = 0; c <= 1; c++) {
3190 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3191 /* If two sided color is enabled, the fragment shader's gl_Color
3192 * (COL0) input comes from either the gl_FrontColor (COL0) or
3193 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3194 */
3195 if (two_sided_color)
3196 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3197
3198 /* If front color isn't written, we opt to give them back color
3199 * instead of an undefined value. Switch from COL to BFC.
3200 */
3201 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3202 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3203 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3204 }
3205 }
3206 }
3207
3208 /* Compute the minimum URB Read Length necessary for the FS inputs.
3209 *
3210 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3211 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3212 *
3213 * "This field should be set to the minimum length required to read the
3214 * maximum source attribute. The maximum source attribute is indicated
3215 * by the maximum value of the enabled Attribute # Source Attribute if
3216 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3217 * enable is not set.
3218 * read_length = ceiling((max_source_attr + 1) / 2)
3219 *
3220 * [errata] Corruption/Hang possible if length programmed larger than
3221 * recommended"
3222 *
3223 * Similar text exists for Ivy Bridge.
3224 *
3225 * We find the last URB slot that's actually read by the FS.
3226 */
3227 unsigned last_read_slot = last_vue_map->num_slots - 1;
3228 while (last_read_slot > first_slot && !(fs_input_slots &
3229 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3230 --last_read_slot;
3231
3232 /* The URB read length is the difference of the two, counted in pairs. */
3233 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3234 }
3235
3236 static void
3237 iris_emit_sbe_swiz(struct iris_batch *batch,
3238 const struct iris_context *ice,
3239 unsigned urb_read_offset,
3240 unsigned sprite_coord_enables)
3241 {
3242 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3243 const struct brw_wm_prog_data *wm_prog_data = (void *)
3244 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3245 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3246 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3247
3248 /* XXX: this should be generated when putting programs in place */
3249
3250 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3251 const int input_index = wm_prog_data->urb_setup[fs_attr];
3252 if (input_index < 0 || input_index >= 16)
3253 continue;
3254
3255 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3256 &attr_overrides[input_index];
3257 int slot = vue_map->varying_to_slot[fs_attr];
3258
3259 /* Viewport and Layer are stored in the VUE header. We need to override
3260 * them to zero if earlier stages didn't write them, as GL requires that
3261 * they read back as zero when not explicitly set.
3262 */
3263 switch (fs_attr) {
3264 case VARYING_SLOT_VIEWPORT:
3265 case VARYING_SLOT_LAYER:
3266 attr->ComponentOverrideX = true;
3267 attr->ComponentOverrideW = true;
3268 attr->ConstantSource = CONST_0000;
3269
3270 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3271 attr->ComponentOverrideY = true;
3272 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3273 attr->ComponentOverrideZ = true;
3274 continue;
3275
3276 case VARYING_SLOT_PRIMITIVE_ID:
3277 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3278 if (slot == -1) {
3279 attr->ComponentOverrideX = true;
3280 attr->ComponentOverrideY = true;
3281 attr->ComponentOverrideZ = true;
3282 attr->ComponentOverrideW = true;
3283 attr->ConstantSource = PRIM_ID;
3284 continue;
3285 }
3286
3287 default:
3288 break;
3289 }
3290
3291 if (sprite_coord_enables & (1 << input_index))
3292 continue;
3293
3294 /* If there was only a back color written but not front, use back
3295 * as the color instead of undefined.
3296 */
3297 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3298 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3299 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3300 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3301
3302 /* Not written by the previous stage - undefined. */
3303 if (slot == -1) {
3304 attr->ComponentOverrideX = true;
3305 attr->ComponentOverrideY = true;
3306 attr->ComponentOverrideZ = true;
3307 attr->ComponentOverrideW = true;
3308 attr->ConstantSource = CONST_0001_FLOAT;
3309 continue;
3310 }
3311
3312 /* Compute the location of the attribute relative to the read offset,
3313 * which is counted in 256-bit increments (two 128-bit VUE slots).
3314 */
3315 const int source_attr = slot - 2 * urb_read_offset;
3316 assert(source_attr >= 0 && source_attr <= 32);
3317 attr->SourceAttribute = source_attr;
3318
3319 /* If we are doing two-sided color, and the VUE slot following this one
3320 * represents a back-facing color, then we need to instruct the SF unit
3321 * to do back-facing swizzling.
3322 */
3323 if (cso_rast->light_twoside &&
3324 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3325 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3326 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3327 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3328 attr->SwizzleSelect = INPUTATTR_FACING;
3329 }
3330
3331 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3332 for (int i = 0; i < 16; i++)
3333 sbes.Attribute[i] = attr_overrides[i];
3334 }
3335 }
3336
3337 static unsigned
3338 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3339 const struct iris_rasterizer_state *cso)
3340 {
3341 unsigned overrides = 0;
3342
3343 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3344 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3345
3346 for (int i = 0; i < 8; i++) {
3347 if ((cso->sprite_coord_enable & (1 << i)) &&
3348 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3349 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3350 }
3351
3352 return overrides;
3353 }
3354
3355 static void
3356 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3357 {
3358 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3359 const struct brw_wm_prog_data *wm_prog_data = (void *)
3360 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3361 const struct shader_info *fs_info =
3362 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3363
3364 unsigned urb_read_offset, urb_read_length;
3365 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3366 ice->shaders.last_vue_map,
3367 cso_rast->light_twoside,
3368 &urb_read_offset, &urb_read_length);
3369
3370 unsigned sprite_coord_overrides =
3371 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3372
3373 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3374 sbe.AttributeSwizzleEnable = true;
3375 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3376 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3377 sbe.VertexURBEntryReadOffset = urb_read_offset;
3378 sbe.VertexURBEntryReadLength = urb_read_length;
3379 sbe.ForceVertexURBEntryReadOffset = true;
3380 sbe.ForceVertexURBEntryReadLength = true;
3381 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3382 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3383 #if GEN_GEN >= 9
3384 for (int i = 0; i < 32; i++) {
3385 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3386 }
3387 #endif
3388 }
3389
3390 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3391 }
3392
3393 /* ------------------------------------------------------------------- */
3394
3395 /**
3396 * Populate VS program key fields based on the current state.
3397 */
3398 static void
3399 iris_populate_vs_key(const struct iris_context *ice,
3400 const struct shader_info *info,
3401 struct brw_vs_prog_key *key)
3402 {
3403 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3404
3405 if (info->clip_distance_array_size == 0 &&
3406 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3407 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3408 }
3409
3410 /**
3411 * Populate TCS program key fields based on the current state.
3412 */
3413 static void
3414 iris_populate_tcs_key(const struct iris_context *ice,
3415 struct brw_tcs_prog_key *key)
3416 {
3417 }
3418
3419 /**
3420 * Populate TES program key fields based on the current state.
3421 */
3422 static void
3423 iris_populate_tes_key(const struct iris_context *ice,
3424 struct brw_tes_prog_key *key)
3425 {
3426 }
3427
3428 /**
3429 * Populate GS program key fields based on the current state.
3430 */
3431 static void
3432 iris_populate_gs_key(const struct iris_context *ice,
3433 struct brw_gs_prog_key *key)
3434 {
3435 }
3436
3437 /**
3438 * Populate FS program key fields based on the current state.
3439 */
3440 static void
3441 iris_populate_fs_key(const struct iris_context *ice,
3442 struct brw_wm_prog_key *key)
3443 {
3444 struct iris_screen *screen = (void *) ice->ctx.screen;
3445 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3446 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3447 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3448 const struct iris_blend_state *blend = ice->state.cso_blend;
3449
3450 key->nr_color_regions = fb->nr_cbufs;
3451
3452 key->clamp_fragment_color = rast->clamp_fragment_color;
3453
3454 key->alpha_to_coverage = blend->alpha_to_coverage;
3455
3456 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3457
3458 /* XXX: only bother if COL0/1 are read */
3459 key->flat_shade = rast->flatshade;
3460
3461 key->persample_interp = rast->force_persample_interp;
3462 key->multisample_fbo = rast->multisample && fb->samples > 1;
3463
3464 key->coherent_fb_fetch = true;
3465
3466 key->force_dual_color_blend =
3467 screen->driconf.dual_color_blend_by_location &&
3468 (blend->blend_enables & 1) && blend->dual_color_blending;
3469
3470 /* TODO: support key->force_dual_color_blend for Unigine */
3471 /* TODO: Respect glHint for key->high_quality_derivatives */
3472 }
3473
3474 static void
3475 iris_populate_cs_key(const struct iris_context *ice,
3476 struct brw_cs_prog_key *key)
3477 {
3478 }
3479
3480 static uint64_t
3481 KSP(const struct iris_compiled_shader *shader)
3482 {
3483 struct iris_resource *res = (void *) shader->assembly.res;
3484 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3485 }
3486
3487 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3488 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3489 * this WA on C0 stepping.
3490 *
3491 * TODO: Fill out SamplerCount for prefetching?
3492 */
3493
3494 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3495 pkt.KernelStartPointer = KSP(shader); \
3496 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3497 shader->bt.size_bytes / 4; \
3498 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3499 \
3500 pkt.DispatchGRFStartRegisterForURBData = \
3501 prog_data->dispatch_grf_start_reg; \
3502 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3503 pkt.prefix##URBEntryReadOffset = 0; \
3504 \
3505 pkt.StatisticsEnable = true; \
3506 pkt.Enable = true; \
3507 \
3508 if (prog_data->total_scratch) { \
3509 struct iris_bo *bo = \
3510 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3511 uint32_t scratch_addr = bo->gtt_offset; \
3512 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3513 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3514 }
3515
3516 /**
3517 * Encode most of 3DSTATE_VS based on the compiled shader.
3518 */
3519 static void
3520 iris_store_vs_state(struct iris_context *ice,
3521 const struct gen_device_info *devinfo,
3522 struct iris_compiled_shader *shader)
3523 {
3524 struct brw_stage_prog_data *prog_data = shader->prog_data;
3525 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3526
3527 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3528 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3529 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3530 vs.SIMD8DispatchEnable = true;
3531 vs.UserClipDistanceCullTestEnableBitmask =
3532 vue_prog_data->cull_distance_mask;
3533 }
3534 }
3535
3536 /**
3537 * Encode most of 3DSTATE_HS based on the compiled shader.
3538 */
3539 static void
3540 iris_store_tcs_state(struct iris_context *ice,
3541 const struct gen_device_info *devinfo,
3542 struct iris_compiled_shader *shader)
3543 {
3544 struct brw_stage_prog_data *prog_data = shader->prog_data;
3545 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3546 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3547
3548 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3549 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3550
3551 hs.InstanceCount = tcs_prog_data->instances - 1;
3552 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3553 hs.IncludeVertexHandles = true;
3554
3555 #if GEN_GEN >= 9
3556 hs.DispatchMode = vue_prog_data->dispatch_mode;
3557 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3558 #endif
3559 }
3560 }
3561
3562 /**
3563 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3564 */
3565 static void
3566 iris_store_tes_state(struct iris_context *ice,
3567 const struct gen_device_info *devinfo,
3568 struct iris_compiled_shader *shader)
3569 {
3570 struct brw_stage_prog_data *prog_data = shader->prog_data;
3571 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3572 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3573
3574 uint32_t *te_state = (void *) shader->derived_data;
3575 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3576
3577 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3578 te.Partitioning = tes_prog_data->partitioning;
3579 te.OutputTopology = tes_prog_data->output_topology;
3580 te.TEDomain = tes_prog_data->domain;
3581 te.TEEnable = true;
3582 te.MaximumTessellationFactorOdd = 63.0;
3583 te.MaximumTessellationFactorNotOdd = 64.0;
3584 }
3585
3586 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3587 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3588
3589 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3590 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3591 ds.ComputeWCoordinateEnable =
3592 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3593
3594 ds.UserClipDistanceCullTestEnableBitmask =
3595 vue_prog_data->cull_distance_mask;
3596 }
3597
3598 }
3599
3600 /**
3601 * Encode most of 3DSTATE_GS based on the compiled shader.
3602 */
3603 static void
3604 iris_store_gs_state(struct iris_context *ice,
3605 const struct gen_device_info *devinfo,
3606 struct iris_compiled_shader *shader)
3607 {
3608 struct brw_stage_prog_data *prog_data = shader->prog_data;
3609 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3610 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3611
3612 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3613 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3614
3615 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3616 gs.OutputTopology = gs_prog_data->output_topology;
3617 gs.ControlDataHeaderSize =
3618 gs_prog_data->control_data_header_size_hwords;
3619 gs.InstanceControl = gs_prog_data->invocations - 1;
3620 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3621 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3622 gs.ControlDataFormat = gs_prog_data->control_data_format;
3623 gs.ReorderMode = TRAILING;
3624 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3625 gs.MaximumNumberofThreads =
3626 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3627 : (devinfo->max_gs_threads - 1);
3628
3629 if (gs_prog_data->static_vertex_count != -1) {
3630 gs.StaticOutput = true;
3631 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3632 }
3633 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3634
3635 gs.UserClipDistanceCullTestEnableBitmask =
3636 vue_prog_data->cull_distance_mask;
3637
3638 const int urb_entry_write_offset = 1;
3639 const uint32_t urb_entry_output_length =
3640 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3641 urb_entry_write_offset;
3642
3643 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3644 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3645 }
3646 }
3647
3648 /**
3649 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3650 */
3651 static void
3652 iris_store_fs_state(struct iris_context *ice,
3653 const struct gen_device_info *devinfo,
3654 struct iris_compiled_shader *shader)
3655 {
3656 struct brw_stage_prog_data *prog_data = shader->prog_data;
3657 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3658
3659 uint32_t *ps_state = (void *) shader->derived_data;
3660 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3661
3662 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3663 ps.VectorMaskEnable = true;
3664 // XXX: WABTPPrefetchDisable, see above, drop at C0
3665 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3666 shader->bt.size_bytes / 4;
3667 ps.FloatingPointMode = prog_data->use_alt_mode;
3668 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3669
3670 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3671
3672 /* From the documentation for this packet:
3673 * "If the PS kernel does not need the Position XY Offsets to
3674 * compute a Position Value, then this field should be programmed
3675 * to POSOFFSET_NONE."
3676 *
3677 * "SW Recommendation: If the PS kernel needs the Position Offsets
3678 * to compute a Position XY value, this field should match Position
3679 * ZW Interpolation Mode to ensure a consistent position.xyzw
3680 * computation."
3681 *
3682 * We only require XY sample offsets. So, this recommendation doesn't
3683 * look useful at the moment. We might need this in future.
3684 */
3685 ps.PositionXYOffsetSelect =
3686 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3687 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3688 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3689 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3690
3691 // XXX: Disable SIMD32 with 16x MSAA
3692
3693 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3694 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3695 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3696 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3697 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3698 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3699
3700 ps.KernelStartPointer0 =
3701 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3702 ps.KernelStartPointer1 =
3703 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3704 ps.KernelStartPointer2 =
3705 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3706
3707 if (prog_data->total_scratch) {
3708 struct iris_bo *bo =
3709 iris_get_scratch_space(ice, prog_data->total_scratch,
3710 MESA_SHADER_FRAGMENT);
3711 uint32_t scratch_addr = bo->gtt_offset;
3712 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3713 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3714 }
3715 }
3716
3717 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3718 psx.PixelShaderValid = true;
3719 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3720 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3721 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3722 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3723 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3724 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3725 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3726
3727 #if GEN_GEN >= 9
3728 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3729 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3730 #else
3731 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3732 #endif
3733 // XXX: UAV bit
3734 }
3735 }
3736
3737 /**
3738 * Compute the size of the derived data (shader command packets).
3739 *
3740 * This must match the data written by the iris_store_xs_state() functions.
3741 */
3742 static void
3743 iris_store_cs_state(struct iris_context *ice,
3744 const struct gen_device_info *devinfo,
3745 struct iris_compiled_shader *shader)
3746 {
3747 struct brw_stage_prog_data *prog_data = shader->prog_data;
3748 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3749 void *map = shader->derived_data;
3750
3751 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3752 desc.KernelStartPointer = KSP(shader);
3753 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3754 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3755 desc.SharedLocalMemorySize =
3756 encode_slm_size(GEN_GEN, prog_data->total_shared);
3757 desc.BarrierEnable = cs_prog_data->uses_barrier;
3758 desc.CrossThreadConstantDataReadLength =
3759 cs_prog_data->push.cross_thread.regs;
3760 }
3761 }
3762
3763 static unsigned
3764 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3765 {
3766 assert(cache_id <= IRIS_CACHE_BLORP);
3767
3768 static const unsigned dwords[] = {
3769 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3770 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3771 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3772 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3773 [IRIS_CACHE_FS] =
3774 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3775 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3776 [IRIS_CACHE_BLORP] = 0,
3777 };
3778
3779 return sizeof(uint32_t) * dwords[cache_id];
3780 }
3781
3782 /**
3783 * Create any state packets corresponding to the given shader stage
3784 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3785 * This means that we can look up a program in the in-memory cache and
3786 * get most of the state packet without having to reconstruct it.
3787 */
3788 static void
3789 iris_store_derived_program_state(struct iris_context *ice,
3790 enum iris_program_cache_id cache_id,
3791 struct iris_compiled_shader *shader)
3792 {
3793 struct iris_screen *screen = (void *) ice->ctx.screen;
3794 const struct gen_device_info *devinfo = &screen->devinfo;
3795
3796 switch (cache_id) {
3797 case IRIS_CACHE_VS:
3798 iris_store_vs_state(ice, devinfo, shader);
3799 break;
3800 case IRIS_CACHE_TCS:
3801 iris_store_tcs_state(ice, devinfo, shader);
3802 break;
3803 case IRIS_CACHE_TES:
3804 iris_store_tes_state(ice, devinfo, shader);
3805 break;
3806 case IRIS_CACHE_GS:
3807 iris_store_gs_state(ice, devinfo, shader);
3808 break;
3809 case IRIS_CACHE_FS:
3810 iris_store_fs_state(ice, devinfo, shader);
3811 break;
3812 case IRIS_CACHE_CS:
3813 iris_store_cs_state(ice, devinfo, shader);
3814 case IRIS_CACHE_BLORP:
3815 break;
3816 default:
3817 break;
3818 }
3819 }
3820
3821 /* ------------------------------------------------------------------- */
3822
3823 static const uint32_t push_constant_opcodes[] = {
3824 [MESA_SHADER_VERTEX] = 21,
3825 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3826 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3827 [MESA_SHADER_GEOMETRY] = 22,
3828 [MESA_SHADER_FRAGMENT] = 23,
3829 [MESA_SHADER_COMPUTE] = 0,
3830 };
3831
3832 static uint32_t
3833 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3834 {
3835 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3836
3837 iris_use_pinned_bo(batch, state_bo, false);
3838
3839 return ice->state.unbound_tex.offset;
3840 }
3841
3842 static uint32_t
3843 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3844 {
3845 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3846 if (!ice->state.null_fb.res)
3847 return use_null_surface(batch, ice);
3848
3849 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3850
3851 iris_use_pinned_bo(batch, state_bo, false);
3852
3853 return ice->state.null_fb.offset;
3854 }
3855
3856 static uint32_t
3857 surf_state_offset_for_aux(struct iris_resource *res,
3858 unsigned aux_modes,
3859 enum isl_aux_usage aux_usage)
3860 {
3861 return SURFACE_STATE_ALIGNMENT *
3862 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3863 }
3864
3865 static void
3866 surf_state_update_clear_value(struct iris_batch *batch,
3867 struct iris_resource *res,
3868 struct iris_state_ref *state,
3869 unsigned aux_modes,
3870 enum isl_aux_usage aux_usage)
3871 {
3872 struct isl_device *isl_dev = &batch->screen->isl_dev;
3873 struct iris_bo *state_bo = iris_resource_bo(state->res);
3874 uint64_t real_offset = state->offset +
3875 IRIS_MEMZONE_BINDER_START;
3876 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
3877 uint32_t clear_offset = offset_into_bo +
3878 isl_dev->ss.clear_value_offset +
3879 surf_state_offset_for_aux(res, aux_modes, aux_usage);
3880
3881 batch->vtbl->copy_mem_mem(batch, state_bo, clear_offset,
3882 res->aux.clear_color_bo,
3883 res->aux.clear_color_offset,
3884 isl_dev->ss.clear_value_size);
3885 }
3886
3887 static void
3888 update_clear_value(struct iris_context *ice,
3889 struct iris_batch *batch,
3890 struct iris_resource *res,
3891 struct iris_state_ref *state,
3892 unsigned aux_modes,
3893 struct isl_view *view)
3894 {
3895 struct iris_screen *screen = batch->screen;
3896 const struct gen_device_info *devinfo = &screen->devinfo;
3897
3898 /* We only need to update the clear color in the surface state for gen8 and
3899 * gen9. Newer gens can read it directly from the clear color state buffer.
3900 */
3901 if (devinfo->gen > 9)
3902 return;
3903
3904 if (devinfo->gen == 9) {
3905 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
3906 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
3907
3908 while (aux_modes) {
3909 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3910
3911 surf_state_update_clear_value(batch, res, state, aux_modes,
3912 aux_usage);
3913 }
3914 } else if (devinfo->gen == 8) {
3915 pipe_resource_reference(&state->res, NULL);
3916 void *map = alloc_surface_states(ice->state.surface_uploader,
3917 state, res->aux.possible_usages);
3918 while (aux_modes) {
3919 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3920 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
3921 map += SURFACE_STATE_ALIGNMENT;
3922 }
3923 }
3924 }
3925
3926 /**
3927 * Add a surface to the validation list, as well as the buffer containing
3928 * the corresponding SURFACE_STATE.
3929 *
3930 * Returns the binding table entry (offset to SURFACE_STATE).
3931 */
3932 static uint32_t
3933 use_surface(struct iris_context *ice,
3934 struct iris_batch *batch,
3935 struct pipe_surface *p_surf,
3936 bool writeable,
3937 enum isl_aux_usage aux_usage)
3938 {
3939 struct iris_surface *surf = (void *) p_surf;
3940 struct iris_resource *res = (void *) p_surf->texture;
3941
3942 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3943 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3944
3945 if (res->aux.bo) {
3946 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3947 if (res->aux.clear_color_bo)
3948 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
3949
3950 if (memcmp(&res->aux.clear_color, &surf->clear_color,
3951 sizeof(surf->clear_color)) != 0) {
3952 update_clear_value(ice, batch, res, &surf->surface_state,
3953 res->aux.possible_usages, &surf->view);
3954 surf->clear_color = res->aux.clear_color;
3955 }
3956 }
3957
3958 return surf->surface_state.offset +
3959 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
3960 }
3961
3962 static uint32_t
3963 use_sampler_view(struct iris_context *ice,
3964 struct iris_batch *batch,
3965 struct iris_sampler_view *isv)
3966 {
3967 // XXX: ASTC hacks
3968 enum isl_aux_usage aux_usage =
3969 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3970
3971 iris_use_pinned_bo(batch, isv->res->bo, false);
3972 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3973
3974 if (isv->res->aux.bo) {
3975 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3976 if (isv->res->aux.clear_color_bo)
3977 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
3978 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
3979 sizeof(isv->clear_color)) != 0) {
3980 update_clear_value(ice, batch, isv->res, &isv->surface_state,
3981 isv->res->aux.sampler_usages, &isv->view);
3982 isv->clear_color = isv->res->aux.clear_color;
3983 }
3984 }
3985
3986 return isv->surface_state.offset +
3987 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
3988 aux_usage);
3989 }
3990
3991 static uint32_t
3992 use_ubo_ssbo(struct iris_batch *batch,
3993 struct iris_context *ice,
3994 struct pipe_shader_buffer *buf,
3995 struct iris_state_ref *surf_state,
3996 bool writable)
3997 {
3998 if (!buf->buffer)
3999 return use_null_surface(batch, ice);
4000
4001 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4002 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4003
4004 return surf_state->offset;
4005 }
4006
4007 static uint32_t
4008 use_image(struct iris_batch *batch, struct iris_context *ice,
4009 struct iris_shader_state *shs, int i)
4010 {
4011 struct iris_image_view *iv = &shs->image[i];
4012 struct iris_resource *res = (void *) iv->base.resource;
4013
4014 if (!res)
4015 return use_null_surface(batch, ice);
4016
4017 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4018
4019 iris_use_pinned_bo(batch, res->bo, write);
4020 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
4021
4022 if (res->aux.bo)
4023 iris_use_pinned_bo(batch, res->aux.bo, write);
4024
4025 return iv->surface_state.offset;
4026 }
4027
4028 #define push_bt_entry(addr) \
4029 assert(addr >= binder_addr); \
4030 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4031 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4032
4033 #define bt_assert(section) \
4034 if (!pin_only && shader->bt.used_mask[section] != 0) \
4035 assert(shader->bt.offsets[section] == s);
4036
4037 /**
4038 * Populate the binding table for a given shader stage.
4039 *
4040 * This fills out the table of pointers to surfaces required by the shader,
4041 * and also adds those buffers to the validation list so the kernel can make
4042 * resident before running our batch.
4043 */
4044 static void
4045 iris_populate_binding_table(struct iris_context *ice,
4046 struct iris_batch *batch,
4047 gl_shader_stage stage,
4048 bool pin_only)
4049 {
4050 const struct iris_binder *binder = &ice->state.binder;
4051 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4052 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4053 if (!shader)
4054 return;
4055
4056 struct iris_binding_table *bt = &shader->bt;
4057 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4058 struct iris_shader_state *shs = &ice->state.shaders[stage];
4059 uint32_t binder_addr = binder->bo->gtt_offset;
4060
4061 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4062 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4063 int s = 0;
4064
4065 const struct shader_info *info = iris_get_shader_info(ice, stage);
4066 if (!info) {
4067 /* TCS passthrough doesn't need a binding table. */
4068 assert(stage == MESA_SHADER_TESS_CTRL);
4069 return;
4070 }
4071
4072 if (stage == MESA_SHADER_COMPUTE &&
4073 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4074 /* surface for gl_NumWorkGroups */
4075 struct iris_state_ref *grid_data = &ice->state.grid_size;
4076 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4077 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4078 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4079 push_bt_entry(grid_state->offset);
4080 }
4081
4082 if (stage == MESA_SHADER_FRAGMENT) {
4083 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4084 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4085 if (cso_fb->nr_cbufs) {
4086 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4087 uint32_t addr;
4088 if (cso_fb->cbufs[i]) {
4089 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4090 ice->state.draw_aux_usage[i]);
4091 } else {
4092 addr = use_null_fb_surface(batch, ice);
4093 }
4094 push_bt_entry(addr);
4095 }
4096 } else {
4097 uint32_t addr = use_null_fb_surface(batch, ice);
4098 push_bt_entry(addr);
4099 }
4100 }
4101
4102 #define foreach_surface_used(index, group) \
4103 bt_assert(group); \
4104 for (int index = 0; index < bt->sizes[group]; index++) \
4105 if (iris_group_index_to_bti(bt, group, index) != \
4106 IRIS_SURFACE_NOT_USED)
4107
4108 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4109 struct iris_sampler_view *view = shs->textures[i];
4110 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4111 : use_null_surface(batch, ice);
4112 push_bt_entry(addr);
4113 }
4114
4115 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4116 uint32_t addr = use_image(batch, ice, shs, i);
4117 push_bt_entry(addr);
4118 }
4119
4120 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4121 uint32_t addr;
4122
4123 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4124 if (ish->const_data) {
4125 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4126 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4127 false);
4128 addr = ish->const_data_state.offset;
4129 } else {
4130 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4131 addr = use_null_surface(batch, ice);
4132 }
4133 } else {
4134 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4135 &shs->constbuf_surf_state[i], false);
4136 }
4137
4138 push_bt_entry(addr);
4139 }
4140
4141 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4142 uint32_t addr =
4143 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4144 shs->writable_ssbos & (1u << i));
4145 push_bt_entry(addr);
4146 }
4147
4148 #if 0
4149 /* XXX: YUV surfaces not implemented yet */
4150 bt_assert(plane_start[1], ...);
4151 bt_assert(plane_start[2], ...);
4152 #endif
4153 }
4154
4155 static void
4156 iris_use_optional_res(struct iris_batch *batch,
4157 struct pipe_resource *res,
4158 bool writeable)
4159 {
4160 if (res) {
4161 struct iris_bo *bo = iris_resource_bo(res);
4162 iris_use_pinned_bo(batch, bo, writeable);
4163 }
4164 }
4165
4166 static void
4167 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4168 struct pipe_surface *zsbuf,
4169 struct iris_depth_stencil_alpha_state *cso_zsa)
4170 {
4171 if (!zsbuf)
4172 return;
4173
4174 struct iris_resource *zres, *sres;
4175 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4176
4177 if (zres) {
4178 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4179 if (zres->aux.bo) {
4180 iris_use_pinned_bo(batch, zres->aux.bo,
4181 cso_zsa->depth_writes_enabled);
4182 }
4183 }
4184
4185 if (sres) {
4186 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4187 }
4188 }
4189
4190 /* ------------------------------------------------------------------- */
4191
4192 /**
4193 * Pin any BOs which were installed by a previous batch, and restored
4194 * via the hardware logical context mechanism.
4195 *
4196 * We don't need to re-emit all state every batch - the hardware context
4197 * mechanism will save and restore it for us. This includes pointers to
4198 * various BOs...which won't exist unless we ask the kernel to pin them
4199 * by adding them to the validation list.
4200 *
4201 * We can skip buffers if we've re-emitted those packets, as we're
4202 * overwriting those stale pointers with new ones, and don't actually
4203 * refer to the old BOs.
4204 */
4205 static void
4206 iris_restore_render_saved_bos(struct iris_context *ice,
4207 struct iris_batch *batch,
4208 const struct pipe_draw_info *draw)
4209 {
4210 struct iris_genx_state *genx = ice->state.genx;
4211
4212 const uint64_t clean = ~ice->state.dirty;
4213
4214 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4215 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4216 }
4217
4218 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4219 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4220 }
4221
4222 if (clean & IRIS_DIRTY_BLEND_STATE) {
4223 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4224 }
4225
4226 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4227 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4228 }
4229
4230 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4231 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4232 }
4233
4234 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4235 for (int i = 0; i < 4; i++) {
4236 struct iris_stream_output_target *tgt =
4237 (void *) ice->state.so_target[i];
4238 if (tgt) {
4239 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4240 true);
4241 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4242 true);
4243 }
4244 }
4245 }
4246
4247 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4248 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4249 continue;
4250
4251 struct iris_shader_state *shs = &ice->state.shaders[stage];
4252 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4253
4254 if (!shader)
4255 continue;
4256
4257 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4258
4259 for (int i = 0; i < 4; i++) {
4260 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4261
4262 if (range->length == 0)
4263 continue;
4264
4265 /* Range block is a binding table index, map back to UBO index. */
4266 unsigned block_index = iris_bti_to_group_index(
4267 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4268 assert(block_index != IRIS_SURFACE_NOT_USED);
4269
4270 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4271 struct iris_resource *res = (void *) cbuf->buffer;
4272
4273 if (res)
4274 iris_use_pinned_bo(batch, res->bo, false);
4275 else
4276 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4277 }
4278 }
4279
4280 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4281 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4282 /* Re-pin any buffers referred to by the binding table. */
4283 iris_populate_binding_table(ice, batch, stage, true);
4284 }
4285 }
4286
4287 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4288 struct iris_shader_state *shs = &ice->state.shaders[stage];
4289 struct pipe_resource *res = shs->sampler_table.res;
4290 if (res)
4291 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4292 }
4293
4294 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4295 if (clean & (IRIS_DIRTY_VS << stage)) {
4296 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4297
4298 if (shader) {
4299 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4300 iris_use_pinned_bo(batch, bo, false);
4301
4302 struct brw_stage_prog_data *prog_data = shader->prog_data;
4303
4304 if (prog_data->total_scratch > 0) {
4305 struct iris_bo *bo =
4306 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4307 iris_use_pinned_bo(batch, bo, true);
4308 }
4309 }
4310 }
4311 }
4312
4313 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4314 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4315 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4316 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4317 }
4318
4319 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4320 /* This draw didn't emit a new index buffer, so we are inheriting the
4321 * older index buffer. This draw didn't need it, but future ones may.
4322 */
4323 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4324 iris_use_pinned_bo(batch, bo, false);
4325 }
4326
4327 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4328 uint64_t bound = ice->state.bound_vertex_buffers;
4329 while (bound) {
4330 const int i = u_bit_scan64(&bound);
4331 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4332 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4333 }
4334 }
4335 }
4336
4337 static void
4338 iris_restore_compute_saved_bos(struct iris_context *ice,
4339 struct iris_batch *batch,
4340 const struct pipe_grid_info *grid)
4341 {
4342 const uint64_t clean = ~ice->state.dirty;
4343
4344 const int stage = MESA_SHADER_COMPUTE;
4345 struct iris_shader_state *shs = &ice->state.shaders[stage];
4346
4347 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
4348 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4349
4350 if (shader) {
4351 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4352 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
4353
4354 if (range->length > 0) {
4355 /* Range block is a binding table index, map back to UBO index. */
4356 unsigned block_index = iris_bti_to_group_index(
4357 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4358 assert(block_index != IRIS_SURFACE_NOT_USED);
4359
4360 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4361 struct iris_resource *res = (void *) cbuf->buffer;
4362
4363 if (res)
4364 iris_use_pinned_bo(batch, res->bo, false);
4365 else
4366 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4367 }
4368 }
4369 }
4370
4371 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4372 /* Re-pin any buffers referred to by the binding table. */
4373 iris_populate_binding_table(ice, batch, stage, true);
4374 }
4375
4376 struct pipe_resource *sampler_res = shs->sampler_table.res;
4377 if (sampler_res)
4378 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4379
4380 if (clean & IRIS_DIRTY_CS) {
4381 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4382
4383 if (shader) {
4384 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4385 iris_use_pinned_bo(batch, bo, false);
4386
4387 struct brw_stage_prog_data *prog_data = shader->prog_data;
4388
4389 if (prog_data->total_scratch > 0) {
4390 struct iris_bo *bo =
4391 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4392 iris_use_pinned_bo(batch, bo, true);
4393 }
4394 }
4395 }
4396 }
4397
4398 /**
4399 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4400 */
4401 static void
4402 iris_update_surface_base_address(struct iris_batch *batch,
4403 struct iris_binder *binder)
4404 {
4405 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4406 return;
4407
4408 flush_for_state_base_change(batch);
4409
4410 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4411 sba.SurfaceStateMOCS = MOCS_WB;
4412 sba.SurfaceStateBaseAddressModifyEnable = true;
4413 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4414 }
4415
4416 batch->last_surface_base_address = binder->bo->gtt_offset;
4417 }
4418
4419 static void
4420 iris_upload_dirty_render_state(struct iris_context *ice,
4421 struct iris_batch *batch,
4422 const struct pipe_draw_info *draw)
4423 {
4424 const uint64_t dirty = ice->state.dirty;
4425
4426 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4427 return;
4428
4429 struct iris_genx_state *genx = ice->state.genx;
4430 struct iris_binder *binder = &ice->state.binder;
4431 struct brw_wm_prog_data *wm_prog_data = (void *)
4432 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4433
4434 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4435 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4436 uint32_t cc_vp_address;
4437
4438 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4439 uint32_t *cc_vp_map =
4440 stream_state(batch, ice->state.dynamic_uploader,
4441 &ice->state.last_res.cc_vp,
4442 4 * ice->state.num_viewports *
4443 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4444 for (int i = 0; i < ice->state.num_viewports; i++) {
4445 float zmin, zmax;
4446 util_viewport_zmin_zmax(&ice->state.viewports[i],
4447 cso_rast->clip_halfz, &zmin, &zmax);
4448 if (cso_rast->depth_clip_near)
4449 zmin = 0.0;
4450 if (cso_rast->depth_clip_far)
4451 zmax = 1.0;
4452
4453 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4454 ccv.MinimumDepth = zmin;
4455 ccv.MaximumDepth = zmax;
4456 }
4457
4458 cc_vp_map += GENX(CC_VIEWPORT_length);
4459 }
4460
4461 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4462 ptr.CCViewportPointer = cc_vp_address;
4463 }
4464 }
4465
4466 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4467 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4468 uint32_t sf_cl_vp_address;
4469 uint32_t *vp_map =
4470 stream_state(batch, ice->state.dynamic_uploader,
4471 &ice->state.last_res.sf_cl_vp,
4472 4 * ice->state.num_viewports *
4473 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4474
4475 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4476 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4477 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4478
4479 float vp_xmin = viewport_extent(state, 0, -1.0f);
4480 float vp_xmax = viewport_extent(state, 0, 1.0f);
4481 float vp_ymin = viewport_extent(state, 1, -1.0f);
4482 float vp_ymax = viewport_extent(state, 1, 1.0f);
4483
4484 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
4485 state->scale[0], state->scale[1],
4486 state->translate[0], state->translate[1],
4487 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4488
4489 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4490 vp.ViewportMatrixElementm00 = state->scale[0];
4491 vp.ViewportMatrixElementm11 = state->scale[1];
4492 vp.ViewportMatrixElementm22 = state->scale[2];
4493 vp.ViewportMatrixElementm30 = state->translate[0];
4494 vp.ViewportMatrixElementm31 = state->translate[1];
4495 vp.ViewportMatrixElementm32 = state->translate[2];
4496 vp.XMinClipGuardband = gb_xmin;
4497 vp.XMaxClipGuardband = gb_xmax;
4498 vp.YMinClipGuardband = gb_ymin;
4499 vp.YMaxClipGuardband = gb_ymax;
4500 vp.XMinViewPort = MAX2(vp_xmin, 0);
4501 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4502 vp.YMinViewPort = MAX2(vp_ymin, 0);
4503 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4504 }
4505
4506 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4507 }
4508
4509 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4510 ptr.SFClipViewportPointer = sf_cl_vp_address;
4511 }
4512 }
4513
4514 if (dirty & IRIS_DIRTY_URB) {
4515 unsigned size[4];
4516
4517 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4518 if (!ice->shaders.prog[i]) {
4519 size[i] = 1;
4520 } else {
4521 struct brw_vue_prog_data *vue_prog_data =
4522 (void *) ice->shaders.prog[i]->prog_data;
4523 size[i] = vue_prog_data->urb_entry_size;
4524 }
4525 assert(size[i] != 0);
4526 }
4527
4528 genX(emit_urb_setup)(ice, batch, size,
4529 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4530 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4531 }
4532
4533 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4534 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4535 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4536 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4537 const int header_dwords = GENX(BLEND_STATE_length);
4538
4539 /* Always write at least one BLEND_STATE - the final RT message will
4540 * reference BLEND_STATE[0] even if there aren't color writes. There
4541 * may still be alpha testing, computed depth, and so on.
4542 */
4543 const int rt_dwords =
4544 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4545
4546 uint32_t blend_offset;
4547 uint32_t *blend_map =
4548 stream_state(batch, ice->state.dynamic_uploader,
4549 &ice->state.last_res.blend,
4550 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4551
4552 uint32_t blend_state_header;
4553 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4554 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4555 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4556 }
4557
4558 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4559 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4560
4561 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4562 ptr.BlendStatePointer = blend_offset;
4563 ptr.BlendStatePointerValid = true;
4564 }
4565 }
4566
4567 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4568 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4569 #if GEN_GEN == 8
4570 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4571 #endif
4572 uint32_t cc_offset;
4573 void *cc_map =
4574 stream_state(batch, ice->state.dynamic_uploader,
4575 &ice->state.last_res.color_calc,
4576 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4577 64, &cc_offset);
4578 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4579 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4580 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4581 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4582 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4583 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4584 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4585 #if GEN_GEN == 8
4586 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4587 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4588 #endif
4589 }
4590 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4591 ptr.ColorCalcStatePointer = cc_offset;
4592 ptr.ColorCalcStatePointerValid = true;
4593 }
4594 }
4595
4596 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4597 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4598 continue;
4599
4600 struct iris_shader_state *shs = &ice->state.shaders[stage];
4601 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4602
4603 if (!shader)
4604 continue;
4605
4606 if (shs->cbuf0_needs_upload)
4607 upload_uniforms(ice, stage);
4608
4609 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4610
4611 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4612 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4613 if (prog_data) {
4614 /* The Skylake PRM contains the following restriction:
4615 *
4616 * "The driver must ensure The following case does not occur
4617 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4618 * buffer 3 read length equal to zero committed followed by a
4619 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4620 * zero committed."
4621 *
4622 * To avoid this, we program the buffers in the highest slots.
4623 * This way, slot 0 is only used if slot 3 is also used.
4624 */
4625 int n = 3;
4626
4627 for (int i = 3; i >= 0; i--) {
4628 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4629
4630 if (range->length == 0)
4631 continue;
4632
4633 /* Range block is a binding table index, map back to UBO index. */
4634 unsigned block_index = iris_bti_to_group_index(
4635 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4636 assert(block_index != IRIS_SURFACE_NOT_USED);
4637
4638 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4639 struct iris_resource *res = (void *) cbuf->buffer;
4640
4641 assert(cbuf->buffer_offset % 32 == 0);
4642
4643 pkt.ConstantBody.ReadLength[n] = range->length;
4644 pkt.ConstantBody.Buffer[n] =
4645 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4646 : ro_bo(batch->screen->workaround_bo, 0);
4647 n--;
4648 }
4649 }
4650 }
4651 }
4652
4653 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4654 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4655 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4656 ptr._3DCommandSubOpcode = 38 + stage;
4657 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4658 }
4659 }
4660 }
4661
4662 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4663 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4664 iris_populate_binding_table(ice, batch, stage, false);
4665 }
4666 }
4667
4668 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4669 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4670 !ice->shaders.prog[stage])
4671 continue;
4672
4673 iris_upload_sampler_states(ice, stage);
4674
4675 struct iris_shader_state *shs = &ice->state.shaders[stage];
4676 struct pipe_resource *res = shs->sampler_table.res;
4677 if (res)
4678 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4679
4680 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4681 ptr._3DCommandSubOpcode = 43 + stage;
4682 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4683 }
4684 }
4685
4686 if (ice->state.need_border_colors)
4687 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4688
4689 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4690 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4691 ms.PixelLocation =
4692 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4693 if (ice->state.framebuffer.samples > 0)
4694 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4695 }
4696 }
4697
4698 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4699 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4700 ms.SampleMask = ice->state.sample_mask;
4701 }
4702 }
4703
4704 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4705 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4706 continue;
4707
4708 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4709
4710 if (shader) {
4711 struct brw_stage_prog_data *prog_data = shader->prog_data;
4712 struct iris_resource *cache = (void *) shader->assembly.res;
4713 iris_use_pinned_bo(batch, cache->bo, false);
4714
4715 if (prog_data->total_scratch > 0) {
4716 struct iris_bo *bo =
4717 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4718 iris_use_pinned_bo(batch, bo, true);
4719 }
4720 #if GEN_GEN >= 9
4721 if (stage == MESA_SHADER_FRAGMENT && wm_prog_data->uses_sample_mask) {
4722 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
4723 uint32_t *shader_psx = ((uint32_t*)shader->derived_data) +
4724 GENX(3DSTATE_PS_length);
4725 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4726
4727 iris_pack_command(GENX(3DSTATE_PS_EXTRA), &psx_state, psx) {
4728 if (wm_prog_data->post_depth_coverage)
4729 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4730 else if (wm_prog_data->inner_coverage && cso->conservative_rasterization)
4731 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4732 else
4733 psx.InputCoverageMaskState = ICMS_NORMAL;
4734 }
4735
4736 iris_batch_emit(batch, shader->derived_data,
4737 sizeof(uint32_t) * GENX(3DSTATE_PS_length));
4738 iris_emit_merge(batch,
4739 shader_psx,
4740 psx_state,
4741 GENX(3DSTATE_PS_EXTRA_length));
4742 } else
4743 #endif
4744 iris_batch_emit(batch, shader->derived_data,
4745 iris_derived_program_state_size(stage));
4746 } else {
4747 if (stage == MESA_SHADER_TESS_EVAL) {
4748 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4749 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4750 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4751 } else if (stage == MESA_SHADER_GEOMETRY) {
4752 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4753 }
4754 }
4755 }
4756
4757 if (ice->state.streamout_active) {
4758 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4759 iris_batch_emit(batch, genx->so_buffers,
4760 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4761 for (int i = 0; i < 4; i++) {
4762 struct iris_stream_output_target *tgt =
4763 (void *) ice->state.so_target[i];
4764 if (tgt) {
4765 tgt->zeroed = true;
4766 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4767 true);
4768 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4769 true);
4770 }
4771 }
4772 }
4773
4774 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4775 uint32_t *decl_list =
4776 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4777 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4778 }
4779
4780 if (dirty & IRIS_DIRTY_STREAMOUT) {
4781 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4782
4783 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4784 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4785 sol.SOFunctionEnable = true;
4786 sol.SOStatisticsEnable = true;
4787
4788 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4789 !ice->state.prims_generated_query_active;
4790 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4791 }
4792
4793 assert(ice->state.streamout);
4794
4795 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4796 GENX(3DSTATE_STREAMOUT_length));
4797 }
4798 } else {
4799 if (dirty & IRIS_DIRTY_STREAMOUT) {
4800 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4801 }
4802 }
4803
4804 if (dirty & IRIS_DIRTY_CLIP) {
4805 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4806 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4807
4808 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
4809 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4810 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
4811 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
4812 : ice->state.prim_is_points_or_lines);
4813
4814 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4815 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4816 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4817 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4818 : CLIPMODE_NORMAL;
4819 cl.ViewportXYClipTestEnable = !points_or_lines;
4820
4821 if (wm_prog_data->barycentric_interp_modes &
4822 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4823 cl.NonPerspectiveBarycentricEnable = true;
4824
4825 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4826 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4827 }
4828 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4829 ARRAY_SIZE(cso_rast->clip));
4830 }
4831
4832 if (dirty & IRIS_DIRTY_RASTER) {
4833 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4834 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4835 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4836
4837 }
4838
4839 if (dirty & IRIS_DIRTY_WM) {
4840 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4841 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4842
4843 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4844 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4845
4846 wm.BarycentricInterpolationMode =
4847 wm_prog_data->barycentric_interp_modes;
4848
4849 if (wm_prog_data->early_fragment_tests)
4850 wm.EarlyDepthStencilControl = EDSC_PREPS;
4851 else if (wm_prog_data->has_side_effects)
4852 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4853
4854 /* We could skip this bit if color writes are enabled. */
4855 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4856 wm.ForceThreadDispatchEnable = ForceON;
4857 }
4858 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4859 }
4860
4861 if (dirty & IRIS_DIRTY_SBE) {
4862 iris_emit_sbe(batch, ice);
4863 }
4864
4865 if (dirty & IRIS_DIRTY_PS_BLEND) {
4866 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4867 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4868 const struct shader_info *fs_info =
4869 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4870
4871 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4872 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4873 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4874 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4875
4876 /* The dual source blending docs caution against using SRC1 factors
4877 * when the shader doesn't use a dual source render target write.
4878 * Empirically, this can lead to GPU hangs, and the results are
4879 * undefined anyway, so simply disable blending to avoid the hang.
4880 */
4881 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
4882 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
4883 }
4884
4885 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4886 ARRAY_SIZE(cso_blend->ps_blend));
4887 }
4888
4889 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4890 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4891 #if GEN_GEN >= 9
4892 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4893 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4894 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4895 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4896 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4897 }
4898 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4899 #else
4900 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4901 #endif
4902 }
4903
4904 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4905 uint32_t scissor_offset =
4906 emit_state(batch, ice->state.dynamic_uploader,
4907 &ice->state.last_res.scissor,
4908 ice->state.scissors,
4909 sizeof(struct pipe_scissor_state) *
4910 ice->state.num_viewports, 32);
4911
4912 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4913 ptr.ScissorRectPointer = scissor_offset;
4914 }
4915 }
4916
4917 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4918 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4919
4920 /* Do not emit the clear params yets. We need to update the clear value
4921 * first.
4922 */
4923 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
4924 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
4925 iris_batch_emit(batch, cso_z->packets, cso_z_size);
4926
4927 union isl_color_value clear_value = { .f32 = { 0, } };
4928
4929 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4930 if (cso_fb->zsbuf) {
4931 struct iris_resource *zres, *sres;
4932 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4933 &zres, &sres);
4934 if (zres && zres->aux.bo)
4935 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
4936 }
4937
4938 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
4939 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
4940 clear.DepthClearValueValid = true;
4941 clear.DepthClearValue = clear_value.f32[0];
4942 }
4943 iris_batch_emit(batch, clear_params, clear_length);
4944 }
4945
4946 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4947 /* Listen for buffer changes, and also write enable changes. */
4948 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4949 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4950 }
4951
4952 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4953 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4954 for (int i = 0; i < 32; i++) {
4955 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4956 }
4957 }
4958 }
4959
4960 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4961 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4962 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4963 }
4964
4965 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4966 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4967 topo.PrimitiveTopologyType =
4968 translate_prim_type(draw->mode, draw->vertices_per_patch);
4969 }
4970 }
4971
4972 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4973 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4974 int dynamic_bound = ice->state.bound_vertex_buffers;
4975
4976 if (ice->state.vs_uses_draw_params) {
4977 if (ice->draw.draw_params_offset == 0) {
4978 u_upload_data(ice->ctx.stream_uploader, 0, sizeof(ice->draw.params),
4979 4, &ice->draw.params, &ice->draw.draw_params_offset,
4980 &ice->draw.draw_params_res);
4981 }
4982 assert(ice->draw.draw_params_res);
4983
4984 struct iris_vertex_buffer_state *state =
4985 &(ice->state.genx->vertex_buffers[count]);
4986 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4987 struct iris_resource *res = (void *) state->resource;
4988
4989 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4990 vb.VertexBufferIndex = count;
4991 vb.AddressModifyEnable = true;
4992 vb.BufferPitch = 0;
4993 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4994 vb.BufferStartingAddress =
4995 ro_bo(NULL, res->bo->gtt_offset +
4996 (int) ice->draw.draw_params_offset);
4997 vb.MOCS = mocs(res->bo);
4998 }
4999 dynamic_bound |= 1ull << count;
5000 count++;
5001 }
5002
5003 if (ice->state.vs_uses_derived_draw_params) {
5004 u_upload_data(ice->ctx.stream_uploader, 0,
5005 sizeof(ice->draw.derived_params), 4,
5006 &ice->draw.derived_params,
5007 &ice->draw.derived_draw_params_offset,
5008 &ice->draw.derived_draw_params_res);
5009
5010 struct iris_vertex_buffer_state *state =
5011 &(ice->state.genx->vertex_buffers[count]);
5012 pipe_resource_reference(&state->resource,
5013 ice->draw.derived_draw_params_res);
5014 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
5015
5016 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5017 vb.VertexBufferIndex = count;
5018 vb.AddressModifyEnable = true;
5019 vb.BufferPitch = 0;
5020 vb.BufferSize =
5021 res->bo->size - ice->draw.derived_draw_params_offset;
5022 vb.BufferStartingAddress =
5023 ro_bo(NULL, res->bo->gtt_offset +
5024 (int) ice->draw.derived_draw_params_offset);
5025 vb.MOCS = mocs(res->bo);
5026 }
5027 dynamic_bound |= 1ull << count;
5028 count++;
5029 }
5030
5031 if (count) {
5032 /* The VF cache designers cut corners, and made the cache key's
5033 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5034 * 32 bits of the address. If you have two vertex buffers which get
5035 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5036 * you can get collisions (even within a single batch).
5037 *
5038 * So, we need to do a VF cache invalidate if the buffer for a VB
5039 * slot slot changes [48:32] address bits from the previous time.
5040 */
5041 unsigned flush_flags = 0;
5042
5043 uint64_t bound = dynamic_bound;
5044 while (bound) {
5045 const int i = u_bit_scan64(&bound);
5046 uint16_t high_bits = 0;
5047
5048 struct iris_resource *res =
5049 (void *) genx->vertex_buffers[i].resource;
5050 if (res) {
5051 iris_use_pinned_bo(batch, res->bo, false);
5052
5053 high_bits = res->bo->gtt_offset >> 32ull;
5054 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5055 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5056 PIPE_CONTROL_CS_STALL;
5057 ice->state.last_vbo_high_bits[i] = high_bits;
5058 }
5059 }
5060 }
5061
5062 if (flush_flags) {
5063 iris_emit_pipe_control_flush(batch,
5064 "workaround: VF cache 32-bit key [VB]",
5065 flush_flags);
5066 }
5067
5068 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5069
5070 uint32_t *map =
5071 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5072 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5073 vb.DWordLength = (vb_dwords * count + 1) - 2;
5074 }
5075 map += 1;
5076
5077 bound = dynamic_bound;
5078 while (bound) {
5079 const int i = u_bit_scan64(&bound);
5080 memcpy(map, genx->vertex_buffers[i].state,
5081 sizeof(uint32_t) * vb_dwords);
5082 map += vb_dwords;
5083 }
5084 }
5085 }
5086
5087 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5088 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5089 const unsigned entries = MAX2(cso->count, 1);
5090 if (!(ice->state.vs_needs_sgvs_element ||
5091 ice->state.vs_uses_derived_draw_params ||
5092 ice->state.vs_needs_edge_flag)) {
5093 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5094 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5095 } else {
5096 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5097 const unsigned dyn_count = cso->count +
5098 ice->state.vs_needs_sgvs_element +
5099 ice->state.vs_uses_derived_draw_params;
5100
5101 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5102 &dynamic_ves, ve) {
5103 ve.DWordLength =
5104 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5105 }
5106 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5107 (cso->count - ice->state.vs_needs_edge_flag) *
5108 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5109 uint32_t *ve_pack_dest =
5110 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5111 GENX(VERTEX_ELEMENT_STATE_length)];
5112
5113 if (ice->state.vs_needs_sgvs_element) {
5114 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5115 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5116 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5117 ve.Valid = true;
5118 ve.VertexBufferIndex =
5119 util_bitcount64(ice->state.bound_vertex_buffers);
5120 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5121 ve.Component0Control = base_ctrl;
5122 ve.Component1Control = base_ctrl;
5123 ve.Component2Control = VFCOMP_STORE_0;
5124 ve.Component3Control = VFCOMP_STORE_0;
5125 }
5126 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5127 }
5128 if (ice->state.vs_uses_derived_draw_params) {
5129 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5130 ve.Valid = true;
5131 ve.VertexBufferIndex =
5132 util_bitcount64(ice->state.bound_vertex_buffers) +
5133 ice->state.vs_uses_draw_params;
5134 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5135 ve.Component0Control = VFCOMP_STORE_SRC;
5136 ve.Component1Control = VFCOMP_STORE_SRC;
5137 ve.Component2Control = VFCOMP_STORE_0;
5138 ve.Component3Control = VFCOMP_STORE_0;
5139 }
5140 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5141 }
5142 if (ice->state.vs_needs_edge_flag) {
5143 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5144 ve_pack_dest[i] = cso->edgeflag_ve[i];
5145 }
5146
5147 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5148 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5149 }
5150
5151 if (!ice->state.vs_needs_edge_flag) {
5152 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5153 entries * GENX(3DSTATE_VF_INSTANCING_length));
5154 } else {
5155 assert(cso->count > 0);
5156 const unsigned edgeflag_index = cso->count - 1;
5157 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5158 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5159 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5160
5161 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5162 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5163 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5164 vi.VertexElementIndex = edgeflag_index +
5165 ice->state.vs_needs_sgvs_element +
5166 ice->state.vs_uses_derived_draw_params;
5167 }
5168 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5169 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5170
5171 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5172 entries * GENX(3DSTATE_VF_INSTANCING_length));
5173 }
5174 }
5175
5176 if (dirty & IRIS_DIRTY_VF_SGVS) {
5177 const struct brw_vs_prog_data *vs_prog_data = (void *)
5178 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5179 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5180
5181 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5182 if (vs_prog_data->uses_vertexid) {
5183 sgv.VertexIDEnable = true;
5184 sgv.VertexIDComponentNumber = 2;
5185 sgv.VertexIDElementOffset =
5186 cso->count - ice->state.vs_needs_edge_flag;
5187 }
5188
5189 if (vs_prog_data->uses_instanceid) {
5190 sgv.InstanceIDEnable = true;
5191 sgv.InstanceIDComponentNumber = 3;
5192 sgv.InstanceIDElementOffset =
5193 cso->count - ice->state.vs_needs_edge_flag;
5194 }
5195 }
5196 }
5197
5198 if (dirty & IRIS_DIRTY_VF) {
5199 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5200 if (draw->primitive_restart) {
5201 vf.IndexedDrawCutIndexEnable = true;
5202 vf.CutIndex = draw->restart_index;
5203 }
5204 }
5205 }
5206
5207 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5208 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5209 vf.StatisticsEnable = true;
5210 }
5211 }
5212
5213 /* TODO: Gen8 PMA fix */
5214 }
5215
5216 static void
5217 iris_upload_render_state(struct iris_context *ice,
5218 struct iris_batch *batch,
5219 const struct pipe_draw_info *draw)
5220 {
5221 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5222
5223 /* Always pin the binder. If we're emitting new binding table pointers,
5224 * we need it. If not, we're probably inheriting old tables via the
5225 * context, and need it anyway. Since true zero-bindings cases are
5226 * practically non-existent, just pin it and avoid last_res tracking.
5227 */
5228 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5229
5230 if (!batch->contains_draw) {
5231 iris_restore_render_saved_bos(ice, batch, draw);
5232 batch->contains_draw = true;
5233 }
5234
5235 iris_upload_dirty_render_state(ice, batch, draw);
5236
5237 if (draw->index_size > 0) {
5238 unsigned offset;
5239
5240 if (draw->has_user_indices) {
5241 u_upload_data(ice->ctx.stream_uploader, 0,
5242 draw->count * draw->index_size, 4, draw->index.user,
5243 &offset, &ice->state.last_res.index_buffer);
5244 } else {
5245 struct iris_resource *res = (void *) draw->index.resource;
5246 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5247
5248 pipe_resource_reference(&ice->state.last_res.index_buffer,
5249 draw->index.resource);
5250 offset = 0;
5251 }
5252
5253 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5254
5255 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
5256 ib.IndexFormat = draw->index_size >> 1;
5257 ib.MOCS = mocs(bo);
5258 ib.BufferSize = bo->size - offset;
5259 ib.BufferStartingAddress = ro_bo(bo, offset);
5260 }
5261
5262 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5263 uint16_t high_bits = bo->gtt_offset >> 32ull;
5264 if (high_bits != ice->state.last_index_bo_high_bits) {
5265 iris_emit_pipe_control_flush(batch,
5266 "workaround: VF cache 32-bit key [IB]",
5267 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5268 PIPE_CONTROL_CS_STALL);
5269 ice->state.last_index_bo_high_bits = high_bits;
5270 }
5271 }
5272
5273 #define _3DPRIM_END_OFFSET 0x2420
5274 #define _3DPRIM_START_VERTEX 0x2430
5275 #define _3DPRIM_VERTEX_COUNT 0x2434
5276 #define _3DPRIM_INSTANCE_COUNT 0x2438
5277 #define _3DPRIM_START_INSTANCE 0x243C
5278 #define _3DPRIM_BASE_VERTEX 0x2440
5279
5280 if (draw->indirect) {
5281 if (draw->indirect->indirect_draw_count) {
5282 use_predicate = true;
5283
5284 struct iris_bo *draw_count_bo =
5285 iris_resource_bo(draw->indirect->indirect_draw_count);
5286 unsigned draw_count_offset =
5287 draw->indirect->indirect_draw_count_offset;
5288
5289 iris_emit_pipe_control_flush(batch,
5290 "ensure indirect draw buffer is flushed",
5291 PIPE_CONTROL_FLUSH_ENABLE);
5292
5293 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5294 static const uint32_t math[] = {
5295 MI_MATH | (9 - 2),
5296 /* Compute (draw index < draw count).
5297 * We do this by subtracting and storing the carry bit.
5298 */
5299 MI_ALU2(LOAD, SRCA, R0),
5300 MI_ALU2(LOAD, SRCB, R1),
5301 MI_ALU0(SUB),
5302 MI_ALU2(STORE, R3, CF),
5303 /* Compute (subtracting result & MI_PREDICATE). */
5304 MI_ALU2(LOAD, SRCA, R3),
5305 MI_ALU2(LOAD, SRCB, R2),
5306 MI_ALU0(AND),
5307 MI_ALU2(STORE, R3, ACCU),
5308 };
5309
5310 /* Upload the current draw count from the draw parameters
5311 * buffer to GPR1.
5312 */
5313 ice->vtbl.load_register_mem32(batch, CS_GPR(1), draw_count_bo,
5314 draw_count_offset);
5315 /* Zero the top 32-bits of GPR1. */
5316 ice->vtbl.load_register_imm32(batch, CS_GPR(1) + 4, 0);
5317 /* Upload the id of the current primitive to GPR0. */
5318 ice->vtbl.load_register_imm64(batch, CS_GPR(0), draw->drawid);
5319
5320 iris_batch_emit(batch, math, sizeof(math));
5321
5322 /* Store result of MI_MATH computations to MI_PREDICATE_RESULT. */
5323 ice->vtbl.load_register_reg64(batch,
5324 MI_PREDICATE_RESULT, CS_GPR(3));
5325 } else {
5326 uint32_t mi_predicate;
5327
5328 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5329 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5330 draw->drawid);
5331 /* Upload the current draw count from the draw parameters buffer
5332 * to MI_PREDICATE_SRC0.
5333 */
5334 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5335 draw_count_bo, draw_count_offset);
5336 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5337 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5338
5339 if (draw->drawid == 0) {
5340 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5341 MI_PREDICATE_COMBINEOP_SET |
5342 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5343 } else {
5344 /* While draw_index < draw_count the predicate's result will be
5345 * (draw_index == draw_count) ^ TRUE = TRUE
5346 * When draw_index == draw_count the result is
5347 * (TRUE) ^ TRUE = FALSE
5348 * After this all results will be:
5349 * (FALSE) ^ FALSE = FALSE
5350 */
5351 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5352 MI_PREDICATE_COMBINEOP_XOR |
5353 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5354 }
5355 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5356 }
5357 }
5358 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5359 assert(bo);
5360
5361 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5362 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5363 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5364 }
5365 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5366 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5367 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5368 }
5369 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5370 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5371 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5372 }
5373 if (draw->index_size) {
5374 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5375 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5376 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5377 }
5378 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5379 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5380 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5381 }
5382 } else {
5383 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5384 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5385 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5386 }
5387 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5388 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5389 lri.DataDWord = 0;
5390 }
5391 }
5392 } else if (draw->count_from_stream_output) {
5393 struct iris_stream_output_target *so =
5394 (void *) draw->count_from_stream_output;
5395
5396 /* XXX: Replace with actual cache tracking */
5397 iris_emit_pipe_control_flush(batch,
5398 "draw count from stream output stall",
5399 PIPE_CONTROL_CS_STALL);
5400
5401 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5402 lrm.RegisterAddress = CS_GPR(0);
5403 lrm.MemoryAddress =
5404 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5405 }
5406 if (so->base.buffer_offset)
5407 iris_math_add32_gpr0(ice, batch, -so->base.buffer_offset);
5408 iris_math_div32_gpr0(ice, batch, so->stride);
5409 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5410
5411 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5412 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5413 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5414 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5415 }
5416
5417 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5418 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5419 prim.PredicateEnable = use_predicate;
5420
5421 if (draw->indirect || draw->count_from_stream_output) {
5422 prim.IndirectParameterEnable = true;
5423 } else {
5424 prim.StartInstanceLocation = draw->start_instance;
5425 prim.InstanceCount = draw->instance_count;
5426 prim.VertexCountPerInstance = draw->count;
5427
5428 // XXX: this is probably bonkers.
5429 prim.StartVertexLocation = draw->start;
5430
5431 if (draw->index_size) {
5432 prim.BaseVertexLocation += draw->index_bias;
5433 } else {
5434 prim.StartVertexLocation += draw->index_bias;
5435 }
5436
5437 //prim.BaseVertexLocation = ...;
5438 }
5439 }
5440 }
5441
5442 static void
5443 iris_upload_compute_state(struct iris_context *ice,
5444 struct iris_batch *batch,
5445 const struct pipe_grid_info *grid)
5446 {
5447 const uint64_t dirty = ice->state.dirty;
5448 struct iris_screen *screen = batch->screen;
5449 const struct gen_device_info *devinfo = &screen->devinfo;
5450 struct iris_binder *binder = &ice->state.binder;
5451 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5452 struct iris_compiled_shader *shader =
5453 ice->shaders.prog[MESA_SHADER_COMPUTE];
5454 struct brw_stage_prog_data *prog_data = shader->prog_data;
5455 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5456
5457 /* Always pin the binder. If we're emitting new binding table pointers,
5458 * we need it. If not, we're probably inheriting old tables via the
5459 * context, and need it anyway. Since true zero-bindings cases are
5460 * practically non-existent, just pin it and avoid last_res tracking.
5461 */
5462 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5463
5464 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
5465 upload_uniforms(ice, MESA_SHADER_COMPUTE);
5466
5467 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5468 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5469
5470 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5471 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5472
5473 iris_use_optional_res(batch, shs->sampler_table.res, false);
5474 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5475
5476 if (ice->state.need_border_colors)
5477 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5478
5479 if (dirty & IRIS_DIRTY_CS) {
5480 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5481 *
5482 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5483 * the only bits that are changed are scoreboard related: Scoreboard
5484 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5485 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5486 * sufficient."
5487 */
5488 iris_emit_pipe_control_flush(batch,
5489 "workaround: stall before MEDIA_VFE_STATE",
5490 PIPE_CONTROL_CS_STALL);
5491
5492 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5493 if (prog_data->total_scratch) {
5494 struct iris_bo *bo =
5495 iris_get_scratch_space(ice, prog_data->total_scratch,
5496 MESA_SHADER_COMPUTE);
5497 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5498 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5499 }
5500
5501 vfe.MaximumNumberofThreads =
5502 devinfo->max_cs_threads * screen->subslice_total - 1;
5503 #if GEN_GEN < 11
5504 vfe.ResetGatewayTimer =
5505 Resettingrelativetimerandlatchingtheglobaltimestamp;
5506 #endif
5507 #if GEN_GEN == 8
5508 vfe.BypassGatewayControl = true;
5509 #endif
5510 vfe.NumberofURBEntries = 2;
5511 vfe.URBEntryAllocationSize = 2;
5512
5513 vfe.CURBEAllocationSize =
5514 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5515 cs_prog_data->push.cross_thread.regs, 2);
5516 }
5517 }
5518
5519 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5520 uint32_t curbe_data_offset = 0;
5521 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5522 cs_prog_data->push.per_thread.dwords == 1 &&
5523 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5524 struct pipe_resource *curbe_data_res = NULL;
5525 uint32_t *curbe_data_map =
5526 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
5527 ALIGN(cs_prog_data->push.total.size, 64), 64,
5528 &curbe_data_offset);
5529 assert(curbe_data_map);
5530 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5531 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5532
5533 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
5534 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5535 curbe.CURBETotalDataLength =
5536 ALIGN(cs_prog_data->push.total.size, 64);
5537 curbe.CURBEDataStartAddress = curbe_data_offset;
5538 }
5539 }
5540
5541 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5542 IRIS_DIRTY_BINDINGS_CS |
5543 IRIS_DIRTY_CONSTANTS_CS |
5544 IRIS_DIRTY_CS)) {
5545 struct pipe_resource *desc_res = NULL;
5546 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5547
5548 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5549 idd.SamplerStatePointer = shs->sampler_table.offset;
5550 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5551 }
5552
5553 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5554 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5555
5556 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5557 load.InterfaceDescriptorTotalLength =
5558 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5559 load.InterfaceDescriptorDataStartAddress =
5560 emit_state(batch, ice->state.dynamic_uploader,
5561 &desc_res, desc, sizeof(desc), 32);
5562 }
5563
5564 pipe_resource_reference(&desc_res, NULL);
5565 }
5566
5567 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5568 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5569 uint32_t right_mask;
5570
5571 if (remainder > 0)
5572 right_mask = ~0u >> (32 - remainder);
5573 else
5574 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5575
5576 #define GPGPU_DISPATCHDIMX 0x2500
5577 #define GPGPU_DISPATCHDIMY 0x2504
5578 #define GPGPU_DISPATCHDIMZ 0x2508
5579
5580 if (grid->indirect) {
5581 struct iris_state_ref *grid_size = &ice->state.grid_size;
5582 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5583 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5584 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5585 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5586 }
5587 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5588 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5589 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5590 }
5591 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5592 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5593 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5594 }
5595 }
5596
5597 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5598 ggw.IndirectParameterEnable = grid->indirect != NULL;
5599 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5600 ggw.ThreadDepthCounterMaximum = 0;
5601 ggw.ThreadHeightCounterMaximum = 0;
5602 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5603 ggw.ThreadGroupIDXDimension = grid->grid[0];
5604 ggw.ThreadGroupIDYDimension = grid->grid[1];
5605 ggw.ThreadGroupIDZDimension = grid->grid[2];
5606 ggw.RightExecutionMask = right_mask;
5607 ggw.BottomExecutionMask = 0xffffffff;
5608 }
5609
5610 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5611
5612 if (!batch->contains_draw) {
5613 iris_restore_compute_saved_bos(ice, batch, grid);
5614 batch->contains_draw = true;
5615 }
5616 }
5617
5618 /**
5619 * State module teardown.
5620 */
5621 static void
5622 iris_destroy_state(struct iris_context *ice)
5623 {
5624 struct iris_genx_state *genx = ice->state.genx;
5625
5626 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5627 while (bound_vbs) {
5628 const int i = u_bit_scan64(&bound_vbs);
5629 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5630 }
5631 free(ice->state.genx);
5632
5633 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5634 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5635 }
5636 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5637
5638 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5639 struct iris_shader_state *shs = &ice->state.shaders[stage];
5640 pipe_resource_reference(&shs->sampler_table.res, NULL);
5641 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5642 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5643 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5644 }
5645 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5646 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5647 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5648 }
5649 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5650 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5651 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5652 }
5653 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5654 pipe_sampler_view_reference((struct pipe_sampler_view **)
5655 &shs->textures[i], NULL);
5656 }
5657 }
5658
5659 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5660 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5661
5662 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5663 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5664
5665 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5666 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5667 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5668 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5669 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5670 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5671 }
5672
5673 /* ------------------------------------------------------------------- */
5674
5675 static void
5676 iris_rebind_buffer(struct iris_context *ice,
5677 struct iris_resource *res,
5678 uint64_t old_address)
5679 {
5680 struct pipe_context *ctx = &ice->ctx;
5681 struct iris_screen *screen = (void *) ctx->screen;
5682 struct iris_genx_state *genx = ice->state.genx;
5683
5684 assert(res->base.target == PIPE_BUFFER);
5685
5686 /* Buffers can't be framebuffer attachments, nor display related,
5687 * and we don't have upstream Clover support.
5688 */
5689 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5690 PIPE_BIND_RENDER_TARGET |
5691 PIPE_BIND_BLENDABLE |
5692 PIPE_BIND_DISPLAY_TARGET |
5693 PIPE_BIND_CURSOR |
5694 PIPE_BIND_COMPUTE_RESOURCE |
5695 PIPE_BIND_GLOBAL)));
5696
5697 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
5698 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5699 while (bound_vbs) {
5700 const int i = u_bit_scan64(&bound_vbs);
5701 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
5702
5703 /* Update the CPU struct */
5704 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
5705 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
5706 uint64_t *addr = (uint64_t *) &state->state[1];
5707
5708 if (*addr == old_address) {
5709 *addr = res->bo->gtt_offset;
5710 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
5711 }
5712 }
5713 }
5714
5715 /* No need to handle these:
5716 * - PIPE_BIND_INDEX_BUFFER (emitted for every indexed draw)
5717 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
5718 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
5719 */
5720
5721 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
5722 /* XXX: be careful about resetting vs appending... */
5723 assert(false);
5724 }
5725
5726 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
5727 struct iris_shader_state *shs = &ice->state.shaders[s];
5728 enum pipe_shader_type p_stage = stage_to_pipe(s);
5729
5730 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
5731 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
5732 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
5733 while (bound_cbufs) {
5734 const int i = u_bit_scan(&bound_cbufs);
5735 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
5736 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
5737
5738 if (res->bo == iris_resource_bo(cbuf->buffer)) {
5739 iris_upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
5740 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
5741 }
5742 }
5743 }
5744
5745 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
5746 uint32_t bound_ssbos = shs->bound_ssbos;
5747 while (bound_ssbos) {
5748 const int i = u_bit_scan(&bound_ssbos);
5749 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
5750
5751 if (res->bo == iris_resource_bo(ssbo->buffer)) {
5752 struct pipe_shader_buffer buf = {
5753 .buffer = &res->base,
5754 .buffer_offset = ssbo->buffer_offset,
5755 .buffer_size = ssbo->buffer_size,
5756 };
5757 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
5758 (shs->writable_ssbos >> i) & 1);
5759 }
5760 }
5761 }
5762
5763 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
5764 uint32_t bound_sampler_views = shs->bound_sampler_views;
5765 while (bound_sampler_views) {
5766 const int i = u_bit_scan(&bound_sampler_views);
5767 struct iris_sampler_view *isv = shs->textures[i];
5768
5769 if (res->bo == iris_resource_bo(isv->base.texture)) {
5770 void *map = alloc_surface_states(ice->state.surface_uploader,
5771 &isv->surface_state,
5772 isv->res->aux.sampler_usages);
5773 assert(map);
5774 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
5775 isv->view.format, isv->view.swizzle,
5776 isv->base.u.buf.offset,
5777 isv->base.u.buf.size);
5778 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
5779 }
5780 }
5781 }
5782
5783 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
5784 uint32_t bound_image_views = shs->bound_image_views;
5785 while (bound_image_views) {
5786 const int i = u_bit_scan(&bound_image_views);
5787 struct iris_image_view *iv = &shs->image[i];
5788
5789 if (res->bo == iris_resource_bo(iv->base.resource)) {
5790 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
5791 }
5792 }
5793 }
5794 }
5795 }
5796
5797 /* ------------------------------------------------------------------- */
5798
5799 static void
5800 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5801 uint32_t src)
5802 {
5803 _iris_emit_lrr(batch, dst, src);
5804 }
5805
5806 static void
5807 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5808 uint32_t src)
5809 {
5810 _iris_emit_lrr(batch, dst, src);
5811 _iris_emit_lrr(batch, dst + 4, src + 4);
5812 }
5813
5814 static void
5815 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5816 uint32_t val)
5817 {
5818 _iris_emit_lri(batch, reg, val);
5819 }
5820
5821 static void
5822 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5823 uint64_t val)
5824 {
5825 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5826 _iris_emit_lri(batch, reg + 4, val >> 32);
5827 }
5828
5829 /**
5830 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5831 */
5832 static void
5833 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5834 struct iris_bo *bo, uint32_t offset)
5835 {
5836 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5837 lrm.RegisterAddress = reg;
5838 lrm.MemoryAddress = ro_bo(bo, offset);
5839 }
5840 }
5841
5842 /**
5843 * Load a 64-bit value from a buffer into a MMIO register via
5844 * two MI_LOAD_REGISTER_MEM commands.
5845 */
5846 static void
5847 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5848 struct iris_bo *bo, uint32_t offset)
5849 {
5850 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5851 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5852 }
5853
5854 static void
5855 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5856 struct iris_bo *bo, uint32_t offset,
5857 bool predicated)
5858 {
5859 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5860 srm.RegisterAddress = reg;
5861 srm.MemoryAddress = rw_bo(bo, offset);
5862 srm.PredicateEnable = predicated;
5863 }
5864 }
5865
5866 static void
5867 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5868 struct iris_bo *bo, uint32_t offset,
5869 bool predicated)
5870 {
5871 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5872 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5873 }
5874
5875 static void
5876 iris_store_data_imm32(struct iris_batch *batch,
5877 struct iris_bo *bo, uint32_t offset,
5878 uint32_t imm)
5879 {
5880 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5881 sdi.Address = rw_bo(bo, offset);
5882 sdi.ImmediateData = imm;
5883 }
5884 }
5885
5886 static void
5887 iris_store_data_imm64(struct iris_batch *batch,
5888 struct iris_bo *bo, uint32_t offset,
5889 uint64_t imm)
5890 {
5891 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5892 * 2 in genxml but it's actually variable length and we need 5 DWords.
5893 */
5894 void *map = iris_get_command_space(batch, 4 * 5);
5895 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5896 sdi.DWordLength = 5 - 2;
5897 sdi.Address = rw_bo(bo, offset);
5898 sdi.ImmediateData = imm;
5899 }
5900 }
5901
5902 static void
5903 iris_copy_mem_mem(struct iris_batch *batch,
5904 struct iris_bo *dst_bo, uint32_t dst_offset,
5905 struct iris_bo *src_bo, uint32_t src_offset,
5906 unsigned bytes)
5907 {
5908 /* MI_COPY_MEM_MEM operates on DWords. */
5909 assert(bytes % 4 == 0);
5910 assert(dst_offset % 4 == 0);
5911 assert(src_offset % 4 == 0);
5912
5913 for (unsigned i = 0; i < bytes; i += 4) {
5914 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5915 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5916 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5917 }
5918 }
5919 }
5920
5921 /* ------------------------------------------------------------------- */
5922
5923 static unsigned
5924 flags_to_post_sync_op(uint32_t flags)
5925 {
5926 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5927 return WriteImmediateData;
5928
5929 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5930 return WritePSDepthCount;
5931
5932 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5933 return WriteTimestamp;
5934
5935 return 0;
5936 }
5937
5938 /**
5939 * Do the given flags have a Post Sync or LRI Post Sync operation?
5940 */
5941 static enum pipe_control_flags
5942 get_post_sync_flags(enum pipe_control_flags flags)
5943 {
5944 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5945 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5946 PIPE_CONTROL_WRITE_TIMESTAMP |
5947 PIPE_CONTROL_LRI_POST_SYNC_OP;
5948
5949 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5950 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5951 */
5952 assert(util_bitcount(flags) <= 1);
5953
5954 return flags;
5955 }
5956
5957 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5958
5959 /**
5960 * Emit a series of PIPE_CONTROL commands, taking into account any
5961 * workarounds necessary to actually accomplish the caller's request.
5962 *
5963 * Unless otherwise noted, spec quotations in this function come from:
5964 *
5965 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5966 * Restrictions for PIPE_CONTROL.
5967 *
5968 * You should not use this function directly. Use the helpers in
5969 * iris_pipe_control.c instead, which may split the pipe control further.
5970 */
5971 static void
5972 iris_emit_raw_pipe_control(struct iris_batch *batch,
5973 const char *reason,
5974 uint32_t flags,
5975 struct iris_bo *bo,
5976 uint32_t offset,
5977 uint64_t imm)
5978 {
5979 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5980 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5981 enum pipe_control_flags non_lri_post_sync_flags =
5982 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5983
5984 /* Recursive PIPE_CONTROL workarounds --------------------------------
5985 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5986 *
5987 * We do these first because we want to look at the original operation,
5988 * rather than any workarounds we set.
5989 */
5990 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5991 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5992 * lists several workarounds:
5993 *
5994 * "Project: SKL, KBL, BXT
5995 *
5996 * If the VF Cache Invalidation Enable is set to a 1 in a
5997 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5998 * sets to 0, with the VF Cache Invalidation Enable set to 0
5999 * needs to be sent prior to the PIPE_CONTROL with VF Cache
6000 * Invalidation Enable set to a 1."
6001 */
6002 iris_emit_raw_pipe_control(batch,
6003 "workaround: recursive VF cache invalidate",
6004 0, NULL, 0, 0);
6005 }
6006
6007 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
6008 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6009 *
6010 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6011 * programmed prior to programming a PIPECONTROL command with "LRI
6012 * Post Sync Operation" in GPGPU mode of operation (i.e when
6013 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6014 *
6015 * The same text exists a few rows below for Post Sync Op.
6016 */
6017 iris_emit_raw_pipe_control(batch,
6018 "workaround: CS stall before gpgpu post-sync",
6019 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6020 }
6021
6022 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6023 /* Cannonlake:
6024 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6025 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6026 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6027 */
6028 iris_emit_raw_pipe_control(batch,
6029 "workaround: PC flush before RT flush",
6030 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6031 }
6032
6033 /* "Flush Types" workarounds ---------------------------------------------
6034 * We do these now because they may add post-sync operations or CS stalls.
6035 */
6036
6037 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6038 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6039 *
6040 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6041 * 'Write PS Depth Count' or 'Write Timestamp'."
6042 */
6043 if (!bo) {
6044 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6045 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6046 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6047 bo = batch->screen->workaround_bo;
6048 }
6049 }
6050
6051 /* #1130 from Gen10 workarounds page:
6052 *
6053 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6054 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6055 * board stall if Render target cache flush is enabled."
6056 *
6057 * Applicable to CNL B0 and C0 steppings only.
6058 *
6059 * The wording here is unclear, and this workaround doesn't look anything
6060 * like the internal bug report recommendations, but leave it be for now...
6061 */
6062 if (GEN_GEN == 10) {
6063 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6064 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6065 } else if (flags & non_lri_post_sync_flags) {
6066 flags |= PIPE_CONTROL_DEPTH_STALL;
6067 }
6068 }
6069
6070 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6071 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6072 *
6073 * "This bit must be DISABLED for operations other than writing
6074 * PS_DEPTH_COUNT."
6075 *
6076 * This seems like nonsense. An Ivybridge workaround requires us to
6077 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6078 * operation. Gen8+ requires us to emit depth stalls and depth cache
6079 * flushes together. So, it's hard to imagine this means anything other
6080 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6081 *
6082 * We ignore the supposed restriction and do nothing.
6083 */
6084 }
6085
6086 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6087 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6088 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6089 *
6090 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6091 * PS_DEPTH_COUNT or TIMESTAMP queries."
6092 *
6093 * TODO: Implement end-of-pipe checking.
6094 */
6095 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6096 PIPE_CONTROL_WRITE_TIMESTAMP)));
6097 }
6098
6099 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6100 /* From the PIPE_CONTROL instruction table, bit 1:
6101 *
6102 * "This bit is ignored if Depth Stall Enable is set.
6103 * Further, the render cache is not flushed even if Write Cache
6104 * Flush Enable bit is set."
6105 *
6106 * We assert that the caller doesn't do this combination, to try and
6107 * prevent mistakes. It shouldn't hurt the GPU, though.
6108 *
6109 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6110 * and "Render Target Flush" combo is explicitly required for BTI
6111 * update workarounds.
6112 */
6113 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6114 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6115 }
6116
6117 /* PIPE_CONTROL page workarounds ------------------------------------- */
6118
6119 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6120 /* From the PIPE_CONTROL page itself:
6121 *
6122 * "IVB, HSW, BDW
6123 * Restriction: Pipe_control with CS-stall bit set must be issued
6124 * before a pipe-control command that has the State Cache
6125 * Invalidate bit set."
6126 */
6127 flags |= PIPE_CONTROL_CS_STALL;
6128 }
6129
6130 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6131 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6132 *
6133 * "Project: ALL
6134 * SW must always program Post-Sync Operation to "Write Immediate
6135 * Data" when Flush LLC is set."
6136 *
6137 * For now, we just require the caller to do it.
6138 */
6139 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6140 }
6141
6142 /* "Post-Sync Operation" workarounds -------------------------------- */
6143
6144 /* Project: All / Argument: Global Snapshot Count Reset [19]
6145 *
6146 * "This bit must not be exercised on any product.
6147 * Requires stall bit ([20] of DW1) set."
6148 *
6149 * We don't use this, so we just assert that it isn't used. The
6150 * PIPE_CONTROL instruction page indicates that they intended this
6151 * as a debug feature and don't think it is useful in production,
6152 * but it may actually be usable, should we ever want to.
6153 */
6154 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6155
6156 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6157 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6158 /* Project: All / Arguments:
6159 *
6160 * - Generic Media State Clear [16]
6161 * - Indirect State Pointers Disable [16]
6162 *
6163 * "Requires stall bit ([20] of DW1) set."
6164 *
6165 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6166 * State Clear) says:
6167 *
6168 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6169 * programmed prior to programming a PIPECONTROL command with "Media
6170 * State Clear" set in GPGPU mode of operation"
6171 *
6172 * This is a subset of the earlier rule, so there's nothing to do.
6173 */
6174 flags |= PIPE_CONTROL_CS_STALL;
6175 }
6176
6177 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6178 /* Project: All / Argument: Store Data Index
6179 *
6180 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6181 * than '0'."
6182 *
6183 * For now, we just assert that the caller does this. We might want to
6184 * automatically add a write to the workaround BO...
6185 */
6186 assert(non_lri_post_sync_flags != 0);
6187 }
6188
6189 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6190 /* Project: All / Argument: Sync GFDT
6191 *
6192 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6193 * than '0' or 0x2520[13] must be set."
6194 *
6195 * For now, we just assert that the caller does this.
6196 */
6197 assert(non_lri_post_sync_flags != 0);
6198 }
6199
6200 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6201 /* Project: IVB+ / Argument: TLB inv
6202 *
6203 * "Requires stall bit ([20] of DW1) set."
6204 *
6205 * Also, from the PIPE_CONTROL instruction table:
6206 *
6207 * "Project: SKL+
6208 * Post Sync Operation or CS stall must be set to ensure a TLB
6209 * invalidation occurs. Otherwise no cycle will occur to the TLB
6210 * cache to invalidate."
6211 *
6212 * This is not a subset of the earlier rule, so there's nothing to do.
6213 */
6214 flags |= PIPE_CONTROL_CS_STALL;
6215 }
6216
6217 if (GEN_GEN == 9 && devinfo->gt == 4) {
6218 /* TODO: The big Skylake GT4 post sync op workaround */
6219 }
6220
6221 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6222
6223 if (IS_COMPUTE_PIPELINE(batch)) {
6224 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6225 /* Project: SKL+ / Argument: Tex Invalidate
6226 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6227 */
6228 flags |= PIPE_CONTROL_CS_STALL;
6229 }
6230
6231 if (GEN_GEN == 8 && (post_sync_flags ||
6232 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6233 PIPE_CONTROL_DEPTH_STALL |
6234 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6235 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6236 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6237 /* Project: BDW / Arguments:
6238 *
6239 * - LRI Post Sync Operation [23]
6240 * - Post Sync Op [15:14]
6241 * - Notify En [8]
6242 * - Depth Stall [13]
6243 * - Render Target Cache Flush [12]
6244 * - Depth Cache Flush [0]
6245 * - DC Flush Enable [5]
6246 *
6247 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6248 * Workloads."
6249 */
6250 flags |= PIPE_CONTROL_CS_STALL;
6251
6252 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6253 *
6254 * "Project: BDW
6255 * This bit must be always set when PIPE_CONTROL command is
6256 * programmed by GPGPU and MEDIA workloads, except for the cases
6257 * when only Read Only Cache Invalidation bits are set (State
6258 * Cache Invalidation Enable, Instruction cache Invalidation
6259 * Enable, Texture Cache Invalidation Enable, Constant Cache
6260 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6261 * need not implemented when FF_DOP_CG is disable via "Fixed
6262 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6263 *
6264 * It sounds like we could avoid CS stalls in some cases, but we
6265 * don't currently bother. This list isn't exactly the list above,
6266 * either...
6267 */
6268 }
6269 }
6270
6271 /* "Stall" workarounds ----------------------------------------------
6272 * These have to come after the earlier ones because we may have added
6273 * some additional CS stalls above.
6274 */
6275
6276 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6277 /* Project: PRE-SKL, VLV, CHV
6278 *
6279 * "[All Stepping][All SKUs]:
6280 *
6281 * One of the following must also be set:
6282 *
6283 * - Render Target Cache Flush Enable ([12] of DW1)
6284 * - Depth Cache Flush Enable ([0] of DW1)
6285 * - Stall at Pixel Scoreboard ([1] of DW1)
6286 * - Depth Stall ([13] of DW1)
6287 * - Post-Sync Operation ([13] of DW1)
6288 * - DC Flush Enable ([5] of DW1)"
6289 *
6290 * If we don't already have one of those bits set, we choose to add
6291 * "Stall at Pixel Scoreboard". Some of the other bits require a
6292 * CS stall as a workaround (see above), which would send us into
6293 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6294 * appears to be safe, so we choose that.
6295 */
6296 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6297 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6298 PIPE_CONTROL_WRITE_IMMEDIATE |
6299 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6300 PIPE_CONTROL_WRITE_TIMESTAMP |
6301 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6302 PIPE_CONTROL_DEPTH_STALL |
6303 PIPE_CONTROL_DATA_CACHE_FLUSH;
6304 if (!(flags & wa_bits))
6305 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6306 }
6307
6308 /* Emit --------------------------------------------------------------- */
6309
6310 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6311 fprintf(stderr,
6312 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6313 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6314 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6315 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6316 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6317 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6318 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6319 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6320 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6321 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6322 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6323 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6324 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6325 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6326 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6327 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6328 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6329 "SnapRes" : "",
6330 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6331 "ISPDis" : "",
6332 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6333 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6334 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6335 imm, reason);
6336 }
6337
6338 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6339 pc.LRIPostSyncOperation = NoLRIOperation;
6340 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6341 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6342 pc.StoreDataIndex = 0;
6343 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6344 pc.GlobalSnapshotCountReset =
6345 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6346 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6347 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6348 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6349 pc.RenderTargetCacheFlushEnable =
6350 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6351 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6352 pc.StateCacheInvalidationEnable =
6353 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6354 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6355 pc.ConstantCacheInvalidationEnable =
6356 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6357 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6358 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6359 pc.InstructionCacheInvalidateEnable =
6360 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6361 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6362 pc.IndirectStatePointersDisable =
6363 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6364 pc.TextureCacheInvalidationEnable =
6365 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6366 pc.Address = rw_bo(bo, offset);
6367 pc.ImmediateData = imm;
6368 }
6369 }
6370
6371 void
6372 genX(emit_urb_setup)(struct iris_context *ice,
6373 struct iris_batch *batch,
6374 const unsigned size[4],
6375 bool tess_present, bool gs_present)
6376 {
6377 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6378 const unsigned push_size_kB = 32;
6379 unsigned entries[4];
6380 unsigned start[4];
6381
6382 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6383
6384 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6385 1024 * ice->shaders.urb_size,
6386 tess_present, gs_present,
6387 size, entries, start);
6388
6389 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6390 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6391 urb._3DCommandSubOpcode += i;
6392 urb.VSURBStartingAddress = start[i];
6393 urb.VSURBEntryAllocationSize = size[i] - 1;
6394 urb.VSNumberofURBEntries = entries[i];
6395 }
6396 }
6397 }
6398
6399 #if GEN_GEN == 9
6400 /**
6401 * Preemption on Gen9 has to be enabled or disabled in various cases.
6402 *
6403 * See these workarounds for preemption:
6404 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6405 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6406 * - WaDisableMidObjectPreemptionForLineLoop
6407 * - WA#0798
6408 *
6409 * We don't put this in the vtable because it's only used on Gen9.
6410 */
6411 void
6412 gen9_toggle_preemption(struct iris_context *ice,
6413 struct iris_batch *batch,
6414 const struct pipe_draw_info *draw)
6415 {
6416 struct iris_genx_state *genx = ice->state.genx;
6417 bool object_preemption = true;
6418
6419 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6420 *
6421 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6422 * and GS is enabled."
6423 */
6424 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6425 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6426 object_preemption = false;
6427
6428 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6429 *
6430 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6431 * on a previous context. End the previous, the resume another context
6432 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6433 * prempt again we will cause corruption.
6434 *
6435 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6436 */
6437 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6438 object_preemption = false;
6439
6440 /* WaDisableMidObjectPreemptionForLineLoop
6441 *
6442 * "VF Stats Counters Missing a vertex when preemption enabled.
6443 *
6444 * WA: Disable mid-draw preemption when the draw uses a lineloop
6445 * topology."
6446 */
6447 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6448 object_preemption = false;
6449
6450 /* WA#0798
6451 *
6452 * "VF is corrupting GAFS data when preempted on an instance boundary
6453 * and replayed with instancing enabled.
6454 *
6455 * WA: Disable preemption when using instanceing."
6456 */
6457 if (draw->instance_count > 1)
6458 object_preemption = false;
6459
6460 if (genx->object_preemption != object_preemption) {
6461 iris_enable_obj_preemption(batch, object_preemption);
6462 genx->object_preemption = object_preemption;
6463 }
6464 }
6465 #endif
6466
6467 void
6468 genX(init_state)(struct iris_context *ice)
6469 {
6470 struct pipe_context *ctx = &ice->ctx;
6471 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6472
6473 ctx->create_blend_state = iris_create_blend_state;
6474 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6475 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6476 ctx->create_sampler_state = iris_create_sampler_state;
6477 ctx->create_sampler_view = iris_create_sampler_view;
6478 ctx->create_surface = iris_create_surface;
6479 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6480 ctx->bind_blend_state = iris_bind_blend_state;
6481 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6482 ctx->bind_sampler_states = iris_bind_sampler_states;
6483 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6484 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6485 ctx->delete_blend_state = iris_delete_state;
6486 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6487 ctx->delete_rasterizer_state = iris_delete_state;
6488 ctx->delete_sampler_state = iris_delete_state;
6489 ctx->delete_vertex_elements_state = iris_delete_state;
6490 ctx->set_blend_color = iris_set_blend_color;
6491 ctx->set_clip_state = iris_set_clip_state;
6492 ctx->set_constant_buffer = iris_set_constant_buffer;
6493 ctx->set_shader_buffers = iris_set_shader_buffers;
6494 ctx->set_shader_images = iris_set_shader_images;
6495 ctx->set_sampler_views = iris_set_sampler_views;
6496 ctx->set_tess_state = iris_set_tess_state;
6497 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6498 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6499 ctx->set_sample_mask = iris_set_sample_mask;
6500 ctx->set_scissor_states = iris_set_scissor_states;
6501 ctx->set_stencil_ref = iris_set_stencil_ref;
6502 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6503 ctx->set_viewport_states = iris_set_viewport_states;
6504 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6505 ctx->surface_destroy = iris_surface_destroy;
6506 ctx->draw_vbo = iris_draw_vbo;
6507 ctx->launch_grid = iris_launch_grid;
6508 ctx->create_stream_output_target = iris_create_stream_output_target;
6509 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6510 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6511
6512 ice->vtbl.destroy_state = iris_destroy_state;
6513 ice->vtbl.init_render_context = iris_init_render_context;
6514 ice->vtbl.init_compute_context = iris_init_compute_context;
6515 ice->vtbl.upload_render_state = iris_upload_render_state;
6516 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6517 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6518 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6519 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6520 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6521 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6522 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6523 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6524 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6525 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6526 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6527 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6528 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6529 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6530 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6531 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6532 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6533 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6534 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6535 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6536 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6537 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6538 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6539 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6540 ice->vtbl.mocs = mocs;
6541
6542 ice->state.dirty = ~0ull;
6543
6544 ice->state.statistics_counters_enabled = true;
6545
6546 ice->state.sample_mask = 0xffff;
6547 ice->state.num_viewports = 1;
6548 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6549
6550 /* Make a 1x1x1 null surface for unbound textures */
6551 void *null_surf_map =
6552 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6553 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6554 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6555 ice->state.unbound_tex.offset +=
6556 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6557
6558 /* Default all scissor rectangles to be empty regions. */
6559 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6560 ice->state.scissors[i] = (struct pipe_scissor_state) {
6561 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6562 };
6563 }
6564 }