iris: Only set key->flat_shade if COL0/COL1 are written.
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #define __gen_address_type struct iris_address
110 #define __gen_user_data struct iris_batch
111
112 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
113
114 static uint64_t
115 __gen_combine_address(struct iris_batch *batch, void *location,
116 struct iris_address addr, uint32_t delta)
117 {
118 uint64_t result = addr.offset + delta;
119
120 if (addr.bo) {
121 iris_use_pinned_bo(batch, addr.bo, addr.write);
122 /* Assume this is a general address, not relative to a base. */
123 result += addr.bo->gtt_offset;
124 }
125
126 return result;
127 }
128
129 #define __genxml_cmd_length(cmd) cmd ## _length
130 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
131 #define __genxml_cmd_header(cmd) cmd ## _header
132 #define __genxml_cmd_pack(cmd) cmd ## _pack
133
134 #define _iris_pack_command(batch, cmd, dst, name) \
135 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
136 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
137 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
138 _dst = NULL; \
139 }))
140
141 #define iris_pack_command(cmd, dst, name) \
142 _iris_pack_command(NULL, cmd, dst, name)
143
144 #define iris_pack_state(cmd, dst, name) \
145 for (struct cmd name = {}, \
146 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
147 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
148 _dst = NULL)
149
150 #define iris_emit_cmd(batch, cmd, name) \
151 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
152
153 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
154 do { \
155 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
156 for (uint32_t i = 0; i < num_dwords; i++) \
157 dw[i] = (dwords0)[i] | (dwords1)[i]; \
158 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
159 } while (0)
160
161 #include "genxml/genX_pack.h"
162 #include "genxml/gen_macros.h"
163 #include "genxml/genX_bits.h"
164 #include "intel/common/gen_guardband.h"
165
166 #if GEN_GEN == 8
167 #define MOCS_PTE 0x18
168 #define MOCS_WB 0x78
169 #else
170 #define MOCS_PTE (1 << 1)
171 #define MOCS_WB (2 << 1)
172 #endif
173
174 static uint32_t
175 mocs(const struct iris_bo *bo)
176 {
177 return bo && bo->external ? MOCS_PTE : MOCS_WB;
178 }
179
180 /**
181 * Statically assert that PIPE_* enums match the hardware packets.
182 * (As long as they match, we don't need to translate them.)
183 */
184 UNUSED static void pipe_asserts()
185 {
186 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
187
188 /* pipe_logicop happens to match the hardware. */
189 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
190 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
192 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
193 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
194 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
195 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
196 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
197 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
198 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
199 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
201 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
202 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
203 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
204 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
205
206 /* pipe_blend_func happens to match the hardware. */
207 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
224 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
225 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
226
227 /* pipe_blend_func happens to match the hardware. */
228 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
229 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
230 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
231 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
232 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
233
234 /* pipe_stencil_op happens to match the hardware. */
235 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
236 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
237 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
241 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
242 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
243
244 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
245 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
246 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
247 #undef PIPE_ASSERT
248 }
249
250 static unsigned
251 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
252 {
253 static const unsigned map[] = {
254 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
255 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
256 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
257 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
258 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
259 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
260 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
261 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
262 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
263 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
264 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
265 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
266 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
267 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
268 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
269 };
270
271 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
272 }
273
274 static unsigned
275 translate_compare_func(enum pipe_compare_func pipe_func)
276 {
277 static const unsigned map[] = {
278 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
279 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
280 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
281 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
282 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
283 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
284 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
285 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
286 };
287 return map[pipe_func];
288 }
289
290 static unsigned
291 translate_shadow_func(enum pipe_compare_func pipe_func)
292 {
293 /* Gallium specifies the result of shadow comparisons as:
294 *
295 * 1 if ref <op> texel,
296 * 0 otherwise.
297 *
298 * The hardware does:
299 *
300 * 0 if texel <op> ref,
301 * 1 otherwise.
302 *
303 * So we need to flip the operator and also negate.
304 */
305 static const unsigned map[] = {
306 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
307 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
308 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
309 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
310 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
311 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
312 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
313 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
314 };
315 return map[pipe_func];
316 }
317
318 static unsigned
319 translate_cull_mode(unsigned pipe_face)
320 {
321 static const unsigned map[4] = {
322 [PIPE_FACE_NONE] = CULLMODE_NONE,
323 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
324 [PIPE_FACE_BACK] = CULLMODE_BACK,
325 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
326 };
327 return map[pipe_face];
328 }
329
330 static unsigned
331 translate_fill_mode(unsigned pipe_polymode)
332 {
333 static const unsigned map[4] = {
334 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
335 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
336 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
337 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
338 };
339 return map[pipe_polymode];
340 }
341
342 static unsigned
343 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
344 {
345 static const unsigned map[] = {
346 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
347 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
348 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
349 };
350 return map[pipe_mip];
351 }
352
353 static uint32_t
354 translate_wrap(unsigned pipe_wrap)
355 {
356 static const unsigned map[] = {
357 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
358 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
359 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
360 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
361 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
362 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
363
364 /* These are unsupported. */
365 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
366 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
367 };
368 return map[pipe_wrap];
369 }
370
371 static struct iris_address
372 ro_bo(struct iris_bo *bo, uint64_t offset)
373 {
374 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
375 * validation list at CSO creation time, instead of draw time.
376 */
377 return (struct iris_address) { .bo = bo, .offset = offset };
378 }
379
380 static struct iris_address
381 rw_bo(struct iris_bo *bo, uint64_t offset)
382 {
383 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
384 * validation list at CSO creation time, instead of draw time.
385 */
386 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
387 }
388
389 /**
390 * Allocate space for some indirect state.
391 *
392 * Return a pointer to the map (to fill it out) and a state ref (for
393 * referring to the state in GPU commands).
394 */
395 static void *
396 upload_state(struct u_upload_mgr *uploader,
397 struct iris_state_ref *ref,
398 unsigned size,
399 unsigned alignment)
400 {
401 void *p = NULL;
402 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
403 return p;
404 }
405
406 /**
407 * Stream out temporary/short-lived state.
408 *
409 * This allocates space, pins the BO, and includes the BO address in the
410 * returned offset (which works because all state lives in 32-bit memory
411 * zones).
412 */
413 static uint32_t *
414 stream_state(struct iris_batch *batch,
415 struct u_upload_mgr *uploader,
416 struct pipe_resource **out_res,
417 unsigned size,
418 unsigned alignment,
419 uint32_t *out_offset)
420 {
421 void *ptr = NULL;
422
423 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
424
425 struct iris_bo *bo = iris_resource_bo(*out_res);
426 iris_use_pinned_bo(batch, bo, false);
427
428 *out_offset += iris_bo_offset_from_base_address(bo);
429
430 iris_record_state_size(batch->state_sizes, *out_offset, size);
431
432 return ptr;
433 }
434
435 /**
436 * stream_state() + memcpy.
437 */
438 static uint32_t
439 emit_state(struct iris_batch *batch,
440 struct u_upload_mgr *uploader,
441 struct pipe_resource **out_res,
442 const void *data,
443 unsigned size,
444 unsigned alignment)
445 {
446 unsigned offset = 0;
447 uint32_t *map =
448 stream_state(batch, uploader, out_res, size, alignment, &offset);
449
450 if (map)
451 memcpy(map, data, size);
452
453 return offset;
454 }
455
456 /**
457 * Did field 'x' change between 'old_cso' and 'new_cso'?
458 *
459 * (If so, we may want to set some dirty flags.)
460 */
461 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
462 #define cso_changed_memcmp(x) \
463 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
464
465 static void
466 flush_for_state_base_change(struct iris_batch *batch)
467 {
468 /* Flush before emitting STATE_BASE_ADDRESS.
469 *
470 * This isn't documented anywhere in the PRM. However, it seems to be
471 * necessary prior to changing the surface state base adress. We've
472 * seen issues in Vulkan where we get GPU hangs when using multi-level
473 * command buffers which clear depth, reset state base address, and then
474 * go render stuff.
475 *
476 * Normally, in GL, we would trust the kernel to do sufficient stalls
477 * and flushes prior to executing our batch. However, it doesn't seem
478 * as if the kernel's flushing is always sufficient and we don't want to
479 * rely on it.
480 *
481 * We make this an end-of-pipe sync instead of a normal flush because we
482 * do not know the current status of the GPU. On Haswell at least,
483 * having a fast-clear operation in flight at the same time as a normal
484 * rendering operation can cause hangs. Since the kernel's flushing is
485 * insufficient, we need to ensure that any rendering operations from
486 * other processes are definitely complete before we try to do our own
487 * rendering. It's a bit of a big hammer but it appears to work.
488 */
489 iris_emit_end_of_pipe_sync(batch,
490 "change STATE_BASE_ADDRESS",
491 PIPE_CONTROL_RENDER_TARGET_FLUSH |
492 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
493 PIPE_CONTROL_DATA_CACHE_FLUSH);
494 }
495
496 static void
497 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
498 {
499 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
500 lri.RegisterOffset = reg;
501 lri.DataDWord = val;
502 }
503 }
504 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
505
506 static void
507 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
508 {
509 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
510 lrr.SourceRegisterAddress = src;
511 lrr.DestinationRegisterAddress = dst;
512 }
513 }
514
515 static void
516 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
517 {
518 #if GEN_GEN >= 8 && GEN_GEN < 10
519 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
520 *
521 * Software must clear the COLOR_CALC_STATE Valid field in
522 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
523 * with Pipeline Select set to GPGPU.
524 *
525 * The internal hardware docs recommend the same workaround for Gen9
526 * hardware too.
527 */
528 if (pipeline == GPGPU)
529 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
530 #endif
531
532
533 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
534 * PIPELINE_SELECT [DevBWR+]":
535 *
536 * "Project: DEVSNB+
537 *
538 * Software must ensure all the write caches are flushed through a
539 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
540 * command to invalidate read only caches prior to programming
541 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
542 */
543 iris_emit_pipe_control_flush(batch,
544 "workaround: PIPELINE_SELECT flushes (1/2)",
545 PIPE_CONTROL_RENDER_TARGET_FLUSH |
546 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
547 PIPE_CONTROL_DATA_CACHE_FLUSH |
548 PIPE_CONTROL_CS_STALL);
549
550 iris_emit_pipe_control_flush(batch,
551 "workaround: PIPELINE_SELECT flushes (2/2)",
552 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
553 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
554 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
555 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
556
557 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
558 #if GEN_GEN >= 9
559 sel.MaskBits = 3;
560 #endif
561 sel.PipelineSelection = pipeline;
562 }
563 }
564
565 UNUSED static void
566 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
567 {
568 #if GEN_GEN == 9
569 /* Project: DevGLK
570 *
571 * "This chicken bit works around a hardware issue with barrier
572 * logic encountered when switching between GPGPU and 3D pipelines.
573 * To workaround the issue, this mode bit should be set after a
574 * pipeline is selected."
575 */
576 uint32_t reg_val;
577 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
578 reg.GLKBarrierMode = value;
579 reg.GLKBarrierModeMask = 1;
580 }
581 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
582 #endif
583 }
584
585 static void
586 init_state_base_address(struct iris_batch *batch)
587 {
588 flush_for_state_base_change(batch);
589
590 /* We program most base addresses once at context initialization time.
591 * Each base address points at a 4GB memory zone, and never needs to
592 * change. See iris_bufmgr.h for a description of the memory zones.
593 *
594 * The one exception is Surface State Base Address, which needs to be
595 * updated occasionally. See iris_binder.c for the details there.
596 */
597 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
598 sba.GeneralStateMOCS = MOCS_WB;
599 sba.StatelessDataPortAccessMOCS = MOCS_WB;
600 sba.DynamicStateMOCS = MOCS_WB;
601 sba.IndirectObjectMOCS = MOCS_WB;
602 sba.InstructionMOCS = MOCS_WB;
603
604 sba.GeneralStateBaseAddressModifyEnable = true;
605 sba.DynamicStateBaseAddressModifyEnable = true;
606 sba.IndirectObjectBaseAddressModifyEnable = true;
607 sba.InstructionBaseAddressModifyEnable = true;
608 sba.GeneralStateBufferSizeModifyEnable = true;
609 sba.DynamicStateBufferSizeModifyEnable = true;
610 #if (GEN_GEN >= 9)
611 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
612 sba.BindlessSurfaceStateMOCS = MOCS_WB;
613 #endif
614 sba.IndirectObjectBufferSizeModifyEnable = true;
615 sba.InstructionBuffersizeModifyEnable = true;
616
617 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
618 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
619
620 sba.GeneralStateBufferSize = 0xfffff;
621 sba.IndirectObjectBufferSize = 0xfffff;
622 sba.InstructionBufferSize = 0xfffff;
623 sba.DynamicStateBufferSize = 0xfffff;
624 }
625 }
626
627 static void
628 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
629 bool has_slm, bool wants_dc_cache)
630 {
631 uint32_t reg_val;
632 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
633 reg.SLMEnable = has_slm;
634 #if GEN_GEN == 11
635 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
636 * in L3CNTLREG register. The default setting of the bit is not the
637 * desirable behavior.
638 */
639 reg.ErrorDetectionBehaviorControl = true;
640 reg.UseFullWays = true;
641 #endif
642 reg.URBAllocation = cfg->n[GEN_L3P_URB];
643 reg.ROAllocation = cfg->n[GEN_L3P_RO];
644 reg.DCAllocation = cfg->n[GEN_L3P_DC];
645 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
646 }
647 iris_emit_lri(batch, L3CNTLREG, reg_val);
648 }
649
650 static void
651 iris_emit_default_l3_config(struct iris_batch *batch,
652 const struct gen_device_info *devinfo,
653 bool compute)
654 {
655 bool wants_dc_cache = true;
656 bool has_slm = compute;
657 const struct gen_l3_weights w =
658 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
659 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
660 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
661 }
662
663 #if GEN_GEN == 9 || GEN_GEN == 10
664 static void
665 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
666 {
667 uint32_t reg_val;
668
669 /* A fixed function pipe flush is required before modifying this field */
670 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
671 : "disable preemption",
672 PIPE_CONTROL_RENDER_TARGET_FLUSH);
673
674 /* enable object level preemption */
675 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
676 reg.ReplayMode = enable;
677 reg.ReplayModeMask = true;
678 }
679 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
680 }
681 #endif
682
683 /**
684 * Upload the initial GPU state for a render context.
685 *
686 * This sets some invariant state that needs to be programmed a particular
687 * way, but we never actually change.
688 */
689 static void
690 iris_init_render_context(struct iris_screen *screen,
691 struct iris_batch *batch,
692 struct iris_vtable *vtbl,
693 struct pipe_debug_callback *dbg)
694 {
695 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
696 uint32_t reg_val;
697
698 emit_pipeline_select(batch, _3D);
699
700 iris_emit_default_l3_config(batch, devinfo, false);
701
702 init_state_base_address(batch);
703
704 #if GEN_GEN >= 9
705 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
706 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
707 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
708 }
709 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
710 #else
711 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
712 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
713 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
714 }
715 iris_emit_lri(batch, INSTPM, reg_val);
716 #endif
717
718 #if GEN_GEN == 9
719 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
720 reg.FloatBlendOptimizationEnable = true;
721 reg.FloatBlendOptimizationEnableMask = true;
722 reg.PartialResolveDisableInVC = true;
723 reg.PartialResolveDisableInVCMask = true;
724 }
725 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
726
727 if (devinfo->is_geminilake)
728 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
729 #endif
730
731 #if GEN_GEN == 11
732 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
733 reg.HeaderlessMessageforPreemptableContexts = 1;
734 reg.HeaderlessMessageforPreemptableContextsMask = 1;
735 }
736 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
737
738 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
739 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
740 reg.EnabledTexelOffsetPrecisionFix = 1;
741 reg.EnabledTexelOffsetPrecisionFixMask = 1;
742 }
743 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
744
745 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
746 reg.StateCacheRedirectToCSSectionEnable = true;
747 reg.StateCacheRedirectToCSSectionEnableMask = true;
748 }
749 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
750
751 /* Hardware specification recommends disabling repacking for the
752 * compatibility with decompression mechanism in display controller.
753 */
754 if (devinfo->disable_ccs_repack) {
755 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
756 reg.DisableRepackingforCompression = true;
757 reg.DisableRepackingforCompressionMask = true;
758 }
759 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
760 }
761
762 // XXX: 3D_MODE?
763 #endif
764
765 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
766 * changing it dynamically. We set it to the maximum size here, and
767 * instead include the render target dimensions in the viewport, so
768 * viewport extents clipping takes care of pruning stray geometry.
769 */
770 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
771 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
772 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
773 }
774
775 /* Set the initial MSAA sample positions. */
776 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
777 GEN_SAMPLE_POS_1X(pat._1xSample);
778 GEN_SAMPLE_POS_2X(pat._2xSample);
779 GEN_SAMPLE_POS_4X(pat._4xSample);
780 GEN_SAMPLE_POS_8X(pat._8xSample);
781 #if GEN_GEN >= 9
782 GEN_SAMPLE_POS_16X(pat._16xSample);
783 #endif
784 }
785
786 /* Use the legacy AA line coverage computation. */
787 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
788
789 /* Disable chromakeying (it's for media) */
790 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
791
792 /* We want regular rendering, not special HiZ operations. */
793 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
794
795 /* No polygon stippling offsets are necessary. */
796 /* TODO: may need to set an offset for origin-UL framebuffers */
797 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
798
799 /* Set a static partitioning of the push constant area. */
800 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
801 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
802 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
803 alloc._3DCommandSubOpcode = 18 + i;
804 alloc.ConstantBufferOffset = 6 * i;
805 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
806 }
807 }
808
809 #if GEN_GEN == 10
810 /* Gen11+ is enabled for us by the kernel. */
811 iris_enable_obj_preemption(batch, true);
812 #endif
813 }
814
815 static void
816 iris_init_compute_context(struct iris_screen *screen,
817 struct iris_batch *batch,
818 struct iris_vtable *vtbl,
819 struct pipe_debug_callback *dbg)
820 {
821 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
822
823 emit_pipeline_select(batch, GPGPU);
824
825 iris_emit_default_l3_config(batch, devinfo, true);
826
827 init_state_base_address(batch);
828
829 #if GEN_GEN == 9
830 if (devinfo->is_geminilake)
831 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
832 #endif
833 }
834
835 struct iris_vertex_buffer_state {
836 /** The VERTEX_BUFFER_STATE hardware structure. */
837 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
838
839 /** The resource to source vertex data from. */
840 struct pipe_resource *resource;
841 };
842
843 struct iris_depth_buffer_state {
844 /* Depth/HiZ/Stencil related hardware packets. */
845 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
846 GENX(3DSTATE_STENCIL_BUFFER_length) +
847 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
848 GENX(3DSTATE_CLEAR_PARAMS_length)];
849 };
850
851 /**
852 * Generation-specific context state (ice->state.genx->...).
853 *
854 * Most state can go in iris_context directly, but these encode hardware
855 * packets which vary by generation.
856 */
857 struct iris_genx_state {
858 struct iris_vertex_buffer_state vertex_buffers[33];
859
860 struct iris_depth_buffer_state depth_buffer;
861
862 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
863
864 #if GEN_GEN == 9
865 /* Is object level preemption enabled? */
866 bool object_preemption;
867 #endif
868
869 struct {
870 #if GEN_GEN == 8
871 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
872 #endif
873 } shaders[MESA_SHADER_STAGES];
874 };
875
876 /**
877 * The pipe->set_blend_color() driver hook.
878 *
879 * This corresponds to our COLOR_CALC_STATE.
880 */
881 static void
882 iris_set_blend_color(struct pipe_context *ctx,
883 const struct pipe_blend_color *state)
884 {
885 struct iris_context *ice = (struct iris_context *) ctx;
886
887 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
888 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
889 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
890 }
891
892 /**
893 * Gallium CSO for blend state (see pipe_blend_state).
894 */
895 struct iris_blend_state {
896 /** Partial 3DSTATE_PS_BLEND */
897 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
898
899 /** Partial BLEND_STATE */
900 uint32_t blend_state[GENX(BLEND_STATE_length) +
901 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
902
903 bool alpha_to_coverage; /* for shader key */
904
905 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
906 uint8_t blend_enables;
907
908 /** Bitfield of whether color writes are enabled for RT[i] */
909 uint8_t color_write_enables;
910
911 /** Does RT[0] use dual color blending? */
912 bool dual_color_blending;
913 };
914
915 static enum pipe_blendfactor
916 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
917 {
918 if (alpha_to_one) {
919 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
920 return PIPE_BLENDFACTOR_ONE;
921
922 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
923 return PIPE_BLENDFACTOR_ZERO;
924 }
925
926 return f;
927 }
928
929 /**
930 * The pipe->create_blend_state() driver hook.
931 *
932 * Translates a pipe_blend_state into iris_blend_state.
933 */
934 static void *
935 iris_create_blend_state(struct pipe_context *ctx,
936 const struct pipe_blend_state *state)
937 {
938 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
939 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
940
941 cso->blend_enables = 0;
942 cso->color_write_enables = 0;
943 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
944
945 cso->alpha_to_coverage = state->alpha_to_coverage;
946
947 bool indep_alpha_blend = false;
948
949 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
950 const struct pipe_rt_blend_state *rt =
951 &state->rt[state->independent_blend_enable ? i : 0];
952
953 enum pipe_blendfactor src_rgb =
954 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
955 enum pipe_blendfactor src_alpha =
956 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
957 enum pipe_blendfactor dst_rgb =
958 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
959 enum pipe_blendfactor dst_alpha =
960 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
961
962 if (rt->rgb_func != rt->alpha_func ||
963 src_rgb != src_alpha || dst_rgb != dst_alpha)
964 indep_alpha_blend = true;
965
966 if (rt->blend_enable)
967 cso->blend_enables |= 1u << i;
968
969 if (rt->colormask)
970 cso->color_write_enables |= 1u << i;
971
972 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
973 be.LogicOpEnable = state->logicop_enable;
974 be.LogicOpFunction = state->logicop_func;
975
976 be.PreBlendSourceOnlyClampEnable = false;
977 be.ColorClampRange = COLORCLAMP_RTFORMAT;
978 be.PreBlendColorClampEnable = true;
979 be.PostBlendColorClampEnable = true;
980
981 be.ColorBufferBlendEnable = rt->blend_enable;
982
983 be.ColorBlendFunction = rt->rgb_func;
984 be.AlphaBlendFunction = rt->alpha_func;
985 be.SourceBlendFactor = src_rgb;
986 be.SourceAlphaBlendFactor = src_alpha;
987 be.DestinationBlendFactor = dst_rgb;
988 be.DestinationAlphaBlendFactor = dst_alpha;
989
990 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
991 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
992 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
993 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
994 }
995 blend_entry += GENX(BLEND_STATE_ENTRY_length);
996 }
997
998 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
999 /* pb.HasWriteableRT is filled in at draw time.
1000 * pb.AlphaTestEnable is filled in at draw time.
1001 *
1002 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1003 * setting it when dual color blending without an appropriate shader.
1004 */
1005
1006 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1007 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1008
1009 pb.SourceBlendFactor =
1010 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1011 pb.SourceAlphaBlendFactor =
1012 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1013 pb.DestinationBlendFactor =
1014 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1015 pb.DestinationAlphaBlendFactor =
1016 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1017 }
1018
1019 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1020 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1021 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1022 bs.AlphaToOneEnable = state->alpha_to_one;
1023 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1024 bs.ColorDitherEnable = state->dither;
1025 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1026 }
1027
1028 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1029
1030 return cso;
1031 }
1032
1033 /**
1034 * The pipe->bind_blend_state() driver hook.
1035 *
1036 * Bind a blending CSO and flag related dirty bits.
1037 */
1038 static void
1039 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1040 {
1041 struct iris_context *ice = (struct iris_context *) ctx;
1042 struct iris_blend_state *cso = state;
1043
1044 ice->state.cso_blend = cso;
1045 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1046
1047 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1048 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1049 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1050 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1051 }
1052
1053 /**
1054 * Return true if the FS writes to any color outputs which are not disabled
1055 * via color masking.
1056 */
1057 static bool
1058 has_writeable_rt(const struct iris_blend_state *cso_blend,
1059 const struct shader_info *fs_info)
1060 {
1061 if (!fs_info)
1062 return false;
1063
1064 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1065
1066 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1067 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1068
1069 return cso_blend->color_write_enables & rt_outputs;
1070 }
1071
1072 /**
1073 * Gallium CSO for depth, stencil, and alpha testing state.
1074 */
1075 struct iris_depth_stencil_alpha_state {
1076 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1077 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1078
1079 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1080 struct pipe_alpha_state alpha;
1081
1082 /** Outbound to resolve and cache set tracking. */
1083 bool depth_writes_enabled;
1084 bool stencil_writes_enabled;
1085 };
1086
1087 /**
1088 * The pipe->create_depth_stencil_alpha_state() driver hook.
1089 *
1090 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1091 * testing state since we need pieces of it in a variety of places.
1092 */
1093 static void *
1094 iris_create_zsa_state(struct pipe_context *ctx,
1095 const struct pipe_depth_stencil_alpha_state *state)
1096 {
1097 struct iris_depth_stencil_alpha_state *cso =
1098 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1099
1100 bool two_sided_stencil = state->stencil[1].enabled;
1101
1102 cso->alpha = state->alpha;
1103 cso->depth_writes_enabled = state->depth.writemask;
1104 cso->stencil_writes_enabled =
1105 state->stencil[0].writemask != 0 ||
1106 (two_sided_stencil && state->stencil[1].writemask != 0);
1107
1108 /* The state tracker needs to optimize away EQUAL writes for us. */
1109 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1110
1111 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1112 wmds.StencilFailOp = state->stencil[0].fail_op;
1113 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1114 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1115 wmds.StencilTestFunction =
1116 translate_compare_func(state->stencil[0].func);
1117 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1118 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1119 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1120 wmds.BackfaceStencilTestFunction =
1121 translate_compare_func(state->stencil[1].func);
1122 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1123 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1124 wmds.StencilTestEnable = state->stencil[0].enabled;
1125 wmds.StencilBufferWriteEnable =
1126 state->stencil[0].writemask != 0 ||
1127 (two_sided_stencil && state->stencil[1].writemask != 0);
1128 wmds.DepthTestEnable = state->depth.enabled;
1129 wmds.DepthBufferWriteEnable = state->depth.writemask;
1130 wmds.StencilTestMask = state->stencil[0].valuemask;
1131 wmds.StencilWriteMask = state->stencil[0].writemask;
1132 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1133 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1134 /* wmds.[Backface]StencilReferenceValue are merged later */
1135 }
1136
1137 return cso;
1138 }
1139
1140 /**
1141 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1142 *
1143 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1144 */
1145 static void
1146 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1147 {
1148 struct iris_context *ice = (struct iris_context *) ctx;
1149 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1150 struct iris_depth_stencil_alpha_state *new_cso = state;
1151
1152 if (new_cso) {
1153 if (cso_changed(alpha.ref_value))
1154 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1155
1156 if (cso_changed(alpha.enabled))
1157 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1158
1159 if (cso_changed(alpha.func))
1160 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1161
1162 if (cso_changed(depth_writes_enabled))
1163 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1164
1165 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1166 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1167 }
1168
1169 ice->state.cso_zsa = new_cso;
1170 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1171 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1172 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1173 }
1174
1175 /**
1176 * Gallium CSO for rasterizer state.
1177 */
1178 struct iris_rasterizer_state {
1179 uint32_t sf[GENX(3DSTATE_SF_length)];
1180 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1181 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1182 uint32_t wm[GENX(3DSTATE_WM_length)];
1183 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1184
1185 uint8_t num_clip_plane_consts;
1186 bool clip_halfz; /* for CC_VIEWPORT */
1187 bool depth_clip_near; /* for CC_VIEWPORT */
1188 bool depth_clip_far; /* for CC_VIEWPORT */
1189 bool flatshade; /* for shader state */
1190 bool flatshade_first; /* for stream output */
1191 bool clamp_fragment_color; /* for shader state */
1192 bool light_twoside; /* for shader state */
1193 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1194 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1195 bool line_stipple_enable;
1196 bool poly_stipple_enable;
1197 bool multisample;
1198 bool force_persample_interp;
1199 bool conservative_rasterization;
1200 bool fill_mode_point_or_line;
1201 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1202 uint16_t sprite_coord_enable;
1203 };
1204
1205 static float
1206 get_line_width(const struct pipe_rasterizer_state *state)
1207 {
1208 float line_width = state->line_width;
1209
1210 /* From the OpenGL 4.4 spec:
1211 *
1212 * "The actual width of non-antialiased lines is determined by rounding
1213 * the supplied width to the nearest integer, then clamping it to the
1214 * implementation-dependent maximum non-antialiased line width."
1215 */
1216 if (!state->multisample && !state->line_smooth)
1217 line_width = roundf(state->line_width);
1218
1219 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1220 /* For 1 pixel line thickness or less, the general anti-aliasing
1221 * algorithm gives up, and a garbage line is generated. Setting a
1222 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1223 * (one-pixel-wide), non-antialiased lines.
1224 *
1225 * Lines rendered with zero Line Width are rasterized using the
1226 * "Grid Intersection Quantization" rules as specified by the
1227 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1228 */
1229 line_width = 0.0f;
1230 }
1231
1232 return line_width;
1233 }
1234
1235 /**
1236 * The pipe->create_rasterizer_state() driver hook.
1237 */
1238 static void *
1239 iris_create_rasterizer_state(struct pipe_context *ctx,
1240 const struct pipe_rasterizer_state *state)
1241 {
1242 struct iris_rasterizer_state *cso =
1243 malloc(sizeof(struct iris_rasterizer_state));
1244
1245 cso->multisample = state->multisample;
1246 cso->force_persample_interp = state->force_persample_interp;
1247 cso->clip_halfz = state->clip_halfz;
1248 cso->depth_clip_near = state->depth_clip_near;
1249 cso->depth_clip_far = state->depth_clip_far;
1250 cso->flatshade = state->flatshade;
1251 cso->flatshade_first = state->flatshade_first;
1252 cso->clamp_fragment_color = state->clamp_fragment_color;
1253 cso->light_twoside = state->light_twoside;
1254 cso->rasterizer_discard = state->rasterizer_discard;
1255 cso->half_pixel_center = state->half_pixel_center;
1256 cso->sprite_coord_mode = state->sprite_coord_mode;
1257 cso->sprite_coord_enable = state->sprite_coord_enable;
1258 cso->line_stipple_enable = state->line_stipple_enable;
1259 cso->poly_stipple_enable = state->poly_stipple_enable;
1260 cso->conservative_rasterization =
1261 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1262
1263 cso->fill_mode_point_or_line =
1264 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1265 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1266 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1267 state->fill_back == PIPE_POLYGON_MODE_POINT;
1268
1269 if (state->clip_plane_enable != 0)
1270 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1271 else
1272 cso->num_clip_plane_consts = 0;
1273
1274 float line_width = get_line_width(state);
1275
1276 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1277 sf.StatisticsEnable = true;
1278 sf.ViewportTransformEnable = true;
1279 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1280 sf.LineEndCapAntialiasingRegionWidth =
1281 state->line_smooth ? _10pixels : _05pixels;
1282 sf.LastPixelEnable = state->line_last_pixel;
1283 sf.LineWidth = line_width;
1284 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1285 !state->point_quad_rasterization;
1286 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1287 sf.PointWidth = state->point_size;
1288
1289 if (state->flatshade_first) {
1290 sf.TriangleFanProvokingVertexSelect = 1;
1291 } else {
1292 sf.TriangleStripListProvokingVertexSelect = 2;
1293 sf.TriangleFanProvokingVertexSelect = 2;
1294 sf.LineStripListProvokingVertexSelect = 1;
1295 }
1296 }
1297
1298 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1299 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1300 rr.CullMode = translate_cull_mode(state->cull_face);
1301 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1302 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1303 rr.DXMultisampleRasterizationEnable = state->multisample;
1304 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1305 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1306 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1307 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1308 rr.GlobalDepthOffsetScale = state->offset_scale;
1309 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1310 rr.SmoothPointEnable = state->point_smooth;
1311 rr.AntialiasingEnable = state->line_smooth;
1312 rr.ScissorRectangleEnable = state->scissor;
1313 #if GEN_GEN >= 9
1314 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1315 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1316 rr.ConservativeRasterizationEnable =
1317 cso->conservative_rasterization;
1318 #else
1319 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1320 #endif
1321 }
1322
1323 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1324 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1325 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1326 */
1327 cl.EarlyCullEnable = true;
1328 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1329 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1330 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1331 cl.GuardbandClipTestEnable = true;
1332 cl.ClipEnable = true;
1333 cl.MinimumPointWidth = 0.125;
1334 cl.MaximumPointWidth = 255.875;
1335
1336 if (state->flatshade_first) {
1337 cl.TriangleFanProvokingVertexSelect = 1;
1338 } else {
1339 cl.TriangleStripListProvokingVertexSelect = 2;
1340 cl.TriangleFanProvokingVertexSelect = 2;
1341 cl.LineStripListProvokingVertexSelect = 1;
1342 }
1343 }
1344
1345 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1346 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1347 * filled in at draw time from the FS program.
1348 */
1349 wm.LineAntialiasingRegionWidth = _10pixels;
1350 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1351 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1352 wm.LineStippleEnable = state->line_stipple_enable;
1353 wm.PolygonStippleEnable = state->poly_stipple_enable;
1354 }
1355
1356 /* Remap from 0..255 back to 1..256 */
1357 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1358
1359 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1360 line.LineStipplePattern = state->line_stipple_pattern;
1361 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1362 line.LineStippleRepeatCount = line_stipple_factor;
1363 }
1364
1365 return cso;
1366 }
1367
1368 /**
1369 * The pipe->bind_rasterizer_state() driver hook.
1370 *
1371 * Bind a rasterizer CSO and flag related dirty bits.
1372 */
1373 static void
1374 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1375 {
1376 struct iris_context *ice = (struct iris_context *) ctx;
1377 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1378 struct iris_rasterizer_state *new_cso = state;
1379
1380 if (new_cso) {
1381 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1382 if (cso_changed_memcmp(line_stipple))
1383 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1384
1385 if (cso_changed(half_pixel_center))
1386 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1387
1388 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1389 ice->state.dirty |= IRIS_DIRTY_WM;
1390
1391 if (cso_changed(rasterizer_discard))
1392 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1393
1394 if (cso_changed(flatshade_first))
1395 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1396
1397 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1398 cso_changed(clip_halfz))
1399 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1400
1401 if (cso_changed(sprite_coord_enable) ||
1402 cso_changed(sprite_coord_mode) ||
1403 cso_changed(light_twoside))
1404 ice->state.dirty |= IRIS_DIRTY_SBE;
1405
1406 if (cso_changed(conservative_rasterization))
1407 ice->state.dirty |= IRIS_DIRTY_FS;
1408 }
1409
1410 ice->state.cso_rast = new_cso;
1411 ice->state.dirty |= IRIS_DIRTY_RASTER;
1412 ice->state.dirty |= IRIS_DIRTY_CLIP;
1413 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1414 }
1415
1416 /**
1417 * Return true if the given wrap mode requires the border color to exist.
1418 *
1419 * (We can skip uploading it if the sampler isn't going to use it.)
1420 */
1421 static bool
1422 wrap_mode_needs_border_color(unsigned wrap_mode)
1423 {
1424 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1425 }
1426
1427 /**
1428 * Gallium CSO for sampler state.
1429 */
1430 struct iris_sampler_state {
1431 union pipe_color_union border_color;
1432 bool needs_border_color;
1433
1434 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1435 };
1436
1437 /**
1438 * The pipe->create_sampler_state() driver hook.
1439 *
1440 * We fill out SAMPLER_STATE (except for the border color pointer), and
1441 * store that on the CPU. It doesn't make sense to upload it to a GPU
1442 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1443 * all bound sampler states to be in contiguous memor.
1444 */
1445 static void *
1446 iris_create_sampler_state(struct pipe_context *ctx,
1447 const struct pipe_sampler_state *state)
1448 {
1449 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1450
1451 if (!cso)
1452 return NULL;
1453
1454 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1455 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1456
1457 unsigned wrap_s = translate_wrap(state->wrap_s);
1458 unsigned wrap_t = translate_wrap(state->wrap_t);
1459 unsigned wrap_r = translate_wrap(state->wrap_r);
1460
1461 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1462
1463 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1464 wrap_mode_needs_border_color(wrap_t) ||
1465 wrap_mode_needs_border_color(wrap_r);
1466
1467 float min_lod = state->min_lod;
1468 unsigned mag_img_filter = state->mag_img_filter;
1469
1470 // XXX: explain this code ported from ilo...I don't get it at all...
1471 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1472 state->min_lod > 0.0f) {
1473 min_lod = 0.0f;
1474 mag_img_filter = state->min_img_filter;
1475 }
1476
1477 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1478 samp.TCXAddressControlMode = wrap_s;
1479 samp.TCYAddressControlMode = wrap_t;
1480 samp.TCZAddressControlMode = wrap_r;
1481 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1482 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1483 samp.MinModeFilter = state->min_img_filter;
1484 samp.MagModeFilter = mag_img_filter;
1485 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1486 samp.MaximumAnisotropy = RATIO21;
1487
1488 if (state->max_anisotropy >= 2) {
1489 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1490 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1491 samp.AnisotropicAlgorithm = EWAApproximation;
1492 }
1493
1494 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1495 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1496
1497 samp.MaximumAnisotropy =
1498 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1499 }
1500
1501 /* Set address rounding bits if not using nearest filtering. */
1502 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1503 samp.UAddressMinFilterRoundingEnable = true;
1504 samp.VAddressMinFilterRoundingEnable = true;
1505 samp.RAddressMinFilterRoundingEnable = true;
1506 }
1507
1508 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1509 samp.UAddressMagFilterRoundingEnable = true;
1510 samp.VAddressMagFilterRoundingEnable = true;
1511 samp.RAddressMagFilterRoundingEnable = true;
1512 }
1513
1514 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1515 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1516
1517 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1518
1519 samp.LODPreClampMode = CLAMP_MODE_OGL;
1520 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1521 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1522 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1523
1524 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1525 }
1526
1527 return cso;
1528 }
1529
1530 /**
1531 * The pipe->bind_sampler_states() driver hook.
1532 */
1533 static void
1534 iris_bind_sampler_states(struct pipe_context *ctx,
1535 enum pipe_shader_type p_stage,
1536 unsigned start, unsigned count,
1537 void **states)
1538 {
1539 struct iris_context *ice = (struct iris_context *) ctx;
1540 gl_shader_stage stage = stage_from_pipe(p_stage);
1541 struct iris_shader_state *shs = &ice->state.shaders[stage];
1542
1543 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1544
1545 for (int i = 0; i < count; i++) {
1546 shs->samplers[start + i] = states[i];
1547 }
1548
1549 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1550 }
1551
1552 /**
1553 * Upload the sampler states into a contiguous area of GPU memory, for
1554 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1555 *
1556 * Also fill out the border color state pointers.
1557 */
1558 static void
1559 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1560 {
1561 struct iris_shader_state *shs = &ice->state.shaders[stage];
1562 const struct shader_info *info = iris_get_shader_info(ice, stage);
1563
1564 /* We assume the state tracker will call pipe->bind_sampler_states()
1565 * if the program's number of textures changes.
1566 */
1567 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1568
1569 if (!count)
1570 return;
1571
1572 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1573 * in the dynamic state memory zone, so we can point to it via the
1574 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1575 */
1576 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1577 uint32_t *map =
1578 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1579 if (unlikely(!map))
1580 return;
1581
1582 struct pipe_resource *res = shs->sampler_table.res;
1583 shs->sampler_table.offset +=
1584 iris_bo_offset_from_base_address(iris_resource_bo(res));
1585
1586 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1587
1588 /* Make sure all land in the same BO */
1589 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1590
1591 ice->state.need_border_colors &= ~(1 << stage);
1592
1593 for (int i = 0; i < count; i++) {
1594 struct iris_sampler_state *state = shs->samplers[i];
1595 struct iris_sampler_view *tex = shs->textures[i];
1596
1597 if (!state) {
1598 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1599 } else if (!state->needs_border_color) {
1600 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1601 } else {
1602 ice->state.need_border_colors |= 1 << stage;
1603
1604 /* We may need to swizzle the border color for format faking.
1605 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1606 * This means we need to move the border color's A channel into
1607 * the R or G channels so that those read swizzles will move it
1608 * back into A.
1609 */
1610 union pipe_color_union *color = &state->border_color;
1611 union pipe_color_union tmp;
1612 if (tex) {
1613 enum pipe_format internal_format = tex->res->internal_format;
1614
1615 if (util_format_is_alpha(internal_format)) {
1616 unsigned char swz[4] = {
1617 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1618 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1619 };
1620 util_format_apply_color_swizzle(&tmp, color, swz, true);
1621 color = &tmp;
1622 } else if (util_format_is_luminance_alpha(internal_format) &&
1623 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1624 unsigned char swz[4] = {
1625 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1626 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1627 };
1628 util_format_apply_color_swizzle(&tmp, color, swz, true);
1629 color = &tmp;
1630 }
1631 }
1632
1633 /* Stream out the border color and merge the pointer. */
1634 uint32_t offset = iris_upload_border_color(ice, color);
1635
1636 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1637 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1638 dyns.BorderColorPointer = offset;
1639 }
1640
1641 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1642 map[j] = state->sampler_state[j] | dynamic[j];
1643 }
1644
1645 map += GENX(SAMPLER_STATE_length);
1646 }
1647 }
1648
1649 static enum isl_channel_select
1650 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1651 {
1652 switch (swz) {
1653 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1654 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1655 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1656 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1657 case PIPE_SWIZZLE_1: return SCS_ONE;
1658 case PIPE_SWIZZLE_0: return SCS_ZERO;
1659 default: unreachable("invalid swizzle");
1660 }
1661 }
1662
1663 static void
1664 fill_buffer_surface_state(struct isl_device *isl_dev,
1665 struct iris_resource *res,
1666 void *map,
1667 enum isl_format format,
1668 struct isl_swizzle swizzle,
1669 unsigned offset,
1670 unsigned size)
1671 {
1672 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1673 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1674
1675 /* The ARB_texture_buffer_specification says:
1676 *
1677 * "The number of texels in the buffer texture's texel array is given by
1678 *
1679 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1680 *
1681 * where <buffer_size> is the size of the buffer object, in basic
1682 * machine units and <components> and <base_type> are the element count
1683 * and base data type for elements, as specified in Table X.1. The
1684 * number of texels in the texel array is then clamped to the
1685 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1686 *
1687 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1688 * so that when ISL divides by stride to obtain the number of texels, that
1689 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1690 */
1691 unsigned final_size =
1692 MIN3(size, res->bo->size - res->offset - offset,
1693 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1694
1695 isl_buffer_fill_state(isl_dev, map,
1696 .address = res->bo->gtt_offset + res->offset + offset,
1697 .size_B = final_size,
1698 .format = format,
1699 .swizzle = swizzle,
1700 .stride_B = cpp,
1701 .mocs = mocs(res->bo));
1702 }
1703
1704 #define SURFACE_STATE_ALIGNMENT 64
1705
1706 /**
1707 * Allocate several contiguous SURFACE_STATE structures, one for each
1708 * supported auxiliary surface mode.
1709 */
1710 static void *
1711 alloc_surface_states(struct u_upload_mgr *mgr,
1712 struct iris_state_ref *ref,
1713 unsigned aux_usages)
1714 {
1715 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1716
1717 /* If this changes, update this to explicitly align pointers */
1718 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1719
1720 assert(aux_usages != 0);
1721
1722 void *map =
1723 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1724 SURFACE_STATE_ALIGNMENT);
1725
1726 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1727
1728 return map;
1729 }
1730
1731 static void
1732 fill_surface_state(struct isl_device *isl_dev,
1733 void *map,
1734 struct iris_resource *res,
1735 struct isl_view *view,
1736 unsigned aux_usage)
1737 {
1738 struct isl_surf_fill_state_info f = {
1739 .surf = &res->surf,
1740 .view = view,
1741 .mocs = mocs(res->bo),
1742 .address = res->bo->gtt_offset + res->offset,
1743 };
1744
1745 if (aux_usage != ISL_AUX_USAGE_NONE) {
1746 f.aux_surf = &res->aux.surf;
1747 f.aux_usage = aux_usage;
1748 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1749
1750 struct iris_bo *clear_bo = NULL;
1751 uint64_t clear_offset = 0;
1752 f.clear_color =
1753 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1754 if (clear_bo) {
1755 f.clear_address = clear_bo->gtt_offset + clear_offset;
1756 f.use_clear_address = isl_dev->info->gen > 9;
1757 }
1758 }
1759
1760 isl_surf_fill_state_s(isl_dev, map, &f);
1761 }
1762
1763 /**
1764 * The pipe->create_sampler_view() driver hook.
1765 */
1766 static struct pipe_sampler_view *
1767 iris_create_sampler_view(struct pipe_context *ctx,
1768 struct pipe_resource *tex,
1769 const struct pipe_sampler_view *tmpl)
1770 {
1771 struct iris_context *ice = (struct iris_context *) ctx;
1772 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1773 const struct gen_device_info *devinfo = &screen->devinfo;
1774 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1775
1776 if (!isv)
1777 return NULL;
1778
1779 /* initialize base object */
1780 isv->base = *tmpl;
1781 isv->base.context = ctx;
1782 isv->base.texture = NULL;
1783 pipe_reference_init(&isv->base.reference, 1);
1784 pipe_resource_reference(&isv->base.texture, tex);
1785
1786 if (util_format_is_depth_or_stencil(tmpl->format)) {
1787 struct iris_resource *zres, *sres;
1788 const struct util_format_description *desc =
1789 util_format_description(tmpl->format);
1790
1791 iris_get_depth_stencil_resources(tex, &zres, &sres);
1792
1793 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1794 }
1795
1796 isv->res = (struct iris_resource *) tex;
1797
1798 void *map = alloc_surface_states(ice->state.surface_uploader,
1799 &isv->surface_state,
1800 isv->res->aux.sampler_usages);
1801 if (!unlikely(map))
1802 return NULL;
1803
1804 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1805
1806 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1807 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1808 usage |= ISL_SURF_USAGE_CUBE_BIT;
1809
1810 const struct iris_format_info fmt =
1811 iris_format_for_usage(devinfo, tmpl->format, usage);
1812
1813 isv->clear_color = isv->res->aux.clear_color;
1814
1815 isv->view = (struct isl_view) {
1816 .format = fmt.fmt,
1817 .swizzle = (struct isl_swizzle) {
1818 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1819 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1820 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1821 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1822 },
1823 .usage = usage,
1824 };
1825
1826 /* Fill out SURFACE_STATE for this view. */
1827 if (tmpl->target != PIPE_BUFFER) {
1828 isv->view.base_level = tmpl->u.tex.first_level;
1829 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1830 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1831 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1832 isv->view.array_len =
1833 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1834
1835 unsigned aux_modes = isv->res->aux.sampler_usages;
1836 while (aux_modes) {
1837 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1838
1839 /* If we have a multisampled depth buffer, do not create a sampler
1840 * surface state with HiZ.
1841 */
1842 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1843 aux_usage);
1844
1845 map += SURFACE_STATE_ALIGNMENT;
1846 }
1847 } else {
1848 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1849 isv->view.format, isv->view.swizzle,
1850 tmpl->u.buf.offset, tmpl->u.buf.size);
1851 }
1852
1853 return &isv->base;
1854 }
1855
1856 static void
1857 iris_sampler_view_destroy(struct pipe_context *ctx,
1858 struct pipe_sampler_view *state)
1859 {
1860 struct iris_sampler_view *isv = (void *) state;
1861 pipe_resource_reference(&state->texture, NULL);
1862 pipe_resource_reference(&isv->surface_state.res, NULL);
1863 free(isv);
1864 }
1865
1866 /**
1867 * The pipe->create_surface() driver hook.
1868 *
1869 * In Gallium nomenclature, "surfaces" are a view of a resource that
1870 * can be bound as a render target or depth/stencil buffer.
1871 */
1872 static struct pipe_surface *
1873 iris_create_surface(struct pipe_context *ctx,
1874 struct pipe_resource *tex,
1875 const struct pipe_surface *tmpl)
1876 {
1877 struct iris_context *ice = (struct iris_context *) ctx;
1878 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1879 const struct gen_device_info *devinfo = &screen->devinfo;
1880
1881 isl_surf_usage_flags_t usage = 0;
1882 if (tmpl->writable)
1883 usage = ISL_SURF_USAGE_STORAGE_BIT;
1884 else if (util_format_is_depth_or_stencil(tmpl->format))
1885 usage = ISL_SURF_USAGE_DEPTH_BIT;
1886 else
1887 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1888
1889 const struct iris_format_info fmt =
1890 iris_format_for_usage(devinfo, tmpl->format, usage);
1891
1892 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1893 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1894 /* Framebuffer validation will reject this invalid case, but it
1895 * hasn't had the opportunity yet. In the meantime, we need to
1896 * avoid hitting ISL asserts about unsupported formats below.
1897 */
1898 return NULL;
1899 }
1900
1901 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1902 struct pipe_surface *psurf = &surf->base;
1903 struct iris_resource *res = (struct iris_resource *) tex;
1904
1905 if (!surf)
1906 return NULL;
1907
1908 pipe_reference_init(&psurf->reference, 1);
1909 pipe_resource_reference(&psurf->texture, tex);
1910 psurf->context = ctx;
1911 psurf->format = tmpl->format;
1912 psurf->width = tex->width0;
1913 psurf->height = tex->height0;
1914 psurf->texture = tex;
1915 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1916 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1917 psurf->u.tex.level = tmpl->u.tex.level;
1918
1919 struct isl_view *view = &surf->view;
1920 *view = (struct isl_view) {
1921 .format = fmt.fmt,
1922 .base_level = tmpl->u.tex.level,
1923 .levels = 1,
1924 .base_array_layer = tmpl->u.tex.first_layer,
1925 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1926 .swizzle = ISL_SWIZZLE_IDENTITY,
1927 .usage = usage,
1928 };
1929
1930 surf->clear_color = res->aux.clear_color;
1931
1932 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1933 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1934 ISL_SURF_USAGE_STENCIL_BIT))
1935 return psurf;
1936
1937
1938 void *map = alloc_surface_states(ice->state.surface_uploader,
1939 &surf->surface_state,
1940 res->aux.possible_usages);
1941 if (!unlikely(map))
1942 return NULL;
1943
1944 if (!isl_format_is_compressed(res->surf.format)) {
1945 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
1946 * auxiliary surface mode and return the pipe_surface.
1947 */
1948 unsigned aux_modes = res->aux.possible_usages;
1949 while (aux_modes) {
1950 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1951
1952 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
1953
1954 map += SURFACE_STATE_ALIGNMENT;
1955 }
1956
1957 return psurf;
1958 }
1959
1960 /* The resource has a compressed format, which is not renderable, but we
1961 * have a renderable view format. We must be attempting to upload blocks
1962 * of compressed data via an uncompressed view.
1963 *
1964 * In this case, we can assume there are no auxiliary buffers, a single
1965 * miplevel, and that the resource is single-sampled. Gallium may try
1966 * and create an uncompressed view with multiple layers, however.
1967 */
1968 assert(!isl_format_is_compressed(fmt.fmt));
1969 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
1970 assert(res->surf.samples == 1);
1971 assert(view->levels == 1);
1972
1973 struct isl_surf isl_surf;
1974 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1975
1976 if (view->base_level > 0) {
1977 /* We can't rely on the hardware's miplevel selection with such
1978 * a substantial lie about the format, so we select a single image
1979 * using the Tile X/Y Offset fields. In this case, we can't handle
1980 * multiple array slices.
1981 *
1982 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
1983 * hard-coded to align to exactly the block size of the compressed
1984 * texture. This means that, when reinterpreted as a non-compressed
1985 * texture, the tile offsets may be anything and we can't rely on
1986 * X/Y Offset.
1987 *
1988 * Return NULL to force the state tracker to take fallback paths.
1989 */
1990 if (view->array_len > 1 || GEN_GEN == 8)
1991 return NULL;
1992
1993 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
1994 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
1995 view->base_level,
1996 is_3d ? 0 : view->base_array_layer,
1997 is_3d ? view->base_array_layer : 0,
1998 &isl_surf,
1999 &offset_B, &tile_x_sa, &tile_y_sa);
2000
2001 /* We use address and tile offsets to access a single level/layer
2002 * as a subimage, so reset level/layer so it doesn't offset again.
2003 */
2004 view->base_array_layer = 0;
2005 view->base_level = 0;
2006 } else {
2007 /* Level 0 doesn't require tile offsets, and the hardware can find
2008 * array slices using QPitch even with the format override, so we
2009 * can allow layers in this case. Copy the original ISL surface.
2010 */
2011 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2012 }
2013
2014 /* Scale down the image dimensions by the block size. */
2015 const struct isl_format_layout *fmtl =
2016 isl_format_get_layout(res->surf.format);
2017 isl_surf.format = fmt.fmt;
2018 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2019 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2020 tile_x_sa /= fmtl->bw;
2021 tile_y_sa /= fmtl->bh;
2022
2023 psurf->width = isl_surf.logical_level0_px.width;
2024 psurf->height = isl_surf.logical_level0_px.height;
2025
2026 struct isl_surf_fill_state_info f = {
2027 .surf = &isl_surf,
2028 .view = view,
2029 .mocs = mocs(res->bo),
2030 .address = res->bo->gtt_offset + offset_B,
2031 .x_offset_sa = tile_x_sa,
2032 .y_offset_sa = tile_y_sa,
2033 };
2034
2035 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
2036 return psurf;
2037 }
2038
2039 #if GEN_GEN < 9
2040 static void
2041 fill_default_image_param(struct brw_image_param *param)
2042 {
2043 memset(param, 0, sizeof(*param));
2044 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2045 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2046 * detailed explanation of these parameters.
2047 */
2048 param->swizzling[0] = 0xff;
2049 param->swizzling[1] = 0xff;
2050 }
2051
2052 static void
2053 fill_buffer_image_param(struct brw_image_param *param,
2054 enum pipe_format pfmt,
2055 unsigned size)
2056 {
2057 const unsigned cpp = util_format_get_blocksize(pfmt);
2058
2059 fill_default_image_param(param);
2060 param->size[0] = size / cpp;
2061 param->stride[0] = cpp;
2062 }
2063 #else
2064 #define isl_surf_fill_image_param(x, ...)
2065 #define fill_default_image_param(x, ...)
2066 #define fill_buffer_image_param(x, ...)
2067 #endif
2068
2069 /**
2070 * The pipe->set_shader_images() driver hook.
2071 */
2072 static void
2073 iris_set_shader_images(struct pipe_context *ctx,
2074 enum pipe_shader_type p_stage,
2075 unsigned start_slot, unsigned count,
2076 const struct pipe_image_view *p_images)
2077 {
2078 struct iris_context *ice = (struct iris_context *) ctx;
2079 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2080 const struct gen_device_info *devinfo = &screen->devinfo;
2081 gl_shader_stage stage = stage_from_pipe(p_stage);
2082 struct iris_shader_state *shs = &ice->state.shaders[stage];
2083 #if GEN_GEN == 8
2084 struct iris_genx_state *genx = ice->state.genx;
2085 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2086 #endif
2087
2088 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2089
2090 for (unsigned i = 0; i < count; i++) {
2091 struct iris_image_view *iv = &shs->image[start_slot + i];
2092
2093 if (p_images && p_images[i].resource) {
2094 const struct pipe_image_view *img = &p_images[i];
2095 struct iris_resource *res = (void *) img->resource;
2096
2097 void *map =
2098 alloc_surface_states(ice->state.surface_uploader,
2099 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2100 if (!unlikely(map))
2101 return;
2102
2103 util_copy_image_view(&iv->base, img);
2104
2105 shs->bound_image_views |= 1 << (start_slot + i);
2106
2107 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2108
2109 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2110 enum isl_format isl_fmt =
2111 iris_format_for_usage(devinfo, img->format, usage).fmt;
2112
2113 bool untyped_fallback = false;
2114
2115 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2116 /* On Gen8, try to use typed surfaces reads (which support a
2117 * limited number of formats), and if not possible, fall back
2118 * to untyped reads.
2119 */
2120 untyped_fallback = GEN_GEN == 8 &&
2121 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2122
2123 if (untyped_fallback)
2124 isl_fmt = ISL_FORMAT_RAW;
2125 else
2126 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2127 }
2128
2129 if (res->base.target != PIPE_BUFFER) {
2130 struct isl_view view = {
2131 .format = isl_fmt,
2132 .base_level = img->u.tex.level,
2133 .levels = 1,
2134 .base_array_layer = img->u.tex.first_layer,
2135 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2136 .swizzle = ISL_SWIZZLE_IDENTITY,
2137 .usage = usage,
2138 };
2139
2140 if (untyped_fallback) {
2141 fill_buffer_surface_state(&screen->isl_dev, res, map,
2142 isl_fmt, ISL_SWIZZLE_IDENTITY,
2143 0, res->bo->size);
2144 } else {
2145 /* Images don't support compression */
2146 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2147 while (aux_modes) {
2148 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2149
2150 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
2151
2152 map += SURFACE_STATE_ALIGNMENT;
2153 }
2154 }
2155
2156 isl_surf_fill_image_param(&screen->isl_dev,
2157 &image_params[start_slot + i],
2158 &res->surf, &view);
2159 } else {
2160 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2161 img->u.buf.offset + img->u.buf.size);
2162
2163 fill_buffer_surface_state(&screen->isl_dev, res, map,
2164 isl_fmt, ISL_SWIZZLE_IDENTITY,
2165 img->u.buf.offset, img->u.buf.size);
2166 fill_buffer_image_param(&image_params[start_slot + i],
2167 img->format, img->u.buf.size);
2168 }
2169 } else {
2170 pipe_resource_reference(&iv->base.resource, NULL);
2171 pipe_resource_reference(&iv->surface_state.res, NULL);
2172 fill_default_image_param(&image_params[start_slot + i]);
2173 }
2174 }
2175
2176 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2177 ice->state.dirty |=
2178 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2179 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2180
2181 /* Broadwell also needs brw_image_params re-uploaded */
2182 if (GEN_GEN < 9) {
2183 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2184 shs->sysvals_need_upload = true;
2185 }
2186 }
2187
2188
2189 /**
2190 * The pipe->set_sampler_views() driver hook.
2191 */
2192 static void
2193 iris_set_sampler_views(struct pipe_context *ctx,
2194 enum pipe_shader_type p_stage,
2195 unsigned start, unsigned count,
2196 struct pipe_sampler_view **views)
2197 {
2198 struct iris_context *ice = (struct iris_context *) ctx;
2199 gl_shader_stage stage = stage_from_pipe(p_stage);
2200 struct iris_shader_state *shs = &ice->state.shaders[stage];
2201
2202 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2203
2204 for (unsigned i = 0; i < count; i++) {
2205 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2206 pipe_sampler_view_reference((struct pipe_sampler_view **)
2207 &shs->textures[start + i], pview);
2208 struct iris_sampler_view *view = (void *) pview;
2209 if (view) {
2210 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2211 shs->bound_sampler_views |= 1 << (start + i);
2212 }
2213 }
2214
2215 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2216 ice->state.dirty |=
2217 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2218 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2219 }
2220
2221 /**
2222 * The pipe->set_tess_state() driver hook.
2223 */
2224 static void
2225 iris_set_tess_state(struct pipe_context *ctx,
2226 const float default_outer_level[4],
2227 const float default_inner_level[2])
2228 {
2229 struct iris_context *ice = (struct iris_context *) ctx;
2230 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2231
2232 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2233 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2234
2235 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2236 shs->sysvals_need_upload = true;
2237 }
2238
2239 static void
2240 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2241 {
2242 struct iris_surface *surf = (void *) p_surf;
2243 pipe_resource_reference(&p_surf->texture, NULL);
2244 pipe_resource_reference(&surf->surface_state.res, NULL);
2245 free(surf);
2246 }
2247
2248 static void
2249 iris_set_clip_state(struct pipe_context *ctx,
2250 const struct pipe_clip_state *state)
2251 {
2252 struct iris_context *ice = (struct iris_context *) ctx;
2253 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2254
2255 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2256
2257 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2258 shs->sysvals_need_upload = true;
2259 }
2260
2261 /**
2262 * The pipe->set_polygon_stipple() driver hook.
2263 */
2264 static void
2265 iris_set_polygon_stipple(struct pipe_context *ctx,
2266 const struct pipe_poly_stipple *state)
2267 {
2268 struct iris_context *ice = (struct iris_context *) ctx;
2269 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2270 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2271 }
2272
2273 /**
2274 * The pipe->set_sample_mask() driver hook.
2275 */
2276 static void
2277 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2278 {
2279 struct iris_context *ice = (struct iris_context *) ctx;
2280
2281 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2282 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2283 */
2284 ice->state.sample_mask = sample_mask & 0xffff;
2285 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2286 }
2287
2288 /**
2289 * The pipe->set_scissor_states() driver hook.
2290 *
2291 * This corresponds to our SCISSOR_RECT state structures. It's an
2292 * exact match, so we just store them, and memcpy them out later.
2293 */
2294 static void
2295 iris_set_scissor_states(struct pipe_context *ctx,
2296 unsigned start_slot,
2297 unsigned num_scissors,
2298 const struct pipe_scissor_state *rects)
2299 {
2300 struct iris_context *ice = (struct iris_context *) ctx;
2301
2302 for (unsigned i = 0; i < num_scissors; i++) {
2303 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2304 /* If the scissor was out of bounds and got clamped to 0 width/height
2305 * at the bounds, the subtraction of 1 from maximums could produce a
2306 * negative number and thus not clip anything. Instead, just provide
2307 * a min > max scissor inside the bounds, which produces the expected
2308 * no rendering.
2309 */
2310 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2311 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2312 };
2313 } else {
2314 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2315 .minx = rects[i].minx, .miny = rects[i].miny,
2316 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2317 };
2318 }
2319 }
2320
2321 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2322 }
2323
2324 /**
2325 * The pipe->set_stencil_ref() driver hook.
2326 *
2327 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2328 */
2329 static void
2330 iris_set_stencil_ref(struct pipe_context *ctx,
2331 const struct pipe_stencil_ref *state)
2332 {
2333 struct iris_context *ice = (struct iris_context *) ctx;
2334 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2335 if (GEN_GEN == 8)
2336 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2337 else
2338 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2339 }
2340
2341 static float
2342 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2343 {
2344 return copysignf(state->scale[axis], sign) + state->translate[axis];
2345 }
2346
2347 /**
2348 * The pipe->set_viewport_states() driver hook.
2349 *
2350 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2351 * the guardband yet, as we need the framebuffer dimensions, but we can
2352 * at least fill out the rest.
2353 */
2354 static void
2355 iris_set_viewport_states(struct pipe_context *ctx,
2356 unsigned start_slot,
2357 unsigned count,
2358 const struct pipe_viewport_state *states)
2359 {
2360 struct iris_context *ice = (struct iris_context *) ctx;
2361
2362 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2363
2364 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2365
2366 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2367 !ice->state.cso_rast->depth_clip_far))
2368 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2369 }
2370
2371 /**
2372 * The pipe->set_framebuffer_state() driver hook.
2373 *
2374 * Sets the current draw FBO, including color render targets, depth,
2375 * and stencil buffers.
2376 */
2377 static void
2378 iris_set_framebuffer_state(struct pipe_context *ctx,
2379 const struct pipe_framebuffer_state *state)
2380 {
2381 struct iris_context *ice = (struct iris_context *) ctx;
2382 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2383 struct isl_device *isl_dev = &screen->isl_dev;
2384 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2385 struct iris_resource *zres;
2386 struct iris_resource *stencil_res;
2387
2388 unsigned samples = util_framebuffer_get_num_samples(state);
2389 unsigned layers = util_framebuffer_get_num_layers(state);
2390
2391 if (cso->samples != samples) {
2392 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2393 }
2394
2395 if (cso->nr_cbufs != state->nr_cbufs) {
2396 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2397 }
2398
2399 if ((cso->layers == 0) != (layers == 0)) {
2400 ice->state.dirty |= IRIS_DIRTY_CLIP;
2401 }
2402
2403 if (cso->width != state->width || cso->height != state->height) {
2404 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2405 }
2406
2407 util_copy_framebuffer_state(cso, state);
2408 cso->samples = samples;
2409 cso->layers = layers;
2410
2411 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2412
2413 struct isl_view view = {
2414 .base_level = 0,
2415 .levels = 1,
2416 .base_array_layer = 0,
2417 .array_len = 1,
2418 .swizzle = ISL_SWIZZLE_IDENTITY,
2419 };
2420
2421 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2422
2423 if (cso->zsbuf) {
2424 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2425 &stencil_res);
2426
2427 view.base_level = cso->zsbuf->u.tex.level;
2428 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2429 view.array_len =
2430 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2431
2432 if (zres) {
2433 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2434
2435 info.depth_surf = &zres->surf;
2436 info.depth_address = zres->bo->gtt_offset + zres->offset;
2437 info.mocs = mocs(zres->bo);
2438
2439 view.format = zres->surf.format;
2440
2441 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2442 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2443 info.hiz_surf = &zres->aux.surf;
2444 info.hiz_address = zres->aux.bo->gtt_offset;
2445 }
2446 }
2447
2448 if (stencil_res) {
2449 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2450 info.stencil_surf = &stencil_res->surf;
2451 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2452 if (!zres) {
2453 view.format = stencil_res->surf.format;
2454 info.mocs = mocs(stencil_res->bo);
2455 }
2456 }
2457 }
2458
2459 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2460
2461 /* Make a null surface for unbound buffers */
2462 void *null_surf_map =
2463 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2464 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2465 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2466 isl_extent3d(MAX2(cso->width, 1),
2467 MAX2(cso->height, 1),
2468 cso->layers ? cso->layers : 1));
2469 ice->state.null_fb.offset +=
2470 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2471
2472 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2473
2474 /* Render target change */
2475 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2476
2477 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2478
2479 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2480
2481 #if GEN_GEN == 11
2482 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2483 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2484
2485 /* The PIPE_CONTROL command description says:
2486 *
2487 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2488 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2489 * Target Cache Flush by enabling this bit. When render target flush
2490 * is set due to new association of BTI, PS Scoreboard Stall bit must
2491 * be set in this packet."
2492 */
2493 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2494 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2495 "workaround: RT BTI change [draw]",
2496 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2497 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2498 #endif
2499 }
2500
2501 /**
2502 * The pipe->set_constant_buffer() driver hook.
2503 *
2504 * This uploads any constant data in user buffers, and references
2505 * any UBO resources containing constant data.
2506 */
2507 static void
2508 iris_set_constant_buffer(struct pipe_context *ctx,
2509 enum pipe_shader_type p_stage, unsigned index,
2510 const struct pipe_constant_buffer *input)
2511 {
2512 struct iris_context *ice = (struct iris_context *) ctx;
2513 gl_shader_stage stage = stage_from_pipe(p_stage);
2514 struct iris_shader_state *shs = &ice->state.shaders[stage];
2515 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2516
2517 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
2518 shs->bound_cbufs |= 1u << index;
2519
2520 if (input->user_buffer) {
2521 void *map = NULL;
2522 pipe_resource_reference(&cbuf->buffer, NULL);
2523 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
2524 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2525
2526 if (!cbuf->buffer) {
2527 /* Allocation was unsuccessful - just unbind */
2528 iris_set_constant_buffer(ctx, p_stage, index, NULL);
2529 return;
2530 }
2531
2532 assert(map);
2533 memcpy(map, input->user_buffer, input->buffer_size);
2534 } else if (input->buffer) {
2535 pipe_resource_reference(&cbuf->buffer, input->buffer);
2536
2537 cbuf->buffer_offset = input->buffer_offset;
2538 cbuf->buffer_size =
2539 MIN2(input->buffer_size,
2540 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
2541 }
2542
2543 struct iris_resource *res = (void *) cbuf->buffer;
2544 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2545
2546 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2547 &shs->constbuf_surf_state[index],
2548 false);
2549 } else {
2550 shs->bound_cbufs &= ~(1u << index);
2551 pipe_resource_reference(&cbuf->buffer, NULL);
2552 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2553 }
2554
2555 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2556 // XXX: maybe not necessary all the time...?
2557 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2558 // XXX: pull model we may need actual new bindings...
2559 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2560 }
2561
2562 static void
2563 upload_sysvals(struct iris_context *ice,
2564 gl_shader_stage stage)
2565 {
2566 UNUSED struct iris_genx_state *genx = ice->state.genx;
2567 struct iris_shader_state *shs = &ice->state.shaders[stage];
2568
2569 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2570 if (!shader || shader->num_system_values == 0)
2571 return;
2572
2573 assert(shader->num_cbufs > 0);
2574
2575 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
2576 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
2577 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
2578 uint32_t *map = NULL;
2579
2580 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
2581 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2582 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2583
2584 for (int i = 0; i < shader->num_system_values; i++) {
2585 uint32_t sysval = shader->system_values[i];
2586 uint32_t value = 0;
2587
2588 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2589 #if GEN_GEN == 8
2590 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2591 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2592 struct brw_image_param *param =
2593 &genx->shaders[stage].image_param[img];
2594
2595 assert(offset < sizeof(struct brw_image_param));
2596 value = ((uint32_t *) param)[offset];
2597 #endif
2598 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2599 value = 0;
2600 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2601 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2602 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2603 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2604 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2605 if (stage == MESA_SHADER_TESS_CTRL) {
2606 value = ice->state.vertices_per_patch;
2607 } else {
2608 assert(stage == MESA_SHADER_TESS_EVAL);
2609 const struct shader_info *tcs_info =
2610 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2611 if (tcs_info)
2612 value = tcs_info->tess.tcs_vertices_out;
2613 else
2614 value = ice->state.vertices_per_patch;
2615 }
2616 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2617 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2618 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2619 value = fui(ice->state.default_outer_level[i]);
2620 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2621 value = fui(ice->state.default_inner_level[0]);
2622 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2623 value = fui(ice->state.default_inner_level[1]);
2624 } else {
2625 assert(!"unhandled system value");
2626 }
2627
2628 *map++ = value;
2629 }
2630
2631 cbuf->buffer_size = upload_size;
2632 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2633 &shs->constbuf_surf_state[sysval_cbuf_index], false);
2634
2635 shs->sysvals_need_upload = false;
2636 }
2637
2638 /**
2639 * The pipe->set_shader_buffers() driver hook.
2640 *
2641 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2642 * SURFACE_STATE here, as the buffer offset may change each time.
2643 */
2644 static void
2645 iris_set_shader_buffers(struct pipe_context *ctx,
2646 enum pipe_shader_type p_stage,
2647 unsigned start_slot, unsigned count,
2648 const struct pipe_shader_buffer *buffers,
2649 unsigned writable_bitmask)
2650 {
2651 struct iris_context *ice = (struct iris_context *) ctx;
2652 gl_shader_stage stage = stage_from_pipe(p_stage);
2653 struct iris_shader_state *shs = &ice->state.shaders[stage];
2654
2655 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2656
2657 shs->bound_ssbos &= ~modified_bits;
2658 shs->writable_ssbos &= ~modified_bits;
2659 shs->writable_ssbos |= writable_bitmask << start_slot;
2660
2661 for (unsigned i = 0; i < count; i++) {
2662 if (buffers && buffers[i].buffer) {
2663 struct iris_resource *res = (void *) buffers[i].buffer;
2664 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2665 struct iris_state_ref *surf_state =
2666 &shs->ssbo_surf_state[start_slot + i];
2667 pipe_resource_reference(&ssbo->buffer, &res->base);
2668 ssbo->buffer_offset = buffers[i].buffer_offset;
2669 ssbo->buffer_size =
2670 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2671
2672 shs->bound_ssbos |= 1 << (start_slot + i);
2673
2674 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2675
2676 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2677
2678 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2679 ssbo->buffer_offset + ssbo->buffer_size);
2680 } else {
2681 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2682 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2683 NULL);
2684 }
2685 }
2686
2687 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2688 }
2689
2690 static void
2691 iris_delete_state(struct pipe_context *ctx, void *state)
2692 {
2693 free(state);
2694 }
2695
2696 /**
2697 * The pipe->set_vertex_buffers() driver hook.
2698 *
2699 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2700 */
2701 static void
2702 iris_set_vertex_buffers(struct pipe_context *ctx,
2703 unsigned start_slot, unsigned count,
2704 const struct pipe_vertex_buffer *buffers)
2705 {
2706 struct iris_context *ice = (struct iris_context *) ctx;
2707 struct iris_genx_state *genx = ice->state.genx;
2708
2709 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2710
2711 for (unsigned i = 0; i < count; i++) {
2712 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2713 struct iris_vertex_buffer_state *state =
2714 &genx->vertex_buffers[start_slot + i];
2715
2716 if (!buffer) {
2717 pipe_resource_reference(&state->resource, NULL);
2718 continue;
2719 }
2720
2721 /* We may see user buffers that are NULL bindings. */
2722 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2723
2724 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2725 struct iris_resource *res = (void *) state->resource;
2726
2727 if (res) {
2728 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2729 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2730 }
2731
2732 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2733 vb.VertexBufferIndex = start_slot + i;
2734 vb.AddressModifyEnable = true;
2735 vb.BufferPitch = buffer->stride;
2736 if (res) {
2737 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2738 vb.BufferStartingAddress =
2739 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2740 vb.MOCS = mocs(res->bo);
2741 } else {
2742 vb.NullVertexBuffer = true;
2743 }
2744 }
2745 }
2746
2747 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2748 }
2749
2750 /**
2751 * Gallium CSO for vertex elements.
2752 */
2753 struct iris_vertex_element_state {
2754 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2755 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2756 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2757 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2758 unsigned count;
2759 };
2760
2761 /**
2762 * The pipe->create_vertex_elements() driver hook.
2763 *
2764 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2765 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2766 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2767 * needed. In these cases we will need information available at draw time.
2768 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2769 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2770 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2771 */
2772 static void *
2773 iris_create_vertex_elements(struct pipe_context *ctx,
2774 unsigned count,
2775 const struct pipe_vertex_element *state)
2776 {
2777 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2778 const struct gen_device_info *devinfo = &screen->devinfo;
2779 struct iris_vertex_element_state *cso =
2780 malloc(sizeof(struct iris_vertex_element_state));
2781
2782 cso->count = count;
2783
2784 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2785 ve.DWordLength =
2786 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2787 }
2788
2789 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2790 uint32_t *vfi_pack_dest = cso->vf_instancing;
2791
2792 if (count == 0) {
2793 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2794 ve.Valid = true;
2795 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2796 ve.Component0Control = VFCOMP_STORE_0;
2797 ve.Component1Control = VFCOMP_STORE_0;
2798 ve.Component2Control = VFCOMP_STORE_0;
2799 ve.Component3Control = VFCOMP_STORE_1_FP;
2800 }
2801
2802 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2803 }
2804 }
2805
2806 for (int i = 0; i < count; i++) {
2807 const struct iris_format_info fmt =
2808 iris_format_for_usage(devinfo, state[i].src_format, 0);
2809 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2810 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2811
2812 switch (isl_format_get_num_channels(fmt.fmt)) {
2813 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
2814 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
2815 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
2816 case 3:
2817 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2818 : VFCOMP_STORE_1_FP;
2819 break;
2820 }
2821 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2822 ve.EdgeFlagEnable = false;
2823 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2824 ve.Valid = true;
2825 ve.SourceElementOffset = state[i].src_offset;
2826 ve.SourceElementFormat = fmt.fmt;
2827 ve.Component0Control = comp[0];
2828 ve.Component1Control = comp[1];
2829 ve.Component2Control = comp[2];
2830 ve.Component3Control = comp[3];
2831 }
2832
2833 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2834 vi.VertexElementIndex = i;
2835 vi.InstancingEnable = state[i].instance_divisor > 0;
2836 vi.InstanceDataStepRate = state[i].instance_divisor;
2837 }
2838
2839 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2840 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2841 }
2842
2843 /* An alternative version of the last VE and VFI is stored so it
2844 * can be used at draw time in case Vertex Shader uses EdgeFlag
2845 */
2846 if (count) {
2847 const unsigned edgeflag_index = count - 1;
2848 const struct iris_format_info fmt =
2849 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2850 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2851 ve.EdgeFlagEnable = true ;
2852 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2853 ve.Valid = true;
2854 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2855 ve.SourceElementFormat = fmt.fmt;
2856 ve.Component0Control = VFCOMP_STORE_SRC;
2857 ve.Component1Control = VFCOMP_STORE_0;
2858 ve.Component2Control = VFCOMP_STORE_0;
2859 ve.Component3Control = VFCOMP_STORE_0;
2860 }
2861 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2862 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2863 * at draw time, as it should change if SGVs are emitted.
2864 */
2865 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2866 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2867 }
2868 }
2869
2870 return cso;
2871 }
2872
2873 /**
2874 * The pipe->bind_vertex_elements_state() driver hook.
2875 */
2876 static void
2877 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2878 {
2879 struct iris_context *ice = (struct iris_context *) ctx;
2880 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2881 struct iris_vertex_element_state *new_cso = state;
2882
2883 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2884 * we need to re-emit it to ensure we're overriding the right one.
2885 */
2886 if (new_cso && cso_changed(count))
2887 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2888
2889 ice->state.cso_vertex_elements = state;
2890 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2891 }
2892
2893 /**
2894 * The pipe->create_stream_output_target() driver hook.
2895 *
2896 * "Target" here refers to a destination buffer. We translate this into
2897 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2898 * know which buffer this represents, or whether we ought to zero the
2899 * write-offsets, or append. Those are handled in the set() hook.
2900 */
2901 static struct pipe_stream_output_target *
2902 iris_create_stream_output_target(struct pipe_context *ctx,
2903 struct pipe_resource *p_res,
2904 unsigned buffer_offset,
2905 unsigned buffer_size)
2906 {
2907 struct iris_resource *res = (void *) p_res;
2908 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2909 if (!cso)
2910 return NULL;
2911
2912 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2913
2914 pipe_reference_init(&cso->base.reference, 1);
2915 pipe_resource_reference(&cso->base.buffer, p_res);
2916 cso->base.buffer_offset = buffer_offset;
2917 cso->base.buffer_size = buffer_size;
2918 cso->base.context = ctx;
2919
2920 util_range_add(&res->valid_buffer_range, buffer_offset,
2921 buffer_offset + buffer_size);
2922
2923 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2924
2925 return &cso->base;
2926 }
2927
2928 static void
2929 iris_stream_output_target_destroy(struct pipe_context *ctx,
2930 struct pipe_stream_output_target *state)
2931 {
2932 struct iris_stream_output_target *cso = (void *) state;
2933
2934 pipe_resource_reference(&cso->base.buffer, NULL);
2935 pipe_resource_reference(&cso->offset.res, NULL);
2936
2937 free(cso);
2938 }
2939
2940 /**
2941 * The pipe->set_stream_output_targets() driver hook.
2942 *
2943 * At this point, we know which targets are bound to a particular index,
2944 * and also whether we want to append or start over. We can finish the
2945 * 3DSTATE_SO_BUFFER packets we started earlier.
2946 */
2947 static void
2948 iris_set_stream_output_targets(struct pipe_context *ctx,
2949 unsigned num_targets,
2950 struct pipe_stream_output_target **targets,
2951 const unsigned *offsets)
2952 {
2953 struct iris_context *ice = (struct iris_context *) ctx;
2954 struct iris_genx_state *genx = ice->state.genx;
2955 uint32_t *so_buffers = genx->so_buffers;
2956
2957 const bool active = num_targets > 0;
2958 if (ice->state.streamout_active != active) {
2959 ice->state.streamout_active = active;
2960 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2961
2962 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2963 * it's a non-pipelined command. If we're switching streamout on, we
2964 * may have missed emitting it earlier, so do so now. (We're already
2965 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2966 */
2967 if (active) {
2968 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2969 } else {
2970 uint32_t flush = 0;
2971 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
2972 struct iris_stream_output_target *tgt =
2973 (void *) ice->state.so_target[i];
2974 if (tgt) {
2975 struct iris_resource *res = (void *) tgt->base.buffer;
2976
2977 flush |= iris_flush_bits_for_history(res);
2978 iris_dirty_for_history(ice, res);
2979 }
2980 }
2981 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2982 "make streamout results visible", flush);
2983 }
2984 }
2985
2986 for (int i = 0; i < 4; i++) {
2987 pipe_so_target_reference(&ice->state.so_target[i],
2988 i < num_targets ? targets[i] : NULL);
2989 }
2990
2991 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2992 if (!active)
2993 return;
2994
2995 for (unsigned i = 0; i < 4; i++,
2996 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2997
2998 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
2999 unsigned offset = offsets[i];
3000
3001 if (!tgt) {
3002 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
3003 sob.SOBufferIndex = i;
3004 continue;
3005 }
3006
3007 struct iris_resource *res = (void *) tgt->base.buffer;
3008
3009 /* Note that offsets[i] will either be 0, causing us to zero
3010 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3011 * "continue appending at the existing offset."
3012 */
3013 assert(offset == 0 || offset == 0xFFFFFFFF);
3014
3015 /* We might be called by Begin (offset = 0), Pause, then Resume
3016 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3017 * will actually be sent to the GPU). In this case, we don't want
3018 * to append - we still want to do our initial zeroing.
3019 */
3020 if (!tgt->zeroed)
3021 offset = 0;
3022
3023 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3024 sob.SurfaceBaseAddress =
3025 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3026 sob.SOBufferEnable = true;
3027 sob.StreamOffsetWriteEnable = true;
3028 sob.StreamOutputBufferOffsetAddressEnable = true;
3029 sob.MOCS = mocs(res->bo);
3030
3031 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3032
3033 sob.SOBufferIndex = i;
3034 sob.StreamOffset = offset;
3035 sob.StreamOutputBufferOffsetAddress =
3036 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3037 tgt->offset.offset);
3038 }
3039 }
3040
3041 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3042 }
3043
3044 /**
3045 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3046 * 3DSTATE_STREAMOUT packets.
3047 *
3048 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3049 * hardware to record. We can create it entirely based on the shader, with
3050 * no dynamic state dependencies.
3051 *
3052 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3053 * state-based settings. We capture the shader-related ones here, and merge
3054 * the rest in at draw time.
3055 */
3056 static uint32_t *
3057 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3058 const struct brw_vue_map *vue_map)
3059 {
3060 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3061 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3062 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3063 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3064 int max_decls = 0;
3065 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3066
3067 memset(so_decl, 0, sizeof(so_decl));
3068
3069 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3070 * command feels strange -- each dword pair contains a SO_DECL per stream.
3071 */
3072 for (unsigned i = 0; i < info->num_outputs; i++) {
3073 const struct pipe_stream_output *output = &info->output[i];
3074 const int buffer = output->output_buffer;
3075 const int varying = output->register_index;
3076 const unsigned stream_id = output->stream;
3077 assert(stream_id < MAX_VERTEX_STREAMS);
3078
3079 buffer_mask[stream_id] |= 1 << buffer;
3080
3081 assert(vue_map->varying_to_slot[varying] >= 0);
3082
3083 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3084 * array. Instead, it simply increments DstOffset for the following
3085 * input by the number of components that should be skipped.
3086 *
3087 * Our hardware is unusual in that it requires us to program SO_DECLs
3088 * for fake "hole" components, rather than simply taking the offset
3089 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3090 * program as many size = 4 holes as we can, then a final hole to
3091 * accommodate the final 1, 2, or 3 remaining.
3092 */
3093 int skip_components = output->dst_offset - next_offset[buffer];
3094
3095 while (skip_components > 0) {
3096 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3097 .HoleFlag = 1,
3098 .OutputBufferSlot = output->output_buffer,
3099 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3100 };
3101 skip_components -= 4;
3102 }
3103
3104 next_offset[buffer] = output->dst_offset + output->num_components;
3105
3106 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3107 .OutputBufferSlot = output->output_buffer,
3108 .RegisterIndex = vue_map->varying_to_slot[varying],
3109 .ComponentMask =
3110 ((1 << output->num_components) - 1) << output->start_component,
3111 };
3112
3113 if (decls[stream_id] > max_decls)
3114 max_decls = decls[stream_id];
3115 }
3116
3117 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3118 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3119 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3120
3121 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3122 int urb_entry_read_offset = 0;
3123 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3124 urb_entry_read_offset;
3125
3126 /* We always read the whole vertex. This could be reduced at some
3127 * point by reading less and offsetting the register index in the
3128 * SO_DECLs.
3129 */
3130 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3131 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3132 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3133 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3134 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3135 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3136 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3137 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3138
3139 /* Set buffer pitches; 0 means unbound. */
3140 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3141 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3142 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3143 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3144 }
3145
3146 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3147 list.DWordLength = 3 + 2 * max_decls - 2;
3148 list.StreamtoBufferSelects0 = buffer_mask[0];
3149 list.StreamtoBufferSelects1 = buffer_mask[1];
3150 list.StreamtoBufferSelects2 = buffer_mask[2];
3151 list.StreamtoBufferSelects3 = buffer_mask[3];
3152 list.NumEntries0 = decls[0];
3153 list.NumEntries1 = decls[1];
3154 list.NumEntries2 = decls[2];
3155 list.NumEntries3 = decls[3];
3156 }
3157
3158 for (int i = 0; i < max_decls; i++) {
3159 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3160 entry.Stream0Decl = so_decl[0][i];
3161 entry.Stream1Decl = so_decl[1][i];
3162 entry.Stream2Decl = so_decl[2][i];
3163 entry.Stream3Decl = so_decl[3][i];
3164 }
3165 }
3166
3167 return map;
3168 }
3169
3170 static void
3171 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3172 const struct brw_vue_map *last_vue_map,
3173 bool two_sided_color,
3174 unsigned *out_offset,
3175 unsigned *out_length)
3176 {
3177 /* The compiler computes the first URB slot without considering COL/BFC
3178 * swizzling (because it doesn't know whether it's enabled), so we need
3179 * to do that here too. This may result in a smaller offset, which
3180 * should be safe.
3181 */
3182 const unsigned first_slot =
3183 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3184
3185 /* This becomes the URB read offset (counted in pairs of slots). */
3186 assert(first_slot % 2 == 0);
3187 *out_offset = first_slot / 2;
3188
3189 /* We need to adjust the inputs read to account for front/back color
3190 * swizzling, as it can make the URB length longer.
3191 */
3192 for (int c = 0; c <= 1; c++) {
3193 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3194 /* If two sided color is enabled, the fragment shader's gl_Color
3195 * (COL0) input comes from either the gl_FrontColor (COL0) or
3196 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3197 */
3198 if (two_sided_color)
3199 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3200
3201 /* If front color isn't written, we opt to give them back color
3202 * instead of an undefined value. Switch from COL to BFC.
3203 */
3204 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3205 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3206 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3207 }
3208 }
3209 }
3210
3211 /* Compute the minimum URB Read Length necessary for the FS inputs.
3212 *
3213 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3214 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3215 *
3216 * "This field should be set to the minimum length required to read the
3217 * maximum source attribute. The maximum source attribute is indicated
3218 * by the maximum value of the enabled Attribute # Source Attribute if
3219 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3220 * enable is not set.
3221 * read_length = ceiling((max_source_attr + 1) / 2)
3222 *
3223 * [errata] Corruption/Hang possible if length programmed larger than
3224 * recommended"
3225 *
3226 * Similar text exists for Ivy Bridge.
3227 *
3228 * We find the last URB slot that's actually read by the FS.
3229 */
3230 unsigned last_read_slot = last_vue_map->num_slots - 1;
3231 while (last_read_slot > first_slot && !(fs_input_slots &
3232 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3233 --last_read_slot;
3234
3235 /* The URB read length is the difference of the two, counted in pairs. */
3236 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3237 }
3238
3239 static void
3240 iris_emit_sbe_swiz(struct iris_batch *batch,
3241 const struct iris_context *ice,
3242 unsigned urb_read_offset,
3243 unsigned sprite_coord_enables)
3244 {
3245 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3246 const struct brw_wm_prog_data *wm_prog_data = (void *)
3247 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3248 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3249 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3250
3251 /* XXX: this should be generated when putting programs in place */
3252
3253 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3254 const int input_index = wm_prog_data->urb_setup[fs_attr];
3255 if (input_index < 0 || input_index >= 16)
3256 continue;
3257
3258 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3259 &attr_overrides[input_index];
3260 int slot = vue_map->varying_to_slot[fs_attr];
3261
3262 /* Viewport and Layer are stored in the VUE header. We need to override
3263 * them to zero if earlier stages didn't write them, as GL requires that
3264 * they read back as zero when not explicitly set.
3265 */
3266 switch (fs_attr) {
3267 case VARYING_SLOT_VIEWPORT:
3268 case VARYING_SLOT_LAYER:
3269 attr->ComponentOverrideX = true;
3270 attr->ComponentOverrideW = true;
3271 attr->ConstantSource = CONST_0000;
3272
3273 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3274 attr->ComponentOverrideY = true;
3275 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3276 attr->ComponentOverrideZ = true;
3277 continue;
3278
3279 case VARYING_SLOT_PRIMITIVE_ID:
3280 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3281 if (slot == -1) {
3282 attr->ComponentOverrideX = true;
3283 attr->ComponentOverrideY = true;
3284 attr->ComponentOverrideZ = true;
3285 attr->ComponentOverrideW = true;
3286 attr->ConstantSource = PRIM_ID;
3287 continue;
3288 }
3289
3290 default:
3291 break;
3292 }
3293
3294 if (sprite_coord_enables & (1 << input_index))
3295 continue;
3296
3297 /* If there was only a back color written but not front, use back
3298 * as the color instead of undefined.
3299 */
3300 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3301 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3302 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3303 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3304
3305 /* Not written by the previous stage - undefined. */
3306 if (slot == -1) {
3307 attr->ComponentOverrideX = true;
3308 attr->ComponentOverrideY = true;
3309 attr->ComponentOverrideZ = true;
3310 attr->ComponentOverrideW = true;
3311 attr->ConstantSource = CONST_0001_FLOAT;
3312 continue;
3313 }
3314
3315 /* Compute the location of the attribute relative to the read offset,
3316 * which is counted in 256-bit increments (two 128-bit VUE slots).
3317 */
3318 const int source_attr = slot - 2 * urb_read_offset;
3319 assert(source_attr >= 0 && source_attr <= 32);
3320 attr->SourceAttribute = source_attr;
3321
3322 /* If we are doing two-sided color, and the VUE slot following this one
3323 * represents a back-facing color, then we need to instruct the SF unit
3324 * to do back-facing swizzling.
3325 */
3326 if (cso_rast->light_twoside &&
3327 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3328 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3329 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3330 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3331 attr->SwizzleSelect = INPUTATTR_FACING;
3332 }
3333
3334 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3335 for (int i = 0; i < 16; i++)
3336 sbes.Attribute[i] = attr_overrides[i];
3337 }
3338 }
3339
3340 static unsigned
3341 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3342 const struct iris_rasterizer_state *cso)
3343 {
3344 unsigned overrides = 0;
3345
3346 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3347 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3348
3349 for (int i = 0; i < 8; i++) {
3350 if ((cso->sprite_coord_enable & (1 << i)) &&
3351 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3352 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3353 }
3354
3355 return overrides;
3356 }
3357
3358 static void
3359 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3360 {
3361 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3362 const struct brw_wm_prog_data *wm_prog_data = (void *)
3363 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3364 const struct shader_info *fs_info =
3365 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3366
3367 unsigned urb_read_offset, urb_read_length;
3368 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3369 ice->shaders.last_vue_map,
3370 cso_rast->light_twoside,
3371 &urb_read_offset, &urb_read_length);
3372
3373 unsigned sprite_coord_overrides =
3374 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3375
3376 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3377 sbe.AttributeSwizzleEnable = true;
3378 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3379 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3380 sbe.VertexURBEntryReadOffset = urb_read_offset;
3381 sbe.VertexURBEntryReadLength = urb_read_length;
3382 sbe.ForceVertexURBEntryReadOffset = true;
3383 sbe.ForceVertexURBEntryReadLength = true;
3384 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3385 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3386 #if GEN_GEN >= 9
3387 for (int i = 0; i < 32; i++) {
3388 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3389 }
3390 #endif
3391 }
3392
3393 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3394 }
3395
3396 /* ------------------------------------------------------------------- */
3397
3398 /**
3399 * Populate VS program key fields based on the current state.
3400 */
3401 static void
3402 iris_populate_vs_key(const struct iris_context *ice,
3403 const struct shader_info *info,
3404 struct brw_vs_prog_key *key)
3405 {
3406 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3407
3408 if (info->clip_distance_array_size == 0 &&
3409 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3410 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3411 }
3412
3413 /**
3414 * Populate TCS program key fields based on the current state.
3415 */
3416 static void
3417 iris_populate_tcs_key(const struct iris_context *ice,
3418 struct brw_tcs_prog_key *key)
3419 {
3420 }
3421
3422 /**
3423 * Populate TES program key fields based on the current state.
3424 */
3425 static void
3426 iris_populate_tes_key(const struct iris_context *ice,
3427 struct brw_tes_prog_key *key)
3428 {
3429 }
3430
3431 /**
3432 * Populate GS program key fields based on the current state.
3433 */
3434 static void
3435 iris_populate_gs_key(const struct iris_context *ice,
3436 struct brw_gs_prog_key *key)
3437 {
3438 }
3439
3440 /**
3441 * Populate FS program key fields based on the current state.
3442 */
3443 static void
3444 iris_populate_fs_key(const struct iris_context *ice,
3445 const struct shader_info *info,
3446 struct brw_wm_prog_key *key)
3447 {
3448 struct iris_screen *screen = (void *) ice->ctx.screen;
3449 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3450 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3451 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3452 const struct iris_blend_state *blend = ice->state.cso_blend;
3453
3454 key->nr_color_regions = fb->nr_cbufs;
3455
3456 key->clamp_fragment_color = rast->clamp_fragment_color;
3457
3458 key->alpha_to_coverage = blend->alpha_to_coverage;
3459
3460 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3461
3462 key->flat_shade = rast->flatshade &&
3463 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
3464
3465 key->persample_interp = rast->force_persample_interp;
3466 key->multisample_fbo = rast->multisample && fb->samples > 1;
3467
3468 key->coherent_fb_fetch = true;
3469
3470 key->force_dual_color_blend =
3471 screen->driconf.dual_color_blend_by_location &&
3472 (blend->blend_enables & 1) && blend->dual_color_blending;
3473
3474 /* TODO: Respect glHint for key->high_quality_derivatives */
3475 }
3476
3477 static void
3478 iris_populate_cs_key(const struct iris_context *ice,
3479 struct brw_cs_prog_key *key)
3480 {
3481 }
3482
3483 static uint64_t
3484 KSP(const struct iris_compiled_shader *shader)
3485 {
3486 struct iris_resource *res = (void *) shader->assembly.res;
3487 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3488 }
3489
3490 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3491 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3492 * this WA on C0 stepping.
3493 *
3494 * TODO: Fill out SamplerCount for prefetching?
3495 */
3496
3497 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3498 pkt.KernelStartPointer = KSP(shader); \
3499 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3500 shader->bt.size_bytes / 4; \
3501 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3502 \
3503 pkt.DispatchGRFStartRegisterForURBData = \
3504 prog_data->dispatch_grf_start_reg; \
3505 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3506 pkt.prefix##URBEntryReadOffset = 0; \
3507 \
3508 pkt.StatisticsEnable = true; \
3509 pkt.Enable = true; \
3510 \
3511 if (prog_data->total_scratch) { \
3512 struct iris_bo *bo = \
3513 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3514 uint32_t scratch_addr = bo->gtt_offset; \
3515 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3516 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3517 }
3518
3519 /**
3520 * Encode most of 3DSTATE_VS based on the compiled shader.
3521 */
3522 static void
3523 iris_store_vs_state(struct iris_context *ice,
3524 const struct gen_device_info *devinfo,
3525 struct iris_compiled_shader *shader)
3526 {
3527 struct brw_stage_prog_data *prog_data = shader->prog_data;
3528 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3529
3530 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3531 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3532 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3533 vs.SIMD8DispatchEnable = true;
3534 vs.UserClipDistanceCullTestEnableBitmask =
3535 vue_prog_data->cull_distance_mask;
3536 }
3537 }
3538
3539 /**
3540 * Encode most of 3DSTATE_HS based on the compiled shader.
3541 */
3542 static void
3543 iris_store_tcs_state(struct iris_context *ice,
3544 const struct gen_device_info *devinfo,
3545 struct iris_compiled_shader *shader)
3546 {
3547 struct brw_stage_prog_data *prog_data = shader->prog_data;
3548 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3549 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3550
3551 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3552 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3553
3554 hs.InstanceCount = tcs_prog_data->instances - 1;
3555 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3556 hs.IncludeVertexHandles = true;
3557
3558 #if GEN_GEN >= 9
3559 hs.DispatchMode = vue_prog_data->dispatch_mode;
3560 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3561 #endif
3562 }
3563 }
3564
3565 /**
3566 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3567 */
3568 static void
3569 iris_store_tes_state(struct iris_context *ice,
3570 const struct gen_device_info *devinfo,
3571 struct iris_compiled_shader *shader)
3572 {
3573 struct brw_stage_prog_data *prog_data = shader->prog_data;
3574 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3575 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3576
3577 uint32_t *te_state = (void *) shader->derived_data;
3578 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3579
3580 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3581 te.Partitioning = tes_prog_data->partitioning;
3582 te.OutputTopology = tes_prog_data->output_topology;
3583 te.TEDomain = tes_prog_data->domain;
3584 te.TEEnable = true;
3585 te.MaximumTessellationFactorOdd = 63.0;
3586 te.MaximumTessellationFactorNotOdd = 64.0;
3587 }
3588
3589 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3590 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3591
3592 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3593 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3594 ds.ComputeWCoordinateEnable =
3595 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3596
3597 ds.UserClipDistanceCullTestEnableBitmask =
3598 vue_prog_data->cull_distance_mask;
3599 }
3600
3601 }
3602
3603 /**
3604 * Encode most of 3DSTATE_GS based on the compiled shader.
3605 */
3606 static void
3607 iris_store_gs_state(struct iris_context *ice,
3608 const struct gen_device_info *devinfo,
3609 struct iris_compiled_shader *shader)
3610 {
3611 struct brw_stage_prog_data *prog_data = shader->prog_data;
3612 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3613 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3614
3615 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3616 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3617
3618 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3619 gs.OutputTopology = gs_prog_data->output_topology;
3620 gs.ControlDataHeaderSize =
3621 gs_prog_data->control_data_header_size_hwords;
3622 gs.InstanceControl = gs_prog_data->invocations - 1;
3623 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3624 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3625 gs.ControlDataFormat = gs_prog_data->control_data_format;
3626 gs.ReorderMode = TRAILING;
3627 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3628 gs.MaximumNumberofThreads =
3629 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3630 : (devinfo->max_gs_threads - 1);
3631
3632 if (gs_prog_data->static_vertex_count != -1) {
3633 gs.StaticOutput = true;
3634 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3635 }
3636 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3637
3638 gs.UserClipDistanceCullTestEnableBitmask =
3639 vue_prog_data->cull_distance_mask;
3640
3641 const int urb_entry_write_offset = 1;
3642 const uint32_t urb_entry_output_length =
3643 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3644 urb_entry_write_offset;
3645
3646 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3647 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3648 }
3649 }
3650
3651 /**
3652 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3653 */
3654 static void
3655 iris_store_fs_state(struct iris_context *ice,
3656 const struct gen_device_info *devinfo,
3657 struct iris_compiled_shader *shader)
3658 {
3659 struct brw_stage_prog_data *prog_data = shader->prog_data;
3660 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3661
3662 uint32_t *ps_state = (void *) shader->derived_data;
3663 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3664
3665 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3666 ps.VectorMaskEnable = true;
3667 // XXX: WABTPPrefetchDisable, see above, drop at C0
3668 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3669 shader->bt.size_bytes / 4;
3670 ps.FloatingPointMode = prog_data->use_alt_mode;
3671 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3672
3673 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3674
3675 /* From the documentation for this packet:
3676 * "If the PS kernel does not need the Position XY Offsets to
3677 * compute a Position Value, then this field should be programmed
3678 * to POSOFFSET_NONE."
3679 *
3680 * "SW Recommendation: If the PS kernel needs the Position Offsets
3681 * to compute a Position XY value, this field should match Position
3682 * ZW Interpolation Mode to ensure a consistent position.xyzw
3683 * computation."
3684 *
3685 * We only require XY sample offsets. So, this recommendation doesn't
3686 * look useful at the moment. We might need this in future.
3687 */
3688 ps.PositionXYOffsetSelect =
3689 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3690 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3691 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3692 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3693
3694 // XXX: Disable SIMD32 with 16x MSAA
3695
3696 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3697 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3698 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3699 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3700 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3701 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3702
3703 ps.KernelStartPointer0 =
3704 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3705 ps.KernelStartPointer1 =
3706 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3707 ps.KernelStartPointer2 =
3708 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3709
3710 if (prog_data->total_scratch) {
3711 struct iris_bo *bo =
3712 iris_get_scratch_space(ice, prog_data->total_scratch,
3713 MESA_SHADER_FRAGMENT);
3714 uint32_t scratch_addr = bo->gtt_offset;
3715 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3716 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3717 }
3718 }
3719
3720 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3721 psx.PixelShaderValid = true;
3722 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3723 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3724 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3725 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3726 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3727 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3728 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3729
3730 #if GEN_GEN >= 9
3731 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3732 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3733 #else
3734 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3735 #endif
3736 }
3737 }
3738
3739 /**
3740 * Compute the size of the derived data (shader command packets).
3741 *
3742 * This must match the data written by the iris_store_xs_state() functions.
3743 */
3744 static void
3745 iris_store_cs_state(struct iris_context *ice,
3746 const struct gen_device_info *devinfo,
3747 struct iris_compiled_shader *shader)
3748 {
3749 struct brw_stage_prog_data *prog_data = shader->prog_data;
3750 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3751 void *map = shader->derived_data;
3752
3753 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3754 desc.KernelStartPointer = KSP(shader);
3755 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3756 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3757 desc.SharedLocalMemorySize =
3758 encode_slm_size(GEN_GEN, prog_data->total_shared);
3759 desc.BarrierEnable = cs_prog_data->uses_barrier;
3760 desc.CrossThreadConstantDataReadLength =
3761 cs_prog_data->push.cross_thread.regs;
3762 }
3763 }
3764
3765 static unsigned
3766 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3767 {
3768 assert(cache_id <= IRIS_CACHE_BLORP);
3769
3770 static const unsigned dwords[] = {
3771 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3772 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3773 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3774 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3775 [IRIS_CACHE_FS] =
3776 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3777 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3778 [IRIS_CACHE_BLORP] = 0,
3779 };
3780
3781 return sizeof(uint32_t) * dwords[cache_id];
3782 }
3783
3784 /**
3785 * Create any state packets corresponding to the given shader stage
3786 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3787 * This means that we can look up a program in the in-memory cache and
3788 * get most of the state packet without having to reconstruct it.
3789 */
3790 static void
3791 iris_store_derived_program_state(struct iris_context *ice,
3792 enum iris_program_cache_id cache_id,
3793 struct iris_compiled_shader *shader)
3794 {
3795 struct iris_screen *screen = (void *) ice->ctx.screen;
3796 const struct gen_device_info *devinfo = &screen->devinfo;
3797
3798 switch (cache_id) {
3799 case IRIS_CACHE_VS:
3800 iris_store_vs_state(ice, devinfo, shader);
3801 break;
3802 case IRIS_CACHE_TCS:
3803 iris_store_tcs_state(ice, devinfo, shader);
3804 break;
3805 case IRIS_CACHE_TES:
3806 iris_store_tes_state(ice, devinfo, shader);
3807 break;
3808 case IRIS_CACHE_GS:
3809 iris_store_gs_state(ice, devinfo, shader);
3810 break;
3811 case IRIS_CACHE_FS:
3812 iris_store_fs_state(ice, devinfo, shader);
3813 break;
3814 case IRIS_CACHE_CS:
3815 iris_store_cs_state(ice, devinfo, shader);
3816 case IRIS_CACHE_BLORP:
3817 break;
3818 default:
3819 break;
3820 }
3821 }
3822
3823 /* ------------------------------------------------------------------- */
3824
3825 static const uint32_t push_constant_opcodes[] = {
3826 [MESA_SHADER_VERTEX] = 21,
3827 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3828 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3829 [MESA_SHADER_GEOMETRY] = 22,
3830 [MESA_SHADER_FRAGMENT] = 23,
3831 [MESA_SHADER_COMPUTE] = 0,
3832 };
3833
3834 static uint32_t
3835 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3836 {
3837 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3838
3839 iris_use_pinned_bo(batch, state_bo, false);
3840
3841 return ice->state.unbound_tex.offset;
3842 }
3843
3844 static uint32_t
3845 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3846 {
3847 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3848 if (!ice->state.null_fb.res)
3849 return use_null_surface(batch, ice);
3850
3851 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3852
3853 iris_use_pinned_bo(batch, state_bo, false);
3854
3855 return ice->state.null_fb.offset;
3856 }
3857
3858 static uint32_t
3859 surf_state_offset_for_aux(struct iris_resource *res,
3860 unsigned aux_modes,
3861 enum isl_aux_usage aux_usage)
3862 {
3863 return SURFACE_STATE_ALIGNMENT *
3864 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3865 }
3866
3867 static void
3868 surf_state_update_clear_value(struct iris_batch *batch,
3869 struct iris_resource *res,
3870 struct iris_state_ref *state,
3871 unsigned aux_modes,
3872 enum isl_aux_usage aux_usage)
3873 {
3874 struct isl_device *isl_dev = &batch->screen->isl_dev;
3875 struct iris_bo *state_bo = iris_resource_bo(state->res);
3876 uint64_t real_offset = state->offset +
3877 IRIS_MEMZONE_BINDER_START;
3878 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
3879 uint32_t clear_offset = offset_into_bo +
3880 isl_dev->ss.clear_value_offset +
3881 surf_state_offset_for_aux(res, aux_modes, aux_usage);
3882
3883 batch->vtbl->copy_mem_mem(batch, state_bo, clear_offset,
3884 res->aux.clear_color_bo,
3885 res->aux.clear_color_offset,
3886 isl_dev->ss.clear_value_size);
3887 }
3888
3889 static void
3890 update_clear_value(struct iris_context *ice,
3891 struct iris_batch *batch,
3892 struct iris_resource *res,
3893 struct iris_state_ref *state,
3894 unsigned aux_modes,
3895 struct isl_view *view)
3896 {
3897 struct iris_screen *screen = batch->screen;
3898 const struct gen_device_info *devinfo = &screen->devinfo;
3899
3900 /* We only need to update the clear color in the surface state for gen8 and
3901 * gen9. Newer gens can read it directly from the clear color state buffer.
3902 */
3903 if (devinfo->gen > 9)
3904 return;
3905
3906 if (devinfo->gen == 9) {
3907 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
3908 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
3909
3910 while (aux_modes) {
3911 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3912
3913 surf_state_update_clear_value(batch, res, state, aux_modes,
3914 aux_usage);
3915 }
3916 } else if (devinfo->gen == 8) {
3917 pipe_resource_reference(&state->res, NULL);
3918 void *map = alloc_surface_states(ice->state.surface_uploader,
3919 state, res->aux.possible_usages);
3920 while (aux_modes) {
3921 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3922 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
3923 map += SURFACE_STATE_ALIGNMENT;
3924 }
3925 }
3926 }
3927
3928 /**
3929 * Add a surface to the validation list, as well as the buffer containing
3930 * the corresponding SURFACE_STATE.
3931 *
3932 * Returns the binding table entry (offset to SURFACE_STATE).
3933 */
3934 static uint32_t
3935 use_surface(struct iris_context *ice,
3936 struct iris_batch *batch,
3937 struct pipe_surface *p_surf,
3938 bool writeable,
3939 enum isl_aux_usage aux_usage)
3940 {
3941 struct iris_surface *surf = (void *) p_surf;
3942 struct iris_resource *res = (void *) p_surf->texture;
3943
3944 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3945 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3946
3947 if (res->aux.bo) {
3948 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3949 if (res->aux.clear_color_bo)
3950 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
3951
3952 if (memcmp(&res->aux.clear_color, &surf->clear_color,
3953 sizeof(surf->clear_color)) != 0) {
3954 update_clear_value(ice, batch, res, &surf->surface_state,
3955 res->aux.possible_usages, &surf->view);
3956 surf->clear_color = res->aux.clear_color;
3957 }
3958 }
3959
3960 return surf->surface_state.offset +
3961 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
3962 }
3963
3964 static uint32_t
3965 use_sampler_view(struct iris_context *ice,
3966 struct iris_batch *batch,
3967 struct iris_sampler_view *isv)
3968 {
3969 // XXX: ASTC hacks
3970 enum isl_aux_usage aux_usage =
3971 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3972
3973 iris_use_pinned_bo(batch, isv->res->bo, false);
3974 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3975
3976 if (isv->res->aux.bo) {
3977 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3978 if (isv->res->aux.clear_color_bo)
3979 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
3980 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
3981 sizeof(isv->clear_color)) != 0) {
3982 update_clear_value(ice, batch, isv->res, &isv->surface_state,
3983 isv->res->aux.sampler_usages, &isv->view);
3984 isv->clear_color = isv->res->aux.clear_color;
3985 }
3986 }
3987
3988 return isv->surface_state.offset +
3989 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
3990 aux_usage);
3991 }
3992
3993 static uint32_t
3994 use_ubo_ssbo(struct iris_batch *batch,
3995 struct iris_context *ice,
3996 struct pipe_shader_buffer *buf,
3997 struct iris_state_ref *surf_state,
3998 bool writable)
3999 {
4000 if (!buf->buffer)
4001 return use_null_surface(batch, ice);
4002
4003 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4004 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4005
4006 return surf_state->offset;
4007 }
4008
4009 static uint32_t
4010 use_image(struct iris_batch *batch, struct iris_context *ice,
4011 struct iris_shader_state *shs, int i)
4012 {
4013 struct iris_image_view *iv = &shs->image[i];
4014 struct iris_resource *res = (void *) iv->base.resource;
4015
4016 if (!res)
4017 return use_null_surface(batch, ice);
4018
4019 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4020
4021 iris_use_pinned_bo(batch, res->bo, write);
4022 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
4023
4024 if (res->aux.bo)
4025 iris_use_pinned_bo(batch, res->aux.bo, write);
4026
4027 return iv->surface_state.offset;
4028 }
4029
4030 #define push_bt_entry(addr) \
4031 assert(addr >= binder_addr); \
4032 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4033 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4034
4035 #define bt_assert(section) \
4036 if (!pin_only && shader->bt.used_mask[section] != 0) \
4037 assert(shader->bt.offsets[section] == s);
4038
4039 /**
4040 * Populate the binding table for a given shader stage.
4041 *
4042 * This fills out the table of pointers to surfaces required by the shader,
4043 * and also adds those buffers to the validation list so the kernel can make
4044 * resident before running our batch.
4045 */
4046 static void
4047 iris_populate_binding_table(struct iris_context *ice,
4048 struct iris_batch *batch,
4049 gl_shader_stage stage,
4050 bool pin_only)
4051 {
4052 const struct iris_binder *binder = &ice->state.binder;
4053 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4054 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4055 if (!shader)
4056 return;
4057
4058 struct iris_binding_table *bt = &shader->bt;
4059 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4060 struct iris_shader_state *shs = &ice->state.shaders[stage];
4061 uint32_t binder_addr = binder->bo->gtt_offset;
4062
4063 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4064 int s = 0;
4065
4066 const struct shader_info *info = iris_get_shader_info(ice, stage);
4067 if (!info) {
4068 /* TCS passthrough doesn't need a binding table. */
4069 assert(stage == MESA_SHADER_TESS_CTRL);
4070 return;
4071 }
4072
4073 if (stage == MESA_SHADER_COMPUTE &&
4074 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4075 /* surface for gl_NumWorkGroups */
4076 struct iris_state_ref *grid_data = &ice->state.grid_size;
4077 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4078 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4079 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4080 push_bt_entry(grid_state->offset);
4081 }
4082
4083 if (stage == MESA_SHADER_FRAGMENT) {
4084 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4085 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4086 if (cso_fb->nr_cbufs) {
4087 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4088 uint32_t addr;
4089 if (cso_fb->cbufs[i]) {
4090 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4091 ice->state.draw_aux_usage[i]);
4092 } else {
4093 addr = use_null_fb_surface(batch, ice);
4094 }
4095 push_bt_entry(addr);
4096 }
4097 } else {
4098 uint32_t addr = use_null_fb_surface(batch, ice);
4099 push_bt_entry(addr);
4100 }
4101 }
4102
4103 #define foreach_surface_used(index, group) \
4104 bt_assert(group); \
4105 for (int index = 0; index < bt->sizes[group]; index++) \
4106 if (iris_group_index_to_bti(bt, group, index) != \
4107 IRIS_SURFACE_NOT_USED)
4108
4109 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4110 struct iris_sampler_view *view = shs->textures[i];
4111 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4112 : use_null_surface(batch, ice);
4113 push_bt_entry(addr);
4114 }
4115
4116 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4117 uint32_t addr = use_image(batch, ice, shs, i);
4118 push_bt_entry(addr);
4119 }
4120
4121 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4122 uint32_t addr;
4123
4124 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4125 if (ish->const_data) {
4126 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4127 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4128 false);
4129 addr = ish->const_data_state.offset;
4130 } else {
4131 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4132 addr = use_null_surface(batch, ice);
4133 }
4134 } else {
4135 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4136 &shs->constbuf_surf_state[i], false);
4137 }
4138
4139 push_bt_entry(addr);
4140 }
4141
4142 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4143 uint32_t addr =
4144 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4145 shs->writable_ssbos & (1u << i));
4146 push_bt_entry(addr);
4147 }
4148
4149 #if 0
4150 /* XXX: YUV surfaces not implemented yet */
4151 bt_assert(plane_start[1], ...);
4152 bt_assert(plane_start[2], ...);
4153 #endif
4154 }
4155
4156 static void
4157 iris_use_optional_res(struct iris_batch *batch,
4158 struct pipe_resource *res,
4159 bool writeable)
4160 {
4161 if (res) {
4162 struct iris_bo *bo = iris_resource_bo(res);
4163 iris_use_pinned_bo(batch, bo, writeable);
4164 }
4165 }
4166
4167 static void
4168 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4169 struct pipe_surface *zsbuf,
4170 struct iris_depth_stencil_alpha_state *cso_zsa)
4171 {
4172 if (!zsbuf)
4173 return;
4174
4175 struct iris_resource *zres, *sres;
4176 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4177
4178 if (zres) {
4179 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4180 if (zres->aux.bo) {
4181 iris_use_pinned_bo(batch, zres->aux.bo,
4182 cso_zsa->depth_writes_enabled);
4183 }
4184 }
4185
4186 if (sres) {
4187 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4188 }
4189 }
4190
4191 /* ------------------------------------------------------------------- */
4192
4193 /**
4194 * Pin any BOs which were installed by a previous batch, and restored
4195 * via the hardware logical context mechanism.
4196 *
4197 * We don't need to re-emit all state every batch - the hardware context
4198 * mechanism will save and restore it for us. This includes pointers to
4199 * various BOs...which won't exist unless we ask the kernel to pin them
4200 * by adding them to the validation list.
4201 *
4202 * We can skip buffers if we've re-emitted those packets, as we're
4203 * overwriting those stale pointers with new ones, and don't actually
4204 * refer to the old BOs.
4205 */
4206 static void
4207 iris_restore_render_saved_bos(struct iris_context *ice,
4208 struct iris_batch *batch,
4209 const struct pipe_draw_info *draw)
4210 {
4211 struct iris_genx_state *genx = ice->state.genx;
4212
4213 const uint64_t clean = ~ice->state.dirty;
4214
4215 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4216 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4217 }
4218
4219 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4220 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4221 }
4222
4223 if (clean & IRIS_DIRTY_BLEND_STATE) {
4224 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4225 }
4226
4227 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4228 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4229 }
4230
4231 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4232 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4233 }
4234
4235 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4236 for (int i = 0; i < 4; i++) {
4237 struct iris_stream_output_target *tgt =
4238 (void *) ice->state.so_target[i];
4239 if (tgt) {
4240 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4241 true);
4242 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4243 true);
4244 }
4245 }
4246 }
4247
4248 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4249 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4250 continue;
4251
4252 struct iris_shader_state *shs = &ice->state.shaders[stage];
4253 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4254
4255 if (!shader)
4256 continue;
4257
4258 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4259
4260 for (int i = 0; i < 4; i++) {
4261 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4262
4263 if (range->length == 0)
4264 continue;
4265
4266 /* Range block is a binding table index, map back to UBO index. */
4267 unsigned block_index = iris_bti_to_group_index(
4268 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4269 assert(block_index != IRIS_SURFACE_NOT_USED);
4270
4271 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4272 struct iris_resource *res = (void *) cbuf->buffer;
4273
4274 if (res)
4275 iris_use_pinned_bo(batch, res->bo, false);
4276 else
4277 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4278 }
4279 }
4280
4281 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4282 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4283 /* Re-pin any buffers referred to by the binding table. */
4284 iris_populate_binding_table(ice, batch, stage, true);
4285 }
4286 }
4287
4288 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4289 struct iris_shader_state *shs = &ice->state.shaders[stage];
4290 struct pipe_resource *res = shs->sampler_table.res;
4291 if (res)
4292 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4293 }
4294
4295 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4296 if (clean & (IRIS_DIRTY_VS << stage)) {
4297 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4298
4299 if (shader) {
4300 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4301 iris_use_pinned_bo(batch, bo, false);
4302
4303 struct brw_stage_prog_data *prog_data = shader->prog_data;
4304
4305 if (prog_data->total_scratch > 0) {
4306 struct iris_bo *bo =
4307 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4308 iris_use_pinned_bo(batch, bo, true);
4309 }
4310 }
4311 }
4312 }
4313
4314 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4315 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4316 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4317 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4318 }
4319
4320 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4321 /* This draw didn't emit a new index buffer, so we are inheriting the
4322 * older index buffer. This draw didn't need it, but future ones may.
4323 */
4324 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4325 iris_use_pinned_bo(batch, bo, false);
4326 }
4327
4328 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4329 uint64_t bound = ice->state.bound_vertex_buffers;
4330 while (bound) {
4331 const int i = u_bit_scan64(&bound);
4332 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4333 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4334 }
4335 }
4336 }
4337
4338 static void
4339 iris_restore_compute_saved_bos(struct iris_context *ice,
4340 struct iris_batch *batch,
4341 const struct pipe_grid_info *grid)
4342 {
4343 const uint64_t clean = ~ice->state.dirty;
4344
4345 const int stage = MESA_SHADER_COMPUTE;
4346 struct iris_shader_state *shs = &ice->state.shaders[stage];
4347
4348 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4349 /* Re-pin any buffers referred to by the binding table. */
4350 iris_populate_binding_table(ice, batch, stage, true);
4351 }
4352
4353 struct pipe_resource *sampler_res = shs->sampler_table.res;
4354 if (sampler_res)
4355 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4356
4357 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4358 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4359 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4360 (clean & IRIS_DIRTY_CS)) {
4361 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4362 }
4363
4364 if (clean & IRIS_DIRTY_CS) {
4365 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4366
4367 if (shader) {
4368 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4369 iris_use_pinned_bo(batch, bo, false);
4370
4371 struct iris_bo *curbe_bo =
4372 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4373 iris_use_pinned_bo(batch, curbe_bo, false);
4374
4375 struct brw_stage_prog_data *prog_data = shader->prog_data;
4376
4377 if (prog_data->total_scratch > 0) {
4378 struct iris_bo *bo =
4379 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4380 iris_use_pinned_bo(batch, bo, true);
4381 }
4382 }
4383 }
4384 }
4385
4386 /**
4387 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4388 */
4389 static void
4390 iris_update_surface_base_address(struct iris_batch *batch,
4391 struct iris_binder *binder)
4392 {
4393 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4394 return;
4395
4396 flush_for_state_base_change(batch);
4397
4398 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4399 sba.SurfaceStateMOCS = MOCS_WB;
4400 sba.SurfaceStateBaseAddressModifyEnable = true;
4401 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4402 }
4403
4404 batch->last_surface_base_address = binder->bo->gtt_offset;
4405 }
4406
4407 static void
4408 iris_upload_dirty_render_state(struct iris_context *ice,
4409 struct iris_batch *batch,
4410 const struct pipe_draw_info *draw)
4411 {
4412 const uint64_t dirty = ice->state.dirty;
4413
4414 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4415 return;
4416
4417 struct iris_genx_state *genx = ice->state.genx;
4418 struct iris_binder *binder = &ice->state.binder;
4419 struct brw_wm_prog_data *wm_prog_data = (void *)
4420 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4421
4422 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4423 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4424 uint32_t cc_vp_address;
4425
4426 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4427 uint32_t *cc_vp_map =
4428 stream_state(batch, ice->state.dynamic_uploader,
4429 &ice->state.last_res.cc_vp,
4430 4 * ice->state.num_viewports *
4431 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4432 for (int i = 0; i < ice->state.num_viewports; i++) {
4433 float zmin, zmax;
4434 util_viewport_zmin_zmax(&ice->state.viewports[i],
4435 cso_rast->clip_halfz, &zmin, &zmax);
4436 if (cso_rast->depth_clip_near)
4437 zmin = 0.0;
4438 if (cso_rast->depth_clip_far)
4439 zmax = 1.0;
4440
4441 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4442 ccv.MinimumDepth = zmin;
4443 ccv.MaximumDepth = zmax;
4444 }
4445
4446 cc_vp_map += GENX(CC_VIEWPORT_length);
4447 }
4448
4449 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4450 ptr.CCViewportPointer = cc_vp_address;
4451 }
4452 }
4453
4454 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4455 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4456 uint32_t sf_cl_vp_address;
4457 uint32_t *vp_map =
4458 stream_state(batch, ice->state.dynamic_uploader,
4459 &ice->state.last_res.sf_cl_vp,
4460 4 * ice->state.num_viewports *
4461 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4462
4463 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4464 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4465 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4466
4467 float vp_xmin = viewport_extent(state, 0, -1.0f);
4468 float vp_xmax = viewport_extent(state, 0, 1.0f);
4469 float vp_ymin = viewport_extent(state, 1, -1.0f);
4470 float vp_ymax = viewport_extent(state, 1, 1.0f);
4471
4472 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
4473 state->scale[0], state->scale[1],
4474 state->translate[0], state->translate[1],
4475 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4476
4477 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4478 vp.ViewportMatrixElementm00 = state->scale[0];
4479 vp.ViewportMatrixElementm11 = state->scale[1];
4480 vp.ViewportMatrixElementm22 = state->scale[2];
4481 vp.ViewportMatrixElementm30 = state->translate[0];
4482 vp.ViewportMatrixElementm31 = state->translate[1];
4483 vp.ViewportMatrixElementm32 = state->translate[2];
4484 vp.XMinClipGuardband = gb_xmin;
4485 vp.XMaxClipGuardband = gb_xmax;
4486 vp.YMinClipGuardband = gb_ymin;
4487 vp.YMaxClipGuardband = gb_ymax;
4488 vp.XMinViewPort = MAX2(vp_xmin, 0);
4489 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4490 vp.YMinViewPort = MAX2(vp_ymin, 0);
4491 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4492 }
4493
4494 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4495 }
4496
4497 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4498 ptr.SFClipViewportPointer = sf_cl_vp_address;
4499 }
4500 }
4501
4502 if (dirty & IRIS_DIRTY_URB) {
4503 unsigned size[4];
4504
4505 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4506 if (!ice->shaders.prog[i]) {
4507 size[i] = 1;
4508 } else {
4509 struct brw_vue_prog_data *vue_prog_data =
4510 (void *) ice->shaders.prog[i]->prog_data;
4511 size[i] = vue_prog_data->urb_entry_size;
4512 }
4513 assert(size[i] != 0);
4514 }
4515
4516 genX(emit_urb_setup)(ice, batch, size,
4517 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4518 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4519 }
4520
4521 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4522 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4523 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4524 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4525 const int header_dwords = GENX(BLEND_STATE_length);
4526
4527 /* Always write at least one BLEND_STATE - the final RT message will
4528 * reference BLEND_STATE[0] even if there aren't color writes. There
4529 * may still be alpha testing, computed depth, and so on.
4530 */
4531 const int rt_dwords =
4532 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4533
4534 uint32_t blend_offset;
4535 uint32_t *blend_map =
4536 stream_state(batch, ice->state.dynamic_uploader,
4537 &ice->state.last_res.blend,
4538 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4539
4540 uint32_t blend_state_header;
4541 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4542 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4543 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4544 }
4545
4546 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4547 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4548
4549 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4550 ptr.BlendStatePointer = blend_offset;
4551 ptr.BlendStatePointerValid = true;
4552 }
4553 }
4554
4555 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4556 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4557 #if GEN_GEN == 8
4558 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4559 #endif
4560 uint32_t cc_offset;
4561 void *cc_map =
4562 stream_state(batch, ice->state.dynamic_uploader,
4563 &ice->state.last_res.color_calc,
4564 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4565 64, &cc_offset);
4566 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4567 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4568 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4569 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4570 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4571 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4572 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4573 #if GEN_GEN == 8
4574 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4575 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4576 #endif
4577 }
4578 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4579 ptr.ColorCalcStatePointer = cc_offset;
4580 ptr.ColorCalcStatePointerValid = true;
4581 }
4582 }
4583
4584 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4585 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4586 continue;
4587
4588 struct iris_shader_state *shs = &ice->state.shaders[stage];
4589 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4590
4591 if (!shader)
4592 continue;
4593
4594 if (shs->sysvals_need_upload)
4595 upload_sysvals(ice, stage);
4596
4597 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4598
4599 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4600 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4601 if (prog_data) {
4602 /* The Skylake PRM contains the following restriction:
4603 *
4604 * "The driver must ensure The following case does not occur
4605 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4606 * buffer 3 read length equal to zero committed followed by a
4607 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4608 * zero committed."
4609 *
4610 * To avoid this, we program the buffers in the highest slots.
4611 * This way, slot 0 is only used if slot 3 is also used.
4612 */
4613 int n = 3;
4614
4615 for (int i = 3; i >= 0; i--) {
4616 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4617
4618 if (range->length == 0)
4619 continue;
4620
4621 /* Range block is a binding table index, map back to UBO index. */
4622 unsigned block_index = iris_bti_to_group_index(
4623 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4624 assert(block_index != IRIS_SURFACE_NOT_USED);
4625
4626 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4627 struct iris_resource *res = (void *) cbuf->buffer;
4628
4629 assert(cbuf->buffer_offset % 32 == 0);
4630
4631 pkt.ConstantBody.ReadLength[n] = range->length;
4632 pkt.ConstantBody.Buffer[n] =
4633 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4634 : ro_bo(batch->screen->workaround_bo, 0);
4635 n--;
4636 }
4637 }
4638 }
4639 }
4640
4641 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4642 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4643 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4644 ptr._3DCommandSubOpcode = 38 + stage;
4645 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4646 }
4647 }
4648 }
4649
4650 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4651 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4652 iris_populate_binding_table(ice, batch, stage, false);
4653 }
4654 }
4655
4656 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4657 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4658 !ice->shaders.prog[stage])
4659 continue;
4660
4661 iris_upload_sampler_states(ice, stage);
4662
4663 struct iris_shader_state *shs = &ice->state.shaders[stage];
4664 struct pipe_resource *res = shs->sampler_table.res;
4665 if (res)
4666 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4667
4668 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4669 ptr._3DCommandSubOpcode = 43 + stage;
4670 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4671 }
4672 }
4673
4674 if (ice->state.need_border_colors)
4675 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4676
4677 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4678 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4679 ms.PixelLocation =
4680 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4681 if (ice->state.framebuffer.samples > 0)
4682 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4683 }
4684 }
4685
4686 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4687 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4688 ms.SampleMask = ice->state.sample_mask;
4689 }
4690 }
4691
4692 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4693 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4694 continue;
4695
4696 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4697
4698 if (shader) {
4699 struct brw_stage_prog_data *prog_data = shader->prog_data;
4700 struct iris_resource *cache = (void *) shader->assembly.res;
4701 iris_use_pinned_bo(batch, cache->bo, false);
4702
4703 if (prog_data->total_scratch > 0) {
4704 struct iris_bo *bo =
4705 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4706 iris_use_pinned_bo(batch, bo, true);
4707 }
4708 #if GEN_GEN >= 9
4709 if (stage == MESA_SHADER_FRAGMENT && wm_prog_data->uses_sample_mask) {
4710 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
4711 uint32_t *shader_psx = ((uint32_t*)shader->derived_data) +
4712 GENX(3DSTATE_PS_length);
4713 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4714
4715 iris_pack_command(GENX(3DSTATE_PS_EXTRA), &psx_state, psx) {
4716 if (wm_prog_data->post_depth_coverage)
4717 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4718 else if (wm_prog_data->inner_coverage && cso->conservative_rasterization)
4719 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4720 else
4721 psx.InputCoverageMaskState = ICMS_NORMAL;
4722 }
4723
4724 iris_batch_emit(batch, shader->derived_data,
4725 sizeof(uint32_t) * GENX(3DSTATE_PS_length));
4726 iris_emit_merge(batch,
4727 shader_psx,
4728 psx_state,
4729 GENX(3DSTATE_PS_EXTRA_length));
4730 } else
4731 #endif
4732 iris_batch_emit(batch, shader->derived_data,
4733 iris_derived_program_state_size(stage));
4734 } else {
4735 if (stage == MESA_SHADER_TESS_EVAL) {
4736 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4737 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4738 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4739 } else if (stage == MESA_SHADER_GEOMETRY) {
4740 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4741 }
4742 }
4743 }
4744
4745 if (ice->state.streamout_active) {
4746 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4747 iris_batch_emit(batch, genx->so_buffers,
4748 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4749 for (int i = 0; i < 4; i++) {
4750 struct iris_stream_output_target *tgt =
4751 (void *) ice->state.so_target[i];
4752 if (tgt) {
4753 tgt->zeroed = true;
4754 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4755 true);
4756 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4757 true);
4758 }
4759 }
4760 }
4761
4762 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4763 uint32_t *decl_list =
4764 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4765 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4766 }
4767
4768 if (dirty & IRIS_DIRTY_STREAMOUT) {
4769 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4770
4771 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4772 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4773 sol.SOFunctionEnable = true;
4774 sol.SOStatisticsEnable = true;
4775
4776 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4777 !ice->state.prims_generated_query_active;
4778 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4779 }
4780
4781 assert(ice->state.streamout);
4782
4783 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4784 GENX(3DSTATE_STREAMOUT_length));
4785 }
4786 } else {
4787 if (dirty & IRIS_DIRTY_STREAMOUT) {
4788 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4789 }
4790 }
4791
4792 if (dirty & IRIS_DIRTY_CLIP) {
4793 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4794 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4795
4796 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
4797 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4798 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
4799 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
4800 : ice->state.prim_is_points_or_lines);
4801
4802 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4803 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4804 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4805 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4806 : CLIPMODE_NORMAL;
4807 cl.ViewportXYClipTestEnable = !points_or_lines;
4808
4809 if (wm_prog_data->barycentric_interp_modes &
4810 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4811 cl.NonPerspectiveBarycentricEnable = true;
4812
4813 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4814 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4815 }
4816 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4817 ARRAY_SIZE(cso_rast->clip));
4818 }
4819
4820 if (dirty & IRIS_DIRTY_RASTER) {
4821 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4822 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4823 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4824
4825 }
4826
4827 if (dirty & IRIS_DIRTY_WM) {
4828 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4829 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4830
4831 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4832 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4833
4834 wm.BarycentricInterpolationMode =
4835 wm_prog_data->barycentric_interp_modes;
4836
4837 if (wm_prog_data->early_fragment_tests)
4838 wm.EarlyDepthStencilControl = EDSC_PREPS;
4839 else if (wm_prog_data->has_side_effects)
4840 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4841
4842 /* We could skip this bit if color writes are enabled. */
4843 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4844 wm.ForceThreadDispatchEnable = ForceON;
4845 }
4846 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4847 }
4848
4849 if (dirty & IRIS_DIRTY_SBE) {
4850 iris_emit_sbe(batch, ice);
4851 }
4852
4853 if (dirty & IRIS_DIRTY_PS_BLEND) {
4854 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4855 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4856 const struct shader_info *fs_info =
4857 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4858
4859 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4860 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4861 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4862 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4863
4864 /* The dual source blending docs caution against using SRC1 factors
4865 * when the shader doesn't use a dual source render target write.
4866 * Empirically, this can lead to GPU hangs, and the results are
4867 * undefined anyway, so simply disable blending to avoid the hang.
4868 */
4869 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
4870 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
4871 }
4872
4873 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4874 ARRAY_SIZE(cso_blend->ps_blend));
4875 }
4876
4877 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4878 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4879 #if GEN_GEN >= 9
4880 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4881 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4882 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4883 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4884 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4885 }
4886 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4887 #else
4888 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4889 #endif
4890 }
4891
4892 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4893 uint32_t scissor_offset =
4894 emit_state(batch, ice->state.dynamic_uploader,
4895 &ice->state.last_res.scissor,
4896 ice->state.scissors,
4897 sizeof(struct pipe_scissor_state) *
4898 ice->state.num_viewports, 32);
4899
4900 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4901 ptr.ScissorRectPointer = scissor_offset;
4902 }
4903 }
4904
4905 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4906 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4907
4908 /* Do not emit the clear params yets. We need to update the clear value
4909 * first.
4910 */
4911 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
4912 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
4913 iris_batch_emit(batch, cso_z->packets, cso_z_size);
4914
4915 union isl_color_value clear_value = { .f32 = { 0, } };
4916
4917 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4918 if (cso_fb->zsbuf) {
4919 struct iris_resource *zres, *sres;
4920 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4921 &zres, &sres);
4922 if (zres && zres->aux.bo)
4923 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
4924 }
4925
4926 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
4927 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
4928 clear.DepthClearValueValid = true;
4929 clear.DepthClearValue = clear_value.f32[0];
4930 }
4931 iris_batch_emit(batch, clear_params, clear_length);
4932 }
4933
4934 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4935 /* Listen for buffer changes, and also write enable changes. */
4936 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4937 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4938 }
4939
4940 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4941 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4942 for (int i = 0; i < 32; i++) {
4943 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4944 }
4945 }
4946 }
4947
4948 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4949 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4950 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4951 }
4952
4953 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4954 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4955 topo.PrimitiveTopologyType =
4956 translate_prim_type(draw->mode, draw->vertices_per_patch);
4957 }
4958 }
4959
4960 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4961 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4962 int dynamic_bound = ice->state.bound_vertex_buffers;
4963
4964 if (ice->state.vs_uses_draw_params) {
4965 if (ice->draw.draw_params_offset == 0) {
4966 u_upload_data(ice->ctx.stream_uploader, 0, sizeof(ice->draw.params),
4967 4, &ice->draw.params, &ice->draw.draw_params_offset,
4968 &ice->draw.draw_params_res);
4969 }
4970 assert(ice->draw.draw_params_res);
4971
4972 struct iris_vertex_buffer_state *state =
4973 &(ice->state.genx->vertex_buffers[count]);
4974 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4975 struct iris_resource *res = (void *) state->resource;
4976
4977 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4978 vb.VertexBufferIndex = count;
4979 vb.AddressModifyEnable = true;
4980 vb.BufferPitch = 0;
4981 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4982 vb.BufferStartingAddress =
4983 ro_bo(NULL, res->bo->gtt_offset +
4984 (int) ice->draw.draw_params_offset);
4985 vb.MOCS = mocs(res->bo);
4986 }
4987 dynamic_bound |= 1ull << count;
4988 count++;
4989 }
4990
4991 if (ice->state.vs_uses_derived_draw_params) {
4992 u_upload_data(ice->ctx.stream_uploader, 0,
4993 sizeof(ice->draw.derived_params), 4,
4994 &ice->draw.derived_params,
4995 &ice->draw.derived_draw_params_offset,
4996 &ice->draw.derived_draw_params_res);
4997
4998 struct iris_vertex_buffer_state *state =
4999 &(ice->state.genx->vertex_buffers[count]);
5000 pipe_resource_reference(&state->resource,
5001 ice->draw.derived_draw_params_res);
5002 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
5003
5004 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5005 vb.VertexBufferIndex = count;
5006 vb.AddressModifyEnable = true;
5007 vb.BufferPitch = 0;
5008 vb.BufferSize =
5009 res->bo->size - ice->draw.derived_draw_params_offset;
5010 vb.BufferStartingAddress =
5011 ro_bo(NULL, res->bo->gtt_offset +
5012 (int) ice->draw.derived_draw_params_offset);
5013 vb.MOCS = mocs(res->bo);
5014 }
5015 dynamic_bound |= 1ull << count;
5016 count++;
5017 }
5018
5019 if (count) {
5020 /* The VF cache designers cut corners, and made the cache key's
5021 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5022 * 32 bits of the address. If you have two vertex buffers which get
5023 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5024 * you can get collisions (even within a single batch).
5025 *
5026 * So, we need to do a VF cache invalidate if the buffer for a VB
5027 * slot slot changes [48:32] address bits from the previous time.
5028 */
5029 unsigned flush_flags = 0;
5030
5031 uint64_t bound = dynamic_bound;
5032 while (bound) {
5033 const int i = u_bit_scan64(&bound);
5034 uint16_t high_bits = 0;
5035
5036 struct iris_resource *res =
5037 (void *) genx->vertex_buffers[i].resource;
5038 if (res) {
5039 iris_use_pinned_bo(batch, res->bo, false);
5040
5041 high_bits = res->bo->gtt_offset >> 32ull;
5042 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5043 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5044 PIPE_CONTROL_CS_STALL;
5045 ice->state.last_vbo_high_bits[i] = high_bits;
5046 }
5047 }
5048 }
5049
5050 if (flush_flags) {
5051 iris_emit_pipe_control_flush(batch,
5052 "workaround: VF cache 32-bit key [VB]",
5053 flush_flags);
5054 }
5055
5056 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5057
5058 uint32_t *map =
5059 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5060 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5061 vb.DWordLength = (vb_dwords * count + 1) - 2;
5062 }
5063 map += 1;
5064
5065 bound = dynamic_bound;
5066 while (bound) {
5067 const int i = u_bit_scan64(&bound);
5068 memcpy(map, genx->vertex_buffers[i].state,
5069 sizeof(uint32_t) * vb_dwords);
5070 map += vb_dwords;
5071 }
5072 }
5073 }
5074
5075 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5076 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5077 const unsigned entries = MAX2(cso->count, 1);
5078 if (!(ice->state.vs_needs_sgvs_element ||
5079 ice->state.vs_uses_derived_draw_params ||
5080 ice->state.vs_needs_edge_flag)) {
5081 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5082 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5083 } else {
5084 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5085 const unsigned dyn_count = cso->count +
5086 ice->state.vs_needs_sgvs_element +
5087 ice->state.vs_uses_derived_draw_params;
5088
5089 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5090 &dynamic_ves, ve) {
5091 ve.DWordLength =
5092 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5093 }
5094 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5095 (cso->count - ice->state.vs_needs_edge_flag) *
5096 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5097 uint32_t *ve_pack_dest =
5098 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5099 GENX(VERTEX_ELEMENT_STATE_length)];
5100
5101 if (ice->state.vs_needs_sgvs_element) {
5102 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5103 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5104 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5105 ve.Valid = true;
5106 ve.VertexBufferIndex =
5107 util_bitcount64(ice->state.bound_vertex_buffers);
5108 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5109 ve.Component0Control = base_ctrl;
5110 ve.Component1Control = base_ctrl;
5111 ve.Component2Control = VFCOMP_STORE_0;
5112 ve.Component3Control = VFCOMP_STORE_0;
5113 }
5114 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5115 }
5116 if (ice->state.vs_uses_derived_draw_params) {
5117 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5118 ve.Valid = true;
5119 ve.VertexBufferIndex =
5120 util_bitcount64(ice->state.bound_vertex_buffers) +
5121 ice->state.vs_uses_draw_params;
5122 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5123 ve.Component0Control = VFCOMP_STORE_SRC;
5124 ve.Component1Control = VFCOMP_STORE_SRC;
5125 ve.Component2Control = VFCOMP_STORE_0;
5126 ve.Component3Control = VFCOMP_STORE_0;
5127 }
5128 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5129 }
5130 if (ice->state.vs_needs_edge_flag) {
5131 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5132 ve_pack_dest[i] = cso->edgeflag_ve[i];
5133 }
5134
5135 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5136 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5137 }
5138
5139 if (!ice->state.vs_needs_edge_flag) {
5140 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5141 entries * GENX(3DSTATE_VF_INSTANCING_length));
5142 } else {
5143 assert(cso->count > 0);
5144 const unsigned edgeflag_index = cso->count - 1;
5145 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5146 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5147 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5148
5149 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5150 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5151 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5152 vi.VertexElementIndex = edgeflag_index +
5153 ice->state.vs_needs_sgvs_element +
5154 ice->state.vs_uses_derived_draw_params;
5155 }
5156 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5157 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5158
5159 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5160 entries * GENX(3DSTATE_VF_INSTANCING_length));
5161 }
5162 }
5163
5164 if (dirty & IRIS_DIRTY_VF_SGVS) {
5165 const struct brw_vs_prog_data *vs_prog_data = (void *)
5166 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5167 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5168
5169 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5170 if (vs_prog_data->uses_vertexid) {
5171 sgv.VertexIDEnable = true;
5172 sgv.VertexIDComponentNumber = 2;
5173 sgv.VertexIDElementOffset =
5174 cso->count - ice->state.vs_needs_edge_flag;
5175 }
5176
5177 if (vs_prog_data->uses_instanceid) {
5178 sgv.InstanceIDEnable = true;
5179 sgv.InstanceIDComponentNumber = 3;
5180 sgv.InstanceIDElementOffset =
5181 cso->count - ice->state.vs_needs_edge_flag;
5182 }
5183 }
5184 }
5185
5186 if (dirty & IRIS_DIRTY_VF) {
5187 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5188 if (draw->primitive_restart) {
5189 vf.IndexedDrawCutIndexEnable = true;
5190 vf.CutIndex = draw->restart_index;
5191 }
5192 }
5193 }
5194
5195 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5196 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5197 vf.StatisticsEnable = true;
5198 }
5199 }
5200
5201 /* TODO: Gen8 PMA fix */
5202 }
5203
5204 static void
5205 iris_upload_render_state(struct iris_context *ice,
5206 struct iris_batch *batch,
5207 const struct pipe_draw_info *draw)
5208 {
5209 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5210
5211 /* Always pin the binder. If we're emitting new binding table pointers,
5212 * we need it. If not, we're probably inheriting old tables via the
5213 * context, and need it anyway. Since true zero-bindings cases are
5214 * practically non-existent, just pin it and avoid last_res tracking.
5215 */
5216 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5217
5218 if (!batch->contains_draw) {
5219 iris_restore_render_saved_bos(ice, batch, draw);
5220 batch->contains_draw = true;
5221 }
5222
5223 iris_upload_dirty_render_state(ice, batch, draw);
5224
5225 if (draw->index_size > 0) {
5226 unsigned offset;
5227
5228 if (draw->has_user_indices) {
5229 u_upload_data(ice->ctx.stream_uploader, 0,
5230 draw->count * draw->index_size, 4, draw->index.user,
5231 &offset, &ice->state.last_res.index_buffer);
5232 } else {
5233 struct iris_resource *res = (void *) draw->index.resource;
5234 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5235
5236 pipe_resource_reference(&ice->state.last_res.index_buffer,
5237 draw->index.resource);
5238 offset = 0;
5239 }
5240
5241 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5242
5243 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
5244 ib.IndexFormat = draw->index_size >> 1;
5245 ib.MOCS = mocs(bo);
5246 ib.BufferSize = bo->size - offset;
5247 ib.BufferStartingAddress = ro_bo(bo, offset);
5248 }
5249
5250 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5251 uint16_t high_bits = bo->gtt_offset >> 32ull;
5252 if (high_bits != ice->state.last_index_bo_high_bits) {
5253 iris_emit_pipe_control_flush(batch,
5254 "workaround: VF cache 32-bit key [IB]",
5255 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5256 PIPE_CONTROL_CS_STALL);
5257 ice->state.last_index_bo_high_bits = high_bits;
5258 }
5259 }
5260
5261 #define _3DPRIM_END_OFFSET 0x2420
5262 #define _3DPRIM_START_VERTEX 0x2430
5263 #define _3DPRIM_VERTEX_COUNT 0x2434
5264 #define _3DPRIM_INSTANCE_COUNT 0x2438
5265 #define _3DPRIM_START_INSTANCE 0x243C
5266 #define _3DPRIM_BASE_VERTEX 0x2440
5267
5268 if (draw->indirect) {
5269 if (draw->indirect->indirect_draw_count) {
5270 use_predicate = true;
5271
5272 struct iris_bo *draw_count_bo =
5273 iris_resource_bo(draw->indirect->indirect_draw_count);
5274 unsigned draw_count_offset =
5275 draw->indirect->indirect_draw_count_offset;
5276
5277 iris_emit_pipe_control_flush(batch,
5278 "ensure indirect draw buffer is flushed",
5279 PIPE_CONTROL_FLUSH_ENABLE);
5280
5281 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5282 static const uint32_t math[] = {
5283 MI_MATH | (9 - 2),
5284 /* Compute (draw index < draw count).
5285 * We do this by subtracting and storing the carry bit.
5286 */
5287 MI_ALU2(LOAD, SRCA, R0),
5288 MI_ALU2(LOAD, SRCB, R1),
5289 MI_ALU0(SUB),
5290 MI_ALU2(STORE, R3, CF),
5291 /* Compute (subtracting result & MI_PREDICATE). */
5292 MI_ALU2(LOAD, SRCA, R3),
5293 MI_ALU2(LOAD, SRCB, R2),
5294 MI_ALU0(AND),
5295 MI_ALU2(STORE, R3, ACCU),
5296 };
5297
5298 /* Upload the current draw count from the draw parameters
5299 * buffer to GPR1.
5300 */
5301 ice->vtbl.load_register_mem32(batch, CS_GPR(1), draw_count_bo,
5302 draw_count_offset);
5303 /* Zero the top 32-bits of GPR1. */
5304 ice->vtbl.load_register_imm32(batch, CS_GPR(1) + 4, 0);
5305 /* Upload the id of the current primitive to GPR0. */
5306 ice->vtbl.load_register_imm64(batch, CS_GPR(0), draw->drawid);
5307
5308 iris_batch_emit(batch, math, sizeof(math));
5309
5310 /* Store result of MI_MATH computations to MI_PREDICATE_RESULT. */
5311 ice->vtbl.load_register_reg64(batch,
5312 MI_PREDICATE_RESULT, CS_GPR(3));
5313 } else {
5314 uint32_t mi_predicate;
5315
5316 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5317 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5318 draw->drawid);
5319 /* Upload the current draw count from the draw parameters buffer
5320 * to MI_PREDICATE_SRC0.
5321 */
5322 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5323 draw_count_bo, draw_count_offset);
5324 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5325 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5326
5327 if (draw->drawid == 0) {
5328 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5329 MI_PREDICATE_COMBINEOP_SET |
5330 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5331 } else {
5332 /* While draw_index < draw_count the predicate's result will be
5333 * (draw_index == draw_count) ^ TRUE = TRUE
5334 * When draw_index == draw_count the result is
5335 * (TRUE) ^ TRUE = FALSE
5336 * After this all results will be:
5337 * (FALSE) ^ FALSE = FALSE
5338 */
5339 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5340 MI_PREDICATE_COMBINEOP_XOR |
5341 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5342 }
5343 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5344 }
5345 }
5346 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5347 assert(bo);
5348
5349 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5350 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5351 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5352 }
5353 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5354 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5355 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5356 }
5357 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5358 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5359 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5360 }
5361 if (draw->index_size) {
5362 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5363 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5364 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5365 }
5366 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5367 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5368 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5369 }
5370 } else {
5371 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5372 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5373 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5374 }
5375 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5376 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5377 lri.DataDWord = 0;
5378 }
5379 }
5380 } else if (draw->count_from_stream_output) {
5381 struct iris_stream_output_target *so =
5382 (void *) draw->count_from_stream_output;
5383
5384 /* XXX: Replace with actual cache tracking */
5385 iris_emit_pipe_control_flush(batch,
5386 "draw count from stream output stall",
5387 PIPE_CONTROL_CS_STALL);
5388
5389 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5390 lrm.RegisterAddress = CS_GPR(0);
5391 lrm.MemoryAddress =
5392 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5393 }
5394 if (so->base.buffer_offset)
5395 iris_math_add32_gpr0(ice, batch, -so->base.buffer_offset);
5396 iris_math_div32_gpr0(ice, batch, so->stride);
5397 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5398
5399 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5400 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5401 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5402 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5403 }
5404
5405 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5406 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5407 prim.PredicateEnable = use_predicate;
5408
5409 if (draw->indirect || draw->count_from_stream_output) {
5410 prim.IndirectParameterEnable = true;
5411 } else {
5412 prim.StartInstanceLocation = draw->start_instance;
5413 prim.InstanceCount = draw->instance_count;
5414 prim.VertexCountPerInstance = draw->count;
5415
5416 prim.StartVertexLocation = draw->start;
5417
5418 if (draw->index_size) {
5419 prim.BaseVertexLocation += draw->index_bias;
5420 } else {
5421 prim.StartVertexLocation += draw->index_bias;
5422 }
5423 }
5424 }
5425 }
5426
5427 static void
5428 iris_upload_compute_state(struct iris_context *ice,
5429 struct iris_batch *batch,
5430 const struct pipe_grid_info *grid)
5431 {
5432 const uint64_t dirty = ice->state.dirty;
5433 struct iris_screen *screen = batch->screen;
5434 const struct gen_device_info *devinfo = &screen->devinfo;
5435 struct iris_binder *binder = &ice->state.binder;
5436 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5437 struct iris_compiled_shader *shader =
5438 ice->shaders.prog[MESA_SHADER_COMPUTE];
5439 struct brw_stage_prog_data *prog_data = shader->prog_data;
5440 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5441
5442 /* Always pin the binder. If we're emitting new binding table pointers,
5443 * we need it. If not, we're probably inheriting old tables via the
5444 * context, and need it anyway. Since true zero-bindings cases are
5445 * practically non-existent, just pin it and avoid last_res tracking.
5446 */
5447 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5448
5449 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
5450 upload_sysvals(ice, MESA_SHADER_COMPUTE);
5451
5452 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5453 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5454
5455 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5456 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5457
5458 iris_use_optional_res(batch, shs->sampler_table.res, false);
5459 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5460
5461 if (ice->state.need_border_colors)
5462 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5463
5464 if (dirty & IRIS_DIRTY_CS) {
5465 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5466 *
5467 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5468 * the only bits that are changed are scoreboard related: Scoreboard
5469 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5470 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5471 * sufficient."
5472 */
5473 iris_emit_pipe_control_flush(batch,
5474 "workaround: stall before MEDIA_VFE_STATE",
5475 PIPE_CONTROL_CS_STALL);
5476
5477 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5478 if (prog_data->total_scratch) {
5479 struct iris_bo *bo =
5480 iris_get_scratch_space(ice, prog_data->total_scratch,
5481 MESA_SHADER_COMPUTE);
5482 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5483 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5484 }
5485
5486 vfe.MaximumNumberofThreads =
5487 devinfo->max_cs_threads * screen->subslice_total - 1;
5488 #if GEN_GEN < 11
5489 vfe.ResetGatewayTimer =
5490 Resettingrelativetimerandlatchingtheglobaltimestamp;
5491 #endif
5492 #if GEN_GEN == 8
5493 vfe.BypassGatewayControl = true;
5494 #endif
5495 vfe.NumberofURBEntries = 2;
5496 vfe.URBEntryAllocationSize = 2;
5497
5498 vfe.CURBEAllocationSize =
5499 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5500 cs_prog_data->push.cross_thread.regs, 2);
5501 }
5502 }
5503
5504 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5505 if (dirty & IRIS_DIRTY_CS) {
5506 uint32_t curbe_data_offset = 0;
5507 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5508 cs_prog_data->push.per_thread.dwords == 1 &&
5509 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5510 uint32_t *curbe_data_map =
5511 stream_state(batch, ice->state.dynamic_uploader,
5512 &ice->state.last_res.cs_thread_ids,
5513 ALIGN(cs_prog_data->push.total.size, 64), 64,
5514 &curbe_data_offset);
5515 assert(curbe_data_map);
5516 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5517 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5518
5519 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5520 curbe.CURBETotalDataLength =
5521 ALIGN(cs_prog_data->push.total.size, 64);
5522 curbe.CURBEDataStartAddress = curbe_data_offset;
5523 }
5524 }
5525
5526 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5527 IRIS_DIRTY_BINDINGS_CS |
5528 IRIS_DIRTY_CONSTANTS_CS |
5529 IRIS_DIRTY_CS)) {
5530 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5531
5532 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5533 idd.SamplerStatePointer = shs->sampler_table.offset;
5534 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5535 }
5536
5537 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5538 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5539
5540 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5541 load.InterfaceDescriptorTotalLength =
5542 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5543 load.InterfaceDescriptorDataStartAddress =
5544 emit_state(batch, ice->state.dynamic_uploader,
5545 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
5546 }
5547 }
5548
5549 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5550 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5551 uint32_t right_mask;
5552
5553 if (remainder > 0)
5554 right_mask = ~0u >> (32 - remainder);
5555 else
5556 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5557
5558 #define GPGPU_DISPATCHDIMX 0x2500
5559 #define GPGPU_DISPATCHDIMY 0x2504
5560 #define GPGPU_DISPATCHDIMZ 0x2508
5561
5562 if (grid->indirect) {
5563 struct iris_state_ref *grid_size = &ice->state.grid_size;
5564 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5565 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5566 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5567 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5568 }
5569 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5570 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5571 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5572 }
5573 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5574 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5575 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5576 }
5577 }
5578
5579 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5580 ggw.IndirectParameterEnable = grid->indirect != NULL;
5581 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5582 ggw.ThreadDepthCounterMaximum = 0;
5583 ggw.ThreadHeightCounterMaximum = 0;
5584 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5585 ggw.ThreadGroupIDXDimension = grid->grid[0];
5586 ggw.ThreadGroupIDYDimension = grid->grid[1];
5587 ggw.ThreadGroupIDZDimension = grid->grid[2];
5588 ggw.RightExecutionMask = right_mask;
5589 ggw.BottomExecutionMask = 0xffffffff;
5590 }
5591
5592 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5593
5594 if (!batch->contains_draw) {
5595 iris_restore_compute_saved_bos(ice, batch, grid);
5596 batch->contains_draw = true;
5597 }
5598 }
5599
5600 /**
5601 * State module teardown.
5602 */
5603 static void
5604 iris_destroy_state(struct iris_context *ice)
5605 {
5606 struct iris_genx_state *genx = ice->state.genx;
5607
5608 pipe_resource_reference(&ice->draw.draw_params_res, NULL);
5609 pipe_resource_reference(&ice->draw.derived_draw_params_res, NULL);
5610
5611 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5612 while (bound_vbs) {
5613 const int i = u_bit_scan64(&bound_vbs);
5614 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5615 }
5616 free(ice->state.genx);
5617
5618 for (int i = 0; i < 4; i++) {
5619 pipe_so_target_reference(&ice->state.so_target[i], NULL);
5620 }
5621
5622 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5623 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5624 }
5625 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5626
5627 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5628 struct iris_shader_state *shs = &ice->state.shaders[stage];
5629 pipe_resource_reference(&shs->sampler_table.res, NULL);
5630 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5631 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5632 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5633 }
5634 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5635 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5636 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5637 }
5638 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5639 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5640 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5641 }
5642 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5643 pipe_sampler_view_reference((struct pipe_sampler_view **)
5644 &shs->textures[i], NULL);
5645 }
5646 }
5647
5648 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5649 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5650
5651 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5652 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5653
5654 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5655 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5656 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5657 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5658 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5659 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5660 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
5661 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
5662 }
5663
5664 /* ------------------------------------------------------------------- */
5665
5666 static void
5667 iris_rebind_buffer(struct iris_context *ice,
5668 struct iris_resource *res,
5669 uint64_t old_address)
5670 {
5671 struct pipe_context *ctx = &ice->ctx;
5672 struct iris_screen *screen = (void *) ctx->screen;
5673 struct iris_genx_state *genx = ice->state.genx;
5674
5675 assert(res->base.target == PIPE_BUFFER);
5676
5677 /* Buffers can't be framebuffer attachments, nor display related,
5678 * and we don't have upstream Clover support.
5679 */
5680 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5681 PIPE_BIND_RENDER_TARGET |
5682 PIPE_BIND_BLENDABLE |
5683 PIPE_BIND_DISPLAY_TARGET |
5684 PIPE_BIND_CURSOR |
5685 PIPE_BIND_COMPUTE_RESOURCE |
5686 PIPE_BIND_GLOBAL)));
5687
5688 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
5689 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5690 while (bound_vbs) {
5691 const int i = u_bit_scan64(&bound_vbs);
5692 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
5693
5694 /* Update the CPU struct */
5695 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
5696 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
5697 uint64_t *addr = (uint64_t *) &state->state[1];
5698
5699 if (*addr == old_address) {
5700 *addr = res->bo->gtt_offset;
5701 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
5702 }
5703 }
5704 }
5705
5706 /* No need to handle these:
5707 * - PIPE_BIND_INDEX_BUFFER (emitted for every indexed draw)
5708 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
5709 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
5710 */
5711
5712 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
5713 /* XXX: be careful about resetting vs appending... */
5714 assert(false);
5715 }
5716
5717 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
5718 struct iris_shader_state *shs = &ice->state.shaders[s];
5719 enum pipe_shader_type p_stage = stage_to_pipe(s);
5720
5721 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
5722 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
5723 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
5724 while (bound_cbufs) {
5725 const int i = u_bit_scan(&bound_cbufs);
5726 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
5727 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
5728
5729 if (res->bo == iris_resource_bo(cbuf->buffer)) {
5730 iris_upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
5731 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
5732 }
5733 }
5734 }
5735
5736 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
5737 uint32_t bound_ssbos = shs->bound_ssbos;
5738 while (bound_ssbos) {
5739 const int i = u_bit_scan(&bound_ssbos);
5740 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
5741
5742 if (res->bo == iris_resource_bo(ssbo->buffer)) {
5743 struct pipe_shader_buffer buf = {
5744 .buffer = &res->base,
5745 .buffer_offset = ssbo->buffer_offset,
5746 .buffer_size = ssbo->buffer_size,
5747 };
5748 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
5749 (shs->writable_ssbos >> i) & 1);
5750 }
5751 }
5752 }
5753
5754 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
5755 uint32_t bound_sampler_views = shs->bound_sampler_views;
5756 while (bound_sampler_views) {
5757 const int i = u_bit_scan(&bound_sampler_views);
5758 struct iris_sampler_view *isv = shs->textures[i];
5759
5760 if (res->bo == iris_resource_bo(isv->base.texture)) {
5761 void *map = alloc_surface_states(ice->state.surface_uploader,
5762 &isv->surface_state,
5763 isv->res->aux.sampler_usages);
5764 assert(map);
5765 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
5766 isv->view.format, isv->view.swizzle,
5767 isv->base.u.buf.offset,
5768 isv->base.u.buf.size);
5769 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
5770 }
5771 }
5772 }
5773
5774 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
5775 uint32_t bound_image_views = shs->bound_image_views;
5776 while (bound_image_views) {
5777 const int i = u_bit_scan(&bound_image_views);
5778 struct iris_image_view *iv = &shs->image[i];
5779
5780 if (res->bo == iris_resource_bo(iv->base.resource)) {
5781 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
5782 }
5783 }
5784 }
5785 }
5786 }
5787
5788 /* ------------------------------------------------------------------- */
5789
5790 static void
5791 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5792 uint32_t src)
5793 {
5794 _iris_emit_lrr(batch, dst, src);
5795 }
5796
5797 static void
5798 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5799 uint32_t src)
5800 {
5801 _iris_emit_lrr(batch, dst, src);
5802 _iris_emit_lrr(batch, dst + 4, src + 4);
5803 }
5804
5805 static void
5806 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5807 uint32_t val)
5808 {
5809 _iris_emit_lri(batch, reg, val);
5810 }
5811
5812 static void
5813 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5814 uint64_t val)
5815 {
5816 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5817 _iris_emit_lri(batch, reg + 4, val >> 32);
5818 }
5819
5820 /**
5821 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5822 */
5823 static void
5824 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5825 struct iris_bo *bo, uint32_t offset)
5826 {
5827 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5828 lrm.RegisterAddress = reg;
5829 lrm.MemoryAddress = ro_bo(bo, offset);
5830 }
5831 }
5832
5833 /**
5834 * Load a 64-bit value from a buffer into a MMIO register via
5835 * two MI_LOAD_REGISTER_MEM commands.
5836 */
5837 static void
5838 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5839 struct iris_bo *bo, uint32_t offset)
5840 {
5841 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5842 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5843 }
5844
5845 static void
5846 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5847 struct iris_bo *bo, uint32_t offset,
5848 bool predicated)
5849 {
5850 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5851 srm.RegisterAddress = reg;
5852 srm.MemoryAddress = rw_bo(bo, offset);
5853 srm.PredicateEnable = predicated;
5854 }
5855 }
5856
5857 static void
5858 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5859 struct iris_bo *bo, uint32_t offset,
5860 bool predicated)
5861 {
5862 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5863 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5864 }
5865
5866 static void
5867 iris_store_data_imm32(struct iris_batch *batch,
5868 struct iris_bo *bo, uint32_t offset,
5869 uint32_t imm)
5870 {
5871 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5872 sdi.Address = rw_bo(bo, offset);
5873 sdi.ImmediateData = imm;
5874 }
5875 }
5876
5877 static void
5878 iris_store_data_imm64(struct iris_batch *batch,
5879 struct iris_bo *bo, uint32_t offset,
5880 uint64_t imm)
5881 {
5882 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5883 * 2 in genxml but it's actually variable length and we need 5 DWords.
5884 */
5885 void *map = iris_get_command_space(batch, 4 * 5);
5886 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5887 sdi.DWordLength = 5 - 2;
5888 sdi.Address = rw_bo(bo, offset);
5889 sdi.ImmediateData = imm;
5890 }
5891 }
5892
5893 static void
5894 iris_copy_mem_mem(struct iris_batch *batch,
5895 struct iris_bo *dst_bo, uint32_t dst_offset,
5896 struct iris_bo *src_bo, uint32_t src_offset,
5897 unsigned bytes)
5898 {
5899 /* MI_COPY_MEM_MEM operates on DWords. */
5900 assert(bytes % 4 == 0);
5901 assert(dst_offset % 4 == 0);
5902 assert(src_offset % 4 == 0);
5903
5904 for (unsigned i = 0; i < bytes; i += 4) {
5905 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5906 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5907 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5908 }
5909 }
5910 }
5911
5912 /* ------------------------------------------------------------------- */
5913
5914 static unsigned
5915 flags_to_post_sync_op(uint32_t flags)
5916 {
5917 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5918 return WriteImmediateData;
5919
5920 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5921 return WritePSDepthCount;
5922
5923 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5924 return WriteTimestamp;
5925
5926 return 0;
5927 }
5928
5929 /**
5930 * Do the given flags have a Post Sync or LRI Post Sync operation?
5931 */
5932 static enum pipe_control_flags
5933 get_post_sync_flags(enum pipe_control_flags flags)
5934 {
5935 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5936 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5937 PIPE_CONTROL_WRITE_TIMESTAMP |
5938 PIPE_CONTROL_LRI_POST_SYNC_OP;
5939
5940 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5941 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5942 */
5943 assert(util_bitcount(flags) <= 1);
5944
5945 return flags;
5946 }
5947
5948 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5949
5950 /**
5951 * Emit a series of PIPE_CONTROL commands, taking into account any
5952 * workarounds necessary to actually accomplish the caller's request.
5953 *
5954 * Unless otherwise noted, spec quotations in this function come from:
5955 *
5956 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5957 * Restrictions for PIPE_CONTROL.
5958 *
5959 * You should not use this function directly. Use the helpers in
5960 * iris_pipe_control.c instead, which may split the pipe control further.
5961 */
5962 static void
5963 iris_emit_raw_pipe_control(struct iris_batch *batch,
5964 const char *reason,
5965 uint32_t flags,
5966 struct iris_bo *bo,
5967 uint32_t offset,
5968 uint64_t imm)
5969 {
5970 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5971 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5972 enum pipe_control_flags non_lri_post_sync_flags =
5973 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5974
5975 /* Recursive PIPE_CONTROL workarounds --------------------------------
5976 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5977 *
5978 * We do these first because we want to look at the original operation,
5979 * rather than any workarounds we set.
5980 */
5981 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5982 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5983 * lists several workarounds:
5984 *
5985 * "Project: SKL, KBL, BXT
5986 *
5987 * If the VF Cache Invalidation Enable is set to a 1 in a
5988 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5989 * sets to 0, with the VF Cache Invalidation Enable set to 0
5990 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5991 * Invalidation Enable set to a 1."
5992 */
5993 iris_emit_raw_pipe_control(batch,
5994 "workaround: recursive VF cache invalidate",
5995 0, NULL, 0, 0);
5996 }
5997
5998 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5999 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6000 *
6001 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6002 * programmed prior to programming a PIPECONTROL command with "LRI
6003 * Post Sync Operation" in GPGPU mode of operation (i.e when
6004 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6005 *
6006 * The same text exists a few rows below for Post Sync Op.
6007 */
6008 iris_emit_raw_pipe_control(batch,
6009 "workaround: CS stall before gpgpu post-sync",
6010 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6011 }
6012
6013 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6014 /* Cannonlake:
6015 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6016 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6017 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6018 */
6019 iris_emit_raw_pipe_control(batch,
6020 "workaround: PC flush before RT flush",
6021 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6022 }
6023
6024 /* "Flush Types" workarounds ---------------------------------------------
6025 * We do these now because they may add post-sync operations or CS stalls.
6026 */
6027
6028 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6029 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6030 *
6031 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6032 * 'Write PS Depth Count' or 'Write Timestamp'."
6033 */
6034 if (!bo) {
6035 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6036 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6037 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6038 bo = batch->screen->workaround_bo;
6039 }
6040 }
6041
6042 /* #1130 from Gen10 workarounds page:
6043 *
6044 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6045 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6046 * board stall if Render target cache flush is enabled."
6047 *
6048 * Applicable to CNL B0 and C0 steppings only.
6049 *
6050 * The wording here is unclear, and this workaround doesn't look anything
6051 * like the internal bug report recommendations, but leave it be for now...
6052 */
6053 if (GEN_GEN == 10) {
6054 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6055 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6056 } else if (flags & non_lri_post_sync_flags) {
6057 flags |= PIPE_CONTROL_DEPTH_STALL;
6058 }
6059 }
6060
6061 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6062 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6063 *
6064 * "This bit must be DISABLED for operations other than writing
6065 * PS_DEPTH_COUNT."
6066 *
6067 * This seems like nonsense. An Ivybridge workaround requires us to
6068 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6069 * operation. Gen8+ requires us to emit depth stalls and depth cache
6070 * flushes together. So, it's hard to imagine this means anything other
6071 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6072 *
6073 * We ignore the supposed restriction and do nothing.
6074 */
6075 }
6076
6077 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6078 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6079 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6080 *
6081 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6082 * PS_DEPTH_COUNT or TIMESTAMP queries."
6083 *
6084 * TODO: Implement end-of-pipe checking.
6085 */
6086 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6087 PIPE_CONTROL_WRITE_TIMESTAMP)));
6088 }
6089
6090 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6091 /* From the PIPE_CONTROL instruction table, bit 1:
6092 *
6093 * "This bit is ignored if Depth Stall Enable is set.
6094 * Further, the render cache is not flushed even if Write Cache
6095 * Flush Enable bit is set."
6096 *
6097 * We assert that the caller doesn't do this combination, to try and
6098 * prevent mistakes. It shouldn't hurt the GPU, though.
6099 *
6100 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6101 * and "Render Target Flush" combo is explicitly required for BTI
6102 * update workarounds.
6103 */
6104 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6105 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6106 }
6107
6108 /* PIPE_CONTROL page workarounds ------------------------------------- */
6109
6110 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6111 /* From the PIPE_CONTROL page itself:
6112 *
6113 * "IVB, HSW, BDW
6114 * Restriction: Pipe_control with CS-stall bit set must be issued
6115 * before a pipe-control command that has the State Cache
6116 * Invalidate bit set."
6117 */
6118 flags |= PIPE_CONTROL_CS_STALL;
6119 }
6120
6121 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6122 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6123 *
6124 * "Project: ALL
6125 * SW must always program Post-Sync Operation to "Write Immediate
6126 * Data" when Flush LLC is set."
6127 *
6128 * For now, we just require the caller to do it.
6129 */
6130 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6131 }
6132
6133 /* "Post-Sync Operation" workarounds -------------------------------- */
6134
6135 /* Project: All / Argument: Global Snapshot Count Reset [19]
6136 *
6137 * "This bit must not be exercised on any product.
6138 * Requires stall bit ([20] of DW1) set."
6139 *
6140 * We don't use this, so we just assert that it isn't used. The
6141 * PIPE_CONTROL instruction page indicates that they intended this
6142 * as a debug feature and don't think it is useful in production,
6143 * but it may actually be usable, should we ever want to.
6144 */
6145 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6146
6147 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6148 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6149 /* Project: All / Arguments:
6150 *
6151 * - Generic Media State Clear [16]
6152 * - Indirect State Pointers Disable [16]
6153 *
6154 * "Requires stall bit ([20] of DW1) set."
6155 *
6156 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6157 * State Clear) says:
6158 *
6159 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6160 * programmed prior to programming a PIPECONTROL command with "Media
6161 * State Clear" set in GPGPU mode of operation"
6162 *
6163 * This is a subset of the earlier rule, so there's nothing to do.
6164 */
6165 flags |= PIPE_CONTROL_CS_STALL;
6166 }
6167
6168 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6169 /* Project: All / Argument: Store Data Index
6170 *
6171 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6172 * than '0'."
6173 *
6174 * For now, we just assert that the caller does this. We might want to
6175 * automatically add a write to the workaround BO...
6176 */
6177 assert(non_lri_post_sync_flags != 0);
6178 }
6179
6180 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6181 /* Project: All / Argument: Sync GFDT
6182 *
6183 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6184 * than '0' or 0x2520[13] must be set."
6185 *
6186 * For now, we just assert that the caller does this.
6187 */
6188 assert(non_lri_post_sync_flags != 0);
6189 }
6190
6191 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6192 /* Project: IVB+ / Argument: TLB inv
6193 *
6194 * "Requires stall bit ([20] of DW1) set."
6195 *
6196 * Also, from the PIPE_CONTROL instruction table:
6197 *
6198 * "Project: SKL+
6199 * Post Sync Operation or CS stall must be set to ensure a TLB
6200 * invalidation occurs. Otherwise no cycle will occur to the TLB
6201 * cache to invalidate."
6202 *
6203 * This is not a subset of the earlier rule, so there's nothing to do.
6204 */
6205 flags |= PIPE_CONTROL_CS_STALL;
6206 }
6207
6208 if (GEN_GEN == 9 && devinfo->gt == 4) {
6209 /* TODO: The big Skylake GT4 post sync op workaround */
6210 }
6211
6212 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6213
6214 if (IS_COMPUTE_PIPELINE(batch)) {
6215 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6216 /* Project: SKL+ / Argument: Tex Invalidate
6217 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6218 */
6219 flags |= PIPE_CONTROL_CS_STALL;
6220 }
6221
6222 if (GEN_GEN == 8 && (post_sync_flags ||
6223 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6224 PIPE_CONTROL_DEPTH_STALL |
6225 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6226 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6227 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6228 /* Project: BDW / Arguments:
6229 *
6230 * - LRI Post Sync Operation [23]
6231 * - Post Sync Op [15:14]
6232 * - Notify En [8]
6233 * - Depth Stall [13]
6234 * - Render Target Cache Flush [12]
6235 * - Depth Cache Flush [0]
6236 * - DC Flush Enable [5]
6237 *
6238 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6239 * Workloads."
6240 */
6241 flags |= PIPE_CONTROL_CS_STALL;
6242
6243 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6244 *
6245 * "Project: BDW
6246 * This bit must be always set when PIPE_CONTROL command is
6247 * programmed by GPGPU and MEDIA workloads, except for the cases
6248 * when only Read Only Cache Invalidation bits are set (State
6249 * Cache Invalidation Enable, Instruction cache Invalidation
6250 * Enable, Texture Cache Invalidation Enable, Constant Cache
6251 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6252 * need not implemented when FF_DOP_CG is disable via "Fixed
6253 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6254 *
6255 * It sounds like we could avoid CS stalls in some cases, but we
6256 * don't currently bother. This list isn't exactly the list above,
6257 * either...
6258 */
6259 }
6260 }
6261
6262 /* "Stall" workarounds ----------------------------------------------
6263 * These have to come after the earlier ones because we may have added
6264 * some additional CS stalls above.
6265 */
6266
6267 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6268 /* Project: PRE-SKL, VLV, CHV
6269 *
6270 * "[All Stepping][All SKUs]:
6271 *
6272 * One of the following must also be set:
6273 *
6274 * - Render Target Cache Flush Enable ([12] of DW1)
6275 * - Depth Cache Flush Enable ([0] of DW1)
6276 * - Stall at Pixel Scoreboard ([1] of DW1)
6277 * - Depth Stall ([13] of DW1)
6278 * - Post-Sync Operation ([13] of DW1)
6279 * - DC Flush Enable ([5] of DW1)"
6280 *
6281 * If we don't already have one of those bits set, we choose to add
6282 * "Stall at Pixel Scoreboard". Some of the other bits require a
6283 * CS stall as a workaround (see above), which would send us into
6284 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6285 * appears to be safe, so we choose that.
6286 */
6287 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6288 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6289 PIPE_CONTROL_WRITE_IMMEDIATE |
6290 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6291 PIPE_CONTROL_WRITE_TIMESTAMP |
6292 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6293 PIPE_CONTROL_DEPTH_STALL |
6294 PIPE_CONTROL_DATA_CACHE_FLUSH;
6295 if (!(flags & wa_bits))
6296 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6297 }
6298
6299 /* Emit --------------------------------------------------------------- */
6300
6301 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6302 fprintf(stderr,
6303 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6304 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6305 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6306 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6307 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6308 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6309 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6310 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6311 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6312 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6313 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6314 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6315 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6316 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6317 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6318 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6319 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6320 "SnapRes" : "",
6321 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6322 "ISPDis" : "",
6323 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6324 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6325 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6326 imm, reason);
6327 }
6328
6329 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6330 pc.LRIPostSyncOperation = NoLRIOperation;
6331 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6332 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6333 pc.StoreDataIndex = 0;
6334 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6335 pc.GlobalSnapshotCountReset =
6336 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6337 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6338 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6339 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6340 pc.RenderTargetCacheFlushEnable =
6341 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6342 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6343 pc.StateCacheInvalidationEnable =
6344 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6345 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6346 pc.ConstantCacheInvalidationEnable =
6347 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6348 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6349 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6350 pc.InstructionCacheInvalidateEnable =
6351 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6352 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6353 pc.IndirectStatePointersDisable =
6354 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6355 pc.TextureCacheInvalidationEnable =
6356 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6357 pc.Address = rw_bo(bo, offset);
6358 pc.ImmediateData = imm;
6359 }
6360 }
6361
6362 void
6363 genX(emit_urb_setup)(struct iris_context *ice,
6364 struct iris_batch *batch,
6365 const unsigned size[4],
6366 bool tess_present, bool gs_present)
6367 {
6368 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6369 const unsigned push_size_kB = 32;
6370 unsigned entries[4];
6371 unsigned start[4];
6372
6373 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6374
6375 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6376 1024 * ice->shaders.urb_size,
6377 tess_present, gs_present,
6378 size, entries, start);
6379
6380 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6381 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6382 urb._3DCommandSubOpcode += i;
6383 urb.VSURBStartingAddress = start[i];
6384 urb.VSURBEntryAllocationSize = size[i] - 1;
6385 urb.VSNumberofURBEntries = entries[i];
6386 }
6387 }
6388 }
6389
6390 #if GEN_GEN == 9
6391 /**
6392 * Preemption on Gen9 has to be enabled or disabled in various cases.
6393 *
6394 * See these workarounds for preemption:
6395 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6396 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6397 * - WaDisableMidObjectPreemptionForLineLoop
6398 * - WA#0798
6399 *
6400 * We don't put this in the vtable because it's only used on Gen9.
6401 */
6402 void
6403 gen9_toggle_preemption(struct iris_context *ice,
6404 struct iris_batch *batch,
6405 const struct pipe_draw_info *draw)
6406 {
6407 struct iris_genx_state *genx = ice->state.genx;
6408 bool object_preemption = true;
6409
6410 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6411 *
6412 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6413 * and GS is enabled."
6414 */
6415 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6416 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6417 object_preemption = false;
6418
6419 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6420 *
6421 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6422 * on a previous context. End the previous, the resume another context
6423 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6424 * prempt again we will cause corruption.
6425 *
6426 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6427 */
6428 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6429 object_preemption = false;
6430
6431 /* WaDisableMidObjectPreemptionForLineLoop
6432 *
6433 * "VF Stats Counters Missing a vertex when preemption enabled.
6434 *
6435 * WA: Disable mid-draw preemption when the draw uses a lineloop
6436 * topology."
6437 */
6438 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6439 object_preemption = false;
6440
6441 /* WA#0798
6442 *
6443 * "VF is corrupting GAFS data when preempted on an instance boundary
6444 * and replayed with instancing enabled.
6445 *
6446 * WA: Disable preemption when using instanceing."
6447 */
6448 if (draw->instance_count > 1)
6449 object_preemption = false;
6450
6451 if (genx->object_preemption != object_preemption) {
6452 iris_enable_obj_preemption(batch, object_preemption);
6453 genx->object_preemption = object_preemption;
6454 }
6455 }
6456 #endif
6457
6458 void
6459 genX(init_state)(struct iris_context *ice)
6460 {
6461 struct pipe_context *ctx = &ice->ctx;
6462 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6463
6464 ctx->create_blend_state = iris_create_blend_state;
6465 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6466 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6467 ctx->create_sampler_state = iris_create_sampler_state;
6468 ctx->create_sampler_view = iris_create_sampler_view;
6469 ctx->create_surface = iris_create_surface;
6470 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6471 ctx->bind_blend_state = iris_bind_blend_state;
6472 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6473 ctx->bind_sampler_states = iris_bind_sampler_states;
6474 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6475 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6476 ctx->delete_blend_state = iris_delete_state;
6477 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6478 ctx->delete_rasterizer_state = iris_delete_state;
6479 ctx->delete_sampler_state = iris_delete_state;
6480 ctx->delete_vertex_elements_state = iris_delete_state;
6481 ctx->set_blend_color = iris_set_blend_color;
6482 ctx->set_clip_state = iris_set_clip_state;
6483 ctx->set_constant_buffer = iris_set_constant_buffer;
6484 ctx->set_shader_buffers = iris_set_shader_buffers;
6485 ctx->set_shader_images = iris_set_shader_images;
6486 ctx->set_sampler_views = iris_set_sampler_views;
6487 ctx->set_tess_state = iris_set_tess_state;
6488 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6489 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6490 ctx->set_sample_mask = iris_set_sample_mask;
6491 ctx->set_scissor_states = iris_set_scissor_states;
6492 ctx->set_stencil_ref = iris_set_stencil_ref;
6493 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6494 ctx->set_viewport_states = iris_set_viewport_states;
6495 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6496 ctx->surface_destroy = iris_surface_destroy;
6497 ctx->draw_vbo = iris_draw_vbo;
6498 ctx->launch_grid = iris_launch_grid;
6499 ctx->create_stream_output_target = iris_create_stream_output_target;
6500 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6501 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6502
6503 ice->vtbl.destroy_state = iris_destroy_state;
6504 ice->vtbl.init_render_context = iris_init_render_context;
6505 ice->vtbl.init_compute_context = iris_init_compute_context;
6506 ice->vtbl.upload_render_state = iris_upload_render_state;
6507 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6508 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6509 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6510 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6511 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6512 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6513 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6514 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6515 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6516 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6517 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6518 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6519 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6520 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6521 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6522 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6523 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6524 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6525 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6526 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6527 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6528 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6529 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6530 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6531 ice->vtbl.mocs = mocs;
6532
6533 ice->state.dirty = ~0ull;
6534
6535 ice->state.statistics_counters_enabled = true;
6536
6537 ice->state.sample_mask = 0xffff;
6538 ice->state.num_viewports = 1;
6539 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6540
6541 /* Make a 1x1x1 null surface for unbound textures */
6542 void *null_surf_map =
6543 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6544 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6545 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6546 ice->state.unbound_tex.offset +=
6547 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6548
6549 /* Default all scissor rectangles to be empty regions. */
6550 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6551 ice->state.scissors[i] = (struct pipe_scissor_state) {
6552 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6553 };
6554 }
6555 }